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We study Fermi fields defined on tori in the presence of gauge backgrounds carrying a nontrivial topology.
We show that R-dimensional field space can alternatively be described by fields okelimmensional space.
This dual description is particularly natural when the background is uniform and Abelian. The reduction in
number of dimensions carries over to the lattice. The lattice ultraviolet regularization induces an infrared
regularization of the lower dimensional representations. We focus=oh 2.
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[. INTRODUCTION descriptiont Our new contribution in this paper is to provide
lattice analogues to the reduced dimension description. For

Di fields defined di ional tori ¢ example, we learn from this that the spectrum of lattice fer-
lrac nields defined over even-dimensional tor can, 10fi5n5 moying on arl,x L, toroidal lattice in a uniform

certain twists_in the gauge back_gr_OL_md, be equivalently repapajian gauge background depends only on the arda.
resented by_ﬂelds_deﬂned over |nf|n|te_ flgt spaces of half thghare is no distinction between the arbitraryx L, case
number of dlm_ensmns. Theltwo. de§0r|pthns are related by ang that on a degenerate lattice of dimensiopis,x 1.

change of basis. The reduction in dimensionality comes from |, secs. I and 11l we introduce the continuum version of
using Fourier space for half of the space-time variables. Thene representations in two and four dimensions, respectively.
integral Fourier momenta are used to string the remaininghe origin of the dimensional reduction is traced back to a
segments of continuous directions into infinite lines. Thisnatural Heisenberg algebra defined in this system. This alge-
works for sections of nontrivial bundles. Although the two bra plays a central role in relating the developments of Refs.
space-times are distinct in the topological sense, the fermj16,17 to the general area of non-commutative field theo-
onic index stays the same. For simple backgrounds, consisties, as reviewed, for example, [&5]. In Sec. IV we focus

ing of a constant Abelian field strength, the field equationson the Dirac equation in constant Abelian backgrounds, still
are local in either dimensionality. Extra interactions wouldin the continuum. Sections V and VI deal with the lattice
be required to single out one of the alternative descriptiongersion in two and four dimensions, respectively. We collect

as more natural. some numerical and asymptotic results in Sec. VII.
The setup we are looking at has a long history. It has been
analyzed before in various conteXts-7]. Early studies in Il. TWO DIMENSIONS—CONTINUUM

lattice field theory were carried out [8]. Probably the main ) ) ) _
objection to developing a lattice version was the absence of Ve consider a two-dimensional torus of size<|. This
an exact fermionic “viewpoint” of background topology. €&n be viewed as the plaf® modulo the lattice generated

Fermions react to topological features in the background i?Y, €1. €2, chosen for simplicity ase,=(1,0) and e,

ways strongly correlated to their chiral properties and with-.:(o’I 2). The fieldsi(x) =4 (x1,x,) are complex fields sat-

out a lattice version of chirality only an approximate analysisISfyIng certain periodicity properties. Our fields are coupled

was possible. This has changed with the domain wall formu:[0 a gauge field and are thus sections df@l) bundle on

lation of lattice fermion$9] and, especially, with the overlap the 2-torus. The bundle can be twisted, the wist being char-

formulation [10]. Among recent studi " the 1 n facterized by the first Chern class. The first Chern number
ormuiation ' ong recent studies o € response ogives the topological charge: it measures the flux through the
fermionic fields to topology in the overlap regularization we

two torus in units of 2r (the chargee is set to 1).
mention[10-13. ( 9 )

. ) Periodicity of fermion fields has to be taken modulo
In this paper we focus mainly on the aspect of the alter'gauge transformations:

nate description in terms of reduced dimensions. In the con-
tinuum, for our special backgrounds, locality is preserved——
and the equations of motion stay differential in either ithe gescription in terms of lower dimension fields is not re-

stricted to Dirac fields: It would also be useful for analyzing the
stability of the gauge backgrounds against small perturbations in the
*Permanent address. gauge field§7,14).
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P(x+e))=Q5(X) (x) (1)  Any one of theK*) generates &, group under whict,
decomposes intq orthogonal subspaces:
h(X+€2) =05(X) P(X). 2
Hq=&7_1Hgn (14
TheU (1) fieldsQ;(x) are the transition functions made con-
sistent by Decomposing undeK ), fermion fields inH, , satisfy
Q1(x+e5) Qa(X)=Qy(x+er) Qq(x). 3 n
1(X+€2) Qa(X) = Qp(X+eq) Q4(X) 3 K(Z)lﬂ(X):eXp{—Z’nla] H(X). (15

By gauge transformations the transition functions are

brought to the form K™ maps these subspaces into each other, but the non-
04(x) = expli 7y /1 5} @) commutative translations leave the subspaces invariant.
na= mAX 112 The generators of translations along each axis are given
Q,(x) = exp— 1 7Gx, /1 1) 5 Y

(0)— 5 X
The consistency conditiof8) forcesq to take only integer DiY'=di+mqe;x;/A (16)

values.q is the first Chern numbefoften referred to as a
winding number in this setyp

Fields satisfying the boundary conditiofs, (2) make up
a Hilbert spacet, with scalar product

wheree;; is the antisymmetric tensor with two indices, ¢
=1). The generators coincide with ordinary covariant de-
rivatives in a constant magnetic field:

Ai(X):—’Tquinj/.A (17)
(dly= f LAX * (X)(x). )
T 21q
. . . F=01A2— drA1=—1. (18
The integration is over the torus and because of the inte- A
grand’s periodicity it can be performed over any fundamental

The non-commutative translation group is made out of par-
allel transporters in this fieldj is given by the total flux. The
anti-self-adjoint generators of parallel transport do not com-
mute:

cell.
Hq is left invariant by a ring of linear transformations
generated by two unitary transformatiods,

Ui () = expl 21 1} (). @

Ordinary translations map out 6f, because the transi-
tion functions depend or. This can be compensated by an
appropriate gauge transformation leading to modified operaJp to a rescaling, we have a Heisenberg algebra associated
tions of translation by, : with one degree of freedom and we are led to a quantum

mechanical view of the space as a Hilbert space of a particle
Ti(ay) p(x)=explimqaX /At y{x+(a;,00] ~ (8)  in one dimension. For this particle, the covariant derivatives
play the role of position and momentum operators. Eor
To(82) p(x) =exp{ —1mqazx, [ Ajg[x+(022)] >0, we takeP——I1D) and Q— —1D{®/F producing a
©) traditional position space representation in terms of functions
whereA=1,1, is the area of the torus. The new translationsCf @ single real variabla(z). The spacé{, is identified with

—2mq
A

[D,DP]=—1F= (19

along the two axes do not commute: & 4L2(R) with the D{” action given by
Ti(a1) To(a,) = exp{ — 2miqaya, [ A} To(a,) Ta(ay). D{”hn(2)=iFz hy(2) (20)
(10
. . ) dh,(2)
Elements of the non-commutative group of translations do Dy ’hn(2)= : (21)

not commute with the discrete Abelian group of transforma- dz

tions generated by, . There exists only a finite subgroup of  The fields get mapped into the quantum mecharposi-

unitary transformations, generated By" (), which com-  jop spacebasis as follows. Since the function
mutes with translations:

X1X2
KM=U,T,(1,/9) (1) @(xl,xz)=e><p[ —1mq 7} P(X1,%z) (22)

(2)= —
K U To(=11/09). (12 is periodic in the variable; with periodl; we can expand it

The boundary conditions imply(*))9=1 and the operators " @ discrete Fourier series:

K(*) obey %,
_k] hi(X2). (23

@(xl,xz)zz ex 27-r|I
K 1

KK @ =exp{2m1/q}K@KD), (13
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The periodicity requirement ix, imposes a constraint on

hi(x2):

N g(X2) =he(Xo+13). (24
The constraint is solved by

hi(X2) =hn(X2+kl>/q) (29

with n=kmodj. The expression for the field becomes

X1X5| < X1
Y1 Xp) =expl 17q— = > D ex 2m = (n+s0)
1

n=1seZ

Xh,

X2+ (26)

n+qs )
|

The wave function f(z) transforms as required undex®
andK® and the indexn labels the subspack, , to which
the component belongs.

