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We present results of our numerical calculation of the mass spectrum for isospin one-half and spin one-half
nonstrange baryons, i.e., the ground and excited states of the nucleon, in quenched lattice QCD. We use a new
lattice discretization scheme for fermions, domain wall fermions, which possess almost exact chiral symmetry
at nonzero lattice spacing. We make a systematic investigation of the negativeNyariyectrum by using
two distinct interpolating operators @=6/g°=6.0 on a 18x32x 16 lattice. The mass estimates extracted
from the two operators are consistent with each other. The observed large mass splitting between this state,
N*(1535), and the positive-parity ground state, the nucle¢839), is well reproduced by our calculations.

We have also calculated the mass of the first positive-parity excited state and find that it is heavier than the
negative-parity excited state for the quark masses studied.
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I. INTRODUCTION extra dimensionlg. In other wordsL gives us a way to
control the violation of chiral symmetry. Domain wall fermi-

An important challenge in lattice calculations is to repro-ons also possess exact flavor symmetry for any value; of
duce the hadron mass spectrum from first principles in quan- Quenched lattice QCD calculations with domain wall fer-
tum chromodynamic$QCD). The latest lattice QCD calcu- mions have shown that good chiral properties are obtained
lations of the light-hadron mass spectrum in the quenchefbr moderate sizes of the fifth dimensidn,~ 10— 16, if the
approximation agree with experimental values within aboutfattice spacing is small enougla£0.1 fm) [10,11]. Recent
5% [1-3]. However, this success is mainly restricted tostudies by the RIKEN-BNL-Columbia—KEK Collaboration
ground states. Indeed, results are scarcely available for tHd2] and the CP-PACS Collaborati¢f3] have quantified in
excited-state mass spectrum. detail the explicit chiral symmetry breaking effects due to

Another essential shortcoming of these calculations whiclinite Lg. For low energy QCD, the results can be simply
use Wilson or Kogut-Susskind fermions is the absence ofummarized: there is a unique additive quark masg,,
chiral symmetry at finite lattice spacing, in accord with theappearing in the low energy QCD Lagrangian which arises
Nielsen-Ninomiya no-go theorerfd]. At nonzero lattice from the finite size of the extra dimensiph2]. This additive
spacing Wilson fermions explicitly break the full chiral sym- quark mass has been measured quite accurately, arid; for
metry of the continuum down to the vector subgroup, so only=16 and quenche@=6.0, m,&~3% of the strange quark
flavor symmetry is preserved. On the other hand, Kogutmass[12,13. In this paper, we apply domain wall fermions
Susskind fermions have only a single exbi{tl) axial sym- to baryon excited states, especially the spin one-half and
metry, and flavor symmetry is completely brokgh). Of  isospin one-half negative-parity nucledi; (1535), as a fur-
course, it is expected that in the continuum limit, which isther test of domain wall fermions in the baryon sector. For
difficult to achieve in practice, both actions recover the fullmasses which ar®(1) GeV in the chiral limit, we do not
chiral symmetry. expectm,esto have a significant effect.

Several years ago Kaplan constructed a new type of lat- We are interested in a long-standing puzzle in the excited
tice fermion[6] known as domain wall fermions, which were state spectrum of the nucleon. The first question addressed in
further developed by Shamji7,8] and also by Narayanan this paper is whether the mass difference between the
and Neuberg€l9]. Especially, the former reformulated it for nucleonN(939) and the negative-parity nucledi (1535)
lattice QCD simulations. The key feature of domain wallis well reproduced in lattice QCD. The spin one-hblf
fermions is that they utilize an extra fifth dimension to cir- state can be considered tparity partnerof the nucleon. Of
cumvent the Nielsen-Ninomiya no-go theorem and maintairparticular interest is the large mass splitting betwakeand
chiral symmetry at nonzero lattice spacing. In practical simuN*. From the viewpoint of parity partners, these two states
lations the extra dimension is finite, so the chiral symmetry isvould be degenerate if the relevant 2-flavor chiral symmetry
not exact. The symmetry breaking is very soft, howeverwere exact and preserved by the vaculid]. Of course,
since it is highly suppressed with the number of sites in thehere is no proof that this large mass splitting comes directly
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from the spontaneous breaking of chiral symmetry. Howeverworse, there is the serious problem of the wrong ordering
at least spontaneous chiral symmetry breaking is responsibleetweenN* (1535) and the positive-parity excited nucleon
for the absence of such parity doubling since the explicitN’(1440) because the correspondiXg state should be as-
breaking is quite small in the case of two flavors. In thissigned two oscillator quanta in this modé2]. This wrong
sense, regardless of a model or a theohjtal symmetry and ordering problem does not seem to be easily allevig2dd
its spontaneous breakingre important for reproducing pre- It is easy to see that the MIT bag model faces essentially the
cisely the mass splitting between parity-partner hadrons. Isame problem, as the single quark states in the model alter-
this paper we show that domain wall fermions accuratelynate in parity with roughly even spacinf3].
reproduce the large observed mass splittiegme of our The question arises how does this orderingNdfandN’
results have been reported earli&b,16]). appear in lattice QCD calculations? Urtil5] this question
Conventional lattice fermion schemes have had difficultycould not be answered for lack of systematic results and
in this challenge. An early calculatiqd 7] using Wilson fer-  investigations. A calculation of the mass of the positive-
mions as well as a more recent dridd], both just managed parity excited nucleon is, of course, much more difficult than
to extract a mass splitting between the parity partners witlthe nucleon ground state. Attempts have been made to evalu-
large uncertainties. ate theN’ mass from a two state fit to the nucleon correlation
The first sophisticated calculati¢f®9] using an improved function [25]. However, large statistics are required com-
Wilson fermion action and relatively heavy quarks resolved gared to a single exponential fit. Also it is difficult to control
definite mass splitting between the parity partners whichthe systematic errors. Leinweber used the QCD sum rule
however, was about a factor of two smaller than the observe@CDSR continuum model and quenched lattice data to es-
splitting. Recent results using improved Wilson fermionstimate the threshold of contributions from excited staf&6.
have confirmed the large mass splitting over a wide range dflowever, the scaling of his result has been questioned by
quark masses that we have found with domain wall fermiondliton and Capitan{27]. In this paper we take an alternative
[20,21). We note that the leading lattice spacing errors thalpproach, using the continuum-like behavior of the domain
are removed from these improved calculations break chiralvall fermion operatof15] to obtain the mass of the positive-
symmetry. Although Kogut-Susskind fermions have a rem-parity excited nucleon. Our results have been confirmed in
nantU(1) axial symmetry, they cannot be used practically[20] where a similar approach is employed in the context of
for the spin one-halN* mass calculation due to flavor mix- improved Wilson fermions.
ing. The reason is that Kogut-Susskind fermions have only In conventional lattice QCD calculations an interpolating
discrete flavor symmetries belonging to a subgroup ofoperator which is strongly associated with the non-
SU(4) [5] which contains three irreducible representationsrelativistic limit is used to extract the mass of the nucleon
8, 8’ and16 for baryon operators. Two appropriate represen-ground state. A second unconventional operator, which does
tations8 and 16, to which N* (1535) belongs, also contain not have a non-relativistic limit, is discarded since it is ex-
the negative-parity\ statesA (1405) andA (1520) and the pected to couple weakly to the ground state. Indeed, using
spin three-half negative-parity nucleon st&t&(1520) [5].  this operator, no one has succeeded in evaluating the mass of
Thus, the study of the spin one-haf¥* spectrum with the nucleon ground state in lattice QCD calculations with
Kogut-Susskind fermions always faces inevitable contaminaWilson fermions[28] because of its small coupling to the
tion from lower mass states. ground stat¢26]. The expectation of an approximately zero
It is also interesting to note that a non-relativistic quarkoverlap on the ground state provides the possibility that the
model with the so-called color magnetic interactj@2] and  use of the second operator in lattice calculations directly
the MIT bag mode[23], both of which explicitly break chi- yields the mass of thé&l’ state, at least in the relatively
ral symmetry, have some difficulty reproducing the largeheavy(valence quark mass region. This prospect, however,
mass splitting betweeN(939) andN* (1535) without adop- is built on the assumption that the lattice defined operators
tion of less realistic model parameters. The non-relativistidnherit the features of the continuum ones. In the case of the
quark model is based on a harmonic oscillator description ofVilson fermions, the Wilson term, which explicitly breaks
the orbital motion of constituent quarks. As remarked in thechiral symmetry, induces mixing between the conventional
appendix of the original paper by Isgur and K§2P], the  and unconventional operatdr39,26. Thus, the desired fea-
plausible value of its oscillator quantum should be roughlyture of the unconventional operator in the continuum is di-
250 MeV to reproduce the observed charge radius and magprinished in lattice calculations with Wilson fermions. On the
netic moment of the nucleon. Since this model regard®ther hand, this type of mixing between three quark opera-
N*(1535) as a state with one quantum excitation in orbitaltors is absent at one loop in perturbation theory using domain
motion, it indicates that the correspondih state lies at wall fermions with largel ¢ [30]; thus we expect this mixing
most a few hundred MeV above the ground state. Everio be suppressed in domain wall fermion lattice calculations.
Indeed, we find that the second operator has negligible over-
lap with the ground state and furthermore provides a reliable
Yn a recent reporf40] which appeared after this work was com- Signal of the excited state as the asymptotic state in the heavy
plete it is clear that the chiral symmetry of their fermions wasquark mass region.
significantly improved by simulating closer to the continuum limit ~ The organization of our paper is as follows. In Sec. II, we
than previous studies which used Wilson fermions and by addindpriefly review the basic formulas and notation regarding do-
the clover term. main wall fermions. In Sec. Il we investigate the properties
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of the two-point correlation function for the nucleon and itswhere Pg | = (1= y5)/2. With this definition, one can see
parity partner. Section IV gives the details of our Montethat them; terms in Dis, directly yield the usual four di-
Carlo simulations and the result_s_ for the_ parity_partner of thanensional explicit chiral symmetry breaking term,
nucleon (N*) and the first positive-parity excited nucleon mfa(x)q(x), on the four dimensional layers=0 and s

