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Relativistic bottomonium spectrum from anisotropic lattices

X. Liao and T. Manke
Physics Department, Columbia University, New York, New York 10027

~Received 24 November 2001; published 25 March 2002!

We report on a first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices.
Using a very fine discretization in the temporal direction we were able to go beyond the nonrelativistic
approximation and perform a continuum extrapolation of our results from five different lattice spacings~0.04–
0.17 fm! and two anisotropies~4 and 5!. We investigate several systematic errors within the quenched approxi-
mation and compare our results with those from nonrelativistic simulations.

DOI: 10.1103/PhysRevD.65.074508 PACS number~s!: 11.15.Ha, 12.38.Gc, 14.40.Nd
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I. INTRODUCTION

The recent experimental activities atB factories have trig-
gered many theoretical attempts to understand heavy q
phenomenology from first principles. The nonperturbat
study of heavy quark systems is complicated by the la
separation of momentum scales which are difficult to acco
modate on conventional isotropic lattices. These proble
are particularly severe in heavy quarkonia, where the sm
quark velocity separates the high momentum scales aro
the heavy quark mass from their small kinetic energy;mq
@mqv2. While this motivates the adiabatic approximatio
and potential models, a full dynamical treatment poses
nificant computational problems. The limitations of prese
computer resources force us to tackle this problem in so
modified framework. Thankfully there is also a wealth
spectroscopic data against which different lattice method
gies and improvement schemes can be tested. Once ex
mental results can be understood with some accuracy,
lattice will provide a powerful tool for other nonperturbativ
predictions such as decay rates and form factors involv
heavy quarks.

Several approximations to relativistic QCD have be
proposed to describe accurately the low energetic phen
enology of heavy quarkonia@1,2#. However, the~non!pertur-
bative control of systematic errors in those approximation
very difficult and in practice one has to rely on addition
approximations. The high precision results for the spin str
ture in nonrelativistic bottomonium calculations@3# have
been hampered by large systematic errors which are diffi
to control within this effective theory. Higher order radiativ
and relativistic corrections are sizable for bottomonium@4,5#
and even more so for charmonium@6#. Still more cumber-
some are large observed scaling violations@6,7# that cannot
be controlled by taking the continuum limit.

We take this as our motivation to study heavy quarko
on anisotropic lattices in a fully relativistic framework. Th
approach has previously been used to calculate the cha
nium spectrum with unprecedented accuracy@8–11#. Here
we extend the method to even heavier quarks and focu
our new results for bottomonium. Preliminary results we
already reported in@10#.

There are additional advantages to using anisotropic
tices which have been employed previously. It has been d
onstrated by several authors that a fine resolution in the t
0556-2821/2002/65~7!/074508~9!/$20.00 65 0745
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poral direction is useful in controlling and extracting high
excitations and momenta in the QCD spectrum@12–15#. It
was noticed long ago that anisotropic lattices are also
natural framework to study QCD at finite temperature@16#.
This was used in@17,18# to retain more Matsubara frequen
cies at high temperature. Furthermore, it has been sugge
that anisotropic lattices can circumvent problems arising
to unphysical branches of the dispersion relation on hig
improved lattices@19#.

In Sec. II we introduce the anisotropic gauge and qu
action for our study. In Sec. III we give the details of o
simulation and we study systematic errors in Sec. IV. O
results are discussed in Sec. V and Sec. VI concludes
paper.

II. ANISOTROPIC LATTICE ACTION

The basic idea of our approach is to control large latt
spacing artifacts from the heavy quark mass by adjusting
temporal lattice spacingat such thatmqat,1. For the bot-
tomonium system this impliesat

21.5 GeV. Discretization
errors from spatial momenta are controlled byupuas,1,
which can be satisfied more easily at conventional spa
lattice spacingsas

21.1.5 GeV. We retain the isotropy in a
the spatial directions. The continuum limit can then be tak
at fixed anisotropyj5as /at .

More specifically, we employ an anisotropic gluon actio
which is accurate up toO(as

2 ,at
2) discretization errors:

S52bS (
x,i . j

j0
21Pi j ~x!1(

x,i
j0Pit~x! D . ~1!