IIl. FOUR DIMENSIONS—CONTINUUM

We consider now fields defined over a four-dimensional

torus of sizd | X1,X13X1,. If the gauge group i&J(N,) the
bundles are classified by the instanton numBeand by the

first Chern numbersc,, associated with the individual

planes. If the gauge group 8BU(N.) we only have the in-

stanton number, but if all the fields are insensitive to the

centerZ(N,) the true gauge group becom8&J(N.)/Z(N.)

PHYSICAL REVIEW D65 074506

c,w=§ Qa, (30)

Q=2 PQY. (3
Pf stands for Pfaffian. FOSBU(N,), c,,=0.

We study the space of fields subject to the boundary con-
ditions (28) and (29). We deal with one of the components
only and drop the color index; the numb@rand the matrix
Q2 will become distinguishable only by context. We assume
that PfQ) #0.

We again analyze classes of unitary operators that act in
this space, starting with operations of multiplication by peri-
odic functions. The generators of this discrete infinite Abe-
lian group are

U =exp2mielx,}. (32
A translation byb, suitably modified to respect the boundary
conditions, is given by

and there is a remnant of the first Chern numbers, now de-

fined moduloN, labeling the so-called twist sectors. Ex-
cluding the caseN.=2 with zero twist and odd instanton

I
T(b)lp(x):exp{EFﬁfy)bﬂxv Y(x+Db). (33
The antisymmetric matrig ") is given by
0)_ Z(p)VA(T
FO=2mQ,elel. (34)
Translations only commute up to a phase
T(b)T(d)=exp(1F{")b,d,}T(d)7(b). (35)

number the topological character can be encoded in transis in the two-dimensional case, we modify thE”)'s to

tion functionsQ ,(x) restricted to theéJ (1)Ne~* subgroup of

achieve commutativity with translations. The generators of

SU(N,) [7,19]. The matter fields obey the boundary condi- the resulting non-Abelian group are given b s invertible

tions:

Px+e) =0, (x) y(x). (27)

The (not necessarily orthogonad-vectorse(*) have lengths
|, and span a non-degenerate four-dimensional latice

The dual lattice is generated @V"). Denoting byR,,,

=el®) the components of the invertible matriR, e
=(R™),,.

since by assumption its determinant does not vanish
K(®) = U(”)T(—(Q‘l)we(”). (36)

They satisfy
KWKM =exp{—2m1(Q 1), JKWK M), (37

The representations of this group, directly related to the
Heisenberg group, have been studied 1] (see[19] for a

In the Abelian description we consider matter fields in thereview). The irreducible representations have dimensions

fundamental representation with al. color components
satisfying decoupled boundary conditions:

PRA(x+el) = Q53 (x) PA(x). (28)
We again can pick transition matrices of the form
023(x)=exp(17Q3 elx,}. (29

The integersQZV are antisymmetric ine,»v and can be as-
sembled into the matri?. For U(N.) the topological in-
variants are

Pf(Q). Our boundary conditions make the group not only
finite, but also irreducibléelements commuting with all the
generators are multiples of the idenjitgnd the space of
fields satisfying the boundary conditiofir a fixed color
component decomposes into a direct sum of @ spaces.
Translations do not mix these subspaces. As we shall see
later, there is exactly one zero-mode in each of these sub-
spaces, giving a total dp, as expected3l).

The infinitesimal generators of translations are given by

I
(0)— _F©
D, ’'=d,t 5F,X

SFOX,, (38)
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that is, covariant derivatives in a gauge field of uniform field The corresponding field B=F,,=2#7q/(l4l,). The coordi-
strength: natesxi(o) in Eq. (45 specify the location where Polyakov
loops around the torus take value 1 and represent nontrivial
[DY, D)= —1F). (39 parameters of the gauge background. €8}=0, the cova-

_ o _ riant derivative coincides wit(%) of Sec. II. In general,
Before we derive a parametrization of the space in terms

of fields living in only two dimensions we exploit symme- Di=d;,—1A(X)
tries to simplify the problem. By transformations$i.(4,2)
we bringQ,, to a canonical form wittQ;,= —Q,,=q and =T.(— X)) (= x) DO T (x)

Qo3=—Q30=0’ and all other entries vanishing. The Pfaff-
ian is equal taqq’.

We now perform space-time coordinate transformations: Ty, the eigenvectors can always be obtained from those at

x0=0

=1 el ' .
Xu— X, =1, &%, (40 The massless Dirac operatbr=7,D{”+ 7,D{) should
haveq zero modes. Let; denote the Pauli matrices used to

X T (x{). (46)

In gener_al, the transformation is non—orthogonal ChE"‘ngmgexpress the Dirac matriceg in the chiral basis. The eigen-
the metric tensor and the spectrum of the Dirac operator, .| ;e equation
However, the previous formulas remain valid, and the matrix

FO is simpler now, with only F{Y=-F{Q=F’ 0 DO — D) [ yiM )
=27q'I(lgl3) and F{Q=—F{=F=2rq/(l,l,) as non- DO 4 |p© 0 = | 4D
zero entries. As a result, the algebra of covariant derivatives 1 2 2
decouples, becoming the Heisenberg algebra for a quantuy the one-dimensionadosition spacéasis of Sec. Il is built
particle in two dimensions and the problem factorizes ovegyt of
the two planes +2 and 0-3; so does the group generated

by the operatorK(*). One can choos&(® and K(® as 1\2Fa
members of a complete set of commuting operators. Since D= 1D —1(g,+ FZ)=[ J2Fa’” (48)
(K@ya=(K®3)9' =| the Hilbert space can be decomposed 'vera
into subspaces labeled by integersii<q,1<n’'<q’. d, stands for the derivative with respectz@anda is a stan-

