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Vortex waistlines and long range fluctuations
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We examine the manner in which a linear potential results from fluctuations due to vortices linked with the
Wilson loop. Our discussion is based on exact relations and inequalities between the Wilson loop and the
vortex and electric flux order parameters. We show that, contrary to the customary naive picture, only vortex
fluctuations of a thickness of the order of the spatial linear size of the loop are capable of producing a strictly
linear potential. An effective theory of these long range fluctuations emerges naturally in the form of a strongly
coupledZ(N) lattice gauge theory. We also point out that dynamical fermions introduced in this medium
undergo chiral symmetry breaking.

DOI: 10.1103/PhysRevD.65.074501 PACS nuniderll.15.Ha

[. INTRODUCTION tainers can then be used to obtain an upper bound to the
Wilson loop by making use of rigorous inequalities mostly
Center vortices are widely believed to be the most imporbased on reflection positivity. We show that thick vortex con-
tant degrees of freedom for confinement in Yang-Mills theo-tainers of thickness of the order of ttghortej side length of
ries. (For a recent review sel].) Attempts to isolate and the Wilson loop yield the “best” and in fact the only strict
compute the vortex content in the path integral at laggge area law upper bound. This shows that vortices do not have
have been a very active area of study in the past two yearsome fixed characteristic thickness but the most important
(For a general view of the various approaches and issuertex fluctuations disordering a Wilson loop of a given size
involved, sed?2]). have a core thickness of the order of the linear size of the
A popular plausibility argument for confinement by vorti- Wilson loop. It also means that generally vortices cannot be
ces goes as follows. To estimate the vortex contribution tainambiguously located as individual objects in every given
the expectation of a given Wilson loop, one assumes thagingle gauge field configuration. The only meaningful quan-
typically many thin vortices—i.e. thin compared to the tity is the number of vorticeémod N) linking with a given
physically large &1 fm?) Wilson loop areaA—link with  Wilson loop, and this is a well-defined gauge invariant quan-
the Wilson loop. A simple estimate is obtained by subdivid-tity. In the remainder of the paper we show how the physical
ing the surface spanned by the loop imteA/a pieces of  picture implied by the previous discussion leads to a simple
equal areaa and assuming that a vortex piercing a giveneffectiveZ(N) gauge theory for the long distance center de-
small area piece is present with a probabifityProvided that grees of freedom. We then observe that the introduction of
the vortices linking with the loop at different places ame  dynamical fermions in this effective strongly coupled system
dependentthe Wilson loop expectation is then given by results in chiral symmetry breaking.
The paper is organized as follows. In Sec. Il we review

L[N Kook n—k_ Ala and extend various relations and inequalities relating the
,Zfo k (=1)"p(1=p)" "= (1=2p)™, @) electric free energyFourier transform of the vortex free en-
ergy) to the Wilson loop. These relations form the basis for
which is the desired area law. our discussion of vortices and the emergence of a linear po-

In the present paper we point out that while this simp|etentia| in Sec. lll. Section IV further discusses the physical
picture indeed gives the correct area law, it is fundamentallyicture and introduces the effective theory. Section V con-
incorrect because it is not supported by the underlying fultains some conclusions.
non-Abelian gauge theory. The response of the vortex distri-

bution in the vacuum to the introduction of the external IIl. ELECTRIC FLUX INEQUALITIES
probe represented by a Wilson loop should be such as to
minimize the effective quantum actigifree energy of the After a brief description of our notation, in this section we

system. To examine this we make the above arguments mometroduce the basic electric flux inequalities. These are al-
precise by introducing a set of vortex containers linking withready interesting in their own right since they yield a rigor-
the Wilson loop in the spirit of3]. Any set of vortex con- ous upper bound on the Wilson loop in terms of the electric
flux free energy.
We work on a hypercubic lattica of lengthL , in space-

*On leave from Department of Theoretical Physics, University oftime directionu=1, ... d. We assume the standard Wilson
Pecs, Hungary. Email address: kovacs@ifh.de formulation of lattice gauge theory withU(2) group-valued
TEmail address: tombouli@physics.ucla.edu link variables, the Wilson action and periodic boundary con-
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ditions in all directions. Expectation values of observables |1 1 1
are defined as 5(1—0[Vﬂy])§(1—0[v,'w])> =<§(1—0[V,,w])> ,
1 1 (7)
(0)= ZJ d[U]OeXp( ’sz: §trup>’ 2 asis easily seen by using E@).