This is the standard Wilson action written in terms of simp
plaquettesPmn(x). Here (b,j0) are two bare parameters
which determine the spatial lattice spacingas and the renor-
malized anisotropyj of the quenched lattice. For heav
quark propagation in the gluon background we used the ‘‘
isotropic clover’’ formulation as first described in@8,9#. The
discretized form of the continuum Dirac operatorQ5mq
1D” reads

Q5m01n tW0g01nsWig i2
as

2
@cts0kF0k1cssklFkl#,

Wm5¹m2~am/2!gmDm . ~2!
©2002 The American Physical Society08-1
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Here¹m denotes the symmetric lattice derivative and

am
2 Dmq~x![Um~x!q~x1m!22q~x!1U2m~x!q~x2m!.

For the electromagnetic field tensorFmn we choose the trace
less cloverleaf definition which sums the four plaquettes c
tered at pointx in the (m,n) plane:

amanFmn~x![
i

2
@Pmn~x!1Pnm̄~x!1Pm̄n̄~x!1Pn̄m~x!

2H.c.#. ~3!

As has been demonstrated by Chen@9#, Eq. ~2! is equivalent
to the continuum action@up to O(a2) errors# through O~3!
symmetric field redefinition:

q~x!→S 11
Vm

2
atmq1

V t

2
at¹”t1

Vs

2
as¹”sDq~x!. ~4!

In a recent paper@20#, Aoki et al. observed that this five
parameter fermion action does not generate Euclidean O~4!
covariant quark propagators. While it is true that the ferm
Green’s functions derived from our action will contain no
covariant terms atO(a), these can be removed by undoin
the field transformation~4! at the end of the calculation
Rather than working with a more complicated action wh
additional parameters have to be tuned for covariance
would be easier to implement this change of spinor ba
after the expensive inversion of the fermion matrix. Ho
ever, in this work we do not even need such a final trans
mation since we do not study spin-1/2 hadrons.1 We have
chosen Wilson’s combinationWm of first and second deriva
tive terms so as to ensure the full projection property and
remove all doublers. The five parameters in Eq.~2! are all
related to the quark massmq and the gauge coupling as the
appear in the continuum action. By tuning them approp
ately we can remove allO(a) errors and reestablish Euclid
ean O~4! symmetry. The classical estimates have been gi
in @9#:

m05mq~11 1
2 asmq!, ~5!

n t5ns

11
1

2
asmq

11
1

2
atmq

, ~6!

cs5ns , ~7!

ct5
1

2 S ns1n t

at

as
D . ~8!

1We would like to thank N. Christ for clarifying this point.
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Simple field rescaling enables us to set one of the ab
coefficients at will. For convenience we fixns51 and adjust
n t nonperturbatively for the mesons to obey a relativis
dispersion relation@c(0)51#:

E2~p!5E2~0!1c2~p!p21O~p4!•••. ~9!

We also choosem0 nonperturbatively, such that the rest e
ergy of the hadron matches its experimental va
@M (3S1

22)59.46 GeV for bottomonium#. For the clover
coefficients (cs ,ct) we take their classical estimates fro
Eqs.~7! and~8! and augment the action by tadpole improv
ment:

Ui→Ui /us , ~10!

U0→U0 /ut . ~11!

Following Ref.@9# the resulting~dimensionless! fermion ma-
trix can then be written as

atQ5utm̂01n tŴ0g01
ns

j0
Ŵig i2

1

2 F ct

utus
2
s0kF̂0k

1
cs

us
3j0

sklF̂klG , ~12!

where we arranged the terms in such a way that the temp
Wilson term is multiplied by onlyn t . To compute the coef-
ficients of the spatial terms we usedj/j05ut /us , which is
accurate within 3%@9,21#. Remember that we can sti
choosens at will and a 3% uncertainty forcs is certainly
acceptable—at our lattice spacings a different tadpole p
scription has a much more pronounced effect on t
coefficient. The tadpole coefficients have been determi
from the average link in Landau gauge:um
5(1/3)^tr Um(x)&Landau. For brevity we will refer to this as
the Landauscheme. Any other choice for (cs ,ct) will have
the same continuum limit, but with this prescription we e
pect only smallO(aa) discretization errors.

III. SIMULATION DETAILS

For the generation of quenched gauge field configurati
we employ a standard heat-bath algorithm as it is also u
for isotropic lattices. The renormalized anisotropyj is re-
lated to the bare parameterj0 through

j5h~j,b!j0 . ~13!

