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Vortex waistlines and long range fluctuations
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We examine the manner in which a linear potential results from fluctuations due to vortices linked with the
Wilson loop. Our discussion is based on exact relations and inequalities between the Wilson loop and the
vortex and electric flux order parameters. We show that, contrary to the customary naive picture, only vortex
fluctuations of a thickness of the order of the spatial linear size of the loop are capable of producing a strictly
linear potential. An effective theory of these long range fluctuations emerges naturally in the form of a strongly
coupledZ(N) lattice gauge theory. We also point out that dynamical fermions introduced in this medium
undergo chiral symmetry breaking.
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I. INTRODUCTION

Center vortices are widely believed to be the most imp
tant degrees of freedom for confinement in Yang-Mills the
ries. ~For a recent review see@1#.! Attempts to isolate and
compute the vortex content in the path integral at largeb
have been a very active area of study in the past two ye
~For a general view of the various approaches and iss
involved, see@2#!.

A popular plausibility argument for confinement by vor
ces goes as follows. To estimate the vortex contribution
the expectation of a given Wilson loop, one assumes
typically many thin vortices—i.e. thin compared to th
physically large (@1 fm2) Wilson loop areaA—link with
the Wilson loop. A simple estimate is obtained by subdiv
ing the surface spanned by the loop inton5A/a pieces of
equal areaa and assuming that a vortex piercing a giv
small area piece is present with a probabilityp. Provided that
the vortices linking with the loop at different places arein-
dependent, the Wilson loop expectation is then given by

(
k50

n S n

kD ~21!kpk~12p!n2k5~122p!A/a, ~1!

which is the desired area law.
In the present paper we point out that while this sim

picture indeed gives the correct area law, it is fundament
incorrect because it is not supported by the underlying
non-Abelian gauge theory. The response of the vortex dis
bution in the vacuum to the introduction of the extern
probe represented by a Wilson loop should be such a
minimize the effective quantum action~free energy! of the
system. To examine this we make the above arguments m
precise by introducing a set of vortex containers linking w
the Wilson loop in the spirit of@3#. Any set of vortex con-
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tainers can then be used to obtain an upper bound to
Wilson loop by making use of rigorous inequalities mos
based on reflection positivity. We show that thick vortex co
tainers of thickness of the order of the~shorter! side length of
the Wilson loop yield the ‘‘best’’ and in fact the only stric
area law upper bound. This shows that vortices do not h
some fixed characteristic thickness but the most impor
vortex fluctuations disordering a Wilson loop of a given si
have a core thickness of the order of the linear size of
Wilson loop. It also means that generally vortices cannot
unambiguously located as individual objects in every giv
single gauge field configuration. The only meaningful qua
tity is the number of vortices~mod N) linking with a given
Wilson loop, and this is a well-defined gauge invariant qua
tity. In the remainder of the paper we show how the physi
picture implied by the previous discussion leads to a sim
effectiveZ(N) gauge theory for the long distance center d
grees of freedom. We then observe that the introduction
dynamical fermions in this effective strongly coupled syste
results in chiral symmetry breaking.

The paper is organized as follows. In Sec. II we revie
and extend various relations and inequalities relating
electric free energy~Fourier transform of the vortex free en
ergy! to the Wilson loop. These relations form the basis
our discussion of vortices and the emergence of a linear
tential in Sec. III. Section IV further discusses the physi
picture and introduces the effective theory. Section V co
tains some conclusions.

II. ELECTRIC FLUX INEQUALITIES

After a brief description of our notation, in this section w
introduce the basic electric flux inequalities. These are
ready interesting in their own right since they yield a rigo
ous upper bound on the Wilson loop in terms of the elec
flux free energy.

We work on a hypercubic latticeL of lengthLm in space-
time directionm51, . . . ,d. We assume the standard Wilso
formulation of lattice gauge theory withSU(2) group-valued
link variables, the Wilson action and periodic boundary co

f
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ditions in all directions. Expectation values of observab
are defined as

^O&5
1

ZE d@U#OexpS b(
p

1

2
trUpD , ~2!

where the integration is over all the group-valued link va
ables andZ, the partition function, is the same integral wit
out the operator insertionO.

