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Fermions on tori in uniform Abelian fields
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We study Fermi fields defined on tori in the presence of gauge backgrounds carrying a nontrivial topology.
We show that 2k-dimensional field space can alternatively be described by fields over ak-dimensional space.
This dual description is particularly natural when the background is uniform and Abelian. The reduction in
number of dimensions carries over to the lattice. The lattice ultraviolet regularization induces an infrared
regularization of the lower dimensional representations. We focus onk51,2.
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I. INTRODUCTION

Dirac fields defined over even-dimensional tori can,
certain twists in the gauge background, be equivalently r
resented by fields defined over infinite flat spaces of half
number of dimensions. The two descriptions are related b
change of basis. The reduction in dimensionality comes fr
using Fourier space for half of the space-time variables.
integral Fourier momenta are used to string the remain
segments of continuous directions into infinite lines. T
works for sections of nontrivial bundles. Although the tw
space-times are distinct in the topological sense, the fe
onic index stays the same. For simple backgrounds, con
ing of a constant Abelian field strength, the field equatio
are local in either dimensionality. Extra interactions wou
be required to single out one of the alternative descripti
as more natural.

The setup we are looking at has a long history. It has b
analyzed before in various contexts@1–7#. Early studies in
lattice field theory were carried out in@8#. Probably the main
objection to developing a lattice version was the absenc
an exact fermionic ‘‘viewpoint’’ of background topology
Fermions react to topological features in the background
ways strongly correlated to their chiral properties and wi
out a lattice version of chirality only an approximate analy
was possible. This has changed with the domain wall form
lation of lattice fermions@9# and, especially, with the overla
formulation @10#. Among recent studies on the response
fermionic fields to topology in the overlap regularization w
mention@10–13#.

In this paper we focus mainly on the aspect of the alt
nate description in terms of reduced dimensions. In the c
tinuum, for our special backgrounds, locality is preserv
and the equations of motion stay differential in eith
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description.1 Our new contribution in this paper is to provid
lattice analogues to the reduced dimension description.
example, we learn from this that the spectrum of lattice f
mions moving on anL13L2 toroidal lattice in a uniform
Abelian gauge background depends only on the areaL1L2.
There is no distinction between the arbitraryL13L2 case
and that on a degenerate lattice of dimensionsL1L231.

In Secs. II and III we introduce the continuum version
the representations in two and four dimensions, respectiv
The origin of the dimensional reduction is traced back to
natural Heisenberg algebra defined in this system. This a
bra plays a central role in relating the developments of R
@16,17# to the general area of non-commutative field the
ries, as reviewed, for example, in@15#. In Sec. IV we focus
on the Dirac equation in constant Abelian backgrounds, s
in the continuum. Sections V and VI deal with the lattic
version in two and four dimensions, respectively. We coll
some numerical and asymptotic results in Sec. VII.

II. TWO DIMENSIONS—CONTINUUM

We consider a two-dimensional torus of sizel 13 l 2. This
can be viewed as the planeR2 modulo the lattice generate
by e1 , e2, chosen for simplicity ase15( l 1,0) and e2
5(0,l 2). The fieldsc(x)[c(x1 ,x2) are complex fields sat
isfying certain periodicity properties. Our fields are coupl
to a gauge field and are thus sections of aU(1) bundle on
the 2-torus. The bundle can be twisted, the twist being ch
acterized by the first Chern classc1. The first Chern number
gives the topological charge: it measures the flux through
two torus in units of 2p ~the chargee is set to 1).

Periodicity of fermion fields has to be taken modu
gauge transformations:

1The description in terms of lower dimension fields is not r
stricted to Dirac fields: It would also be useful for analyzing t
stability of the gauge backgrounds against small perturbations in
gauge fields@7,14#.
©2002 The American Physical Society06-1
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c~x1e1!5V1~x! c~x! ~1!

c~x1e2!5V2~x! c~x!. ~2!

TheU(1) fieldsV i(x) are the transition functions made co
sistent by

V1~x1e2! V2~x!5V2~x1e1! V1~x!. ~3!

By gauge transformations the transition functions
brought to the form

V1~x!5exp$ıpqx2 / l 2% ~4!

V2~x!5exp$2ıpqx1 / l 1%. ~5!

The consistency condition~3! forcesq to take only integer
values.q is the first Chern number~often referred to as a
winding number in this setup!.

Fields satisfying the boundary conditions~1!, ~2! make up
a Hilbert spaceHq with scalar product

^fuc&5E
T2

dx f* ~x!c~x!. ~6!

The integration is over the torus and because of the i
grand’s periodicity it can be performed over any fundamen
cell.

Hq is left invariant by a ring of linear transformation
generated by two unitary transformationsUi ,

Uic~x!5exp$2pıxi / l i%c~x!. ~7!

Ordinary translations map out ofHq because the transi
tion functions depend onx. This can be compensated by a
appropriate gauge transformation leading to modified op
tions of translation byai :

T1~a1!c~x!5exp$ıpqa1x2 /A%c@x1~a1,0!# ~8!

T2~a2!c~x!5exp$2ıpqa2x1 /A%c@x1~0,a2!#
~9!

whereA5 l 1l 2 is the area of the torus. The new translatio
along the two axes do not commute:

T1~a1!T2~a2!5exp$22pıqa1a2 /A%T2~a2!T1~a1!.
~10!

Elements of the non-commutative group of translations
not commute with the discrete Abelian group of transform
tions generated byUi . There exists only a finite subgroup o
unitary transformations, generated byK (1),(2), which com-
mutes with translations:

K (1)5U1T2~ l 2 /q! ~11!

K (2)5U2T1~2 l 1 /q!. ~12!

The boundary conditions imply (K (m))q5I and the operators
K (m) obey

K (1)K (2)5exp$2pı/q%K (2)K (1). ~13!
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Any one of theK (m) generates aZq group under whichHq
decomposes intoq orthogonal subspaces:

Hq5 % n51
q Hq,n. ~14!

Decomposing underK (2), fermion fields inHq,n satisfy

K (2)c~x!5expH 22pı
n

qJ c~x!. ~15!

K (1) maps these subspaces into each other, but the
commutative translations leave the subspaces invariant.

The generators of translations along each axis are g
by

Di
(0)5] i1pıqe i j xj /A ~16!

wheree i j is the antisymmetric tensor with two indices (e12
51). The generators coincide with ordinary covariant d
rivatives in a constant magnetic field:

Ai~x!52pqe i j xj /A ~17!

F5]1A22]2A15
2pq

A . ~18!

The non-commutative translation group is made out of p
allel transporters in this field.q is given by the total flux. The
anti-self-adjoint generators of parallel transport do not co
mute:

@D1
(0) ,D2

(0)#52ıF5
22pıq

A . ~19!

Up to a rescaling, we have a Heisenberg algebra assoc
with one degree of freedom and we are led to a quan
mechanical view of the space as a Hilbert space of a par
in one dimension. For this particle, the covariant derivativ
play the role of position and momentum operators. Foq
.0, we takeP↔2ıD2

(0) and Q↔2ıD1
(0)/F producing a

traditional position space representation in terms of functi
of a single real variableh(z). The spaceHq is identified with
% qL2(R) with the Di

(0) action given by

D1
(0)hn~z!5 iFz hn~z! ~20!

D2
(0)hn~z!5

dhn~z!

dz
. ~21!

The fields get mapped into the quantum mechanicalposi-
tion spacebasis as follows. Since the function

w~x1 ,x2!5expH 2ıpq
x1x2

A J c~x1 ,x2! ~22!

is periodic in the variablex1 with periodl 1 we can expand it
in a discrete Fourier series:

w~x1 ,x2!5(
k

expH 2pı
x1

l 1
kJ hk~x2!. ~23!
6-2
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The periodicity requirement inx2 imposes a constraint o
hk(x2):

hk1q~x2!5hk~x21 l 2!. ~24!