A convenient parametrization forh can be motivated by a
one-loop analysis of the renormalized anisotropy:

h~j,b!511S 12
1

j D ĥ1~j!

b

12a1g2

12a0g2
, ~14!

whereĥ1(j)'1.02 and is almost constant for our range ofj.
We use Pade´ parameters (a0520.77810 and a15
20.55055), which have been determined by an excellen
8-2
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over a wide range of lattice data with differentb andj @21#.
Based on Eq.~14! we choose the appropriatej0 to realizej
close to 4 and 5 for each value ofb56/g255.7–6.5. De-
pending on the gauge coupling, we measure hadron pr
gators every 100–400 sweeps in the update process, whi
sufficiently long for the lattices to decorrelate.

The construction of meson operators with givenJPC as-
signment is standard. As in Refs.@10,22#, we use both local
and extended operators by employing the 16G matrices and
spatial lattice derivatives for the quark bilinears:

M ~x!5q̄~x!G iD j@U#Dk@U#q~x!. ~15!

To improve the overlap with the ground state we also imp
mented a combination of various iterative smearing presc
tions for the quark fields and gauge links:

q~x!→q(n)~x!5S 12
e

n
D2@U# D n

q~x! ~Jacobi smearing!,

~16!

U~x!→U (m11)~x!5PSU(3)S U (m)~x!1a (
staples

S~x! D
~APE smearing!. ~17!

For conventional states, we find it often sufficient to u
~gauge-fixed! box sources of different size. We use loc
sinks throughout. This setup allows us to extract relia
both the ground state energies and their excitations from
related multistate fits to several smeared correlatorsCs(t)
with the sameJPC:

Cs~ t,p![^M ~ t,p!Ms~0,p!&

5(
i 51

nfit

ai
s~p!~e2Ei (p)t1e2Ei (p)(Nt2t)!. ~18!

Since we are working in a relativistic setting, the seco
term takes into account the backward propagating piece f
the temporal boundary. An example of this is given in Fig.
where we show the effective masses for3S15122 from
three different box sources along with the fit results from
two-state and a three-state ansatz. In this example the sm
est box shows clear contributions from excited states, w
the other two sources project much better onto the gro
state. We did not further optimize the box size for perfe
overlap, but since for the largest source the plateau is
proached from below we can estimate that an ‘‘optimal’’ b
would have a physical extent of 0.2–0.3 fm. This is in go
agreement with phenomenological expectations about
size of theY ground state. What is more important here f
us is to have a variety of different overlaps which are w
suited to constrain the multistate fits.

To obtain the dispersion relationE(p), we project the
meson correlator also onto four different nonzero mome
by inserting the appropriate phase factors exp(2ip"x) at the
sink. This is illustrated in Fig. 2, where we use
07450
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Ns
Dn ~19!

with n5(0,0,0),(1,0,0),(1,1,0),(2,0,0),(2,2,0).
For an estimate of the spin splittings we take the diff

ence of the ground state masses from multistate fits. Bec
these states are highly correlated we obtain very accu
estimates for the spin splittings compared to the abso
masses. An example of this is shown in Fig. 3. We use ja
knife and bootstrap ensembles for our error estimates

FIG. 1. Effective masses and fit results. We show the effec
masses, open circles, for3S1 at (b,j)5(6.5,4) from three different
box sources with spatial extents of 3, 6, and 9 in lattice units. T
two larger sources project better onto the ground state as expe
The results from the two-state and three-state fits are also show
filled squares and diamonds, respectively. We observe stable fi
sults for large enoughtmin . In this example, we fixtmax580.

FIG. 2. Dispersion relation. On the left-hand side we showtmin

plots for the fitted energy difference between nonzero momen
states and the3S1 at rest. On the right-hand side we plot the fitte
splitting against the spatial momenta squared,p25(2p/L)2n2.
Since we tunedn t very carefully, this corresponds to a velocity o
light c(0)50.990(11). This example is from (b,j)5(5.9,5) with
n t51.815.
8-3
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FIG. 3. Here we show fit results for the3P1-3P0 splitting at
(b,j)5(6.1,4) and volume 163396. We fix tmax548 and varytmin

in the search for a plateau. Strong correlations between the
states allow a very accurate determination of the energy differe
07450
find good agreement in all cases. In order to call a fit acce
able we require the consistency within errors for different
ranges andQ values to be bigger than 0.1. Our main resu
are collected in Table I along with the input parameters
the different data sets.

