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Relativistic bottomonium spectrum from anisotropic lattices
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We report on a first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices.
Using a very fine discretization in the temporal direction we were able to go beyond the nonrelativistic
approximation and perform a continuum extrapolation of our results from five different lattice spéxiodjs
0.17 fm) and two anisotropiegt and 5. We investigate several systematic errors within the quenched approxi-
mation and compare our results with those from nonrelativistic simulations.
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[. INTRODUCTION poral direction is useful in controlling and extracting higher
excitations and momenta in the QCD spectrli2—15. It

The recent experimental activitiesRBifactories have trig- was noticed long ago that anisotropic lattices are also the
gered many theoretical attempts to understand heavy quafiatural framework to study QCD at finite temperat{ité].
phenomenology from first principles. The nonperturbativeThis was used 17,18 to retain more Matsubara frequen-
study of heavy quark systems is complicated by the largé€ies at high temperature. Furthermore, it has been suggested
separation of momentum scales which are difficult to accomthat anisotropic lattices can circumvent problems arising due
modate on conventional isotropic lattices. These problem& unphysical branches of the dispersion relation on highly
are particularly severe in heavy quarkonia, where the smaimproved latticeg19].
quark velocity separates the high momentum scales around In Sec. Il we introduce the anisotropic gauge and quark
the heavy quark mass from their small kinetic enenyy,; a_ctlon fOf our StUdy. In Sec. Il We give the.detalls of our
>mq?. While this motivates the adiabatic approximation Simulation and we study systematic errors in Sec. IV. Our
and potential models, a full dynamical treatment poses sigtesults are discussed in Sec. V and Sec. VI concludes this
nificant computational problems. The limitations of presentPaper.
computer resources force us to tackle this problem in some
modified framework. Thankfully there is also a wealth of Il. ANISOTROPIC LATTICE ACTION
spectroscopic data against which different lattice methodolo-
gies and improvement schemes can be tested. Once experi-
mental results can be understood with some accuracy, t . )
lattice will provide a powerful tool for other nonperturbative temporal lattice spacing, such tham,a,<1. For the bot-

predictions such as decay rates and form factors involvingemonium system this implies, =>5 GeV. Discretization
heavy quarks. errors from spatial momenta are controlled |pja;<1,

Several approximations to relativistic QCD have beenWhi_Ch can _be sagisfied more easily a_t conv_entional_spatial
proposed to describe accurately the low energetic phenonf@ttice spacings, “>1.5 GeV. We retain the isotropy in all
enology of heavy quarkonfd,,2]. However, thenonpertur- the spatial directions. The continuum limit can then be taken
bative control of systematic errors in those approximations i¢t fixed anisotropy=as/a; .
very difficult and in practice one has to rely on additional More specifically, we employ an anisotropic gluon action,
approximations. The high precision results for the spin strucwhich is accurate up t@(aZ,af) discretization errors:
ture in nonrelativistic bottomonium calculatiod8] have
been hampered by large systematic errors which are difficult — -1p ,
to control within this effective theory. Higher order radiative S=-8 x,i2>j ¢ PIJ(X)+XE,i EoPu(x) |- @
and relativistic corrections are sizable for bottomoniuhb]
and even more so for charmoniu@]. Still more cumber- This is the standard Wilson action written in terms of simple
some are large observed scaling violatipfg] that cannot ~ plaquettesP,,(x). Here (8,&;) are two bare parameters,
be controlled by taking the continuum limit. which determine the spatial lattice spaciagand the renor-

We take this as our motivation to study heavy quarkoniamalized anisotropyé of the quenched lattice. For heavy
on anisotropic lattices in a fully relativistic framework. This quark propagation in the gluon background we used the “an-
approach has previously been used to calculate the charmisotropic clover” formulation as first described [8,9]. The
nium spectrum with unprecedented accur@8y-11. Here  discretized form of the continuum Dirac operatQr=m,
we extend the method to even heavier quarks and focus ot D reads
our new results for bottomonium. Preliminary results were
already reported if10].