Consider now a rectangular Wilson lo@pplaced, say, in
where the integration is over all the group-valued link vari-the[12] plane. Let) be a coclosed stack of plaquettes wind-
ables and, the partition function, is the same integral with- iNg around the periodic lattice in the perpendicular

out the operator insertio®. =3, ... d directions and througle, and insert unity in the
Let us denote by)[V,,] the operator that flips the sign of numerator in the Wilson loop expectationV[C]
the coupling[introduces aZ(2) “twist” ] on a coclosedd  =(3trU[C]) in the form

—2)-dimensional set of plaquettes,, winding around the
periodic lattice in the directions perpendicular to e di-
rections. The expectation value of this operator defines the
vortex free energy:

1 1
1= E(l—(’)[V])—F §(1+ o).

Then

eXF(_Fu[/VLV]):<O[V,u,V]> (3) <1

W[C]= —trU[C]%(l—O[V])>

The twist amounts to a discontinuous gauge transformation 2
with multivaluedness irZ(2), i.e., forces the presence of a 1 1
m1(SU(2)/Z(2)) vortex wrapped around the periodic lattice. + <—trU[C]—(l+ O[V])>

As indicated by the notation, the expectation depends only 2 2

on the directions in which’ winds through the lattice, not

the exact shape or location ®f This expresses the mod 2 =<EtrU[C]1(1—O[V])>

conservation of flux. Indeed, the twistl on the plaquettes 2 2

forming V can be moved to the plaquettes forming any other

homologous coclosed s&t' by the change of variabldd,, +<EtrU[C]}(1—O[V’])>. @)

— — Uy, in the numerator in Eq(3) for each bond in a set 2 2

of bonds cobounded byuV'. By the same token E@3) is o o
invariant under changes mod 2 in the number of homologou§€r® V' is another coclosed stack of plaquettes winding

twisted coclosed sets introducedAn A simple consequence &round the lattice in the perpendicular=3, ... d direc-
of this is that tions but not threading througd. The second equality in Eq.
(8) is obtained by making the change of variables
(O[V,,]0[V., ])=1 (4) — —Uy, in the second term in the first equality in E&) for
v nv .

each bond in a set of bonds cobounbed ByandV’. This

We will assume that, for sufficiently lardé,,,|, and dimen- ‘moves” the twist (-1) on the plaquettes forming to those

siond=<4, the vortex free energ{8) behaves as forming V'. This set of bonds necessarily involves dioe
’ an odd number 9fbonds) on C, which results in the minus

sign in the second term in the second equality. Equai®n
FU[,uV]~< 11 L)\)exp(—p(,8)|AW|), (5)  is represented graphically as
NF v
where|A,,|=L,L,. This is the optimal behavior under ex- < > = < . > + < .>
ponential transverse spreadifigeation of mass gamf the
flux introduced by the twist orV, with p approaching, at 9

Iea_st asymptot_ically, the exact Iinegr potential string tensionynere a filled square stands for the operat¢t—O[V]),
This behavior is expected by physical reasorfiily and ex-  jith ) crossing the two-dimensional plane containing the
plicitly seen in the strong coupling expansifsi. Recently, |qon at the location of the filled square, and winding around

it became possible to demonstrate this in numerical simulagq |attice in the remaining— 2 perpendicular directions.

tions.at Iarge,B_ [6,7]. The behavior(5) for a “vqrtex in a Simple identities like Eq(9), or Egs.(16),(17) below,
box" is essential for our argument in the following. serve as the starting point for deriving relations between the
The Z(2) Fourier transform of Eq(3), Wilson loop and vortex free energies by use of reflection

1 positivity. Given a reflectiomr about a —1)-dimensional

_ [ Z1_ lattice hyperplane, one defines an antilinear mapgpingn

exp(~Fe) <2(1 O[V‘”])>’ © functions of the bond variables b§F[{Up}]1=F*[{Up}].