Selecting—1D{*’/F and—1D{)/F' as position operators, dard harmonic oscillator annihilation operator:
we express our fields as functions of two real variables,

hnn/(z,2"). The indicesn,n’ label the appropriate subspace. 1l [ ™4
The covariant derivatives act as follows: a=3 W_qaZJr 10,
D{Oh,(z,2')=1Fzhy(z,2) (41) .1 il 7q
al=—-\/—d,+\/7~+z (49
(0) A ’ ot ' 2 mq |1|2
Dy ’hn(z,2')=1F"z"hy(z2,2") (42
Dirac’s eigenvalue equation takes the form
D hy(z,2')=3,h(2,2") (43 : o o
GoF 0 a (hl,n) (hl,n) 50
I =I\
DPhy(2,2') =, hy(2.2). (44) a 0] \hQ) hgy
The expression relating the initial four-dimensional fieldswith h{’) representing the eigenmode wave function in the
#(x) andh,, ,/(z,2') can be obtained from E¢26). one-dimensional basis. The indaxakesq values and refers

to the internal degree of freedom representing eigenstates of
K(2) showing that spectrum ig-fold degenerate.
We express the expected positive chirality zero mode in
We can use less dimensions for the fields, but, except foeach sector in terms dp), the eigenstate of the number
special backgrounds, the interactions will be non-local. If weoperatora'a:
are only concerned with fluctuations around one of the Abe-

IV. UNIFORM ABELIAN FIELDS

lian backgrounds which played a role earlier, not only do the |0)
equations stay local, but, in addition, the Dirac operator be- 0 (5D)
comes evidently exactly diagonalizable. As a result, the fa-
mous relations between topology and fermionic zero mode$he rest of the eigenstates are given by
is made very explicit.
We begin in two dimensions with a gauge potential given (+ 1 Ip)
b hiP=—| (52
y V2l =[p-1)
Ai(x) = — e (x;— 2x{)/ A, (459 wherep=1,2... . The corresponding eigenvalues are
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INCEP)=+12Fp. (53) m  1y2Fa’)  [h{]M R
. . o N - =09 =\ = | (58
h(*P) map into each other under chiralityzh(*P) =h(P), IV2Fa m h5 h5
In the original two-dimensional representation we obtain
a well known form of the zero mode. Starting from Since in the presence of ma3ds- m is neither Hermitian nor
o | 14 anti-Hermitian it is better to consider the Hermitian Dirac
O 2| —Fa22 operatorH = 73D
hiq(2) (|1|2> e (54)
PEat\ [RE RE)
we get, with &,y) e T2, m_oweRan T fh (59)
va q —1y2Fa -m T](ZE) E(ZE)
X1X
(0) == 2172
Y1 (X1, %) (Illz EXp{mq A }nZl ng Cn H has one isolated eigenvalue Bt m with mrindependent

eigenfunction @) and an infinite set of paired eigenvalues,
2

n+qs each pair labeled bp=1,2,3...,
F| X+ a I, P v 3
xXexp| — 2 +|FX1|2(n+Sq) . E(tp):i,/m2+2p|:, (60)
(55)
The c,, are the components of an arbitragydimensional ﬁ(tp):;( (+nlp> )
vector of unit modulus. V1+(ZEM)2 250 ]p—1)
The zero mode is not spatially homogeneous in terms of
either (x;,xz) or z In particular, forq=1, the solution is 2P =1 (61)
proportional to a theta function. It vanishes at the point .
=1,/2X,=1,/2: Eq.(55) gives with
N 2q |\ m (Il m? 14
(0) X1 .X :e'77/4<—) (£p) = — 1z, e
Ipl ( 1 2) |1|2 z 2 pﬂ'_ 4 p77+1 (62)
X D ef(F|§/2)[S+(1/2)]2(_1)8_ (56) As in all other cases, the states and eigenvalues depend
S

only on the aread=14l, but not on the ratid,/l,. One can
view the one-dimensional version as the limit when the ratio
goes to zero or infinity while the area is kept fixed.
S* When we varym from positive values to negative ones
isolated state crosses zero energynat0. The paired eigen-
‘values never get to zero and are symmetric umder —m.
The paired eigenstates dependranbut the signs of(*P)
aremindependent. On the lattice there is full dependence on
m, but the number of zero level crossingsnas varied stays
: ) the same as in continuum.

According to Eqs(52), (53) the spectrum fog>1 is the Consider now four dimensions with gauge grdsip(2)
same as the spectrum gfindependent fermions, each de- o4 fields in the fundamental, defined over lax 1, X1,

fined over a region of area/q. This can be understood as | _orys. The boundary conditions are taken in the canoni-
follows: Dirac’s equation fog>1 could be solved by using .4torm from the beginning:

the g=1 solution over the region 9x;=<I,/q, 0=x,=<lI,

The exponential is even under— —1—s while (—1)° is
odd. The inhomogeneity of the zero mode reflects the exi
tence of the two extra physical parametexs®(y(®), be-
yond the magnitude of the quantized magnetic flux, identify
ing where the Polyakov loops winding around the torus tak
value 1. At the coordinates of the zero ¢, the two
Polyakov loops take value-1. These coordinates could be
used as parameters as well.

(which carries one unit of magnetic fluand extending it via 0 0 0 q

the  boundary condition (x;+141/0,X5)=exg1mX,/

1,]J{x; %) to the rest of thex; domainl,/q=<x;<I;. This . _ 0 0 g O 63
gives the solution corresponding to the sector0, an Qu==* 0 -q 0 0 (63)
eigenspace ok ?. Applying KX one obtains the remaining g 0 0 0

g—1 other solutions. All of them will satisfy the Dirac equa-

tion and the boundary condition )
+ denotes the two color components. Note that the first

WXy +1110,X,)=e ™/l 12mlay,y ). (57  Chern class invariants vanish. The topological charge is
given by Q=2qq’ where the factor 2 arises from the sum
Thus, the spectrum is that gfindependent fermions defined over color components. Odd topological charges cannot be

over an area with a single unit of magnetic flux. obtained this way—as mentioned befofl(2) is some-
Let us turn to the massive Dirac opera®@rm. Forq  what exceptional. The following constant field strength is
=1 we get compatible with the boundary conditions:
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0O 0 0 F _ [ Dg+1Dg  1(Dy—1D,)
D:
. 0 F |(D1+|D2) Do_|D3
Ff == (64)
—F 0 IW2F'a’  —\2Fa'
-F" 0 O — —ﬁa \BETart]" (72

where F=2mq/(l,l) and F'_ZZWQ'/Uo'g)(-) The upper a,a’ are two independent annihilation operatoasis the
color component coincides with the matm‘a§w) of the pre-  same as in Eq49). To geta’ replace the + 2 plane by the

vious section in canonical form. 0—3 plane andz by z'.
The fermion field is in the fundamental representation of A positive chirality eigenstate of the Dirac operator with
SU(2) denoted by eigenvalue\ also is an eigenstate of the operafnb with
eigenvalue— \?:
¢+
\If=<¢_). (65) L F'a’'fa’ +Fa'a 0
DD=-2 (72

0 F'a’'a’"+Faa'/’
The index theorem tells us that there &Pe=2qq’ zero

modes of positive chirality more than zero modes of negativé-€t |p.p’), with non-negative integersandp’, be simulta-
chirality. The eigenvalue equations decouple into color comneous eigenvectors of the number operators. There is a posi-

ponents. Because of the pseudorealitySaf(2) the upper tive chirality zero mode given by
color component determines the lower one by the symmetry