There are additional advantages to using anisotropic lat-
tices which have been employed previously. It has been dem-
onstrated by several authors that a fine resolution in the tem- W, =V,—(a,/2)y,A,. 2

The basic idea of our approach is to control large lattice
acing artifacts from the heavy quark mass by adjusting the

aS
Q=mg+ rWpyo+ vsW; _i[CtUOkFOk_" CsowFils
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HereV, denotes the symmetric lattice derivative and Simple field rescaling enables us to set one of the above
coefficients at will. For convenience we fix=1 and adjust
aiAMQ(X)EUM(X)Q(XJFM)—ZQ(X)+Uw(X)CI(X—M)- Vi nonperturbaqvely for the mesons to obey a relativistic
dispersion relatiofic(0)=1]:
For the electromagnetic field tendéy,, we choose the trace- E2(p)=E2(0)+c3(p)p?+ O(pY) - - -. )
less cloverleaf definition which sums the four plaquettes cen-
tered at poink in the (u,v) plane: We also choosen, nonperturbatively, such that the rest en-

ergy of the hadron matches its experimental value
[M(3S; 7)=9.46 GeV for bottomoniufy For the clover

i
8,8,F 1) (X)= 5P L, (X) + P (X) + P LX) + P (x) coefficients €s,c;) we take their classical estimates from
Egs.(7) and(8) and augment the action by tadpole improve-
—H.c]. 3  ment:
As has been demonstrated by Cligh Eq. (2) is equivalent Ui—Ui/us, (10
to the continuum actiofiup to O(a?) errorg through Q3)
symmetric field redefinition: Uo—Uo/u;. (11)
Q Q Q Following Ref.[9] the resultingdimensionlessfermion ma-
q)—| 1+ Tmatmq+ %atvt'i_ 75:33?73 qx). (4 trix can then be written as
Uit v Weyet Wiy — 2| gl
In a recent papef20], Aoki et al. observed that this five- 2Q=tiMo+ 1Woyo+ £ T g U2 okt ok

parameter fermion action does not generate Euclide@ O

covariant quark propagators. While it is true that the fermion Cs .
Green’s functions derived from our action will contain non- t— . ouFu|, (12)
covariant terms af(a), these can be removed by undoing Uséo

tlggtrfleerl?hgr?ﬁ:)?rkri?]a“\?vﬁ)aa:ng;g cegr(rj\ cl’i]::;?ee d (:::ltciglnat'v\?hnér where we arranged the terms in such a way that the temporal
" 9 P . Wilson term is multiplied by only;. To compute the coef-
additional parameters have to be tuned for covariance, if . . - e
. . ; . icients of the spatial terms we uséé,=u,/ug, which is
would be easier to implement this change of spinor basis

o : g . accurate within 3%[9,21]. Remember that we can still
after the expensive inversion of the fermion matrix. How—Choose at will and a 3% uncertainty foc. is certainl
ever, in this work we do not even need such a final transfor- Vs 0 Y 19Cs y

mation since we do not study spin-1/2 hadrdnle have acceptable—at our lattice spacings a different tadpole pre-

: , P ) . scription has a much more pronounced effect on this
chosen Wilson’s combinatiow , of first and second deriva- o . .
. u I coefficient. The tadpole coefficients have been determined
tive terms so as to ensure the full projection property and t ; X )
rom the average |link in Landau gaugeu,

remove all doublers. The five parameters in E). are all — (1/3)(tr U (X)) Lanaaur FOT brevity we will refer to this as

related to the quark mass, and the gauge coupling as they . )
appear in the continuum action. By tuning them appropri-the Landauscheme. Any other choice focd,c,) will have

ately we can remove ald(a) errors and reestablish Euclid- theects 22}6 g:}g:glzurg)“é?&rgztzg;n tgfogsrescnptlon we ex
ean Q4) symmetry. The classical estimates have been giveﬁ) y @ '

in [9]:
Ill. SIMULATION DETAILS
Mo=mMmg(1+ %asmq), ) For the generation of quenched gauge field configurations
we employ a standard heat-bath algorithm as it is also used
1 for isotropic lattices. The renormalized anisotrogyis re-
1+ Easmq lated to the bare parameté&s through
S (6)
te ol E=n(&.B)é. (13)
1+ Eatmq
A convenient parametrization foy can be motivated by a
one-loop analysis of the renormalized anisotropy:
Co= Vs, (7
1) m(é) 1-ayg?
= E( Vet Vt;s (8) o9
wherez;(&)~1.02 and is almost constant for our rangeof
We use Padeparameters d,=—0.77810 and a;=
We would like to thank N. Christ for clarifying this point. —0.55055), which have been determined by an excellent fit
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over a wide range of lattice data with differe@tand & [21]. 0.8 ' '
Based on Eq(14) we choose the appropriafg to realize¢ o eff. mass
close to 4 and 5 for each value @=6/g°=5.7-6.5. De- # 3—cosh fit
pending on the gauge coupling, we measure hadron props_ 0.7 | . = 2—cosh fit H
gators every 100—400 sweeps in the update process, which i&
sufficiently long for the lattices to decorrelate.