Let us denote byO@Vmn# the operator that flips the sign o
the coupling@introduces aZ(2) ‘‘twist’’ # on a coclosed (d
22)-dimensional set of plaquettesVmn winding around the
periodic lattice in the directions perpendicular to themn di-
rections. The expectation value of this operator defines
vortex free energy:

exp~2Fv@mn#!5^O@Vmn#&. ~3!

The twist amounts to a discontinuous gauge transforma
with multivaluedness inZ(2), i.e., forces the presence of
p1„SU(2)/Z(2)… vortex wrapped around the periodic lattic
As indicated by the notation, the expectation depends o
on the directions in whichV winds through the lattice, no
the exact shape or location ofV. This expresses the mod
conservation of flux. Indeed, the twist21 on the plaquettes
forming V can be moved to the plaquettes forming any ot
homologous coclosed setV 8 by the change of variablesUb
→2Ub in the numerator in Eq.~3! for each bondb in a set
of bonds cobounded byVøV 8. By the same token Eq.~3! is
invariant under changes mod 2 in the number of homolog
twisted coclosed sets introduced inL. A simple consequence
of this is that

^O@Vmn#O@V mn8 #&51. ~4!

We will assume that, for sufficiently largeuAmnu, and dimen-
sion d<4, the vortex free energy~3! behaves as

Fv@mn#;S )
lÞmn

LlDexp„2r~b!uAmnu…, ~5!

whereuAmnu5LmLn . This is the optimal behavior under ex
ponential transverse spreading~creation of mass gap! of the
flux introduced by the twist onV, with r approaching, at
least asymptotically, the exact linear potential string tens
This behavior is expected by physical reasoning@4#, and ex-
plicitly seen in the strong coupling expansion@5#. Recently,
it became possible to demonstrate this in numerical sim
tions at largeb @6,7#. The behavior~5! for a ‘‘vortex in a
box’’ is essential for our argument in the following.

The Z(2) Fourier transform of Eq.~3!,

exp~2Fel!5 K 1

2
~12O@Vmn#!L , ~6!

gives the corresponding dual~with respect to the center!
color-electric free energy. The mod 2 conservation of
magnetic flux is now expressed by the projection proper
07450
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K 1

2
~12O@Vmn#!

1

2
~12O@V mn8 # !L 5 K 1

2
~12O@Vmn#!L ,

~7!

as is easily seen by using Eq.~4!.
Consider now a rectangular Wilson loopC placed, say, in

the @12# plane. LetV be a coclosed stack of plaquettes win
ing around the periodic lattice in the perpendicularm
53, . . . ,d directions and throughC, and insert unity in the
numerator in the Wilson loop expectationW@C#

5^ 1
2 trU@C#& in the form

15
1

2
~12O@V# !1

1

2
~11O@V# !.

Then

W@C#5 K 1

2
trU@C#

1

2
~12O@V# !L

1 K 1

2
trU@C#

1

2
~11O@V# !L

5 K 1

2
trU@C#

1

2
~12O@V# !L

1 K 1

2
trU@C#

1

2
~12O@V 8# !L . ~8!

Here V 8 is another coclosed stack of plaquettes windi
around the lattice in the perpendicularm53, . . . ,d direc-
tions but not threading throughC. The second equality in Eq
~8! is obtained by making the change of variablesUb
→2Ub in the second term in the first equality in Eq.~8! for
each bondb in a set of bonds cobounbed byV andV 8. This
‘‘moves’’ the twist ~-1! on the plaquettes formingV to those
forming V 8. This set of bonds necessarily involves one~or
an odd number of! bond~s! on C, which results in the minus
sign in the second term in the second equality. Equation~8!
is represented graphically as

~9!

where a filled square stands for the operator1
2 (12O@V#),

with V crossing the two-dimensional plane containing t
loop at the location of the filled square, and winding arou
the lattice in the remainingd22 perpendicular directions.

Simple identities like Eq.~9!, or Eqs. ~16!,~17! below,
serve as the starting point for deriving relations between
Wilson loop and vortex free energies by use of reflect
positivity. Given a reflectionr about a (d21)-dimensional
lattice hyperplane, one defines an antilinear mappingu on
functions of the bond variables byuF@$Ub%#5F* @$Urb%#.
By the reflection positivity properties of the lattice gau
theory~LGT! action@8#, this induces a positive semidefinit
inner product on the space of configurations allowing the
of the corresponding Schwarz inequalities. Thus, start
1-2
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VORTEX WAISTLINES AND LONG RANGE FLUCTUATIONS PHYSICAL REVIEW D65 074501
with Eq. ~9!, consider a reflection about ad21-dimensional
hyperplanep perpendicular to the ‘‘vertical’’ loop legs an
containing, say, the top ‘‘horizontal’’ leg of the loop C. On
then has the inequality