(N ).FTheIT’ we comparte our resullts to the eé(perl\r?ental val_ Ls—1. The above definition of the quark fields is the sim-
ues. Finally, we present our conclusions in Sec. V. plest one but is not unique.

In the free theory, for the choice<OM;<2, the domain
Il. DOMAIN WALL FERMIONS wall fermion action corresponds to one flavor, and the four-
dimensional light quark mass is given as;=m;Ms(2
—Ms5) in the limit Lg—o andm;—0. This situation is ap-
)groximately unchanged in lattice QCD simulationsMif is
simply shifted,Ms— Mz— M, [10], where a simple estimate
of M. is given in terms of the critical hopping parameter for
four-dimensional Wilson fermion31].

In this section we closely follow the development of do-
main wall fermions by Shamif7,8]. The domain wall fer-
mion action is essentially regarded as a five-dimensional e
tension of the Wilson fermion action:

Sowe=—2> > W (x,5)[ 855Dl + 80D I¥(X',s"), In the case of domain wall fermions, tf®U(N;) axial
xx' s’ S B @ transformation can be defined vectoridlB] as
[Q4,V(X,8)]=+ie(S)\?P(X,S), (6)

wherex,x’ are four-dimensional Euclidean space-time coor-
dinates ands,s’ denote coordinates in the extra dimension
labeled from 0 td_s—1 (to take advantage of existing high- [Q2,W(x,5)]=—ie(s)¥(X,5)\?, (7)
speed computer code, our domain wall fermion Dirac opera-

tor is the Hermitian conjugate of the one [i8], hence our . . . . .
L I where ¥(x,s) is a five-dimensional zero mode. Opposite
notation is the same as [12]). Here,D, ,, corresponds to

) ) | , X, i axial charges are assigned to fermions in the two half-spaces,
the four-d|r_nen5|onal_ Wilson-Dirac operator with a massg, e(s)=1 for 0=s<L 2 ande(s)=—1 for Ly2<s<L,
term (domain wall height Ms: —1. The reason for this is clear: left and right handed modes
are globally separated in the extra dimension.

With this axial transformation on the five dimensional
fields, the four dimensional quark fields obey the familiar
axial transformation:

T )
D=3 2 (1= YU 8+ (147,

XUL(X,)‘Sxf,;,x’}'i_(M5_4)5x,x’ ) (2)
: . . a2, =+iys\3q(X),
where the Wilson term and mass term have opposite relative [QA.a(0] Hysh"a(x) ®
sign compared to the conventional orﬁés, is the five- _ _
dimensional analogue of the four dimensional Wilson hop- [Q4.a(x)]=—iq(x)ys\?. 9
ping term withy,, replaced byys andUs(x,s) =1:
In general the domain wall fermion action is not invariant
1 under the transformation®) and(7) in the limit m;=0 be-
IR _ f
DSYS’_z{(l ¥8) Osi15 (14 96) 8519 =205} cause of a non-vanishing divergence of the axial current on
the intermediate layers=L/2—1 ands=L¢/2 which gives
oMy rise to an extra pseudoscalar density in the axial Ward-
2 {(1=76) 361805 T (15 75) G001 150} Takahashi identityf8]. However, such an anomalous term,
3) which provides a chiral symmetry breaking effect due to
mixing of the left- and right-handed modes, vanished as
—oo [8].
Theoretically, this residual breaking effect can be de-
scribed by an additive quark mas®,. in the four-
dimensional low energy effective Lagrangian for QCI2],

Note that the five dimensional fermioMs(x,s) are coupled
only to four-dimensional gauge fields. The boundased)
ands=Lg¢—1 are anti-periodic and coupled with a weight

My Ilzor an approoriate choice &« this action has two chi- and recent simulations, in whiah,.swas determined in sev-
bprop 5 eral ways, appear to confirm tHi$2]. Simulations also show

ral zero modes of opp_05|te_hand_edness, one localized Mat for sufficiently small lattice Spacingnee—0 as L.
each boundary of the fifth dimension. To simulate low en- .
—%, and at the very leastn,s is small and accurately

ergy QCD, four dimensional quarks are interpolated from thq<nOWn for a wide range df . [12.13. Thus, in this study we
S H . H

chiral modes: will henceforth ignore these small effects and assume the
_ B chiral limit is m;=0 instead ofm;= —m,.. Finally, we note
a0) =P (x,0)+Pr¥ (x,Ls—1), ) that the non-perturbative origin of these effects and their re-
- _ _ lation to certain non-perturbative gauge field configurations
ax)=V¥(x,L—1)P +¥(x,0Pg, (5) is a very interesting and active area of resedB4].
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lIl. BARYON SPECTRUM the linear combination®; +BJ belong to distinct §,0)

