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Domain wall fermion and chiral gauge theories on the lattice
with exact gauge invariance

Yoshio Kikukawa*
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

~Received 17 October 2001; published 15 March 2002!

We discuss how to construct anomaly-free chiral gauge theories on the lattice with exact gauge invariance
in the framework of a domain wall fermion. Chiral gauge coupling is realized by introducing a five-
dimensional gauge field which interpolates between two different four-dimensional gauge fields at
boundaries. The five-dimensional dependence is compensated by a local and gauge-invariant counterterm.
The cohomology problem to obtain the counterterm is formulated in (511)-dimensional space, using the
Chern-Simons current induced from the five-dimensional Wilson fermion. We clarify the connection to the
invariant construction based on the Ginsparg-Wilson relation using the overlap Dirac operator. The formulas
for the measure and the effective action of Weyl fermions are obtained in terms of five-dimensional lattice
quantities.
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I. INTRODUCTION

Through the Ginsparg-Wilson relation@1# and the exact
chiral symmetry based on it@2#, the Weyl fermion can natu
rally be introduced on the lattice. The chiral constraint i
posed on the Weyl fermion is gauge-field dependent and
introducing the basis of the Weyl fermion, the path integ
can be set up@3,4#. In fact, it has been shown by Lu¨scher that
the functional measure of the Weyl fermion can be co
structed in anomaly-free Abelian chiral gauge theories
that it satisfies the requirements of smoothness, locality,
gauge invariance@3,5–7#. A similar construction has also
been argued for generic non-Abelian chiral gauge theor
where, to treat the exact cancellation of gauge anomal
local cohomology problem in 412 dimensions is formulated
@4#.1

This construction is generic and applies to any local
tice fermion theory with the Dirac operator satisfying t
Ginsparg-Wilson relation. In the case using the overlap Di
operator@14–16#, the path integral formalism for the Wey
fermion reproduces the overlap formula for the chiral det

*Email address: kikukawa@eken.phys.nagoya-u.ac.jp
1The author refers the reader to@8,9# for recent review of this

approach. In this approach, the exact cancellation of gauge an
lies in non-Abelian chiral gauge theories has been shown in
orders of the expansion in lattice perturbation theory@10,11#. For
SU~2! doublet, it has been shown that Witten’s global anomaly
reproduced@12#. For SU(2)L3U(1)Y electroweak theory, the loca
cohomology problem in 412 dimensions has to be solved in infi
nite volume lattice and the exact cancellation of gauge anoma
including the mixed type, has been shown nonperturbatively@13#.
0556-2821/2002/65~7!/074504~22!/$20.00 65 0745
-
y
l

-
o
d

s,
a

-

c

r-

minant by Narayanan and Neuberger@17#.2 The above in-
variant construction of the functional measure provides
method to fix the phase factor of the chiral determinant in
overlap formalism in a gauge-invariant manner.

It was also suggested@4,28# that there is a close relation
ship between the interpolation procedure in Lu¨scher’s con-
struction and the five-dimensional setup in Kaplan’s dom
wall fermion @29#. The purpose of this paper is to pursue th
close connection and to show how to construct fo
dimensional lattice chiral gauge theories with exact gau
invariance from the five-dimensional lattice framework
domain wall fermion.

For this purpose, we adopt the domain wall fermion in t
vectorlike formalism by Shamir@30#. But two different four-
dimensional gauge fields are introduced at the bounda
and they are interpolated by a five-dimensional gauge fi
This inevitably causes the five-dimensional dependence
the partition function of the domain wall fermion. To tak
account of this five-dimensional dependence, we formu
an integrability condition. It turns out that the dependence

a-
ll

s

s,

2The author refers the reader to@18# for recent review of the
overlap formalism. In the overlap formalism, reflecting chir
anomaly, the phase factor of the chiral determinant is not fixed
general and any reasonable choice of the phase factor should le
the gauge anomaly for single Weyl fermion. The Wigner-Brillou
phase convention has been adopted for perturbative studies@19# and
has also been tested numerically in a nonperturbative formulatio
chiral gauge theories@20,21#. Geometrical treatment of the gaug
anomaly in the overlap formalism has been discussed in deta
Abelian theories@22# and non-Abelian theories@23#. The SU~2!
global anomaly has been examined in@24#. An adiabatic phase
choice has been proposed in@25# and used in the construction o
noncompact abelian chiral gauge theories. The overlap formalis
odd dimensions has been considered in@16,26,27#.
©2002 The American Physical Society04-1
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YOSHIO KIKUKAWA PHYSICAL REVIEW D 65 074504
governed by the lattice Chern-Simons term induced from
five-dimensional Wilson-Dirac fermion~with a negative
mass! @31#.

In order to compensate the five-dimensional depende
we require a five-dimensional counter term. The coun
term should be given by a smooth, local and gauge invar
functional of gauge field, in order to satisfy the requireme
of the smoothness, the locality and the gauge invarianc
the low energy effective action. We will argue that such
cal, gauge-invariant field can be obtained in anomaly-f
chiral gauge theories, through the local cohomology prob
in (511)-dimensional space formulated with the latti
Chern-Simons current. Thus the reduction from the fi
dimensional lattice to four-dimensional lattice is acheived
a local and gauge invariant manner.

The locality of the lattice Chern-Simons current is ess
tial for the cohomological argument in (511)-dimensional
space and for this we require the so-called admissibility c
dition @3–5,32# extended to five-dimensional gauge fiel
~cf. @35#!. With this condition, several properties of th
Chern-Simons current are discussed. The earlier studie
the properties of the Chern-Simons current in the contex
domain wall fermion can be found in@36,37#.

Trying to formulate four-dimensional chiral gauge the
ries from the five-dimensional framework of domain wa
fermion, our approach resembles to the wave-guide mo
@38,39# and the formalism proposed by Creutzet al. @40,41#.
However, our approach is different from the wave-gui
model in that we are considering the smooth~discrete, but
smooth in lattice scale! interpolation in the fifth direction.
The issue related to the disordered gauge degrees of free
is taken account by the five-dimensional admissibility con
tion, which assures the existence of the chiral zero mo
even with five-dimensional gauge fields~cf. @42–44#!. Our
approach is also different from the formalism by Creu
et al. in that we are isolating the chiral zero modes at o
boundary as physical degrees of freedom, regarding the o
boundary as reference.

This paper is organized as follows. In Sec. II we form
late the domain wall fermion for chiral gauge theories w
the interpolating five-dimensional gauge field. Then we
rive the integrability condition for the partition function o
the domain wall fermion and state a sufficient condition
obtain the five-dimensional counterterm with the requir
properties. In Sec. III we examine the properties of the lat
Chern-Simons current. In Sec. IV we argue how to rec
struct the counterterm from the Chern-Simons current
formulate the local cohomology problem in (511)-
dimensional space. Section V is devoted to the discuss
on the connection to the gauge-invariant construction ba
on the Ginsparg-Wilson relation.

II. DOMAIN WALL FERMION FOR CHIRAL GAUGE
THEORIES

A. Interpolation with five-dimensional gauge field

Domain wall fermion, in its simpler vectorlike formula
tion, is defined by the five-dimensional Wilson-Dirac fe
mion with a negative mass in a finite extent fifth dimensio
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~See Fig. 1.! The four-dimensional lattice spacinga and the
five-dimensional onea5 are both set to unity. The fifth coor
dinate is denoted byt and takes integer values in the interva
tP@2N11,N#. In four dimensions, the lattice is assumed
have a finite volumeL4 and the periodic boundary conditio
is assumed for both fermion and gauge fields. The mass t
is set to the negative value2m0 where 0,m0,2:

SDW5 (
t52N11

N

(
x

c̄~x,t !~D5w2m0!c~x,t !. ~2.1!

This setup is equivalent to impose the Dirichlet bounda
condition at the boundaries in the fifth dimension as

cR~x,t !u t52N50, cL~x,t !u t5N1150. ~2.2!
In order to introduce chiral-asymmetric gauge interact

for the chiral zero modes at the two boundariest52N11
andN, the gauge field is assumed to be five dimensional

Um~z!5$Uk~x,t !,U5~x,t !%, z5~x,t !, ~2.3!

wherem51, . . . ,5 andk51, . . . ,4. It isregarded to be in-
terpolating a four-dimensional gauge field att52N11, say
Uk

0(x), to another four-dimensional gauge field att5N, say
Uk

1(x). We assume that outside the finite interpolation reg
tP@2D,D#(D,N) the gauge field does not depend ont and
U5(x,t)51 ~Fig. 2!. D should be chosen large enough
order to make sure that the interpolation is smooth enou
The precise condition for this will be discussed below.

The gauge fields at the boundaries,Uk
0(x) andUk

1(x), are
chosen so that their field strengths are small enough
satisfy the following bound:

i12Pkl~x!i,e, e,
1

30
$12u12m0u2%, ~2.4!

wherePkl(x) is the four-dimensional plaquette variable. Th
is the so-called admissibility condition@3–5,32#. With the

FIG. 1. Domain wall fermion in the simpler vector-like setup

FIG. 2. Interpolating five-dimensional gauge field on the lattic
4-2
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admissibility condition, the space of the gauge fields is d
ided into topological sectors@33#. We assume thatUk

0(x) and
Uk

1(x) are in the same topological sector. Furthermore
ensures that the Hamiltonian defined through the tran
matrix of the five-dimensional Wilson-Dirac fermion,H5
2 ln T, has a finite gap and the overlap Dirac operator~the
effective four-dimensional Dirac operator of the bounda
chiral modes! is local within the exponentially suppresse
tail @32,34,35#. It also makes the limit that the size of the fift
dimension goes to infinity,N→`, well-defined in vectorlike
case@30,35#.

When the gauge fields on the boundary walls,Uk
0(x) and

Uk
1(x), are in the same topological sector, there exist

smooth path in the space of the admissible gauge fields.
one-parameter family of the gauge fields can be regarde
a five-dimensional gauge field and we may map this confi
ration onto the five-dimensional lattice. Then the differen
of the four-dimensional gauge fields at the boundaries is
timated as

iUk
0~z!2Uk

1~z!i.2Di12P5k~z!i , z5~x,t !, ~2.5!

wherePmn(z) is the five-dimensional plaquette variable. B
taking D large enough, we can make 12P5k(z) small
enough. Therefore we may assume that the whole fi
dimensional gauge fieldUm(x,t), interpolating between
Uk

0(x) and Uk
1(x), is smooth enough and satisfies the fiv

dimensional bound on the field strength as follows:

i12Pmn~z!i,e8, e8,
1

50
$12u12m0u2%. ~2.6!