The constraint is solved by

hk~x2!5hn~x21kl2 /q! ~25!

with n5kmodq. The expression for the field becomes

c~x1 ,x2!5expH ıpq
x1x2

A J (
n51

q

(
sPZ

expH 2pı
x1

l 1
~n1sq!J

3hnS x21
n1qs

q
l 2D . ~26!

The wave function hn(z) transforms as required underD1
(0)

andK (2) and the indexn labels the subspaceHq,n to which
the component belongs.

III. FOUR DIMENSIONS—CONTINUUM

We consider now fields defined over a four-dimensio
torus of sizel 13 l 23 l 33 l 4. If the gauge group isU(Nc) the
bundles are classified by the instanton numberQ and by the
first Chern numberscmn associated with the individua
planes. If the gauge group isSU(Nc) we only have the in-
stanton number, but if all the fields are insensitive to
centerZ(Nc) the true gauge group becomesSU(Nc)/Z(Nc)
and there is a remnant of the first Chern numbers, now
fined moduloNc , labeling the so-called twist sectors. E
cluding the caseNc52 with zero twist and odd instanto
number the topological character can be encoded in tra
tion functionsVm(x) restricted to theU(1)Nc21 subgroup of
SU(Nc) @7,19#. The matter fields obey the boundary cond
tions:

c~x1e(m)!5Vm~x!c~x!. ~27!

The ~not necessarily orthogonal! 4-vectorse(m) have lengths
l m and span a non-degenerate four-dimensional latticeL.
The dual lattice is generated byẽn

(m) . Denoting by Rmn

5en
(m) the components of the invertible matrixR,ẽn

(m)

5(R21)nm .
In the Abelian description we consider matter fields in t

fundamental representation with allNc color components
satisfying decoupled boundary conditions:

ca~x1e(m)!5Vm
aa~x!ca~x!. ~28!

We again can pick transition matrices of the form

Vm
aa~x!5exp$ıpQmn

a ẽr
(n)xr%. ~29!

The integersQmn
a are antisymmetric inm,n and can be as

sembled into the matrixQa. For U(Nc) the topological in-
variants are
07450
l
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Qmn
a ~30!

Q5(
a

Pf~Qa!. ~31!

Pf stands for Pfaffian. ForSU(Nc), cmn50.
We study the space of fields subject to the boundary c

ditions ~28! and ~29!. We deal with one of the componen
only and drop the color index; the numberQ and the matrix
Qa will become distinguishable only by context. We assum
that Pf(Q)Þ0.

We again analyze classes of unitary operators that ac
this space, starting with operations of multiplication by pe
odic functions. The generators of this discrete infinite Ab
lian group are

U (m)5exp$2pıẽn
(m)xn%. ~32!

A translation byb, suitably modified to respect the bounda
conditions, is given by

T ~b!c~x!5expH ı

2
Fmn

(0)bmxnJ c~x1b!. ~33!

The antisymmetric matrixFmn
(0) is given by

Fmn
(0)52pQrtẽm

(r)ẽn
(t). ~34!

Translations only commute up to a phase

T ~b!T ~d!5exp$ıFmn
(0)bndm%T ~d!T ~b!. ~35!

As in the two-dimensional case, we modify theU (m)’s to
achieve commutativity with translations. The generators
the resulting non-Abelian group are given by (Q is invertible
since by assumption its determinant does not vanish!

K (m)5U (m)T „2~Q21!mne(n)
…. ~36!

They satisfy

K (m)K (n)5exp$22pı~Q21!mn%K
(n)K (m). ~37!

The representations of this group, directly related to
Heisenberg group, have been studied in@18# ~see@19# for a
review!. The irreducible representations have dimensio
Pf(Q). Our boundary conditions make the group not on
finite, but also irreducible~elements commuting with all the
generators are multiples of the identity! and the space o
fields satisfying the boundary conditions~for a fixed color
component! decomposes into a direct sum of Pf(Q) spaces.
Translations do not mix these subspaces. As we shall
later, there is exactly one zero-mode in each of these s
spaces, giving a total ofQ, as expected~31!.

The infinitesimal generators of translations are given b

Dm
(0)5]m1

ı

2
Fmn

(0)xn , ~38!
6-3
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that is, covariant derivatives in a gauge field of uniform fie
strength:

@Dm
(0) ,Dn

(0)#52ıFmn
(0). ~39!

Before we derive a parametrization of the space in te
of fields living in only two dimensions we exploit symme
tries to simplify the problem. By transformations inSL(4,Z)
we bringQmn to a canonical form withQ1252Q215q and
Q0352Q305q8 and all other entries vanishing. The Pfa
ian is equal toqq8.

We now perform space-time coordinate transformation

xm→xm8 5 l m ẽn
(m)xn. ~40!

In general, the transformation is non-orthogonal chang
the metric tensor and the spectrum of the Dirac opera
However, the previous formulas remain valid, and the ma
Fmn

(0) is simpler now, with only F03
(0)52F30

(0)5F8
52pq8/( l 0l 3) and F12

(0)52F21
(0)5F52pq/( l 1l 2) as non-

zero entries. As a result, the algebra of covariant derivat
decouples, becoming the Heisenberg algebra for a quan
particle in two dimensions and the problem factorizes o
the two planes 122 and 023; so does the group generate
by the operatorsK (m). One can chooseK (2) and K (3) as
members of a complete set of commuting operators. S
(K (2))q5(K (3))q85I the Hilbert space can be decompos
into subspaces labeled by integers 1<n<q,1<n8<q8.

Selecting2ıD1
(0)/F and2ıD0

(0)/F8 as position operators
we express our fields as functions of two real variabl
hn,n8(z,z8). The indicesn,n8 label the appropriate subspac
The covariant derivatives act as follows:

D1
(0)hn~z,z8!5ıFzhn~z,z8! ~41!

D0
(0)hn~z,z8!5ıF8z8hn~z,z8! ~42!

D2
(0)hn~z,z8!5]zhn~z,z8! ~43!

D3
(0)hn~z,z8!5]z8hn~z,z8!. ~44!

The expression relating the initial four-dimensional fiel
c(x) andhn,n8(z,z8) can be obtained from Eq.~26!.

IV. UNIFORM ABELIAN FIELDS

We can use less dimensions for the fields, but, except
special backgrounds, the interactions will be non-local. If
are only concerned with fluctuations around one of the A
lian backgrounds which played a role earlier, not only do
equations stay local, but, in addition, the Dirac operator
comes evidently exactly diagonalizable. As a result, the
mous relations between topology and fermionic zero mo
is made very explicit.

We begin in two dimensions with a gauge potential giv
by

Ai~x!52pqe i j ~xj22xj
(0)!/A. ~45!
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The corresponding field isF5F1252pq/( l 1l 2). The coordi-
natesxi

(0) in Eq. ~45! specify the location where Polyako
loops around the torus take value 1 and represent nontr
parameters of the gauge background. Forxi

(0)50, the cova-
riant derivative coincides withDi

(0) of Sec. II. In general,

Di[] i2ıAi~x!

5T1~2x1
(0)!T2~2x2

(0)!Di
(0)T2~x2

(0)!

3T1~x1
(0)!. ~46!