~10!

for the first term, and a similar statement for the second te
in Eq. ~9!. In Eq. ~10! we made use of Eq.~7!1 and 1

2 tr1
51. The loop has now doubled in size along the direction
one of its legs. Proceeding now by repeated reflections
hyperplanes containing one of the legs of the loop resul
from the previous reflection, and use of Eq.~7!, one may
eventually completely eliminate all trU factors from the loop
operator by virtue of the lattice periodicity. Applying th
procedure to both terms on the right-hand side~RHS! of Eq.
~9! one obtains@9#

^W@C#&<2„exp~2Fel!…
uACu/uA12u, ~11!

whereuACu is the minimal area bounded by the Wilson loo
If then the vortex free energy behaves as in Eqs.~5!, ~11!
implies area law for the Wilson loop.

Note that the result~11! manifestly incorporates mod
conservation since of course Eqs.~6! and ~3! do. This is an
important point that we now explore a bit further. Any mu
tiple factors of 1

2 (12O@V#) occurring in the derivation
above were eliminated by Eq.~7!. Suppose instead that w
keep a number of such factors to make contact with the n
picture of a Wilson loop pierced by several independent v
tices. So imagine that we subdivide the 2-dimensional pl
A containingC into large squares of side lengthl, i.e. we
view A from a coarse lattice of spacingl. We denoteA by A8
when viewed from the coarse lattice. Rewrite the identity~9!
using Eq.~7! in the equivalent form

W@C#5K 1

2
trU@C#)

i

1

2
~12O@Vi # ! i L

1K 1

2
trU@C#)

j

1

2
~12O@V j8# ! j L ~12!

where the product in the first term includes one factor~in-
dexed byi ) for every large square inA ~ every plaquette in
A8) tiling C ~Fig. 1!, and the identical arrangement translat
outsideC in the second term. One now applies reflecti
positivity to repeatedly reflect about (d21)-dimensional hy-
perplanes p18 , or p28 , perpendicular to them51, or
2-direction, respectively, containing bonds inA8 ~Fig. 1!. In
this way one derives

1Notice that Eq.~7! remains valid in the presence of addition
operators in the expectation, as long as movingV 8 to V by a change
of variables does not affect the additional operator. In particu
this is the case for a Wilson loop when neither or bothV andV 8
link with the loop.
07450
m

f
in
g

.

e
r-
e

W@C#<2)
i K )

kPA8

1

2
~12O@Vk# ! i L 1/uA8u

~13!

where in the product inside the expectation there is one
tor for each plaquette inA8. Equation~13! now has the form
of a typical ‘‘chessboard estimate’’ inequality~see e.g.@8,9#!.
It is of course equivalent to Eq.~11! by ~7! since uA8u
5uAu/ l 2, and the number of factors in the outside produ
equalsuAC8 u5uACu/ l 2.

Returning to Eq.~8! and noting that

K 1

2
trU@C#

1

2
~12O@V# !L 1 K 1

2
trU@C#

1

2
~12O@V 8# !L

5 K 1

2
trU@C#

1

2
~12O@V# !

1

2
~11O@V 8# !L

1 K 1

2
trU@C#

1

2
~11O@V# !

1

2
~12O@V 8# !L

5 K 1

2
trU@C#

1

2
~12O@V#O@V 8# !L ~14!

5 K 1

2
trU@C#

1

2
~12O@V 9# !L ~15!

one obtains the alternative identities represented graphic
by

~16!

~17!

Equation ~16! is the graphical representation of Eq.~14!.
Equation~15!, graphically depicted in Eq.~17!, is then ob-

r,

FIG. 1. Arrangement for reflections in first term in Eq.~12! to
obtain Eq.~13! ~see text!.
1-3



s

er
d
th
e

io

he
ic
d
to
h
l b

-

o

e

gi-

r

their
tion

nd

e
il-
ey

op
be
y
on

l
x

tex

es
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tained from Eq.~14! by simply mergingV and V 8 in the
coclosed setV 9 linking with C by another shift in integration
variables and mod 2 flux conservation.2

Alternatively, Eqs.~16!,~17! may be directly obtained a
follows. Insert 15*Z(2)dg, wheregPZ(2), in thenumera-
tor in the expectationW@C#, and make a shift of integration
variablesUb→gUb for all bPB, whereB is a set of bonds
whose coboundary isVøV 8 or V 9. The result is Eq.~16!, or
Eq. ~17!, respectively.