This condition, as we will see below, ensures that the Che
Simons current induced from the five-dimensional Wilso
Dirac fermion is a local functional of the gauge field. Th
locality of the Chern-Simons current allows us the cohom
logical analyis of the gauge anomaly in the context of d
main wall fermion.

The above argument is not complete in the sense th
does not provide the constructive proof of the existence o
interpolating five-dimensional gauge field for any admissi
gauge fields at the boundaries. The locality properties of s
an interpolating five-dimensional field should also be cla
fied. These questions are beyond the scope of this pape

We also note a symmetry property of the five-dimensio
Wilson-Dirac fermion. By the reflection of the gauge field
the fifth direction,

Um~x,t !→Um8 ~x,t !5H Uk8~x,t !5Uk~x,2t11!

U58~x,t !5U5~x,2t11!21,
~2.7!

the five-dimensional Wilson-Dirac operator transforms
follows:

D5w→D5w8 5Pg5D5w
† g5P, ~2.8!

where P is the parity transformation operator in the fif
dimension:
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P:t→t852t11. ~2.9!

Therefore the interpolation in the reversed order implies
complex conjugation.

B. Integrability condition for domain wall fermion

Now we consider the partition function of the doma
wall fermion,

det~D5w2m0!uDir. ~2.10!

and examine its dependence on the path of the interpola
Let us denote byc1 the original choice of the path of th
interpolation, which is represented by the five-dimensio
gauge fieldUm(x,t). In order to examine the dependence
the path, we introduce another path, sayc2 and consider the
difference of the logarithm of the partition function:

ln det~D5w2m0!uDir.
c2 2 ln det~D5w2m0!uDir.

c1 . ~2.11!

Let us assume first that the five-dimensional gauge fi
representing the pathc2 can be deformed to that representin
the path c1, while satisfying the constraint on the five
dimensional plaquette variables Eq.~2.6!. Whether this is
always possible for any two paths depends on the topolog
structure of the space of the admissible gauge fields in c
sideration. Since the two paths can be regareded to for
loop in the space of the gauge fields~Fig. 3!, the above
condition is equivalent to whether any loops in the space
the gauge fields can be contractible to the point, or not. T
case with the noncontractible loops will be discussed late

We then parametrize the smooth deformation of the p
by the parametersP@0,1# as Um

s (z) where Um
s50(z)

5Um(x)c1 and Um
s51(z)5Um(z)c2. By differentiating the

partition function with respect to the parameters and inte-
grating back, we obtain an expression for the difference
the partition function,

ln det~D5w2m0!uDir.
c2 2 ln det~D5w2m0!uDir.

c1

5E
0

1

ds(
x

(
t52D11

D

$hm
a ~xt,s!Jm

a ~xt,s!uDir.%,

~2.12!

wherehm
a (z,s)Ta5]sUm

s (z)Um
s (z)21 andJm

a (z)uDir. is given
by

FIG. 3. A loop in the space of gauge fields.
4-3
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Jm
a ~z!uDir.5TrS Vm

a ~z!
1

D5w2m0
D U

Dir.

, ~2.13!

Vm
a ~z!5H 1

2
~gm21!TaUm~z!dzz1

dz11m̂,z2

1
1

2
~gm11!Um~z!21

3Tadzz2
dz1 ,z21m̂J . ~2.14!

Since the variation of the gauge fieldhm
a (z,s) is restricted in

the interpolation regiontP@2D11,D#, the summation over
t in the above expression is restricted in the same finite
gion.

Because of this fact, as will be shown in detail in Appe
dix D, the difference Eq.~2.12! is well-defined and finite in
the limit N→`, as long as the gauge fields at the boundar
Uk

0 and Uk
1 , are topologically trivial and do not cause an

accidental zero modes of the low energy effective Dirac
erator. In particular, the inverse five-dimensional Wilso
Dirac operator in Eq.~2.13!, satisfying the Dirichlet bound-
ary condition, can be replaced by the inverse fiv
dimensional Wilson-Dirac operator defined in the infin
extent of the fifth dimension,

1

D5w2m0
U

Dir.

~xt,yt8!⇒ 1

D5w2m0
~xt,yt8!, ~2.15!

where t,t8P@2D11,D#. This implies that the path depen
dence of the partition function of the domain wall fermio
actually does not depend on the specific choice of the Dir
let boundary condition, which supports the chiral zero mo
at the boundaries.

In order to make this point clear and to formulate an
tegrability condition for the domain wall fermion, we intro
duce the five-dimensional Wilson-Dirac fermion defined
the intervaltP@2N11,3N# in the fifth dimension and with
the antiperiodic boundary condition. The five-dimension
gauge field which couples to this Wilson-Dirac fermion
assumed to form a loop in the space of the gauge field so
it goes along the pathc1 ~or c2) and comes back along
certain pathc0 ~Fig. 4!. Then we can infer that, in the limi
N→`,

ln det~D5w2m0!uDir.
c2 2 ln det~D5w2m0!uDir.

c1

5 ln det~D5w2m0!uAP
c21(2c0)

2 ln det~D5w2m0!uAP
c11(2c0)

FIG. 4. Five-dimensional gauge field representing the loop
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In the right-hand side~RHS! of this identity, we may choose
any paths forc0. By choosingc2 andc1, respectively, we can
further obtain two identities as follows:

Eq. ~2.16!5 ln det~D5w2m0!uAP
c21(2c2)

2 ln det~D5w2m0!uAP
c11(2c2)

5 ln det~D5w2m0!uAP
c21(2c1)

2 ln det~D5w2m0!uAP
c11(2c1) . ~2.17!

By averaging these two expressions and using the prop
of the five-dimensional Wilson-Dirac operator under the
flection t→2t11, we finally obtain

ln det~D5w2m0!uDir.
c2 2 ln det~D5w2m0!uDir.

c1

5 1
2 ln det~D5w2m0!uAP

c21(2c2)

2 1
2 ln det~D5w2m0!uAP

c11(2c1)

1 i Im ln det~D5w2m0!uAP
c21(2c1)

~N→`!.

~2.18!

This identity may be regarded as the integrability conditi
for the domain wall fermion.

Several comments about this result are in order. Firs
all, in the RHS of this identity, the partition functions a
defined with the antiperiodic boundary condition and it
clear that there is no contribution from the low-lying chir
modes. They are defined well for any topological sector
Uk

0 andUk
1 . Secondly, the first and second terms in the R

are turned out to be real by the reflection property and t
depend on the single pathsc2 and c1, respectively. These
terms then can be used to subtract the bulk contribution
the partition function of the domain wall fermion as

ln det~D5w2m0!uDir.
ci 2

1

2
ln det~D5w2m0!uAP

ci1(2ci )

~ i 51,2!. ~2.19!

Thirdly, an important observation is that the imaginary p
of the RHS is the complex phase induced from the fiv
dimensional Wilson-Dirac fermion with a negative mas
which has been known to reproduce the Chern-Simons t
in the classical continuum limit@31#. We denote this lattice
Chern-Simons term associated with the loopc21(2c1) as
Q5w

c21(2c1) :

Q5w
c21(2c1)

[ lim
N→`

Im ln det~D5w2m0!uAP
c21(2c1) .

~2.20!
4-4
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C. A sufficient condition for the path independence
of the domain wall fermion

Now we discuss the requirement to obtain the partit
function of the domain wall fermion which does not depe
on the path of the interpolation and which is gauge invaria
A sufficient condition for this can be stated as follows:

It is possible to construct a local counterterm whic
makes the partition function of the domain wall fermion
dependent of the path of the interpolation in a gaug
invariant manner, if the lattice Chern-Simons term in t
RHS of the integrability condition Eq. (2.18) can be e
pressed in the form

Q5w
c21(2c1)

5 lim
N→`

(
t52N11

3N

(
x

q5w~z!, ~2.21!

where q5w(z) is a smooth, local, and gauge-invariant fun
tional of the five-dimensional gauge field, for all possib
loops in the space of gauge fields.

We first assume that this is the case and discuss the
sequences of this condition. In the next sections, we
discuss how to obtain the local and gauge-invariant fu
tional q5w(z).

1. Local counterterm

The immediate consequence of the localization prope
of q5w(z) is that Q5w

c21(2c1) can be decomposed into tw

partsC5w
c2 andC5w

(2c1)
52C5w

c1 , which are associated with th
pathsc1 and c2, respectively, and do not depend on oth
paths. Namely,

Q5w
c21(2c1)

5C5w
c2 2C5w

c1 , ~2.22!

where

C5w
c1 5 lim

N→`
(

t52N11

N

(
x

q5w~z!, ~2.23!

2C5w
c2 5 lim

N→`
(

t51N11

3N

(
x

q5w~z!. ~2.24!

Then from the integrability condition Eq.~2.18! we can
infer that in the limitN→`

det~D5w2m0!uDir.
c2

udet~D5w2m0!uAP
c21(2c2)u1/2

e2 iC
5w

c2

5
det~D5w2m0!uDir.

c1

udet~D5w2m0!uAP
c11(2c1)u1/2

e2 iC
5w

c1
. ~2.25!

This holds for any two paths. Therefore the~subtracted! par-
tition function of the domain wall fermion plus the loca
counter term does not depend on the path of the interpola
and is determined uniquely by the four-dimensional gau
07450
n

t.

-

-

n-
ll
-

ty

r

n
e

fields, Uk
0 and Uk

1 . Thus the reduction from the five
dimensional lattice to the four-dimensional lattice
achieved.

We will see in Sec. V that this result holds for all topo
logical sectors, through the more direct calculation of t
partition function of the domain wall fermion.

2. Gauge invariance

Let us examine the gauge transformation property of
~subtracted! partition function of the domain wall fermion
with the local counter term under the gauge transformat
for Uk

1 ,

Uk
1~x!→gUk

1~x!5g~x!Uk
1~x!g~x1 k̂!21. ~2.26!