Thus, the eigenvectors can always be obtained from thos
xi

(0)50.
The massless Dirac operatorD5t1D1

(0)1t2D2
(0) should

haveq zero modes. Lett i denote the Pauli matrices used
express the Dirac matricesg i in the chiral basis. The eigen
value equation

S 0 D1
(0)2ıD2

(0)

D1
(0)1ıD2

(0) 0
D S c1

(l)

c2
(l)D 5ılS c1

(l)

c2
(l)D ~47!

in the one-dimensionalposition spacebasis of Sec. II is built
out of

D1
(0)6ıD2

(0)→ı~]z6Fz!5H ıA2Fa

ıA2Fa† . ~48!

]z stands for the derivative with respect toz anda is a stan-
dard harmonic oscillator annihilation operator:

a5
1

2
Al 1l 2

pq
]z1Apq

l 1l 2
z

a†52
1

2
Al 1l 2

pq
]z1Apq

l 1l 2
z. ~49!

Dirac’s eigenvalue equation takes the form

ıA2FS 0 a†

a 0 D S h1,n
(l)

h2,n
(l)D 5ılS h1,n

(l)

h2,n
(l)D ~50!

with hi ,n
(l) representing the eigenmode wave function in t

one-dimensional basis. The indexn takesq values and refers
to the internal degree of freedom representing eigenstate
K (2) showing that spectrum isq-fold degenerate.

We express the expected positive chirality zero mode
each sector in terms ofup&, the eigenstate of the numbe
operatora†a:

S u0&

0 D . ~51!

The rest of the eigenstates are given by

hn
(6p)5

1

A2
S up&

6up21&
D ~52!

wherep51,2 . . . . The corresponding eigenvalues are
6-4
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ıl (6p)56ıA2Fp. ~53!

h(6p) map into each other under chirality:t3h(6p)5h(7p).
In the original two-dimensional representation we obt

a well known form of the zero mode. Starting from

h1,n
(0)~z!5S 2q

l 1l 2
D 1/4

e2Fz2/2 ~54!

we get, with (x,y)PT2,

c1
(0)~x1 ,x2!5S 2q

l 1l 2
D 1/4

expH ıpq
x1x2

A J (
n51

q

(
sPZ

cn

3expS 2

FS x21
n1qs

q
l 2D 2

2
1ıFx1l 2~n1sq!D .

~55!

The cn are the components of an arbitraryq-dimensional
vector of unit modulus.

The zero mode is not spatially homogeneous in terms
either (x1 ,x2) or z. In particular, forq51, the solution is
proportional to a theta function. It vanishes at the pointx̄1

5 l 1/2,x̄25 l 2/2: Eq. ~55! gives

c1
(0)~ x̄1 ,x̄2!5eıp/4S 2q

l 1l 2
D 1/4

3(
s

e2(Fl 2
2/2)[s1(1/2)]2~21!s. ~56!

The exponential is even unders→212s while (21)s is
odd. The inhomogeneity of the zero mode reflects the e
tence of the two extra physical parameters (x(0),y(0)), be-
yond the magnitude of the quantized magnetic flux, ident
ing where the Polyakov loops winding around the torus ta
value 1. At the coordinates of the zero ofc1

(0) , the two
Polyakov loops take value21. These coordinates could b
used as parameters as well.

According to Eqs.~52!, ~53! the spectrum forq.1 is the
same as the spectrum ofq independent fermions, each d
fined over a region of areaA/q. This can be understood a
follows: Dirac’s equation forq.1 could be solved by using
the q51 solution over the region 0<x1< l 1 /q, 0<x2< l 2
~which carries one unit of magnetic flux! and extending it via
the boundary condition c(x11 l 1 /q,x2)5exp@ıpx2 /
l2#c(x1,x2) to the rest of thex1 domain l 1 /q<x1< l 1. This
gives the solution corresponding to the sectorn50, an
eigenspace ofK (2). Applying K (1) one obtains the remainin
q21 other solutions. All of them will satisfy the Dirac equa
tion and the boundary condition

c~x11 l 1 /q,x2!5eıpx2 / l 21ı2pn/qc~x1 ,x2!. ~57!

Thus, the spectrum is that ofq independent fermions define
over an area with a single unit of magnetic flux.

Let us turn to the massive Dirac operatorD1m. For q
51 we get
07450
f
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e

S m ıA2Fa†

ıA2Fa m
D S h̃1

(l)

h̃2
(l)D 5lS h̃1

(l)

h̃2
(l)D . ~58!

Since in the presence of massD1m is neither Hermitian nor
anti-Hermitian it is better to consider the Hermitian Dira
operatorH5t3D:

S m ıA2Fa†

2ıA2Fa 2m
D S h̃1

(E)

h̃2
(E)D 5ES h̃1

(E)

h̃2
(E)D . ~59!

H has one isolated eigenvalue atE5m with m-independent
eigenfunction (0

u0&) and an infinite set of paired eigenvalue
each pair labeled byp51,2,3, . . . ,

E(6p)56Am212pF, ~60!

h̃(6p)5
1

A11~z(6p)!2 S up&

z(6n)up21&
D

z(1p)z(2p)521 ~61!

with

z(6p)52
m

2
Al 1l 2

pp
6Am2

4

l 1l 2

pp
11. ~62!

As in all other cases, the states and eigenvalues dep
only on the areaA5 l 1l 2 but not on the ratiol 1 / l 2. One can
view the one-dimensional version as the limit when the ra
goes to zero or infinity while the area is kept fixed.

When we varym from positive values to negative one
isolated state crosses zero energy atm50. The paired eigen-
values never get to zero and are symmetric underm→2m.
The paired eigenstates depend onm, but the signs ofz(6p)

arem independent. On the lattice there is full dependence
m, but the number of zero level crossings asm is varied stays
the same as in continuum.

Consider now four dimensions with gauge groupSU(2)
and fields in the fundamental, defined over anl 03 l 13 l 2
3 l 3 torus. The boundary conditions are taken in the cano
cal form from the beginning:

Qmn
6 56S 0 0 0 q8

0 0 q 0

0 2q 0 0

2q8 0 0 0

D . ~63!

6 denotes the two color components. Note that the fi
Chern class invariants vanish. The topological charge
given by Q52qq8 where the factor 2 arises from the su
over color components. Odd topological charges canno
obtained this way—as mentioned before,SU(2) is some-
what exceptional. The following constant field strength
compatible with the boundary conditions:
6-5
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Fmn
6 56S 0 0 0 F8

0 0 F 0

0 2F 0 0

2F8 0 0 0

D ~64!

where F52pq/( l 1l 2) and F852pq8/( l 0l 3). The upper
color component coincides with the matrixFmn

(0) of the pre-
vious section in canonical form.

The fermion field is in the fundamental representation
SU(2) denoted by

C5S c1

c2D . ~65!

The index theorem tells us that there areQ52qq8 zero
modes of positive chirality more than zero modes of nega
chirality. The eigenvalue equations decouple into color co
ponents. Because of the pseudoreality ofSU(2) the upper
color component determines the lower one by the symm

C→t2
St2

CC* . ~66!

t2
S,C act in spin and color space respectively, whileC* is the

complex conjugate vector. The spectrum is doubly dege
ate. We choose a chiral representation for the Dirac matri

gm5S 0 sm

s̄m 0 D ~67!

g55S I 0

0 2I D . ~68!

The matricessm5(I ,2ıtW ) are the Weyl matrices ands̄m are
the adjoints. They satisfy

s̄msn5h̄mn
a sa. ~69!

h̄mn
a is the ’t Hooft symbol;h̄mn

0 5dmn and theh̄mn
i are a

basis of anti-self-dual tensors. The eigenvalue problem i

Dc~x![Dmgmc~x!5S 0 D̄

D̂ 0
D c~x!5ılc~x!. ~70!