A. Baryon two-point correlator ®(0,5) chiral multiplets undeSU(2), ® SU(2)x [33,34.

The massmg of the low-lying baryonB can be extracted ~ The operatorB; alone is usually used in lattice QCD
from the two-point correlation function composed of the calculations to extract the nucleon ground state siBée
baryon interpolating operat@?g , which has the appropriate couples only weakly to the ground state due to its vanishing
quantum numbers specified by the desired state. Let us coif* the non-relativistic limit[26]. In fact, nobody has suc-
sider the vacuum expectation value of the time-ordered prodseeded in extracting the nucleon mass spectrum fronBhe
uct of interpolating operators. The Euclidean time correlatioroperator. In our calculation, we also confirm that the ground

function is pri)jected out at zero spatial momentum throughstate cannot be extracted fromgg(t)gg(o)»; however,

the sum ovex: we have had some success with respect to the excited-state
mass spectrum which we discuss in Sec. IV C.
_ ity Multiplying the left hand side of the previous positive-
Gp (1)= 0|T 1 0,0}|0), 10 . . . .
og ) % (0T{Oe(x,1) Oa(0,0)}{0) (10 parity operators byys, we obtain the interpolating operators

with negative parity)®=1/2" [19]:

which is dominated by the contribution of the lowest mass — ) — +g) — T

state for large Euclidean tim&_(t) ~exp(-Mglt]). For a B1 ()= 75B1 (X)=2apd Ua(x)C750p(X) ] 75Uc(X), (14
spin one-half baryon, of course, the correlation function has

non-trivial Dirac structure which may be expressed in the B, (x)=y5B; (X) =& apd Us(X) Cdy(X)Juc(X),

form (15

since PB;Z()Z,t)?E —¥4B1 A~ )Z,t). The important point
to notice is the relation between the correlation functions of
+(1—y4) 0(—t)Age ™M, (1)  opposite parities,

. o . Gg+(t)=—vsGp-(1) ¥s, (16)
where the positive definitAg is proportional to the square of
the coupling strength between the interpolating operétgr  sinceB; ,= Yst,z- Equation(16) means that the two-point
and the lowest mass state. The first and second terms agerrelation function of the spin one-half baryon can couple to
particle and anti-particle contributions, respectively. It is both positive- and negative-parity states. Thus, the general
easy to get only the particle contribution by taking the traceform of the two point function i$35]
with the projection operatoP, =(1+ y,)/2, which we ab-

GOB(t)Iz:gét(l"‘ ¥4) 0(t)Age™Me!

breviate ag(Og(t) O(0))) =Tr{P G (1)} hereafter. Gg+(t)=(1+y,) 6(t)Ag-e~Me™!
+(1=7) 0(~)Age*Ma"
B. Interpolating operators (14 72) 6(— 1) Ag_e+Me-t

Let us focus on the nucleon channel specified by the spin
one-half iso-doublet nonstrange baryons. In order to project
out the desired channels, we have to construct interpolatin

—(1—y4) 0(t)Ag-e Mt (17)

. . . Note that the backward propagating contributions correspond
operators from the quark fields with the appropriate quantung, o anti-particles of the forward propagating states with

nhumbers §= 1./2 and| - 172). Howg\_/er, there is consider-. opposite parity. The desired state is obtained by choosing the
able freedom in choosing the specific form of the Compos't%ppropriate projection operator,+1y,, and direction of
operators. Indeed, there are two possible interpolating Oper?)'ropagation ’ '

tors for theJP=1/2" state, even if we restrict them to con- Next. consider a lattice with finite extefit in the time
tain no derivatives and to belong to the,Q)®(0,3) chiral  direction and(anti-)periodic boundary conditions. Equation

multiplet underSU(2), ® SU(2)g [33,34: (17) is replaced by
B1 (X) = £apd Ua(X)Cysdn(X)Jue(X), (12) G+ (1)=(1+ y4)Agre MB* (1 y,)Agre Ms(T-D
. . F(1+ yg)Ag-e Ve (7Y
B; (0 =sapd UJ(0CA(X) 70, (13 e
—(1—-vy4)Ag-e "8, (18

whereabc andud have usual meanings as color and flavoryhere the (lower) upper sign stands fokanti-)periodic
indices.C is the charge conjugation matrix and the super-houndary condition on €t<T. The anti-particle of the
SCflptT denotes transpose. Here, Dirac indices have beeapposite_parity state can propagate through the time direc-
suppressed. In Eq6l2) and(13), the superscript *-"refers  tjon boundaries, so one faces unwanted contamination from
to positive parity since these operators transform ashe opposite-parity state in extracting the mass of the desired
PBlfz(x,t)PT= + y4B£2(—x,t) under parity. To be precise, state. This contamination is not unavoidable if a double ex-
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ponential fit is used. However, such fits require very highchiral symmetry is spontaneously broked,|0)+0, so that

statistics. This is not a serious issue in the measurement @fych parity doubling does not occur in the actual spectrum
the npcleon .ground state since the contamina;io.n from ther4]. In this sense, the spontaneous breaking of chiral sym-
negative-parity nucleon is expected to be negligible due tonetry js responsible for the absence of parity doubling. Thus,
the large mass splitting/g-—Mg-. Of course, this same i seems important to properly handle chiral symmetry and
splitting does affect the extraction 8g-. The problem is s shontaneous breaking in order to calculate precisely the
resolved by choosing appropriate boundary conditions in th?nass splitting between the nucleon and its parity partner.

time (_jlre<t:;c]|ont_ to pre;/eﬁr;t thf? \_Nratf)-aro(;m? effectt,hor_ tiy In'Finally, it is important to note that above argument ignores
creasing the time exterlt sutliciently and pfacing the inter- possible consequences to the 't Hooft anomaly condition
polating operators far from the boundary. In this study we,

take the former approach. It is common to employ Dirichlet[36’37-|'

boundary conditions where link valuables in the time direc-

tion att=0 andt=T—1 are set to zero when calculating

quark propagatoréfor example, se19]). However, we use IV. NUMERICAL RESULTS

a linear combination of two quark propagators with periodic A. Computational details

and anti-periodic boundary conditions in the time direction i )

to produce forward propagating states. Although our ap- 3We generate quenched QCD configurations on a
proach requires two times as many fermion matrix inversiong-6”x 32 lattice with the standard single-plaquette Wilson ac-
to calculate one quark propagator, it does not suffer fronfion at3=6/g”=6.0. The quark propagator is calculated us-
(unknown reflection effects at the time boundaries induceding domain wall fermions with a fifth dimension &f;=16

by Dirichlet boundary conditions. sites and a domain wall height;=1.8. Additional details of
the simulation can be found ifl2,38. QuenchedB=6.0
C. Chiral symmetry and parity doubling corresponds to a lattice cutoff af 1~1.9 GeV fromaM,

At the end of this section, let us briefly review how un- =0.400(8) in the chiral limit and spatial sidea~1.7 fm

broken chiral symmetry imposes parity doubling in the had}12:38. _

ron spectruni14,34. We will generalize the following argu- W& work in Coulomb gauge and calculate quark propaga-
ment in the Appendix. For the sake of simplicity, we considert0rs using wall sources and local sinks. We expect that the
a particular transformation of th8U(2) chiral symmetry, US€ of wall sources provides better overlap with the desired

[Oa,u]l=+iysu and[ Qa,d]= —iysd. Then, one can eas- States. To extract the state with desired parity in the spin
ily find that the two-point correlatorB; andB; transform ~ ©ne-half baryon spectrum, we construct forwaodckward
as propagating quarks by taking the appropriate linear combi-

nation of propagators with periodic and anti-periodic bound-
[QAiBliz(X)gliz(o)]:i{75181tz(x)§1t2(0)} (19 ary conditions in the time direction, as mentioned before.
’ ’ ’ ' This procedure eliminates the backwdfdrward) propagat-
in the chiral limit. Now suppose that the vacuum possesseg opposite parity state which wraps around the time bound-
chiral symmetry:9,|0)=0. According to Eq(19), the two-  ary.

