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Monopole condensation inSU„2… QCD
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Based on the gauge independent decomposition of the non-Abelian gauge field into the dual potential and
the valence potential, we calculate the one-loop effective action ofSU(2) QCD in an arbitrary constant
monopole background, using the background field method. Our result provides strong evidence for dynamical
symmetry breaking through the monopole condensation, which can induce the dual Meissner effect and estab-
lish the confinement of color in the non-Abelian gauge theory. The result is obtained by separating the
topological degrees which describe the non-Abelian monopoles from the dynamical degrees of the gauge
potential, and integrating out all the dynamical degrees of QCD.
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I. INTRODUCTION

One of the most outstanding problems in theoretical ph
ics is the confinement problem in QCD. It has long be
argued that monopole condensation could explain the c
finement of color through the dual Meissner effect@1,2#. In-
deed, if one assumes monopole condensation, one could
ily argue that the ensuing dual Meissner effect guaran
confinement@3,4#. In this direction there has been remar
able progress in lattice simulation during the past decade
fact, the recent numerical simulations have provided unm
takable evidence which supports the idea of magnetic c
finement through monopole condensation@5,6#. Unfortu-
nately so far there have been few satisfactory field theor
proofs of monopole condensation in QCD.

The purpose of this paper is to reexamine the non-Abe
dynamics and establish monopole condensation in Q
from first principles. Utilizing a gauge independent para
etrization of the non-Abelian gauge potential which emp
sizes its topological character, we construct the one-loop
fective action of QCD in the presence of a monopo
background by integrating out all the dynamical degrees
the non-Abelian potential except the monopole backgrou
using the background field method.Remarkably the effectiv
action generates a dynamical symmetry breaking made
monopole condensation, which strongly indicates that
physical confinement mechanism in QCD is indeed the m
netic confinement through the dual Meissner effect.Our
analysis makes it clear that it is precisely the magnetic m
ment interaction of the gluons which was responsible for
asymptotic freedom that generates the monopole conde
tion in QCD. We demonstrate our result withSU(2) for
simplicity, although the result should be applicable to a
non-Abelian gauge theory.

To prove the magnetic confinement it is instructive for
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to remember how the magnetic flux is confined in the sup
conductor through the Meissner effect. In the macrosco
Ginzburg-Landau description of superconductivity, t
Meissner effect is triggered by the effective mass of the e
tromagnetic potential, which determines the penetrat
~confinement! scale of the magnetic flux. In the microscop
BCS description, this effective mass is generated
electron-pair~the Cooper pair! condensation. This sugges
that, for confinement of the color electric flux, one needs
condensation of the monopoles. Equivalently, in the d
Ginzburg-Landau description, one needs the dynamical g
eration of the effective mass for the monopole potential.
demonstrate this, one must first identify the monopole pot
tial, and separate it from the generic QCD connection, i
gauge-independent manner. This can be done with the ‘‘A
lian’’ projection @2,3#, which provides a natural reparametr
zation of the non-Abelian connection in terms of the r
stricted connection~i.e., the dual potential! of the maximal
Abelian subgroupH of the gauge groupG and the gauge
covariant vector field~i.e., the valence potential! of the re-
maining G/H degrees. With this separation, one can sh
that monopole condensation takes place in a one-loop cor
tion, after one integrates out all the dynamical degrees of
non-Abelian gauge potential.

There have been many attempts to prove the monop
condensation in QCD@7,8#. Unfortunately, the effective ac
tion of QCD obtained from these earlier attempts has fai
to establish the desired magnetic condensation, becaus
magnetic condensation was unstable. This instability of
magnetic condensation has been widely accepted and
never been convincingly revoked. In retrospect, there
many reasons why the earlier attempts have not been so
cessful. First, the attempts to calculate the effective action
QCD were gauge-dependent. In fact, the separation of
magnetic background from the quantum fields was
gauge-independent. So there is no way of knowing whet
the desired magnetic condensation is indeed a gau
independent phenomenon. Moreover, the origin of the m
netic background in the earlier attempts was completely
©2002 The American Physical Society27-1
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scure, and could not be associated to the non-Abe
monopoles. Consequently, magnetic condensation could
be interpreted as monopole condensation. But the most
ous defect was the appearance of an imaginary part in
effective action, which was due to improper infrared regul
ization. This improper infrared regularization was the critic
defect which really destroyed the magnetic condensatio
the earlier attempts@7,8#. In this paper, we start from th
gauge-independent separation of the monopole backgro
from the quantum fields in our calculation of the effecti
action. More importantly, we make a proper infrared regul
ization which respects the causality, and show that the c
sality makes our monopole condensation stable.

Recently, Faddeev and Niemi have discovered the kn
like topological solitons in the Skyrme-type nonlinear sigm
model, and made an interesting conjecture that the Skyr
Faddeev action could be interpreted as an effective action
QCD in the low-energy limit@9,10#. With the effective action
at hand we discuss the possible connection between Sky
Faddeev theory and QCD. We show that indeed the two th
ries are closely related, and demonstrate that we can der
generalized Skyrme-Faddeev action from the effective ac
of QCD.

The paper is organized as follows. In Sec. II, we revi
the Abelian projection and the gauge-independent decom
sition of the non-Abelian potential into the restricted pote
tial and the valence potential. In Sec. III, we derive the in
gral expression of the one-loop effective action ofSU(2)
QCD in the presence of a pure monopole background, u
the background field method. In Sec. IV, we derive the in
gral expression of the effective action for an arbitrary co
stant~color! electromagnetic background, which we need
establish the stability of the monopole condensation. In S
V, we obtain the effective action for the pure monopole ba
ground, and demonstrate the existence of the monopole
densation which generates a dynamical symmetry brea
in QCD. In Sec. VI, we obtain the effective action for a pu
electric background, and show that the electric backgro
generates the pair annihilation of the valence gluons. In S
VII, we demonstrate the stability of the monopole conden
tion. We provide three independent arguments~the causality,
the duality, and the perturbative expansion! which support
the stability of the vacuum condensation. In Sec. VIII, w
establish a deep connection between the Skyrme-Fad
theory and QCD, and derive a generalized Skyrme-Fadd
action from our effective action as an effective action
QCD in the infrared limit. Finally, in Sec. IX we discuss th
physical implications of our results.