The symbol D̄5Dms̄m(D̂5Dmsm) denotes the positive
~negative! chirality Weyl operator restricted to the upp
color component. The covariant derivativeDm coincides
with the generator of translations studied in Sec. III,Dm

(0) .
Choosing a new origin of coordinates gives the vector pot
tial another form. The different choices are gauge inequi
lent, as evidenced by the Polyakov loops, but are related
translationsT(b).

In position space representationD̄ becomes (D̂52D̄†):
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D̄5S D01ıD3 ı~D12ıD2!

ı~D11ıD2! D02ıD3
D

→S ıA2F8a8 2A2Fa†

2A2Fa ıA2F8a8†D . ~71!

a,a8 are two independent annihilation operators.a is the
same as in Eq.~49!. To geta8 replace the 122 plane by the
023 plane andz by z8.

A positive chirality eigenstate of the Dirac operator wi
eigenvalueıl also is an eigenstate of the operatorD̂D̄ with
eigenvalue2l2:

D̂D̄522S F8a8†a81Fa†a 0

0 F8a8a8†1Faa†D . ~72!

Let up,p8&, with non-negative integersp andp8, be simulta-
neous eigenvectors of the number operators. There is a p
tive chirality zero mode given by

hn,n8
(0)

5S u0,0&

0

0

0

D . ~73!

There is an identical zero mode in each of the subspa
labeled byn-n8 making upqq8 zero modes for each colo
component and confirming the index theorem. Actually,
operators act in the same way in each subspace, so the e
spectrum is replicatedQ times.

The set of eigenvalues of the Dirac operator consists

ıl (6,p,p8)56ıA2Fp12F8p8. ~74!

The corresponding eigenvectors are

1

A2S up,p8&

0

6A F8p8

Fp1F8p8
up,p821&

6ıA Fp

Fp1F8p8
up21,p8&

D . ~75!

For p,p8.0 there exist additional eigenstates with the sa
eigenvalue:

1

A2S 0

up21,p821&

6ıA Fp

Fp1F8p8
up,p821&

6A F8p8

Fp1F8p8
up21,p8&

D . ~76!
6-6
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The spectrum and eigenstates of the massive Herm
Dirac operatorH5g5(D1m) can be easily obtained in
terms of those of the massless Dirac operator. The uncha
zero modes become eigenstates ofH with eigenvaluem. The
massive Dirac operator mixes other eigenstates of the m
less Dirac operator,cl , with g5cl . The eigenvalues and
eigenvectors ofH result from diagonalizing the correspon
ing 232 matrix giving eigenvalues equal to6Am21l2.
The eigenvectors are of the form (1/A2)(e2ıd/2cl

6eıd/2g5cl), whered is the phase of the complex numb
m1ıl.

V. TWO DIMENSIONS—LATTICE

We now turn to the lattice and examine a constant Abe
background in two dimensions. We wish to determine h
an ultraviolet cutoff interacts with the ‘‘dimensional redu
tion’’ we saw before.

The fermion fieldsc(n1 ,n2) are complex functions o
sites on anL13L2 square lattice. If we visualize the com
puter memory storing these functions, there is only a fin
list of complex numbers and no mention of boundary con
tions. No continuum features are lost because the link ga
variables are parallel transporters to a finite distance
therefore in the continuum limit include both the vector p
tential and the transition functions. The link variables th
keep track also of what we normally view as boundary c
ditions. To keep our lattice description formally close to t
continuum formulation we choose to view our lattice fiel
slightly differently, as defined over an infinite lattice but r
stricted by

c~n1E( i )!5expH ıp(
j

qi j

nj

L j
J c~n!. ~77!

E( i ) is a vector of lengthLi in the i direction,qi j 5qe i j and
the indicesi , j take the values 1,2.

The space of fields satisfying the boundary conditio
~77! can be described in a way equivalent to the continu
one-dimensional quantum mechanical formulation. First,
gauge-transform the functionc(n):

k~n!5expH 2pıq
n1n2

L1L2
J c~n!. ~78!

The new function,k, is periodic inn1 with periodL1 and can
be parametrized as

k~n1 ,n2!5 (
p151

L1

exp$ı2pp1n1 /L1%c~n2 ,p1!. ~79!

The momentump1 is defined moduloL1. Imposing the
boundary condition inn2, we get

c~n21L2 ,p1!5c~n2 ,p11q!. ~80!

Defining q15gcd(q,L1), we can write p15sq1nmodL1
wheren is an integer-defined moduloq1 ands is an integer
defined moduloL1 /q1:
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c~n2 ,p1!5h~n21L2s,n!. ~81!

We have arrived at the following expression forc(n):

c~n1 ,n2!5expH pıq
n1n2

L1L2
J (

s51

L1 /q1

(
n51

q1

3exp$ı2p~sq1n!n1 /L1%h~n21L2s,n!.

~82!

For q51, q151, and our representation is given in terms
a functionh defined on a one-dimensional lattice of leng
N[L1L2. For generalq, it is still true that the space o
fermions fields isN dimensional, but now one hasq1 func-
tions living on a periodic lattice of sizeN/q1.

The lattice fieldsc(n) can be viewed as the collection o
values of the continuum fieldsc(x) ~appearing in Sec. II! at
the lattice pointsx5na, wherea is the lattice spacing and
l m5Lma. Thus, the transformations acting on the space
lattice fields are given by the restriction of the continuu
transformations to the lattice points. In particular, we hav
group of modified translations by vectors whose compone
are integer multiples of the lattice spacinga. The generators
of the group areTi :

Tic~n!5expH ıp(
j

qi j nj

N J c~n1 ı̂ !. ~83!

N equalsL1L2 and ı̂ is a vector of unit length in thei direc-
tion. We obtained a non-commutative discrete subgroup
the continuum translation group:

T1T25expH 22pı
q

NJ T2T1. ~84!

The one-dimensional representation is obtained in a b
that diagonalizesT1:

T1h~k,n!5expH 2pıS qk

N
1

n

L1
D J h~k,n!. ~85!

The translation operator in the 2 direction acts as follows

T2h~k,n!5h~k11,n!. ~86!

If N12[gcd(N,q)Þ1 the group generated byTi acts re-
ducibly on our space of lattice fields decomposing it intoN12
subspaces, each invariant under translations. This consti
the lattice remnant of the group generated byK ( i ) in the
continuum. These operators contain translations byl i /q and
can be extended to the lattice only ifLi is divisible by q.
Otherwise, one obtains only a subgroup of the group fou
in the continuum.

We pick lattice gauge fields having a constant plaque
value:

Ui~n!5a i expH ıp(
j

qi j nj

N J . ~87!
6-7
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Thea i are complex numbers of unit modulus. The plaquet
are given by

U12~n!5expH 2ı2p
q

NJ [z2q ~88!

where z5exp$ı2p/N%. The values of the plaquettes do n
depend ona i , but the latter are physical parameters beca
they influence the Polyakov loops. Thea i are related to the
continuum parametersxi

(0) ~taken in units of the lattice spac
ing!:

a i5e22pıq( je i j xj
(0)/N. ~89!

In the continuum the spectrum of the Dirac operators w
independent ofxi

(0) , by unitary equivalence generated b
appropriate translations. On the lattice translations are
crete and can only be used to restrict the ranges of
xi

(0) :0<xi
(0),1.

The lattice Dirac operators contain the covariant shift o
eratorsTi :

Ti5a iTi . ~90!

For the rest of the section we restrict ourselves to thq
51 case. TheTi operators take the following matrix form
when acting onh(k)’s:

T25a2S 0 1 0 . . . 0

0 0 1 . . . 0

0 . . . . . . . . . . . .