0,0)
V55 W*, (66) 0
272 =1 o (73
r?’c act in spin and color space respectively, whité is the 0

complex conjugate vector. The spectrum is doubly degener-
ate. We choose a chiral representation for the Dirac matriceStnere is an identical zero mode in each of the subspaces
labeled byn-n" making upqq’ zero modes for each color
0 o, component and confirming the index theorem. Actually, all
7M=< ) (67) operators act in the same way in each subspace, so the entire
spectrum is replicate@ times.
The set of eigenvalues of the Dirac operator consists of

I 0
y5=(0 _I)_ (68) NI S e = (74)

. - . — The corresponding eigenvectors are
The matricesr,=(I,—17) are the Weyl matrices and, are P ged

the adjoints. They satisfy Ip.p’)
— — 0
TLO,= 1,0 o (69)
1 Flp/
_ — —| T\ z——==Ipp' -1 |.
7, 1S the 't Hooft symbol;;if 8., and they,, are a V2 Fp+F'p’ PP ) 79

basis of anti-self-dual tensors. The eigenvalue problem is =
p
*I —\p—1,p
V " lp—1,p")

0 D
Di(x)=D ,y,¥(X)= P(X)=INp(x). (70)

0 For p,p’ >0 there exist additional eigenstates with the same

eigenvalue:
The symbol D=DM0,L(I5=DM0M) denotes the positive

(negative chirality Weyl operator restricted to the upper 0
color component. The covariant derivatii2, coincides [p—1,p'—1)
with the generator of translations studied in Sec. mf?.
Choosing a new origin of coordinates gives the vector poten- i 1 / Fp lp.p’ —1) (76)
tial another form. The different choices are gauge inequiva- V2 B Fp+F'p’ ’ '
lent, as evidenced by the Polyakov loops, but are related by —
translations7{b). N F'p p—1.p')
In position space representatinbecomesD=—D"): Fp+F'p’ ’

074506-6



FERMIONS ON TORI IN UNIFORM ABELIAN FIELDS PHYSICAL REVIEW D65 074506

The spectrum and eigenstates of the massive Hermitian c(ny,pr)=h(n,+L,s,n). (81)
Dirac operatorH=vys(D+m) can be easily obtained in
terms of those of the massless Dirac operator. The unchang&ue have arrived at the following expression #¢n):
zero modes become eigenstate$lafith eigenvaluem. The

massive Dirac operator mixes other eigenstates of the mass- NN, Lila

less Dirac operatory, , with ysi, . The eigenvalues and '//(nl,nz):eXP‘ e >

eigenvectors of result from diagonalizing the correspond- 1h2) s et

ing 2x2 matrix giving eigenvalues equal t& m?+\2. Xexp{12mw(sq+n)ny /Ly th(ny,+Lys,n).

The eigenvectors are of the form (@)(e %%y, 82)

+e'%y.,), whered is the phase of the complex number

m-+IA. Forg=1, g;=1, and our representation is given in terms of
a functionh defined on a one-dimensional lattice of length

V. TWO DIMENSIONS—LATTICE N=L,L,. For generalq, it is still true that the space of

. . . fermions fields i imensional now one hag func-
We now turn to the lattice and examine a constantAbellaq;":)nS cl)ivisngeo(:]Sagp:leﬂod?c Ta?ticae,otl)‘ustizg/q one hap tunc
1.

background in two dimensions. We wish to determine how The lattice fieldsy(n) can be viewed as the collection of

an ultraviolet cutoff interacts with the “dimensional reduc- ; . .
tion” we saw before values of the continuum fieldg(x) (appearing in Sec. Jlat
: I . the lattice pointsx=na, wherea is the lattice spacing and
The fermion fieldsy/(n;,np) are complex functions of | ,=L,a. Thus, the transformations acting on the space of
sites on anL; XL, square lattice. If we visualize the com- #* . "»_" - _acting P
uter memory storing these functions, there is only a finit lattice fields are given by the restriction of the continuum
b ' Sransformations to the lattice points. In particular, we have a

list of complex numbers and no mention of boundary condi roup of modified translations by vectors whose components
tions. No continuum features are lost because the link gaug% P y P

variables are parallel transporters to a finite distance ana;er:nteger muItlpI.es of the lattice spaciagThe generators
therefore in the continuum limit include both the vector po—0 the group aref;:

tential and the transition functions. The link variables thus qin
keep track also of what we normally view as boundary con- Tp(n)= exp[ 1y, —-1
ditions. To keep our lattice description formally close to the T N
continuum formulation we choose to view our lattice fields

slightly differently, as defined over an infinite lattice but re- N equalsL;L, and1 is a vector of unit length in thedirec-
stricted by tion. We obtained a non-commutative discrete subgroup of

the continuum translation group:

p(n+1). (83

. n;
y(n+EM)=exp 17>, iy (%) (77 q
i i T, T,=ex —277|N TT,. (84)
E® is a vector of lengtiL; in thei direction,q;;=qe;; and
the indicesi,j take the values 1,2. The one-dimensional representation is obtained in a basis
The space of fields satisfying the boundary conditionghat diagonalized;:
(77) can be described in a way equivalent to the continuum

one-dimensional quantum mechanical formulation. First, we gk n
. ’ = —+ — .
gauge-transform the functiog(n): Th(ki) exp{ 2 N L h(k.n) (85
nin, The translation operator in the 2 direction acts as follows:
k(n)=ex —mqﬁ P(n). (78

12 Th(k,n)=h(k+1n). (86)
The new functiong, is periodic inn; with periodL ; and can
be parametrized as If N;,=gcd(N,q)#1 the group generated ¥ acts re-

ducibly on our space of lattice fields decomposing it iNtg
L1 subspaces, each invariant under translations. This constitutes

k(np,ny)= >, expi2mpn;/Lije(n,,py). (79 the lattice remnant of the group generated K in the
p1=1 continuum. These operators contain translations; by and
can be extended to the lattice onlylif is divisible by g.
Otherwise, one obtains only a subgroup of the group found
in the continuum.
We pick lattice gauge fields having a constant plaquette
value:

The momentump, is defined moduloL;. Imposing the
boundary condition im,, we get

c(n2tLz,py)=c(nz,ps+q). (80)
Defining q;=gcd(g,L,), we can write p;=sg+nmod.;

wheren is an integer-defined modulp, ands is an integer Ui(n)=a; ex IWE gijn; _ 87)
defined moduld., /q;: ! ' ™ N
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The «; are complex numbers of unit modulus. The plaquetteshe convention that it is always viewed modWiband this