The construction of meson operators with givltt as-
signment is standard. As in Refd0,22, we use both local
and extended operators by employing thel'Léatrices and
spatial lattice derivatives for the quark bilinears:

0.7 r

eff. mass/ fitted m

0.65

M(x)=q()T;4;[UIAU]q(0). (19

To improve the overlap with the ground state we also imple- 06

mented a combination of various iterative smearing prescrip- time / t,,,

tions for the quark fields and gauge links:
FIG. 1. Effective masses and fit results. We show the effective

€ n masses, open circles, f68, at (3,£)=(6.5,4) from three different
1- —AZ[U]> g(x) (Jacobi smearing box sources with spatial extents of 3, 6, and 9 in lattice units. The
n two larger sources project better onto the ground state as expected.

q()—q™(x)=

(16) The results from the two-state and three-state fits are also shown as
filled squares and diamonds, respectively. We observe stable fit re-
U(x)—>U(m*1)(x) :PSU(B)( U(m)(X) ta z S(x) sults for large enough,,,. In this example, we fix,,,,= 80.
staples
2 19
(APE smearing. (17 = N : (19

For conventional states, we find it often sufficient to usewith n=(0,00),(1,00),(1,10),(2,00),(2,2,0).

(gauge-fixedl box sources of different size. We use local ~For an estimate of the spin splittings we take the differ-
sinks throughout. This setup allows us to extract reliablyence of the ground state masses from multistate fits. Because
both the ground state energies and their excitations from cothese states are highly correlated we obtain very accurate

related multistate fits to several smeared correla@ig)  estimates for the spin splittings compared to the absolute
with the samelPC: masses. An example of this is shown in Fig. 3. We use jack-

knife and bootstrap ensembles for our error estimates and
C(t,p)=(M(t,p)M*(0,p))

Nit

:2 ais(p)(e*Ei(p)tJre*Ei(p)(Nrt))_ (18)
=

0.12

Since we are working in a relativistic setting, the secondz g
term takes into account the backward propagating piece frorrgi

the temporal boundary. An example of this is given in Fig. 1, &
where we show the effective masses ft8,=1"~ from 2 0.08
three different box sources along with the fit results from a <
two-state and a three-state ansatz. In this example the smalg g4 | = 1L
est box shows clear contributions from excited states, while<"
the other two sources project much better onto the grounc
state. We did not further optimize the box size for perfect 902 | 17 1
overlap, but since for the largest source the plateau is ap -

proached from below we can estimate that an “optimal” box 0 . s . - e
would have a physical extent of 0.2—0.3 fm. This is in good 5 1B 25 3% 4 0 2 4 6 8 10
agreement with phenomenological expectations about the trin n

size of theY ground state. What is more important here for g5 2 Dispersion relation. On the left-hand side we shyy

us is to have a variety of different overlaps which are welly|ots for the fitted energy difference between nonzero momentum
suited to constrain the multistate fits. states and théS, at rest. On the right-hand side we plot the fitted

To obtain the dispersion relatioB(p), we project the splitting against the spatial momenta squareds= (27/L)2n2.
meson correlator also onto four different nonzero momentaince we tuned, very carefully, this corresponds to a velocity of
by inserting the appropriate phase factors exp¢x) at the  light ¢(0)=0.990(11). This example is fromB(£)=(5.9,5) with
sink. This is illustrated in Fig. 2, where we use v,=1.815.
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FIG. 3. Here we show fit results for th&P;-3P, splitting at
(B,€)=(6.1,4) and volume T6< 96. We fixt =48 and varyt,,
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find good agreement in all cases. In order to call a fit accept-
able we require the consistency within errors for different fit

ranges and) values to be bigger than 0.1. Our main results

are collected in Table | along with the input parameters for
the different data sets.

For (B,¢)=(6.1,4) and (6.3,4) we have also analyzed
extended operators that give access td" 23P,, D states
with two units of orbital angular momentum and exotic hy-
brid states, Table Il. These are more states than previously
obtained from nonrelativistic calculations. Even though our
scaling window is not wide enough to make a serious at-
tempt at a continuum extrapolation, we expect lattice arti-
facts to be less pronounced for these large state$tAt4)
we find a good agreement of our results and those reported in
[13,14,223. This is not unexpected since the nonrelativistic
approximation is known to work better for hybrid states,
which are thought to live in a very shallow potentia#]. In
particular, we find the lowest lying hybrid to be the .. We
are concerned, however, that these results are more sensitive

in the search for a plateau. Strong correlations between the twg, finite volume effects than those f8mandP stategsee Sec.
states allow a very accurate determination of the energy differencqv)_ Especially ai(6.3,4 we have reason to believe that our

TABLE |. Simulation parameters and results. We label our runs®y), whereg is chosen to vary the spatial lattice spacing @nd
determines the appropriate bare anisotrggysee Eq(14)]. The temporal lattice spaciray is determined from'P,;-3S,. Ground state and
higher excitations are from correlated three-cosh fits to all channels. For the excitations we quote the normalize®Ryegts
—1S)/(1P—1S). An asterisk denotes results that have not been checked by fitting even higher excitations than those listed. For example,
we did not perform four-cosh fits to obtain better estimates f6r Al spin splittings have been rescaled to the physical bottomonium

(35,=9.46 GeV).