0 0 . . . 0 1

1 0 . . . 0 0

D ~91!

T15a1S 1 0 0 . . . 0

0 z 0 . . . 0

0 0 z2 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0 zN21

D . ~92!

It is convenient to choose a different basis of Dirac m
trices for the lattice analysis:

g15t2 ,g25t3 ,g352 ig1g25t1. ~93!

The Wilson Dirac operatorDW is

DW5m1(
m

~r 2Vm! ~94!

where the unitary matricesVm are

Vm5
r 2gm

2
Tm1

r 1gm

2
Tm

† . ~95!

In what follows we will fix the Wilson parameterr to 1.
From now on periodicity in the ‘‘site’’ indexn is implied by
07450
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the convention that it is always viewed moduloN and this
extends to operations involving site indices. For simplici
let us start withxi

(0)50.
The Wilson Dirac lattice Hamiltonian is

HW5t1DW

5S 2sinQ 21m2cosQ2T

21m2cosQ2T† sinQ
D . ~96!

Here,Q is anN3N diagonal matrix:

Q5diag@1,u1 ,u2 , . . . ,uN21# ~97!

with

un5
2pn

N
, Tkn5dk11,n. ~98!

HW is a local one-dimensional Hamiltonian defined on
discretised circle. The calculation of eigenvalues and eig
vectors requires fewer operations than in the basis co
sponding to a two-dimensional grid.

Writing the eigenvector for energyE as

cn5S an

bn
D ~99!

wheren ranges between 0 andN21, we get the eigenvalue
equations

Ean52sinunan1~21m2cosun!bn2bn11 ~100!

Ebn115~21m2cosun11!an112an1sinun11bn11.
~101!

In matrix form we have

S 21m2cosun11 sinun112E

0 1 D S an11

bn11
D

5S 1 0

2E2sinun 21m2cosun
D S an

bn
D . ~102!

Inverting the matrix on the left-hand side we get

S an11

bn11
D 5MnS an

bn
D . ~103!

The eigenvalue condition is thatM[MN21MN22 . . . M0
have an eigenvalue equal to unity. Observe that detM51;
thus if M has one eigenvalue unity the other also must
unity and the eigenvalue condition can also be written as

TrM ~E!52. ~104!

When this condition is fulfilledM (E) has a single eigenvec
tor, not two, because it is non-diagonalizable. The energieE
are the roots of a polynomial of degree 2N. Typically these
roots are all simple and to each corresponds a single ei
state ofHW—there are no degeneracies.
6-8
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We have ended up with an exact formula for the char
teristic polynomial ofHW ,

det~E2HW!5~21!NKN@TrM ~E!22#. ~105!

The proportionality factorKN is calculated by comparing th
termsE2N in TrM (E) and in det(E2HW),

KN5 )
n50

N21

~21m2cosun! ~106!

5F21m1A~21m!221

2 GN

1F21m2A~21m!221

2 GN

2
1

2N21.

This formula is correct even when the square roots are im
nary, with the understanding that the second term on
right-hand side is the complex conjugate of the first. It
derived by setting 21m51/2@z1(1/z)# and noting that the
finite Laurent series inz defining KN is symmetric under
z↔1/z and vanishes whenz is anNth root of unity.

We can now easily re-introduce arbitraryx1
(0) and x2

(0) .
All that happens is thatQ gets shifted toQ22px1

(0)/N and
the characteristic polynomial is now proportional to

TrM ~E!22 cos~2px2
(0)!.

The proportionality constant now depends onx1
(0) .

Numerically, the finite precision of the machine will lim
the usefulness of a direct implementation of the character
polynomial as a means of locating the eigenvalues ofHW

whenN gets large. A better way exists forxi
(0)50 which has

extra symmetry.T1 and T2 are then isospectral and the
exists an intertwining map,FN . ~Actually, T1 ,T1

† , T2 ,T2
† all

have identical spectra.! FN is the discrete Fourier transform

F jk5
1

AN
e(2p i /N) jk. ~107!

F is symmetric and unitary,

T2F5FT1 ~108!

FT25T1
†F. ~109!

F can be combined with a rotation in spinor space to prod
a unitary matrix that commutes withHW ,

U5
12 i

A2

12 ig3

A2
F. ~110!

One checks now that

DWU5UDW ~111!

UHW5HWU. ~112!
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The simpler case of commutativity withU2 is more obvious
and can be checked directly:

F2eiQF25e2 iQ ~113!

leading to

F2HWF25t1HWt1 ~114!

where we notationally ignore factors of unit matrices in te
sor products.

The eigenvalues ofU are 1,i ,21,2 i . Their degeneracies
are computed from the ranks of the appropriate project
Since U451 the projectors can be written in terms
1,U,U* ,U2. For the multiplicities we only need the traces
1,F,F* ,F2. The trace ofF2 is trivial because

F25S 1 0 0 0 . . . 0 0

0 0 0 0 . . . 0 1

0 0 0 0 . . . 1 0

A A A A . . . A A

0 0 1 0 . . . 0 0

0 1 0 0 . . . 0 0

D . ~115!

The trace ofF is not trivial and is given by a famous sum o
Gauss:

SG~N!5
1

AN
(
k50

N21

e(2pı/N)k2
. ~116!

SG(N) is determined by its values atN51,2,3,4 and by
~nontrivial! mod 4 periodicity: SG(1)51, SG(2)50,
SG(3)5 i , SG(4)511 i . The reflectionU25g3F25t1F2

reverses the order of sites withn50 as a fixed point for allN
and flipsa andb ~in our g-matrix basis!.

The origin of theU symmetry is in the continuum. The
harmonic oscillator case is unique in that all the eigenfu
tions are eigenstates of the Fourier transform as a result
discrete symmetry that exchanges the coordinate with
conjugate momentum. The eigenvalues of the Fourier tra
form are 1,i ,21,2 i , depending on the oscillator leve
mod 4. To get an operator that commutes with the Dirac
erator in our case the Fourier transform needs to be c
bined with the action of a rotation in spinor space depend
on the chirality matrixg3. On the lattice one can decompos
HW into four blocks each of sizes~roughly! of N/23N/2.
The exact sizes depend onNmod 4. TheU-symmetry is sim-
pler to understand when also using the standard represe
tion in terms of fields on a two-dimensional torus of equ
sides. Then we have a symmetry under rotations byp/2,
which corresponds to a switch between coordinate and
mentum in the one-dimensional framework. The tw
dimensional interpretation as a discrete rotation explains w
an action on spinorial indices is also required. As only t
area is relevant, the requirement that the torus have e
sides can be dropped. In practice we shall exploit onlyU2,
corresponding to a rotation byp, and the issue does not eve
6-9
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arise. In the one-dimensional basis theU2 reflection symme-
try contains the square of the Fourier transform combin
with g3 in a simple manner.

TheU2 symmetry allows us to factorize TrM (E)22. The
trace contains the sum of the expectation ofM (E) in two
states. These contributions are individually high degree p
nomials inE and vary over many orders of magnitude. T
contributions nearly cancel at the eigenvalues and are
sensitive toE. The symmetry makes it possible to work
only one sector, where a single state contributes. As a re
one deals with a single expectation value, which can
renormalized iteratively, in effect dividing out the quanti
that has to vanish by a positive function ofE that tames the
large variability. This provides a numerically stable meth
for locating the eigenvalues down to machine accuracy.

One needs to separate the caseN5even fromN5odd. For
N52L, L being integer, the reflection has two fixed poin
n50 andn5L. Thus, one can impose onc0 andcL to be
eigenvectors oft1 with identical eigenvalue. Start fromc0

5(1/A2)(1
1)[j1 and letj25(1/A2)( 1

21). We need to have
then

j2
† ML21~E!ML22~E! . . . M0~E!j150. ~117!

