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Domain wall fermion and chiral gauge theories on the lattice
with exact gauge invariance
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We discuss how to construct anomaly-free chiral gauge theories on the lattice with exact gauge invariance
in the framework of a domain wall fermion. Chiral gauge coupling is realized by introducing a five-
dimensional gauge field which interpolates between two different four-dimensional gauge fields at
boundaries. The five-dimensional dependence is compensated by a local and gauge-invariant counterterm.
The cohomology problem to obtain the counterterm is formulated i XBdimensional space, using the
Chern-Simons current induced from the five-dimensional Wilson fermion. We clarify the connection to the
invariant construction based on the Ginsparg-Wilson relation using the overlap Dirac operator. The formulas
for the measure and the effective action of Weyl fermions are obtained in terms of five-dimensional lattice
quantities.
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I. INTRODUCTION minant by Narayanan and Neuberdéf].? The above in-
variant construction of the functional measure provides the
) ) ) method to fix the phase factor of the chiral determinant in the
_Through the Ginsparg-Wilson relatidd | and the exact overlap formalism in a gauge-invariant manner.
chiral symmetry based oni2], the Weyl fermion can natu- |t was also suggestdd,28] that there is a close relation-
raIIy be introduced on the lattice. The chiral constraint Im-sh|p between the interpo|ation procedure insther’s con-
posed on the Weyl fermion is gauge-field dependent and, bgtruction and the five-dimensional setup in Kaplan's domain
introducing the basis of the Weyl fermion, the path integralwall fermion[29]. The purpose of this paper is to pursue this
can be set up3,4]. In fact, it has been shown by'kaoher that close connection and to show how to construct four-
the functional measure of the Weyl fermion can be con-dimensional lattice chiral gauge theories with exact gauge
structed in anomaly-free Abelian chiral gauge theories sanvariance from the five-dimensional lattice framework of
that it satisfies the requirements of smoothness, locality, andomain wall fermion.
gauge invariancg3,5-7. A similar construction has also  For this purpose, we adopt the domain wall fermion in the
been argued for generic non-Abelian chiral gauge theorieg/ectorlike formalism by Shamir30]. But two different four-
where, to treat the exact cancellation of gauge anomaly, dimensional gauge fields are introduced at the boundaries
local cohomology problem in-42 dimensions is formulated @nd they are interpolated by a five-dimensional gauge field.
[4]2 This |ne_v_|tably causes the flve-dlr_nensmnal d_ependence of
This construction is generic and applies to any local |atthe partition f_unc_tlon _of the_ domain wall fermion. To take
tice fermion theory with the Dirac operator satisfying the account of this five-dimensional dependence, we formulate

Ginsparg-Wilson relation. In the case using the overlap Dira@" integrability condition. It turns out that the dependence is

operator[14—16, the path integral formalism for the Weyl

fermion reproduces the overlap formula for the chiral deter- 2The author refers the reader 48] for recent review of the

overlap formalism. In the overlap formalism, reflecting chiral
anomaly, the phase factor of the chiral determinant is not fixed in
general and any reasonable choice of the phase factor should lead to
*Email address: kikukawa@eken.phys.nagoya-u.ac.jp the gauge anomaly for single Weyl fermion. The Wigner-Brillouin
The author refers the reader [8,9] for recent review of this phase convention has been adopted for perturbative sfuideand
approach. In this approach, the exact cancellation of gauge anomhas also been tested numerically in a nonperturbative formulation of
lies in non-Abelian chiral gauge theories has been shown in althiral gauge theorieg20,21. Geometrical treatment of the gauge
orders of the expansion in lattice perturbation theld§,11). For anomaly in the overlap formalism has been discussed in detail in
SU(2) doublet, it has been shown that Witten's global anomaly isAbelian theorieg22] and non-Abelian theorief23]. The SU2)
reproduced12]. For SU(2) X U(1)y electroweak theory, the local global anomaly has been examined [@4]. An adiabatic phase
cohomology problem in 42 dimensions has to be solved in infi- choice has been proposed|[i#25] and used in the construction of
nite volume lattice and the exact cancellation of gauge anomaliesjoncompact abelian chiral gauge theories. The overlap formalism in
including the mixed type, has been shown nonperturbatijsy. odd dimensions has been considere{l1i,26,27.
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governed by the lattice Chern-Simons term induced from the
five-dimensional Wilson-Dirac fermionwith a negative

mass [31].
In order to compensate the five-dimensional dependence
we require a five-dimensional counter term. The counter (+0) o (+mo)

term should be given by a smooth, local and gauge invariant

functional of gauge field, in order to satisfy the requirement

of the smoothness, the locality and the gauge invariance of

the low energy effective action. We will argue that such lo- t=-N+1 t=N 75 = tas
cal, gauge-invariant field can be obtained in anomaly-free ) o ) _

chiral gauge theories, through the local cohomology problem FIG. 1. Domain wall fermion in the simpler vector-like setup.

in (5+1)-dimensional space formulated with the lattice _ _ _ . .
Chern-Simons current. Thus the reduction from the five{S€€ Fig. 1. The four-dimensional lattice spacirgand the

dimensional lattice to four-dimensional lattice is acheived infivé-dimensional on@s are both set to unity. The fifth coor-
a local and gauge invariant manner. dinate is denoted byand_ takes_ integer valu_es in the interval,

The locality of the lattice Chern-Simons current is essent €[ ~N+1N]J. In fouz dimensions, the lattice is assumed to
tial for the cohomological argument in ¢51)-dimensional _have a finite volume. an_d the periodic b_oundary condition
space and for this we require the so-called admissibility conlS @ssumed for both fermion and gauge fields. The mass term
dition [3-5,37 extended to five-dimensional gauge fields S Set to the negative valuemy where O<mo<2:

(cf. [35]). With this condition, several properties of the N

Chern-Simqns current are di;cussed. The gearlier studies of Sow= E z E(X-t)(DSW_ me)#(x,t).  (2.1)
the properties of the Chern-Simons current in the context of t="N+1 "X

domain wall fermion can be found i186,37).

Trying to formulate four-dimensional chiral gauge theo- This setup is equivalent to impose the Dirichlet boundary
ries from the five-dimensional framework of domain wall condition at the boundaries in the fifth dimension as
fermion, our approach resembles to the wave-guide model
[38,39 and the formalism proposed by Crewgtzal.[40,41]. YD i=-n=0, ¥ (X,)|i=n+1=0. (2.2
However, our approach is different from the wave-guide In order to introduce chiral-asymmetric gauge interaction
model in that we are considering the smodtiscrete, but ~ for the chiral zero modes at the two boundaries— N+ 1
smooth in lattice scajeinterpolation in the fifth direction. andN, the gauge field is assumed to be five dimensional:
The issue related to the disordered gauge degrees of freedom
is taken account by the five-dimensional admissibility condi- U.(2)={Ui(x,1),Us(x,1)},  z=(x1), 23
tion, which assures the existence of the chiral zero modes . .
even with five-dimensional gauge fieldsf. [42—44). Our Where,u_= L....5 .and(:.l’ o4t |_sregarded to be in-
approach is also different from the formalism by Creutzte{)polat'ng a four-dimensional gauge fieldtat—N+1, say
et al. in that we are isolating the chiral zero modes at oneUli(X)' to another four-dimensional gauge fieldtatN, say
boundary as physical degrees of freedom, regarding the oth&h(X). We assume that outside the finite interpolation region
boundary as reference. te[ —A,AJ(A<N) the gauge field does not dependtand

This paper is organized as follows. In Sec. Il we formu-Us(x,t)=1 (Fig. 2). A should be chosen large enough in
late the domain wall fermion for chiral gauge theories withorder to make sure that the interpolation is smooth enough.
the interpolating five-dimensional gauge field. Then we de-The precise condition for this will be discussed below.
rive the integrability condition for the partition function of ~ The gauge fields at the boundariei(x) andUj(x), are
the domain wall fermion and state a sufficient condition tochosen so that their field strengths are small enough and
obtain the five-dimensional counterterm with the requiredsatisfy the following bound:
properties. In Sec. lll we examine the properties of the lattice
Chern-Simons current. In Sec. IV we argue how to recon-
struct the counterterm from the Chern-Simons current and
formulate the local cohomology problem in {8)-
dimensional space. Section V is devoted to the discussiongherePy(x) is the four-dimensional plaquette variable. This
on the connection to the gauge-invariant construction basel§ the so-called admissibility conditioj8—5,32. With the
on the Ginsparg-Wilson relation.

1
[1-Pu(@)<e, e<3—0{1—|1—m0|2}, (2.9

Ui (=)

1. DOMAIN WALL FERMION FOR CHIRAL GAUGE
THEORIES

A. Interpolation with five-dimensional gauge field

Domain wall fermion, in its simpler vectorlike formula-
tion, is defined by the five-dimensional Wilson-Dirac fer-
mion with a negative mass in a finite extent fifth dimension. FIG. 2. Interpolating five-dimensional gauge field on the lattice.

N +1 A 0 A N
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admissibility condition, the space of the gauge fields is dev- U}i
ided into topological sectof83]. We assume thai J(x) and c
Uﬁ(x) are in the same topological sector. Furthermore, it 2
ensures that the Hamiltonian defined through the transfer
matrix of the five-dimensional Wilson-Dirac fermiokj =
—InT, has a finite gap and the overlap Dirac operdthe
effective four-dimensional Dirac operator of the boundary 9]
chiral modes is local within the exponentially suppressed U,S
tail [32,34,35. It also makes the limit that the size of the fifth
dimension goes to infinityN— o, well-defined in vectorlike FIG. 3. Aloop in the space of gauge fields.
case[30,35.