Since the partition function does not depend on the inter
lation betweengU1 andU0, one may choose any interpola
tion path between them. In this case, it turns out to be c
venient to choose the interpolation as follows: we fi
interpolate the gauge function as

G~z!5H g~x!, tP@D11,N#,

g~x,t !, tP@2D11,D#,

1, tP@2N11,2D#,

~2.27!

and then apply it as a five-dimensional gauge transforma
to the gauge field representing the original interpolation
tweenUk

1 andUk
0

Um~z!→GUm~z!5G~z!Um~z!G~z1m̂ !21. ~2.28!

In Eq. ~2.25!, the partition functions of the five-dimensiona
Wilson-Dirac fermions with both boundary conditions a
invariant under such five-dimensional gauge transformat
Then the gauge transformation is given solely by the ga
variation of the counterterm associated with the pathc1:

dGC5w
c1 5 lim

N→`
(

t52N11

N

(
x

dGq5w~z!. ~2.29!

Thus the question of the gauge invariance of the system
duces to the question of the gauge invariance of the coun
term associated with the pathc1. When q5w(z) is a gauge
invariant local field, it is gauge invariant.

III. PROPERTIES OF LATTICE CHERN-SIMONS
CURRENT

In this section, we discuss properties of the Chern-Sim
current which is obtained from the lattice Chern-Simo
term by the variation with respect to gauge field. We w
argue that the lattice Chern-Simons current is a smooth
local functional of the gauge field.

A. Chern-Simons current

Let us consider the smooth deformation of the fiv
dimensional gauge fieldUm(z) representing the loop in the
Chern-Simons term. Under the deformation
4-5
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YOSHIO KIKUKAWA PHYSICAL REVIEW D 65 074504
dUm~z!Um~z!215Tahm
a ~z!, Tr$TaTb%52

1

2
dab,

~3.1!

the variation of the lattice Chern-Simons term is given by

d Im Tr Ln~D5w2m0!uAP5Im TrS dD5w

1

D5w2m0
D U

AP

~3.2!

5(
z

hm
a ~z!Jm

a ~z!, ~3.3!

where

Jm
a ~z!5Im TrS Vm

a ~z!
1

D5w2m0
D U

AP

, ~3.4!

Vm
a ~z!5H 1

2
~gm21!TaUm~z!dzz1

dz11m̂,z2
1

1

2
~gm11!

3Um~z!21Tadzz2
dz1 ,z21m̂J . ~3.5!

We refer to the currentJm
a (z) as the Chern-Simons current

Since the Chern-Simons current is defined by the va
tion of the Chern-Simons term which is the gauge-invari
functional of the five-dimensional gauge field, it is gaug
covariant, integrable and conserved:3

(
z

hm
a ~z!dzJm

a ~z!2(
z

zm
a ~z!dhJm

a ~z!

2(
z

$@hm~z!,zm~z!#%aJm
a ~z!50, ~3.6!

$Dm* Jm%a~z!50.
~3.7!

B. Locality of the Chern-Simons current

Next we argue that the Chern-Simons current is a lo
functional of the five-dimensional gauge field, as long as
constraint on the five-dimensional plaquette variables
~2.6! is satisfied. This fact follows from the following con
sideration. With the bound Eq.~2.6!, we infer that the five-
dimensional Wilson-Dirac operator is bounded from bel
by a positive constant@32,35#,

~D5w2m0!†~D5w2m0!>$~1250e!1/22u12m0u%2.
~3.8!

3]m and]m* denote the forward and backward difference operat

respectively,]m f (x)5$ f (x1m̂)2 f (x)% and ]m* f (x)5$ f (x)2 f (x

2m̂)%, while Dm and Dm* denote the covariant counterpart

Dm f (z)5$Um(z) f (z1m̂)Um(z)212 f (z)% and Dm* f (z)5 f (z)

2Um(z2m̂) f (z2m̂)Um(z2m̂)21.
07450
-
t
-

l
e
q.

Given the positive lower and upper bounds for the fiv
dimensional Wilson-Dirac operator,

ã<~D5w2m0!†~D5w2m0!<b̃, ~3.9!

it follows that the inverse five-dimensional Wilson-Dirac o
erator in the infinite lattice decays exponentially at large d
tance in the five dimensions@32,35#:

i$D5w
† D5w%21~z,w!i<C expH 2

ũ

2
d5~z,w!J , ~3.10!

whered5(z,w)5uz2wu5ux2yu1us2tu and

C5
4t

b̃2ã
S 1

12t

d5~z,w!

2
1

t

~12t !2D , ~3.11!

t5e2 ũ, coshũ5
b̃1ã

b̃2ã
. ~3.12!

Similar exponential bound can be established for the diff
entiation with respect to the gauge field.

The Chern-Simons current in consideration is defined
the finite volume lattice. It can be expressed in terms of
inverse five-dimensional Wilson-Dirac operator in the in
nite lattice as

Jm
a ~z!5 (

nPZ5
~2 !n5 Im trS 1

2
~gm21!TaUm~z!

1

D5w2m0

3~z1m̂,z1n•L !1
1

2
~gm11!Um~z!21Ta

3
1

D5w2m0
~z,z1m̂1n•L ! D , ~3.13!

wheren•L5((knk)L1n5(4N). Then we see that the depen
dence of the Chern-Simons current on the gauge field is
ponentially suppressed at large distance in the leading c
tribution with n50, while the remaining dependences on t
gauge field are at most of orderO„exp(2uL/2),
exp(2u2N)… and exponentially small. In this sense, th
Chern-Simons current in the finite volume lattice can be
garded as a local functional of gauge field.

C. The Chern-Simons current and gauge anomaly

If we consider the variation of the Chern-Simons te
under the gauge transformation, we obtain

d Im Tr Ln~D5w2m0!uAP5(
z

$Dmv~z!%aJm
a ~z!

5(
z

]m$va~z!Jm
a ~z!%.

~3.14!

The flow of the Chern-Simons current should be respons
for the gauge anomaly associated with the chiral zero m

,

4-6
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at the boundaries@45#. In fact, it has been shown by Golte
man, Jansen, and Kaplan@36# that the asymptotic value o
the fifth component of the Chern-Simons current reprodu
the known result of the gauge anomaly in the classical c
tinuum limit:

lim
a→0

lim
N→`

J5
a~x,N!52

1

32p2
eklmn Tr$TaFkl

1 ~x!Fmn
1 ~x!%.

~3.15!

IV. RECONSTRUCTION OF THE CHERN-SIMONS TERM
FROM THE CHERN-SIMONS CURRENT

In this section, we discuss how to obtain the local a
gauge invariant field of the Chern-Simons term. Using
Chern-Simons current obtained in the previous section,
introduce a local topological field on (511)-dimensional
space and formulate a local cohomology problem. We w
see that the trivial solution of the cohomology problem lea
to the local field with the required properties.

A. Contractible loops

Let us first assume that a loopl in the space of the gaug
fields can be contractible to a point. Namely, we assume
the five-dimensional gauge fieldUm(z) representing the loop
l can be deformed to the uniform gauge fieldUm(z)
5Uk

0(x) ~for all t), while satisfying the constraint on th
five-dimensional plaquette variables Eq.~2.6!. It depends on
the topological structure of the space of the admissible ga
fields in consideration, whether all possible loops are c
tractible or not. The case with the noncontractible loops w
be discussed later.

Let us parametrize the smooth deformation of the lool
by the parametersP@0,1# as Um

s (z), where Um
s50(z)

5Uk
0(x) andUm

s51(z)5Um(z). The trivial interpolation~the
point! at s50 is denoted byl 0. By differentiating the Chern-
Simons term with respect to the parameters and then inte-
grating back, we obtain an expression for the Chern-Sim
term as

Im Tr Ln~D5w2m0!uAP~ l !5(
z

H E
0

1

dshm
a ~z,s!Jm

a ~z!uU
m
s J ,

~4.1!

wherehm
a (z,s)Ta5]sUm

s (z)Um
s (z)21. Here we took accoun

of the fact that for the pointl 0 represented by the uniform
gauge fieldUm

0 (x), the Chern-Simons term vanishes iden
cally, Im Tr Ln(D5w2m0)uAP( l 0)50, because of the reflec
tion property of the five-dimensional Wilson-Dirac operat
discussed in Sec. II.

The Chern-Simons term so reconstructed is now given
the sum of the local field in the curly bracket, because
Chern-Simons current is a local functional of the gauge fie
We note, however, that the local field is not gauge invaria
In fact, under an infinitesimal gauge transformatio
dUm

s $Um
s %2152Dmv(z,s), the variation of the local field is

given by
07450
s
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dH E
0

1

dshm
a ~z,s!Jm

a ~z!uU
m
s J 52E

0

1

ds$Dm]sv~z,s!%aJm
a ~z!U

m
s .

~4.2!

The clue to obtain the gauge invariant local field is to no
that the field in Eq.~4.2! may be corrected by the total d
vergence of a certain local currentKm(z) without affecting
the Chern-Simons term:

Im Tr Ln~D5w2m0!uAP~ l !5(
z
E

0

1

ds$hm
a ~z,s!Jm

a ~z!uU
m
s

2]m* Km~z!uU
m
s ,hm

%. ~4.3!

The local field can be made gauge invariant ifJm
a (z) would

satisfy the relation

d$hm
a ~z,s!Jm

a ~z!uU
m
s %52$Dm]sv~z,s!%aJm

a ~z!uU
m
s

5]m* dKm~z!uU
m
s ,hm

~4.4!

with a certain local currentKm(z), under the infinitesimal
gauge transformationdUm

s $Um
s %2152Dmv(z,s). As we can

see from Eq.~4.4!, the question whetherJm
a (z) would satisfy

the above relation and how to find the local currentKm(z)
defines a local cohomology problem.

This cohomology problem can be reformulated as a lo
cohomology problem in higher dimensions@4#. In the next
subsection, we formulate the cohomology problem in fiv
dimensinal lattice plus one dimensional continuum space

B. Cohomology problem in „5¿1…-dimensional space

In order to reformulate the local cohomology problem
five-dimensinal lattice plus one dimensional continuu
space, let us introduce a gauge field on t
(511)-dimensional space as

„Um~z,s!,A6~z,s!…, ~4.5!

where A65TaA6
a and its gauge transformation property

specified as

A6~z,s!→GA6~z,s!

