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Based on the gauge independent decomposition of the non-Abelian gauge field into the dual potential and
the valence potential, we calculate the one-loop effective actioBWf2) QCD in an arbitrary constant
monopole background, using the background field method. Our result provides strong evidence for dynamical
symmetry breaking through the monopole condensation, which can induce the dual Meissner effect and estab-
lish the confinement of color in the non-Abelian gauge theory. The result is obtained by separating the
topological degrees which describe the non-Abelian monopoles from the dynamical degrees of the gauge
potential, and integrating out all the dynamical degrees of QCD.
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[. INTRODUCTION to remember how the magnetic flux is confined in the super-
conductor through the Meissner effect. In the macroscopic
One of the most outstanding problems in theoretical physGinzburg-Landau description of superconductivity, the
ics is the confinement problem in QCD. It has long beenMeissner effect is triggered by the effective mass of the elec-
argued that monopole condensation could explain the cortromagnetic potential, which determines the penetration
finement of color through the dual Meissner effet2]. In-  (confinementscale of the magnetic flux. In the microscopic
deed, if one assumes monopole condensation, one could edS description, this effective mass is generated by
ily argue that the ensuing dual Meissner effect guaranteeslectron-pair(the Cooper pajrcondensation. This suggests
confinement3,4]. In this direction there has been remark- that, for confinement of the color electric flux, one needs the
able progress in lattice simulation during the past decade. loondensation of the monopoles. Equivalently, in the dual
fact, the recent numerical simulations have provided unmisGinzburg-Landau description, one needs the dynamical gen-
takable evidence which supports the idea of magnetic coreration of the effective mass for the monopole potential. To
finement through monopole condensatipf6]. Unfortu-  demonstrate this, one must first identify the monopole poten-
nately so far there have been few satisfactory field theoretitial, and separate it from the generic QCD connection, in a
proofs of monopole condensation in QCD. gauge-independent manner. This can be done with the “Abe-
The purpose of this paper is to reexamine the non-Abeliatian” projection [2,3], which provides a natural reparametri-
dynamics and establish monopole condensation in QCRation of the non-Abelian connection in terms of the re-
from first principles. Utilizing a gauge independent param-stricted connectiorti.e., the dual potentialof the maximal
etrization of the non-Abelian gauge potential which empha-Abelian subgroupH of the gauge groufs and the gauge
sizes its topological character, we construct the one-loop efeovariant vector fieldi.e., the valence potentjabf the re-
fective action of QCD in the presence of a monopolemaining G/H degrees. With this separation, one can show
background by integrating out all the dynamical degrees ofhat monopole condensation takes place in a one-loop correc-
the non-Abelian potential except the monopole backgroundion, after one integrates out all the dynamical degrees of the
using the background field methddemarkably the effective non-Abelian gauge potential.
action generates a dynamical symmetry breaking made of There have been many attempts to prove the monopole
monopole condensation, which strongly indicates that thecondensation in QCI7,8]. Unfortunately, the effective ac-
physical confinement mechanism in QCD is indeed the magion of QCD obtained from these earlier attempts has failed
netic confinement through the dual Meissner eff@tr to establish the desired magnetic condensation, because the
analysis makes it clear that it is precisely the magnetic momagnetic condensation was unstable. This instability of the
ment interaction of the gluons which was responsible for thenagnetic condensation has been widely accepted and has
asymptotic freedom that generates the monopole condensaever been convincingly revoked. In retrospect, there are
tion in QCD. We demonstrate our result withU(2) for  many reasons why the earlier attempts have not been so suc-
simplicity, although the result should be applicable to anycessful. First, the attempts to calculate the effective action of
non-Abelian gauge theory. QCD were gauge-dependent. In fact, the separation of the
To prove the magnetic confinement it is instructive for usmagnetic background from the quantum fields was not
gauge-independent. So there is no way of knowing whether
the desired magnetic condensation is indeed a gauge-
*Electronic address: ymcho@yongmin.snu.ac.kr independent phenomenon. Moreover, the origin of the mag-
"Electronic address: dmipak@mail.apctp.org netic background in the earlier attempts was completely ob-
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scure, and could not be associated to the non-Abeliagnd the valence potentiall, which forms a covariant vector
monopoles. Consequently, magnetic condensation could ngield [2,3]

be interpreted as monopole condensation. But the most seri-
ous defect was the appearance of an imaginary part in the
effective action, which was due to improper infrared regular-
ization. This improper infrared regularization was the critical
defect which really destroyed the magnetic condensation in (n?=1, n-X,=0), (1)
the earlier attempt$7,8]. In this paper, we start from the a

gauge-independent separation of the monopole backgrourwihereAM:ﬁ_,&M is the “electric” potential. Notice that the

from the quantum fields in our calculation of the effective resiricted potential is precisely the connection which leaves
action. More importantly, we make a proper infrared regular-~

ization which respects the causality, and show that the cad? invariant under the parallel transport,
sality makes our monopole condensation stable.

Recently, Faddeev and Niemi have discovered the knot-
like topological solitons in the Skyrme-type nonlinear sigmander the infinitesimal gauge transformation
model, and made an interesting conjecture that the Skyrme-
Faddeev action could be interpreted as an effective action for . . .1 R
QCD in the low-energy limif9,10]. With the effective action on=—axn, 5AM=5D,L6¥. 3)
at hand we discuss the possible connection between Skyrme-
Faddeev theory and QCD. We show that indeed the two theqne has
ries are closely related, and demonstrate that we can derive a

~ ~ 1. N oA -
AM=AMn—§n><&Mn+Xﬂ=AM+X“

D,n=4d,n+gA, xn=0. (2)

generalized Skyrme-Faddeev action from the effective action 1. - ~ 1. .
of QCD. A, = §n~ﬁﬂa, 1) MZEDMa,
The paper is organized as follows. In Sec. Il, we review
the Abelian projection and the gauge-independent decompo- VRS
- , A X oX, axX,. 4
sition of the non-Abelian potential into the restricted poten-

tial and the valence potential. In Sec. lll, we derive the inte-ThiS shows thak by itself describes a8 U(2) connection
gral expression of the one-loop effective action(2)  \hich enjoys the fullsU(2) gauge degrees of freedom. Fur-