For (b,j)5(6.1,4) and (6.3,4) we have also analyz
extended operators that give access to 21153P2 , D states
with two units of orbital angular momentum and exotic h
brid states, Table II. These are more states than previo
obtained from nonrelativistic calculations. Even though o
scaling window is not wide enough to make a serious
tempt at a continuum extrapolation, we expect lattice a
facts to be less pronounced for these large states. At~6.1,4!
we find a good agreement of our results and those reporte
@13,14,22#. This is not unexpected since the nonrelativis
approximation is known to work better for hybrid state
which are thought to live in a very shallow potential@14#. In
particular, we find the lowest lying hybrid to be the 121. We
are concerned, however, that these results are more sen
to finite volume effects than those forSandP states~see Sec.
IV !. Especially at~6.3,4! we have reason to believe that o

o
e.
example,
ium

7

TABLE I. Simulation parameters and results. We label our runs by (b,j), whereb is chosen to vary the spatial lattice spacing andj
determines the appropriate bare anisotropyj0 @see Eq.~14!#. The temporal lattice spacingat is determined from1P1-3S1. Ground state and
higher excitations are from correlated three-cosh fits to all channels. For the excitations we quote the normalized resultsRX[(X
21S)/(1P21S). An asterisk denotes results that have not been checked by fitting even higher excitations than those listed. For
we did not perform four-cosh fits to obtain better estimates for 3S. All spin splittings have been rescaled to the physical bottomon
(3S159.46 GeV).

(b,j) ~5.7,4! ~5.9,4! ~5.9,5! ~6.1,4! ~6.1,4! ~6.1,5! ~6.3,4! ~6.5,4!
(Ns ,Nt) ~8,96! ~8,96! ~8,96! ~16,96! ~8,96! ~16,128! ~16,128! ~16,160!
Configurations 392 700 780 660 420 370 450 710
Separation 100 100 400 400 400 400 400 400
at

21 (GeV) 4.54~31! 6.76~24! 9.27~43! 10.57~31! 9.65~75! 12.3~1.2! 15.15~81! 20.9~2.2!
as(fm) 0.174~12! 0.1168~42! 0.1064~49! 0.0747~22! 0.0818~64! 0.0804~77! 0.0521~28! 0.0377~40!

j0 3.04682 3.139035 3.870249 3.210801 3.210801 3.96234 3.268645 3.31655
u0s 0.758364 0.785945 0.784067 0.800927 0.800927 0.81015 0.826810 0.83709
u0t 0.984104 0.986984 0.991782 0.988702 0.988702 0.99279 0.990039 0.99100
u0t /u0s 1.297667 1.255793 1.26492 1.234447 1.234447 1.22544 1.197420 1.18386
j/j0 1.312844 1.274277 1.2919065 1.245795 1.245795 1.26188 1.223749 1.2060
atmq 1.98 1.1200 0.8960 0.6700 0.6700 0.58 0.4940 0.31
(ns ,n t) ~1,1.30! ~1,1.50! ~1,1.815! ~1,1.573! ~1,1.573! ~1,1.65! ~1,1.5! ~1,1.51!
cs 2.292804 2.059794 2.074632 1.946351 1.946351 1.88063 1.7680 1.7054
ct 1.170549 1.127661 1.1177481 1.098368 1.098368 1.05055 1.0154 0.9002
c(0) 1.044~25! 1.026~32! 0.990~11! 0.979~7! 1.018~14! 0.994~11! 1.004~19! 0.992~20!
3S1 (GeV) 9.79~66! 9.53~34! 9.57~44! 10.40~30! 9.49~74! 10.11~97! 12.60~67! 13.04~14!

1 3S1–1S0 (MeV) 36.0~3.5! 37.2~2.6! 37.5~2.9! 44.8~2.0! 33.8~3.1! 37.0~5.7! 49.9~4.9! 51.0~7.9!
2 3S1–1S0 (MeV) 155~273! 56~57! 37~12! 40~11! 57~18! 2~58! 48~41! 57~29!
1P1-3P0 (MeV) 16.2~4.7! 20.6~4.5! 25.2~3.2! 39.5~5.7! 28.7~6.6! 30.7~5.5! 54.0~7.7! 46.6~8.7!
1P1-3P1 (MeV) 21.4(2.3) 21.3(1.1) 4.6~1.3! 8.0~3.3! 7.9~4.9! 3.7~2.0! 8.8~3.5! 8.4~3.8!
3P1-3P0 (MeV) 16.0~2.8! 23.7~3.1! 24.5~2.2! 28.3~4.0! 28.0~5.7! 27.4~4.2! 44.7~5.1! 39.9~6.6!
R2S 1.00~23! 1.37~18! 1.40~14! 1.27~14! 1.38~17! 1.30~25! 1.53~18! 1.53~20!