II. ABELIAN PROJECTION AND VALENCE GLUON: A
REVIEW

ConsiderSU(2) QCD for simplicity. A natural way to
identify the monopole potential is to introduce an isotrip
unit vector field n̂ which selects the ‘‘Abelian’’ direction
~i.e., the color charge direction! at each space-time point, an
to decompose the connection into the restricted poten
~called the Abelian projection! Âm which leavesn̂ invariant
07402
n
ot
ri-

he
-
l
in

nd

-
u-

t-

e-
or

e-
o-
e a
n

o-
-
-

g
-
-

c.
-
n-
g

d
c.
-

ev
ev
f

t

al

and the valence potentialXW m which forms a covariant vecto
field @2,3#

AW m5Amn̂2
1

g
n̂3]mn̂1XW m5Âm1XW m

~ n̂251, n̂•XW m50!, ~1!

whereAm5n̂•AW m is the ‘‘electric’’ potential. Notice that the
restricted potential is precisely the connection which lea
n̂ invariant under the parallel transport,

D̂mn̂5]mn̂1gÂm3n̂50. ~2!

Under the infinitesimal gauge transformation

dn̂52aW 3n̂, dAW m5
1

g
DmaW , ~3!

one has

dAm5
1

g
n̂•]maW , dÂm5

1

g
D̂maW ,

dXW m52aW 3XW m . ~4!

This shows thatÂm by itself describes anSU(2) connection
which enjoys the fullSU(2) gauge degrees of freedom. Fu
thermoreXW m transforms covariantly under the gauge tran
formation. Most importantly, the decomposition is gaug
independent. Once the color directionn̂ is selected, the
decomposition follows independent of the choice of a gau

Our decomposition, which has recently become known
the Cho decomposition@10# or the Cho-Faddeev-Niemi de
composition@11#, was first introduced a long time ago in a
attempt to demonstrate the monopole condensation in Q
@2,3#. But only recently the importance of the decompositi
in clarifying the non-Abelian dynamics has become appre
ated by many authors@10,11#. Indeed it is this decomposition
which has played a crucial role to establish the Abel
dominance in Wilson loops in QCD@12#, and the possible
connection between the Skyrme-Faddeev action and the
fective action of QCD@13,14#.

To understand the physical meaning of our decompo
tion, notice that the restricted potentialÂm actually has a dua
structure. Indeed the field strength made of the restric
potential is decomposed as

F̂mn5~Fmn1Hmn!n̂,

Fmn5]mAn2]nAm , ~5!

Hmn52
1

g
n̂•~]mn̂3]nn̂!5]mC̃n2]nC̃m ,

whereC̃m is the ‘‘magnetic’’ potential@2,3#. Notice that we
can always introduce the magnetic potential~at least locally
sectionwise!, becauseHmn is closed,
7-2
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]mH̃mn50 ~H̃mn5 1
2 emnrsHrs!. ~6!

This allows us to identify the non-Abelian magnetic potent
by

CW m52
1

g
n̂3]mn̂, ~7!

in terms of which the magnetic field is expressed as

HW mn5]mCW n2]nCW m1gCW m3CW n52gCW m3CW n52
1

g
]mn̂

3]nn̂5Hmnn̂. ~8!

Another important feature ofÂm is that, as anSU(2) poten-
tial, it retains all the essential topological characteristics
the original non-Abelian potential. This is because the to
logical field n̂ can naturally describe the non-Abelian topo
ogy p2(S2) and p3(S2).p3(S3). Clearly the isolated sin-
gularities of n̂ define p2(S2) which describes the non
Abelian monopoles. IndeedÂm with Am50 and n̂5 r̂ ~or
equivalentlyCW m with n̂5 r̂ ) describes precisely the Wu-Yan
monopole@15,16#. Besides, with theS3 compactification of
R3, n̂ characterizes the Hopf invariantp3(S2).p3(S3)
which describes the topologically distinct vacua@17,18#.
This tells us that the restricted gauge theory made ofÂm
could describe the dual dynamics which should play an
sential role inSU(2) QCD @2,12,19#.

With Eq. ~1! we have

FW mn5F̂mn1D̂mXW n2D̂nXW m1gXW m3XW n , ~9!

so that the Yang-Mills Lagrangian is expressed as

L52 1
4 FW mn

2 52 1
4 F̂mn

2 2 1
4 ~D̂mXW n2D̂nXW m!2

2
g

2
F̂mn•~XW m3XW n!2

g2

4
~XW m3XW n!2

1l~ n̂221!1lmn̂•XW m, ~10!

where l and lm are the Lagrangian multipliers. From th
Lagrangian we have

]m~Fmn1Hmn1Xmn!52gn̂•@XW m3~D̂mXW n2D̂nXW m!#,

D̂m~D̂mXW n2D̂nXW m!5g~Fmn1Hmn1Xmn!n̂3XW m ,
~11!

where

Xmn5gn̂•~XW m3XW n!. ~12!

Notice that heren̂ has no equation of motion even though t
Lagrangian contains it explicitly. This implies that it is not
local degree of freedom, but a topological degree of freed
@19#. From this we conclude that the non-Abelian gau
theory can be viewed as a restricted gauge theory mad
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the restricted potential, which has an additional color
source made of the valence gluon.

Obviously the Lagrangian~10! is invariant under the ac
tive gauge transformation~3!. But notice that the decompo
sition introduces a new gauge symmetry that we call
passive gauge transformation@13,19#,

dn̂50, dAW m5
1

g
DmaW , ~13!

under which we have

dAm5
1

g
n̂•DmaW , dÂm5

1

g
~ n̂•DmaW !n̂,

dXW m5
1

g
[DmaW 2(n̂•DmaW )n̂]. ~14!

This is because, for a givenAW m , one can have infinitely
many different decompositions of Eq.~1!, with different Âm

andXW m by choosing differentn̂. Equivalently, for a fixedn̂,
one can have infinitely many differentAW m which are gauge-
equivalent to each other. So it must be clear that with
decomposition we automatically have another type of ga
invariance which comes from different choices of decomp
sition. This extra gauge invariance plays a crucial role
quantizing the theory@19#.

Another advantage of the decomposition~1! is that it can
actually ‘‘Abelianize’’ ~or more precisely ‘‘dualize’’! the
non-Abelian dynamics@2,12,19#. To see this, let (n̂1 ,n̂2 ,n̂)
be a right-handed orthonormal basis and let

XW m5Xm
1 n̂11Xm

2 n̂2 ,

~Xm
1 5n̂1•XW m , Xm

2 5n̂2•XW m!

and find

D̂mXW n5@]mXn
12g~Am1C̃m!Xn

2#n̂1

1@]mXn
21g~Am1C̃m!Xn

1#n̂2 . ~15!