When the gauge fields on the boundary wall§(x) and Pit—t'=—t+1. (2.9
Uﬁ(x), are in the same topological sector, there exists a
smooth path in the space of the admissible gauge fields. Thikherefore the interpolation in the reversed order implies the
one-parameter family of the gauge fields can be regarded &mplex conjugation.
a five-dimensional gauge field and we may map this configu-

ration onto the five-dimensional lattice. Then the difference B. Integrability condition for domain wall fermion
of the four-dimensional gauge fields at the boundaries is es- . - . .
. Now we consider the partition function of the domain
timated as ;
wall fermion,
0/ 111 - _ _
|Uk@ - Vi@l =2A1-Ps(2)l, z=(x1), (25 detDe,— mo)lor (2.10

whereP,,(2) is the five-dimensional plaquette variable. By and examine its dependence on the path of the interpolation.

taking A large enough, we can make—Ps(z) small S .
enough. Therefore we may assume that the whole five!-‘et us dencte by, the original choice of the path of the

dimensional gauge fieldJ ,(x.t), interpolating between interpolation, which is represented by the five-dimensional
M 1 ’ - .
U(k’(x) and U&(x), is smooth enough and satisfies the five.Jauge field ,(x,t). In order to examine the dependence on

. . . ) the path, we introduce another path, sayand consider the
dimensional bound on the field strength as follows: difference of the logarithm of the partition function:

1
I1-P,(2)]<€, e'<§){1—|1—m0|2}. (2.6) In de{ D5y, — Mp)| 2 — Inde(Dsy,—mp) |, (2.11)

This condition, as we will see below, ensures that the Chern- L€t us assume first that the five-dimensional gauge field
Simons current induced from the five-dimensional Wilson-representing the patty can be deformed to that representing
Dirac fermion is a local functional of the gauge field. Thethe pathc;, while satisfying the constraint on the five-
locality of the Chern-Simons current allows us the cohomo-dimensional plaquette variables E@.6). Whether this is
logical analyis of the gauge anomaly in the context of do-always possible for any two paths depends on the topological
main wall fermion. structure of the space of the admissible gauge fields in con-
The above argument is not complete in the sense that fideration. Since the two paths can be regareded to form a
does not provide the constructive proof of the existence of atPop in the space of the gauge fieldsig. 3), the above
interpolating five-dimensional gauge field for any admissiblecondition is equivalent to whether any loops in the space of
gauge fields at the boundaries. The locality properties of suckie gauge fields can be contractible to the point, or not. The
an interpolating five-dimensional field should also be clari-case with the noncontractible loops will be discussed later.
fied. These questions are beyond the scope of this paper. ~ We then parametrize the smooth deformation of the path
We also note a symmetry property of the five-dimensionaby the parameterse[0,1] as U3(z) where U3 °(2)
Wilson-Dirac fermion. By the reflection of the gauge field in =U ,(x)* and UZ:J'(Z)=UM(Z)C2. By differentiating the

the fifth direction, partition function with respect to the parameteand inte-
grating back, we obtain an expression for the difference of
U Ot U (o Ur(x,t)=Uy(x,—t+1) the partition function,
X, X,1)= ) _
s DO gt = Ugtx ) c C
(2.7 In det Ds,,—mo) |5, — In detDs,,—mo) | i,
A
the five-dimensional Wilson-Dirac operator transforms as 1
follows: =f ds> 2 {n3(xt,9)35(xt,9)|pic},
0 X t=—A+1
Dsw— Dgy=P¥sDd, 5P, (2.9 (212

where P is the parity transformation operator in the fifth where 7 (z,5)T=0d5U5(2)U3,(2) " and J5(2)|p;. is given
dimension: by
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} C1.Cy | —Cp S| (NHOO) (216)
| ! Ui(=) ( | . . . .
| | | | In the right-hand sidéRHS) of this identity, we may choose
! [ [ | any paths forc,. By choosingc, andc4, respectively, we can
Up(x) | | | L V@) further obtain two identities as follows:
{ 1 |

—-N+1 0 N oN 3N 6pt(—c)
o _ _ Eq.(2.16=Inde{Ds,,— mp)| 2
FIG. 4. Five-dimensional gauge field representing the loop.

—Inde(Dsy,— Mp) |;1P+(7C2)

! (213 Cot(—cq)

Dir. =Inde{(Ds,— mO)|Ap

‘]Z(Z)|Dir.:Tr(VZ(Z)m)

1 —Inde{Ds,—mg)|SL" Y. (2.17
Vi(2)=|5 (7, DTU,(2)6;5,; v

1t w2y

By averaging these two expressions and using the property

T 3(7 +1)U (2) L of the five-dimensional Wilson-Dirac operator under the re-
2°# “ flectiont— —t+1, we finally obtain
X Ta5222521.22+;1] . (2.19 Inde{Ds,,— m0)|([:)2ir. —Inde(Ds,— mO)chlir.

_1 _ Ca+(—Cp)
Since the variation of the gauge fied;i(z,s) is restricted in =2 INde(Dsw—mo)[ 45

the interpolation regione [ — A+ 1,A], the summation over ~inde(Dg,—m )|c1+(—c1)

t in the above expression is restricted in the same finite re- 2 Sw T07laP

gion. +iImInde{Dg,—mg)|2 Y (N—0).
Because of this fact, as will be shown in detail in Appen- (Dsw=Mo)l 5 (N—)

dix D, the difference Eq(2.12 is well-defined and finite in (2.18

the limit N— oo, as long as the gauge fields at the boundaries,
U(k’ and U&, are topologically trivial and do not cause any This identity may be regarded as the integrability condition
accidental zero modes of the low energy effective Dirac opfor the domain wall fermion.
erator. In particular, the inverse five-dimensional Wilson- Several comments about this result are in order. First of
Dirac operator in Eq(2.13, satisfying the Dirichlet bound- all, in the RHS of this identity, the partition functions are
ary condition, can be replaced by the inverse five-defined with the antiperiodic boundary condition and it is
dimensional Wilson-Dirac operator defined in the infinite clear that there is no contribution from the low-lying chiral
extent of the fifth dimension, modes. They are defined well for any topological sector of
Up andU} . Secondly, the first and second terms in the RHS
are turned out to be real by the reflection property and they
depend on the single patlts and c,, respectively. These
terms then can be used to subtract the bulk contribution in
wheret,t’ e[ —A+1,A]. This implies that the path depen- the partition function of the domain wall fermion as
dence of the partition function of the domain wall fermion
actually does not depend on the specific choice of the Dirich- e 1 G (=)
let boundary condition, which supports the chiral zero modes ~ Inde{(Ds,,—mg)|J;, — >Inde(Dsy,—mo)[p "
at the boundaries.

In order to make this point clear and to formulate an in- _
tegrability condition for the domain wall fermion, we intro- (i=1,2). (219
duce the five-dimensional Wilson-Dirac fermion defined in
the intervalt e [— N+ 1,3N] in the fifth dimension and with ~ Thirdly, an important observation is that the imaginary part
the antiperiodic boundary condition. The five-dimensionalof the RHS is the complex phase induced from the five-
gauge field which couples to this Wilson-Dirac fermion is dimensional Wilson-Dirac fermion with a negative mass,
assumed to form a loop in the space of the gauge field so thathich has been known to reproduce the Chern-Simons term
it goes along the patle, (or c,) and comes back along a in the classical continuum lim{t31]. We denote this lattice

certain pathc, (Fig. 4). Then we can infer that, in the limit Chern-Simons term associated with the lagp-(—c;) as

Cot+(—cq).
N—oo, 5w :

1
e— xtyt')=———(xt,yt"), (2.1
S Dir'( Y= 5o XYY, (219

_ Cyr _ Cq _ . _
Inde(Ds,—Mo)| i, —In det Dy —Mo) 5, Q2" "Y'= lim Im In de{ Ds,,— mg)| 52" V.
¢t (= co) N

Inde(Dsy—Mp)| 4p (2.20

Co+(—co) _

=In de(DSW_ m0)|Ap
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C. A sufficient condition for the path independence fields, U) and Ui. Thus the reduction from the five-
of the domain wall fermion dimensional lattice to the four-dimensional lattice is
Now we discuss the requirement to obtain the partition@chieved. . .
function of the domain wall fermion which does not depend We Wwill see in Sec. V that this result holds for all topo-
on the path of the interpolation and which is gauge invariant/ogical sectors, through the more direct calculation of the

A sufficient condition for this can be stated as follows: partition function of the domain wall fermion.
It is possible to construct a local counterterm which ) )
makes the partition function of the domain wall fermion in- 2. Gauge Invariance

dependent of the path of the interpolation in a gauge- Let us examine the gauge transformation property of the
invariant manner, if the lattice Chern-Simons term in the(subtractedl partition function of the domain wall fermion

RHS of the integrability condition Eqg. (2.18) can be ex-with the local counter term under the gauge transformation
pressed in the form for Uy,

3N
2 = lim S Gsw(2). (22D
N+1 x

Nosoo t=—

UL()—9UR(x) =g(x)UL(x)g(x+k) "1 (2.2

Since the partition function does not depend on the interpo-

lation betweenU! andU®, one may choose any interpola-

tional of the five-dimensional gauge field, for all possibletlon.Ioath between them. In this case, It lurns out to be con-
’ venient to choose the interpolation as follows: we first

loops in the space of gauge fields. ; :
We first assume that this is the case and discuss the Cohrlterpolate the gauge function as

where ,,(2) is a smooth, local, and gauge-invariant func-

sequences of this condition. In the next sections, we will g(x), te[A+1N],
discuss how to obtain the local and gauge-invariant func-
1, te[—-N+1,—A],

1. Local counterterm
and then apply it as a five-dimensional gauge transformation

The |mmed|ate (g(2)+n(siec(f)uence of the Iocahzatlop propert){o the gauge field representing the original interpolation be-
of gsw(2) is that QZ, can be decomposed into two tweenU& andU‘k)

partsCg?, andcgvcl)= —Cgt , which are associated with the
pathsc, and c,, respectively, and do not depend on other Uﬂ(z)—>GUM(z)=G(Z)UM(Z)G(2+ [L)*l. (2.28
paths. Namely,

In Eq. (2.25), the partition functions of the five-dimensional
cot(=C1) _ ¢ _ % (2.22 Wilson-Dirac fermions with both boundary conditions are
sw swo W invariant under such five-dimensional gauge transformation.