III. THE WILSON LOOP IN TERMS OF VORTEX
CONTAINERS

In this section we introduce a set of vortex contain
linking with a given Wilson loop. Using the relations derive
in the previous section, we obtain an upper bound on
Wilson loop in terms of vortex fluctuations occurring in th
given set of vortex containers. We then ask the quest
which set of vortex containers gives the ‘‘best’’~i.e. the low-
est! upper bound to the Wilson loop. It turns out that t
favored set of vortex containers has only one single th
container utilizing an area of the order of the area spanne
the Wilson loop. This yields a strictly linear lower bound
the heavy quark potential, whereas a collection of many t
vortex containers results in a suppression of the potentia
a logarithmic factor.

By Eq. ~7! and footnote 1, one can insert multiple1
2 (1

2O@V#) factors in Eqs.~15!,~17! corresponding to a collec
tion of coclosed sets$Vi% linking with the loopC. Imagine
enclosing eachVi in a ‘‘vortex container’’@3#, i.e., a sublat-
tice L i,L containingVi and wrapping aroundC ~Fig. 2!.
Imagine integrating over the bond variables in the interior
each container, keeping bond variables on its boundary]L i
fixed, and define

f L i
~U]L i

!5
1

2 S 12
zL i

(2)~U]L i
!

zL i

(1)~U]L i
!
D , ~18!

2VøV 8;V 9 is topologically trivial with respect to the latticeTd

topology, but not with respect to the obstruction of the loopC.

FIG. 2. Vortex containerL i enclosing coclosed set of plaquett
Vi ~shaded! linking with Wilson loop C. d53, or 3-dimensional
section ind54.
07450
s

e

n,

k
by

in
y

f

where

zL i

(7)~U]L i
![E )

bPL i2]L i

dUb

3 )
pPL i2]L i

expS b

2
~71!Vi [ p] trUpD ~19!

with the characteristic functionVi@p#[1 if pPVi , 0 other-
wise. zL i

(1)(U]L i
) is of course simply the partition function

for ~the interior of! L i . Then one obtains@3#

W@C#5K 1

2
trU@C#)

i
f L i

~U]L i
!L . ~20!

Equation~13! can be rewritten in the same way:

W@C#<2)
i K )

kPA8
f Lk

i ~U]Lk
!L 1/uA8u

, ~21!

where now each containerLk containing the coclosed setVk
is of transverse areal 2 and wraps around the lattice in th
longitudinal directions.

Note that f L i
(U]L i

), Eq. ~18!, is nothing but Eq.~6!

@Z(2) FT of vortex free energy# now defined on a latticeL i
~the vortex container! with fixed ~instead of periodic! b.c. in
the transverse directions, but still periodic b.c. in the lon
tudinal directions~in which theL i ’s have torus topology by
construction!. Vortex containers including integration ove
fluctuations~summation of entropy effects! in their interior
are a convenient device for discussing scales larger than
thickness in terms of free energy costs rather than the ac
of individual configurations.

From Eq.~20! one can now, trivially, obtain the bound

W@C#<)
i

max
U]L i

u f L i
~U]L i

!u, ~22!

where the maximum is taken over all values of the bo
variables on the boundary]L i .

Equation~22! makes a direct connection with the naiv
notion of independent vortices winding through a large W
son loop, resulting in disorder, and area law, provided th
are able to grow sufficiently long to pierce through the lo
at any point. For this to be possible the vortices must
allowed to grow sufficiently thick to keep their free energ
cost fixed as their length increases with that of the Wils
loop. Let di be the size ofL i in each of the two directions
transverse to the setVi used in its definition; its longitudina
size is given byuVi u. We must first assume that all the vorte
containers are thick enough to reach the regime where

u ln„zL i

(2)~U]L i
!/zL i

(1)~U]L i
!…u;uVi uexp~2rdi

2! ~23!

for all U]L i
. So to keep the free energy cost of each vor

less than a fixed valuef, we need
1-4
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di
2>

1

r
lnS uVi u

f D . ~24!