QCD in the presence of a pure monopole background, usin% - .
the background field method. In Sec. IV, we derive the inte- ermoreX,, transforms covariantly under the gauge trans-

gral expression of the effective action for an arbitrary Con_formatlon. Most importantly, the deccimposmon IS gauge-
stant(color) electromagnetic background, which we need toindependent. Once the color direction is selected, the
establish the stability of the monopole condensation. In Seclecomposition follows independent of the choice of a gauge.
V, we obtain the effective action for the pure monopole back- Our decomposition, which has recently become known as
ground, and demonstrate the existence of the monopole coff?€ Cho decompositiofiL0] or the Cho-Faddeev-Niemi de-
densation which generates a dynamical symmetry breakingomposition[11], was first introduced a long time ago in an
in QCD. In Sec. VI, we obtain the effective action for a pure attempt to demonstrate the monopole condensation in QCD
electric background, and show that the electric backgrouné2,3]. But only recently the importance of the decomposition
generates the pair annihilation of the valence gluons. In Sedn clarifying the non-Abelian dynamics has become appreci-
VII, we demonstrate the stability of the monopole condensaated by many authofd.0,11]. Indeed it is this decomposition
tion. We pro\/ide three independent argumdﬂﬁe Causa"ty, which has played a crucial role to establish the Abelian
the duality, and the perturbative expansiavhich support ~dominance in Wilson loops in QCP12], and the possible
the stability of the vacuum condensation. In Sec. VIII, weconnection between the Skyrme-Faddeev action and the ef-
establish a deep connection between the Skyrme-Faddeé&ctive action of QC13,14.

theory and QCD, and derive a generalized Skyrme-Faddeev To understand the physical meaning of our decomposi-
action from our effective action as an effective action oftion, notice that the restricted potent@ actually has a dual
QCD in the infrared limit. Finally, in Sec. IX we discuss the structure. Indeed the field strength made of the restricted
physical implications of our results. potential is decomposed as

Fu=(F+ le)n,
II. ABELIAN PROJECTION AND VALENCE GLUON: A

REVIEW Fuv=d,A,—d,A,, 5
ConsiderSU(2) QCD for simplicity. A natural way to 1. . . - -
identify the monopole potential is to introduce an isotriplet Hu=— an'(%nX&Vn):&MCV—(?VCM,

unit vector fieldn which selects the “Abelian” direction

(i.e., the color charge directipmt each space-time point, and whereC,, is the “magnetic” potentia[2,3]. Notice that we
to decompose the connection into the restricted potentiglan always introduce the magnetic potenti least locally
(called the Abelian projectionA,, which leavesn invariant  sectionwisg becauséd ,, is closed,
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aﬂngo (HMV:% vpoH o). (6) the restricted potential, which has an additional colored
source made of the valence gluon.

This allows us to identify the non-Abelian magnetic potential ~ Obviously the Lagrangial0) is invariant under the ac-

by tive gauge transformatio(8). But notice that the decompo-

sition introduces a new gauge symmetry that we call the

- 1. ~ i i
G, = — —hxa,n, ) passive gauge transformatifh3,19,
g
in terms of which the magnetic field is expressed as én=0, 5AM=§D//-a’ (13
1 . .
i _49 R 2 2 2 A 2 under which we have
H,,=d,C,—3,C,+9C,xC,=—gC,xC,=— g%
A A 1. . 1. L.
Xd,n=H,,n. (8) oA, = an-DMa, 5AM=§(I‘1-DMa)n,

Another important feature 03\# is that, as ar8U(2) poten- 1 o L

tial, it_re_tains all the _essential _topologiqal characteristics of 6X,=—[D,a—(n-D a)n]. (14)
the original non-Abelian potential. This is because the topo- 9

logical fieldn can naturally describe the non-Abelian topol-
ogy m,(S?) and m3(S?)=m3(S°). Clearly the isolated sin-
gularities of n define m,(S?) which describes the non-
Abelian monopoles. Indeed,, with A,=0 andn=r (or

equivalentlyC,, with n=r) describes precisely the Wu-Yang
monopole[15,16. Besides, with thes® compactification of

This is because, for a givef\ﬂ, one can have infinitely
many different decompositions of E(}L), with differentA ,
andX, by choosing differenh. Equivalently, for a fixech,
one can have infinitely many differe&t, which are gauge-
equivalent to each other. So it must be clear that with our

decomposition we automatically have another type of gauge

3 A H ; H 2\ 3
R ok chara_cterlzes the Hopf |nvar_|ar_w-3(s )=3(S’) invariance which comes from different choices of decompo-
which describes the topologically distinct vaclia?,18.  gjtion. This extra gauge invariance plays a crucial role in

This tells us that the restricted gauge theory made?\pf quantizing the theory19].
could describe the dual dynamics which should play an es- Another advantage of the decompositidi is that it can
sential role inSU(2) QCD([2,12,19. actually “Abelianize” (or more precisely “dualize) the
With Eqg. (1) we have non-Abelian dynamic$2,12,19. To see this, letr;,n,,n)
- ~ Ao oA - - - be a right-handed orthonormal basis and let
F.=F,+tD,X,—D,X,+gX, XX, 9)

- 1n on
so that the Yang-Mills Lagrangian is expressed as X=X N1t XN,

- . Lo oA - 1~ G 2 A
L=—3F,,=—iF.,—5(D,X,~DX,)? (Xu=n1- X, X,=nz-X,)
2 .
9. - G 9° - G and find
= P (X, XX,) = Z(xﬂxxy)2
) . D,X,=[3,X,~9(A,+C,)X2]n,
+N(RZ—1)+A,0-X,, (10) g . e
+[3,X2+g(A,+C, )X ]n,. (15
where\ and A, are the Lagrangian multipliers. From the
Lagrangian we have So with
[?;L(F,U.V_l—H,uV_'—x,uv):_gﬁ'[)z/;x(f),u)zv_f)v)z,u)]v BM:AM+EM’ G/“,:(;MBV_aVBM,
D,(D,X,—D,X,)=0(F,,+H,,+X,,)nxX,, 1
(12) X, = E(XM—HXM), (16)
where
o one could express the Lagrangian explicitly in terms of the
X,=9gn- (X, xXX,). (12)  dual potentiaB, and the complex vector field, ,
Notice that her@ has no equation of motion even though the 1, 14 ~ 5 %
Lagrangian contains it explicitly. This implies that it is not a L==72Cu~ E'D#XV_ DX, +igG,, XX,
local degree of freedom, but a topological degree of freedom .
[19]. From this we conclude that the non-Abelian gauge L otk N2 ek 20y \2
theory can be viewed as a restricted gauge theory made of Zg LX) "= (X)), (7
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where now This tells us that the “Abelian” theory not only retains the
original gauge symmetry, but actually has enlargaath the
5M=&M+igBM. active and passivegauge symmetries. But we emphasize
that this is not the “naive” Abelianization of th&U(2)
Clearly this describes an Abelian gauge theory coupled to thgauge theory which one obtains by fixing the gauge. Our
charged vector fielX, . But the important point here is that Abelianization is a gauge-independent Abelianization. Be-
the Abelian potentiaBM is given by the sum of the electric sides, here the Abelian gauge group is actually made of
and magnetic potentiaks, +C,, . In this form, the equations U(1)e®U(1)y, so that the theory becomes a dual gauge