By the reflection positivity properties of the lattice gauge
gives the corresponding dudlith respect to the center theory(LGT) action[8], this induces a positive semidefinite
color-electric free energy. The mod 2 conservation of theénner product on the space of configurations allowing the use
magnetic flux is now expressed by the projection property of the corresponding Schwarz inequalities. Thus, starting
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for the first term, and a similar statement for the second term C
in Eq. (9). In Eq. (10 we made use of Eq7)* and 3tr1

=1.The loop has now doubled in size along the direction of £ 1. Arrangement for reflections in first term in Bd42) to
one of its legs. Proceeding now by repeated reflections iRptain Eq.(13) (see text

hyperplanes containing one of the legs of the loop resulting

with Eq. (9), consider a reflection aboutda- 1-dimensional L L u
hyperplaner perpendicular to the “vertical” loop legs and [ [ o
containing, say, the top “horizontal” leg of the loop C. One . ' T
then has the inequality ! ;
" C B | |
L n IR 12 1”2 K ; l TC;
D <=2 > IR T
= = " o= | mT 2
(10 AR t: *1

from the previous reflection, and use of Hg), one may 1 1A
eventually completely eliminate alllr factors from the loop W[C]gZH < H —(1- O[Vk])i> (13
operator by virtue of the lattice periodicity. Applying this NN 2
procedure to both terms on the right-hand sigélS) of Eq.
(9) one obtaing 9] where in the product inside the expectation there is one fac-
Acl/[Ary tor for each plaquette iA’. Equation(13) now has the form
(WLC)=2(exp(—Fg))"cl12, (11D of a typical “chesshoard estimate” inequalityee e.g[8,9)).

It is of course equivalent to Eqll) by (7) since |A’|
=|A|/12, and the number of factors in the outside product
equals|AZ|=|Ac|/12.

Returning to Eq(8) and noting that

where|Ac| is the minimal area bounded by the Wilson loop.
If then the vortex free energy behaves as in E§$,. (11)
implies area law for the Wilson loop.

Note that the resulf11l) manifestly incorporates mod 2
conservation since of course E@6) and (3) do. This is an 1 1 1 1
important point that we now explore a bit further. Any mul- <—trU[C]—(1— (’)[V])> +<—trU[C]—(1—O[V’])>
tiple factors of 3(1—O[V]) occurring in the derivation 2 2 2 2
above were eliminated by Eg7). Suppose instead that we 1 1 1
keep a number of such factors to make contact with the naive = <§trU[C]§(1— oV 5(1+ O[V’])>
picture of a Wilson loop pierced by several independent vor-
tices. So imagine that we subdivide the 2-dimensional plane 1 1 1
A containingC into large squares of side lengthi.e. we +<§th[C]§(1+ O[V])E(l—O[V’])>
view A from a coarse lattice of spacihgWe denoteA by A’
when viewed from the coarse lattice. Rewrite the ider(@y 1 1
using Eq.(7) in the equivalent form — <§trU[C]§(l—O[V]O[V’])> (14)

/1 1
W[C]—<§trU[C]H 5(1—0[vi]>i> =<1trU[cﬁ(1—0[v"])> 5
2 2

1 1
+<§th[C]H 5(1—O[Vj'])j> (120 one obtains the alternative identities represented graphically
by

where the product in the first term includes one facior

dexed byi) for every large square iA ( every plaquette in

A") tiling C (Fig. 1), and the identical arrangement translated |
outsideC in the second term. One now applies reflection 1 = 7 <
positivity to repeatedly reflect aboud {- 1)-dimensional hy-

perplanes 7y, or w5, perpendicular to theu=1, or (16)
2-direction, respectively, containing bondsAn (Fig. 1. In

~N

<
<

LEEfrrrrein

[AERRRRRRRRE
>
39
x
o

this way one derives St
- 1( _ - - >
2 - =

Notice that Eq.(7) remains valid in the presence of additional S V7
operators in the expectation, as long as movirigo V by a change (17)
of variables does not affect the additional operator. In particular,
this is the case for a Wilson loop when neither or bdtland V'’ Equation (16) is the graphical representation of E{.4).
link with the loop. Equation(15), graphically depicted in Eq17), is then ob-
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/ where