are given by extends to operations involving site indices. For simplicity,
let us start withx(?)=0.
Ulz(n)zexp{ _ |2w%J —/a 889) The Wilson Dirac lattice Hamiltonian is
HW: TlDW
where {=exp{i27/N}. The values of the plaquettes do not .
depend ony;, but the latter are physical parameters because _ —sin® 2+m—cos®—T (96)
they influence the Polyakov loops. The are related to the 2+m—cos®—TT sin® '
continuum parametepéo) (taken in units of the lattice spac- ] ) ]
ing): Here,® is anNX N diagonal matrix:
=di c _
ai:e*Zﬂ'lquEinJ(O)/N. (89) 0 dlaq1’01’021 '0N 1] (97)
. ) with
In the continuum the spectrum of the Dirac operators was
independent of(?), by unitary equivalence generated by 27N
appropriate translations. On the lattice translations are dis- 0= N Tin= Okt 1n: (98)
crete and can only be used to restrict the ranges of the
x(9:0=<x9<1. Hy is a local one-dimensional Hamiltonian defined on a
The lattice Dirac operators contain the covariant shift op-discretised circle. The calculation of eigenvalues and eigen-
eratorsT; : vectors requires fewer operations than in the basis corre-
sponding to a two-dimensional grid.
Ti=aT;. (90) Writing the eigenvector for enerdy as
For the rest of the section we restrict ourselves toghe a,
=1 case. TheT; operators take the following matrix form w”:(b ) (99
when acting orh(k)’s: n
0o 1 0 0 wheren ranges between 0 ad— 1, we get the eigenvalue
Y equations
0 0
T,=a,| 0 (91) Ea,= —sinf,a,+(2+m-cosh,)b,—b, 1 (100
0 0 e 0 1 Ebni1=(2+mM—c0sby1)an+1—antSinb,10n g
1 0 ... 0 O (109)
1 0 In matrix form we have
¢ 0 2+m—cosé, 1 sin0n+1—E) Anyq
Ti=ay| 0 0 £ 0 |. © 0 1 b1
e e e e 1 0 n 102
o 0 ... 0 N1 | —=E-sing, 2+m-cosd,/\b,/ (102
It is convenient to choose a different basis of Dirac ma-Inverting the matrix on the left-hand side we get
trices for the lattice analysis:
. Anta| a
V1= T2,Y2= 73, Y3= T 1Y1Y2= 71 (93 b M) (103
n+1 n

The Wilson Dirac operatoDyy is The eigenvalue condition is thal=My_;My_5...M,

have an eigenvalue equal to unity. Observe thaMdet;
Dw=m+2 (r=Vv,) (94) thus if M has one eigenvalue unity the other also must be
w unity and the eigenvalue condition can also be written as

where the unitary matrice¢, are TIM(E)=2. (104
v = r— 7“T r+vu Tt 95 When this condition is fulfilledVl (E) has a single eigenvec-
) wt 2 (99 tor, not two, because it is non-diagonalizable. The enefgies

are the roots of a polynomial of degre&l 2Typically these
In what follows we will fix the Wilson parameter to 1.  roots are all simple and to each corresponds a single eigen-
From now on periodicity in the “site” index is implied by  state ofH,,—there are no degeneracies.
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We have ended up with an exact formula for the characThe simpler case of commutativity with? is more obvious

teristic polynomial ofHy,

de{E—Hy)=(— DK TIM(E)—2]. (105

and can be checked directly:

FZei@)FZ:e*i@ (113)

The proportionality factoKy is calculated by comparing the |eading to

termsE2N in TrM(E) and in detE—Hy),
N—-1

Kn=I1 (2+m—cosé,) (106)
n=0

24mt m}
2

. 2+m—(2+ m)?—l}N 1
2

F2H\F2=7mHy7, (114
where we notationally ignore factors of unit matrices in ten-
sor products.

The eigenvalues df) are 1i,—1,—i. Their degeneracies
are computed from the ranks of the appropriate projectors.
Since U%*=1 the projectors can be written in terms of
1,U,U* U2, For the multiplicities we only need the traces of
1,F,F*,F2. The trace ofF? is trivial because

2 N—-1-

) , , , 1 00 0
This formula is correct even when the square roots are imagi-
nary, with the understanding that the second term on the 000 01
right-hand side is the complex conjugate of the first. It is 0 0 O 1
derived by setting 2 m=1/2z+ (1/z)] and noting that the F2= (115
finite Laurent series irz defining Ky is symmetric under
z+1/z and vanishes whemnis anNth root of unity. 6010 ... 0O

We can now easily re-introduce arbitrax{® and x{). 0

All that happens is tha® gets shifted t®® —27x{")/N and
the characteristic polynomial is now proportional to

TrM(E) — 2 cog2mxYY).

The proportionality constant now dependsx§fy .

Numerically, the finite precision of the machine will limit

The trace ofF is not trivial and is given by a famous sum of
Gauss:

N—-1

SG(N):\/iNkZo e(ZmIN)kz_ (116

the usefulness of a direct implementation of the characteristic

polynomial as a means of locating the eigenvaluedqf
whenN gets large. A better way exists faf®=0 which has

extra symmetry.T; and T, are then isospectral and there Sc(3)=i

exists an intertwining mags . (Actually, T,,T1, T,,T} all

have identical spectraF is the discrete Fourier transform:

E _ie(zwi/N)jk_

N (107

F is symmetric and unitary,
T,F=FT; (108
FT,=TIF. (109

Sg(N) is determined by its values ai=1,2,3,4 and by
(nontrivia) mod4 periodicity: Sg(1)=1, Sg(2)=0,
, Sg(4)=1+i. The reflectionU?= y;F?=r,F?
reverses the order of sites with=0 as a fixed point for alN
and flipsa andb (in our y-matrix basis.

The origin of theU symmetry is in the continuum. The
harmonic oscillator case is unique in that all the eigenfunc-
tions are eigenstates of the Fourier transform as a result of a
discrete symmetry that exchanges the coordinate with its
conjugate momentum. The eigenvalues of the Fourier trans-
form are 1i,—1,—i, depending on the oscillator level
mod 4. To get an operator that commutes with the Dirac op-
erator in our case the Fourier transform needs to be com-
bined with the action of a rotation in spinor space depending
on the chirality matrixy;. On the lattice one can decompose
Hyy into four blocks each of sizegoughly) of N/2XN/2.

F can be combined with a rotation in spinor space to producgpea exact sizes depend dtmod 4. TheU-symmetry is sim-

a unitary matrix that commutes witH,y,

u=tT s (110
V2 2
One checks now that
DwU=UDy, (111
UHy=HyU. (112

pler to understand when also using the standard representa-
tion in terms of fields on a two-dimensional torus of equal
sides. Then we have a symmetry under rotationsmtig,
which corresponds to a switch between coordinate and mo-
mentum in the one-dimensional framework. The two-
dimensional interpretation as a discrete rotation explains why
an action on spinorial indices is also required. As only the
area is relevant, the requirement that the torus have equal
sides can be dropped. In practice we shall exploit dnfy
corresponding to a rotation by, and the issue does not even
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ETE) (MM _3...Mg)é_=0. (124

try contains the square of the Fourier transform combined

with y3 in a simple manner.
TheU? symmetry allows us to factorize W(E) — 2. The
trace contains the sum of the expectationME) in two

states. These contributions are individually high degree polyéi
nomials inE and vary over many orders of magnitude. The

sensitive toE. The symmetry makes it possible to work in
only one sector, where a single state contributes. As a resy
one deals with a single expectation value, which can be
renormalized iteratively, in effect dividing out the quantity Th

that has to vanish by a positive function Bfthat tames the

large variability. This provides a numerically stable method

for locating the eigenvalues down to machine accuracy.
One needs to separate the chiseeven fromN=odd. For

N=2L, L being integer, the reflection has two fixed points:

n=0 andn=L. Thus, one can impose aft, and ¢, to be
eigenvectors ofr; with identical eigenvalue. Start fronf,
=(1N2)(h=¢&, and leté_=(1/y2)(;). We need to have
then