of motion (11) are reexpressed as theory[2,12,19. This is evident from Eq920) and (21).
9,(G Lyt X,.,)=1gX5 (D, X,—D ,X,,) Ill. MONOPOLE BACKGROUND
—igXM(BMXV—BVX#)*, With this preparation, we will now derive the integral
expression of the one-loop effective action in the presence of
D,(D,X,—D,X,)=igX (G, ,,+X,,), (18)  the pure monopo_le backgroun@}, . To do this_, we resort to
the background field methd®0,21]. So we first divide the
where now gauge potentiaﬁM into two parts, the slow-varying classical

partAl? and the fluctuating quantum pak® , and identify
the magnetic potentiaﬁﬂ as the classical background

This shows that one can indeed Abelianize the non-Abeliahl13,19:
theory with our decomposition. The remarkable change in

X, = —1g(XEX,— X%X,,).

this “Abelian” formulation is that here the topological field Aﬁzﬁ\ifhﬁ\ﬁf),
n is replaced by the magnetic potenti2), . o A o
But notice that here we have never fixed the gauge to A9=C,, AP=A,n+X,.
obtain this Abelian formalism, and one might ask how the (22
non-Abelian gauge symmetry is realized in this “Abelian”
theory. To discuss this, let With this we introduce two types of gauge transformations,
namely the background gauge transformation and the physi-
a=a;N;+ aNy+ 0N, cal gauge transformation. Naturally, we identify the back-
ground gauge transformation as
~(aytiay !
a=—(a;+1ay), A
N 5C,= JDue,
19
) L ) ) S(A,N+X,)=—axX(A,n+X,), (23)
C,=—-nxd,n=-Cyn;—Cin,, o
9 where nowD , is defined with only the background potential
. 1 2 Cus
C.==(C,+iC%). _ .
V2 D,=d,+9C,. (24)
Then the Lagrangiaril?) is invariant not only under the As for the physical gauge transformation which leaves the
active gauge transformatid®) described by background potential invariant, we must have
5A—1 i(C*a—C,a*), 6C,=—6A . A% =1D &
w= g ub=H(CLa=Cha®), p="O0AL, 0C,=0. S(AN+X,)=;D,a. (25)
0X,=0, (200 Notice that both Eqg23) and(25) respect the original gauge
transformation,
but also under the passive gauge transformatibd) de-
scribed by - -
5AM=§DMa. (26)

1 ~
oA, =—0,0—i(X a—X,a*), 6C,=0, _ _ _ .
g Now, we fix the gauge by imposing the following gauge
condition to the quantum fields:
1. :
5X;L=§Dﬂa_|0x#' (21) |E=5M(AMF1+)ZM)=O,

074027-4



MONOPOLE CONDENSATION INSU(2) QCD PHYSICAL REVIEW D 65 074027

1 2.0 Y \2 b oF? =
[’gf:_z_g[(a#AM) +(D,U,X/.L) ] Mla:P: b:(D’uD’M)ab. (28)
Sa
(27)
The corresponding Faddeev-Pod®P) determinant is given  With this gauge fixing the effective action takes the follow-
by ing form:

N I 1. 1. . . . Y+ L
ex;{iseﬁ(cﬂ)]:f DA, DX, DcDc* exp{if (—ZFIZW—Z(DﬂXV—D,,XM)Z—gFW-(XMXX,,)—gZ(XMXXV)Z
— .1 1 —
+c*D,D, c— 2—§(0#AM)2— z—g(D#XM)Z) d4x) , (29

wherec andc* are the ghost fields. Notice that the effective where nowﬁM acquires the following Abelian form:
action (29) is explicitly invariant under the background _ .
gauge transformatiorid), if we add the following gauge D,=d,+igC,. (34)

transformation of the ghost fields to :
I ¢ ! E® Remarkably, the functional determinaf@3) acquires the

Abelian form. This, of course, is precisely due to the fact that
our decompositioril) Abelianizes QCD. But we emphasize

This guarantees that the resulting effective action we obtai@9in that this Abelianization is gauge-independent.
after the functional integral should be invariant under the ~ON€ can evaluate the functional determinants in B8
remaining background gauge transformation which involvedVith the Fock-Schwinger proper time method, and for a con-

only CM. This, of course, is the advantage of the backgrouncf'tamt backgroundt we find

Sc=—aXxc, o&c*=—aXxc*. (30)

field r_nethod_ which greatly simplifies the calculation of the 1 (edt gH/\/EMZ ,
effective action20,21. AL=——| = -Lexp(—V2gHt u?)
Now, we can perform the functional integral in EQ9). 16m2Jo t? sinh(gHt/\2u?)

Remember that in the one-loop approximation only the terms P
quadratic in quantum fields become relevant in the functional +exp(V2gHU )], (35)

integral. So theA , integration becomes trivial, and théﬂ where u is a dimensional parameter.
and ghost integrations result in the following functional de-
terminants(with £=1): IV. ARBITRARY BACKGROUND

Before we evaluate the above integral and establish the
monopole condensation, we now derive the integral expres-
sion of the one-loop effective action in the presence of arbi-

trary backgroundﬁw, which we need to establish the stabil-
ity of the monopole condensation. So we repeat the above

procedure, but now replacing the monopole backgroﬁgd
Indet 2K = — Indef (—DD)2+i 2gHe®°n®] by the re§tricted potentiaﬁw. So we first divide the gauge
potential A, into two parts, and now identify the restricted
potentiaIA# as the classical background,

— 1/2 b__ —1/2r __ noyab_ b
det Y2K3)~det *{ ~g,,(DD)*"~2gH,,e**n°],

detM22=de{ —DD)?2". (31)

One can simplify the determinait[13,27],

—3Indef(—DD)*—i2gHe**n°]