Then the gauge transformation is given solely by the gauge

where variation of the counterterm associated with the path
N N
C1_ | .
CSW_N“TOO t:—EN+1 ; Asw(2), (2.23 8cCet = lim t ENH 2 50sw(2). (2.29
N—oo 1=

. SN Thus the question of the gauge invariance of the system re-
—Cg2=Ilim > 2 Gsul2). (2.24  duces to the question of the gauge invariance of the counter-
N—e t=FNFL X term associated with the path. Whenqs,(z) is a gauge

) - N invariant local field, it is gauge invariant.
Then from the integrability condition Eq2.18 we can

infer that in the limitN— o Ill. PROPERTIES OF LATTICE CHERN-SIMONS

CURRENT
_ C2
detDsu n:oil('i"c' TETE al ;iv In this section, we discuss properties of the Chern-Simons
|de(Ds,,— m0)|A2p 2l current which is obtained from the lattice Chern-Simons
term by the variation with respect to gauge field. We will
de{Dsy— mo)|colir_ Lich argue that the lattice Chern-Simons current is a smooth and

= |detDs _m0)|c1+(—c1)|1/2 sw.  (2.29 local functional of the gauge field.
w AP

This holds for any two paths. Therefore tfsaibtracted par- A. Chern-Simons current

tition function of the domain wall fermion plus the local  Let us consider the smooth deformation of the five-
counter term does not depend on the path of the interpolatiodimensional gauge field ,(z) representing the loop in the
and is determined uniquely by the four-dimensional gaugeChern-Simons term. Under the deformation
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L ) 1. Given the positive lower and upper bounds for the five-
68U, (29U, (2) =T} (2), THT* T }=— 507 dimensional Wilson-Dirac operator,
3.1 ~ ~
( ) a$(D5W— mo)T(DSW_ m0)$,8, (39)

the variation of the lattice Chern-Simons term is given by . . . . . i .
9 y it follows that the inverse five-dimensional Wilson-Dirac op-

erator in the infinite lattice decays exponentially at large dis-
tance in the five dimensior82,35:

1
SImTrLn(Dsgy—Mp)|ap=Im Tr( 6D5Wﬁ)
5w Illo

AP
3.2 L
o2 {D;WDSW}1<z,w>||<Cexp{—§d5<z,w>], (310
= 2(2)J3(2), 3.3
2z 7u(23(2) 33 whereds(z,w) =|z—w|=|x—y|+|s—t| and
where o M ( 1 ds(zw) ) 610
S B-a\l-t 2 (1-1)2)’ '
B(2)=ImTr| V&(2) m——— , 3.4
AB=Im I’( M(Z)D5W_m0) AP o y . Bta
t=e Y coshd==——. (3.12
B—«a

1 1
VZ(Z) = E( Yu— l)TaU#(Z) 52215Zl+/;,,22+ 5( YT 1)

Similar exponential bound can be established for the differ-
entiation with respect to the gauge field.

XUM(Z)lTaﬁ%ﬁzl,ZZH;]. (3.5 The Chern-Simons current in consideration is defined in
the finite volume lattice. It can be expressed in terms of the

a . inverse five-dimensional Wilson-Dirac operator in the infi-
We refer to the curreni, (z) as the Chern-Simons current.. nite lattice as

Since the Chern-Simons current is defined by the varia-
tion of the Chern-Simons term which is the gauge-invariant 1 1
functional of the five-dimensional gauge field, it is gauge- J‘;(Z)= 2 (—)”5Imtr(z(yu—l)TaUM(z)D—_

5w

covariant, integrable and conserved: nez® Mo

N 1

X(z+u,z+n-L)+ =(y,+ ~lta

S 728352~ 526,5(2) (Frmzen g u s DULET

1 N

X ———(z,z+pu+n-L)|, (3.13

~2 {72,421 %5@=0, 39 DM
wheren-L=(Z¢n)L+ns(4N). Then we see that the depen-
{D}J,}3(2)=0. dence of the Chern-Simons current on the gauge field is ex-

(3.7 ponentially suppressed at large distance in the leading con-
tribution with n=0, while the remaining dependences on the
B. Locality of the Chern-Simons current gauge field are at most of ordeiO(exp(-6L/2),

exp(—62N)) and exponentially small. In this sense, the

Next we argue that the Chern-Simons current is a locahern-Simons current in the finite volume lattice can be re-
functional of the five-dimensional gauge field, as long as thegarded as a local functional of gauge field.

constraint on the five-dimensional plaquette variables Eq.
(2.6) is satisfied. This fact follows from the following con-
sideration. With the bound E@2.6), we infer that the five-
dimensional Wilson-Dirac operator is bounded from below If we consider the variation of the Chern-Simons term
by a positive constari32,35, under the gauge transformation, we obtain

C. The Chern-Simons current and gauge anomaly

Y D M= (1 — 2_1q_
(Dow=Mo)'(Dsy—Mo) ={(1-506)**~[1 m0|}2.(3.8) 5|mTI’Ln(D5W_m0)|AP:22 {D,0(2)}7(2)

=22 9,103(2)33(2)}.

3&# and(?; denote the forward and backward difference operators,
res:pectively,auf(x)={f(x+,u)ff(x)} and g5, f(x) ={f(x) — f(x (3.14
—w)}, while D, and D; denote the covariant counterparts,

D#f(z)={Uﬂ(z)f(z+,&)uﬂ(z)*1ff(z)} and D}f(z)=1(2) The flow of the Chern-Simons current should be responsible
U, (z—w)f(z— U (z—p) "L for the gauge anomaly associated with the chiral zero mode
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at the boundariep45]. In fact, it has been shown by Golter- T . 1 .
man, Jansen, and KapldB6] that the asymptotic value of 5” dSm(Z,S)JM(ZHu; :—LdS{DMsw(Z-S)}a\]M(Z)uz-

the fifth component of the Chern-Simons current reproduces 0 4.2
the known result of the gauge anomaly in the classical con- '
tinuum limit: The clue to obtain the gauge invariant local field is to note

that the field in Eq(4.2 may be corrected by the total di-

) o 1 Al 1 vergence of a certain local currelt,(z) without affecting
lim lim J5(x,N)=— 3072 €ximn TH T F i () Fina(X)}- the Chern-Simons term:

a—0 N—oo
(3.19 1
Im Tr Ln(Dsy— M) [ ap(1) = > f ds{7.(2,9)3(2)|us
IV. RECONSTRUCTION OF THE CHERN-SIMONS TERM ’ °
FROM THE CHERN-SIMONS CURRENT - 0ZK,¢(Z)|UZ,%}- 4.3

In this section, we discuss how to obtain the local and i ) )
gauge invariant field of the Chern-Simons term. Using thel N€ local field can be made gauge invariang§{z) would
Chern-Simons current obtained in the previous section, w&alisfy the relation
introduce a local topological field on (51)-dimensional a a B a-a
space and formulate a local cohomology problem. We will o1 7u(2,8)35(D)us} = —{D 950 (2,9)}* I (D) ue
see that the trivial solution of the cohomolo roblem leads

vial SolUT 9y p =75 0K ,(2)lus (4.4)
m

to the local field with the required properties.

with a certain local currenK ,(z), under the infinitesimal
gauge transformatiodU i{UZ}*lz —D,w(z,s). As we can

Let us first assume that a lodpn the space of the gauge see from Eq(4.4), the question whethel, (z) would satisfy
the five-dimensional gauge field, (z) representing the loop  gefines a local conomology problem.
| can be deformed to the uniform gauge field, (z) This cohomology problem can be reformulated as a local
=Ug(x) (for all t), while satisfying the constraint on the cohomology problem in higher dimensiof4]. In the next
five-dimensional plaquette variables Ef.6). It depends on  subsection, we formulate the cohomology problem in five-
the topological structure of the space of the admissible gauggimensinal lattice plus one dimensional continuum space.
fields in consideration, whether all possible loops are con-
tractible or not. The case with the noncontractible loops will
be discussed later. )

Let us parametrize the smooth deformation of the lbop _ In order to reformulate the local cohomology problem in
by the parameterse[0,1] as US(z), where US™°(2) five-dimensinal lattice plus one dimensional continuum
=Up(x) andU3 %(2)=U,(2). The trivial interpolationthe ~ SPaC€. let us introduce a gauge field on the
point) ats=0 is denoted by?. By differentiating the Chern- (°+1)-dimensional space as