(B,€) (5.7,9 (5.9,9 (5.9,5 (6.1,9 (6.1,9 6.1,5 (6.3,9 6.5,9

(Ng,Nyp) (8,96 (8,96 (8,96 (16,96 (8,96 (16,128 (16,128 (16,160
Configurations 392 700 780 660 420 370 450 710
Separation 100 100 400 400 400 400 400 400

a; ! (Gev) 4.5431) 6.7624) 9.27(43) 10.5731) 9.6575) 12.31.2 15.1581) 20.92.2
ag(fm) 0.17412)  0.116842 0.106449 0.074722 0.081864) 0.080477) 0.052128) 0.037740)

&o 3.04682 3.139035 3.870249 3.210801 3.210801 3.96234 3.268645 3.31655
Uos 0.758364  0.785945 0.784067 0.800927 0.800927 0.81015 0.826810 0.83709
Uot 0.984104  0.986984 0.991782 0.988702 0.988702 0.99279 0.990039 0.99100
Ugt /Ugs 1.297667 1.255793 1.26492 1.234447 1.234447 1.22544 1.197420 1.18386
ElEg 1.312844  1.274277 1.2919065  1.245795 1.245795 1.26188 1.223749 1.20607
am, 1.98 1.1200 0.8960 0.6700 0.6700 0.58 0.4940 0.31
(vs,vy) (1,1.30 (1,1.50 (1,1.815 (1,1.573 (1,1.573 (1,1.65 (1,15 (1,1.52

Cs 2.292804  2.059794 2.074632 1.946351 1.946351 1.88063 1.7680 1.7054
Cy 1.170549 1.127661 1.1177481  1.098368 1.098368 1.05055 1.0154 0.9002
c(0) 1.04425  1.02632  0.99Q11) 0.9797) 1.01814) 0.99411) 1.00419)  0.99220)

33, (GeV) 9.7966) 9.5334) 9.57(44) 10.4030) 9.4974) 10.11497) 12.6067) 13.0414)
13s,-'s, (MeV) 36.03.5 37.22.6) 37.52.9 44.82.0 33.93.1) 37.05.7) 49.94.9 51.07.9
23s,-1s, (MeV) 155273 56(57) 37(12) 40(11) 57(18) 2(58) 48(41) 57(29)
1p,-°P, (MeV) 16.24.7) 20.64.5 25.23.2 39.55.7) 28.7(6.6) 30.75.5 54.07.7) 46.68.7)
PP, (MeV) -1.4(2.3) -1.3(1.1) 4.61.3 8.03.3 7.94.9 3.72.0 8.83.5 8.43.9
3p,-°P, (MeV) 16.02.8) 23.73.1) 24.52.2) 28.34.0) 28.05.7) 27.44.2 44.75.1) 39.96.6)

Ros 1.0023) 1.3718) 1.40(14) 1.2714) 1.3917) 1.30125) 1.5318) 1.5320)

Ras 1.9950*  2.35(29*  3.13(32*  2.27(34*  3.6(1.3* 3.0557*  3.25(51)*  5.17(76)*

Rop 2.2148*  2.32(30) 2.26(26) 2.4013) 2.2630) 1.9961) 2.5649) 2.1434)
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TABLE II. Results from extended meson operators. For the two  TABLE Ill. Change inv;. In this table we compare our results
lattices shown all run parameters are exactly as in Table Rynid from (B,¢)=(5.9,5) when the optimab,=1.815 is changed arbi-
the normalized excitation above the ground staRy=(X trarily by 10%. This entails a changeép. All other run parameters
—1S)/(1P—1S). However, here we employ also the extended op-are as in column 4 of Table I. The corresponding changes in the
erators of Eq(15) which give us access tdP, states withL =2 spectrum as listed above and the lattice numbers are given in Fig. 4.
and the exotic hybrid candidates 0,1~ *,2* ). For P states