5G~z,s!A6~z,s!G~z,s!212]sG~z,s!G~z,s!21.

~4.6!

Accordingly, the covariant derivative in the continuum d
mension can be defined by

DsUm~z,s!5]sUm~z,s!1A6~z;s!Um~z,s!

2Um~z,s!A6~z1m̂,s!. ~4.7!

We now introduce a gauge invariant and local fieldin the
(511)-dimensional spaceby

q~z,s![$DsUm~z,s!Um~z,s!21%aJm
a ~z!uU

m
s ~4.8!
4-7
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5hm
a ~z,s!Jm

a ~z!uU
m
s

2$DmA6~z,s!%aJm
a ~z!uU

m
s , ~4.9!

whereTahm
a (z,s)5]sUm(z,s)Um(z,s)21. This local field is

topological. Namely, the summation of the field over the
11)-dimensional space is invariant under the local variat
of the (511)-dimensional gauge field:

(
z
E

0

1

dsdq~z,s!50. ~4.10!

In fact, denotingdUmUm
215Tazm

a and using Eq.~3.6!, it fol-
lows from the second expression of the topological field
Eq. ~4.9! that

(
z
E

0

1

dsdq~z,s!5(
z
E

0

1

ds~]s$zm
a Jm

a %2]md$A6
aJm

a %!.

~4.11!

Now let us assume that this topological field is cohom
logically trivial, that is, it can be written in the form

q~z,s!5]m* km~z,s!1]sk6~z,s!, ~4.12!

where „km(z,s),k6(z,s)… is a local current which is gaug
invariant under the (511)-dimensional gauge transforma
tion. Then we can see thatk6(z,s) provides the desired loca
gauge invariant field with the required properties. In fa
from the (511)-dimensional gauge invariance and the fa
thatq(z,s) is a linear functional ofDsUmUm

21 , we infer that
k6(z,s) cannot depend onA6(z,s) and its s-dependence
comes from that of the link variableUm

s . Then we can set

Q̌5w[(
z

k6~z,s51! ~4.13!

5(
z
E

0

1

ds$hm
a ~z,s!Jm

a ~z!uU
m
s 2]m* km~z,s!uA650%,

~4.14!

assuming(zk6(z,s50)50.
From the (511)-dimensional gauge invariance o

km(z,s) and the fact thatq(z,s) is a linear functional of
DsUmUm

21 , we also infer thatkm(z,s) must be a linear func-
tional of DsUmUm

21 written as

km~z,s!5(
w

j mn
a ~z,s;w!$DsUn~w,s!Un~w,s!21%a.

~4.15!

This in turn implies that

d$km~z,s!uU
m
s ,A650%1(

w

dkm~z,s!

dA6~w,s!
dA6~w,s!50,

~4.16!
07450
n

-

,
t

where dUm
s $Um

s %2152Dmv(z,s) and dA65@v(z,s),A6#
2]sv(z,s). On the other hand, by setting the link variabl
s-independent in Eq.~4.12!, we obtain

2$DmA6~z,s!%aJm
a ~z!uUm

5]m* H (w dkm~z,s!

dA6~w,s!
A6~w,s!U

Um

J .

~4.17!

By settingA6(z,s)52]sv(z,s) in this equation and using
Eq. ~4.16!, we obtain

2$Dm]sv~z,s!%aJm
a ~z!uU

m
s 5]m* dkm~z!uU

m
s ,A650 .

~4.18!

Thus Eq.~4.4! is indeed satisfied.
In this manner, we can reconstruct the Chern-Simons t

with the required properties for all contractible loop
through the cohomology problem with the topological fie
Eq. ~4.8!.

C. The ansatz for noncontractible loops

When the topological field Eq.~4.8! is shown to be co-
homologically trivial, the remaining issue is to show the co
dition Eq. ~2.21! for all possible noncontractible loops. On
may try k6(z,s) as the ansatz for the Chern-Simons term

Q̌5w5(
z

k6~z,s51!. ~4.19!

The question is then to show

exp~ iQ5w!5exp~ iQ̌5w! ~4.20!

for all noncontractible loops.
This problem requires first to figure out the topologic

structure of the space of the gauge fields in considerat
which is constrained by the admissibility condition. So fa
the topological structure of the space of the admissible ga
field is known only for abelian gauge theories@3#. In this
case, it is indeed possible to show that the topological fi
Eq. ~4.8! is cohomologically trivial and to establish Eq
~4.20! for all loops in the space of the gauge field, as sho
in the approach of the Ginsparg-Wilson relation@3#.

D. Some results in the infinite four-dimensional volume

In the infinite four-dimensional volume, the cohomolog
problem in (511)-dimensional space defined in the previo
subsections can be solved in certain cases~cf. @5,7,10,11#!. In
this subsection, we describe how to construct the local co
terterms for the theories in the infinite four-dimensional v
ume.

1. Abelian chiral gauge theories

In the Abelian gauge theories, the lattice Chern-Simo
current is a gauge-invariant conserved current, which i
local functional of the gauge fields:

dJm~z!50, ]m* Jm~z!50. ~4.21!
4-8
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With these two conditions we can directly apply the cohom
logical method using the Poincare´ lemma on the lattice@5,7#
to Jm(z), to obtain

Jm~z!5am1bmnsFns~z2 n̂2ŝ !1gemnsrtFns~z2 n̂2ŝ !

3Frt~z2 n̂2ŝ2 r̂2 t̂ !1]n* xnm~z!, ~4.22!

wherexnm(z) is a gauge-invariant and local antisymmet
tensor field and

Fmn~z!5
1

i
ln$Um~z!Un~z1m̂ !Um

21~z1 n̂ !Um
21~z!%.

~4.23!

From the lattice symmetries, we infer thatam andbmnr van-
ish identically. Through explicit calculations in the wea
coupling expansion, we can also verify thatam and bmnr

vanish identically andg521/32p2 @28#. From this result,
we can reconstruct the lattice Chern-Simons term as4

Q5w5(
z
E

0

1

dsAm~z!Jm~z!uA→sA @Um~z;s!5eisAm(z)#

5(
z

1

3
gemnsrtAm~z!Fns~z2 n̂2ŝ !Frt

3~z2 n̂2ŝ2 r̂2 t̂ !1(
z

]n* x̂nm~z!Am~z!, ~4.24!

where

x̂nm~z!5E
0

1

dsxnm~z!uA→sA . ~4.25!

If we consider an anomaly free Abelian chiral gau
theory, the charges of the Weyl fermions should satisfy
condition

(
a

ea
350. ~4.26!

Then, by rescaling the gauge field asAm→eaAm in each
Weyl fermion contributions, we can see that the first term
the lattice Chern-Simons term vanishes identically. As to
second term, we may add the following total divergence te
without affecting the lattice Chern-Simons term:

2(
z

]n* „x̂nm~z!Am~z!…. ~4.27!

4HereAm(z) is the vector potential which represents the origin
admissible~five-dim.! link variableUm(z) and the field strength a
follows @5#: Um(z)5eiAm(z); uAm(z)u<p(1110izi); Fmn(z)
5]mAn(z)2]nAm(z). This vector potential itself is not a loca
functional of the original link variableUm(z), but its local, gauge
invariant functional becomes a local functional ofUm(z).
07450
-

e

f
e

Then we obtain the local expression of the lattice Che
Simons term~the local counterterm! which is manifestly
gauge invariant:

Q5w5(
z

1

2
x̂nm~z2 n̂ !Fnm~z2 n̂ !. ~4.28!

2. Non-Abelian chiral gauge theories in lattice perturbation
theory

In the anomaly-free non-Abelian chiral gauge theories
is possible to show that the topological field Eq.~4.8! is
cohomologically trivial to any orders of the lattice perturb
tion theory, as shown in the approach based on the Ginsp
Wilson relation@10,11#. In particular, one can construct th
local field of the Chern-Simons term directly from the latti
Chern-Simons current, to any orders of the perturbat
theory.

In the lattice perturbation theory, non-Abelian lattic
gauge fields are treated in the expansion of the gauge
pling constant,

Um~z!511(
l 51

`

„igAm~z!…l . ~4.29!

Accordingly, the local field of the lattice Chern-Simons ter
may be assumed to have the expansion in the gauge cou
constant:

Q5w5(
z

(
l 51

`

q5w
( l ) ~z!. ~4.30!

Let us assume that the local fieldsq5w(z) are constructed to
the orderl 5n and consider how to construct the local fie
of the orderl 5n11.

Since the Chern-Simons term should produce the Ch
Simons current under the local variation of the gauge fie

Um~z!→Um~z!1hm~z!Um~z!, ~4.31!

we should have

(
l 51

`

dhq5w
( l ) ~z!5hm

a ~z!Jm
a ~z!. ~4.32!

Then we may expand the variation of the Chern-Simons c
rent which is subtracted by the local fields up to the ordel
5n:

hm
a ~z!Jm

a ~z!2(
l 51

n

dhq5w
( l ) ~z!5hm

a ~z!J̌m
a(n)~z!1O~gn12!.

~4.33!

The leading term in this expansion,J̌m
a(n)(z), is a local field

of the vector potential of orderl 5n. Since the LHS is gauge
invariant up toO(gn), J̌m

a(n)(z) is invariant under the linear
ized gauge transformation,

Am
a ~z!→Am

a ~z!1]mva~z! ~4.34!

l

4-9
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and the global gauge transformation. It also satisfies the c
servation law,

]m* J̌m
a(n)~z!50. ~4.35!

From these conditions, we can directly apply the cohom
logical method for the Abelian gauge theories@5,7# to
J̌m

a(n)(z), to obtain

J̌m
a(n)~z!5]n* xnm

a(n)~z! ~nÞ2!, ~4.36!

wherexnm
a(n)(z) is a local field which is invariant under th

linearized gauge transformation and the global gauge tr
formation. When and only whenn52, a cohomologically
non-trivial term can appear as

J̌m
a(2)~z!5dabcgemnrstFnr

b ~z2 n̂2 r̂ !Fst
c ~z2 n̂2 r̂2ŝ2 t̂ !