point correlation functions anti-commute witl, In addition, we use two sources for quark propagators on
each configurationt{,=5 andt,=27) to increase statis-
{7s.Gp=(1)}=0. (20 tics. After the appropriate parity projections, the correlation

functions of the corresponding nucleon state can be folded
togethenaveraged as a function of distance from the respec-
Gg+(1)=Gg-(1), (21)  tive source. Here, time-slices are labeled from O to 31. To be
clear, we give the form of the nucleon two-point function
which means that parity doubling arises in the nucleon chanwith arbitrary source locationg, after eliminating the un-
nel due to chiral symmetr}34]. Of course, in the real world wanted contributions across time boundaries:

Immediately, with the help of Eq16), one finds

(1+ ) Agre M (7lsd — (1 y ) Ag-eMe (7led  (T>t>tg),

22
(1- yg)Ag-e™Ma e D (L1 yAg-e ™Mo e (1, >10), 22

Gg+(t—tgd=

which is constructed with the positive-parity interpolating out positive- and negative-parity states, respectively. Alterna-
operator(either B or B;). In the time rangeT>t>t., tively, for tg,c>t>0 only the anti-particles contribute to the
positive- and negative-parity nucleon states are propagatingprrelation function. In this cas®,. act in the opposite way
only forward in time. This means that there are only particleto the former case. In either case, all we have to do is calcu-
contributions in this region. Thu®.=(1* y,)/2 project late either Gg+ or Gg- to extract the masses for both
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TABLE I. Single exponential fit ofr andp two-point correla-  consistent with zero within large errors, so we have left these
tors at3=6.0 on a 18x 32x 16 lattice withMs=1.8. The masses points off of the plot. In addition, the effective mass shows a
for am;<<0.05 agree within errors with those given in REf2]  gteep rise with increasing uncertaintytascreases. This rise
Which were calculated from diffgrent correlation functions on ajn the N* effective mass weakens at relatively heavy quark
slightly different set of configurations. masses where the signal becomes stable over 12 time slices.
Next we present mass estimates of thandN* obtained

am aM . aM, M./M,  No. of configs. . . L .
from covariant single exponential fits to the corresponding
0.020  0.268724) 0.453@62) 0.59314) 98 correlators. We fit each correlator from some minimum time
0.030  0.322@1) 0.481445 0.67Q11) 98 slice, tmin, to an appropriate maximum time slicg, =20
0.040  0.369119) 0.512642) 0.72Q10 98 for the N andt ,,,=10— 15 for theN*). t s, iS roughly fixed
0.050 0.411618) 0.539536) 0.7638) 98 with reference to the effective mass calculation. To keep fit-
0.075 0.508Q7) 0.608838)  0.8348) 98 ting ranges as wide as possiblg,, is reduced fromt .,
0.100  0.596218) 0.679736)  0.87717) 98 —2 until y*/Npe>1.5 whereNpe denotes the degrees of
0.125  0.677@l7) 0.748333) 0.9056) 98 freedom in the fit. Fitting details are given in Tables II-IV.

All of our fits have a confidence level larger than 0.2 and

. ) ) ) estimates from the weighted average of the effective mass
positive- and negative-parity states since we already knoWgree with the fitted masses within errors. A summary of our

Tr{P.Gg+(t)}=—Tr{P-Gg-(t)} with the help of Eq(16).  N'andN* masses is given in Tables I1-IV.
In fact, we verified this relation on each configuration and \we can roughly estimate the systematic error coming
then usedSg: andGg; to extract masses. from the choice of fitting range by varying,,,. Let us de-

In our analysis, we use correlation functions in the rangesermine the difference between our final fits and fits where
t>5 andt<27, for the sourcet, =5 andt, =27, respec- the smallest time slice is not included. In the cas8pf(the
tively. After folding the propagators together as describechucleon, resulting errors are much smaller than the statisti-
above, we use a single offset from the soutcelefined in  cal errors of the final fits. On the other hand, for bBth and
the range 6<t<27. B, , the estimated systematic errors are comparable to the

We use 405 independent gauge configurations for thetatistical errors, while foB; atm;=0.04 and 0.05 the sys-
lightest two quark masses);=0.02 and 0.03, 305 configu-  tematic error is a factor of two larger than the statistical one.
rations for the intermediate ones);=0.04 and 0.05, and Thijs uncertainty is directly related to the rise of tN& ef-

105 configurations for the heavier ones;=0.075-0.125.  fective mass, or poor plateau, in those cases where the cor-
These bare quark masses correspond to mass ratigg|ation function was not statistically well resolved at larger
M /M ,~0.59-0.90 as shown in Table I. In this calculation, times. This, in turn, has forced us to extract masses from the
SU(2)-isospin symmetry is enforced by equatimg=m{">  smaller t region which may be contaminated by excited
=m{? | so that the flavor index will not be explicitly dis- states.
played hereafter. All calculations were done on the 600 In Fig. 2 we show the low-lying nucleon spectrum as a
Gflops QCDSP machine at the RIKEN-BNL Research Cenfunction of the quark massn;. The nucleon mass is ex-
ter. tracted fromB; . We omit the point atm;=0.02 for the
operatoB, since a good plateau in the effective mass plot is

B. Parity partner of nucleon: N* absent. TheN* mass estimates frorf{B; (t)B; (0))) and

We first calculate the effective masddsy to find appro-  ((B; (t)B5 (0))) agree with each other within errors in the
priate time ranges for fitting. The effective mass is defined bywhole quark mass range, as expected from their common
quantum number§l5]. Note that this result disagrees with
Meg(t) =In{C(t)/C(t+ 1)}, (23 that obtained if19]: we find no discrepancy between masses
T extracted from ((B; (t)B; (0 and ((B, (t)B, (0))).
whereC(t) stands fo(B; (t)B 0))). We look fora pla- 5 ever, recent<r<eslu(lt.2, i[%zg)] di [21] a<r§3 i?’](g)oor‘;j(agr?ae-
teau, or time independent region, in this quantity to extracl,ant with ours. We also obtain the same mass forNkie
the ground state mass. For example, Figs)-11(c) show . D D
effective masses for the nucleoB () and its parity partner from a mixed correlato((B; (t)B, (.o)+.|32 (t)Bl.(0)>>' '
The most remarkable feature in Fig. 2, which was first

(B, atmy=0.03, 0.05, and 0.10. In Fig. 1, the effectlve reported in[15], is that theN-N* mass splitting is observed
mass plot shows a cl_eai pIategu _for theand one th"?‘t 1SN0t 4yer the whole range of quark mass values and grows as the
as gooql for the heav_led : SFat!snc_aI uncertainties in Fig. 1 quark mass is decreased. To illustrate this point clearly, we
are egtlmated by a single elimination ja(ik-kr]_lf? method. Th%ompare two mass ratios in Fig. 3, one from the baryon
effective masses for the* from both({B; ()B; (0))) and  parity partnersMy« /My and the other from pseudo-scalar
((B, (1)B;(0))) agree well with each other for all three and vector mesondl /M ,. Experimental point$39] are
guark masses, except for;=0.03 andt<6 where there isa marked with stars, corresponding to nonstrarigdt) and
small difference outside of statistical errors. strange(right) sectors. In the strange sector we sé and

In Fig. 1(a), the effective mass for th&l* becomes so 2(1750) as baryon parity partners akdand K* for the
noisy aftert=9 that the value of the two-point correlator is mesons. The baryon mass ratio clearly grows with decreas-
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FIG. 1. (a) The effective mass of the nucleon from &((Bf(t)ﬁ*(O))) correlator (<) and its parity partner frorﬁ(B[(t)E’(O))) (0O)
and((B, (t)B, (0))) (¢ ) correlators on an ensemble of 405 configurationsat 0.03. The solid lines and dashed lines represent each
fitted mass and its statistical erréi) The effective mass of the nucleon from {{&; (t)EI(O))) correlator (<) and its parity partner from
((B1 (1)B; (0))) (1) and((B, (t)B, (0))) (<) correlators on an ensemble of 305 configurationmat 0.05. The solid lines and dashed
lines represent each fitted mass and its statistical njorhe effective mass of the nucleon from tﬁst(t)E*(O))) correlator () and

its parity partner fron((B[(t)E[(O))) (0) and((Bz’(t)gz’(O))) (¢©) correlators on an ensemble of 105 configurationsiat 0.10. The
solid lines and dashed lines represent each fitted mass and its statistical error.