Then also maxufLi
(U]Li

)u,1
2(e

f21),const. ButuVi u ~in d di-

mensions! is of the orderRd22 for linkage through points
away from the perimeter of a rectangular loop of side leng
T and R,T.R. Such a loop can then accommoda
;RT/ ln R containers wrapped around it. Thus Eq.~22! gives
a confining but not quite purely linear potential

V~R!>constR/ ln R. ~25!

The same reasoning, and consequent failure to produ
purely linear potential, applies to the familiar argument
confinement by vortices, outlined in the Introduction, whi
tacitly underlies or is implied by many discussions in t
literature. One assumes randomly distributed vortices o
certain thickness and basically arbitrary length. It is cruc
that one assumes that the cost and hence the probabilit
vortices to link anywhere with the loop is fixed for any Wi
son loop size@cp. Eq. ~1!#. One then considers one vorte
linked with a large Wilson loop. With the vortex thicknes
assumed much less than the loop’s linear dimensions,
now sums over all positions of intersection with a surfa
spanning the loop. With the above assumptions, this p
duces a factor proportional to the loop area. One then s
over all intersection points for twoindependentvortices link-
ing with the loop, and so on. This clearly exponentiates g
erating area law:

W@C#;11~21!kuACu1
„~21!kuACu…2

2!
1•••

5exp~2kuACu!. ~26!

We now see that purely linear confinement is obtained
way only by adopting a non-interacting gas picture, and
noring the actual free energy requirements for having vo
ces of sufficient length link anywhere with a large loop: t
type of discussion just given above for Eq.~22! applies to
each term in such a summation. Thus, for one vortex link
with the large loop of side lengthsT andR (T@R), a vortex
cross section area of order lnR is required; otherwise, linking
anywhere far away from the perimeter for fixed, bound
vortex free energy costf, as required by the argument, is n
possible. This leads at best to Eq.~25!, not Eq. ~26!.

The problem arises because one treats the vortices a
calized and independent. For sufficiently thick vortices fr
energy costs are indeed correctly estimated in magnitud
above, i.e. Eq.~23!. Thus, if one imagines each vortex e
closed in a vortex container of fixed, but sufficiently larg
width d, the exponential transverse spreading;exp(2rd2)
renders the overall vortex bulk free energy cost inside ins
sitive to the exact values of the gauge fields on the conta
boundary. The vortex, however, is surrounded by the p
gauge long tail that encodes its nontrivial topology, and fl
quantization. This tail incurs no additional action cost, bu
of infinite range and communicates the presence of nontri
topological flux inside the container to everywhere outsi
07450
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So even though the gauge field values on a thick contain
boundaries are irrelevant for estimating the bulk free ene
cost inside, they are very much relevant for signalling t
presence of a vortex inside to other vortices or other to
logical obstructions outside.

This acts like an ‘‘irreducible’’ interaction between vort
ces that acts at all distances, and enforces flux conserva
modN. This interaction allows a system of vortex excitatio
to adjust the amount of flux spreading, i.e., adjust the thi
ness of vortices to minimize the free energy of the syste
The thickness of vortex cores then is not fixed, but is a
justed relative to their length as required by the presenc
other vortices and/or other obstructions~e.g. Wilson loop
legs! sensitive to the presence of topologicalZ(N) flux ~Fig.
3!. This means that in general vortices cannot be conside
isolated, and a definite number of vortices, specified m
precisely than modN, cannot necessarily be unambiguous
assigned to every configuration.

Thus, in the presence of the Wilson loop source, the
timal configurations for the system are not those of multi
isolated linked vortices, each of some fixed free energy c
@Fig. 3~a!#, hence lengthuVu;R(d22) and fixed widthd2

; ln R!R,T. It is more advantageous, in terms of free ener
cost, for multiple linking vortices to thicken and merge, t
total topological flux being conserved mod N@Fig. 3~b!#.
Since the Wilson loop operator is affected by the topologi
flux through it only modN, this should optimize the expec
tation. But then the picture and expansion in terms of gro
of isolated independent vortices~26! is no longer applicable.