EEML_1(E)M_5(E)...Mo(E)é,=0. (117

This gives a polynomial equation fdE of degree Z; the

roots are all the energies of the even states. Similarly, for the

odd states we have the equation
EML_1(E)M_ _(E)...Mo(E)é_=0. (118

Extending toN=2L—1 requires imposing}, _.1=* i
coordinated with* 71 yg= /. This implies

(1= M )¢y 1=0 (119
|f Tllﬂoz lﬂ'o, and
(I+7 M 1=0 (120
if T1¢00=— 0.
Explicit evaluation ofM _; produces
1—(s+E)?
_ s+E
M _,=| 2+tmtc (122
—(s+E) 2+m+c

wheres=sin #/(2L—1)] andc=cog#/(2L—1)]. The eigen-
values ofr;M | _; areA=*1, independently oE. The cor-
responding two eigenvectors do dependion

1
, 1

E)= N+ E+
Y o ez mioF ﬁ

(122

The eigenvalue conditions are thafl(_,M, 5...Mg)é&,
be parallel toZ,(E) for o=*1,

ELUE)TAML M _3...Mg)€,=0 (123

They look slightly different from the even case because now
the vectorst. ; are not orthogonal to each other.

The above is useful for numerical searches for energy
genvalues oH,y. The vectors obtained by the sequential
action of M, are normalized at each step and this eliminates

ré(ccuracy problema\ is limited now only because for very

I@rgeN the spacings between some eigenvalues may be be-
W machine accuracy.
Looking at some examples the following patterns emerge.
e odd and even states have energy sequences that separate
(interlace with each other. For eveN the topological charge
—LTrHy/H2Z, is carried by the odd states. For obldthe
topological charge is carried by the odd and even states
equally—each sector having an imbalance equal to unity.
Whenm is taken from positive values te —1 it is always
an even state that does the zero crossing. There are no de-
generacies.

Since there are no degeneracies one can calculate directly
the eigenvaluea of the symmetry operatdd for each one
of the eigenstates. A simple way to do this is to evallate
at site 0 only. We distinguish the even and odd cases.
If the state is evenyzF2y=, then

N—1

(Fwo:i > Ya=\o (125
\/N n=0

and\ can be*1. If the state is oddyzF2y=— i, then

N—-1

1
(FPo=—= > ¥n=i\h (126
N n=0

andi\ can bex1.
We now turn to the naive lattice Dirac operator. In the
one-dimensional version we now have

1
—sin® E(T‘f—T)

1
E(T—TT) sin®

If the L; are even there are two additional symmetries involv-
ing staggering operators along each direction:

Sp(n)=(=1)"g(n).

The S; commute among themselves, sati§f=1 and also

(128

The two anticommuting matricd$;=S;vy;, i=1,2 commute
with Hy . We diagonalize one of thH;’s, 11, for example.
The eigenspaces of the twb1 eigenvalues correspond to
two species of staggered fermions. Going over to the one-
dimensional description, the opera®y becomes the corre-

sponding one-dimensional staggering oper&or
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gn =(=1)"8, (130 we make use of the fact that the solution, if it exists, satisfies
" h h(9=h© Forn=1 this relation follows from the vanishing
S2=1, S is Hermitian andSTS= —T. of 6y. For other values ofi it can be proven by applying the
We obtain a reduced Hamiltonian for naive fermions byiteration Eq.(138).
introducing the following Hermitian-unitary matrix: Most of our previous formulas have been derived for even
N, so we will consider this case first. Then{),=h"%,,,
R s T Sk which is equivalent to periodicity ab=—N/2. From the
= PS> (13D anishing of sitfy, we concludeh$)_,=h{). ,, which to-
_ . _ gether with reflection around=0 yieldsh'%®,, ,=h{}. ,
It brings Hy into a simpler form: (periodicity at—N/2+ 1). We conclude that the iteration pro-

cedure is automatically periodic for arbitrary valueshg?’

and h{?) and therefore there are two positive chirality and
whereHyg=—1S,D,, and two negative chirality zero modes. Their shape can be auto-
matically determined by applying the iteration to any pair of
initial values ofh{?) andh{”. Once one zero mode has been
determined the other can be found by applying the symmetry
operator:

RHNR:_T3HNR (132)

1
D1o=5(T1=T{+1T,—1T)). (133

In the one-dimensional representation we get

1 hO— (—=1)"h, . (139

Hyr=S E(T—TT)+sin®). (134 _
In the oddN case, although staggering does not apply, the

The operato6, S, anticonmutes with yg, implying that the equation for the zero mod€$38) and the reflection property

: . (0) _ h(0) i i ; im-
spectrum ofH, is real, symmetric around zero and doubly (Tn”=N=p) still holds. This, however, is not enough to im

degenerate. We can cast the eigenvalue equation in the fdpy Periodicity, but allows us to reduce the two equations to
lowing form: one. This fixes the ratib{”/h{?: A single zero mode exists

for each chirality. To conclude our analysis of zero modes we

ans1| — a, mention that for the®)+ 0 case, the reflection property and
bty =Mn(E) b, (139 the existence of zero modes is lost.
In conclusion, the one-dimensional character of the lattice
where problem holds independently of which lattice fermions we
use. Also, from the numerical point of view there are no
— 2E(—1)"-2sin6, 1 hidden features and the problem truly has the complexity of
Mn(E)= 1 o/ (136 4 one-dimensional system.
For E to be an eigenvalueyl (E)=M(E)- - - M4(E) must VI. FOUR DIMENSIONS—LATTICE

have an eigenvalue equal to 1. However, since the determi-

nant ofl\W(E) is 1, the condition becomes again: In this section we look at asU(2) gauge theory on a

four-dimensional latticel of size LoXL;XL,XLs. We
Tr(M(E))=2. (137 ~ agan take Abelian transition functions:

An analysis similar to the one performed for the Wilson-
Dirac operator would apply also here.

Let us conclude this section by analyzing the existence
and multiplicity of zero modes. We restrict our attention toq s an antisymmetric tensor whose only nonzero compo-
positive chirality modes. There always exists an equal NUMpents arajo;=q’ andq;,=q. The vectoE(* is a vector of
ber of negative chirality modes; this is a reflection of thelength L, along the p direction. Following the two-

famous phenomenon of fermion doubling. The equation foryimensional example we introduce shift operat@gswhich
the zero mode is act as follows:

w(n+E(“’>=exp[ 1T >, q,w%rs,] P(n). (140

h(®, —h(® = —2hOsing,,. (138

n ~
T,Lz/ﬁ(n):exp{wE A ]an). (141
v uv

This is a second order recursion relation determining all the
elements of the series in terms ) and h{®). Our solu-
tions must satisfy the periodicity conditidri® ,=h{®). Itis  Changing the sign of the exponent on the left-hand side, one
necessary and sufficient that this condition be satisfied foobtains the translation operator acting on the lower color
two consecutive values af. Since the problem is homoge- component. The translation operators are just the covariant
neous this could lead to two conditions on the ratioshift operator in a background lattice gauge field with the
h{®/h{?) | so existence is not guaranteed. To prove existenctnks given by
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n, o DID,,+DI.D 0