A. Contractible loops

B. Cohomology problem in(5+1)-dimensional space

Slm_ons term with respect to the pgramea;eand then mt_e- (U ,(2,9),Ag(2,5)), (4.5

grating back, we obtain an expression for the Chern-Simons

term as where Ag=T3A2 and its gauge transformation property is
specified as

1
1M T Ln(Dsy~ Mo [ap(1) =2 [ fodsn,i(z,suz(zﬂu; ,

4.9

Ag(2,5)—CAg(z,9)

=G(z,9)A¢(2,5)G(z,8) " 1—9,G(z,5)G(z,5) L.
where 75(z,5) T?= aSUfL(z)UfL(z)‘l. Here we took account (4.6)

of the fact that for the point® represented by the uniform

gauge fielduz(x), the Chern-Simons term vanishes identi- Accordingly, the covariant derivative in the continuum di-
cally, Im Tr Ln(Ds,,— mo)|ap(1°) =0, because of the reflec- mension can be defined by

tion property of the five-dimensional Wilson-Dirac operator

discussed in Sec. II. DU ,(z,8)= 35U ,(z,5) + As(Z;9)U ,(2,9)
The Chern-Simons term so reconstructed is now given by -
the sum of the local field in the curly bracket, because the —Uu(z,8)Ae(z+ 1,8). (4.7)

Chern-Simons current is a local functional of the gauge field. ) ) ) .
We note, however, that the local field is not gauge invariant, W& now introduce a gauge invariant and local figldhe
In fact, under an infinitesimal gauge transformation,(®+1)-dimensional spacey

SUS{US1~1=—D w(z,s), the variation of the local field is _
givgi, b’;,} w29 A(z,5)={DU (29U ,(z5) 1 (2)ys (4.8
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=75(2,9)35(2)|ys where sUS{U5} '=-D,w(z,;s) and §A6=[w§z,s),A_6]
® —dsw(z,8). On the other hand, by setting the link variables
_{DuAe(Zys)}aJZ(Z”UZ’ (4.9  sindependent in Eq4.12), we obtain
a P — oK, (2,9)
whereTanﬂ(z,s)=¢9SUM(z,s)UM(z,s) . This local field is —{DMAG(z,s)}aji(z)|U :3Z 2 5A—A6(w,s) .
topological. Namely, the summation of the field over the (5 a w 6(W,S) u,

+1)-dimensional space is invariant under the local variation (4.17)

f the (5+1)-di ional field:
of the ( )-dimensional gauge fie By settingAg(z,5) = — dsw(z,S) in this equation and using

2 1 Eq. (4.16), we obtain
dsdéq(z,s)=0. 4.1

z fo q( ) ( @ _{Dﬂﬁsw(Z,S)}aJi(Z”UISL:&;5KM(Z)|UZ’A6:0.

. 1 a _ _ (4.18

In fact, denotingsU ,U , =Ta§ﬂ and using Eq(3.6), it fol-

lows from the second expression of the topological field inThus Eq.(4.4) is indeed satisfied.

Eq. (4.9 that In this manner, we can reconstruct the Chern-Simons term

with the required properties for all contractible loops,

through the cohomology problem with the topological field

1 1
g fods5q<z,s>=EZ fodws{ézJZ}—&ﬂa{AéJi}» Eq. (4.9).
(4.11

C. The ansatz for noncontractible loops
Now let us assume that this topological field is cohomo- \when the topological field Eq4.8) is shown to be co-

logically trivial, that is, it can be written in the form homologically trivial, the remaining issue is to show the con-

dition Eq.(2.21) for all possible noncontractible loops. One
a(z,8) =3 K,.(2,9) + dske(Z,5), (412 may tryke(z,s) as the ansatz for the Chern-Simons term:

where (k,,(z,5),kg(z,5)) is a local current which is gauge - _

invariant under the (% 1)-dimensional gauge transforma- Q5W_§ ke(z,5=1). (4.19

tion. Then we can see thlag(z,s) provides the desired local,

gauge invariant field with the required properties. In fact,The question is then to show

from the (5+1)-dimensional gauge invariance and the fact .

thatq(z,s) is a linear functional oDU,, U, *, we infer that expl(iQsw) = expiQsy) (4.20

ke(z,s) cannot depend omhg(z,s) and its sdependence

comes from that of the link variablkdi. Then we can set for all noncontractible loops.

This problem requires first to figure out the topological
structure of the space of the gauge fields in consideration,
Q5= Ke(z,5=1) (4.13  which is constrained by the admissibility condition. So far,

z the topological structure of the space of the admissible gauge
field is known only for abelian gauge theorig3]. In this

1 case, it is indeed possible to show that the topological field
:E fo ds{”i(z's)‘]i(zﬂui_ﬂzku(z’s)“e:O}’ Eq. (4.8 is cohomologically trivial and to establish Eq.
(4.14 (4.20 for all loops in the space of the gauge field, as shown
in the approach of the Ginsparg-Wilson relati@.
assuming> ,ke(z,s=0)=0.
From the (5+1)-dimensional gauge invariance of D. Some results in the infinite four-dimensional volume

K,.(2,9) f}”d the fact thag(z,s) is a linear functional of In the infinite four-dimensional volume, the cohomology
DUV, ", we alslo infer thak,,(z,s) must be a linear func-  proplem in (5+ 1)-dimensional space defined in the previous
tional of DU U, * written as subsections can be solved in certain cds&$5,7,10,11). In
this subsection, we describe how to construct the local coun-
K,(2,5)= 2 jZV(Z,S;W){DsU V(W,S)Uy(w,s)’l}a. Ler;teerms for the theories in the infinite four-dimensional vol-
™ .

(4.15
1. Abelian chiral gauge theories
This in turn implies that In the Abelian gauge theories, the lattice Chern-Simons
current is a gauge-invariant conserved current, which is a

ok, (z,s) local functional of the gauge fields:

6{kﬂ(zrs)|UZ,A6:O}+§ SAw,s) Pe(WS)=0, )
(4.16 83,(2)=0, 3, (2)=0. (4.21)
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With these two conditions we can directly apply the cohomo-Then we obtain the local expression of the lattice Chern-
logical method using the Poincalemma on the lattic€5,7] Simons term(the local counterterinwhich is manifestly

to J,(2), to obtain gauge invariant:
_ . - 1. - -
J/,L(z)_a,u.—"_B/LVITFV(T(Z v 0-)+ 76Mv4rpTerr(Z v O-) QSW:EZ EXV/L(Z_ V)FVM(Z_ V). (428)
XFPT(Z_V_O'—p—T)'f'atXVM(Z), (4.22

) ) ) ) ~ 2. Non-Abelian chiral gauge theories in lattice perturbation
where x,,,(2) is a gauge-invariant and local antisymmetric theory

tensor field and . . o
In the anomaly-free non-Abelian chiral gauge theories, it

1 A A is possible to show that the topological field E4.9) is
Fu(2)= i—ln{UM(z)Uy(er ,u)U;l(Z+ v)Uljl(z)}. cohomologically trivial to any orders of the lattice perturba-
4.23 tion theory, as shown in the approach based on the Ginsparg-
’ Wilson relation[10,11]. In particular, one can construct the
local field of the Chern-Simons term directly from the lattice
kChern—Simons current, to any orders of the perturbation
theory.
In the lattice perturbation theory, non-Abelian lattice
gauge fields are treated in the expansion of the gauge cou-
pling constant,

From the lattice symmetries, we infer that andg,,,, van-
ish identically. Through explicit calculations in the wea
coupling expansion, we can also verify thaf, and 3,,,
vanish identically andy= —1/3272 [28]. From this result,
we can reconstruct the lattice Chern-Simons terfh as

1
= dsA,(2)J,(2)|a. U, (z;s)=e'S"? .
Qa= 2 fo Au23uDla-on TV, (zi8) =] Uu(2)=1+ 2, (igA,(2))" (4.29
1 . . . .
_ _S_- Accordingly, the local field of the lattice Chern-Simons term
=2 3 F F
Ez 3 YeuropAuDF o2 v=)F; may be assumed to have the expansion in the gauge coupling
constant:
X(z=v—a—p—1)+> Fx,(2DA(2), (429 .
z
Qsw=2 2, d6u()- (4.30

where
Let us assume that the local fields,(z) are constructed to
the orderl=n and consider how to construct the local field
(4.295
of the orderl=n+1.
Since the Chern-Simons term should produce the Chern-
If we consider an anomaly free Abelian chiral gaugeSimons current under the local variation of the gauge field,

theory, the charges of the Weyl fermions should satisfy the
condition U.(2)—U,(2)+ 7,2V ,(2), (4.3

we should have

R 1
XV,LL(Z): J;) dSXVM(Z)lA—)SA'

> e=o. (4.26)

> 8,050 2)=7(2)3(2). (4.32
Then, by rescaling the gauge field as—e,A, in each =1
Weyl fermion contributions, we can see that the first term OfThen we ma dth iati f the Chem-Si s
the lattice Chern-Simons term vanishes identically. As to the € may expand Ihe variation ot In€ “.hern-sImons cur
second term, we may add the following total divergence tern{em_ which is subtracted by the local fields up to the older

without affecting the lattice Chern-Simons term: =n

=2 T l(DAL(2). 42 T@DNE- 2 8,a0@= @@+ 0g").
‘ (4.33

“HereA ,(2) is the vector potential which represents the original The leading term n this expansi ”‘-(n)(z)’ IS @ qual field
Do . ) of the vector potential of ordd=n. Since the LHS is gauge
admissible(five-dim,) link variableU ,(z) and the field strength as . m a(n) L . -
follows [5]: U,(2)=€"«@; |A,(2)|<m(1+10/zZ]); F,.(2) invariant up to0(g"), J,,"(2) is invariant under the linear-
=d,A,(2)—d,A,(2). This vector potential itself is not a local ized gauge transformation,

functional of the original link variabléJ ,(z), but its local, gauge a a a
invariant functional becomes a local functional Wf,(z). AL(2)—A(2)+0,0%2) (4.39