1]n* xnm
a(2)~z!, ~4.37!

which vanishes identically by the anomaly-free condition

( dabc5( Tr~Ta$Tb,Tc%!50. ~4.38!

From this result, we can obtain the local field of ordel
5n11, which reproducesJ̌m

a(n)(z) under the local variation
of the gauge field, as

q̌5w
(n11)~z!5

1

2
x̌nm

a(n)~z2 n̂ !F̌nm
a ~z2 n̂ !, ~4.39!

where

F̌nm
a ~z!5]nAm

a ~z!2]mAn
a~z! ~4.40!

and

x̌nm
a(n)~z!5E

0

1

dsxnm
a(1)~z!U

A→sA

5
1

n11
xnm

a(n)~z!.

~4.41!

Here we have used the fact thatxnm
a(n)(z) has the following

structure in the vector potentials:

xnm
a(n)~z!5( xnm

a(n);a1a2•••an~z;z1 ,z2 , . . . ,zn!m1m2•••mn

3Am1

a1 ~z1!Am2

a2 ~z2!•••Amn

an ~zn!. ~4.42!

The above fieldq̌5w
(n11)(z) is invariant under the linearize

gauge transformation and the global gauge transformat
Next step is to constructq5w

(n11)(z) which is gauge invarian
under the full non-Abelian gauge transformation, while
leading term in the expansion of the gauge coupling cons
remains to coincide withq̌5w

(n11)(z). For this purpose, we
follow the method adopted in@11#. Namely, this step can b
achieved by the replacement of the field strength as
07450
n-

-

s-

n.

nt

F̌nm
a ~z!→ 2

a
Tr$Ta@12Unm~z!#%, ~4.43!

and by the replacement of the vector potentials in Eq.~4.42!
as

Am
a ~zk!→Âm

a ~z,zk!

5
2

a
Tr$Ta@12W~z,zk!Um~zk!

3W~z,zk1m̂ !21#%, ~4.44!

whereW(z,zk) is defined as the ordered product of the lin
variables fromzk to z along the shortest path that first goes
direction 1, then direction 2, and so on. Since it coincid
with the original vector potential up to the linearized gau
transformation in the expansion of the gauge coupling c
stant as

Âm
a ~z,zk!5g$Am~zk!1]m

zkv~z,zk!%1O~g2!, ~4.45!

wherev(z,zk) is the oriented line sum of the gauge potent
from zk to z along the same path as defined forW(z,zk), the
leading term ofq5w

(n11)(z) so defined actually coincides wit

q̌5w
(n11)(z).

V. CONNECTION TO THE LATTICE THEORY OF WEYL
FERMION BASED ON THE GINSPARG-WILSON

RELATION

In this section, we discuss the connection of the ch
domain wall fermion discussed so far to the gauge-invari
construction of chiral gauge theories based on the Ginsp
Wilson relation@3,4#. We will establish an identity relating
the partition function of the domain wall fermion~subtracted
and with the local counterterm! and the partition function of
the Weyl fermion defined with the overlap Dirac operat
satisfying the Ginsparg-Wilson relation.

A. Weyl fermion defined through the overlap Dirac operator

The lattice Dirac fermion theory defined with the Dira
operator which satisfies the Ginsparg-Wilson relation

g5D1Dĝ550, ĝ55g5~122D !, ~5.1!

possesses the exact symmetry under the chiral transform

dc~x!5ĝ5c~x!, dc̄~x!5c̄~x!g5 . ~5.2!

Based on this exact chiral symmetry, the lattice Weyl f
mion can be defined by imposing the constraint with t
chiral operatorsĝ5 andg5,

ĝ5cR~x!51cR~x!, c̄R~x!g552c̄R~x!. ~5.3!
4-10
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By introducing the orthnormal basis for the Weyl fermio

$v i(x)u i 51,2, . . .% and$v̄k(x)uk51,2, . . .%5 as

ĝ5v i~x!51v i~x!, ~v i ,v j !5d i j , ~5.4!

v̄k~x!g552 v̄k~x!, ~ v̄k ,v̄ l !5dkl , ~5.5!

the functional measure of the Weyl fermion can be set up
the path-integral formula of the partition function can
defined:

Zw5E D@cR#D@c̄R#e2(xc̄R(x)DcR(x)5det~ v̄k ,Dv j !.

~5.6!

The choice of the basis$v i(x)u i 51,2, . . .% may be differ-
ent by a unitary transformation,

v i~x!→ ṽ i~x!5(
j

v j~x!Qji , ~5.7!

which depends on the gauge field in general becauseĝ5 does
so. Then the measure is changed by the phase factor

D@cR#D@c̄R#→D@cR#D@c̄R#det$Qji %. ~5.8!

Accordingly, the partition function is changed by

det~ v̄k ,Dv j !→det~ v̄k ,D ṽ j !5det~ v̄k ,Dv j !det$Qji %.
~5.9!

In the gauge-invariant construction of the chiral gauge th
ries based on the Ginsparg-Wilson relation@3,4#, a general
method to fix the phase of the functional measure~and the
partition function! has been described so that it satisfies
requirements of the smoothness, the locality and the ga
invariance.

Our target in this paper is the Weyl fermion theory whi
is defined with the overlap Dirac operator satisfying t
Ginsparg-Wilson relation@14,15#. The overlap Dirac opera
tor, D, is given by the explicit formula@14#

D5
1

2 S 11g5

H

AH
D . ~5.10!

HereH is chosen as the Hermitian operator obtained thro
the transfer matrix of the five-dimensional Wilson-Dira
fermion:6

H52 ln T. ~5.11!

In this caseĝ5 is given by the spectrum asymmetry ofH,

5(v i ,v j ) is the inner product of the spinor field defined b
(v i ,v j )5(xv i(x)†v j (x).

6Boriçi has pointed out that the transfer matrix can be expres
by a simpler four-dimensional Hermitian matrix asT5(11H)/(1
2H), H5g5(Dw2m0)„1/@11a5(Dw2m0)#…, which leads to the
same spectrum asymmetry operator,H/AH 25H/AH2 @46#.
07450
d

-

e
ge

h

ĝ55g5~122D !52
H

AH2
, ~5.12!

and the chiral basis,$v i(x)u i 51,2, . . .%, can be chosen a
the eigenvectors ofH belonging to the negative eigenvalue
~up to the global phase choice!. The partition function re-
sulted from the path-integral formula Eq.~5.6!, reproduces
the overlap formula of the chiral determinant@17#:

det~ v̄k ,Dv j !5det~ v̄k ,v j !. ~5.13!

Here the phase of the chiral basis can be chosen follow
the gauge-invariant method of@3,4# in anomaly-free chiral
gauge theories.

B. Gauge-invariant partition function of Weyl fermions from
the domain wall fermion

We now argue the connection of the~subtracted! partition
function of the domain wall fermion with the local counte
term,

lim
N→`

det~D5w2m0!uDir.
c1

udet~D5w2m0!uAP
c11(2c1)u1/2

e2 iC5w(c1) ~5.14!

to the partition function of the Weyl fermion given by Eq
~5.13!.7

1. Partition functions of the 5-dimensional Wilson fermions

The partition functions of the five-dimensional Wilso
fermions with the Dirichlet boundary condition and with th
antiperiodic boundary condition can be expressed explic
in terms of the transfer matrix, as shown in Appendix B. T
results are given as follows:

det~D5w2m0!uDir.
c1 5detS PR1PLT1

(N2D)

3H U5
21)

c1

TtU5,t21
21 J T0

N2DD
3detS PR1PL)

c1

U5,tD )
t52N11

N

Nt ,

~5.15!

d

7It may be worthwhile to recall the situation in the vectorlike cas
In the vectorlike theories@30#, the connection between the doma
wall fermion and the overlap Dirac operator is directly seen in
fact that the determinant of domain wall fermion~subject to Dirich-
let boundary condition in the fifth dimension! is factorized into
four-dimensional part for the low-lying massless mode and fi
dimensional part for the remaining massive modes@47,48#:
lim

N→`
@det(D5w2m0)uDir. /det(D5w2m0)uAP#5detD. In the LHS,

N is the size of the fifth dimension and the contribution of t
massive modes is factorized in the determinant of the fi
dimensional Wilson fermion subject to the antiperiodic bound
condition in the fifth dimension@48#.
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det~D5w2m0!uAP
c11(2c0)

5detS 11T0
N2DH U5

21)
2c0

TtU5,t21
21 J

3T1
2(N2D)H U5

21)
c1

TtU5,t21
21 J T0

N2DD
3detS PR1PL )

c11(2c0)
U5,tD )

t52N11

3N

Nt ,

~5.16!

where Tt is the transfer matrix withUk(x,t), the explicit
form of which is given in Appendix A, andNt5det(PL
1PRBt). The subscript 0 and 1 denote the quantities w
Uk

0(x) andUk
1(x), respectively.U5(x,t) appears in between

the product of the transfer matrices so that the fi
dimensional gauge covariance is maintained. Note that
the Abelian gauge group, the extra phase factor, which c
sists of the product ofU5(x,t)21, appears.
07450
h

-
or
n-

In these formulas, the dominant term inT0
(N2D) in the

limit N→` is estimated as follows:

T0
(N2D)5P0T0

(N2D)1~12P0!T0
(N2D)

5(
i

v i
0

^ v i
0†e(N2D)ul i

0u

1O~e2(N2D)l1
0

!, ~5.17!

where the projection operatorP0 is introduced by

P05
1

2 S 12
H0

AH0
2D , H052 ln T0 , ~5.18!

and$v i
0(x)% are chosen as eigenfunctions ofH052 ln T0 be-

longing to the negative eigenvaluesl i
0 , while l1

0 is the
smallest positive eigenvalue ofH0. Similar estimation holds
for T1

(N2D) . With these results, we can infer that in the lim
N→`
the
lim
N→`

det~D5w2m0!uDir.
c1

H )
t52N11

N

NtJ N1
N2DN0

N2D

5detS PR1PLP1H U5,D
21)

c1

TtU5,t21
21 J P0DdetS PR1PL)

c1

U5,tD , ~5.19!

lim
N→`

det~D5w2m0!uAP
c11(2c0)

H )
t52N11

3N

NtJ N1
2(N2D)N0

2(N2D)

5detS 12P01P0H U5
21)

2c0

TtU5,t21
21 J P1H U5

21)
c1

TtU5,t21
21 J P0D

3detS PR1PL )
c11(2c0)

U5,tD , ~5.20!

whereN15det(12P11P1T1) andN05det(12P01P0T0). ~See Appendix C for the derivation of these results.!
From Eqs.~5.19! and ~5.20!, it follows immediately that

lim
N→`

det~D5w2m0!uDir.
c1

udet~D5w2m0!uAP
c11(2c1)u1/2

e2 iC5w(c1)5

detS PR1PLP1H U5,D
21)

c1

TtU5,t21
21 J P0D 3detS PR1PL)

c1

U5,tD
UdetS 12P01P0H U5

21)
2c1

TtU5,t21
21 J P1H U5

21)
c1

TtU5,t21
21 J P0D U1/2e2 iC5w(c1).