So with

Bm5Am1C̃m , Gmn5]mBn2]nBm,

Xm5
1

A2
~Xm

1 1 iXm
2 !, ~16!

one could express the Lagrangian explicitly in terms of
dual potentialBm and the complex vector fieldXm ,

L52
1

4
Gmn

2 2
1

2
uD̃mXn2D̃nXmu21 igGmn Xm* Xn

2
1

2
g2@~Xm* Xm!22~Xm* !2~Xn!2#, ~17!
7-3
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where now

D̃m5]m1 igBm .

Clearly this describes an Abelian gauge theory coupled to
charged vector fieldXm . But the important point here is tha
the Abelian potentialBm is given by the sum of the electri
and magnetic potentialsAm1C̃m . In this form, the equations
of motion ~11! are reexpressed as

]m~Gmn1Xmn!5 igXm* ~D̃mXn2D̃nXm!

2 igXm~D̃mXn2D̃nXm!* ,

D̃m~D̃mXn2D̂nXm!5 igXm~Gmn1Xmn!, ~18!

where now

Xmn52 ig~Xm* Xn2Xn* Xm!.

This shows that one can indeed Abelianize the non-Abe
theory with our decomposition. The remarkable change
this ‘‘Abelian’’ formulation is that here the topological fiel
n̂ is replaced by the magnetic potentialC̃m .

But notice that here we have never fixed the gauge
obtain this Abelian formalism, and one might ask how t
non-Abelian gauge symmetry is realized in this ‘‘Abelian
theory. To discuss this, let

aW 5a1n̂11a2n̂21un̂,

a5
1

A2
~a11 ia2!,

~19!

CW m52
1

g
n̂3]mn̂52Cm

1 n̂12Cm
2 n̂2 ,

Cm5
1

A2
~Cm

1 1 iCm
2 !.

Then the Lagrangian~17! is invariant not only under the
active gauge transformation~3! described by

dAm5
1

g
]mu2 i ~Cm* a2Cma* !, dC̃m52dAm ,

dXm50, ~20!

but also under the passive gauge transformation~13! de-
scribed by

dAm5
1

g
]mu2 i ~Xm* a2Xma* !, dC̃m50,

dXm5
1

g
D̃ma2 iuXm . ~21!
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This tells us that the ‘‘Abelian’’ theory not only retains th
original gauge symmetry, but actually has enlarged~both the
active and passive! gauge symmetries. But we emphasi
that this is not the ‘‘naive’’ Abelianization of theSU(2)
gauge theory which one obtains by fixing the gauge. O
Abelianization is a gauge-independent Abelianization. B
sides, here the Abelian gauge group is actually made
U(1)e^ U(1)m , so that the theory becomes a dual gau
theory @2,12,19#. This is evident from Eqs.~20! and ~21!.

III. MONOPOLE BACKGROUND

With this preparation, we will now derive the integra
expression of the one-loop effective action in the presenc
the pure monopole backgroundCW m . To do this, we resort to
the background field method@20,21#. So we first divide the
gauge potentialAW m into two parts, the slow-varying classica
part AW m

(c) and the fluctuating quantum partAW m
(q) , and identify

the magnetic potentialCW m as the classical backgroun
@13,19#:

AW m5AW m
(c)1AW m

(q) ,

AW m
(c)5CW m , AW m

(q)5Amn̂1XW m .
~22!

With this we introduce two types of gauge transformatio
namely the background gauge transformation and the ph
cal gauge transformation. Naturally, we identify the bac
ground gauge transformation as

dCW m5
1

g
D̄maW ,

d~Amn̂1XW m!52aW 3~Amn̂1XW m!, ~23!

where nowD̄m is defined with only the background potenti
CW m ,

D̄m5]m1gCW m. ~24!

As for the physical gauge transformation which leaves
background potential invariant, we must have

dCW m50, d~Amn̂1XW m!5
1

g
DmaW . ~25!

Notice that both Eqs.~23! and~25! respect the original gaug
transformation,

dAW m5
1

g
DmaW . ~26!

Now, we fix the gauge by imposing the following gaug
condition to the quantum fields:

FW 5D̄m~Amn̂1XW m!50,
7-4
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1

2j
@~]mAm!21~D̄mXW m!2#.

~27!

The corresponding Faddeev-Popov~FP! determinant is given
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MFP
ab5

dFa

dab
5~D̄mDm!ab. ~28!

With this gauge fixing the effective action takes the follow
ing form:
exp@ iSeff~CW m!#5E DAmDXW mDcWDcW* expH i E S 2
1

4
F̂mn

2 2
1

4
~D̂mXW n2D̂nXW m!22

g

2
F̂mn•~XW m3XW n!2

g2

4
~XW m3XW n!2

1cW* D̄mDmcW2
1

2j
~]mAm!22

1

2j
~D̄mXW m!2Dd4xJ , ~29!
at
e

n-

the
res-
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il-
ove

d
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tial
wherecW andcW* are the ghost fields. Notice that the effecti
action ~29! is explicitly invariant under the backgroun
gauge transformation~3!, if we add the following gauge
transformation of the ghost fields to Eq.~3!:

dcW52a3cW , dcW* 52a3cW* . ~30!

This guarantees that the resulting effective action we ob
after the functional integral should be invariant under
remaining background gauge transformation which invol
only CW m . This, of course, is the advantage of the backgrou
field method which greatly simplifies the calculation of t
effective action@20,21#.

Now, we can perform the functional integral in Eq.~29!.
Remember that in the one-loop approximation only the te
quadratic in quantum fields become relevant in the functio
integral. So theAm integration becomes trivial, and theXW m
and ghost integrations result in the following functional d
terminants~with j51):

det21/2Kmn
ab.det21/2@2gmn~D̄D̄ !ab22gHmneabcnc#,

detMFP
ab .det~2D̄D̄ !ab. ~31!

One can simplify the determinantK @13,22#,

ln det21/2K52 1
2 ln det@~2D̄D̄ !ab1 iA2gHeabcnc#

2 1
2 ln det@~2D̄D̄ !ab2 iA2gHeabcnc#

2 ln det~2D̄D̄ !ab, ~32!

where

H5AHW mn
2 .

With this, the one-loop contribution of the functional dete
minants to the effective action can be written as

DS5 i ln det~2D̄21A2gH!1 i ln det~2D̄22A2gH!,
~33!
in
e
s
d

s
al

-

where nowD̄m acquires the following Abelian form:

D̄m5]m1 igC̃m . ~34!

Remarkably, the functional determinant~33! acquires the
Abelian form. This, of course, is precisely due to the fact th
our decomposition~1! Abelianizes QCD. But we emphasiz
again that this Abelianization is gauge-independent.