SI090009990900¢ 27Uy )= f [I du,

&7 o be A=A,

- 4 B _ .\

% i / ig X pe/li_'[a/\i ex;{§(+ 1)V|[p]tl’Up> (19)

2\ /7 |2

& - Yz A with the characteristic functiow,[p]=1 if peV;, 0 other-

@Q 000000000 Q§7 wise. z([i)(UaAi) is of course simply the partition function
C i for (the interior of A;. Then one obtaing3]

FIG. 2. Vortex containen; enclosing coclosed set of plaquettes 1
V. (shadedl linking with Wilson loop C. d=3, or 3-dimensional W[C]= EUU[C]H fa(Usr) ). (20
section ind=4. '

) ) . , Equation(13) can be rewritten in the same way:
tained from Eq.(14) by simply mergingV and V' in the

coclosed seY” linking with C by another shift in integration 1A'|

variables and mod 2 flux conservau%n.. . W[C]$2H < 11 flAk(UﬁAk)> , (22)
Alternatively, Eqgs.(16),(17) may be directly obtained as I\ keA’

follows. Insert 1= [ ;,)dy, whereye Z(2), in thenumera-

tor in the expectatioWV[ C], and make a shift of integration where now each containdr, containing the coclosed s}

variablesU,— yUy,, for all be B, whereB is a set of bonds is of transverse arel¥ and wraps around the lattice in the

whose coboundary i¥UV’ or V". The result is Eq(16), or  longitudinal directions.

Eq. (17), respectively. Note thatf, (U;s,), Eqg. (18), is nothing but Eq.(6)

[Z(2) FT of vortex free energynow defined on a latticd;

lIl. THE WILSON LOOP IN TERMS OF VORTEX (the vortex containgmwith fixed (instead of periodicb.c. in
CONTAINERS the transverse directions, but still periodic b.c. in the longi-

. ) ) ~ tudinal directiong(in which theA;’s have torus topology by

In this section we introduce a set of vortex containersgonstruction. Vortex containers including integration over
linking with a given Wilson loop. Using the relations derived fyctuations(summation of entropy effedtsn their interior
in the previous section, we obtain an upper bound on there a convenient device for discussing scales larger than their
Wilson loop in terms of vortex fluctuations occurring in the thickness in terms of free energy costs rather than the action
given set of vortex containers. We then ask the questionef individual configurations.
which set of vortex containers gives the “begte. the low- From Eq.(20) one can now, trivially, obtain the bound
esh upper bound to the Wilson loop. It turns out that the
favored set of vortex containers has only one single thick
container utilizing an area of the order of the area spanned by wicl<]] maxf (Usn)l, (22
the Wilson loop. This yields a strictly linear lower bound to boUn,
the heavy quark potential, whereas a collection of many thin
vortex containers results in a suppression of the potential byhere the maximum is taken over all values of the bond
a logarithmic factor. variables on the bounda@A; .

By Eg. (7) and footnote 1, one can insert multipj¢1 Equation(22) makes a direct connection with the naive
—O[V)) factors in Eqs(15),(17) corresponding to a collec- notion of independent vortices winding through a large Wil-
tion of coclosed set§),} linking with the loopC. Imagine  son loop, resulting in disorder, and area law, provided they
enclosing each, in a “vortex container”[3], i.e., a sublat- are able to grow sufficiently long to pierce through the loop
tice A;CA containingV; and wrapping aroun€ (Fig. 2.  at any point. For this to be possible the vortices must be
Imagine integrating over the bond variables in the interior ofallowed to grow sufficiently thick to keep their free energy
each container, keeping bond variables on its boundary  cost fixed as their length increases with that of the Wilson

fixed, and define loop. Letd; be the size ofA; in each of the two directions
transverse to the sé&t used in its definition; its longitudinal
-) size is given byV;|. We must first assume that all the vortex
1 2 Vo) tai thick ht h the regime wh
fo(Uop)==| 1- ' (1g) ~ containers are thick enough to reach the regime where
ARTONTT 2 ZD(WU)
A (Maa,

I (Uaa )12 (U )|~ [ Vilexp(—pd?) - (23)