This gives a polynomial equation forE of degree 2L; the
roots are all the energies of the even states. Similarly, for
odd states we have the equation

j1
† ML21~E!ML22~E! . . . M0~E!j250. ~118!

Extending toN52L21 requires imposingcL2156t1cL
coordinated with6t1c05c0. This implies

~12t1ML21!cL2150 ~119!

if t1c05c0, and

~11t1ML21!cL2150 ~120!

if t1c052c0.
Explicit evaluation ofML21 produces

ML215S 12~s1E!2

21m1c
s1E

2~s1E! 21m1c
D ~121!

wheres5sin@p/(2L21)# andc5cos@p/(2L21)#. The eigen-
values oft1ML21 arel561, independently ofE. The cor-
responding two eigenvectors do depend onE:

ĵl~E!5
1

A11@~l1E1s!/~21m1c!#2 S 1

l1E1s

21m1c
D .

~122!

The eigenvalue conditions are that (ML22ML23 . . . M0)js

be parallel toĵs(E) for s561,

ĵ11
T ~E!t2~ML22ML23 . . . M0!j150 ~123!
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ĵ21
T ~E!t2~ML22ML23 . . . M0!j250. ~124!

They look slightly different from the even case because n
the vectorsĵ61 are not orthogonal to each other.

The above is useful for numerical searches for ene
eigenvalues ofHW . The vectors obtained by the sequent
action ofMn are normalized at each step and this elimina
accuracy problems.N is limited now only because for very
largeN the spacings between some eigenvalues may be
low machine accuracy.

Looking at some examples the following patterns emer
The odd and even states have energy sequences that se
~interlace with! each other. For evenN the topological charge
2 1

2 TrHW /AHW
2 is carried by the odd states. For oddN the

topological charge is carried by the odd and even sta
equally—each sector having an imbalance equal to un
Whenm is taken from positive values to;21 it is always
an even state that does the zero crossing. There are no
generacies.

Since there are no degeneracies one can calculate dir
the eigenvaluesl of the symmetry operatorU for each one
of the eigenstates. A simple way to do this is to evaluateFc
at site 0 only. We distinguish the even and odd cases.

If the state is even,g3F2c5c, then

~Fc!05
1

AN
(
n50

N21

cn5lc0 ~125!

andl can be61. If the state is odd,g3F2c52c, then

~Fc!05
1

AN
(
n50

N21

cn5 ilc0 ~126!

and il can be61.
We now turn to the naive lattice Dirac operator. In th

one-dimensional version we now have

HN5S 2sinQ
1

2
~T†2T!

1

2
~T2T†! sinQ

D . ~127!

If the Li are even there are two additional symmetries invo
ing staggering operators along each direction:

Sic~n!5~21!nic~n!. ~128!

The Si commute among themselves, satisfySi
251 and also

SiTi52TiSi . ~129!

The two anticommuting matricesP i5Sig i , i 51,2 commute
with HN . We diagonalize one of theP i ’s, P2 for example.
The eigenspaces of the two61 eigenvalues correspond t
two species of staggered fermions. Going over to the o
dimensional description, the operatorS2 becomes the corre
sponding one-dimensional staggering operatorS̄:
6-10
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S̄nm5~21!ndnm. ~130!

S̄251, S̄ is Hermitian andS̄TS̄52T.
We obtain a reduced Hamiltonian for naive fermions

introducing the following Hermitian-unitary matrix:

R5
11t1

2
I 1

12t1

2
S2. ~131!

It brings HN into a simpler form:

RHNR52t3HNR ~132!

whereHNR52ıS2D12 and

D125
1

2
~T12T1

†1ıT22ıT2
†!. ~133!

In the one-dimensional representation we get

HNR5S̄S 1

2
~T2T†!1sinQ D . ~134!

The operatorS1S2 anticonmutes withHNR , implying that the
spectrum ofHN is real, symmetric around zero and doub
degenerate. We can cast the eigenvalue equation in the
lowing form:

S an11

bn11
D 5M̄n~E!S an

bn
D ~135!

where

M̄n~E!5S 2E~21!n22sinun 1

1 0D . ~136!

For E to be an eigenvalue,M̄ (E)5M̄N(E)•••M̄1(E) must
have an eigenvalue equal to 1. However, since the dete
nant ofM̄ (E) is 1, the condition becomes again:

Tr„M̄ ~E!…52. ~137!

An analysis similar to the one performed for the Wilso
Dirac operator would apply also here.

Let us conclude this section by analyzing the existe
and multiplicity of zero modes. We restrict our attention
positive chirality modes. There always exists an equal nu
ber of negative chirality modes; this is a reflection of t
famous phenomenon of fermion doubling. The equation
the zero mode is

hn11
(0) 2hn21

(0) 522hn
(0)sinun. ~138!

This is a second order recursion relation determining all
elements of the series in terms ofh0

(0) and h1
(0) . Our solu-

tions must satisfy the periodicity conditionhn1N
(0) 5hn

(0) . It is
necessary and sufficient that this condition be satisfied
two consecutive values ofn. Since the problem is homoge
neous this could lead to two conditions on the ra
h1

(0)/h0
(0) , so existence is not guaranteed. To prove existe
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we make use of the fact that the solution, if it exists, satis
hn

(0)5h2n
(0) . Forn51 this relation follows from the vanishing

of u0. For other values ofn it can be proven by applying the
iteration Eq.~138!.

Most of our previous formulas have been derived for ev
N, so we will consider this case first. Then,hN/2

(0)5h2N/2
(0) ,

which is equivalent to periodicity atn52N/2. From the
vanishing of sinuN/2 we concludehN/221

(0) 5hN/211
(0) , which to-

gether with reflection aroundn50 yields h2N/211
(0) 5hN/211

(0)

~periodicity at2N/211). We conclude that the iteration pro
cedure is automatically periodic for arbitrary values ofh0

(0)

and h1
(0) and therefore there are two positive chirality a

two negative chirality zero modes. Their shape can be a
matically determined by applying the iteration to any pair
initial values ofh0

(0) andh1
(0) . Once one zero mode has bee

determined the other can be found by applying the symm
operator:

hn
(0)→~21!n hN/21n

(0) . ~139!

In the oddN case, although staggering does not apply,
equation for the zero modes~138! and the reflection property
(hn

(0)5h2n
(0)) still holds. This, however, is not enough to im

ply periodicity, but allows us to reduce the two equations
one. This fixes the ratioh1

(0)/h0
(0) : A single zero mode exists

for each chirality. To conclude our analysis of zero modes
mention that for thexi

(0)Þ0 case, the reflection property an
the existence of zero modes is lost.

In conclusion, the one-dimensional character of the latt
problem holds independently of which lattice fermions w
use. Also, from the numerical point of view there are
hidden features and the problem truly has the complexity
a one-dimensional system.

VI. FOUR DIMENSIONS—LATTICE

In this section we look at anSU(2) gauge theory on a
four-dimensional latticeL of size L03L13L23L3. We
again take Abelian transition functions:

c~n1E(m)!5expH ıp (
n

qmn

nn

Ln
t3J c~n!. ~140!

qmn is an antisymmetric tensor whose only nonzero com
nents areq035q8 andq125q. The vectorE(m) is a vector of
length Lm along the m direction. Following the two-
dimensional example we introduce shift operatorsTm which
act as follows:

T mc1~n!5expH ıp (
n

qmn

nn

LmLn
J c1~n1m̂ !. ~141!