(L=1) we use a single symmetric lattice derivative to create ex{vg,vy) (1,2.815 (1,1.650
tended operators and fdD states we take the anticommutator (cq,c,) (2.074632,1.1177481 (2.074632,1.090685
{Ai A} (L=2). The commutatdrA; ,A;] amounts to an insertion  Configurations 780 500
of a color-magnetic field into the quark bilinear and gives rise toc(0) 0.99a11) 1.067198)
hybrid states. Different Dirac matrices result in differéff® as- a! (Gev) 9.2743) 8.20134)
. . . .
signments. 3, (GeV) 9.5744) 9.0538)
(8.9) 6.1.4 6.3.4 35,-15, (MeV) 37.52.9 34.42.6)

: A, 3, 10 3
Configurations 330 360 e (mey 245;13':;) 244515";)
Separation 400 400 N (MeV) A e
3p,-1P; (MeV) 24.44.1) 20.66.9 Rpl' Po (MeV) 214"15&2142)) 1225428‘::))
3p,-*P; (MeV) 39(19) 27(11) st 2'26(26) e 423
277277 (MeV) - 31.06.9 2P : :
R, + - 1.6311)
Ry 1.81(26) 1.6711) whenL<1 fm. For the fine structure we could not resolve

Ry-+ 3.41(43) 4.2534) any shift within the statistical errors. For all but our finest
Ro+- 4.41(85) 3.3172) lattice we have.~1 fm, which should be sufficiently big to
Ry+- - 5.9349) accommodate the small bottomonium ground states in a

quenched simulation.

Another source of systematic errors is the tuning of the
|attice iS not SuffiCiently b|g to accommodate SUCh |argebare quark mass parameu%. For the hyperfine Sp“tt'ng
wave funCtiOI’lS, resulting in an inverSiOI’l Of the Characteristi(\especia”y we Observed a Strong dependence on the ground
level ordering. A simulation on bigger volumes is necessangtate masdV (m,), as shown in Fig. 6. On our coarser lat-
to simulate hybrid states more accurately. tices we were able to tune the mass very accurately to within

In the following we will focus on the low lying bottomo- 1094 of the physical bottomonium mass, but as the tuning
nium states and their spin structure, where statistical errorgecomes more and more expensive on our finer lattices, the
are small enough to allow a critical comparison with resultsyeyiation from bottomonium reaches (35)% at B,
from the nonrelativistic approximation. =(6.5,4). We use the potential model predictidE
«1/M to rescale all measuredlE, to the physical point

V. SYSTEMATIC ERRORS M=9.46 GeV. Our results in Table | include these adjust-

Apart from our main data sets we performed extensive 1.2 ; :
checks of systematic errors within the quenched approxima: 1.15 | L ®’s, 1
tion. As mentioned above, we enforce a relativistic disper- 11l ° m'P, ]
sion relation by tuning the bare parameigrnonperturba- A u Ac(0)
tively at each quark mass to obtain=1.0 very accurately 105 | ° |
within 1-29%. From a classical analysis of the dispersion 1 7'y
relation we expect>1/v,. Indeed, for an arbitrary decrease g5 . ‘ ‘ ‘ ‘
of v; by 10% we observe an increase of the velocity of light 1.6 1.65 1.7 1.75 1.8 1.85 1.9
by a similar amounf7.82.1)%]; see Table Il and Fig. 4. G005
Within the statistical error for th@ structure we could not '
resolve any significant effect, while the hyperfine splitting ) ®°s-'s,
showed an increase by 8(10)%. From these observations, w29 [ L] ap P | |
expect only small changes<2%, <1 MeV) due toc
+1. 0.003 - E 1

We also tested for finite size effects by explicitly compar- L]
ing the results from two different spatial volumes of 0.002 ' ‘ ‘ ‘ ‘

1.6 1.65 1.7 1.75 1.8 1.85 1.9

(1.3 fm)®> and (0.7 fm§ at (B,£)=(6.1,4) (see Fig. 5.
While changes in the ground state masses amount to only a
fraction of a percent, the hyperfine splitting shows a slight F|G. 4. », tuning. We illustrate the nonperturbative tuning of the
increase of )% and the!P,-3S; splitting is reduced by velocity of light (8,£) = (5.9,5). Our best estimate ig=1.815 and
10(9)% when going to the larger lattice. Therefore we expecive show the effect on spectral quantities as we change this param-
the hyperfine splitting to be systematically underestimatecter by 10%.