TABLE II. Single exponential fit of the nucleon two-point correlatgB; (t)B; (0))) at 3=6.0 on a
16X 32x 16 lattice withMs=1.8. The systematic error is estimated from the change in the fitted mass when
tmin is increased by one. The massesdon;<0.05 agree within errors with those given in Rilf2] which
were calculated from different correlation functions on a slightly different set of configurations.

State ) amy aMy(stad(sysh  x%Npr  tmn  tmax  Conf. level  No. of configs.

N (1/2%) 0.020 0.65412)(14) 1.00 12 20 0.43 405
0.030 0.7165)(0) 1.09 10 20 0.37 405
0.040 0.7546)(1) 1.08 11 20 0.38 305
0.050 0.80%6)(2) 1.17 11 20 0.31 305
0.075 0.9297)(4) 0.81 12 20 0.58 105
0.100 1.04%)(3) 0.94 12 20 0.47 105
0.125 1.1626)(4) 0.84 15 20 0.50 105
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TABLE lIl. Single exponential fit of the negative-parity nucleon two-point correla(&l_(t)gl_(om at
B=6.0 on a 18x32x 16 lattice withMs=1.8. The systematic error is estimated from the change in the
fitted mass wher,,;, is increased by one.

State ) amy aMys(stab(sysd  x*Npe  tmin  tmax  CoONf. level  No. of configs.

N* (1/27) 0.020 0.93834)(40) 1.29 6 10 0.28 405
0.030 0.95824)(24) 1.16 7 12 0.33 405
0.040 1.0188)(56) 1.49 8 12 0.22 305
0.050 1.0480)(38) 1.26 8 13 0.28 305
0.075  1.10413)(18) 1.27 7 13 0.27 105
0.100 1.20810)(12) 0.99 7 12 0.41 105
0.125 1.3088)(8) 0.92 7 12 0.45 105

ing meson mass ratio, toward the experimental vald&$ it couples with negligible weight to the nucleon ground state
We did not include the charm sectdvig /M p«=0.93) since  near this limit. Indeed, no one has succeeded in extracting

the parity partner oF.; *(2455) is not measured experimen- the ground state mass signal fraiB; (t)B3 (0))) in lattice
tally. On the other hand, from our results we estimate theycp [28,26). Then, we expect that an approximately zero
mass of this state to be roughly 2.7 GéWe have used & qyeriap on the ground state provides the possibility of direct
simple linear in the quark mass ansatz to extract the Mas$ . .ess to the excited state using Big operator. This pros-

from our degenerate quark dpata . : . pect should hold as long as the lattice operator has the same
Finally, we evaluate thé&l and N* masses in the chiral ) ;
symmetries as the continuum one.

limit. Taking a simple linear extrapolation in the four lightest e N .
quark masses foB; and B, we find My=0.57(1) and In the massless_quark Ilmlt_, the combinatid@s+ B, do_
not mix due to different chiral structure. In perturbation

My« =0.85(5) in lattice units. Setting the scale from thetheor each is multiplicatively renormalized with the same

calculatedp-meson masgl2], we obtainMy~1.1 GeV and Y, lization fact P th£y+ 4B also d tmi

Muy*=~1.6 GeV in the chiral limit. If we use the scale set by renormalization factor So thai, andb; also do not mix.
However, conventional lattice fermions give rise to mixing

the calculated nucleon mass, we obtMR«~1.5 GeV. Ei- T _ +
ther way theN* mass is in good agreement with the experi-through explicit chiral symmetry breakin@9]. Thus, B,
Il couple to the ground state through unwanted mixing

mental values within about 5-10 %. The above errors do no‘f"i . o ) )
include systematic uncertainties due to finite volume, nonWith B1 . On the other hand, the explicit breaking of chiral

zero lattice spacing, and quenching effects. Studies of suclymmetry in domain wall fermions is highly suppressed, so
systematic errors will be addressed in future calculations. there is hope that we may extract the positive-parity excited

Recently it was suggestdd0] that theN* propagator in  State of the nucleon frorB, as the asymptotic state.
quenched QCD may exhibit non-analytic chiral behavior as- Let us first compare the effective mass plots of
sociated with the anomalous contribution of the’*N” in-  ((B; (t)B; (0))) and((B; (t)B, (0))) correlatorgsee Figs.
tgrmediate staté This suggestion i_s inspired by recent ar- 4(a)—4(c)]. The correlator((BZ(t)E*(O))) is considerably
ticles [41,42. However, non-analytic effects which arise in nqisier so that only time slices near the source are useful.
the vicinity of the massless quark limit are hard to detect mNevertheIess, the effective mass frofdB; (t)B (0)))

our data since our calculation is not very close to this limit. ields a plateau albeit with large statistical errors. The pla-
In addition, such subtle effects could easily be mimicked b reau becpomes more satisfact%r for heavier ljark rr?ass
finite volume effects. The volume used in our study is still . y q ’

These plateaus are obviously different from those extracted

rather small. Furthermore, the statistical errors in our stud¥ the B+ lator. Wh v the sinal
are large enough, especially for tN&, that complicated fits rom theb, correlator. en we apply the single exponen-
tial fit to the two-point correlation function composed of

beyond a naive linear one would not yield meaningful pa- ) i )
y 4 g p B, , we obtain a mass that is quite large compared to the

rameters on?. <
mass extracted frof(B; (t)B; (0))) as listed in Table V. In

C. Unconventional nucleon operator [20] similar results from thd, correlator have been found.
As mentioned earlier, an explanation of the above result
5] is that B, has negligible overlap with the nucleon
round state since it does not have a non-relativistic limit
and thus provides a direct signal for the positive-parity ex-
cited state of the nucleon. Of course, this explanation is valid
only in the heavy valence-quark mass limit.

As mentioned earlier, the unconventional operaBgr 1
vanishes in the non-relativistic limit, so one may expect thaEJ

%Recall that in the quenched approximation thé is also a

pseudo Goldstone boson. We stress that the quenchédN” in- . : oo +IN
termediate state would give reegative metriccontribution corre- We investigate further the possibility thed|B; |N)~0

sponding to a “quenched chiral loop” artifapt1]. Needless to say, through the calculation of the mixed correlation function

this spurious intermediate state, which is a source of unitarity vio{(B1 (1)B3 (0)+B5 (t)B1 (0))). If it is true that the overlap
lation, is not associated with the physical decay pro¢ésk with the nucleor{0|B, |N) becomes small with increasing
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TABLE IV. Single exponential fit of the negative-parity nucleon two-point correle¢Br2_(t)§2‘(0))) at
B=6.0 on a 18x32x 16 lattice withMs=1.8. The systematic error is estimated from the change in the
fitted mass wher,,;, is increased by one.

State ) amy aMy«(stab(sysd  x%Npr  tmn tmax CoONf. level  No. of configs.