U#(n)zexp{le q#VﬁTg}. (142 B.D = 120127 Po3Yos ) T

. wov 0 D12D 15+ Do3Dog
. , (149

These links produce a homogeneous plaquette field.
The covariant shift operators define a finite group: where
TT,=exp —2m | T.T (143 ! i t

whr= T e Dio= 5[ 7= T+ (T~ T})] (146

Forgq=q’'=1 the entireLyL,L,L5-dimensional space is ir- 1
reducible under this group. A convenient basis is obtained by Dos= _[%_70T+|(7'3_7g)]‘ (147)
diagonalizing a maximal set of commuting matrices; we 2
choose7; and7,, leading to a two-dimensional labeling of

the basis given by the corresponding eigenvalue$;cdénd plies [see Eq(133]. Let \ 1, and) g be the eigenvalues of

7. This is the lattice equivalent of the continuum two- I } .
dimensional representation of four-dimensional lattice fieldsP 12012 andDozDog, respectively. Then the spectrum of the

Letting N;,=L4L, andNgs=LoL 3, the eigenvalues df; are naive lattice Dirac operator is given by \/)\1_24— No3 z_ind is_
given by ex@i(m/Ny,)} and those ofZ, are given by twofqld (_jegenerate. For the corres.pon.dlng naive Dirac
exp(i(m'/Ngg)}, wherem (m'’) are integers defined modulo Ham|lton|a_nHN= vsDy, the spectrum is given by tr;e same
Ny, (Ngg). An arbitrary vector in the space of lattice fields formula without thei factor. We emphasize thdd;,D,
can be expanded in this basis with coefficiemgs . From  =Hggr, WhereHyg is the staggered reduced Hamiltonian
the commutation relations the action of the remaining opera@ppearing in Sec. V above EG.33. Eigenvalues and eigen-
tors 7, and 73 can be derived by manipulations from Sec. V vectors can be readily constructed in terms of thosi .
applied to each of the 22 and 0-3 planes. The reduction of the four-dimensional naive lattice Dirac

For the generah'q’ case, the centralizer of the translation operator to two dimensions does not extend to the Wilson-
group might be nontrivial, leading to different subspaces inDirac or the overlap operator. Here, all components are
variant under translations. The subspaces are labeled a§@upled to each other. Acomplete analysis, which will not be
mapped into each other by subgroups of the continuunincluded here, can be done along the lines of Sec. V.
group generated by tHé(®). If L, andL, are divisible byg,
andL, andL 5 are divisible byq’, we obtainqq’ subspaces VIl. NUMERICAL AND ASYMPTOTIC RESULTS
and labellings, just as in the continuum. On the opposite
extreme, when the lengthis, are coprime with the associ-
ated integers) or q', the subgroup is trivial and we have no
invariant subspace. In the general case we work with that
subgroup of the continuum group generatedkdy which
maps lattice points into other lattice points.

We set nowq=q’'=1 and study the spectrum of four-
dimensional lattice Dirac operators in the constant back
ground field given by the links Eq142). We focus on the
upper componentys*, because, as in the continuum, the
lower component can be obtained by charge conjugation.

The naive lattice Dirac operator is given by

D, andD g3 commute and our two-dimensional analysis ap-

In this section we will complement the results of the pre-
vious sections by providing some numerical and analytical
esults on the spectra of the naive lattice Dirac operator and
e overlap Dirac operati0,20 in a constant field strength

gauge background for certain valueslof and topological
charge. In particular, we will compare the eigenvectors of the
lattice Dirac operators with their continuum counterparts.
The numerical method used for the determination of the ei-
genvalues is an exact diagonalization procedure. This
method, although precise and stable, is computationally
costly, limiting what we can do.

We begin by describing our two-dimensional results. For
the numerical determination we diagonalize the lattice Dirac

1 0 D, \ © ¢l : .
DN:E % ?’M(%—TJ): ( = ) (144)  operatorgnaive and overlap with link variables given by
L
I(ny,nq)

where we have defined the lattice Weyl operators in a way Us(n)=exp 17mq——— (148
similar to the continuum. The nonzero spectrumDgf can 12
be obtained by studying the eigenvalues and eigenvectors of 1'(ny,n,)
theD, D, acting on Weyl spinor lattice fields. The spectrum Ua(n) =exp{ —I1mq T] (149

of this operator is the same as that,flﬁL. Unlike in the
continuum, on the lattice the spectra are the same even ifwhere 1(n,,n;)=n, for 1<n;<L; and I(n,,L;)=(L;
cluding zero modes: for every positive chirality zero mode+1)n, (and a similar relation fol’ exchanging the 1-2
there is a negative chirality one. label. The value of the plaquette is constant and equal to
In Sec. IV we related the spectrum of the four- exp{—127(g/N)}, with N=L,L,. The associated lattice Dirac
dimensional Dirac operator to that of the tWO-dimeﬂSiOﬂa|operator3matrice$ have dimension B. The cases of very
case and this relation_ extends to the lattiZg; commute  small and very largeN can be studied analytically. Fdy
with 7 3 and hencéd, D, becomes block-diagonal: =2 the naive Dirac operatdd vanishes. FON=4 there
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TABLE |. Eigenvalues of lattice Dirac operators for hp=L,=24 lattice(see text for precise explana-
tion of the entries

Continuum Naive Ovp, M=1 Ovp, M=0.75 Ovp, M=1.25
0 0[4] 0 0 0

1 0.9946[4] 1.0018 0.9978 1.0027

2 1.9783[4] 2.0071 1.9910 2.0108
10 9.4642(4] 10.167 9.7723 10.265
20 17.8934] 20.615 19.080 21.040
50 37.3714] 52.902 44.316 56.123
100 57.8094] 106.45 78.832 121.57
200 199.11 128.617 259.15
500 350.07 202.842 523.46

are again 4 zero eigenvalues. In addition, there are two douyhe form e'®oM.") with the M andr dependence explicitly

bly degenerate pairs at1y2. For N=6 there are three indicated. Chirality implies symmetric spectrum and only the
fourfold-degenerate eigenvalues at 0 ahdy3/2. We have positive values will be shown. The continuum eigenvalues
numerically diagonalized the naive lattice Dirac oper&@@r  are approached by 55(M,r) and results are presented for
for several values off andL;. In Table | we display a se- the square of this quantity divided byF2 In terms of
lection of the eigenvalues for one typical case vgtal and  5,(M,r) the eigenvalues of the overlap operator are
L,=L,=24. We dropped the complex factofrom the ei-

genvalues and list only the positive branch on account of the M[1—-co0sép(M,r)+1sindo(M,r)]. (153
spectral symmetry about zero. Since the continuum eigenval-

ues are given by/ﬁ, whereF =27g/N is the magnetic This is the operato_r whose inversg gives the propagatqr for
field, we display the square of the eigenvalues divided bymternal fermions lines. Extern_al Iln_es s_hould be described
2F, a dimensionless quantity. We see that the degeneracy gistéad by the exactly chiral invariant operatdp,

the eigenvalueéindicated inside square brackeis equal to ~ — 2'M[(1+Q)/(1-Q)] [10,21. The eigenvalues of the
4. Only a factor of 2 is exact at all even valueshfThe  latter are
extra twofold degeneracy is approximate, but extremely ac-

curate for large values dfl.