074504-9
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and the global gauge transformation. It also satisfies the con- . 2
servation law, Flu(@—= THTI1-U,.(2)1, (4.43

* qa(n) —
Tudu (D=0, (4.39 and by the replacement of the vector potentials in Bqi2

From these conditions, we can directly apply the cohomo®S

logical method for the Abelian gauge theorigs,7] to R
~ a a
J2"(2), to obtain Az —=AL(2,2))

B2 ()=a5x3M(z)  (n#2), (4.36 =§Tr{Ta[1—W(z,zk)UM(zk)

where x3((z) is a local field which is invariant under the
Ilnearlzed gauge transformation and the global gauge trans-
formation. When and only when=2, a cohomologically
non-trivial term can appear as

XW(z,z+ 1) "1}, (4.49

whereW(z,z,) is defined as the ordered product of the link

variables frong, to zalong the shortest path that first goes in

direction 1, then direction 2, and so on. Since it coincides
with the original vector potential up to the linearized gauge
+o* Xii,,z)(z)a (4.37)  transformation in the expansion of the gauge coupling con-
stant as

Ja2)(z)=dacye b (z=v=p)FS(z=v—p—0—T)

,l,LVp(TT oT

which vanishes identically by the anomaly-free condition
As(z,2) = 9{AL(Z) + F(z2,29}+0(g%), (4.49
> dabe= Tr(T¥TP,T°)=0. (4.39
wherew(z,z) is the oriented line sum of the gauge potential

From this result, we can obtain the local field of order TOM Zc 102z along(;nir}? same path as defined Wi(z,z,), the
—n+1, which reproduced®™(z) under the local variation leading term ofgg,, ~’(z) so defined actually coincides with
! I

+1
of the gauge field, as qsw ().
1. -
a8 V(2= X2 (z- »)E2 (- ), (4.39 V- CONNECTION TO THE LATTICE THEORY OF WEYL
2 FERMION BASED ON THE GINSPARG-WILSON
H RELATION
where
In this section, we discuss the connection of the chiral
2 (2)=39,A%(2)—3,A%2) (4.40  domain wall fermion discussed so far to the gauge-invariant
construction of chiral gauge theories based on the Ginsparg-
and Wilson relation[3,4]. We will establish an identity relating

the partition function of the domain wall fermidsubtracted
and with the local countertepmand the partition function of

Xi&n)(Z)ZJ dsy3(2) n+1X3§?)( ). the Weyl fermion defined with the overlap Dirac operator
A—sA satisfying the Ginsparg-Wilson relation.
(4.41

Here we have used the fact thgig‘)(z) has the following A. Weyl fermion defined through the overlap Dirac operator

structure in the vector potentials: The lattice Dirac fermion theory defined with the Dirac
operator which satisfies the Ginsparg-Wilson relation
am(z)= anisdz Anz.z 7 .2 - -

XED=2 X @222 ) ysD+Dys=0, 7y5=ys(1—2D), (5.9

XA (2))A%2(z,)- - A% (z,). 4.4 : :
“1( v “2( 2 “n( ) (442 possesses the exact symmetry under the chiral transformation

The above fieldi{}, *)(2) is invariant under the linearized
gauge transformation and the global gauge transformation.

Next step is to construd{""¥)(z) which is gauge invariant , , ,
under the full non-Abelian gauge transformation, while its5@S€d on this exact chiral symmetry, the lattice Weyl fer-

leading term in the expansion of the gauge coupling constadfion can be defined by imposing the constraint with the
remains to coincide witlg""1(z). For this purpose, we chiral operatorsys and ys,

follow the method adopted ifLl1]. Namely, this step can be . . .
achieved by the replacement of the field strength as Vsr(X) =+ Yr(X), Pr(X)ys=—ir(X). (5.3

SY(X)="ysh(X),  SP(X)=(X) s. (5.2
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By introducing the orthnormal basis for the Weyl fermion,

— . H
{vi)]i=1,2,...} and{v(x)|k=1,2,...}° as ¥5=7vs(1-2D)=— N (5.12
Ys0i00=Fi(),  (vi,0)) =8, (54 and the chiral basisip;(x)|i=1,2, ...}, can be chosen as

_ — - — the eigenvectors dfl belonging to the negative eigenvalues
vk(X) ys=—vk(X), (vk,v)= b, (35 (up to the global phase choiceThe partition function re-
ulted from the path-integral formula E¢p.6), reproduces

the functional measure of the Weyl fermion can be set up an e overlap formula of the chiral determindnf]:

the path-integral formula of the partition function can be

defined: det(v,,Dv;)=detvy v)). (5.13
Zw=f D[ wR]D[ER]e_EJR(X)D“’R(XEde‘(v_k,va). Here the phase'of the chiral basig can be chosen fo!lowing
the gauge-invariant method ¢8,4] in anomaly-free chiral

(5.6 gauge theories.

The choice of the basi®;(x)|i=1,2, . ..} may be differ-

ent by a unitary transformation B. Gauge-invariant partition function of Weyl fermions from

the domain wall fermion

= )= We now argue the connection of tkgubtracteg partition
(X)—v(x)= i(X)Qii 5. : . . -
vi(X)=vi(x) EJ: 0i()Q; 57 function of the domain wall fermion with the local counter-
term,
which depends on the gauge field in general becéfgsk)es .
so. Then the measure is changed by the phase factor _ dei(Dsy,—Mmo) |,

C1+(*<31)|1/2

lim e Cswlc) (514
N— o0 |de( Dsw— m0)|Ap

DY) Dl Yrl— Dl Yr] Dl yrldefQ;}. (5.8

Accordingly, the partition function is changed by to the partition function of the Weyl fermion given by Eq.

(5.13.7
de{v,,Dv.)—delvy,Dv;)=de(v,Dv.)defQ;}.
(i UJ)_) (i UJ) (i UJ) {QJ'}(S 1. Partition functions of the 5-dimensional Wilson fermions

The partition functions of the five-dimensional Wilson
fermions with the Dirichlet boundary condition and with the

) : antiperiodic boundary condition can be expressed explicitly
met_hpd to f'X.the phase of the fqnctlonal megs(mgd Fhe in terms of the transfer matrix, as shown in Appendix B. The
partition function has been described so that it satisfies theresults are given as follows:

requirements of the smoothness, the locality and the gauge

invariance. _ _ _ o (N=4)
Our target in this paper is the Weyl fermion theory which  de{(Dsy,—mo)|5i =det P+ P T}

is defined with the overlap Dirac operator satisfying the

In the gauge-invariant construction of the chiral gauge theo
ries based on the Ginsparg-Wilson relati@4], a general

Ginsparg-Wilson relatiofi14,15. The overlap Dirac opera- . . NeA
tor, D, is given by the explicit formul&14] XiUs 1:[ TiUseoa1 To
1
D ! 1 A ) (5.10 )
=5\ 1tyvs—=]. : Xdet Pr+P U N
2 JH R Lg 51 t:HN+1 ts
HereH is chosen as the Hermitian operator obtained through (5.19
the transfer matrix of the five-dimensional Wilson-Dirac
fermion®
"It may be worthwhile to recall the situation in the vectorlike case.
H=—InT. (5.1 In the vectorlike theorie§30], the connection between the domain
~ wall fermion and the overlap Dirac operator is directly seen in the
In this caseys is given by the spectrum asymmetry laf fact that the determinant of domain wall fermisubject to Dirich-

let boundary condition in the fifth dimensipms factorized into
four-dimensional part for the low-lying massless mode and five-
S(vi,v;) is the inner product of the spinor field defined by dimensional part for the remaining massive modet,48:
(0;.,07)= S0 Tv;(x). lim _[detDsy—mo)|pi./det(Dsy—Mo)|ap] = detD. In the LHS,
®Borici has pointed out that the transfer matrix can be expressed is the size of the fifth dimension and the contribution of the
by a simpler four-dimensional Hermitian matrix @s= (1+H)/(1 massive modes is factorized in the determinant of the five-
—H), H=vy5(Dy—mg)(1[1+as(D,—mp)]), which leads to the dimensional Wilson fermion subject to the antiperiodic boundary
same spectrum asymmetry operatdf/H >=H/\H? [46]. condition in the fifth dimensiof48].
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In these formulas, the dominant term #" %) in the

de{Dg,—mp)| 5L %
AP limit N— is estimated as follows:

_ N—-A -1 -1 _ _ _

_de*<1+TO (U5 IC[O TtUS,tl] TN = p TN=2) 4 (1 py) TN

xT2N=80y ] Ttusfl]Tg‘A) => 00® 0 TeN-0)]

Cy i
3N 0
+0(e” (N7, 5.1
xdet( Pe+P. [1 U5Vt) T N, ( ) (617
et (=) N where the projection operat®, is introduced by
(5.1
H < th ; o H lci 1 Ho

where T, |s_t e_trans er _matrlx Wltr_Uk(x,t), the explicit PO:E 1- —|, He=—InTg, (5.18
form of which is given in Appendix A, andN;=det(P_ VHo