—Inde{—DD)?", 32 A = A A@

(-DD) (32) A,=RO+A®,
where RO=A,, AD=X,. @6
H= |:|,2w- With this we now identify the gauge transformati¢d) as

_ _ o _ the background gauge transformation. As for the physical
With this, the one-loop contribution of the functional deter- gauge transformation, which leaves the background potential
minants to the effective action can be written as invariant, we must have

AS=i Inde{ — D2+ 2gH)+i Inde{ —D%— \2gH), < o 1 -
39 sA,=0, &X —gD a. (37)
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Again notice that both Eq$3) and(37) respect the original Indet ¥4 —g,,(DD)2P—2gG,,,e2>n°]
gauge transformatiof26). Now, we fix the gauge by impos- my my
ing the following gauge condition to the quantum field =Indef(—D?+2a)(—-D?-2a)
[19,22: B ~
o X (—D?-2ib)(—D?+2ib)],
F=D,X,=0, 3
L IndetMgp=2 Indet —D?), (43
Lo==5£(D,X,)% (39) - . _
¢ where D, is defined with an arbitrary background,,
The corresponding Faddeev-Popov determinant is given byJrC
SF2 D,=d,+ig(A,+C,), (44)
MEp=—5=(D,D,)™ (39

and

With this gauge fixing, the effective action takes the follow-

ing form: a= g\/ /G4+(Gé)2+G2,

exliSer(A,)]= f DX, DeDe*

b= g\/ve4+(eé)2—ez. (45)

2 1. A Y \2
Xexp{ J ( - ZFMV Z D#XV—DVXM)
Notice that in the Lorentz frame where the electric field be-
0. - - 9> . . ) comes parallel to the magnetic fielpecomes purely mag-
- EF;w‘ (XuXX,) = 7 (XX X,) netic andb becomes purely electric.
From this we have

+c*D,D,Cc— (D )z)d“x]. (40)

2¢ AS=iIndef(—D?+2a)(—D?-2a)]+i Indet
Notice again that, with Eq30), the effective actior(40) is X[(—D?-2ib)(—D?+2ib)]—2i Inde( —D?).
explicitly invariant under the background gauge transforma- (46)

tion (3) which involves onlyA,, .
Now, we can perform the functional integral. To do this, We can evaluate the functional determinants, and for a gen-
we let the background fleIE , be eral background with arbitrarg and b, the contribution of
the gluon and ghost loops is given 2]

F.,=G,.n,
AL 1 fwdt abt?/u? oxt — 23t/ u?)
Cuv=F vt Hy, 16720 t3 sinh(at/ u2)sin(bt/ ?) o
and in the one-loop approximation find that ﬂ?lg and ghost +exp(2at/ u?) +exp(2ibt/ u?)
integrations result in the following functional determinants ] 5
(with £€=1): +exp —2ibt/u)—2]. 47
det 12 Kigzdet‘l’z[—gw(lﬁlﬁ)ab— ZQGWeabcnc], The integral expressio@?7) of the effective action has been
known for some timg8], but the actual integration of it is
6 (AALab not easy to perform. Indeed, as far as we understand, the
detMgp=def — (DD)™], (42) integration has never been evaluated correctly. This is be-
. ] ) ) . cause the integral contain®ot only the usual ultraviolet
whereD , is defined with an arbitrary background fiedd,.  gjvergence arount=0) a severe infrared divergence around
Using the relation t=c0, which has to be regularized correctly. In the following,
12 we will perform the integral for pure magnetic and pure elec-
G,uGpGup=3G?G,,+3(GG)G,, tric backgrounds separately.
= 1
(G =2 €u1poGpo), (42 V. MONOPOLE CONDENSATION

one can simplify the functional determinants of the valence For the pure monopole background, the integ(2b)
gluon and the ghost loops to the following Abelian form:  reduces to
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AL=AL +AL_, identify 2a in the first determinant asa2-ie but in the
second determinant as2 i e. This tells us that the poles in
1 (=dt  a/u? the first integral in Eq(49) should lie above the real axis, but
AL, exp(—2at/ u?), the poles in the second integral should lie below the real

" 16m2)o 12 sinhat/ u?)

axis. From this we conclude that the contouAif , should

(48) pass below the real axis, but the contoudid _ should pass
above the real axidlVith this causality requirement, the two
1 (=dt  alu® 2 integrals become complex conjugate to each other, which
AL_= — ————exp2at/u*), ) - ) . ;!
1672 Jo t2 sinh(at/u?) guarantees thad £ is explicitly real, without any imaginary
part. This removes the infrared divergence. We emphasize
where that this causality for the infrared regularization is precisely
the same causality that determines the Feynman propagators
a gH in field theory. With this observation, we finally have
V2 2

1 f” dt alp
1672 J o t27 € sinn(at/ u?)

_ 2
Notice that this is precisely the same integral that we obtain [exp(—2at/n®)

from Eq. (47) for the pure magnetic backgrouride., for b
=0). This tells us that the evaluation of the effective action
for an arbitrary magnetic background becomes mathemati- ] ) ) )
cally identical to that for the pure monopole background. where nowe is the uItraonet_cutoff_whlch we have intro-
As we have remarked, both integrals have the usual ultraduced to regularize the ultraviolet divergence.
violet divergence at the origin, but the second integral has a Now we can perform the integral, and obtain
severe infrared divergence at the infinity. To find the correct
infrared regularization, one must understand the origin of the
divergence. The infrared divergence can be traced back to
the magnetic moment interaction of the gluons that we have
in Eqg. (10), which is also well known to be responsible for
the asymptotic freedorf23]. This magnetic interaction gen-
erates negative eigenvalues in Hein the long-distance re- (51)
gion, which cause the infrared divergence. More precisely,

when the momentunk of the gluon parallel to the back- \here /(x,y) is the generalized Hurwitz zeta function. So
ground magnetic field becomes smaller than the backgroungith the ultraviolet regularization by modified minimal sub-

field strength(i.e., whenk?<a), the lowest Landau-level traction, we finally obtain the following effective Lagrangian
gluon eigenfunction whose spin is parallel to the magnetig13 27

field acquires an imaginary energy and thus becomes tachy-
onic. It is these unphysical tachyonic states which cause the 1 11
infrared divergence. So one must exclude these tachyonic Let=— —2a2— 2a2
modes in the calculation of the effective action, when one 29 48m
makes a proper infrared regularization. Including the tachy-_ L )
ons in the physical spectrum will surely destablize QCD andl NiS completes our derivation of the one-loop effective La-
make it ill-defined. grangian ofSU(Z') QCD in the presence of the_monopole

The correct infrared regularization is dictated by the cauP@ckground. Notice that, as expected, the effective Lagrang-
sality. To implement the causality in Eq&8), we firstgoto  1@n is explicitly invariant under theﬁbackground gauge trans-
the Minkowski time with the Wick rotation, and find formation (23) which involves onlyC,, .