For largeN the low-lying eigenvalues are well described petermining the eigenvalues for small valueshbfs some-
by what more involved than for the naive operator, since now in
= 2 addition we must keep track of ti@ andr dependence. For
Ihn=V2Fn[1+CFn+O(F%)] (150 example, fotN=2,g=1 there is a region of values of these
parameters for whicl) is equal tol and another one in

12M tarq 6o(M,r)/2]. (154

with C=—1/4. The dependence oN and q only enters R 5 2 L
throughF and we are close to the continuum lim@.was ~ Which it is ean'jO—'_- For 2"~ 4Mr +M~<0 (which in-

determined by expandin®,, to first subleading order in cludes the point=M=1) €} has tW(,) e|genvalugs equal' fol
terms of continuum operators: and two equal to-1. Table | contains a selection of eigen-

values forg=1,L;=L,=24,r=1 andM=0.75,1,1.25. For
1 large N, the behavior of the low-lying spectrum can be un-
D1,=D31+1Dy+ €(D§+|D§)+ e (15))  derstood analytically. The eigenvalues are again given by Eq.
(150 where the constar€=Cye1adM,r) is

In the one-dimensional quantum mechanical representation

we get 1 r 2
g Coverla;(Mar):_Z+M__2- (159

5 3M

F
D!.D,,=2Fafa——[a*+(aH*+6(afa)?]+---.
12712 g L& +(@)+b@a)] Forr=1 andM=0.75,1,1.25C= — 11/108,1/12,37/300, re-
(152 spectively, which works well for the numbers in Table I.

i t , Equation(155) is found by expanding the lattice operator
The eigenvalues of D;,D,, are the square of the eigenval- i, torms of the continuum one. We separate the Wilson-Dirac
ues of Dy, and perturbation theory predicts the Observedoperator into additive terms as follows:
value forC in Eq. (150).

We have also studied the eigenvalues and eigenvectors of Dwp=—M+Dy+rW. (156
the overlap operatdd,. Dy is constructed in terms of the
unitary operato) = 73Hyp(—M,r)/|Hwp(—M,r)|, where W stands for the Wilson term, which is of ordet, while the
Hwp(—M,r) is the Wilson Dirac Hamiltonian with mass naive operatobD is ordera. a is the lattice spacing; equiva-
—M and Wilson parameter. The eigenvalues of) are of lently, we set the lattice spacing to unity and use powers of

074506-13
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1/{N instead. We write) = exp{—&/M}, where€ is an anti- second excited state, respectively. The data are obtained from
Hermitian matrix. In the continuum limit we get the numerical diagonalization &f=24. The resulting two-

dimensional array of points is transformed to the one-
1 r dimensional representation and then compared to the con-
E=Dy+ —ZDﬁ,Jr W(DNW+WDN)+--- . (1570  tinuum result, given by eigenstates of the Harmonic
3M oscillator.

We turn now to four dimensions. Our numerical work is
done forSU(2) and for gauge fields whose only nonzero
components ar€,=—F,;=F 73 andFg3=—F3,=F' 3.

-1 The color components decouple so we essentially are dealing
W= 7(D2+|Fwy”“y”). (158  with U(1) systems. As explained in Sec. VI, the eigenvalue
problem for the naive Dirac operator reduces to the two-
dimensional problem. Here we focus on the overlap operator,
‘which does not simplify similarly.

Our objective is to find the leading corrections to the low-
lying spectrum when continuum is approached. Equations
WD+DW=—[D3+1(D,F,,)¥"]. (159 (157, (158 are valid now, but Eq(159) is replaced by

The above holds to order®. In the continuum limitW can
be expressed in terms of the Dirac operdor

Expressiong157) and (158 are true in any dimension and
for arbitrary background. In two-dimensions the anticommu
tator of W andD is given by

The second term is proportional to the Euclidean equations WD+DW=—[D3+1(D,F,,,)y"+1€**"y*y*F ,,D ]
of motion and hence vanishes for any classical solution, in-

cluding the uniform fields we are considering. Hence, the (160)
behavior of the eigenvalues in the continuum limit can be

extracted from our previously derived results for the naiveyhere we have made use of the Bianchi identities. The sec-
lattice Dirac operator. In this way we obtain H350 with  ond term vanishes for gauge configurations that solve the
the C of Eq. (155. The second and third terms in B4Q57)  classical equations of motion. The last term was absent in
are proportional td* and therefore affect the eigenvalues o dimensions. For a uniform field this term commutes with
without modifying the eigenvectors. D. All the terms in& anticommute withys and are anti-

For typical values of the parametels,r (includingr  Hermitian, so that in the chiral basfshas the form
=M=1) the lattice corrections are smaller for the overlap

than for the naive Dirac operator. For example,iferl and 0o —x'
M =2(1— 1/y/3) the leadingO(a?) correction to the eigen- é’:(x 0 ) (161
values vanishes. This also follows from the numerical data in

Table I, where the spectrum far=M=1 is found to be ) )
fairly close to continuum for the lowest several hundred ei-With X given by
genvalues.

To conclude the description of the two-dimensional case — 1 rl——
we will show some results on the low-lying eigenvectors of X=Dn+ m_ oM DDD - M(F(DO"" 173D3)
the overlap (=M=1). In Figs. 1 and 2 we display the
shape of the positive chirality part of the ground state and the +F' (17D +175D5)) 13+ . (162

074506-14
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The eigenvalues aX'X are obtained by writing the covari- smoothly deformed to an Abelian background. When the
ant derivatives in terms of creation and annihilation operabackground is topologically nontrivial the Abelian field can
tors and using perturbation theory. With our choice ofbe deformed to a non-vanishing uniform magnetic field. Any
gamma matriceX'X is already diagonal in the spin space. topological invariant is therefore captured by a representative
The 1-1 component oK'X is readily expressed in terms of with uniform Abelian background. The Dirac equation in
the two number operators. The corresponding eigenvalue Qhese backgrounds can be viewed as an equation over infinite
XX becomes space but in half the dimension. This naturally leads to an
exact diagonalization in terms of harmonic oscillator wave
% FntErn? functions. In the massless case one gets explicit formulas for
4 M 2| (Fn12tF'nog) the expected zero modes. Much of this translates to the lat-
tice; for example, the diagonalization of the Wilson Dirac
operator and the associated overlap Dirac operator on a two-
dimensional torus simplifies to an equation on a one-

dimensional circle of length fixed by the area of the original
whereny,,ng; are non-negative integers. The first two termstorus. In these backgrounds the connection between fermions

give the continuum result, the third one is of a type familiarand topology becomes particularly transparent both in the

from the two-dimensional case, while the fourth one is genucontinuum and on the lattice, once one employs overlap fer-
inely four dimensional. The 22 spin component oKX mions there.

gives another set of eigenvalues given by a formula identical
to Eq. (163 except that the last term has the opposite sign
andny,,Nng3 are now integers strictly larger than zero. The

2Fn,+2F 'ng3t+ 4

4r 2 12
_M(F N1+ F'“Ng3) (163
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