One can evaluate the functional determinants in Eq.~33!
with the Fock-Schwinger proper time method, and for a co
stant backgroundH we find

DL5
1

16p2E0

`dt

t2

gH/A2m2

sinh~gHt/A2m2!
@exp~2A2gHt/m2!

1exp~A2gHt/m2!#, ~35!

wherem is a dimensional parameter.

IV. ARBITRARY BACKGROUND

Before we evaluate the above integral and establish
monopole condensation, we now derive the integral exp
sion of the one-loop effective action in the presence of a
trary backgroundÂm , which we need to establish the stab
ity of the monopole condensation. So we repeat the ab
procedure, but now replacing the monopole backgroundCW m

by the restricted potentialÂm . So we first divide the gauge
potentialAW m into two parts, and now identify the restricte
potentialÂm as the classical background,

AW m5AW m
(c)1AW m

(q) ,

AW m
(c)5Âm , AW m

(q)5XW m . ~36!

With this we now identify the gauge transformation~3! as
the background gauge transformation. As for the phys
gauge transformation, which leaves the background poten
invariant, we must have

dÂm50, dXW m5
1

g
DmaW . ~37!
7-5
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Again notice that both Eqs.~3! and ~37! respect the origina
gauge transformation~26!. Now, we fix the gauge by impos
ing the following gauge condition to the quantum fie
@19,22#:

FW 5D̂mXW m50,

Lgf52
1

2j
~D̂mXW m!2. ~38!

The corresponding Faddeev-Popov determinant is given

MFP
ab5

dFa

dab
5~D̂mDm!ab. ~39!

With this gauge fixing, the effective action takes the follo
ing form:

exp@ iSeff~Âm!#5E DXW mDcWDcW*

3expH i E S 2
1

4
F̂mn

2 2
1

4
~D̂mXW n2D̂nXW m!2

2
g

2
F̂mn•~XW m3XW n!2

g2

4
~XW m3XW n!2

1cW* D̂mDmcW2
1

2j
~D̂mXW m!2Dd4xJ . ~40!

Notice again that, with Eq.~30!, the effective action~40! is
explicitly invariant under the background gauge transform
tion ~3! which involves onlyÂm .

Now, we can perform the functional integral. To do th
we let the background fieldF̂mn be

F̂mn5Gmnn̂,

Gmn5Fmn1Hmn ,

and in the one-loop approximation find that theXW m and ghost
integrations result in the following functional determinan
~with j51):

det21/2Kmn
ab.det21/2@2gmn~D̂D̂ !ab22gGmneabcnc#,

detMFP5det@2~D̂D̂ !ab#, ~41!

whereD̂m is defined with an arbitrary background fieldÂm .
Using the relation

GmaGnbGab5 1
2 G2Gmn1 1

2 ~GG̃!G̃mn

~G̃mn5 1
2 emnrsGrs!, ~42!

one can simplify the functional determinants of the valen
gluon and the ghost loops to the following Abelian form:
07402
y
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,

e

ln det21/2@2gmn~D̂D̂ !ab22gGmneabcnc#

5 ln det@~2D̃212a!~2D̃222a!

3~2D̃222ib !~2D̃212ib !#,

ln detMFP52 ln det~2D̃2!, ~43!

where D̃m is defined with an arbitrary backgroundAm

1C̃m ,

D̃m5]m1 ig~Am1C̃m!, ~44!

and

a5
g

2
AAG41~GG̃!21G2,

b5
g

2
AAG41~GG̃!22G2. ~45!

Notice that in the Lorentz frame where the electric field b
comes parallel to the magnetic field,a becomes purely mag
netic andb becomes purely electric.

From this we have

DS5 i ln det@~2D̃212a!~2D̃222a!#1 i ln det

3@~2D̃222ib !~2D̃212ib !#22i ln det~2D̃2!.

~46!

We can evaluate the functional determinants, and for a g
eral background with arbitrarya and b, the contribution of
the gluon and ghost loops is given by@22#

DL5
1

16p2E0

`dt

t3

abt2/m2

sinh~at/m2!sin~bt/m2!
@exp~22at/m2!

1exp~2at/m2!1exp~2ibt/m2!

1exp~22ibt/m2!22#. ~47!

The integral expression~47! of the effective action has bee
known for some time@8#, but the actual integration of it is
not easy to perform. Indeed, as far as we understand,
integration has never been evaluated correctly. This is
cause the integral contains~not only the usual ultraviolet
divergence aroundt.0! a severe infrared divergence aroun
t.`, which has to be regularized correctly. In the followin
we will perform the integral for pure magnetic and pure ele
tric backgrounds separately.

V. MONOPOLE CONDENSATION

For the pure monopole background, the integral~35!
reduces to
7-6
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DL5DL11DL2 ,

DL15
1

16p2E0

`dt

t2

a/m2

sinh~at/m2!
exp~22at/m2!,

~48!

DL25
1

16p2E0

`dt

t2

a/m2

sinh~at/m2!
exp~2at/m2!,

where

a5
gH

A2
.

Notice that this is precisely the same integral that we ob
from Eq. ~47! for the pure magnetic background~i.e., for b
50). This tells us that the evaluation of the effective acti
for an arbitrary magnetic background becomes mathem
cally identical to that for the pure monopole background.

As we have remarked, both integrals have the usual u
violet divergence at the origin, but the second integral ha
severe infrared divergence at the infinity. To find the corr
infrared regularization, one must understand the origin of
divergence. The infrared divergence can be traced bac
the magnetic moment interaction of the gluons that we h
in Eq. ~10!, which is also well known to be responsible fo
the asymptotic freedom@23#. This magnetic interaction gen
erates negative eigenvalues in detK in the long-distance re
gion, which cause the infrared divergence. More precis
when the momentumk of the gluon parallel to the back
ground magnetic field becomes smaller than the backgro
field strength~i.e., whenk2,a), the lowest Landau-leve
gluon eigenfunction whose spin is parallel to the magne
field acquires an imaginary energy and thus becomes ta
onic. It is these unphysical tachyonic states which cause
infrared divergence. So one must exclude these tachy
modes in the calculation of the effective action, when o
makes a proper infrared regularization. Including the tac
ons in the physical spectrum will surely destablize QCD a
make it ill-defined.

The correct infrared regularization is dictated by the c
sality. To implement the causality in Eqs.~48!, we first go to
the Minkowski time with the Wick rotation, and find

DL152
1

16p2E0

`dt

t2

a/m2

sin~at/m2!
exp~22iat/m2!,

DL252
1

16p2E0

`dt

t2

a/m2

sin~at/m2!
exp~12iat/m2!.