As we have indicated, there is another way to obtain the

+exp(—2at/u?)], (50

a

In—2—c
22

B 11a? (1 ) 11a°
4872 4872

e 7

24
c=1-In2-5¢'(~15)=0.9455 ...,

| a
n— —=¢C
2
M

. (52

1 (=dt al/u? _ ) effective action which is more physical. Remember that the
AL,=— 1 zf 2 simat a2 exp(—2iat/u%), two integrals in Eq(48) come from the two determinants in
6m"Jo 17 sin(at/u%) Eq. (33), and the infrared divergence in the second integral
g 12 comes from the tachyonic modes contained in the second
1 [(=dt a ; ; .
AL — M exp( + 2iat/ u?). determinant in Eq(33). So one can calculate the effective

action by calculating the determinant correctly. Now, to
evaluate the determinant, one is supposed to use a complete
set of eigenfunctions which is made of the physical states.
In this form the infrared divergence has disappeared, but nowut obviously the tachyonic modes cannot be regarded as
we face the ambiguity in choosing the correct contours of thghysical, because they violate the causality. A remarkable
integrals in Eq.(49). Fortunately, this ambiguity can be re- point is that by calculating the determinants with the physical
solved by the causality. To see this, notice that the two intestates one can show that the second determinant become
gralsAL, andAL_ originate from the two determinants in identical to the first one. This means that, by calculating the
Eq. (33), and the standard causality argument requires us téunctional determinants correctly, one can obtain exactly the

1672)0 t2 sinat/ u?)
(49)
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same effective action that we have obtained with the infrared v
regularization by causality. This provides another justifica- 0.004
tion of our effective actior(52).
Now we are ready to establish the monopole condensa- 0.002 (b) (a)
tion. To do this, we renormalize the effective action first. For
this, notice that the effective action provides the following 0 H
nontrivial effective potential: gl 0 08 B
-0.002
iyl Y97 gH | _ _
V=3z;H4 1+ 5 In—2 —cq |, (53 FIG. 1. The effective potential $U(2) QCD in the pure mag-
24 M netic background. Herép) is the effective potential antb) is the
classical potential.
where
. vt o) s This is nothing but the desired magnetic condensatidnis
c;=1-3IN2-7{'(-1;)=1.292% ... . proves that the one-loop effective action of QCD in the pres-
_ ence of the constant magnetic background does generate a
So we can define the running coupliggoy [7] dynamical symmetry breaking through the monopole conden-
sation[13,22.
3V 19 » The corresponding effective potential is plotted in Fig. 1,
JH? H_;Z_ 2 g% 54 where we have assumed=1, u=1. The effective poten-

tial clearly shows that there is indeed a dynamical symmetry

With the definition, we obtain breaking in QCD. o .
The renormalization-group invariance of the effective ac-

tion is guaranteed by the Callan-Symanzik equation

1 1 11 [ gu? 3
== I —c,+ =, (55)
9° 9* 247\ u? 2 _ 4 J . .0
. . . . p="4p == ')’(C,u)c,u =— | Vien= 0, (60)
from which we obtain the following3 function: I J9 aC,
_ 11 _ wherey(C,) is the anomalous dimension far, ,
Bp)=-——9° (56)
24 1
- . . Y(C)=—-—=9°+0(g". (61)
This is exactly the samg@ function that one obtained from 48

the perturbative QCD to prove the asymptotic freed@3. . ) o

This confirms that our effective action is consistent with theThis should be compared with that of the gluon field in per-

asymptotic freedom. turbative QCD,y(A,) = —5g2%/247% for SU(2), in the ab-
The fact that theB function obtained from the effective sence of the quarks.

action becomes identical to the one obtained by the pertur-

bative calculation is really remarkable, because this is not VI. ELECTRIC BACKGROUND

always the caseln fact, in QED it has been demonstrated ) S
that the running coupling and the function obtained from To make sure that our infrared regularization is indeed the

the effective action are different from those obtained fromCOITect one, itis necessary to have an independent confirma-
the perturbative metho24,25. tion of the ab(_)ve regult. Tp do this, it is mstructlve to cal_cu—
In terms of the running coupling, the renormalized Iooten_Iate the effective action with a pure electric backgrqund first.
tial is given by From Eqs(46) and(47), we have for a pure electric back-
ground(i.e., fora=0)

Voot 14—t 23] s AS=iInde(—DB?—2ib)+i Inde(—B?+2ib) (62
247 w? 2
and
which generates a nontrivial local minimum at
- AL—— th b/ i” [exp(2ibt/?)
2 2 = — exp ot/ u
(H)= M:ex;{ _ 2422 +1 (59) 1672 Jo t2 sin(bt/u?)
11

9 9 +exp(— 2ibt/ u2)]. 63

Notice that withas=1, we have There are different ways to evaluate the integral, but a simple
(H) and nice way of doing this follows from the observation that
—=0.138D... . (59)  inthe imaginary timgi.e., in the Minkowski tim¢ the roles

M of the electric and magnetic fields are reversed. So with the
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Wick rotation the above integral acquires the same form as The contrast between the effective acti¢d8) and(66) is
Eq. (48). Indeed, with the Wick rotation Eq63) becomes remarkable. First, the effective potential derived from Eq.
(66) has no local minimum. This implies that the electric