~5.21!

2. Factorization of the partition function of the domain wall fermion

Now we introduce the chiral basis$v i
0(x)% associated with the gauge fieldsUk

0(x) as

P0v i
0~x!5v i

0~x!, ~v i
0 ,v j

0!5d i j ~ i , j 51,2, . . .!. ~5.22!

$v i
0(x)% may be chosen as the eigenfunctions ofH052 ln T0 belonging to the negative eigenvalues. Similarly, we introduce

chiral basis$v i
1% associated with the gauge fieldsUk

1(x). We also introduce the chiral basis for the antifield$v̄k% as

v̄k~x!PL5 v̄k~x! ~k51,2, . . .!. ~5.23!

In terms of these chiral bases, the formula Eq.~5.21! of the ~subtracted! partition function of the domain wall fermion with
the local counterterm can be rewritten further as
4-12
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lim
N→`

det~D5w2m0!uDir.
c1

udet~D5w2m0!uAP
c11(2c1)u1/2

e2 iC5w(c1)5det~ v̄k ,v i
1!eif(c1) det~ v̄k ,v j

0!* e2 iC5w(c1), ~5.24!

where

eif(c1)5

detS v i
1 ,H U5,D

21 )
t52D11

D

TtU5,t21
21 J v j

0D
UdetS v i

1 ,H U5,D
21 )

t52D11

D

TtU5,t21
21 J v j

0DU 3detS PR1PL )
t52D11

D

U5,tD . ~5.25!

The first factor in the right-hand side~RHS! of Eq. ~5.24! is nothing but the overlap formula, which gives the partition functi
of the right-handed Weyl fermion att5N coupled to the gauge fieldUk

1(x),

det~ v̄k ,v i
1!5det~ v̄k ,Dv i

1!. ~5.26!

Similarly, the third factor in the RHS of Eq.~5.24! reproduces the partition function of the left-handed Weyl fermion att5
2N11, which couples to the gauge fieldUk

0(x). On the other hand, the second factor in the RHS of Eq.~5.24!, which is the
phase factor defined by Eq.~5.25!,

eif(c1) ~5.27!

comes from the interpolation between the gauge fieldsUk
0(x) andUk

1(x).8 It depends on the choices of the chiral bases$v i
0%,

$v i
1% and the pathc1, but the path dependence is to be compensated by the local counter term,

e2 iC5w(c1). ~5.28!

From these results, it is quite natural to choose the chiral basis of the Weyl fermion coupled to the gauge fieldUk
1 as

follows:

v i~x!5H v i
1~x!eif(c1)e2 iC5w(c1) ~ i 51!,

v i
1~x! ~ iÞ1!.

~5.29!

With this choice, the~subtracted! partition function of the domain wall fermion with the local counterterm is factorized
two chiral determinants:

lim
N→`

det~D5w2m0!uDir.
c1

udet~D5w2m0!uAP
c11(2c1)u1/2

e2 iC5w(c1)5det~ v̄k ,Dv j !det~ v̄k ,Dv j
0!* . ~5.30!

The path-independence and the gauge invariance of det(v̄k ,Dv j ) are obvious from this identity.9

C. The functional measure of the Weyl fermion from the domain wall fermion

The choice of the chiral basis in Eq.~5.29! indeed leads to the functional measure of the Weyl fermion which is indepen
of the path of the interpolation. To see this, we choose another path, sayc2, then we get another basis:

ṽ i~x!5H v i
1~x!eif(c2)e2 iC5w(c2) ~ i 51!,

v i
1~x! ~ iÞ1!.

~5.31!

These two bases are related by the unitary transformationQi j ,

8In the original derivation of the overlap formula in@17#, this term was not considered because the gauge field was assumed
four-dimensional. It was also true in the wave-guide model@38,39#.

9The complex phase part of this identity can be regarded as the lattice counterpart of the relation between theh-invariant and the effective
action for the chiral fermions@28,49–52#. Note also that this result is a generalization of the identity in vectorlike theories@47,48# to the case
of chiral gauge theories.
074504-13
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ṽ i~x!5Qi j
21v j~x!, ~5.32!

which determinant turns out to be

detQ5e2 if(c2)eiC5w(c2)
•eif(c1)e2 iC5w(c1). ~5.33!

But it is not difficult to see that the phase factors along the pathsc1 andc2 multiply to give

eif(2c2)
•eif(c1)5

detS 12P01P0H U5
21)

t

2c2

TtU5,t21
21 J P1H U5

21)
t

c1

TtU5,t21
21 J D

UdetS 12P01P0H U5
21)

t

2c2

TtU5,t21
21 J P1H U5

21)
t

c1

TtU5,t21
21 J DU

detS PR1PL )
t

c11(2c2)

U5,tD
UdetS PR1PL )

t

c11(2c2)

U5,tDU
5 lim

N→`

det~D5w2m0!uAP
c11(2c2)

udet~D5w2m0!uAP
c11(2c2)u

5eiQ
5w

c11(2c2)

, ~5.34!
d
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and this identity can be regarded as the integrability con
tion for the phase factor exp„if(ci)….

Since we are assuming that the lattice Chern-Simons t
can be decomposed into the two partsC5w

c1 andC5w
2c2 locally

and gauge-invariantly,

eiQ
5w

c11(2c2)

5eiC
5w

c1
•e2 iC

5w

c2
, ~5.35!

the determinant of the unitary transformation, detQ, turns
out to be unity. This holds for any two paths. Therefore
measure does not depend on the path of the interpolation
is determined uniquely.

We should note that from the integrability condition E
~5.34! and the expression for the~subtracted! partition func-
tion Eq. ~5.24!, we can directly infer that Eq.~2.25! holds
and the~subtracted! partition function with the local counter
term is independent on the path of the interpolation for
topological sectors.

D. The connection to the gauge-invariant construction based
on the Ginsparg-Wilson relation

Let us now look closely at the connection to the gau
invariant construction by Lu¨scher@3,4#. We note first that our
result Eq.~5.30! should be compared with Eq.~7.1! in @4#:10

det~12PL1PLDQ1D0
†!W215det~ v̄k ,Dv j !det~ v̄k ,Dv j

0!†,

~5.36!

whereQ1 is the evolution operator of the chiral projector

P15Q1P0Q1
21 , ~5.37!

10Since we are considering the right-handed Weyl fermions,
stead of the left-handed Weyl fermions,PR in the original equation
~7.1! of @4# is replaced byPL .
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while W is the Wilson line defined by the line integral of th
measure term current,

W5ei (x*0
1dt$] tUk(x,t)Uk(x,t)21%aj k

a(x,t), ~5.38!

wheret is the continuous parameter of the interpolation.
The determinant in the LHS of Eq.~5.36! may be ex-

pressed in terms of the chiral bases$v j
1%, $v j

0% and$v̄k% as

det~12PL1PLDQ1D0
†!5det~ v̄k ,Dv i

1!det~v i ,Q1v j
0!

3det~ v̄k ,Dv j
0!* . ~5.39!

Then we note the correspondence as

det~v i
1 ,Q1v j

0!⇔eif(c1)5

detS v i
1 ,H )

t52D11

D(c1)

TtJ v j
0D

UdetS v i
1 ,H )

t52D11

D(c1)

TtJ v j
0D U
~5.40!

@in the gaugeU5(z)51#, which implies that in the domain
wall fermion the evolution of the basis of the Weyl fermio
is realized by the successive multiplications of the trans
matrices, like time development along the fifth dimension11

For the loop in the space of the gauge fields, this leads to
correspondence of the integrability conditions:

-

11We note that the use of the transfer matrix here is in the sa
spirit as the use of the Hamiltonian for the evolution of the~second
quantized! vacuum states of the overlap formalism, adopted in
adiabatic phase choice@25#. Our result then provides a discretiza
tion method of the continuous evolution.
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e2*0
1dt(

i
(v i ,] tv i )5det~12P01P0Q1!

⇔eif(c1)
•e2 if(c2)5eiQ

5w

c11(2c2)

.

~5.41!

The above correspondences become exact in the
tinuum limit of the fifth dimension, which should be taken
a5→0 with Da5 fixed. In taking the continuum limit, one
may smooth the interpolation further by replacingTt with
Tt

Nt and take the limitNt→` first as an intermediate step, t
get

eif(c1)5

detS v i
1 ,H )

t52D11

D(c1)

PtJ v j
0D

UdetS v i
1 ,H )

t52D11

D(c1)

PtJ v j
0DU . ~5.42!

Then, usingPt5QtP0Qt
21 , we can see that this become

identical to det(v i
1 ,Q1v j

0) in the limit a5→0 with Da5 fixed.
On the other hand, the dependence of the determinan

the LHS of Eq.~5.36! on the path of the interpolation i
compensated by the Wilson lineW. Here the measure term
(x$] tUk(x,t)Uk(x,t)21%aj k

a(x,t) is obtained from the topo
logical field in (412)-dimensional space.W corresponds to
the local counter term exp„iC5w(c1)… in the domain wall
fermion, where the local fieldk6(x,t) is obtained from the
topological field in (511)-dimensional space:

W5ei *0
1dt$] tUk(x,t)Uk(x,t)21%aj k

a(x,t)

⇔eiC5w(c1)5ei (
t52`

`

(
x

k6(x,t). ~5.43!