~49!

In this form the infrared divergence has disappeared, but n
we face the ambiguity in choosing the correct contours of
integrals in Eq.~49!. Fortunately, this ambiguity can be re
solved by the causality. To see this, notice that the two in
gralsDL1 andDL2 originate from the two determinants i
Eq. ~33!, and the standard causality argument requires u
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identify 2a in the first determinant as 2a2 i e but in the
second determinant as 2a1 i e. This tells us that the poles in
the first integral in Eq.~49! should lie above the real axis, bu
the poles in the second integral should lie below the r
axis. From this we conclude that the contour inDL1 should
pass below the real axis, but the contour inDL2 should pass
above the real axis.With this causality requirement, the tw
integrals become complex conjugate to each other, wh
guarantees thatDL is explicitly real, without any imaginary
part. This removes the infrared divergence. We emphas
that this causality for the infrared regularization is precis
the same causality that determines the Feynman propag
in field theory. With this observation, we finally have

DL5
1

16p2E0

` dt

t22e

a/m2

sinh~at/m2!
@exp~22at/m2!

1exp~22at/m2!#, ~50!

where nowe is the ultraviolet cutoff which we have intro
duced to regularize the ultraviolet divergence.

Now we can perform the integral, and obtain

DL5
11a2

48p2 S 1

e
2g D2

11a2

48p2 S ln
a

m2
2cD ,

c512 ln 22
24

11
z8~21,3

2 !50.945 56 . . . ,

~51!

where z(x,y) is the generalized Hurwitz zeta function. S
with the ultraviolet regularization by modified minimal sub
traction, we finally obtain the following effective Lagrangia
@13,22#:

Leff52
1

2g2
a22

11

48p2
a2S ln

a

m2
2cD . ~52!

This completes our derivation of the one-loop effective L
grangian ofSU(2) QCD in the presence of the monopo
background. Notice that, as expected, the effective Lagra
ian is explicitly invariant under the background gauge tra
formation ~23! which involves onlyCW m .

As we have indicated, there is another way to obtain
effective action which is more physical. Remember that
two integrals in Eq.~48! come from the two determinants i
Eq. ~33!, and the infrared divergence in the second integ
comes from the tachyonic modes contained in the sec
determinant in Eq.~33!. So one can calculate the effectiv
action by calculating the determinant correctly. Now,
evaluate the determinant, one is supposed to use a com
set of eigenfunctions which is made of the physical sta
But obviously the tachyonic modes cannot be regarded
physical, because they violate the causality. A remarka
point is that by calculating the determinants with the physi
states one can show that the second determinant bec
identical to the first one. This means that, by calculating
functional determinants correctly, one can obtain exactly
7-7
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same effective action that we have obtained with the infra
regularization by causality. This provides another justific
tion of our effective action~52!.

Now we are ready to establish the monopole conden
tion. To do this, we renormalize the effective action first. F
this, notice that the effective action provides the followi
nontrivial effective potential:

V5 1
4 H2F11

11g2

24p2 S ln
gH

m2
2c1D G , ~53!

where

c1512 1
2 ln 22 24

11 z8~21,3
2 !51.292 14 . . . .

So we can define the running couplingḡ by @7#

]2V

]H2U
H5m̄2

5
1

2

g2

ḡ2
. ~54!

With the definition, we obtain

1

ḡ2
5

1

g2
1

11

24p2 S ln
gm̄2

m2
2c11

3

2D , ~55!

from which we obtain the followingb function:

b~m̄!52
11

24p2
ḡ3. ~56!

This is exactly the sameb function that one obtained from
the perturbative QCD to prove the asymptotic freedom@23#.
This confirms that our effective action is consistent with t
asymptotic freedom.

The fact that theb function obtained from the effectiv
action becomes identical to the one obtained by the per
bative calculation is really remarkable, because this is n
always the case.In fact, in QED it has been demonstrate
that the running coupling and theb function obtained from
the effective action are different from those obtained fro
the perturbative method@24,25#.

In terms of the running coupling, the renormalized pote
tial is given by

Vren5
1
4 H2F11

11

24p2
ḡ2S ln

H

m̄2
2

3

2D G , ~57!

which generates a nontrivial local minimum at

^H&5
m̄2

ḡ
expS 2

24p2

11ḡ2
11D . ~58!

Notice that withās51, we have

^H&

m̄2
50.13819 . . . . ~59!
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This is nothing but the desired magnetic condensation.This
proves that the one-loop effective action of QCD in the pr
ence of the constant magnetic background does genera
dynamical symmetry breaking through the monopole cond
sation @13,22#.

The corresponding effective potential is plotted in Fig.
where we have assumedās51, m̄51. The effective poten-
tial clearly shows that there is indeed a dynamical symme
breaking in QCD.

The renormalization-group invariance of the effective a
tion is guaranteed by the Callan-Symanzik equation

S m̄
]

]m̄
1b

]

]ḡ
2g~CW m!CW m

]

]CW m
D Vren50, ~60!

whereg(CW m) is the anomalous dimension forCW m ,

g~CW m!52
11

48p2
ḡ21O~ ḡ4!. ~61!

This should be compared with that of the gluon field in p
turbative QCD,g(AW m)525ḡ2/24p2 for SU(2), in the ab-
sence of the quarks.

VI. ELECTRIC BACKGROUND

To make sure that our infrared regularization is indeed
correct one, it is necessary to have an independent confir
tion of the above result. To do this, it is instructive to calc
late the effective action with a pure electric background fir

From Eqs.~46! and~47!, we have for a pure electric back
ground~i.e., for a50)

DS5 i ln det~2D̃222ib !1 i ln det~2D̃212ib ! ~62!

and

DL5
1

16p2E0

`dt

t2

b/m2

sin~bt/m2!
@exp~2ibt/m2!

1exp~22ibt/m2!#. ~63!

There are different ways to evaluate the integral, but a sim
and nice way of doing this follows from the observation th
in the imaginary time~i.e., in the Minkowski time! the roles
of the electric and magnetic fields are reversed. So with

FIG. 1. The effective potential ofSU(2) QCD in the pure mag-
netic background. Here~a! is the effective potential and~b! is the
classical potential.
7-8
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Wick rotation the above integral acquires the same form
Eq. ~48!. Indeed, with the Wick rotation Eq.~63! becomes

DL52
1

16p2
i eE

0

` dt

t22e

b

sinh~bt!
@exp~22bt!1exp~2bt!#.

~64!