+PgrBy). The subscript 0 and 1 denote the quantities with

U9(x) andU(x), respectivelyUs(x,t) appears in between and{vi(x)} are chosen as eigenfunctionstt§= —In T, be-
the product of the transfer matrices so that the fivelonging to the negative eigenvalues, while A9 is the
dimensional gauge covariance is maintained. Note that fopmallest positive eigenvalue &f,. Similar estimation holds
the Abelian gauge group, the extra phase factor, which corfor T(lN’A). With these results, we can infer that in the limit

sists of the product ofJ5(x,t) 1, appears. N— o0

de{(Ds _m0)|01_
im 1D Dir. :de< PR+PLP1[U5,A1H Ttusfl} Po)det< Pe+P.]] us,t), (5.19
“ﬂ”[ I Nt]N?‘ANQ‘A h N
t==N+1
(=co)
, de(DSW_mO)|Z:}D+ 0 _ _ _ _
lim —x =de<l—P0+ Poj Us 11 Ttumll} P1[u51H TtU5vt11] PO)
I o : “
t==N+1
><de< Pr+P. |1 U5,t>, (5.20
c1+(=¢co)

whereN;=det(1-P;+P,T;) andNy=det(1-Py+ PyT;,). (See Appendix C for the derivation of these resiilts.
From Egs.(5.19 and(5.20, it follows immediately that

Po

xde( P+ P 1 U5Vt)

€1

def Pg+P P{UZA]] TUE
de(Dsy,—mp)| gk ( rRTPL 1( 5,A].:.1[ tYUsio1

—iCsu(c1) = e 1CswlC),

lim

_ cit(=cy)j1/2
N— o0 |de(D5W mO)|Ap | ‘de( 1— PO+ PO U5_11_C[ TtUS_,tl—ll Pl[ U5_11;[ TtU5_,tl—1} PO
M 1
(5.21
2. Factorization of the partition function of the domain wall fermion
Now we introduce the chiral bas{sio(x)} associated with the gauge fieldﬁ(x) as
PouP(x)=vP(x), (vfv))=8; (i,i=12,..). (5.22

{vio(x)} may be chosen as the eigenfunction$igt= — In T, belonging to the negative eigenvalues. Similarly, we introduce the
chiral basis{v{'} associated with the gauge fielts (x). We also introduce the chiral basis for the antifiéig} as

()P =0 (X)  (k=1,2,...). (5.23

In terms of these chiral bases, the formula Ex21) of the (subtracteg partition function of the domain wall fermion with
the local counterterm can be rewritten further as
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detDsy,—Mo) g,

C + —C ] 2 7 ) J )
N—o0 |de(D5W I“O)lAp ( )| !

where

A
de( v} { U;Altzllﬂ Ttusfl] v}

A
de( vil,[ uggt:q . Ttu;tl_l]v?

ei ¢(C1) =

A
><o|e|<PR+PL IT usl. (5.25
t==A+1

The first factor in the right-hand sid&HS) of Eq. (5.24) is nothing but the overlap formula, which gives the partition function
of the right-handed Weyl fermion at=N coupled to the gauge field }(x),

detv,,v})=delv,,Duvl). (5.26

Similarly, the third factor in the RHS of Ed5.24) reproduces the partition function of the left-handed Weyl fermiot=at
—N+1, which couples to the gauge fielif(x). On the other hand, the second factor in the RHS of(E@4), which is the
phase factor defined by E¢p.25),

Y (5.27)

comes from the interpolation between the gauge fidﬂ@() andU,ﬁ(x) 2 It depends on the choices of the chiral baaq%,
{vil} and the pattc,, but the path dependence is to be compensated by the local counter term,

e iCsul(cy), (5.28

From these results, it is quite natural to choose the chiral basis of the Weyl fermion coupled to the gaulgé &isld
follows:

vi(x)e' e iCouwlC)  (j=1),

| wix) (i#1). (5.29

vi(x)

With this choice, thgsubtracted partition function of the domain wall fermion with the local counterterm is factorized into
two chiral determinants:

de(Ds,,—mp)| E)lir_

lim = e Csw(®) =defv,,Dv;)delv,,Dv)*. (5.30
N—o |de(Dg,— m0)|:\1p+( C1)|1/2 : :

The path-independence and the gauge invariance o&_p,@@j) are obvious from this identity.

C. The functional measure of the Weyl fermion from the domain wall fermion

The choice of the chiral basis in E(.29 indeed leads to the functional measure of the Weyl fermion which is independent
of the path of the interpolation. To see this, we choose another patlt,st#yen we get another basis:

Uil(X)ei #(C2)e~iCoulC)  (j=1),
| ok(x) (i#1).

vi(X)

(5.3)

These two bases are related by the unitary transform&jpn

8In the original derivation of the overlap formula [i17], this term was not considered because the gauge field was assumed to be
four-dimensional. It was also true in the wave-guide md8&l39.

9The complex phase part of this identity can be regarded as the lattice counterpart of the relation betweematiant and the effective
action for the chiral fermiong28,49—52. Note also that this result is a generalization of the identity in vectorlike thelgiedg to the case
of chiral gauge theories.
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() =Qj 'v(x), (5.32
which determinant turns out to be

detQ =e~ i ¢(C2)eiC5w(02) . ei ¢(C1)87 ic5w(cl). (533)

But it is not difficult to see that the phase factors along the pathendc, multiply to give
—Cy cq ci1t(—cp)
det( 1-Po+ Po[ Ul Ttugtl_l] Pl[ Uzl Ttugtl_l] ) de( PrtPL I] U5,t)
t t t

el ¢(—c2)  gidlc) = = c ci+(=cy)
de<1_p0+ po|u51]'[ Ttuatl_l} Pl[U51H Ttus,tl_lj)’ de( Pet+P 1 U5,t)
t t t

de(Dg,,—mg) |5 (72

C1+( Cz)|

m
N—e |de(Dgy— mo)|

=eQ%, (5.34

and this identity can be regarded as the integrability condiwhile W is the Wilson line defined by the line integral of the

tion for the phase factor expp(c;)). measure term current,
Since we are assuming that the lattice Chern-Simons term
can be decomposed into the two pa@g andC_ 2 locally W= i S EHAU DU T30 (5.39

and gauge-invariantly,

.ch*( &) oo oS wheret is the continuous parameter of the interpolation.
=€ 5w e 5w, (5.39 The determinant in the LHS of Ed5.36 may be ex-

the determinant of the unitary transformation, @etturns pressed in terms of the chiral bas{@#}, {vj} and{v,} as

out to be unity. This holds for any two paths. Therefore the
measure does not depend on the path of the interpolation and de{1— P, +P DQ;D{)=de(v,Dv})delv;,Qv?)
is determined uniquely. 0

We should note that from the integrability condition Eqg. ><de(Uk'D”j)*' (539
(5.34) and the expression for tHsubtracteg partition func-
tion Eq. (5.24), we can directly infer that Eq2.25 holds  Then we note the correspondence as
and the(subtractegipartition function with the local counter-
term is independent on the path of the interpolation for all { A(ey)

det v; ,[ TI} )

topological sectors. H
t="A+1

detv},Qquf) e ¥ =

D. The connection to the gauge-invariant construction based 1 Ale) 0
on the Ginsparg-Wilson relation det vf, t:gﬂ Ty Uj
Let us now look closely at the connection to the gauge- (5.40

invariant construction by Lscher 3,4]. We note first that our
result Eq.(5.30 should be compared with EG7.1) in [4]:*°  [in the gaugeUs(z)=1], which implies that in the domain
_ _ wall fermion the evolution of the basis of the Weyl fermion
de(1—-P + PLDQng)Wflzde(vk,va)de‘(vk,Dv?)T, is realized by the successive multiplications of the transfer
(5.3 ~ Matrices, like time development along the fifth dimensibn.
] ] ) ) For the loop in the space of the gauge fields, this leads to the
whereQ;, is the evolution operator of the chiral projector correspondence of the integrability conditions:

P1=Q1PoQ; ", (5.3
e note that the use of the transfer matrix here is in the same
spirit as the use of the Hamiltonian for the evolution of tkecond
10since we are considering the right-handed Weyl fermions, in-quantized vacuum states of the overlap formalism, adopted in the
stead of the left-handed Weyl fermior3y in the original equation  adiabatic phase choid@5]. Our result then provides a discretiza-
(7.1) of [4] is replaced byP, . tion method of the continuous evolution.