Vi
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FIG. 5. Finite volume effects. Here we compare our spectrum a, [fm]

Its at =(6.1,4)N3x 96, for Ng=8 and 16. . -
results at £,£)=(6.1,4) N  TOTNs=S an FIG. 7. Different tadpole prescriptions. Here we compare the

effect of changing the value ofc(,c,) by (10%,2%. Within our
ments in both the central values and their errors. Since altatistical errors there is only a minor shift to indicate the corre-
spin splittings vanish in the static limit we also apply the sponding change i®(«a) scaling violations.
same rescaling technique to the fine structure.

Finally there will be systematic effects at finite lattice cients. Since any remaining difference will vanish in the con-
spacing, which are absent in the continuum limit. The treetinuum limit we did not investigate this dependence further.
level estimates forg and c; will experience a shift due to
radiative corrections, thereby changing the magnitude of the V. DISCUSSION
O(«aa) artifacts. In Fig. 7 and Table IV we compare the _ _ . _ -
Landau scheme with another popular scheme, where the tad- TO convert lattice data into dimensionful quantities we
pole coefficients are estimated from the plaquette valuedised the lattice spacing determined from ##&,-°S; split-
3u'u:<trpi'u>l/4. This amounts to a (20,2%) change in ting that is flx_ed to match the _experlmental value
(cs,cy) at (5.9, 4. The corresponding change in the hyper-(”44o _MeV). It is well known that, W|th(_)u_t_dynam|cal sea
fine splitting is —15(17)%. While this may indicate some guarks in the gluon background, the definition of the lattice
additional reduction at coarse latticessulting in a slightly ~ Spacing is ambiguous and one cannot reproduce all experi-
worse Scaling beha\/ihrit is also clear that within our errors mental Spllttlngs S|mu|taneous|y. Nonrelativistic lattice cal-

we are not very sensitive to this choice of tadpole coeffi-culations with two dynamical flavori,7] resulted in shifts
of up to 5 MeV for the hyperfine splitting, but they are also

not completely free from ambiguities in the lattice spacing

02 ' ' ' ' and from systematic errors such as lattice spacing artifacts
and radiative and relativistic corrections. For the purpose of
this paper we accept the shortcomings of the quenched ap-
proximation and aim to control the other systematic errors

015 | ] instead, the combined effect of which could also be as large

as 20% for bottomonium on the lattices in this study.

The main features of the bottomonium spectrum from
relativistic lattice QCD are summarized in Fig. 8, where we
can see clearly the characteristic level ordering as additional
01 L Ty | angular momentum is inserted into the ground state. The
overall agreement with experimental data is impressive, as is
I the spin structure predicted from first principles. While it is
hi probably too early to investigate the spin splittings in excited
states (23S,—-2 1S, still has large statistical errorswe
0.05 : ' ' - have rather accurate data for the spin structure of the ground
0.02 0.04 o.o:s/ s 0.08 0.1 0.12 states.

() In Fig. 9 we plot the hyperfine splitting against the spatial

FIG. 6. Mass dependence. We plot the dimensionless hyperfinttice spacing at fixed anisotropy and compare it with pre-
splitting against the inverse of the measured meson mass. The vefious simulations in this region. Already at finite lattice spac-
tical line denotes the bottomonium mass & &) =(6.1,4). The ing we can see significant deviation from nonrelativistic
corresponding bare quark masses mge=0.67, 0.40, and 0.10. simulations. There could be several reasons for this. First, we

381_130
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TABLE IV. Here we compare our results from different tadpole descriptions at two different lattices
spacings. We distinguish between the Landau schejnas defined in Sec. Il and the plaquette schegs
for which 3u,,=(tr P; )% While there is some indication that the hyperfine splitting increases whés
decreased at finite lattice spacing, there is no clear improvement of scaling. See discussion in main text.

Tadpole scheme UgL Uop UgL Ugp
(8,8 (5.9,9 (5.9,9 (6.1,9 (6.1,9
(Ng,Ny) (8,64 (8,649 (16,96 (16,96
Configurations 600 600 660 130

a; ' (Gev) 6.5743) 6.4053) 10.5731) 10.61.2)
ag(fm) 0.120280) 0.12310) 0.074722) 0.0745%77)
& 3.139035 3.139035 3.210801 3.210801
Uos 0.785945 0.810698 0.800927 0.822785
Uot 0.986984 0.949731 0.988702 0.952954
asm, 1.1200 1.1200 0.6700 0.877
(vs,v) (1,1.50 (1,1.50 (1,1.573 (1,1.573

Cs 2.059794 1.876818 1.946351 1.795316
i 1.127661 1.101421 1.098368 1.079827
c(0) 1.01415) 1.02314) 0.9797) -