N* (1/27) 0.030 0.98R21)(15) 1.10 5 10 0.35 405
0.040 0.99816)(17) 0.81 5 10 0.52 305
0.050 1.02015)(16) 1.00 6 10 0.39 305
0.075 1.09212)(10) 0.75 5 11 0.59 105
0.100 1.19811)(16) 0.82 6 12 0.54 105
0.125 1.30813)(9) 0.84 7 15 0.55 105

valence-quark mass, mass estimates from the mixed cousing this method have failed to reproduce the observed

reIator((Bf(t)§;(0)+ B;(t)gf(o)» should be consistent Mass[25]. In our fits the Hessian matri>§ often becomes sin-
with the nucleon for lighter quark mass and the positive-gular, so we cannot extract the excited state mass from
parity excited state for heavier quark mass. Such behavior idouble exponential fits. Instead, we take an alternative ap-
evident in Fig. 5. We stress that the single particle fit to theProach proposed ifi43]. First, we define the 2 matrix
mixed correlation function does not in general yield the mas§orrelatorC(t) using the two distinct baryon operators

of an asymptotic state, only in the limits discussed above, it cult)

which is clear from the figure. We also note that for im- c(t)= 1 1 }
proved Wilson fermions the mixed correlation function Co(t)  Cot) ]
yields the ground state mass for all quark masses, even heavy o

ones[20]. Thus it appears in that case that there is still sig-where ¢;;(t)=((B;"(t)B;"(0))). Next we write C(t) in

(24)

nificant mixing of B, andB, . terms of a transfer matrix (t,t),
As a result, it is possible to identif§; with the positive- _
parity excited nucleon N’) for heavy quarks(e.g., m¢ COP=NL1o)C(to) ¢, (29

=0.075 in our study [15]. |Indeed, we see e = -
(0|B; IN)/{0|B; |N")|><10"* from double exponential fits ﬁhgrzti%snﬂésgtzrr:]c,t thtg ' rl;g;ls);tswgfs:ﬁ;est\;\ge st;oigi?gjmg
for ((B; (1)B, (0))) atm;=0.10 and 0.125. Of course, this >E) are given by the eigenvalues of the transfer matrix:
feature weakens in the lighter quark mass regifnom

aroundm,=0.05). However, even fam;<0.075, mass esti- No(ttg)=e (T8 (¢=0,1), (26)
mates fromB, are still considerably larger than the nucleon
mass, so we cannot rule out the possibility tBat provides

a signal for the positive-parity excited nucleon at even lighte
quark mass values.

whereE,, is independent ofy,. The smaller eigenvalueng)

@and larger eigenvalue\g) refer to the masses of the excited

state and the ground state respectively. In general, the system

may have more than two states. Thus, we assume that two

states become effectively dominant for an appropriately large

time-slicety, which can be determined by checking the sen-
Let us consider thé’ in more detail. The mass of the sitivity of E, with respect to variations df,.

excited nucleon may be obtained from a two state fit to the We calculate the eigenvaluas,(t,to) of C(to) ~*C(t) for

B, correlator which, however, requires large statistics and,=3, and then evaluate the effective massedNafnd N’

that neither the ground state or the first excited state liefrom the larger and smaller eigenvalues, respectively, with

close to any other state. Attempts to extract tie mass the statistical errors coming from the jack-knife method. Us-

D. Diagonalization method for 2X2 matrix correlator

TABLE V. Single exponential fit of the unconventional nucleon two-point correlaBE (t)B, (0))) at
B=6.0 on a 18x32x 16 lattice withMs=1.8. The systematic error is estimated from the change in the
fitted mass whe,,, is increased by one.

State ) amy aMy (stab(sysd  x*Npr  tmin  tmax  Conf.level  No. of configs.

N’ (1/2°)  0.030  1.17(50)(108 1.47 5 8 0.23 405
0.040 1.19136)(69) 1.28 5 11 0.27 305
0.050  1.24443)(149 1.49 6 11 0.20 305
0.075  1.30839)(58) 0.43 6 10 0.73 105
0.100 1.38719)(2) 0.63 5 10 0.64 105
0.125 1.48416)(6) 1.00 5 11 0.42 105
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FIG. 2. N (X) andN* (O and ¢ ) masses versus the quark
massm; in lattice units[a~1~1.9 GeV fromaM,=0.400(8) in
the chiral limif|. The corresponding experimental values foand
N* are marked with lower and upper stars. TheN* mass split-
ting is clearly observed. Symbols( OO0 and ¢ ) are defined as in
Fig. 1.

FIG. 3. Mass ratio of the negative-parity excited-state and
positive-parity ground-state baryons versus mass ratio of the pseu-
doscalar meson and vector meson. All calculations are done for
three degenerate valence quarks. Ratios are calculated using fitted
masses from th&(B; (t)B; (0))) (O) and((B, (t)B, (0))) (¢¥)
correlators. Experimental points are denoted by stars.

ing these error estimates, we determine the masses in Table
VI from weighted averages over the time-slice ranges listed\” (1535)—~N+m seems to be anomalously suppressed.

there. Figure 6 shows that the results are quite consistefifoWeVver, the corresponding states cannot be easily distin-
with the masses determined from single exponential fits t@uished without knowledge of decay patterns if they lie close

Ty Nt to each other.
{(B, (1)B, (Q».) and ((B; (1)B; ((1)»' We ha\{e ,C,heCKEd As mentioned, for the negative-parity case our data show
that the variations oty aroundty=3 do not significantly

. h h eigenval f the transfer matrix are th m
affect the effective masses. For;<0.03, we unfortunately that both eigenvalues of the transfer matrix are the same

) . ; within statistical errorgsee Fig. 7. Of course, this does not
could not extract the mass of the first excited nucleon since g g-7

. : . le out the possibility that the splitting might become clear
good plateau in the eff_ectn_/e mass plot_ IS absent. We NOtGith more statistics and in the lighter quark mass region.
that for m;=0.04 there is still a large splitting in the eigen-

T A That is because the central value of the difference between
values, indicating the overlap @, with the nucleon re- e 5 eigenvalues increases in the lighter quark mass re-
mains small. y . _ _gion. Furthermore, the value of about 100 MeV mk
In contrast to the positive-parity state, the eigenvalues ir_ 0.03 seems to be large enough to reproduce experimental
the negative-parity case appear degenerate, as shown in F%Iitting in the chiral limit.

7. This will be discussed in more detail in the next section. Nevertheless, unlike the positive-parity case, we have no
As we have seen, the first excited state may die out Sg,qication of the presence of two independent negative-parity

quickly that only a few time slices are available for evaluat-gasaq in our calculation where the mixed correlator yields a
ing the mass, even if the excited state is well separated fror@onsistent mass with botB; and B, interpolating opera-
1 2

:ir;)igrs;r?grrﬂgzjebloar?:r?irsnovt?c?pt)itzh:Ztgglec\ljvﬁgrn;awg’t:rlnn;lg? ors, as listed in Tab_le VI. 'I_'hus, our combined results from
lattice spacing is finer than the spatial one may be useful. | Il data for the negative-parity nucleon allows two other pos-
. : - Wibjlities regardingN* (1650). One is thatN*(1535) and
fact, a recent lattice study20] has shown this to be an ef- | ; .
fective way to extract masses of nucleon excited states N*(1650) are completely degenerate or not independent in
" the quenched calculation. This situation resembles naive
quark models and the MIT bag model whét&(1535) and
N* (1650) are degenerate if we neglect the spin dependent
In the physical spectrum, we have another negative-paritjnteraction. In this case, the analysis through the diagonaliza-
state, N* (1650), which is just above the lowest state tion of the 2<2 correlator is no longer helpful.
N*(1535). Although these states are quite close to each A second possibility is thal* (1650) is simply missing
other, they are easily distinguished due to a peculiar decai our calculation, i.e., botlB; andB, operators may not
mode ofN*(1535). It is well known that the decay rate of couple, or couple weakly, to thid* (1650) state. This may
N*(1535)—~N+ 7 is comparable withN*(1535)—~N+#  be related to an argument|ia4] where the authors show that
even though theNw decay mode is kinematically favored the desired vanishing of the phenomenologig®&lN* cou-
over N7. For the case oN* (1650) theN decay is domi- pling for the N* (1535) state results simply from the chiral
nant; the branching ratio dfl 7 is only a few percent. Thus, transformation properties of particular interpolating opera-