Now, adopting the same infrared regularization as in the p
magnetic background, we obtain

DL52
11b2

48p2 S 1

e
2g D1

11b2

48p2 S ln
b

m2
2cD 2 i

11b2

96p
.

~65!

So with the modified minimal subtraction we have~with the
pure electric background!

Leff5
b2

2g2
1

11b2

48p2 S ln
b

m2
2cD 2 i

11b2

96p
. ~66!

We emphasize that in evaluating the above integral, the s
infrared regularization is applied as in the pure magne
background. With the pure electric background, the eig
functions of the second determinant in Eq.~62! become an-
ticausal and thus unphysical in the long-distance region~i.e.,
for k2,b), just like the eigenfunctions under the pure ma
netic background become tachyonic and unphysical in
infrared region~i.e., for k2,a). So we must again exclud
these unphysical modes to evaluate the above integral.

Another way to perform the integral~63! is by choosing
the proper contour. Notice that~unlike the pure magnetic
background! the integrand here has poles on the real axis
that we must specify the contour of the integral. To find t
proper contour, first notice that the eigenvalues of the t
determinants in Eq.~62! are complex conjugate to eac
other. This means that the contour of the two integrals in
~63! should also be complex conjugate to each other. S
ondly, one can make the first integral finite by choosing
contour to pass above the real axis and rotating it to
positive imaginary axis~i.e., by replacingt with i t ). This is
justifiable, because the first integral is free of the controv
sial acausal states. With this, the contour of the second i
gral is fixed by complex conjugating the first contour. Th
means that the second contour must pass below the real
which one can rotate to the negative imaginary axis~by re-
placing t with 2 i t ). This makes the second integral finit
Finally, the causality requires us to replaceb with b1e in
the first determinant butb2e in the second determinant i
Eq. ~62!. This means that the first contour should start fro
01e, but the second one from 02e in Eq. ~63!. From this,
we conclude that half of the residue at the origin sho
contribute to the integral. This recipe reproduces Eq.~66!,
and justifies the result.

Notice that it is the causality that produces the imagin
part in Eq.~65!. This is remarkable, because it was the sa
causality which has made Eq.~51! explicitly real. So in both
pure magnetic and pure electric backgrounds, the caus
determines the imaginary part of the effective action.
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The contrast between the effective actions~52! and~66! is
remarkable. First, the effective potential derived from E
~66! has no local minimum. This implies that the electr
background does not generate a condensation. Secondly
~66! has an imaginary part

Im L52
11b2

96p
. ~67!

This implies that the electric background is unstable. B
perhaps a more important point here is that the imagin
part is negative.This means that the electric backgroun
generates the pair annihilation, rather than the pair cr
ation, of the gluons.This is because the negative imagina
part can be interpreted as the negative probability of the
creation. This implies that the gluons in QCD, unlike t
electrons in QED, tend to annihilate among themselves in
color electric field. This might sound strange, but actually
is not difficult to understand. Indeed this is precisely wh
the asymptotic freedom dictates. To understand this, rem
ber that the gluon loop contributes positively but the qua
loop contributes negatively to the asymptotic freedom@23#.
Exactly for the same reason the gluon and quark loops c
tribute oppositely to the imaginary part of the effective a
tion. But the quark loop in QCD, just like the electron loo
in QED, generates a positive imaginary part@22#. This tells
us that the gluon loop should generate a negative imagin
part in the effective action. This means that the asympto
freedom, the antiscreening, and the pair annihilation
originate from the same physics. This is really remarkabl

VII. STABILITY OF MONOPOLE CONDENSATION

There have been many attempts to construct the effec
action of QCD in the literature, and in appearance o
vacuum~58! looks very much like the old Savvidy-Nielsen
Olesen~SNO! vacuum@7,8#. The major difference is that the
effective action in the earlier approaches contained an im
nary part, which made the magnetic condensation unsta
In contrast, our effective action is explicitly real, which gua
antees the stability of our monopole condensation. Indee
has been asserted that the SNO vacuum should be unst
because the effective action which defines the vacuum de
ops an imaginary part@7,8#,

Im LuSNO5
1

8p
a2. ~68!

This destabilizes the vacuum through the pair creation
gluons. This assertion of the instability of the SNO vacuu
which comes from improper infrared regularizations, h
been widely accepted and never convincingly revoked. A
consequence, it has been generally believed that the one-
effective action cannot establish the monopole condensa
in QCD. Our analysis tells us that this misleading belief h
no foundation.

But since the absence of the absorptive part in our eff
tive action is such a crucial point which distinguishes o
effective action from the SNO action, one might like to ha
independent proof that our infrared regularization is inde
7-9
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Y. M. CHO AND D. G. PAK PHYSICAL REVIEW D65 074027
the correct one. Fortunately, there are various ways to m
an independent confirmation of our effective actions~52! and
~66!. To see this, first notice that the imaginary part~68! of
the SNO action as well as ours is quadratic in the ba
ground fields. This, with the definition~45!, tells us that the
imaginary part of the one-loop effective action is second
der in the coupling constantg. So one can find the correc
imaginary part of the effective action perturbatively, just
calculating the effective action up to second order in
coupling constant in the perturbative expansion. There
different ways of doing this. In fact, one can just calcula
the relevant Feynmann diagrams of the perturbative exp
sion @26#, or adopt Schwinger’s method used in QED,
obtain the imaginary part@27#. Now, a remarkable point is
that these perturbative calculations do reproduce a re
which is identical to ours@28#,

Im DL5H 0, b50,

2
11b2

96p
, a50.

~69!

This confirms that our infrared regularization is inde
correct. More importantly, this confirms that we do have
desired dynamical symmetry breaking and the magnetic c
densation in QCD. It must be pointed out that the possibi
that one could calculate the imaginary part of the effect
action by the perturbative method, and that the SNO ac
could probably be incorrect, was first raised by Schanbac
@26#. Unfortunately, this remarkable work has been co
pletely neglected so far, probably because it is also plag
by the defect that it is not gauge-independent.

We emphasize that this perturbative calculation of
imaginary part in QCD is justified precisely because
imaginary part of the effective action is second order ing.
This is remarkable, because in general the one-loop effec
action does not allow a perturbative expansion. For exam
in QED the perturbative expansion of the imaginary~as well
as the real! part of the effective action is divergent and do
not make sense, because the pointe50 is singular@24,25#.
This means that in QED the perturbative calculation does
reproduce the result of the one-loop effective action.