R3S 1.99~50!* 2.35~29!* 3.13~32!* 2.27~34!* 3.6~1.3!* 3.05~57!* 3.25~51!* 5.17~76!*
R2P 2.21~48!* 2.32~30! 2.26~26! 2.40~13! 2.26~30! 1.98~61! 2.56~49! 2.14~34!
8-4
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lattice is not sufficiently big to accommodate such lar
wave functions, resulting in an inversion of the characteris
level ordering. A simulation on bigger volumes is necess
to simulate hybrid states more accurately.

In the following we will focus on the low lying bottomo
nium states and their spin structure, where statistical er
are small enough to allow a critical comparison with resu
from the nonrelativistic approximation.

IV. SYSTEMATIC ERRORS

Apart from our main data sets we performed extens
checks of systematic errors within the quenched approxi
tion. As mentioned above, we enforce a relativistic disp
sion relation by tuning the bare parametern t nonperturba-
tively at each quark mass to obtainc51.0 very accurately
within 1–2 %. From a classical analysis of the dispers
relation we expectc}1/n t . Indeed, for an arbitrary decreas
of n t by 10% we observe an increase of the velocity of lig
by a similar amount@7.8~2.1!%#; see Table III and Fig. 4
Within the statistical error for theP structure we could no
resolve any significant effect, while the hyperfine splitti
showed an increase by 8(10)%. From these observations
expect only small changes (,2%, ,1 MeV) due to c
Þ1.

We also tested for finite size effects by explicitly compa
ing the results from two different spatial volumes
(1.3 fm)3 and (0.7 fm)3 at (b,j)5(6.1,4) ~see Fig. 5!.
While changes in the ground state masses amount to on
fraction of a percent, the hyperfine splitting shows a slig
increase of 6~4!% and the1P1-3S1 splitting is reduced by
10~9!% when going to the larger lattice. Therefore we exp
the hyperfine splitting to be systematically underestima

TABLE II. Results from extended meson operators. For the t
lattices shown all run parameters are exactly as in Table I andRX is
the normalized excitation above the ground state:RX[(X
21S)/(1P21S). However, here we employ also the extended o
erators of Eq.~15! which give us access to3P2 states withL52
and the exotic hybrid candidates (012,121,212). For P states
(L51) we use a single symmetric lattice derivative to create
tended operators and forD states we take the anticommutat
$D i ,D j% (L52). The commutator@D i ,D j # amounts to an insertion
of a color-magnetic field into the quark bilinear and gives rise
hybrid states. Different Dirac matrices result in differentJPC as-
signments.

(b,j) ~6.1,4! ~6.3,4!
Configurations 330 360
Separation 400 400
3P2-1P1 (MeV) 24.4~4.1! 20.6~6.9!
3P2-3P1 (MeV) 39~14! 27~11!

222-221 (MeV) – 31.0~6.9!
R221 – 1.63~11!

R222 1.81~26! 1.67~11!

R121 3.41~43! 4.25~34!

R012 4.41~85! 3.37~72!

R212 – 5.93~45!
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whenL,1 fm. For the fine structure we could not resolv
any shift within the statistical errors. For all but our fine
lattice we haveL'1 fm, which should be sufficiently big to
accommodate the small bottomonium ground states i
quenched simulation.

Another source of systematic errors is the tuning of
bare quark mass parameterm0. For the hyperfine splitting
especially we observed a strong dependence on the gro
state massM (m0), as shown in Fig. 6. On our coarser la
tices we were able to tune the mass very accurately to wi
10% of the physical bottomonium mass, but as the tun
becomes more and more expensive on our finer lattices,
deviation from bottomonium reaches 35~15!% at (b,j)
5(6.5,4). We use the potential model predictionDEhfs
}1/M to rescale all measuredDEhfs to the physical point
M59.46 GeV. Our results in Table I include these adju

FIG. 4. n t tuning. We illustrate the nonperturbative tuning of th
velocity of light (b,j)5(5.9,5). Our best estimate isn t51.815 and
we show the effect on spectral quantities as we change this pa
eter by 10%.

o

-

-

TABLE III. Change inn t . In this table we compare our result
from (b,j)5(5.9,5) when the optimaln t51.815 is changed arbi-
trarily by 10%. This entails a change inct . All other run parameters
are as in column 4 of Table I. The corresponding changes in
spectrum as listed above and the lattice numbers are given in Fi

(ns ,n t) ~1,1.815! ~1,1.650!
(cs ,ct) ~2.074632,1.1177481! ~2.074632,1.090685!
Configurations 780 500
c(0) 0.990~11! 1.067~18!

at
21 (GeV) 9.27~43! 8.20~34!