E. Comparison with experiment
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FIG. 4. (a) The effective mass from th@B; (t)B; (0))) (X) and((Bj (t)B; (0))) (O) correlators on an ensemble of 405 configura-
tions atm;=0.03. The solid lines and dashed lines represent each fitted mass and its statisticdbjefrbe effective mass from the

((B5 (t)B1 (0))) (x) and((Bj (t)B; (0))) (O) correlators on an ensemble of 305 configurationsiat 0.05. The solid lines and dashed
lines represent each fitted mass and its statistical ggpihe effective mass from thgB; (t)Bf (0))) (X) and((B; (t)B; (0))) (O)
correlators on an ensemble of 105 configurationsat 0.10. The solid lines and dashed lines represent each fitted mass and its statistical
error.

torsB; andB, with the help of the soft pion limit. If their inverted compared to experiment. Furthermore, the level
argument is relevant to the suppression ofXhe decay, itis ~ spacing betweeN-N* andN*-N" is almost evefi15]. What
possible thaB; andB, couple strongly taN* (1535) but ~We see here closely resembles the wrong ordering problem of
not to N* (1650). However, their argument is no longer ap-the excited nucleon spectrum in naive quark models and the
plicable to a third interpolating operator MIT bag model. However, if this result is true for heavy
quarks, we can make an important prediction: the first ex-
B3,=(U'Co,pu)0,5y,d—(U'Co,pd)o,zy,u, (27)  cited state of the spin one-ha¥f; is a negative-parity state
rather than a positive-parity state.
] ) N N Unfortunately, our statistics did not allow the computation
which belongs to the chiral multiplet;(1)@(1,5) and has ¢ the N’ mass in the light-quark regiom{;<0.03). In ad-
no derivative[33,34. The B3, couples to bot)=3/2 and  dition, our data show no evidence for the possibility of
J=1/2 states. In this casé\*(1650) might be extracted switching the level ordering betwed andN’ towards the
from the B;, operator since there is no reason for lack ofchiral limit. Indeed, we did not observe that th& mass
coupling to theN* (1650) state. decreased faster than tid* mass with decreasing quark
Finally, we would like to mention a remaining puzzle. We mass. However, finite volume effects for higher excited
have done the first successful lattice calculation of Bdéth  states may be more serious than for lower excited states.
andN’ spectra. As for thé’, we have reliable data only for According to naive quark models or the MIT bag model, the
relatively large values oi;. Comparing theN’ mass with N’ state is radially excited in contrast to the nucleon ground
the N* mass, we find that the ordering &f’ and N* is  state and thé\* state. We note that the trend in the three
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FIG. 5. The fitted mass from((B; (t)B;(0))) (X), FIG. 6. Comparison of the fitted mass froftB; (t)B, (0)))

<<B§(t)§§(0))> (O) and mixed type {(Bf(t)E;(O) (O) and the estimated mass from the average effective mass of the
+Bz+(t)§1+(0))> (©) correlators. The corresponding experimental smaller eigenvalue of the transfer matr®Y. The symbolX cor-
values forN andN’ are marked with lower and upper stars. Note responds to the nucleon ground-state mass evaluated from the larger
the values extracted from the mixed correlation function do n(')teigenvalue of the transfer matrix, which is quite consistent with the
represent the mass of an actual asymptotic state, except possibly fifed mass from((B; (t)B; (0))).

the light and heavy quark limits.

V. CONCLUSION

heaviest quark mass points is at least consistent with the We have studied the mass spectrum of the parity partner
switching of the ordering in the chiral limit. Needless to say,of the nucleon in quenched lattice QCD using domain wall
the quenched approximation may also play a role in thidermions which preserve chiral symmetry to a high degree in
puzzle. In summary, our results do not rule out the possibilitylattice simulations. Most importantly we demonstrated that
of switching the ordering betweed* andN’ near the chiral this method is capable of calculating the mass of the
limit, and to solve this remaining puzzle we need furthernegative-parityN* state in the spin one-half and isospin one-
systematic calculations toward the chiral limit. half baryon sector.

TABLE VI. The third column lists the fitted masses of the mixed type correlators. Fifth and seventh columns list the weighted averages
of the effective mass derived from the larger eigenvalue and the smaller eigenvalue of the transfei gigtgx 3) induced by the
2X 2 matrix correlator. The fits corresponding to column three all hg®/&lp,< 1.5 For the positive-parity state, the larger and smaller
eigenvalue of the transfer matrix are clearly distinguishable. They correspond to the nucleon grou(id) statethe first excited nucleon
(N") respectively. However, for the negative parity state, both eigenvalues are degenerate within errors.

JP amy Mixed type [tmin tmasd Eo [tmin tmasd] E, [tmin tmasd No. of configs.

1/2" 0.020 0.70467) [6,11] 0.64910) [6,13] N/A 200
0.030 0.79%7) [5,12] 0.7039) [7,15 N/A 200
0.040 0.87%6) [5,12] 0.7559) [7,20] 1.26484) [5,8] 200
0.050 0.94254) [5,11] 0.8098) [8,20] 1.24767) [5,10] 200
0.075 1.198115 [5,10] 0.92711) [11,20 1.25639) [4,10] 81
0.100 1.40854) [3,10] 1.0489) [12,20 1.38239) [5,10] 81
0.125 1.50483) [4,10] 1.1617) [13,20 1.47933) [5,10] 81

1/2- 0.020 N/A 0.90150) [5,10] N/A 200
0.030 0.99747) [5,11] 0.93829) [5,10] 1.00449) [4,10] 200
0.040 0.97%24) [5,11] 0.99627) [6,10] 1.02135) [5,10] 200
0.050 1.00616) [5,11] 1.05429) [7,17] 1.04226) [5,11] 200
0.075 1.09214) [5,12] 1.10518) [5,10] 1.10222) [5,10] 81
0.100 1.18610) [5,10] 1.19718) [5,12] 1.20316) [5,12] 81
0.125 1.28M) [5,11] 1.29216) [5,12] 1.30313) [5,12] 81
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FIG. 7. Symbolsd and ¢ correspond to the estimated mass

from the average effective mass of the larger and smaller eigenvaf—
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lation matrix constructed from both interpolating operators
and also by examining single particle fits to the mixed cor-
relation function.

We did not resolve a long-standing puzzle regarding the
excited-state spectrum of the nucleon, the inversion of the
positive- and negative-parity first excited states with respect
to experiment. However, we believe that the level switching
betweenN* and N’ must occur close to the chiral limit,
though there is scant evidence in our results that this might
happen. Taking our calculation at face value leads to the
prediction that the first excited state Bf hasJ®=1/2".

Needless to say, more work needs to be accomplished in
order to achieve a fully systematic calculation of the excited
nucleon spectrum. In the near future we plan to increase our
volume and statistics to further explore the chiral limit, and
to check that lattice spacing errors are small by running at
several gauge couplings. We expect that the latter effect is
small due to the chiral symmetry properties of domain wall
ermions. A long term goal is to include dynamical fermions.

ues of the transfer matrix for the negative parity state. The eigen-

values are degenerate within errors. SymbolandO are defined
as in Fig. 6. The corresponding experimental valuesN¢®39),
N’(1440) and\N* (1535) are marked with lower, middle and upper
stars. The ordering of the negative-parity nucledi) and the
positive-parity excited nucleon\(') is inverted relative to experi-
ment.

We made a systematic investigation of tR&é spectrum
by using two distinct interpolating operatoi8; and B, .
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The N* mass and th&l-N* mass splitting in the chiral limit
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was carried out.