To reinforce our assertion, we now provide a third ind
pendent argument which supports our results. An impor
point to observe here is that the effective actions~52! and
~66! are actually the mirror image of each other. To see t
notice that we can obtain Eq.~66! from Eq. ~52! simply by
replacinga with 2 ib, and similarly Eq.~52! from Eq. ~66!
by replacingb with ia. This is the first indication that ther
exists a fundamental symmetry which we call the duality
the effective action of QCD.The duality states that the e
fective action must be invariant under the replacement

a→2 ib, b→ ia.

This type of duality was first established in the effecti
action of QED@24,25#. But we emphasize that exactly th
same duality should also hold in our effective action
QCD, because we have already Abelianized it. An import
point of the duality is that the duality provides a very use
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tool to check the consistency of the effective action. In t
present case, the duality indeed confirms the consistenc
our effective actions~52! and ~66!. Obviously, this supports
the idea that our calculation of the imaginary parts~69! is
probably correct, or at least consistent with the duality. T
tells us that the causality, the perturbative expansion, and
duality all strongly endorse the stability of our monopo
condensation.

It must be emphasized that there are fundamental dif
ences between the earlier attempts and the present appr
The earlier attempts had three problems. First, the separa
between the classical background and the quantum field
not gauge-independent, which made it difficult to establ
the gauge invariance of the one-loop effective action. S
ondly, the origin of the magnetic background has never b
clarified. As a consequence, the magnetic condensation c
not be associated with the monopole background. These
fects were serious enough, but perhaps the most ser
problem was that the infrared divergence was not prope
regularized in the earlier attempts. Because of this, the S
effective action contained an imaginary part. This desta
lizes the vacuum through the pair creation of gluons.

In contrast in our approach the separation of the mo
pole background from the quantum fluctuation is clea
gauge-independent. Moreover, our infrared regularizat
generates no imaginary part in the effective action. Beca
of these we obtain a stable vacuum made of monopole c
densation which is both gauge- and Lorentz-invariant. Not
that the infrared regularization in Eq.~50! is not just to re-
move the infrared divergence~there are infinitely many ways
to do this!. The infrared divergence that we face here in QC
is also different from those one encounters in the effect
action of the massless QED@24,25#. The infrared divergence
in the massless QED comes from the zero modes. But th
zero modes are physical modes, which should not be
cluded in the calculation of the effective action. On the oth
hand, the infrared divergence that we have here comes f
the unphysical modes, so that one must exclude these
physical modes from the physical spectrum with a pro
infrared regularization. Our analysis has provided ample r
son why this has to be so~notice that in the earlier attempt
these tachyonic modes are incorrectly identified as the ‘‘
stable’’ modes, but we emphasize that they are not just
stable but unphysical!. And it is precisely these unphysica
modes that generate the controversial imaginary part in
SNO action. So with the exclusion of the unphysical mod
the instability of the vacuum disappears completely. As i
portantly in our approach we can really claim that the ma
netic condensation is a gauge-independent phenomenon.
thermore, here we have demonstrated that it is precisely
Wu-Yang monopole that is responsible for the condensat

VIII. QCD VERSUS SKYRME-FADDEEV ACTION

Recently, Faddeev and Niemi have discovered the kn
like topological solitons in the Skyrme-type nonlinear sigm
model @9#,

LSF52
m2

2
~]mn̂!22 1

4 ~]mn̂3]nn̂!2, ~70!
7-10
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MONOPOLE CONDENSATION INSU(2) QCD PHYSICAL REVIEW D 65 074027
and made an interesting conjecture that the Skyrme-Fad
action could be interpreted as an effective action for QCD
the low-energy limit@10#. But we emphasize that from ou
decomposition~1! it should have been evident that the abo
action is closely related to QCD. Indeed from the decom
sition we have@14#

LSF52 1
4 HW mn

2 2
m2

2
CW m

2 . ~71!

This tells us that the Skyrme-Faddeev theory can be in
preted as a massive Yang-Mills theory where the gauge
tential has the special form~7!. Furthermore, we can claim
that it is a theory of monopoles and at the same time a the
of confinement, where the monopole-antimonopole pairs
confined to form the knots@14,19#. But now with the effec-
tive action of QCD at hand we can discuss the connec
between QCD and Skyrme-Faddeev theory in more deta

Evidently the effective action~52! is invariant under both
gauge and Lorentz transformations. On the other hand,
can express the effective action explicitly in terms of t
monopole field strengthHW mn . This, of course, is not acciden
tal. The background field method guarantees that the ef
tive action should be expressed by the gauge-invariant fo
invariant under the background gauge transformation~23!.
What is remarkable here is that, with Eq.~7!, the background
magnetic fieldHW mn can be expressed completely by the ma
netic potentialCW m ,

HW mn52gCW m3CW n ,

so that the effective potential~53! can actually be written
completely in terms ofCW m ,

V5
g2

4
~CW m3CW n!2H 11

11g2

24p2 S ln
g@~CW m3CW n!2#1/2

m2
2c1D J .

~72!

Now, just for a heuristic reason, suppose we choose a
ticular Lorentz frame and express the vacuum~58! by the
vacuum expectation value ofCW m . In this case, the abov
effective potential generates the following mass matrix
CW m :

Mmn
i j 5K d2V

dCm
i dCn

j L 5m2~d i j 2ninj !gmn , ~73!

where

m25
11g4

96p2 K ~CW m3HW mn!2

H2 L ~74!

can be interpreted as the ‘‘effective mass’’ forCW m . This dem-
onstrates that the magnetic condensation indeed gene
07402
ev
n

-

r-
o-

ry
re

n

e

c-
,

-

r-

r

tes

the mass gap necessary for the dual Meissner effect and
confinement.

With the above understanding, we can now study the p
sible connection between the Skyrme-Faddeev action and
effective action of QCD. To do this, we first expand th
effective potential in terms of the monopole potential arou
the vacuum and make the following Taylor expansion:

V5V01
1

2! K d2V

dCm
i dCn

j L C̄m
i C̄n

j

1
1

3! K d3V

dCm
i dCn

j dCr
kL C̄m

i C̄n
j C̄r

k

1
1

4! K d4V

dCm
i dCn

j dCr
kdCs

l L C̄m
i C̄n

j C̄r
kC̄s

l 1••• , ~75!

where

C̄m
i 5Cm

i 2^Cm
i &.