In this respect, it is possible to see that the topologi
field in (511)-dimensional space reduces to the topologi
field in (412)-dimensional space introduced by Lu¨scher@4#,
in the continuum limit. For this, we recall that th
(511)-dimensional topological field is defined from the l
cal variation of the Chern-Simons term. From Eq.~5.42! and
Eq. ~5.34! the Chern-Simons term can be expressed as
lows, in the same intermediate step as above:

Q5w
c11(2c2)

5Im ln detS 12P01P0

3H )
t52D11

D(2c2)

PtJ P1H )
t52D11

D(c1)

PtJ P0D .

~5.44!

In this equation, one may express eachPt using the chiral
basis asPt5( iv i

t
^ v i

t† and factorize the determinant. The
we consider the minimal deformation of the loopc1
1(2c2) at a certain pointt011 in the pathc1 as
07450
n-

in

l
l

l-

Uk~x,t011![Uk
s50~x,t011!

⇒Uk~x,t011!8[Uk
s5Ds~x,t011!,

~5.45!

and evaluate the variation of the Chern-Simons term, to
tain

DQ5w
c11(2c2)

5Im ln det~v i
t0 ,$v j

t011
%8!

1Im ln det~$v i
t011

%8,v j
t0!

2Im ln det~v i
t0 ,v j

t011
!2Im ln det~v i

t011 ,v j
t0!

5Im ln det~12Pt0

1Pt0Pt011Pt012$Pt011%8Pt0!. ~5.46!

In the limit Ds→0 anda5→0, this variation reduces to

i Tr P@]sP,]5P#a5Ds. ~5.47!

In the generic gaugeU5(z)Þ1, this result reads

i Tr$P@]sP,D5P#1~]sA5!P%a5Ds, ~5.48!

and if we replace]s to the covariant derivativeDs , it exactly
coincides with the (412)-dimensional topological field@4#.

Finally, we note that the gauge anamaly obtained from
asymptotic value of the Chern-Simons current in the dom
wall fermion is related to the gauge anomaly expressed
the overlap Dirac operatorD @53#:

lim
N→`

J5
a~x,N!52Tr$Tag5D%~x,x!uU

k
1, ~5.49!

lim
N→`

J5
a~x,2N11!52Tr$Tag5D%~x,x!uU

k
0. ~5.50!

To see this, we infer from the locality property of the Cher
Simons current that the fifth component att5N

J5
a~x,N!5TrH Ta

1

2
~g521!S 1

D5w2m0
D U

AP

~z15̂,z!

1Ta
1

2
~g511!S 1

D5w2m0
D U

AP

~z,z15̂!J U
t5N

~5.51!

becomes independent of the interpolation in the limitN
→`, depending only on the asymptotic value of the gau
field at t5N, Uk

1(x). Then using the formula of the overla
Dirac operator expressed in terms of the inverse fi
dimensional Wilson-Dirac operator@35,53#12 given by

12In @35#, domain wall fermion is defined vector-likely in the in
terval tP@2N11,N#. The interval should be extended totP@2N
11,3N# in our case.
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D5 lim
N→`

H 12PRS 1

D5w2m0
D U

AP

~N,N!PL

2PLS 1

D5w2m0
D U

AP

~2N11,2N11!PR

2PRS 1

D5w2m0
D U

AP

~N,2N11!PR

2PLS 1

D5w2m0
D U

AP

~2N11,N!PLJ , ~5.52!

we obtain Eqs.~5.49! and ~5.50!. The gauge anomalies Eq
~5.49! and~5.50! can be evaluated in the classical continuu
limit as in @28,54# ~see also@55–58#! and the earlier calcu
lation @36# is reproduced.

VI. CONCLUSION

The introduction of chirally asymmetric gauge couplin
to the chiral zero modes of domain wall fermion, as t
original proposal by Kaplan, inevitably makes the syst
five-dimensional. We have shown that the five-dimensio
dependence can be compensated by the local and ga
invariant counterterm in anomaly-free chiral gauge theor

The chiral structure of the dimensionally reduced low e
ergy effective action of the chiral zero modes can be und
stood again by the Ginsparg-Wilson relation. In fact, it p
vides a concrete example of the gauge-invariant construc
of the chiral gauge theories based on the Ginsparg-Wil
relation, where the continuous interpolation in the space
the gauge fields is partly replaced by the discrete step-w
interpolation. Hope is that such discrete treatment of the
terpolation of the gauge fields would be useful for a practi
implementation of the gauge-invariant lattice chiral gau
theories.

We note that in the gauge-invariant construction with
domain wall fermion, the Ginsparg-Wilson relation is n
used explicitly, in sharp contrast to the invariant construct
by Lüscher based on the Ginsparg-Wilson relation. This
because one of the points of the invariant construction is
formulation of the integrability condition in the space
gauge fields and the idea behind it is generic. The local
homology problem follows from the integrability condition
as long as the requirement of locality is satisfied.

In this respect, we also note that our construction is
plicable to any domain wall fermion theory defined with
proper five-dimensional Dirac operator of the structure

D5~2m0!5„D4~2m0!11…d ts2PLd t11,s2PRd t,s11 ,

~6.1!

D4~2m0!†5g5D4~2m0!g5 . ~6.2!

Such a five-dimensional fermion theory can lead to a cer
four-dimensional lattice Dirac operator satisfying t
07450
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Ginsparg-Wilson relation@35,46,60#.13 In this sense, our con
struction partly shares the general applicability with t
gauge-invariant construction based on the Ginsparg-Wil
relation.14

In the original proposal by Kaplan@29#, the dynamical
treatment of the five-dimensional gauge field was also
tended. The question of this ambitious attempt is still ope
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APPENDIX A: TRANSFER MATRIX OF 5-DIMENSIONAL
WILSON FERMION

The transfer matrix of the five-dimensional Wilson fe
mion is given in the chiral basis of gamma matrices as f
lows:

T5e2H5S 1

B
2

1

B
C

2C†
1

B
B1C†

1

B
C
D , ~A1!

whereC andB are two by two matrices in the spinor spa
which define the four-dimensional Wilson-Dirac operatorDw
as

Dw2m0115S B C

2C† BD . ~A2!

Explicitly, they are given as follows:

C5sm

1

2
~¹m1¹m* !, ~A3!

B511S 2
1

2
¹m¹m* 2m0D . ~A4!

13Boriçi’s five-dimensional implementation of the overlap Dira
operator with the Hermitian Wilson-Dirac operator (a550) has this
structure.

14The complex phase of the determinant of such a generic fi
dimensional Dirac operator~with a negaive mass! can also produce
the Chern-Simons term. This class of lattice Chern-Simons te
would be understood in relation to the Ginsparg-Wilson relation
five dimensions recently discussed by Bietenholtz and Nishim
@27#, since it is straightforward to construct the five-dimension
overlap Dirac operator@16# from such a generic five-dimensiona
Dirac operator.
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For the gauge field satisfying the admissibility conditi
Eq. ~2.4!, the Hamiltonian defined through the transfer m
trix

H52 ln T ~A5!

has a finite gap@30,32,34#.

APPENDIX B: EVALUATION OF THE PARTITION
FUNCTIONS OF 5-DIMENSIONAL WILSON FERMIONS

In this appendix, we describe the calculation of the fun
tional determinant of the five-dimensional Wilson-Dirac fe
mion, in the cases with the antiperiodic boundary condit
and Dirichlet boundary condition in the fifth dimension. He
we follow the method given by Neuberger in@47#, with a
07450
-

-

n

slight extension to include the fifth component of the fiv
dimensional gauge field. A more generic method has b
given by Lüscher@59,60#.

Let us consider the five-dimensional Wilson-Dirac ope
tor

W5~Dw2m011!d ts2PLU5~ t !21d t11,s2PRd t,s11U5~s!,

~B1!

wheret,sP@2T11,T# for Dirichlet boundary condition and
t,sP@2T11,3T# for anti-periodic boundary condition. We
denote the size of the fifth dimension asN in both cases. (N
is an even integer.!

In the chiral basis of the gamma matrices,W is written
explicitly in the matrix form as follows:
n

W51
S B1 C1

2C1
† B1

D F0 0

0 2U5,1
G ••• F1Y 0

0 0G
F2U5,1

21 0

0 0
G S B2 C2

2C2
† B2

D � A

A � � F0 0

0 2U5,N21
G

F0 0

0 1XG ••• F2U5,N21
21 0

0 0
G S BN CN

2CN
† BN

D 2 ,

whereX50, Y50 for the Dirichlet boundary condition andX5U5,N , Y5U5,N
21 for the antiperiodic boundary condition. I

order to makeW almost lower tridiagonal, we first exchange the right- and left-handed component columns for eacht. Then
we move the leftmost column to the place of the rightmost column:

W⇒1
S C1 B1

B1 2C1
†D F 0 0

2U5,1 0G ••• F0 1Y

0 0 G
F0 2U5,1

21

0 0
G S C2 B2

B2 2C2
†D � A

A � � F 0 0

2U5,N21 0G
F 0 0

1X 0G ••• F0 2U5,N21
21

0 0
G S CN BN

BN 2CN
† D 2

⇒1
S B1 0

2C1
† 2U5,1

D ••• ••• F1Y C1

0 B1
G

F2U5,1
21 C2

0 B2
G S B2 0

2C2
† 2U5,2

D ••• A

A F2U5,2
21 C3

0 B3
G � A

A ••• � S BN 0

2CN
† 1XD 2 .
4-17
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We then introduce the following abbreviations for th
blocked matrix elements:

a t[S Bt 0

2Ct
† 2U5,t

D , aX[S BN 0

2CN
† XD

@X50~Dir.!, U5,N~AP!#

b t[F2U5,t21
21 Ct

0 Bt
G , bY[FY C1

0 B1
G

@Y50~Dir.!, U5,N
21~AP!#. ~B2!

Using these,W assumes the following form:

W⇒S a1 • • bY

b2 a2 • •

• � � •

• • � aN

D .