3S1 (GeV) 9.57~44! 9.05~38!
3S1-1S0 (MeV) 37.5~2.9! 34.4~2.6!
1P1-3P0 (MeV) 25.2~3.2! 24.3~5.7!
1P1-3P1 (MeV) 4.6~1.3! 4.6~1.4!
3P1-3P0 (MeV) 24.5~2.2! 24.6~2.5!
R2S 1.40~14! 1.324~81!

R2P 2.26~26! 2.54~23!
8-5
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X. LIAO AND T. MANKE PHYSICAL REVIEW D 65 074508
ments in both the central values and their errors. Since
spin splittings vanish in the static limit we also apply t
same rescaling technique to the fine structure.

Finally there will be systematic effects at finite lattic
spacing, which are absent in the continuum limit. The tr
level estimates forcs and ct will experience a shift due to
radiative corrections, thereby changing the magnitude of
O(aa) artifacts. In Fig. 7 and Table IV we compare th
Landau scheme with another popular scheme, where the
pole coefficients are estimated from the plaquette valu
3um5^tr Pim&1/4. This amounts to a (10%,2%) change in
(cs ,ct) at ~5.9, 4!. The corresponding change in the hype
fine splitting is 215~17!%. While this may indicate some
additional reduction at coarse lattices~resulting in a slightly
worse scaling behavior!, it is also clear that within our error
we are not very sensitive to this choice of tadpole coe

FIG. 5. Finite volume effects. Here we compare our spectr
results at (b,j)5(6.1,4),Ns

3396, for Ns58 and 16.

FIG. 6. Mass dependence. We plot the dimensionless hype
splitting against the inverse of the measured meson mass. The
tical line denotes the bottomonium mass at (b,j)5(6.1,4). The
corresponding bare quark masses arem050.67, 0.40, and 0.10.
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cients. Since any remaining difference will vanish in the co
tinuum limit we did not investigate this dependence furth

V. DISCUSSION

To convert lattice data into dimensionful quantities w
used the lattice spacing determined from the1P1-3S1 split-
ting that is fixed to match the experimental valu
('440 MeV). It is well known that, without dynamical se
quarks in the gluon background, the definition of the latt
spacing is ambiguous and one cannot reproduce all exp
mental splittings simultaneously. Nonrelativistic lattice ca
culations with two dynamical flavors@5,7# resulted in shifts
of up to 5 MeV for the hyperfine splitting, but they are als
not completely free from ambiguities in the lattice spaci
and from systematic errors such as lattice spacing artif
and radiative and relativistic corrections. For the purpose
this paper we accept the shortcomings of the quenched
proximation and aim to control the other systematic err
instead, the combined effect of which could also be as la
as 20% for bottomonium on the lattices in this study.

The main features of the bottomonium spectrum fro
relativistic lattice QCD are summarized in Fig. 8, where w
can see clearly the characteristic level ordering as additio
angular momentum is inserted into the ground state. T
overall agreement with experimental data is impressive, a
the spin structure predicted from first principles. While it
probably too early to investigate the spin splittings in excit
states (2 3S1–2 1S0 still has large statistical errors!, we
have rather accurate data for the spin structure of the gro
states.

In Fig. 9 we plot the hyperfine splitting against the spat
lattice spacing at fixed anisotropy and compare it with p
vious simulations in this region. Already at finite lattice spa
ing we can see significant deviation from nonrelativis
simulations. There could be several reasons for this. First

ne
er-

FIG. 7. Different tadpole prescriptions. Here we compare
effect of changing the value of (cs ,ct) by ~10%,2%!. Within our
statistical errors there is only a minor shift to indicate the cor
sponding change inO(aa) scaling violations.
8-6
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TABLE IV. Here we compare our results from different tadpole descriptions at two different lat
spacings. We distinguish between the Landau schemeu0L as defined in Sec. II and the plaquette schemeu0P ,
for which 3um5^tr Pim&1/4. While there is some indication that the hyperfine splitting increases whenu0 is
decreased at finite lattice spacing, there is no clear improvement of scaling. See discussion in main

Tadpole scheme u0L u0P u0L u0P

(b,j) ~5.9,4! ~5.9,4! ~6.1,4! ~6.1,4!
(Ns ,Nt) ~8,64! ~8,64! ~16,96! ~16,96!
Configurations 600 600 660 130
at