Similarly, Eq.~22! leads to Eq.~25! because it is obtained
by assuming the vortex inside each container as comple
isolated and independent of all the others. The exact exp
sion ~20! holds for any number of factors in the produ
inside the expectation~reflecting modN conservation!. In
view of the above discussion, one may as well combine c
tainers into ones as thick as possible by integrating over
boundary fields of neighboring containers. WithT@R, this
amounts to taking containers in the product in Eqs.~20!,~22!
having transverse area;R2, and longitudinal extension
;(constR)(d22). Equation~22! now gives

FIG. 3. Vortices linking with Wilson loopC. Cores shown in
darker shading, and long range~infinite extent! pure gauge tails in
light shading:~a! Well-separated vortices of approximately fixe
width; ~b! configurations of equivalent mod 2 flux having one thic
ened vortex lowering potential energy;~c! configurations contribut-
ing essentially as in~b! showing the possible ambiguities in coun
ing vortices beyond modN.
1-5



ea
ns
h

tio

s
e
un
As
nd

g

rd
n

vo
m
x
r

of
a
e

ct

en

fo
in
u
c

io
no

b
ac
th

u
tiv
o

ri-
is
e
ge
e
ast
per-
ove
pri-
free

in
g-

on-
of

nly
ly
-
one
e-
la-

m?
nly

hat

n-
c-

x-

tte
per

s
r

in

, at
m-
an-

re

e

ise

ces

, has

TAMÁ S G. KOVÁCS AND E. T. TOMBOULIS PHYSICAL REVIEW D65 074501
V~R!>constR2
const

R
~ ln R1const! ~27!

replacing Eq.~25!. For loops withT*R, basically only one
vortex container is needed, which means that strict lin
potential arises essentially from thick vortex fluctuatio
spanning the entire loop area. It is interesting to note t
such thick vortices also produce nonperturbative 1/R contri-
butions ~at scales outside the short distance perturba
theory regime!.

Inequality ~22! is actually rather crude. The inequalitie
~11!,~13! following from reflection positivity are much mor
powerful because of the exponents that allow estimates
form in the lattice size. They give directly pure area law.
is easily seen, this is true even if one further crudely bou
the RHS of Eq.~13! from above as done in Eq.~22!, since
ln Lm /A8→0 as uLu→`. There is no real reason for doin
this though.3

IV. LONG RANGE VORTEX FLUCTUATIONS—
EFFECTIVE THEORY

The above discussion, based on exact relations and
equalities between the Wilson loop and the free energy o
parameters, indicates that an effective picture of the lo
distance confining fluctuations as isolated, independent
tices winding over long distances—in other words, as so
kind of an approximately dilute or weakly interacting vorte
gas—is not generally applicable. It does not take prope
into account the relation between length and thickness
vortex implied by the cost in free energy necessary to cre
the vortex in the first place, nor the correlations betwe
vortices caused by their long range~topologically nontrivial!
pure gauge tails. These correlations are present irrespe
of the separation and enforce the mod N conservation
topological flux. Even though the cost diminishes expon
tially with the transverse thickness of a vortex~creation of
mass gap!, these effects must still be properly accounted
if vortices of basically arbitrary length are to be present
the vacuum. These effects then generally tend to ca
neighboring thick vortices to thicken further and merge sin
this lowers the free-energy cost for the vortices~above any
background of fluctuations that may be present! for the same
mod N total flux in the system. Thus, our previous discuss
implies that the long distance linear potential should
properly be viewed as arising from the fluctuations caused
a gas of independent vortices winding through the loop, e
of thickness much less than the linear dimensions of
loop. Rather, the fluctuation is more accurately described
that due to vortices of thickness comparable to the~shorter!
linear loop dimension. Negative values of the loop occ
then with almost exactly equal measure weight as posi
values@no vortex~mod 2!#. This optimizes the expectation t

3Equation~13!, however, might serve as a starting point for mo
sophisticated approximations where the behavior~5! for the vortex
free energy under spreading of flux is at least partially deriv
rather than assumed.
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be as small as possible, i.e. exhibit exact area law.4

This reflects the striking behavior revealed by the nume
cal simulations@6#, that over sufficiently large scales there
‘‘condensation’’ of vorticity carrying flux. Over a hypercub
of side length of about 1 fm, the weighted probability at lar
b for nonzero~mod N! flux configurations goes to unity. Th
weighted probability then that one finds a vortex of at le
this transverse size going through a 2-dim face on the hy
cube boundary is approaching one. More generally, ab
this scale, vortices of any length, by corresponding appro
ate adjustment in thickness, can occur at practically zero
energy cost. One may view this as percolation of vortices
the following sense. If one considers any two disjoint se
ments on the boundary of a large 4-dimensional simply c
nected region, the probability of being joined by a vortex
sufficient thickness (>1 fm) is finite.