33, (GeV) 9.2561) 9.04(75) 10.4030) 12.31.3
35,-1S, (MeV) 35.1(3.9) 30.63.6) 44.92.0) 43.76.6)
PPy (MeV) 26.03.9 25.04.0 39.55.7) 41(14)
PP, (MeV) 1.31.7) 1.7(2.3 8.03.3 9.68.2
3P,-°Py (MeV) 23.712.7) 22.32.8 28.34.0) 30.99.4)
Ros 1.4513) 1.41(13) 1.2714) 1.3723)*
Rop 2.2249) 1.81(28) 2.4013) 3.1497)*

should expect different discretization errors from the differ-could be an indication of comparatively larG¥ aa) correc-
ent gluonic actions that have been employed in the pastions, which can compete wittd(a?).
While the unquenched results in Fig. 9 were obtained from a Some of those results mentioned also use a different pre-

renormalization group improved gluon action with two dy- scription for the tadpole coefficients than in our present
namical flavorq 7], many other quenched simulations were

done using the standard plaquette acfi®r5,23. Nonrela- 100 ;

tivistic results from coarse and anisotropic lattices also exist Qre'aﬁvisﬁcy &=4,N=0
[24] and they seem to show scaling violations similar to O relativistic, &=5, Ni=0
those from unimproved gluon actions, even though a 80 - [CINRQCD, &=1,N=0 [23] |]
plaquette-plus-rectangléSymanzik action was used. This /\NRQCD, &=5, N=0 [24]

—_ @ NRQCD, &=1,N=2[7]

12 3 -- 0(a?) extrapolation
Eo — Of(a,) extrapolation
1.5} %
|
(')CDF b
1 %
3 105 E * |
10 | 2 z A
oLl - Ly w
9.5 0 0.1 0.2 0.3 0.4
A a,(1P-1S) [im]
°T s, P, %, Pz 12 FIG. 9. Continuum extrapolation of the hyperfine splitting in

bottomonium. Circles denote our results from different anisotropic
FIG. 8. Relativistic bottomonium spectrum. We plot our lattices. Open squares and triangles are quenched NRQCD results
quenched continuum estimates as full circles. Selected results férom isotropic and anisotropic lattices. Filled diamonds are un-
27" and exotic candidateghybridg from finite lattice spacing, quenched NRQCD results with two dynamical flavorsnat/m,

(6.1,9, are shown as open squares. Tig-3S, splitting is usedto  ~0.5. We also show two different continuum extrapolations of our
set the scale. Where available, experimental values are shown &s-4 results, where we assume a simple linear or quadratic form in
horizontal lines. as. The latter results in a better fit but larger continuum value.
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100 T | 1 2 T T —
Q relativistic, &=4, N=0 Qrelativistic; £=4
_— 18T O relativistic; £=5
O relativistic, &=5, N,=0 =
80 | 1 [CINRQCD N=0; &=1 [23]

[0 NRQCD, &=1, N=0 [23] & 1.6 ANRQCD N=0; £=5 [24] |
ANRQCD, &=5,N=0 [24] £ 14 @ NRQCD N=2;£=117] |

S 60 — @ NRQCD, &=1,N=2 [7] 1 % % 3K nature

[0

= — O(a,) extrapolation - 12 A .

a” =t 2 " f

o T --- O(a,) extrapolation €y |

a- 40_[ |

£ ¥ nature

T D% o8 ]

200 1.2 *@4 | 06, 01 02 03 0.4

- = H*E a, (1P-1S) [fm]
A
0 0 0.1 0.2 0.3 0.4 FIG. 11. Higher excitation in bottomoniuM’. Here we plot the
a,(1P-18) [fm] conveniently normalized splittingS21S against the spatial lattice

spacing. Within the errors we find a good agreement for all the
FIG. 10. Continuum extrapolation 8P;-3P,. We use the same different methods and a slightly higher continuum limit than in
symbols as in Fig. 9 to plot this element of the fine structure againsgéxperiment. From potential models, we can expect that this ratio
the spatial lattice spacing determined from-1S. will be lower in dynamical simulations.