2y’ ~V" is topologically trivial with respect to the lattice® for all Ujy,- Soto keep the free energy cost of each vortex
topology, but not with respect to the obstruction of the I&p less than a fixed valug we need
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d?>1|n ]l (24) J— J——
Then also malf,, (U, )|<3(e'—1)<const. But|V}] (in d di-
mensions is of the orderR%~2 for linkage through points .
away from the perimeter of a rectangular loop of side lengths | L]
T and R,T>R. Such a loop can then accommodate ———— — ———
~RT/In R containers wrapped around it. Thus E2R) gives (a) (b) (c)

a confining but not quite purely linear potential

FIG. 3. Vortices linking with Wilson loopgC. Cores shown in
V(R)=constR/In R. (25) darker shading, and long rangefinite extenj pure gauge tails in
light shading:(a) Well-separated vortices of approximately fixed
The same reasoning, and consequent failure to produceWidth? (b) configurgtions of eguivalent mod 2. flux having one thick-
purely linear potential, applies to the familiar argument forened vortex lowering potential enerdy) configurations contribut-
confinement by vortices, outlined in the Introduction, which "9 essentially as ith) showing the possible ambiguities in count-
tacitly underlies or is implied by many discussions in the9 vortices beyond modl.
literature. One assumes randomly distributed vortices of a
certain thickness and basically arbitrary length. It is crucialSo even though the gauge field values on a thick container’s
that one assumes that the cost and hence the probability faoundaries are irrelevant for estimating the bulk free energy
vortices to link anywhere with the loop is fixed for any Wil- cost inside, they are very much relevant for signalling the

son loop sizecp. Eqg.(1)]. One then considers one vortex presence of a vortex inside to other vortices or other topo-
linked with a large Wilson loop. With the vortex thickness |ogical obstructions outside.

assumed much less than the loop’s linear dimensions, one This acts like an “irreducible” interaction between vorti-

now sums over all positions of intersection with a surfaceceg that acts at all distances, and enforces flux conservation
spanning the loop. With the above assumptions, this progqq N, This interaction allows a system of vortex excitations

duces a factor proportional to the loop area. One then sumg 4 ist the amount of flux spreading, i.e., adjust the thick-

over all intersection points for twimdependentortices link- ness of vortices to minimize the free energy of the system.

ing ‘.Nith the loop, and so on. This clearly exponentiates 98NThe thickness of vortex cores then is not fixed, but is ad-
erating area law: '

justed relative to their length as required by the presence of
(- 1)k|A])? other vort_it_:es and/or other obstructio(e;g. Wilson Iqop
o0 . legs sensitive to the presence of topologiZdN) flux (Fig.
’ 3). This means that in general vortices cannot be considered
=exp(—k|Ag|). (26) isolated, and a definite number of vortices, specified more
precisely than modN, cannot necessarily be unambiguously
We now see that purely linear confinement is obtained thigssigned to every configuration.
way only by adopting a non-interacting gas picture, and ig- Thus, in the presence of the Wilson loop source, the op-
noring the actual free energy requirements for having vortitimal configurations for the system are not those of multiple
ces of sufficient length link anywhere with a large loop: theisolated linked vortices, each of some fixed free energy cost
type of discussion just given above for E@2) applies to  [Fig. 3a)], hence length}|~R(®2 and fixed widthd?
each term in such a summation. Thus, for one vortex linking— |n R<R T. It is more advantageous, in terms of free energy
with the large loop of side lengtiBandR (T>R), a vortex  cost, for multiple linking vortices to thicken and merge, the
cross section area of orderRis required; otherwise, linking  {4ig) topological flux being conserved mod [Rig. 3b)].

anywhere far away from the perimeter for fixed, boundedg;nce the Wilson loop operator is affected by the topological
vortex free energy cost as required by the argument, is not g, through it only modN, this should optimize the expec-

posTsr:bIe. TQI'S Ieao_ls at kl)aest to E@5), tnot Itzq;dg%)' " Itation. But then the picture and expansion in terms of groups
€ problem arses because one reats e VOriCes as 1 ;o aa independent vorticé26) is no longer applicable.