1 (=dt b background does not generate a condensation. Secondly, Eq.
AL=— 16772| Jo < Sinh(b1) [exp(—2bt)+exp(2bt) |. (66) has an imaginary part
ImL=— . (67)
Now, adopting the same infrared regularization as in the pure 96

magnetic background, we obtain This implies that the electric background is unstable. But

perhaps a more important point here is that the imaginary
part is negativeThis means that the electric background
967 generates the pair annihilation, rather than the pair cre-
(65 ation, of the gluonsThis is because the negative imaginary
part can be interpreted as the negative probability of the pair
So with the modified minimal subtraction we hafweith the  creation. This implies that the gluons in QCD, unlike the
pure electric background electrons in QED, tend to annihilate among themselves in the
color electric field. This might sound strange, but actually it
) is not difficult to understand. Indeed this is precisely what
-1 967 (66 the asymptotic freedom dictates. To understand this, remem-
ber that the gluon loop contributes positively but the quark
op contributes negatively to the asymptotic freed@8l].
I-jgxactly for the same reason the gluon and quark loops con-
tribute oppositely to the imaginary part of the effective ac-
tion. But the quark loop in QCD, just like the electron loop
in QED, generates a positive imaginary p#g]. This tells
us that the gluon loop should generate a negative imaginary
art in the effective action. This means that the asymptotic
reedom, the antiscreening, and the pair annihilation all
originate from the same physics. This is really remarkable.

b

InN——c
2
M

AL=

11p? ( 1 ) 11h?
- ——7y|+
4872 4872

€

b2  11b? 2

=—+
29° 48n?

b

In—z—c
)73

Eeff

We emphasize that in evaluating the above integral, the sa
infrared regularization is applied as in the pure magneti
background. With the pure electric background, the eigen
functions of the second determinant in E§2) become an-
ticausal and thus unphysical in the long-distance regien,
for k2<D), just like the eigenfunctions under the pure mag-
netic background become tachyonic and unphysical in th
infrared region(i.e., for k?<a). So we must again exclude
these unphysical modes to evaluate the above integral.
Another way to perform the integré63) is by choosing
the proper contour. Notice thdtinlike the pure magnetic VII. STABILITY OF MONOPOLE CONDENSATION

backgrounglthe integrand here has poles on the real axis, SO Tpere have been many attempts to construct the effective
that we must specify the contour of the integral. To find thegction of QCD in the literature, and in appearance our
proper _contou_r, first notice that the eigenv_alues of the WQ/acuum(58) looks very much like the old Savvidy-Nielsen-
determinants in Eq(62) are complex conjugate to each gjesen(SNO) vacuum{7,8]. The major difference is that the
other. This means that the contour of the two integrals in Edeffective action in the earlier approaches contained an imagi-
(63) should also be complex conjugate to each other. SeGyary part, which made the magnetic condensation unstable.
ondly, one can make the first integral finite by choosing thep contrast, our effective action is explicitly real, which guar-
contour to pass above the real axis and rotating it o thentees the stability of our monopole condensation. Indeed, it
positive imaginary axigi.e., by replacing with it). Thisis  nas peen asserted that the SNO vacuum should be unstable,

justifiable, because the first integral is free of the controverpecause the effective action which defines the vacuum devel-
sial acausal states. With this, the contour of the second intgsps an imaginary paft, 8],

gral is fixed by complex conjugating the first contour. This

means that the second contour must pass below the real axis, 1,

which one can rotate to the negative imaginary dkig re- Im E|SNo:§a : (68)

placingt with —it). This makes the second integral finite.

Finally, the causality requires us to replagevith b+e in  This destabilizes the vacuum through the pair creation of

the first determinant bub— e in the second determinant in gluons. This assertion of the instability of the SNO vacuum,

Eq. (62). This means that the first contour should start fromwhich comes from improper infrared regularizations, has

0+ €, but the second one from-0¢e in Eq. (63). From this, been widely accepted and never convincingly revoked. As a

we conclude that half of the residue at the origin shouldconsequence, it has been generally believed that the one-loop

contribute to the integral. This recipe reproduces &#), effective action cannot establish the monopole condensation

and justifies the result. in QCD. Our analysis tells us that this misleading belief has
Notice that it is the causality that produces the imaginaryno foundation.

part in Eq.(65). This is remarkable, because it was the same But since the absence of the absorptive part in our effec-

causality which has made E1) explicitly real. So in both  tive action is such a crucial point which distinguishes our

pure magnetic and pure electric backgrounds, the causalitgffective action from the SNO action, one might like to have

determines the imaginary part of the effective action. independent proof that our infrared regularization is indeed

074027-9



Y. M. CHO AND D. G. PAK PHYSICAL REVIEW D65 074027

the correct one. Fortunately, there are various ways to makiol to check the consistency of the effective action. In the
an independent confirmation of our effective actiéb® and  present case, the duality indeed confirms the consistency of
(66). To see this, first notice that the imaginary p@®) of  our effective actiong52) and(66). Obviously, this supports
the SNO action as well as ours is quadratic in the backthe idea that our calculation of the imaginary pai&9) is
ground fields. This, with the definitiof5), tells us that the probably correct, or at least consistent with the duality. This
imaginary part of the one-loop effective action is second ortells us that the causality, the perturbative expansion, and the
der in the coupling constar. So one can find the correct duality all strongly endorse the stability of our monopole
imaginary part of the effective action perturbatively, just by condensation.

calculating the effective action up to second order in the It must be emphasized that there are fundamental differ-
coupling constant in the perturbative expansion. There arences between the earlier attempts and the present approach.
different ways of doing this. In fact, one can just calculateThe earlier attempts had three problems. First, the separation
the relevant Feynmann diagrams of the perturbative exparbetween the classical background and the quantum field was
sion [26], or adopt Schwinger’s method used in QED, tonot gauge-independent, which made it difficult to establish
obtain the imaginary pafi27]. Now, a remarkable point is the gauge invariance of the one-loop effective action. Sec-
that these perturbative calculations do reproduce a resutindly, the origin of the magnetic background has never been

which is identical to our$28], clarified. As a consequence, the magnetic condensation could
not be associated with the monopole background. These de-
0, b=0, fects were serious enough, but perhaps the most serious
IMAL= 11b2 (69) problem was that the infrared divergence was not properly
~ 967 a=0. regularized in the earlier attempts. Because of this, the SNO

effective action contained an imaginary part. This destabi-

This confirms that our infrared regularization is indeed“zﬁli T:n;/rzgl:grr]nc;[h:0:ghrct,gihp?ﬁ;cgiat;gt%fng(l)lﬁzz —
correct. More importantly, this confirms that we do have the ole backaro Ind leromth)he antum ?‘I ctlat'on is clearl
desired dynamical symmetry breaking and the magnetic corf? grou quantu uctuation | Y

densation in QCD. It must be pointed out that the possibi”tygauge-lndependent. Moreover, our infrared regularization

that one could calculate the imaginary part of the eﬁectiveg]??ﬁézzejvgzi)g?r?'gasrélggtvg‘cLhuemeie;(;gifaﬁfnnd %‘Tgi‘;’f
action by the perturbative method, and that the SNO aCtiOILPensation which is both gauge- and Lorentz—invarianr: Notice
could probably be incorrect, was first raised by Schanbachet gaug ‘