work. We want to stress again that the tadpole prescription idecided to omit the results from our coarsest lattice where we
merely an empirical way of keeping radiative correctionsshould expect potentially large lattice spacing corrections
small. It has been suggested by several authors that the Lafrom higher orders due ta;m,>1 andagmqv>1. Including
dau scheme is particularly suitable to account for radiativehese data, however, does not change our continuum esti-
corrections due to tadpole diagrafs25]. In the continuum  mates significantly. If we assume that our action successfully
limit (U ,—1) both definitions(Landau and plaquettenill removes allo(a) errors, we can quote 513.1) MeV for the
be identical, but at finite lattice spacing they result in differ-quenched hyperfine splitting in bottomonium. This may be
ent estimates for the clover coefficients. We have demontoo optimistic and, allowing forO(«a) errors, we find
strated above that a lower value fgy will result in a slightly ~ 59(20) MeV from a linear-plus-quadratic fit. As can already
larger hyperfine splitting. A more pronounced effect has beeive seen from the large error on the intercept, such a general
observed in[5]. In the nonrelativistic framework one can fit is not very well constrained by our data and even the
also quantify this shift, which was employed[iB3]. These quadratic term is consistent with zero. For comparison, we
authors rescaled their results to the Landau scheme arfthd 58.15.5 MeV from a simple linear fit. Notice, though,
found improved scaling. Here we find some indication for athat all these fitting methods result in comparatively high
minor improvement, but none of the schemes is completelyalues given phenomenological estimates of 30—40 MeV. It
successful in removing the apparently la@éxa) errors. A remains to be seen how unquenching will affect this quantity,
nonperturbative determination of the clover coefficients is inalthough we expect it to further increase the hyperfine split-
order to reduce these errors significantly. We used the Larting. An accurate experimental determination of the bottomo-
dau scheme mainly for simplicity. nium hyperfine splitting would be most valuable to judge the
In contrast, the fine structure is not expected to be aseliability of our approach.
much affected by the tadpole prescription which might ex- For the fine structuréP,-3P,, the situation is very simi-
plain the better agreement of our estimates®®5->P, with lar as shown in Fig. 10. We find a rather large value of
the nonrelativistic QCOONRQCD) values in Fig. 10. 50.96.49 MeV from the simple linear extrapolation in
We interpret the remaining differences between our reay(Q=0.22). This is 3r above the experimental value of
sults and the quenched NRQCD values as due to higher 082.1(1.5 MeV. The quadratic fit is slightly worse Q
der relativistic effects. It has already been showpdijs] that  =0.14) and predicts 41(Z.1) MeV for the continuum limit.
those corrections can be sizable 10% for bottomonium at As for the hyperfine splitting, a fit involving both terms is
O(mv®)]. However, it is not trivial to extend the nonrelativ- badly constrained and gives @2) MeV with Q=0.12.
istic approximation to ever higher order. Our calculation In Fig. 11 we also plot the higher excitationSAS
does not suffer from this uncertainty since we are working inagainst the spatial lattice spacing. Naturally, these results
a fully relativistic setting. have larger errors than spin splittings and ground states as
Above all we are now able to perform a continuum ex-they rely on the control of additional parametéamplitudes
trapolation of the hyperfine splitting. As shown in Fig. 9 the and energigsin the fitting process. In line with other simu-
scaling violations are large and we parametrize our latticdations, we find a continuum result that is slightly larger than
results by(1) a linear ansatz2) by a quadratic ansatz, and the experimental value. However, it will be important to
(3) a linear-plus-quadratic fit ias. All these fits are accept- measure this quantity more accurately on bigger volumes as
able with Q=0.3,...0.9. For the final analysis we also our lattices may not be big enough for these larger states.
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Based on the observed finite volume effects, Fig. 5, we havéhat further studies on anisotropic lattices will be able to
reason to believe that the result from our finest latticedetermine the continuum spectrum of bottomonium with in-
(B,€)=(6.5,5) could be overestimated. Therefore we treatreasing accuracy. A nonperturbative determination of the

our data for the 3-1S splitting with caution. clover coefficients is highly desirable, but it remains to be
seen whether this is feasible as suggestef?6). Alterna-
VI. CONCLUSION tively, simulations at even finer lattice spacings would be

, useful to disentangle remainin@(as) and O(a2) errors.

In conclusion, we have demonstrated that systems CORyhat remains to be done is the efficient implementation of
taining quarks as heavy as the bottom quark can also bgnisotropic sea quarks, which is necessary to control the sys-
treated relativistically within the framework @fnisotropic  {amatic errors from the quenched calculation. Work in this
lattice QCD. Imposing a fine temporal discretization appeargre4 is in progresg27].
to be a very natural way to respect the physical scales in the g re applications are not restricted to heavy quark
problem and it should open up a reliable alternative to NoNy,55ses alone, but they may also be extended to heavy-light

relativistic simulations(where systematic errors are much systems where both quarks can now be treated within a uni-
harder to contrgl In our study of the bottomonium system ¢J.m approach.

we found noticeable deviations of the hyperfine splitting

from nonrelatl\{lsnc S|mulat|ons, while the fine structure ACKNOWLEDGMENTS
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