calized and independent. For sufficiently thick vortices free™ 2. o .
energy costs are indeed correctly estimated in magnitude %s S|m|larliy, Eq.(22) Iead; tq Eq(25) becau;e itis obtained
y assuming the vortex inside each container as completely

above, i.e. Eq(23). Thus, if one imagines each vortex en- . .
closed in a vortex container of fixed, but sufficiently Iarge,'SOIated and independent of all the others. The exact expres-
sion (20) holds for any number of factors in the product

width d, the exponential transverse spreadingxp(—pd?) > ! . -
renders the overall vortex bulk free energy cost inside insenSide the expectatioiireflecting modN conservation In
sitive to the exact values of the gauge fields on the containefl€W Of the above discussion, one may as well combine con-
boundary. The vortex, however, is surrounded by the purddiners into ones as thick as possible by integrating over the
gauge long tail that encodes its nontrivial topology, and fluxboundary fields of neighboring containers. Wik>R, this
quantization. This tail incurs no additional action cost, but isamounts to taking containers in the product in E@$),(22)

of infinite range and communicates the presence of nontrividhaving transverse area-R? and longitudinal extension
topological flux inside the container to everywhere outside ~ (constR)(@~2), Equation(22) now gives

W[C]~1+(=1)kAc|+
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const be as small as possible, i.e. exhibit exact area’law.
V(R)=consiR— ——(InR+cons} (27) This reflects the striking behavior revealed by the numeri-
cal simulationg 6], that over sufficiently large scales there is

replacing Eq(25). For loops withT=R, basically only one “condensation” of vorticity carrying flux. Over a hypercube
vortex container is needed, which means that strict lineaf side length of about 1 fm, the weighted probability at large
potential arises essentially from thick vortex fluctuationsB for nonzeroa(mod N) flux configurations goes to unity. The
spanning the entire loop area. It is interesting to note thaveighted probability then that one finds a vortex of at least
such thick vortices also produce nonperturbativie @éntri-  this transverse size going through a 2-dim face on the hyper-
butions (at scales outside the short distance perturbatioleube boundary is approaching one. More generally, above
theory regime this scale, vortices of any length, by corresponding appropri-

Inequality (22) is actually rather crude. The inequalities ate adjustment in thickness, can occur at practically zero free
(11),(13) following from reflection positivity are much more energy cost. One may view this as percolation of vortices in
powerful because of the exponents that allow estimates unihe following sense. If one considers any two disjoint seg-
form in the lattice size. They give directly pure area law. Asments on the boundary of a large 4-dimensional simply con-
is eaSily seen, this is true even if one further Crudely- bOUndﬁected region' the probab|||ty of being joined by a vortex of
the RHS of Eq.(13) from above as done in Eq22), since  gygficient thickness%1 fm) is finite.

InL,/A’—0 as|A[—e. There is no real reason for doing  Thjs picture of “percolated” vortices in all possibfg.v]

this though’ orientations, with flux in intersections being conserved only
mod 2, implies that in general it is difficult to unambiguously
IV. LONG RANGE VORTEX FLUCTUATIONS— identify individual vortices. Rather, in the absence of ob-