[26]. Unfortunately, this remarkable work has been com- at the infrared regularization in EG0) is not just to re-

o ove the infrared divergencthere are infinitely many ways
Elyeiﬁg g:ggtciﬁgtsi?i;arz’o?g):l?gbgir?ggsssge:;tls also plague@ do thig. The infrared divergence that we face here in QCD

is also different from those one encounters in the effective

We emphasize that this perturbative calculation of the

imaginary part in QCD is justified precisely because thef'letlon of the massless QH[24,25. The infrared divergence

imaginary part of the effective action is second ordegin in the massless QED comes from the zero modes. But these

This is remarkable, because in general the one-loop effecti erg ?%dtehs ar(? p|h¥f|ﬁalfr310de;, V;CICh ?ihcr)]ulgnn&t bethe>;-
action does not allow a perturbative expansion. For exampl clude € calculation ot the efiective action. € othe

in QED the perturbative expansion of the imaginéag well eHand, the infrared divergence that we have here comes from

as the realpart of the effective action is divergent and doesthhe ngglhﬁézﬂsﬂ?:risihzo tﬁa;.g;esmeucst? ?}’;Clu.?ﬁ ;hefg gp
not make sense, because the p@nt0 is singular[24,25. pnysi physi pectrum wi prop

This means that in QED the perturbative calculation does noipfrared regularization. Our ?”a'ySiS has provid_ed ample rea-
reproduce the result of the one-loop effective action son why this has to be dmotice that in the earlier attempts
To reinforce our assertion, we now provide a third inde_these tachyonic modes are incorrectly identified as the “un-
pendent argument which supports our results. An importan?.’table modes, bu_t we emph_a3|ze t_hat they are not Just un-
point to observe here is that the effective acti@bg) and stable but unphysicalAnd it is premgely the§e unphys[cal
(66) are actually the mirror image of each other. To see thiSmOdeS that generate the controversial imaginary part in the
notice that we can obtain E¢66) from Eq. (52) s.imply by SNO action. So with the exclusion of the unphysical modes,
replacinga with —ib, and similarly Eq.(5é) from Eq. (66) the instab_ility of the vacuum disappears co_mpletely. As im-
by replacingb with ia. This is the first indication that there por_tantly In our _app_roach we can really claim that the mag-
exists a fundamental symmetry which we call the duality inne’tIC condensation is a gauge-independent p_hgnomepon. Fur-
the effective action of QCDThe duality states that the ef- thermore, here we have demonstrated that it is precisely the
fective action must be invariant under the replacement Wu-Yang monopole that is responsible for the condensation.

. . VIIl. QCD VERSUS SKYRME-FADDEEV ACTION
a——ib, b—ia.

Recently, Faddeev and Niemi have discovered the knot-

This type of duality was first established in the effective|ike topological solitons in the Skyrme-type nonlinear sigma
action of QED[24,25. But we emphasize that exactly the model[9],

same duality should also hold in our effective action of
QCD, because we have already Abelianized it. An important Lem M-
point of the duality is that the duality provides a very useful SF 2

2
(9,n)2—%(3,nx3d,n)?, (70)
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and made an interesting conjecture that the Skyrme-Fadde¢lve mass gap necessary for the dual Meissner effect and the

action could be interpreted as an effective action for QCD inconfinement.

the low-energy limit{10]. But we emphasize that from our  With the above understanding, we can now study the pos-

decompositior(1) it should have been evident that the abovesible connection between the Skyrme-Faddeev action and the

action is closely related to QCD. Indeed from the decompoeffective action of QCD. To do this, we first expand the

sition we havd 14| effective potential in terms of the monopole potential around
the vacuum and make the following Taylor expansion:

52 M=o
Lsg=—3H,,—5C,. (71) 1/ v\ —
V:V0+— re— CJ
2\ sclocl) 7
This tells us that the Skyrme-Faddeev theory can be inter-
preted as a massive Yang-Mills theory where the gauge po- 1 PaY — = =
{ : . +~(———)C'C/C
tential has the special forrt¥). Furthermore, we can claim 31\ sci scigck] “mve
that it is a theory of monopoles and at the same time a theory pomvee
of confinement, where the monopole-antimonopole pairs are 1 SV o
confined to form the knotEl4,19. But now with the effec- + 71\ = et | CuC ICEkCL+--+, (79
tive action of QCD at hand we can discuss the connection 6C,6C 5C 5C

between QCD and Skyrme-Faddeev theory in more detail.

Evidently the effective actiof52) is invariant under both  Where
gauge and Lorentz transformations. On the other hand, we — . .
can express the effective action explicitly in terms of the C,=C,—(C,).
monopole field strengtﬁMV This, of course, is not acciden-
tal. The background field method guarantees that the effec!\low near the vacuum we could neglect the higher-order
tive action should be expressed by the gauge-invariant fornferms and keep only the quartic polynomial@, for sim-
invariant under the background gauge transformats). plicity. In this approximation, the corresponding effective
What is remarkable here is that, with Eg), the background Lagrangian will acquire the form

magnetic fieldH «v CaN be expressed completely by the mag-

; Lo o a >
netic potentialC,, , Leg=—3m*(C,,)2— 7(Cux C,)?
H,,=—gC,xC,, B o <, v .
so that the effective potentidb3) can actually be written 5
. = ~ o ~ ~
completely in terms oC,, = 2—92(0#n)2— —2(‘9M”Xf?v”)2
9 = 11g° [ g[(C,xC,)*"?
V=-—(C,XC,)?% 1+ In —cqi| . A A -
7 (G | 24m? ( 2 : N vy SR
4
(72) g 9

Now, just for a heuristic reason, suppose we choose a paf: herea, 8, andy are numerical parameters which can be
ticular Lorentz frame and express the vacu(®8) by the ixed from Eq.(75). This is merely a generalized Skyrme-