21 (GeV) 6.57~43! 6.40~53! 10.57~31! 10.6~1.1!
as(fm) 0.1202~80! 0.123~10! 0.0747~22! 0.0745~77!

j0 3.139035 3.139035 3.210801 3.210801
u0s 0.785945 0.810698 0.800927 0.822785
u0t 0.986984 0.949731 0.988702 0.952954
asmq 1.1200 1.1200 0.6700 0.877
(ns ,n t) ~1,1.50! ~1,1.50! ~1,1.573! ~1,1.573!
cs 2.059794 1.876818 1.946351 1.795316
ct 1.127661 1.101421 1.098368 1.079827
c(0) 1.014~15! 1.023~14! 0.979~7! –
3S1 (GeV) 9.25~61! 9.04~75! 10.40~30! 12.3~1.3!
3S1-1S0 (MeV) 35.1~3.9! 30.6~3.6! 44.8~2.0! 43.7~6.6!
1P1-3P0 (MeV) 26.0~3.9! 25.0~4.0! 39.5~5.7! 41~14!
1P1-3P1 (MeV) 1.3~1.7! 1.7~2.3! 8.0~3.3! 9.6~8.2!
3P1-3P0 (MeV) 23.7~2.7! 22.3~2.8! 28.3~4.0! 30.8~9.4!
R2S 1.45~13! 1.41~13! 1.27~14! 1.37~23!*
R2P 2.22~49! 1.81~28! 2.40~13! 3.14~97!*
er
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ur
in
should expect different discretization errors from the diff
ent gluonic actions that have been employed in the p
While the unquenched results in Fig. 9 were obtained from
renormalization group improved gluon action with two d
namical flavors@7#, many other quenched simulations we
done using the standard plaquette action@3–5,23#. Nonrela-
tivistic results from coarse and anisotropic lattices also e
@24# and they seem to show scaling violations similar
those from unimproved gluon actions, even though
plaquette-plus-rectangle~Symanzik! action was used. This

FIG. 8. Relativistic bottomonium spectrum. We plot o
quenched continuum estimates as full circles. Selected result
222 and exotic candidates~hybrids! from finite lattice spacing,
~6.1,4!, are shown as open squares. The1P1-3S1 splitting is used to
set the scale. Where available, experimental values are show
horizontal lines.
07450
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could be an indication of comparatively largeO(aa) correc-
tions, which can compete withO(a2).

Some of those results mentioned also use a different
scription for the tadpole coefficients than in our prese

for

as

FIG. 9. Continuum extrapolation of the hyperfine splitting
bottomonium. Circles denote our results from different anisotro
lattices. Open squares and triangles are quenched NRQCD re
from isotropic and anisotropic lattices. Filled diamonds are u
quenched NRQCD results with two dynamical flavors atmp /mr

'0.5. We also show two different continuum extrapolations of o
j54 results, where we assume a simple linear or quadratic form
as . The latter results in a better fit but larger continuum value.
8-7
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work. We want to stress again that the tadpole prescriptio
merely an empirical way of keeping radiative correctio
small. It has been suggested by several authors that the
dau scheme is particularly suitable to account for radia
corrections due to tadpole diagrams@6,25#. In the continuum
limit ( Um→1) both definitions~Landau and plaquette! will
be identical, but at finite lattice spacing they result in diffe
ent estimates for the clover coefficients. We have dem
strated above that a lower value foru0 will result in a slightly
larger hyperfine splitting. A more pronounced effect has b
observed in@5#. In the nonrelativistic framework one ca
also quantify this shift, which was employed in@23#. These
authors rescaled their results to the Landau scheme
found improved scaling. Here we find some indication fo
minor improvement, but none of the schemes is comple
successful in removing the apparently largeO(aa) errors. A
nonperturbative determination of the clover coefficients is
order to reduce these errors significantly. We used the L
dau scheme mainly for simplicity.

In contrast, the fine structure is not expected to be
much affected by the tadpole prescription which might e
plain the better agreement of our estimates for3P1-3P0 with
the nonrelativistic QCD~NRQCD! values in Fig. 10.

We interpret the remaining differences between our
sults and the quenched NRQCD values as due to highe
der relativistic effects. It has already been shown in@4,5# that
those corrections can be sizable@.10% for bottomonium at
O(mv6)#. However, it is not trivial to extend the nonrelativ
istic approximation to ever higher order. Our calculati
does not suffer from this uncertainty since we are working
a fully relativistic setting.