Now, near the vacuum we could neglect the higher-or
terms and keep only the quartic polynomial inCW m for sim-
plicity. In this approximation, the corresponding effectiv
Lagrangian will acquire the form

Leff52 1
2 m2~CW m!22

a

4
~CW m3CW n!2

2
b

4
~CW m•CW n!22

g

4
~CW m!41•••

52
m2

2g2
~]mn̂!22

a

4g2
~]mn̂3]nn̂!2

2
b

4g2
~]mn̂•]nn̂!22

g

4g2
~]mn̂!41••• , ~76!

wherea, b, andg are numerical parameters which can
fixed from Eq. ~75!. This is merely a generalized Skyrme
Faddeev Lagrangian@13,14#. This shows that one can indee
derive a generalized Skyrme-Faddeev action from QCD
expanding the effective potential around the vacuum. T
together with Eq.~71!, establishes a firm connection betwe
the Skyrme-Faddeev theory and QCD. In fact we can
further, and establish a deep connection between QCD
the Skyrme theory itself@14,19#.

An important feature in our analysis is that the Skyrm
Faddeev action is intimately connected to the monopole c
densation in QCD. In particular, our analysis makes it cl
that the mass scale in the Skyrme-Faddeev action is dire
related to the mass of the monopole potential, which de
mines the confinement scale in QCD. This is not surprisi
Indeed, any attempt to relate the Skyrme-Faddeev actio
QCD must produce the mass scale that the Skyrme-Fad
action contains, and the only way to interpret this mass sc
in QCD is through the confinement.
7-11
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But it must be emphasized that our approximation~76! is
by no means exact. There are two points that should be
in mind here. First, we have kept only the quadratic part a
neglected all the higher-order terms in Eq.~76!. More seri-
ously, in deriving the effective action we have neglected
derivatives ofHW mn and thus the derivatives ofCW m , assuming
that H is constant. Secondly, we had to choose a partic
Lorentz frame to justify the expansion~75! of the effective
action around the vacuum. So our derivation appears to h
compromised the Lorentz invariance, although the gene
ized Skyrme-Faddeev action is obviously Lorentz-invaria
Consequently, our analysis establishes a possible conne
between a ‘‘generalized’’ nonlinear sigma model of Skyrm
Faddeev type and QCD only in a limited sense. In particu
it does not assert that the simple-minded Skyrme-Fadd
action describes QCD in the infrared limit. In spite of the
drawbacks, our analysis strongly endorses the fact that
Skyrme-Faddeev action has something in common w
QCD, which is really remarkable.

IX. DISCUSSION

In this paper, we have established the monopole cond
sation, which describes a stable vacuum of QCD. Furth
more, we have demonstrated the existence of a genuine
namical symmetry breaking in QCD triggered by t
monopole condensation. We were able to do this by calcu
ing the one-loop effective action ofSU(2) QCD in the pres-
ence of a pure monopole background. There have been
lier attempts to calculate the effective action, but our res
differs from the earlier results. The main difference with t
earlier attempts was the controversial imaginary part in
effective action in the earlier attempts. This has made
SNO vacuum unstable. In contrast, with a proper infra
regularization, we have shown that the QCD vacuum m
of monopole condensation is stable. We have provided th
independent arguments to support our conclusion.

It is truly remarkable that the principles of the quantu
field theory allow us to demonstrate the monopole cond
sation within the framework of the conventional quantu
field theory. The assertion of the instability of the SN
vacuum has created a wrong impression that one ca
demonstrate monopole condensation with the one-loop ef
tive action. Our analysis tells us that in fact one can dem
strate monopole condensation with the effective action. N
tice, however, that this does not prove that monop
condensation is the true vacuum of QCD. To prove this,
have to calculate the effective action in an arbitrary co
electromagnetic background, and show that indeed
monopole condensation is the true minimum of the effect
potential. This is not an easy task. Even for the ‘‘simpl
QED the calculation of the one-loop effective action in
arbitrary background has been completed only rece
@24,25#, 50 years after Schwinger’s seminal work@27#. In a
subsequent paper, we obtain the one-loop effective actio
QCD for an arbitrary background, and demonstrate that
deed the monopole condensation is the true vacuum of Q
at least at the one-loop level@22,29#.

We conclude with the following remarks.
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~i! It should be emphasized that the gauge-independ
decomposition~1! of the non-Abelian gauge potential play
the crucial role in our analysis. The decomposition has b
known for more than 20 years@2,3#, but its physical signifi-
cance appears to have been appreciated very little unti
cently. Now we emphasize that it is this decompositi
which has made the gauge-independent separation of
classical background from the quantum field, and allows
to obtain the effective action of QCD without ambiguity. I
particular, it is this decomposition which shows that vacuu
condensation is indeed made of monopole condensa
Many of the earlier approaches had the critical defect that
decomposition of the non-Abelian gauge potential to
U(1) potential and the charged vector field was not gau
independent, which has made these approaches contr
sial. In particular, in these approaches one cannot make
that the effective action~and the resulting magnetic conde
sation! obtained with the Abelian background really has
gauge-independent meaning.

~ii ! There have been two competing proposals for the c
rect mechanism of the confinement in QCD, namely the o
emphasizing the role of the instantons and the other emp
sizing that of the monopoles. Our analysis strongly fav
the monopoles as the physical source for the confinemen
provides a natural dynamical symmetry breaking, and ge
ates the mass gap necessary for the confinement in Q
Notice that the multiple vacua, even though it is an import
characteristics of the non-Abelian gauge theory, did not p
any crucial role in our calculation of the effective actio
Moreover, our result shows that it is the monopole cond
sate, not theu-vacuum, which describes the physical vacuu
of QCD.

~iii ! We have established a firm connection between
Skyrme-Faddeev action and QCD. On the other hand,
Skyrme-Faddeev theory~and the Skyrme theory itself! con-
tains the topological knot states. If so, QCD could also like
admit such states, which might naturally be interpreted
‘‘glueballs.’’ But these knots are not the ordinary glueba
made of valence gluons. They are made of the magnetic,
electric, flux. In this sense, they should be called ‘‘magnet
glueballs@14#. The existence of such magnetic glueballs w
predicted a long time ago@2,3#. Once monopole condensa
tion sets in, one should expect the fluctuation of the c
densed vacuum. But obviously the fluctuation modes hav
be magnetic, which could be identified as magnetic gl
balls. ~A new feature here is that they have a topologic
stability. But this could be an artifact of the effective theo
not a genuine feature of QCD.! We can even predict that th
mass of these glueballs starts from around 1.4 GeV@14#. If
so, the remaining task is to look for convincing experimen
evidence of the magnetic glueball states in the hadron s
trum @2,3#.

Although we have concentrated toSU(2) QCD in this
paper, it must be clear from our analysis that the magn
condensation is a generic feature of the non-Abelian ga
theory. A more detailed discussion which contains the cal
lation of the effective action in the presence of an arbitra
color electromagnetic background will be presented in
accompanying paper@29#.
7-12
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