. = _ Faddeev Lagrangidr.3,14]. This shows that one can indeed
vacuum expectation value @,,. In th|s_ case, the abgve derive a generalized Skyrme-Faddeev action from QCD by
e;ffectwe potential generates the following mass matrix forexpanding the effective potential around the vacuum. This,
Cu: together with Eq(71), establishes a firm connection between

the Skyrme-Faddeev theory and QCD. In fact we can go
52V . further, and establish a deep connection between QCD and
<,—> =m(8'—n'n’)g,,, (73)  the Skyrme theory itseff14,19.
5CM5C:JV An important feature in our analysis is that the Skyrme-
Faddeev action is intimately connected to the monopole con-
where densation in QCD. In particular, our analysis makes it clear
that the mass scale in the Skyrme-Faddeev action is directly

) 11g* <(€;M>< ﬁMV)2> related to the mass of the monopole potential, which deter-

i
A2

= 5 (74 mines the confinement scale in QCD. This is not surprising.
96 H ;
Indeed, any attempt to relate the Skyrme-Faddeev action to
R QCD must produce the mass scale that the Skyrme-Faddeev
can be interpreted as the “effective mass” o}, . This dem-  action contains, and the only way to interpret this mass scale
onstrates that the magnetic condensation indeed generat@sQCD is through the confinement.
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But it must be emphasized that our approximati@6) is (i) It should be emphasized that the gauge-independent
by no means exact. There are two points that should be keplecomposition1) of the non-Abelian gauge potential plays
in mind here. First, we have kept only the quadratic part andhe crucial role in our analysis. The decomposition has been
neglected all the higher-order terms in E@6). More seri-  known for more than 20 yeaf&,3], but its physical signifi-
ously, in deriving the effective action we have neglected thezance appears to have been appreciated very little until re-
derivatives oﬂ:|,w and thus the derivatives éﬂ, assuming cently. Now we emphasize that it is this decomposition
thatH is constant. Secondly, we had to choose a particulawhich has made the gauge-independent separation of the
Lorentz frame to justify the expansidi@5) of the effective  classical background from the quantum field, and allows us
action around the vacuum. So our derivation appears to haue obtain the effective action of QCD without ambiguity. In
compromised the Lorentz invariance, although the generalparticular, it is this decomposition which shows that vacuum
ized Skyrme-Faddeev action is obviously Lorentz-invariantcondensation is indeed made of monopole condensation.
Consequently, our analysis establishes a possible connectitmany of the earlier approaches had the critical defect that the
between a “generalized” nonlinear sigma model of Skyrme-decomposition of the non-Abelian gauge potential to the
Faddeev type and QCD only in a limited sense. In particulary(1) potential and the charged vector field was not gauge-
it does not assert that the simple-minded Skyrme-Faddeevdependent, which has made these approaches controver-
action describes QCD in the infrared limit. In spite of thesesial. In particular, in these approaches one cannot make sure
drawbacks, our analysis strongly endorses the fact that thgat the effective actiofand the resulting magnetic conden-
Skyrme-Faddeev action has something in common withsation obtained with the Abelian background really has a
QCD, which is really remarkable. gauge-independent meaning.

(i) There have been two competing proposals for the cor-
rect mechanism of the confinement in QCD, namely the one
emphasizing the role of the instantons and the other empha-

In this paper, we have established the monopole condersizing that of the monopoles. Our analysis strongly favors
sation, which describes a stable vacuum of QCD. Furtherthe monopoles as the physical source for the confinement. It
more, we have demonstrated the existence of a genuine dprovides a natural dynamical symmetry breaking, and gener-
namical symmetry breaking in QCD triggered by theates the mass gap necessary for the confinement in QCD.
monopole condensation. We were able to do this by calculatNotice that the multiple vacua, even though it is an important
ing the one-loop effective action &U(2) QCD in the pres- characteristics of the non-Abelian gauge theory, did not play
ence of a pure monopole background. There have been eany crucial role in our calculation of the effective action.
lier attempts to calculate the effective action, but our resulMoreover, our result shows that it is the monopole conden-
differs from the earlier results. The main difference with thesate, not th&-vacuum, which describes the physical vacuum
earlier attempts was the controversial imaginary part in thef QCD.
effective action in the earlier attempts. This has made the (iii) We have established a firm connection between the
SNO vacuum unstable. In contrast, with a proper infraredSkyrme-Faddeev action and QCD. On the other hand, the
regularization, we have shown that the QCD vacuum mad&kyrme-Faddeev theorfand the Skyrme theory its¢lton-
of monopole condensation is stable. We have provided thretins the topological knot states. If so, QCD could also likely
independent arguments to support our conclusion. admit such states, which might naturally be interpreted as

It is truly remarkable that the principles of the quantum“glueballs.” But these knots are not the ordinary glueballs
field theory allow us to demonstrate the monopole condenmade of valence gluons. They are made of the magnetic, not
sation within the framework of the conventional quantumelectric, flux. In this sense, they should be called “magnetic”
field theory. The assertion of the instability of the SNO glueballs[14]. The existence of such magnetic glueballs was
vacuum has created a wrong impression that one canngtedicted a long time agf2,3]. Once monopole condensa-
demonstrate monopole condensation with the one-loop effedion sets in, one should expect the fluctuation of the con-
tive action. Our analysis tells us that in fact one can demondensed vacuum. But obviously the fluctuation modes have to
strate monopole condensation with the effective action. Nobe magnetic, which could be identified as magnetic glue-
tice, however, that this does not prove that monopoléalls. (A new feature here is that they have a topological
condensation is the true vacuum of QCD. To prove this, westability. But this could be an artifact of the effective theory,
have to calculate the effective action in an arbitrary colornot a genuine feature of QCDWe can even predict that the
electromagnetic background, and show that indeed thenass of these glueballs starts from around 1.4 GBY. If
monopole condensation is the true minimum of the effectiveso, the remaining task is to look for convincing experimental
potential. This is not an easy task. Even for the “simple” evidence of the magnetic glueball states in the hadron spec-
QED the calculation of the one-loop effective action in antrum[2,3].
arbitrary background has been completed only recently Although we have concentrated ®U(2) QCD in this
[24,25, 50 years after Schwinger’s seminal wdék7]. In a  paper, it must be clear from our analysis that the magnetic
subsequent paper, we obtain the one-loop effective action @ondensation is a generic feature of the non-Abelian gauge
QCD for an arbitrary background, and demonstrate that intheory. A more detailed discussion which contains the calcu-
deed the monopole condensation is the true vacuum of QCDation of the effective action in the presence of an arbitrary
at least at the one-loop levg?2,29. color electromagnetic background will be presented in an

We conclude with the following remarks. accompanying papg¢f9.

IX. DISCUSSION
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