In order to take account of the boundary element,bY , we
assume the following factorization:

S a1 • • bY

b2 a2 • •

• � � •

• • � aX

D 5S a1 • • •

b2 a2 • •

• � � •

• • � aX

D
3S 1 • • 2V1

• 1 • 2V2

• • � A

• • • 12VN

D ,

and consider the recursion equations for the elementsVt :

2a1V15bY ,

2b2V12a2V250,

A

2bN21VN222aN21VN2150,

2bNVN211aX~12VN!5aX .

These equations can easily be solved to get

VN5aX
21aN•)

t51

N

$2a t
21b t%•b1

21bY . ~B3!

Then the determinant ofW is evaluated as follows:
07450
det~D5w2m0!X,Y5 )
t51

N21

deta t•detaXdet~12VN!

5)
t51

N

deta t•det~aN
21aX2aN

21aXVN!.

Here we have omitted the sign factor given by (21)q(N11)

whereq52NcL
4 andNc is the dimension of the gauge grou

representation, because it turns out to be unity.
The products2a t

21b t , aN
21aX andb1

21bY are evaluated
as

2a t
21b t5S 1 0

0 U5,t
21D S 1

Bt
2

1

Bt
Ct

2Ct
† 1

Bt
Bt1Ct

† 1

Bt
Ct

D
3S U5,t21

21 0

0 1
D

5S 1 0

0 U5,t
21DTtS U5,t21

21 0

0 1
D ,

aN
21aX5S 1 0

0 2U5,N
21XD ,

b1
21bY5S 2U5,0Y 0

0 1D .

Collecting these results, we finally obtain

det~D5w2m0!uDir.5detS PR1PLTN )
t51

N21

$U5,t
21Tt% D

3detS PR1PL)
t

U5,tD •)
t51

N

3det~PL1PRBt!,

det~D5w2m0!uAP5detS 11)
t51

N

$U5,t
21Tt% D

3detS PR1PL)
t

U5,tD •)
t51

N

3det~PL1PRBt!.

APPENDIX C: THE PARTITION FUNCTIONS IN THE
LIMIT N\`

In this appendix, we evaluate the partition function of t
five-dimensional Wilson-Dirac fermions in the limitN→`
and derive Eqs.~5.19! and~5.20!. Here we describe the cas
with the antiperiodic boundary in some detail. The case w
the Dirichlet boundary condition can be evaluated in t
same manner.

As shown in Appendix B, the partition function of th
five-dimensional Wilson-Dirac fermion with the antiperiod
boundary condition is given by
4-18
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det~D5w2m0!uAP Y )
t52N11

3N

Nt

5detS 11H )
2c2

TtJ T1
2(N2D)H)

c1

TtJ T0
2(N2D)D .

~C1!

Divided by det(11T0
2(N2D)), the RHS can be rewritten a

follows:

detS 11H )
2c2

TtJ T1
2(N2D)

3H)
c1

TtJ T0
2(N2D)D Y det~11T0

2(N2D)!

5detS 1

11T0
2(N2D)

1H )
2c2

TtJ T1
2(N2D)

3H)
c1

TtJ T0
2(N2D)

11T0
2(N2D)D . ~C2!

In the limit N→`, the dominant term inT0
2(N2D) is evalu-

ated as

T0
2(N2D)5P0T0

2(N2D)1~12P0!T0
2(N2D)

5(
i

v i
0

^ v i
0†e2(N2D)ul i u

1O~e22(N2D)l1
0

! ~C3!

wherev i
0 are eigenfunctions ofH052 ln T0 belonging to the

negative eigenvaluesl i
0 , while l1

0 is the smallest positive
eigenvalue ofH052 ln T0. Then the factors involvingT0 in
Eq. ~C2! reduce to the projection operators

lim
N→`

T0
2(N2D)

11T0
2(N2D)

5P0 , lim
N→`

1

11T0
2(N2D)

512P0 ,

~C4!

where

P05(
i

v i
0

^ v i
0†5

1

2 S 12
H0

AH0
2D . ~C5!

Therefore, the RHS of Eq.~C2! reduces to the following
expression:

~C2!5detS 12P01H )
2c2

TtJ T1
2(N2D)H)

c1

TtJ P0D
~C6!

5detS v i
0 ,H )

2c2

TtJ T1
2(N2D)H)

c1

TtJ v j
0D .

~C7!
07450
In the last expression the determinant is taken about the
dicesi and j of basis$v i

0%.
Moreover, the termT1

2(N2D) is also evaluated as

T1
2(N2D)5P1T1

2(N2D)1~12P1!T1
2(N2D)

5(
i

v i ^ v i
†e2(N2D)ul i u1O~e22(N2D)l1

1
!

~C8!

wherev i are eigenfunctions ofH152 ln T1 belonging to the
negative eigenvaluesl i , while l1

1 (l2
1 ) is the smallest posi-

tive ~largest negative! eigenvalue ofH152 ln T1. Then, the
dominant matrix element in Eq.~C7! is given by

S v i
0 ,H )

2c2

TtJ T1
2(N2D)H)

c1

TtJ v j
0D

5(
k

S v i
0 ,H )

2c2

TtJ vk
1De2(N2D)ulkuS vk

1 ,H)
c1

TtJ v j
0D

1O~e22(N2D)l1!. ~C9!

Accordingly, the dominant contribution of the determinant
Eq. ~C7! is evaluated as

detS v i
0 ,H )

2c2

TtJ T1
2(N2D)H)

c1

TtJ v j
0D

5detS 12P01P0H )
2c2

TtJ P1H)
c1

TtJ D
3det~12P11P1T1!2(N2D)

3„11O~e22(N2D)(l1
1

1ul2
1 u)!…. ~C10!

From this result, we immediately obtain Eq.~5.20!.

APPENDIX D: THE INVERSE FIVE-DIMENSIONAL
WILSON-DIRAC OPERATOR

In this appendix, we discuss the relation between the
verse five-dimensional Wilson-Dirac operator defined w
the Dirichlet boundary condition and that defined in the
finite extent of the fifth dimension, and show that the r
placement of Eq.~2.15! is allowed in the limitN→`.

For this purpose, we first note that the Dirichlet bounda
condition can be implemented by including the surface te
in the infinite volume. Namely, if we consider the five
dimensional Dirac fermion defined in the infinite extent
fifth dimension, but with the couplings between the latti
sites (2N,2N11) and between the lattice sites (N,N
1a5) omitted, then the field in the interval@2N11,N# does
not have any coupling to those outside the region and i
nothing but the field defined with the Dirichlet bounda
condition imposed att52N and t5N11. ~See Fig. 5.!

We denote the lattice Dirac operator for this fermion
D5w

~ , which can be expressed with the surface interaction
follows:
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D5w
~ 2m05D5w2m02V(2N11;N) , ~D1!

where

V(2N11,N)5$2PLds,2Nd t,2N112PRds,2N11d
t ,2N

2PLds,Nd t,N112PRds,N11d t,N%. ~D2!

Then it follows immediately that

1

D5w
~ 2m0

2
1

D5w2m0
5

1

D5w2m0
V(2N11,N)

1

D5w
~ 2m0

.

~D3!

Since the inverse ofD5w
~ 2m0 in the interval@2N11,N# is

nothing but the inverse five-dimensional Wilson-Dirac o
erator defined with the Dirichlet boundary condition:

1

D5w
~ 2m0

~xs,yt!5
1

D5w2m0
U

Dir.

~xs;yt!,

s,tP@2N11,N#, ~D4!

we can infer that

1

D5w2m0
U

Dir.

2
1

D5w2m0
5

1

D5w2m0
V(2N11,N)

3
1

D5w2m0
U

Dir.

, ~D5!

FIG. 5. Implementation of Dirichlet B.C. by surface interaction
07450
-

for s,tP@2N11,N#. Using the explicit form of the surface
interaction, it can be rewritten further as

1

D5w2m0
U

Dir.

~xs,yt!2
1

D5w2m0
~xs,yt!

52
1

D5w2m0
~xs;z,2N!PL

1

D5w2m0
U

Dir.

~z,2N11;yt!

2
1

D5w2m0
~xs;z,N11!PR

1

D5w2m0
U

Dir.

~z,N;yt!,

~D6!

where the summation overz is understood ands,tP@2N
11,N#.

Now we consider the case wheres,tP@2D11,D#. @See
Eq. ~2.15!.# From the exponential bound Eq.~3.10!, the in-
verse five-dimensional Wilson-Dirac operators defined in
infinite extent of the fifth dimension in the RHS of Eq.~D6!
vanish identically in the limitN→`. On the other hand, the
inverse five-dimensional Wilson-Dirac operators defin
with the Dirichlet boundary condition in the RHS of Eq
~D6! can be expressed in terms of the transfer matrix us
the same technique used in Appendix B@53#. They are given
by

PL

1

D5w2m0
U

Dir.

~z,2N11;yt!51PLD~z,yt!, ~D7!

PR

1

D5w2m0
U

Dir.

~z,N;yt!52PRD~z,yt!,

~D8!

where
D~z,y;t !5
1

PR1T1
(N2D)H U5,D

21 )
t52D11

D

TtU5,t21
21 J T0

(N2D)PL

H T1
(N2D)U5,D

21 )
s52D11

t

TsU5,s21
21 b t

21J , tP@2D11,D#.

~D9!

For largeN, D(z,y;t) can be estimated as

D~z,y;t !.
1

~12P1!PR1P1H U5,D
21 )

t52D11

D

TtU5,t21
21 J T0

(N2D)PL

H P1U5,D
21 )

s52D11

t

TsU5,s21
21 b t

21J

4-20
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.

cofactor ofH ~12P1!PR1P1H U5,D
21 )

t52D11

D

TtU5,t21
21 J T0

(N2D)PLJ
det~12P01P0T0!(N2D)

3
1

detS ~12P1!PR1P1H U5,D
21 )

t52D11

D

TtU5,t21
21 J P0PLD H P1U5,D

21 )
s52D11

t

TtU5,t21
21 b t

21J , ~D10!

and we can infer that it vanishes identically in the limitN→`, as long as

detS ~12P1!PR1P1H U5,D
21 )

t52D11

D

TtU5,t21
21 J P0PLDÞ0. ~D11!

Thus the RHS of Eq.~D6! vanishes in this limit.
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