APPENDIX: GENERAL CHIRAL TRANSFORMATION
AND PARITY PARTNERS

obtained by extrapolation are consistent with the experimen- To extend our discussion of Sec. IlIC to general chiral
tal value within about 5-10%, depending on the mass weransformations, we prepare iso-doublet operator8joand

choose to set the lattice spacing, the nucleon optheeson.

These results have been confirmed by subsequent lattice cal’’

culations using improved Wilson fermioh20,21]. Needless

to say this is very encouraging for further investigations of

N* physics using lattice QCD simulations.

In contrast to the negative parity operators, the positive

parity operatorsB; and B, , yield distinct mass signals.

From theB, operator we obtained a clean signal for the

nucleon ground state, while froB; we always found a

heavier mass. This is probably because the latter vanishes
the non-relativistic limit and thus has small overlap with the
Indeed, we confirmed numerically tha

ground state.
(0|B,INY=0 and thatB, vyields the mass signal of the

positive-parity excited state in the heavy quark region. Wi
found that in the heavy quark mass region the mass of this
excited state is about twice as high above the ground state

mass as th&l* mass. This property of thB, operator was

t

B+
5+ _(sabu[u£<x><:y5db<x)]uc<x) "
1007 gl C sl [T AP
Bt () £abd Ua(X) Cdy(X)] y5Uc(X) "
2007 ddT0C (0 Tysdex) | A

¥he upper component corresponds to the proton and the
lower component corresponds to the neutron. Also we can
define iso-doublet operators for the negative parity nucleons
as B ,= y5B£2, respectively. Here we consider a general
ransformation ofSU(2),, andSU(2), symmetry,

[QV.9(X)]=i70(x), (A3)

confirmed by comparing the results with the excited-state

spectrum obtained from the diagonalization of &2 corre-

[Q4.9(X)]=iTays0(X), (A4)
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whereq=(u,d)T andr, is a Pauli matrix. Under these trans- which means thaG 5 +(t) has only diagonal elements of iso-
formations, the two-point correlator composed of eitBgr  spin indices. In other words, the proton state and the neutron
or B, should transform as state are eigenstates of iso-spin, of courseQ ff0)=0, it
. . turns out that
[QV,BLAX)BiA0)]=i[74,B1Ax)B;A0)], (AS5)
_ _ {¥57a,Gp=(1)}= 7ol v5,Gp=()}=0. (A8)
[QA,B1AX)B1A0)]=i{ys7a BiAX)B1A0)}.
(AB)  Thus, we can obtain the strict relation in terms of two-point

. . correlators between the nucleon and its parity partner
Equation(A5) along with the fact tha© §|0) =0 tells us that party p

the nucleon two-point correlation function should be com-

mute with 7, Cp+()=Gp-(1) (A9)
[74,Gp+(1)]=0, (A7) in the non-broken phase of chiral symmetry.
[1] S. Aoki et al, Phys. Rev. Lett84, 238(2000. [21] D.G. Richards, Nucl. Phys. BProc. Supp). 94, 264 (2001).
[2] S. Kim and S. Ohta, Phys. Rev. &1, 074506(2000. [22] N. Isgur and G. Karl, Phys. Rev. D9, 2653(1979.
[3] C. Bernardet al,, Phys. Rev. Lett81, 3087(1998. [23] A. Chodoset al,, Phys. Rev. D10, 2599(1974).
[4] H.B. Nielsen and M. Ninomiya, Nucl. PhyB185 20 (1981); [24] L.Ya. Glozman and D.O. Riska, Phys. R&&8 263(1996.
B195 541(E) (1982; B193 173(1981). [25] S. Cabasint al, Phys. Lett. B258 195 (199J); V. lwasaki
[5] M.F.L. Golterman and J. Smit, Nucl. PhyB255, 328(1985. et al, Phys. Rev. D63, 6443(1996.
[6] D. Kaplan, Phys. Lett. 288 342(1992. [26] D.B. Leinweber, Phys. Rev. B1, 6383(1995.
[7] Y. Shamir, Nucl. PhysB409 90 (1993. [27] C. Allton and S. Capitani, Nucl. Phy8526, 463 (1998.
[8] V. Furman and Y. Shamir, Nucl. PhyB439, 54 (1995. [28] K.C. Bowleret al, Nucl. Phys.B240, 213(1984).
[9] R. Narayanan and H. Neuberger, Phys. Rev. L&i.3251  [29] D. Richardset al,, Nucl. Phys.B286, 683(1987.
(1993; Phys. Lett. B302 62 (1993. [30] S. Aoki et al,, Phys. Rev. D60, 114504(1999.

[10] T. Blum and A. Soni, Phys. Rev. Leff9, 3539(1997); Phys. [31] T. Blum, A. Soni, and M. Wingate, Phys. Rev. @, 114507
Rev. D56, 174(1997). (1999.

[11] An early review of domain wall fermions is given in T. Blum, [32] For example, see R.G. Edwards and U. Heller, Phys. Rev. D
Nucl. Phys. B(Proc. Supp). 73, 167 (1999; For a recent 63, 094505(2001); P. Hernandez, K. Jansen, and M.scher,
review, see P. Vranashid. 94, 177 (200). hep-lat/0007015; F. Berruto, R. Narayanan, and H. Neuberger,

[12] T. Blum et al, Phys. Rev. D(to be publisheg hep-lat/ Phys. Lett. B489 243(2000; and Y. Shamir, Phys. Rev. B2,
0007038. 054513(2000.

[13] A. Ali Khan et al, Phys. Rev. D63, 114504(2001). [33] B.L. loffe, Nucl. Phys.B188 317 (1981).

[14] See, e.g., H. Pagels, Phys. Ré&g, 219(1975. [34] T.D. Cohen and X. Ji, Phys. Rev. &b, 6870(1997.

[15] S. Sasaki, Nucl. Phys. BProc. Supp). 83, 206 (2000; S. [35] F. Fucitoet al, Nucl. Phys.B210, 407 (1982.
Sasaki, inProceedings of the International Conference on [36] G. 't Hooft, in Recent Developments in Gauge Theqreatited

NSTAR 2000, Newport News, VA, 2080ited by V.D. Burkert by 't Hooft et al. (Plenum, New York, 1980 S. Coleman and
et al. (World Scientific, Singapore, 2001p. 378, hep-ph/ B. Grossman, Nucl. Phy&203 205(1982.
0004252. [37] N. Christ (private communication

[16] T. Blum, S. Ohta, and S. Sasaki, Nucl. Phys(FBoc. Supp). [38] L. Wu, Nucl. Phys. B(Proc. Supp). 83, 224 (2000; M. Win-
94, 295(2002. gate,ibid. 83, 221 (2000.

[17] S. Gisken, K. Schilling, R. Sommer, K.-H. Mier, and A.  [39] Particle Data Group, C. Casd al, Eur. Phys. J. G, 1(1998.
Patel, Phys. Lett. 212 216(1988. [40] M. Gockeleret al., hep-lat/0106022.

[18] T. Bhattacharya, R. Gupta, G. Kilcup, and S. Sharpe, Phys[41] W. Bardeeret al, Phys. Rev. D65, 014509(2002.
Rev. D53, 6486(1996. [42] C. Bernardet al,, Phys. Rev. D64, 054506(2001).

[19] F.X. Lee and D.B. Leinweber, Nucl. Phys.(Broc. Supp). 73, [43] M. Luscher and U. Wolff, Nucl. Phy€3339, 222 (1990.
258(1999. [44] D. Jido, M. Oka, and A. Hosaka, Phys. Rev. Led0, 448

[20] F.X. Lee, Nucl. Phys. BProc. Supp). 94, 251 (200J). (1998.

074503-14