Changing the sign of the exponent on the left-hand side,
obtains the translation operator acting on the lower co
component. The translation operators are just the covar
shift operator in a background lattice gauge field with t
links given by
6-11
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Um~n!5expH ıp (
n

qmn

nn

LmLn
t3J . ~142!

These links produce a homogeneous plaquette field.
The covariant shift operators define a finite group:

TmTn5expH 22pı
qmn

LmLn
J TnTm. ~143!

For q5q851 the entireL0L1L2L3-dimensional space is ir
reducible under this group. A convenient basis is obtained
diagonalizing a maximal set of commuting matrices;
chooseT1 andT0, leading to a two-dimensional labeling o
the basis given by the corresponding eigenvalues ofT1 and
T0. This is the lattice equivalent of the continuum tw
dimensional representation of four-dimensional lattice fiel
Letting N125L1L2 andN035L0L3, the eigenvalues ofT1 are
given by exp$ı(m/N12)% and those ofT0 are given by
exp$ı(m8/N03)%, wherem (m8) are integers defined modul
N12 (N03). An arbitrary vector in the space of lattice field
can be expanded in this basis with coefficientshm,m8 . From
the commutation relations the action of the remaining ope
torsT2 andT3 can be derived by manipulations from Sec.
applied to each of the 122 and 023 planes.

For the generalq,q8 case, the centralizer of the translatio
group might be nontrivial, leading to different subspaces
variant under translations. The subspaces are labeled
mapped into each other by subgroups of the continu
group generated by theK (m). If L1 andL2 are divisible byq,
andL0 andL3 are divisible byq8, we obtainqq8 subspaces
and labellings, just as in the continuum. On the oppo
extreme, when the lengthsLm are coprime with the assoc
ated integersq or q8, the subgroup is trivial and we have n
invariant subspace. In the general case we work with
subgroup of the continuum group generated byK (m) which
maps lattice points into other lattice points.

We set nowq5q851 and study the spectrum of fou
dimensional lattice Dirac operators in the constant ba
ground field given by the links Eq.~142!. We focus on the
upper component,c1, because, as in the continuum, th
lower component can be obtained by charge conjugation

The naive lattice Dirac operator is given by

DN5
1

2 (
m

gm~Tm2T m
†!5S 0 D̂L

D̄L 0
D ~144!

where we have defined the lattice Weyl operators in a w
similar to the continuum. The nonzero spectrum ofDN can
be obtained by studying the eigenvalues and eigenvecto
the D̂LD̄L acting on Weyl spinor lattice fields. The spectru
of this operator is the same as that ofD̄LD̂L . Unlike in the
continuum, on the lattice the spectra are the same even
cluding zero modes: for every positive chirality zero mo
there is a negative chirality one.

In Sec. IV we related the spectrum of the fou
dimensional Dirac operator to that of the two-dimensio
case and this relation extends to the lattice.T1,2 commute
with T0,3 and henceD̂LD̄L becomes block-diagonal:
07450
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D̂LD̄L52S D12
† D121D03

† D03 0

0 D12D12
† 1D03D03

† D
~145!

where

D125
1

2
@T12T 1

†1ı~T22T 2
†!# ~146!

D035
1

2
@T02T 0

†1ı~T32T 3
†!#. ~147!

D12 andD03 commute and our two-dimensional analysis a
plies @see Eq.~133!#. Let l12 andl03 be the eigenvalues o
D12

† D12 andD03
† D03, respectively. Then the spectrum of th

naive lattice Dirac operator is given by6ıAl121l03 and is
twofold degenerate. For the corresponding naive Di
HamiltonianHN5g5DN , the spectrum is given by the sam
formula without theı factor. We emphasize thatD12

† D12

5HNR
2 , where HNR is the staggered reduced Hamiltonia

appearing in Sec. V above Eq.~133!. Eigenvalues and eigen
vectors can be readily constructed in terms of those ofHNR .

The reduction of the four-dimensional naive lattice Dir
operator to two dimensions does not extend to the Wils
Dirac or the overlap operator. Here, all components
coupled to each other. A complete analysis, which will not
included here, can be done along the lines of Sec. V.

VII. NUMERICAL AND ASYMPTOTIC RESULTS

In this section we will complement the results of the pr
vious sections by providing some numerical and analyti
results on the spectra of the naive lattice Dirac operator
the overlap Dirac operator@10,20# in a constant field strength
gauge background for certain values ofLm and topological
charge. In particular, we will compare the eigenvectors of
lattice Dirac operators with their continuum counterpar
The numerical method used for the determination of the
genvalues is an exact diagonalization procedure. T
method, although precise and stable, is computation
costly, limiting what we can do.

We begin by describing our two-dimensional results. F
the numerical determination we diagonalize the lattice Di
operators~naive and overlap!, with link variables given by

U1~n!5expH ıpq
I ~n2 ,n1!

L1L2
J ~148!

U2~n!5expH 2ıpq
I 8~n1 ,n2!

L1L2
J ~149!

where I (n2 ,n1)5n2 for 1<n1,L1 and I (n2 ,L1)5(L1
11)n2 ~and a similar relation forI 8 exchanging the 1-2
labels!. The value of the plaquette is constant and equa
exp$2ı2p(q/N)%, with N5L1L2. The associated lattice Dira
operators~matrices! have dimension 2N. The cases of very
small and very largeN can be studied analytically. ForN
52 the naive Dirac operatorDN vanishes. ForN54 there
6-12
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TABLE I. Eigenvalues of lattice Dirac operators for anL15L2524 lattice~see text for precise explana
tion of the entries!.

Continuum Naive Ovp, M51 Ovp, M50.75 Ovp, M51.25

0 0 @4# 0 0 0
1 0.9946@4# 1.0018 0.9978 1.0027
2 1.9783@4# 2.0071 1.9910 2.0108
10 9.4642@4# 10.167 9.7723 10.265
20 17.893@4# 20.615 19.080 21.040
50 37.371@4# 52.902 44.316 56.123
100 57.805@4# 106.45 78.832 121.57
200 199.11 128.617 259.15
500 350.07 202.842 523.46
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are again 4 zero eigenvalues. In addition, there are two d
bly degenerate pairs at6ıA2. For N56 there are three
fourfold-degenerate eigenvalues at 0 and6ıA3/2. We have
numerically diagonalized the naive lattice Dirac operatorDN
for several values ofq and Li . In Table I we display a se
lection of the eigenvalues for one typical case withq51 and
L15L2524. We dropped the complex factorı from the ei-
genvalues and list only the positive branch on account of
spectral symmetry about zero. Since the continuum eigen
ues are given byA2Fn, whereF52pq/N is the magnetic
field, we display the square of the eigenvalues divided
2F, a dimensionless quantity. We see that the degenerac
the eigenvalues~indicated inside square brackets! is equal to
4. Only a factor of 2 is exact at all even values ofN. The
extra twofold degeneracy is approximate, but extremely
curate for large values ofN.

For largeN the low-lying eigenvalues are well describe
by

ıln5A2Fn@11CFn1O~F2!# ~150!

with C521/4. The dependence onN and q only enters
throughF and we are close to the continuum limit.C was
determined by expandingD12 to first subleading order in
terms of continuum operators:

D125D11ıD21
1

6
~D1

31ıD2
3!1••• . ~151!

In the one-dimensional quantum mechanical representa
we get

D12
† D1252Fa†a2

F2

6
@a41~a†!416~a†a!2#1••• .

~152!

The eigenvalues of2D12
† D12 are the square of the eigenva

ues of DN , and perturbation theory predicts the observ
value forC in Eq. ~150!.