EFFECTIVE THEORY structions or boundaries introduced by external probes, one
The above discussion, based on exact relations and i an talk about an average nonvanishing vorticity fi‘el_d de-
equalities between the Wilson loop and the free energy ord fnefi on the coarse _scale of 1 fm, mea_sured by the *circula-
parameters, indicates that an effective picture of the lond!®" (Plaquettes, Wilson loopsabove this scale.
distance confining fluctuations as isolated, independent vor- What simple effective theory can describe this vacuum?
tices winding over long distances—in other words, as som&Ve stress that we mean an effective theory strictly of only
kind of an approximately dilute or weakly interacting vortex these long range vortex fluctuatiorisonfiners resulting
gas—is not generally applicable. It does not take properlfrom integrating out to an appropriate scale. Even at that
into account the relation between length and thickness of &cale there will of course be all kinds of oth&U(2)
vortex implied by the cost in free energy necessary to createSU(N)] fluctuations which we consider irrelevant for con-
the vortex in the first place, nor the correlations betweerfinement. Let us list the minimal requirements for the effec-
vortices caused by their long rangepologically nontrivial ~ tive theory:
pure gauge tails. These correlations are present irrespective (i) On a coarse scale of about1-1.2 fm, the partition
of the separation and enforce the mod N conservation ofunction should be expressible solely in terms of vortex ex-
topological flux. Even though the cost diminishes exponencitations[coclosed(closed dugl surfaces of codim R
tially with the transverse thickness of a vortéteation of (i) The mod 2(mod N) property should be manifestly
mass gajy these effects must still be properly accounted forincorporated.
if vortices of basically arbitrary length are to be present in  (jii) The vortex flux through each coarse scale plaquette
the vacuum. These effects then generally tend to causshould incur an action equal to the vortex free energy per
neighboring thick vortices to thicken further and merge sinceunit length for thickness-1, as defined and computed from
this lowers the free-energy cost for the vortidebove any Eq. (3). This amount of free energy for the confindtBeir
background of fluctuations that may be pregéot the same  action on the coarser scalis the costabovethe sea of all
mod N total flux in the system. Thus, our previous discussiorother vacuum fluctuationgAgain, note that this depends
implies that the long distance linear potential should notonly mod 2 on the number of “vortex-introducing” singular
properly be viewed as arising from the fluctuations caused bgauge transformations injected in the box in E3).]
a gas of independent vortices winding through the loop, each (iv) On this coarse lattice, the thick vortices should be in
of thickness much less than the linear dimensions of the “percolation phase.” Thus, despit@, there should not be
loop. Rather, the fluctuation is more accurately described ag useful expansion of the theory—i.e. a convergent, or, at
that due to vortices of thickness comparable to ($teortey  least formally, systematic expansion scheme allowing com-
linear loop dimension. Negative values of the loop occurputation of observables—such that each term in the expan-
then with almost exactly equal measure weight as positive
values/no vortex(mod 2]. This optimizes the expectation to

“Recall that it is a rigorous result that the potential cannot rise
faster than linearly.
SEquation(13), however, might serve as a starting point for more °The way embedded non-self-interacting 2-dimensional surfaces
sophisticated approximations where the behatoifor the vortex  (in our case, surfaces of a certain thicknesan grow to densely fill
free energy under spreading of flux is at least partially derived4d-dimensional space, the so called capped gropes and towers, has
rather than assumed. been extensively studied in manifold thegi0].

074501-6



VORTEX WAISTLINES AND LONG RANGE FLUCTUATIONS PHYSICAL REVIEW D65 074501

sion is characterized by a well-defined number of vortex ex-
citations. ZAC:J 11 dYbeXF( BetiX Yopt

(v) The Wilson loop expectation should give strict area Z2) b P
law as in the bound11).

Let then A, be the coarse lattice of lattice spacirg, where the ellipses indicate the additional clover and higher
and y, e Z(2) variables residing on its plaguettes. Then theloop terms corresponding to the additional terms in @&d).
simplest way to implemerii) above is by the partition sum: The theory is in the deep strong coupling regiBig<1.

Thus(iv) above is indeed satisfied. The theory can be treated
in the strong coupling expansion. It cannot, however, be
1+ H; Xp) expAeit- (28)  meaningfully expanded in its vortex excitations—that would
pee be appropriate in the weak couplir@.¢>1 regime in the
form of the usual weak coupling expansion for discrete
groups(dilute vortex gas[11].

It should perhaps be explicitly pointed out that thE2)

H Xp=1 (29 variables in Eqs(28),(34), serve as an effective description
pede of long distance fluctuations creating topologi@{R) flux
[elements ofmr(SU(2)/Z(2))] in the original theory[12].
They have nothing to do with th&(2) part of the original
SU(2) bond variables. Note that tH&2) gauge theory in-
teraction, together with Eq32), correctly reproduce the ef-
fects of flux spreading and thickening of vortices while con-
serving flux mod 2. Correspondingly, the Wilson loop now
H XS =1 (30 automatically gives the correct area law.

b A Wilson loop inserted in Eq34) represents the coupling
_ of an external quark current to the long distance confining
on the plaquettes forming the coboundary of every bond. Th@yctuations. Its replacement by dynamical quarks introduces

. (39

1
Zy = a1 =
Ae fZ(Z)l;I Xpl:[ 2

The measure enforces the constraint

on the plaguettes forming the boundary of every
3-dimensional cube on A ., so only excitations on coclosed
sets are allowed. Equivalently, on the dual lattice, &9)
assumes the form

ped*

requirementii) is then automatically taken care of. fermions in the medium of these fluctuations. Since the ef-
The general form of the effective actidky fective coupling is strong, it induces dynamical chiral sym-
metry breaking([CSB).