This picture of ‘‘percolated’’ vortices in all possible@mn#
orientations, with flux in intersections being conserved o
mod 2, implies that in general it is difficult to unambiguous
identify individual vortices.5 Rather, in the absence of ob
structions or boundaries introduced by external probes,
can talk about an average nonvanishing vorticity field d
fined on the coarse scale of 1 fm, measured by the ‘‘circu
tion’’ ~plaquettes, Wilson loops! above this scale.

What simple effective theory can describe this vacuu
We stress that we mean an effective theory strictly of o
these long range vortex fluctuations~confiners! resulting
from integrating out to an appropriate scale. Even at t
scale there will of course be all kinds of otherSU(2)
@SU(N)# fluctuations which we consider irrelevant for co
finement. Let us list the minimal requirements for the effe
tive theory:

~i! On a coarse scale of aboutl 51 –1.2 fm, the partition
function should be expressible solely in terms of vortex e
citations@coclosed~closed dual! surfaces of codim 2#.

~ii ! The mod 2~mod N) property should be manifestly
incorporated.

~iii ! The vortex flux through each coarse scale plaque
should incur an action equal to the vortex free energy
unit length for thickness; l , as defined and computed from
Eq. ~3!. This amount of free energy for the confiners~their
action on the coarser scale! is the costabovethe sea of all
other vacuum fluctuations.@Again, note that this depend
only mod 2 on the number of ‘‘vortex-introducing’’ singula
gauge transformations injected in the box in Eq.~3!.#

~iv! On this coarse lattice, the thick vortices should be
a ‘‘percolation phase.’’ Thus, despite~i!, there should not be
a useful expansion of the theory—i.e. a convergent, or
least formally, systematic expansion scheme allowing co
putation of observables—such that each term in the exp

d

4Recall that it is a rigorous result that the potential cannot r
faster than linearly.

5The way embedded non-self-interacting 2-dimensional surfa
~in our case, surfaces of a certain thickness! can grow to densely fill
4-dimensional space, the so called capped gropes and towers
been extensively studied in manifold theory@10#.
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sion is characterized by a well-defined number of vortex
citations.

~v! The Wilson loop expectation should give strict ar
law as in the bound~11!.

Let thenLc be the coarse lattice of lattice spacing; l ,
andxpPZ(2) variables residing on its plaquettes. Then t
simplest way to implement~i! above is by the partition sum

ZLc
5E

Z(2)
)

p
dxp)

c

1

2 S 11 )
pP]c

xpDexpAeff . ~28!

The measure enforces the constraint

)
pP]c

xp51 ~29!

on the plaquettes forming the boundary of eve
3-dimensional cubec on Lc , so only excitations on coclose
sets are allowed. Equivalently, on the dual lattice, Eq.~29!
assumes the form

)
pP]* b

xp* 51 ~30!

on the plaquettes forming the coboundary of every bond.
requirement~ii ! is then automatically taken care of.

The general form of the effective actionAeff

Aeff5beff(
p

xp1b2p (
(p,p8)P]* b

xpxp8

1b3p (
(p,p8,p9)P]* b

xpxp8xp91••• ~31!

involves, in addition to the basic plaquette term, quasilo
interaction terms involving two or more plaquettes in t
coboundary of each bond, etc. Now, from~iii !, and Eq.~5!,
we must have

beff;exp„2r~b!l 2
… ~32!

giving, in principle, the couplingbeff in terms of the cou-
pling at the original lattice spacing, asr must approach the
string tension for sufficiently largel. From the numerical
simulations@6#, l;1.1 fm. This givesbeff;0.002. This very
small value reflects of course the fact that at this choice
the physical lengthl vortex flux is found to become ver
‘‘light.’’ Correspondingly, the terms involving products o
two or more plaquettes must be of orderbeff

2 and higher,
hence entirely negligible.

The effective model~28! is now seen to simply be aZ(2)
LGT. Indeed, the constraint~29! can be explicitly solved by
introducingZ(2) bond variablesgb by

xp5 )
bP]p

gb . ~33!