074504-14



DOMAIN WALL FERMION AND CHIRAL GAUGE ... PHYSICAL REVIEW D 65 074504

e‘fédtzi Wi dwi)=de(1— P+ PyQ;) Ui(X,to+1)=Ug"(x,to+1)
=U (X, 1o+ 1) =U2%(x,to+ 1),
(5.45

and evaluate the variation of the Chern-Simons term, to ob-
The above correspondences become exact in the cofin
tinuum limit of the fifth dimension, which should be taken as et (—cy) ; to+ 1y,
as—0 with Aag fixed. In taking the continuum limit, one AQg, * “=ImIndel(v;®.{v;" }")
may smooth the interpolation further by replaciiig with ttl .t
™ - i ) . +Iminde({v;® "}',v.°)
. and take the limitN,— o first as an intermediate step, to i i

ci+(—cy)

<=>ei o(c1). efi #(Co) — eiQSW

(5.4

get —Imin de(u?o,v}"“)— ImIn defv}®"*,v1)
A(cy) B .
de‘(vil,{ I1 Pt]v?> =Iminde(1—Pp%
; t=—A+1 topto+1ptet2spto+ 11/ pt
gl b(c) = o) (5.42 + Plopto™ tplot<fplo™ 117 plo), (5.46
de( Uil:|tH+1 Pt]v?)‘ In the limit As—0 andag— 0, this variation reduces to
) 1 ) i TrP[dsP,d5P]asAs. (5.47
Then, usingP;=QP,Q; =, we can see that this becomes
identical to det(,Q;v?) in the limitas—0 with Aas fixed.  In the generic gaugtls(z) # 1, this result reads
On the other hand, the dependence of the determinant in
the LHS of Eqg.(5.36 on the path of the interpolation is i T{P[dsP,DsP]+ (dsAs)PlasAs, (5.48

compensated by the Wilson lin®. Here the measure term _ _ o _

S LU (X, 1)U (x,t) “113j2(x,t) is obtained from the topo- an_d |f_ we replace?S to the covariant denvatlv@s., it e'xactly

logical field in (4+ 2)-dimensional spacaV corresponds to ~coincides with the (4-2)-dimensional topological fielf4].

the local counter term exXiCs,(c;)) in the domain wall Finally, we note that the gauge anamaly obtained from the

fermion, where the local fiel#ts(x,t) is obtained from the —@symptotic value of the Chern-Simons current in the domain

topological field in (5+1)-dimensional space: wall fermion is related to the gauge anomaly expressed by
the overlap Dirac operatd [53]:

W= e A0 U0 000 lim J50x,N)= = TH{TysD}(x,%)|u1, (5.49
N— o0
QeiCSW(Cl):eit:Zm 2 ke(x.t) (5.43 lim JS(X,—N‘F].):—Tr{Ta’y5D}(X,X)|U(k>. (5.50

N— o
In this respect, it is possible to see that the topologicaLI_

o . . .~ _To see this, we infer from the locality property of the Chern-
field in (5+ 1)-dimensional space reduces to the topological_: !
field in (4+2)-dimensional space introduced bydaher{4], Simons current that the fifth componenttatN

in the continuum limit. For this, we recall that the 1
(5+1)-dimensional topological field is defined from the lo- Jg‘(x,N)=Tr[ T2 (ys— 1)(— (z+5,2)
cal variation of the Chern-Simons term. From E842 and 2 Dsw=Mo/ | 1p
Eq. (5.34 the Chern-Simons term can be expressed as fol- 1
lows, in the same intermediate step as above: +T3Z (y5+1) ) (z,2+5)
2 D5W_ mo AP (=N
QL 2= 1mIn det(l—PoJr P, (5.5
A=cy) Atey) becomes independent of the interpolation in the liMNit
—oo, depending only on the asymptotic value of the gauge
X{t=q+l Pt] P {t=11+1 Pt} PO) field att=N, Ug(x). Then using the formula of the overlap

Dirac operator expressed in terms of the inverse five-
(544 dimensional Wilson-Dirac operat85,532 given by

In this equation, one may express edghusing the chiral

basis E‘SP't:EiUit‘8 v}*.alnd factorize the determinant. Then 12 [35], domain wall fermion is defined vector-likely in the in-
we consider the minimal deformation of the loop,  tervalte[—N-+1N]. The interval should be extendedte[—N
+(—cy) at a certain pointy+1 in the pathc, as +1,3N] in our case.
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_ Ginsparg-Wilson relatiofi35,46,6Q.12 In this sense, our con-
D=1lim}1-Prlg—— ]| (N,N)P, struction partly shares the general applicability with the
N swo 0 ap gauge-invariant construction based on the Ginsparg-Wilson
1 relation*
_PL(D ) (=N+1,—N+1)Pg In the original proposal by Kaplaf29], the dynamical
sw— Mo/ |ap treatment of the five-dimensional gauge field was also in-
1 tended. The question of this ambitious attempt is still open.
—PR(D —m) (N,—N+1)Pg
w0 ap ACKNOWLEDGMENTS
— pL(;) (=N+1N)P. !, (5.52 The author would like to thank M. lacher and H. Suzuki
Dsw—Mo/ | 5p for valuable discussions and comments. He is also grateful to

P. Hernades, M. Lischer, K. Jansen, H. Wittig, H. Suzuki
we obtain Eqs(549) and (55@ The gauge anoma"es Eqs and K. TObe fOI‘ their k|nd help during h|S Stay at CERN.
(5.49 and(5.50 can be evaluated in the classical continuumY-K. is supported in part by Grant-in-Aid for Scientific Re-
limit as in [28,54 (see alsd55-58) and the earlier calcu- search of Ministry of EducatiofNo. 10740116
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APPENDIX A: TRANSFER MATRIX OF 5-DIMENSIONAL
VI. CONCLUSION WILSON FERMION

The introduction of chirally asymmetric gauge couplings _1he transfer matrix of the five-dimensional Wilson fer-
to the chiral zero modes of domain wall fermion, as theMion is given in the chiral basis of gamma matrices as fol-
original proposal by Kaplan, inevitably makes the system/OWS:
five-dimensional. We have shown that the five-dimensional

dependence can be compensated by the local and gauge- 1 1
invariant counterterm in anomaly-free chiral gauge theories. B B gc
The chiral structure of the dimensionally reduced low en- T=e "= , (A1)
ergy effective action of the chiral zero modes can be under- _C‘ri B+ct=c
stood again by the Ginsparg-Wilson relation. In fact, it pro- B

vides a concrete example of the gauge-invariant construction

of the chiral gauge theories based on the Ginsparg-WilsowhereC andB are two by two matrices in the spinor space
relation, where the continuous interpolation in the space ofvhich define the four-dimensional Wilson-Dirac operaigy
the gauge fields is partly replaced by the discrete step-wisgs
interpolation. Hope is that such discrete treatment of the in-
terpolation of the gauge fields would be useful for a practical
implementation of the gauge-invariant lattice chiral gauge Dy~ My+1=
theories.
We note that in the gauge-invariant construction with the
domain wall fermion, the Ginsparg-Wilson relation is not Explicitly, they are given as follows:
used explicitly, in sharp contrast to the invariant construction
by Luscher based on the Ginsparg-Wilson relation. This is 1
because one of the points of the invariant construction is the C= UME(Vﬂ+V;), (A3)
formulation of the integrability condition in the space of
gauge fields and the idea behind it is generic. The local co-
homology problem follows from the integrability condition,
as long as the requirement of locality is satisfied. B=1+
In this respect, we also note that our construction is ap-
plicable to any domain wall fermion theory defined with a
proper five-dimensional Dirac operator of the structure

(A2)

B C
-ct BJ)”

1
A mo>. (A%)

BBorigi's five-dimensional implementation of the overlap Dirac
operator with the Hermitian Wilson-Dirac operatai; & 0) has this
structure.

Ds(—mo) = (Da(=Mo) + 1) dts= P dts 15~ Prtsea, “The complex phase of the determinant of such a generic five-

(6. dimensional Dirac operatdwith a negaive magsan also produce
the Chern-Simons term. This class of lattice Chern-Simons terms
would be understood in relation to the Ginsparg-Wilson relation in
five dimensions recently discussed by Bietenholtz and Nishimura
[27], since it is straightforward to construct the five-dimensional
Such a five-dimensional fermion theory can lead to a certaimverlap Dirac operatofl16] from such a generic five-dimensional
four-dimensional lattice Dirac operator satisfying the Dirac operator.

D4(—mp) "= y5D4(—mp) ¥s. (6.2
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For the gauge field satisfying the admissibility condition slight extension to include the fifth component of the five-
Eqg. (2.4), the Hamiltonian defined through the transfer ma-dimensional gauge field. A more generic method has been
trix given by Lischer[59,60.

Let us consider the five-dimensional Wilson-Dirac opera-
H=—InT (A5)  tor

has a finite gap30,32,34. W= (Dy— Mo+ 1) s~ PLUs(t) "6 15— Prdrse 1Us(S),

APPENDIX B: EVALUATION OF THE PARTITION (BD)

FUNCTIONS OF 5-DIMENSIONAL WILSON FERMIONS .. ..
wheret,se[ — T+ 1,T] for Dirichlet boundary condition and

In this appendix, we describe the calculation of the func-t,se[ —T+1,3T] for anti-periodic boundary condition. We
tional determinant of the five-dimensional Wilson-Dirac fer- denote the size of the fifth dimension ldsn both cases.N
mion, in the cases with the antiperiodic boundary conditionis an even integer.
and Dirichlet boundary condition in the fifth dimension. Here  In the chiral basis of the gamma matric&¥,is written
we follow the method given by Neuberger [#7], with a  explicitly in the matrix form as follows:

B, C\ [0 © +Y 0
e o o o
-Usr O B, C,
I
W= ,
0 0
[0 _US,NJ
0 0 ~Ugn.1 O By Cy
[o +X [ 0 0} (—CL BN)

whereX=0, Y=0 for the Dirichlet boundary condition and=Usgy, Y= U;,ﬁ for the antiperiodic boundary condition. In
order to makeW almost lower tridiagonal, we first exchange the right- and left-handed component columns fdr Eaeh
we move the leftmost column to the place of the rightmost column:

cC, B 0 O 0 +Y
o ol Lo o o s
0 —-Us:i] (C, By
P e
W=
0 0
[_US,Nl O}
0 0 0 —Ugi s Cn By
+X o} {o 0 } (BN —CL)
B, 0 Y ¢
(—CI —us,l) 0 BJ
-Us; G, B, 0
{ 0 BJ (—CZ _U5,2>
= -1
_U5,2 C3
{ 0 BJ
By O
(—CL +X
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We then introduce the following abbreviations for the
blocked matrix elements:

| ;
i |

Using theseW assumes the following form:

_C;f

B

0
_US,I T _CL

[X=0(Dir.), Usn(AP)]

o

[Y=0(Dir.), Ugn(AP)].