_ CSB in strongly coupled LGT has actually been demon-
A= + ' . - . o
eff BeﬁEp Xp sz(p’p%‘;a*b XpXp strated analytically in the superstrong gauge coupling limit

(no plaquette action ternby expansion or mean fieldarge

N or d) approximationd 13,14, and rigorously by infrared

+ ’ !I+ A 31 . . .

’83"(pyp,'p2,,)ea*b XpXprXp 39 bounds[15]. It is physically obvious that the result extends

to a finite region in the strong coupling regirhe.
involves, in addition to the basic plaquette term, quasilocal We may try to use the results [13-15 to get an esti-
interaction terms involving two or more plaquettes in themate of the contribution to the quark condensate in the ef-
coboundary of each bond, etc. Now, frdii), and Eq.(5), fective theory. Corrections from the plaquette term in the

we must have action are totally negligible due to the smallnes®gf. One
then has
Bei~exp(—p(B)I?) (32)
. . - . . _ 1 /2
giving, in principle, the coupling3¢ in terms of the cou- (qq):z(I)Nl—S\/;(l—k(d))l’Z, (35)

pling at the original lattice spacing, asmust approach the

string tension for sufficiently largé. From the numerical

simulationg6], |~ 1.1 fm. This givesBe¢~0.002. This very  where $<k(4)<0.35. z(I) is some renormalization factor
small value reflects of course the fact that at this choice ofhat, in a more sophisticated treatment, should depend on
the physical lengtil vortex flux is found to become Very how fermions are introduced at the original lattice spacing.
light.” Correspondingly, the terms involving products of Here we naively set it equal to one—this is equivalent to
two or more plaquettes must be of ordgf; and higher, simply taking staggered fermions on the coarse lattice. With

hence entirely negligible. I=1.1 fm. this qi TN 3 _
; i , =1. , gives(gq)=(195 MeV)*> for N=2, and
The effective mode(28) is now seen to simply be &(2) (53 Mev)? for N=3. This indicates that the quark conden-

LGT. Indeed, the constrairi29) can be explicitly solved by gate may be entirely accounted for by the long range confin-
introducingZ(2) bond variablesy, by ing fluctuations.

xo= 11 . 3y _ _ .
bedp It should be possible to prove this by cluster expansion tech-
nigues around thgg=0 point, though not so straightforward for
Then technical reasonéounding terms with Grassmann integrands
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Following our previous development, the effectiZzéN) confinement by vortices which assumes that vortices of fixed
theory appears to emerge rather naturally, and in fact in ¢hickness can link with a fixed probability with arbitrarily
fairly unigue manner. The idea that an effective theory oflarge Wilson loops. The correct picture must take properly
long range vortex fluctuations must beZ&N) LGT is not  into account the relation between the length and thickness of
new, but has not, we believe, been formulated in this waya vortex imposed by the free energy requirements for creat-
before. Recently, a model equivalent to E28), in the rep-  ing the vortex, as well as the interaction between vortices
resentation(30) and employing additiv&Z(2) variables, was introduced by the constraint of mod N conservation of the
considered in16], apparently without any referenceZg2)  vortex flux. This picture of vortices naturally yields a long
LGT. distance effective(N) gauge theory above the confinement

scale of around 1 fm. The effective theory is deep in the
V. CONCLUSIONS strong coupling regime which makes it impossible to inter-
_ _ pret it in terms of a simple vortex gas expansion. The only

In the present paper we studied the energetics of howiseful expansion one can consider is the strong coupling one.

vortices can disorder Wilson loops of different sizes. Vorticesgeing deep in the strong coupling regime, the effecyal)

of any thickness smaller than the linear size of a given Wil-gayge theory naturally produces chiral symmetry breaking in
son loop can link with it and contribute to disordering its the presence of fermion fields.

average. Here we pointed out that for Wilson loops of any

given size it is the vortices of “maximal” thickness, i.e., ACKNOWLEDGMENTS
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