We have also studied the eigenvalues and eigenvecto
the overlap operatorDO . DO is constructed in terms of th
unitary operatorV5t3HWD(2M ,r )/uHWD(2M ,r )u, where
HWD(2M ,r ) is the Wilson Dirac Hamiltonian with mas
2M and Wilson parameterr. The eigenvalues ofV are of
07450
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the form eıdO(M ,r ) with the M and r dependence explicitly
indicated. Chirality implies symmetric spectrum and only t
positive values will be shown. The continuum eigenvalu
are approached byMdO(M ,r ) and results are presented fo
the square of this quantity divided by 2F. In terms of
dO(M ,r ) the eigenvalues of the overlap operator are

M @12cosdO~M ,r !1ısindO~M ,r !#. ~153!

This is the operator whose inverse gives the propagator
internal fermions lines. External lines should be describ
instead by the exactly chiral invariant operatorDI
52ıM @(11V)/(12V)# @10,21#. The eigenvalues of the
latter are

ı2M tan@dO~M ,r !/2#. ~154!

Determining the eigenvalues for small values ofN is some-
what more involved than for the naive operator, since now
addition we must keep track of theM andr dependence. Fo
example, forN52,q51 there is a region of values of thes
parameters for whichV is equal toI and another one in
which it is equal to2I . For 2r 224Mr 1M2,0 ~which in-
cludes the pointr 5M51) V has two eigenvalues equal to
and two equal to21. Table I contains a selection of eigen
values forq51, L15L2524, r 51 andM50.75,1,1.25. For
large N, the behavior of the low-lying spectrum can be u
derstood analytically. The eigenvalues are again given by
~150! where the constantC[Coverlap(M ,r ) is

Coverlap~M ,r !52
1

4
1

r

M
2

2

3M2
. ~155!

For r 51 andM50.75,1,1.25C5211/108,1/12,37/300, re
spectively, which works well for the numbers in Table I.

Equation~155! is found by expanding the lattice operat
in terms of the continuum one. We separate the Wilson-Di
operator into additive terms as follows:

DWD52M1DN1rW. ~156!

W stands for the Wilson term, which is of ordera2, while the
naive operatorDN is ordera. a is the lattice spacing; equiva
lently, we set the lattice spacing to unity and use powers
6-13
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FIG. 1. The shape of the overlap~positive
chirality! zero mode in the one-dimensional re
resentation compared to the continuum Gaussi
for a two-dimensional constant field withq51
andL15L2524.
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1/AN instead. We writeV5exp$2E/M %, whereE is an anti-
Hermitian matrix. In the continuum limit we get

E5DN1
1

3M2
DN

3 1
r

2M
~DNW1WDN!1••• . ~157!

The above holds to ordera3. In the continuum limit,W can
be expressed in terms of the Dirac operatorD:

W5
21

2
~D21ıFmngmgn!. ~158!

Expressions~157! and ~158! are true in any dimension an
for arbitrary background. In two-dimensions the anticomm
tator of W andD is given by

WD1DW52@D31ı~DmFmn!gn#. ~159!

The second term is proportional to the Euclidean equati
of motion and hence vanishes for any classical solution,
cluding the uniform fields we are considering. Hence,
behavior of the eigenvalues in the continuum limit can
extracted from our previously derived results for the na
lattice Dirac operator. In this way we obtain Eq.~150! with
the C of Eq. ~155!. The second and third terms in Eq.~157!
are proportional toD3 and therefore affect the eigenvalu
without modifying the eigenvectors.

For typical values of the parametersM ,r ~including r
5M51) the lattice corrections are smaller for the overl
than for the naive Dirac operator. For example, forr 51 and
M52(121/A3) the leadingO(a2) correction to the eigen
values vanishes. This also follows from the numerical dat
Table I, where the spectrum forr 5M51 is found to be
fairly close to continuum for the lowest several hundred
genvalues.

To conclude the description of the two-dimensional ca
we will show some results on the low-lying eigenvectors
the overlap (r 5M51). In Figs. 1 and 2 we display th
shape of the positive chirality part of the ground state and
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second excited state, respectively. The data are obtained
the numerical diagonalization atLi524. The resulting two-
dimensional array of points is transformed to the on
dimensional representation and then compared to the
tinuum result, given by eigenstates of the Harmon
oscillator.

We turn now to four dimensions. Our numerical work
done for SU(2) and for gauge fields whose only nonze
components areF1252F215Ft3 and F0352F305F8t3.
The color components decouple so we essentially are dea
with U(1) systems. As explained in Sec. VI, the eigenva
problem for the naive Dirac operator reduces to the tw
dimensional problem. Here we focus on the overlap opera
which does not simplify similarly.

Our objective is to find the leading corrections to the lo
lying spectrum when continuum is approached. Equati
~157!, ~158! are valid now, but Eq.~159! is replaced by

WD1DW52@D31ı~DmFmn!gn1ıearmng5gaFmnDr#

~160!

where we have made use of the Bianchi identities. The s
ond term vanishes for gauge configurations that solve
classical equations of motion. The last term was absen
two dimensions. For a uniform field this term commutes w
D. All the terms in E anticommute withg5 and are anti-
Hermitian, so that in the chiral basisE has the form

E5S 0 2X†

X 0 D ~161!

with X given by

X5D̄N1S 1

3M2
2

r

2M D D̄D̂D̄2
r

M
„F~D01ıt3D3…

1F8„ıt1D11ıt2D2!…t31••• . ~162!
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FIG. 2. The shape of the positive chiralit
component of the second excited state of t
overlap compared with the continuum predictio
for q51 andL15L2524.
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The eigenvalues ofX†X are obtained by writing the covari
ant derivatives in terms of creation and annihilation ope
tors and using perturbation theory. With our choice
gamma matricesX†X is already diagonal in the spin spac
The 121 component ofX†X is readily expressed in terms o
the two number operators. The corresponding eigenvalu
X†X becomes

2Fn1212F8n0314S 2
1

4
1

r

M
2

2

3M2D ~Fn121F8n03!
2

2
4r

M
~F2n121F82n03! ~163!

wheren12,n03 are non-negative integers. The first two term
give the continuum result, the third one is of a type famil
from the two-dimensional case, while the fourth one is ge
inely four dimensional. The 222 spin component ofX†X
gives another set of eigenvalues given by a formula ident
to Eq. ~163! except that the last term has the opposite s
and n12,n03 are now integers strictly larger than zero. T
sign change in the last term lifts the degeneracy of the c
tinuum eigenvalues. The eigenvalues ofE are given by those
of 6ıAX†X.

We have numerically determined the eigenvalues of
overlap operator in four dimensions. Our exact diagonali
tion methods cannot be carried out for very large sizes an
comparison with the previously derived formulas is difficu

VIII. SUMMARY

With one exception, anyU(1) or SU(N) gauge field on a
two-dimensional or four-dimensional Euclidean torus can
07450
-
f

of

r
-

al
n
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e
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a

e

smoothly deformed to an Abelian background. When
background is topologically nontrivial the Abelian field ca
be deformed to a non-vanishing uniform magnetic field. A
topological invariant is therefore captured by a representa
with uniform Abelian background. The Dirac equation
these backgrounds can be viewed as an equation over infi
space but in half the dimension. This naturally leads to
exact diagonalization in terms of harmonic oscillator wa
functions. In the massless case one gets explicit formulas
the expected zero modes. Much of this translates to the
tice; for example, the diagonalization of the Wilson Dira
operator and the associated overlap Dirac operator on a
dimensional torus simplifies to an equation on a on
dimensional circle of length fixed by the area of the origin
torus. In these backgrounds the connection between ferm
and topology becomes particularly transparent both in
continuum and on the lattice, once one employs overlap
mions there.
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