Then
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ZLc
5E

Z(2)
)

b
dgbexpS beff(

p
g]p1••• D , ~34!

where the ellipses indicate the additional clover and hig
loop terms corresponding to the additional terms in Eq.~31!.
The theory is in the deep strong coupling regimebeff!1.
Thus~iv! above is indeed satisfied. The theory can be trea
in the strong coupling expansion. It cannot, however,
meaningfully expanded in its vortex excitations—that wou
be appropriate in the weak couplingbeff@1 regime in the
form of the usual weak coupling expansion for discre
groups~dilute vortex gas! @11#.

It should perhaps be explicitly pointed out that theZ(2)
variables in Eqs.~28!,~34!, serve as an effective descriptio
of long distance fluctuations creating topologicalZ(2) flux
@elements ofp1„SU(2)/Z(2)…# in the original theory@12#.
They have nothing to do with theZ(2) part of the original
SU(2) bond variables. Note that theZ(2) gauge theory in-
teraction, together with Eq.~32!, correctly reproduce the ef
fects of flux spreading and thickening of vortices while co
serving flux mod 2. Correspondingly, the Wilson loop no
automatically gives the correct area law.

A Wilson loop inserted in Eq.~34! represents the coupling
of an external quark current to the long distance confin
fluctuations. Its replacement by dynamical quarks introdu
fermions in the medium of these fluctuations. Since the
fective coupling is strong, it induces dynamical chiral sym
metry breaking~CSB!.

CSB in strongly coupled LGT has actually been demo
strated analytically in the superstrong gauge coupling li
~no plaquette action term! by expansion or mean field~large
N or d) approximations@13,14#, and rigorously by infrared
bounds@15#. It is physically obvious that the result extend
to a finite region in the strong coupling regime.6

We may try to use the results in@13–15# to get an esti-
mate of the contribution to the quark condensate in the
fective theory. Corrections from the plaquette term in t
action are totally negligible due to the smallness ofbeff . One
then has

^q̄q&5z~ l !N
1

l 3A2

d
„12k~d!…1/2, ~35!

where 1
8 <k(4),0.35. z( l ) is some renormalization facto

that, in a more sophisticated treatment, should depend
how fermions are introduced at the original lattice spaci
Here we naively set it equal to one—this is equivalent
simply taking staggered fermions on the coarse lattice. W
l 51.1 fm, this gives^q̄q&5(195 MeV)3 for N52, and
(223 MeV)3 for N53. This indicates that the quark conde
sate may be entirely accounted for by the long range con
ing fluctuations.

6It should be possible to prove this by cluster expansion te
niques around theb50 point, though not so straightforward fo
technical reasons~bounding terms with Grassmann integrands!.
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Following our previous development, the effectiveZ(N)
theory appears to emerge rather naturally, and in fact
fairly unique manner. The idea that an effective theory
long range vortex fluctuations must be aZ(N) LGT is not
new, but has not, we believe, been formulated in this w
before. Recently, a model equivalent to Eq.~28!, in the rep-
resentation~30! and employing additiveZ(2) variables, was
considered in@16#, apparently without any reference toZ(2)
LGT.

V. CONCLUSIONS

In the present paper we studied the energetics of h
vortices can disorder Wilson loops of different sizes. Vortic
of any thickness smaller than the linear size of a given W
son loop can link with it and contribute to disordering
average. Here we pointed out that for Wilson loops of a
given size it is the vortices of ‘‘maximal’’ thickness, i.e
thickness of the order of the linear size of the loop, that g
the most important contribution resulting in an area-law s
pression of large Wilson loops and a linear heavy quark
tential. On the other hand, vortices of anyfixed thickness
contribute only with a logarithmically suppressed term to
potential. This is in contradiction with the naive picture
t.
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confinement by vortices which assumes that vortices of fi
thickness can link with a fixed probability with arbitraril
large Wilson loops. The correct picture must take prope
into account the relation between the length and thicknes
a vortex imposed by the free energy requirements for cr
ing the vortex, as well as the interaction between vortic
introduced by the constraint of mod N conservation of t
vortex flux. This picture of vortices naturally yields a lon
distance effectiveZ(N) gauge theory above the confineme
scale of around 1 fm. The effective theory is deep in t
strong coupling regime which makes it impossible to int
pret it in terms of a simple vortex gas expansion. The o
useful expansion one can consider is the strong coupling
Being deep in the strong coupling regime, the effectiveZ(N)
gauge theory naturally produces chiral symmetry breaking
the presence of fermion fields.
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