Ci
B,

Usiy
0

Y ¢
0 B,

b=

(B2

ay

Bo

By
an

W=

an

In order to take account of the boundary elemg@it, we
assume the following factorization:

a; By a;
Ba a3 | B2 az
ax ay
1 ~v,
1 _V2
X . ,
1-Vy

and consider the recursion equations for the eleménts
—a1Vi= By,
—B2Vi—ayV,=0,
—Bn-1Vn-2— an-1Vn-1=0,
—BnVn-1t ax(1-Vy)=ax.

These equations can easily be solved to get
N
Vw=axan 11 {=a"Bl-6r78y. (B3

Then the determinant o0& is evaluated as follows:

PHYSICAL REVIEW D 65 074504

N—1
de(Ds,,—Mo)xy= || deta,-detayde(1—Vy)
t=1

N
=[1 detey-det(ay ay—aytaxVy).

Here we have omitted the sign factor given by 1)9(N*1)
whereq=2N.L* andN. is the dimension of the gauge group
representation, because it turns out to be unity.

The products- a; *B;, ay ay andB; By are evaluated
as

1 1C
ooyl B TBS
at ﬂt_ 0 Us—’tl Tl Tl
—Ctg Bt+Ct§Ct
t
(ugtl_l o)
X
0

o vl [

Cl’Nla’x ( —u:C )
5

~UgoY 0)

0 1
Collecting these results, we finally obtain

i

ﬂllﬁv=(

N-1
PrtP Ty tl;[l {U5_,t1TI}

|

de{Dsy—myp) | Dir. = de(

N
Xde‘( PR+ PLH U51> ‘L[l

Xdet(P_+PgB,),

N
deiDgy,— Mp)|ap= det( 1+t1:[1 {US_,tth}

N

X de( Pr+P. 11 U5,t> J1

t t=1

X de( P+ PgB,).

APPENDIX C: THE PARTITION FUNCTIONS IN THE
LIMIT N—oo

In this appendix, we evaluate the partition function of the
five-dimensional Wilson-Dirac fermions in the limN— o
and derive Egs(5.19 and(5.20). Here we describe the case
with the antiperiodic boundary in some detail. The case with
the Dirichlet boundary condition can be evaluated in the
same manner.

As shown in Appendix B, the partition function of the
five-dimensional Wilson-Dirac fermion with the antiperiodic
boundary condition is given by
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In the last expression the determinant is taken about the in-

det(Dgy,,— M) | ap H N, dicesi andj of basis{v?}.
- Moreover, the ternT2(N"%) is also evaluated as
—de( 1+ l:[z T ]TZ(N A)ll—l T ]TZ(N A’) T2NN=p T2N"8) 4 (1-p))TZNY)
(Cy

-> vi®vifez(N—A)\>\i\+O(e—2(N—A)>\£)
Divided by det(x T3(N"%)), the RHS can be rewritten as ! s
follows: (C8)

wherev; are eigenfunctions dfl ;= —In T, belonging to the
deﬁ< 1+[ 1T Tt] T2(N=4) negative eigenvalues , while % (A1) is the smallest posi-

G2 tive (largest negativeeigenvalue ofH;=—InT,. Then, the
dominant matrix element in EGC7) is given by

[T w0 v

ﬂ%ﬁ |H T} T2(N-4) ;Q( ,{I_CIZT] ) 2(N- A)|xkl(vk [H Tt} )

-|—2(N A) )

X[H Tt}Té(NA)>/de(l+TS(NA))
C1

e

In the limit N—os, the dominant term i~ is evalu- Accordingly, the dominant contribution of the determinant in

(C2 +0O(e 2N7ANL) (C9

ated as Eq. (C7) is evaluated as
-A —A _
ToM =Pt D+ (1-Py TEH de(l)?’{l_c[ Tt]Tf(N—A)(lc_[ Tt}v?)
=5 "

=S 0 0Te2(N-8)A
2 viev'e ' =de<1—P0+P0

I1 Tt} PI[H Tt])
—C2 C1
+0(e 2N (C3 xdet(1—Py+P,T;)2N-2)

Wherevi0 are eigenfunctions dfl ;= —In Ty belonging to the X (1+ O(efZ(NfA)(XiHAl_\)))_ (C10
negative eigenvaluezsio, while \9 is the smallest positive

eigenvalue oHy= —InT,. Then the factors involvind, in From this result, we immediately obtain E@.20).
Eqg. (C2) reduce to the projection operators

T2(N-1) APPENDIX D: THE INVERSE FIVE-DIMENSIONAL

1
im0 - 4 WILSON-DIRAC OPERATOR
l\lllmoo 1+ T2(N=4) ~Po, “mw 1+T2N4) ~1=Po,
- 0 N= (ca) In this appendix, we discuss the relation between the in-

verse five-dimensional Wilson-Dirac operator defined with
where the Dirichlet boundary condition and that defined in the in-
finite extent of the fifth dimension, and show that the re-
1 Ho placement of Eq(2.15 is allowed in the limitN—co.
( 1- —2) . (Ch) For this purpose, we first note that the Dirichlet boundary
2 \/H—o condition can be implemented by including the surface term
) in the infinite volume. Namely, if we consider the five-
Therefore, the RHS of Eq(C2) reduces to the following gimensional Dirac fermion defined in the infinite extent of
expression. fifth dimension, but with the couplings between the lattice
sites (—N,—N+1) and between the lattice sitedN,N
IT Tt]Ti(N‘A)[ I1 Tt] P ) +as) omitted, then the field in the interva-N+1,N] does
—c c1 not have any coupling to those outside the region and it is
(C6)  nothing but the field defined with the Dirichlet boundary
condition imposed at=—N andt=N+1. (See Fig. 5.

PO_E Uj ®U0T_

(CZ)=de( 1- P+

=d , T -|-2(N A) T, We denote the lattice Dirac operator for this fermion by
e< v {l_c[z } H D,, Which can be expressed with the surface interaction as
(C7  follows:
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for s,t e[ —N+1,N]. Using the explicit form of the surface
interaction, it can be rewritten further as

! (xs,yt)
— (XS,
sw— Mo Y

_— XS, yt)—
Dsw—Mo Dir.( Y D

FIG. 5. Implementation of Dirichlet B.C. by surface interaction.
=5 (X8Z,=N)Pi——|  (z,—-N+1y1)
Ddw=Mo=Dsy—Mo—V(_n+1n) s (DY) Dsw™Mo Dsw~Mol g,
where ol XSZNADPe— | (ZNiyD)
Dsy—mo = RDsw— Mo or Y
Vien+in=1—PLs NS, -n+1— PRrS. ,—N+15t =N "
(D6)

—PLOsnOin+ 1~ PrOs N+ 100N} - (D2)

Then it follows immediately that where the summation over is understood andg,te[—N

+1,N].
1 1 1 1 Now we consider the case whesg e[ —A+1,A]. [See
— = V,_ _ Eqg. (2.15.] From the exponential bound E¢3.10), the in-
V, De — De — (=N+1N) J\/ . . . . - . .
Ds\y,— Mo sw— Mo sw™ Mo Dgyw— Mo verse five-dimensional Wilson-Dirac operators defined in the

(D3) infinite extent of the fifth dimension in the RHS of E@6)
vanish identically in the limilN—c. On the other hand, the
inverse five-dimensional Wilson-Dirac operators defined
with the Dirichlet boundary condition in the RHS of Eg.
(D6) can be expressed in terms of the transfer matrix using
the same technique used in Appendix33]. They are given

Since the inverse d¥,—my in the intervall —N+1,N] is
nothing but the inverse five-dimensional Wilson-Dirac op-
erator defined with the Dirichlet boundary condition:

(xsyt)==———| (xs;y1), by
Dy\,— Mg Dsw=Mo|
s,te[-N+1N], (D4) PL———| (z—N+1;yt)=+P_A(z,yt), (D7)
Dsw— Mo Dir.
we can infer that
! 1 ! V P (z,N;yt) PrA(z,yt)
- = _ zZ,N;yt)=— z,yt),
Dsw—Mo|p;, Dsw—Mo  Dsy— Mg (L) "Dsw—Mo | i
(D8)
X ! (D5)
Dsw— Mol ° where
1

A(Ziyrt): A

PR+T§“A)| U;&t:_qﬂ Ttusgl]TgNA)pL

t
{T(lNA)UMlS 11+1TSU§§,1B{1 , te[-A+1A].

(D9)

For largeN, A(z,y;t) can be estimated as

A(zy;t)=

t
1 , _ ,
) [ P1U5,Alszl_£+l TUse 18
(1—P;)Pg+Py{ Ugi I1 TtUStl—l] To VP,
A _11 ,

+1
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cofactor o{ (1-Py) P+ Pl[ Usi
t=

PHYSICAL REVIEW D 65 074504

A

1]

) TtU;tl_l]TgN‘A)PL]

det(1—Py+PTo) (N4

t
1 _ o
X A |P1U5,A1 I1 TtU5,tl—1,3t t (D10)
1 1 s=—A+1
def (1-Py)Pr+P{Usi Il Tl (PoP
Tt==A+1 '
and we can infer that it vanishes identically in the limNit>o, as long as
A
de((l—Pl)PR+ Pl[ugA1 I1 Ttugtll] PoP, | #0. (D11)
Tt=—A+1 '

Thus the RHS of Eq(D6) vanishes in this limit.
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