Above all we are now able to perform a continuum e
trapolation of the hyperfine splitting. As shown in Fig. 9 t
scaling violations are large and we parametrize our lat
results by~1! a linear ansatz,~2! by a quadratic ansatz, an
~3! a linear-plus-quadratic fit inas . All these fits are accept
able with Q50.3, . . . ,0.9. For the final analysis we als

FIG. 10. Continuum extrapolation of3P1-3P0. We use the same
symbols as in Fig. 9 to plot this element of the fine structure aga
the spatial lattice spacing determined from 1P-1S.
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decided to omit the results from our coarsest lattice where
should expect potentially large lattice spacing correctio
from higher orders due toatmq.1 andasmqv.1. Including
these data, however, does not change our continuum
mates significantly. If we assume that our action successf
removes allO(a) errors, we can quote 51.1~3.1! MeV for the
quenched hyperfine splitting in bottomonium. This may
too optimistic and, allowing forO(aa) errors, we find
59~20! MeV from a linear-plus-quadratic fit. As can alread
be seen from the large error on the intercept, such a gen
fit is not very well constrained by our data and even t
quadratic term is consistent with zero. For comparison,
find 58.7~5.5! MeV from a simple linear fit. Notice, though
that all these fitting methods result in comparatively hi
values given phenomenological estimates of 30–40 MeV
remains to be seen how unquenching will affect this quant
although we expect it to further increase the hyperfine sp
ting. An accurate experimental determination of the bottom
nium hyperfine splitting would be most valuable to judge t
reliability of our approach.

For the fine structure3P1-3P0, the situation is very simi-
lar as shown in Fig. 10. We find a rather large value
50.9~6.4! MeV from the simple linear extrapolation in
as(Q50.22). This is 3s above the experimental value o
32.1~1.5! MeV. The quadratic fit is slightly worse (Q
50.14) and predicts 41.7~4.1! MeV for the continuum limit.
As for the hyperfine splitting, a fit involving both terms
badly constrained and gives 68~22! MeV with Q50.12.

In Fig. 11 we also plot the higher excitation 2S-1S
against the spatial lattice spacing. Naturally, these res
have larger errors than spin splittings and ground state
they rely on the control of additional parameters~amplitudes
and energies! in the fitting process. In line with other simu
lations, we find a continuum result that is slightly larger th
the experimental value. However, it will be important
measure this quantity more accurately on bigger volume
our lattices may not be big enough for these larger sta

st

FIG. 11. Higher excitation in bottomoniumY8. Here we plot the
conveniently normalized splitting 2S-1S against the spatial lattice
spacing. Within the errors we find a good agreement for all
different methods and a slightly higher continuum limit than
experiment. From potential models, we can expect that this r
will be lower in dynamical simulations.
8-8
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Based on the observed finite volume effects, Fig. 5, we h
reason to believe that the result from our finest latt
(b,j)5(6.5,5) could be overestimated. Therefore we tr
our data for the 2S-1S splitting with caution.

VI. CONCLUSION

In conclusion, we have demonstrated that systems c
taining quarks as heavy as the bottom quark can also
treated relativistically within the framework ofanisotropic
lattice QCD. Imposing a fine temporal discretization appe
to be a very natural way to respect the physical scales in
problem and it should open up a reliable alternative to n
relativistic simulations~where systematic errors are muc
harder to control!. In our study of the bottomonium system
we found noticeable deviations of the hyperfine splitti
from nonrelativistic simulations, while the fine structu
agrees well with previous results. Overall, we observ
strong scaling violations resulting in a relatively large val
and large errors for the continuum limit. This, however,
not totally unexpected as we used only a tree-level estim
for the clover coefficients and did not tune them nonpert
batively to eliminateO(as) effects completely. We believe
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that further studies on anisotropic lattices will be able
determine the continuum spectrum of bottomonium with
creasing accuracy. A nonperturbative determination of
clover coefficients is highly desirable, but it remains to
seen whether this is feasible as suggested in@26#. Alterna-
tively, simulations at even finer lattice spacings would
useful to disentangle remainingO(as) and O(as

2) errors.
What remains to be done is the efficient implementation
anisotropic sea quarks, which is necessary to control the
tematic errors from the quenched calculation. Work in t
area is in progress@27#.

Future applications are not restricted to heavy qu
masses alone, but they may also be extended to heavy-
systems where both quarks can now be treated within a
form approach.
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