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Hadronic scattering amplitudes: Medium-energy constraints on asymptotic behavior
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2COMPAS group, IHEP, Protvino, Russia
3LPNHE-LPTPE, Universite´ Pierre et Marie Curie, Tour 12 E3, 4 Place Jussieu, 75252 Paris Cedex 05, France

4Physics Department, Brown University, Providence, Rhode Island 02912
~Received 20 July 2001; revised manuscript received 11 December 2001; published 25 March 2002!

We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare

their predictions to all available forward data (pp, p̄p, pp, Kp, gp, gg, Sp). Although these parametriza-
tions are very close forAs>9 GeV, it turns out that they differ markedly at low energy, where a universal
Pomeron term; ln2s enables one to extend the fit down toAs54 GeV.
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I. INTRODUCTION

The singularity structure of forward hadronic amplitud
is of great importance, as it controls the extrapolation
cross sections to high energies and to smallx. Its study lies
mostly outside the realm of perturbative QCD, except p
haps at smallx and highQ2, where there is some overlap
hence the hope to obtain some QCD-based understandin
these amplitudes in the near future. However, there are
eral tools available to treat this nonperturbative doma
These are based on the theory of the analyticS matrix.

The first is to demand that hadronic amplitudes are a
lytic functions in the complex angular momentumJ. The
singularities in the complexJ plane then determine the form
of the asymptotic amplitudes ins at finite t. This means that
one can then relate, through analyticity and crossing sym
try, the real part of the amplitude to its imaginary part.
other words, the exact knowledge of the cross section fo
s is equivalent to that of ther parameter. In practice, ther
are several analytic forms which are very close for the to
cross sections in a finite interval ins, but which differ mark-
edly for the real part. Hence in this paper, we shall consi
the experimental constraints on both the real and the im
nary parts. Furthermore,t-channel unitarity leads to the con
clusion that these singularities should be universal, in
sense that they do not depend on the scattering hadro1

This leads to factorizing amplitudes,2 for which the residue
depends on the colliding hadrons, but the singularity is in
pendent of them.

The second constraint is due to the unitarity of par
waves and polynomial boundedness of the absorptive
within the Lehmann ellipse. This leads to the celebra
Froissart-Martin bound @1#, which indicates that a
asymptotic energies, total cross sections cannot incre

*Computerised Models, Parameter Evaluation for Theory and
periment.

1The photon is special in this context, and may have further
gularities.

2Note however that factorization can be proven only for sim
poles.
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faster than ln2s ~note that this behavior was first proposed
Heisenberg in 1952@2#!. Although this isa priori a strong
constraint, it turns out that the coefficient of the ln2s can be
large: all we know is that it is bounded byp/mp

2 .60 mb
~Lukaszuk-Martin @3#!, hence parametrizations which a
ymptotically violate the Froissart bound, such as risi
simple poles, may survive to present energies without vio
ing unitarity.

Finally, the last ingredient is Regge theory. The mes
trajectories can indeed be seen in a Chew-Frautschi plot,
hence their intercepts can in principle be measured dire
This leads to the conclusion that the intercepts of these
jectories are of order 0.5, that theC511 andC521 tra-
jectories are approximately degenerate, and that they see
be linear. We shall assume in the following that their con
bution to the total cross section can be parametrized
Y1sa121 andY2sa221.

These constraints, unfortunately, are far from providing
unique answer. As an example, the derivative relations@4#
can be conceived as a source of an infinite class of ana
parametrizations satisfying the above theoretical crite
However, it is possible to reduce this class of models t
few exemplar cases, for which the cross section, in the li
s→`, behaves as a constant, as lns or as ln2s. Hence in
practice, only a handful of parametrizations have been c
sidered and constrained. These represent variations on
parametrization proposed in@5,6#, which will be symboli-
cally referred to as~Regge1 Regge1 Pomeranchuk1
Heisenberg! type parametrizations—RRPH. Here both ‘‘R’s
stand for the leading Reggeon terms, P stands for a cons
contribution to the total cross section at asymptotic energ
~the classical Pomeranchuk asymptotic limit@7#! and H
stands for the asymptotically infinitely rising with energ
contribution, which we take as lns or ln2s. Because of its
popularity and simplicity, we shall also consider case E, i
the case of a simple polesap21 with ap.1.

Some of us~COMPAS! are maintaining a complete set o
data for all hadronic processes, so that we are in a positio
fully evaluate the various possibilities. We are using
slightly improved data set from the one of@8#: some prelimi-
nary data on ther parameter have been removed, and n
published data from SELEX (p2N andS2N at 600 GeV/c)
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J. R. CUDELLet al. PHYSICAL REVIEW D 65 074024
@9# and OPAL (gg) @10# were added. We did not use the ne
recent data from L3@11# on gg→hadrons total hadronic
cross sections because unfortunately these very intere
data are still not published yet. Definitely these data, wh
published, will be used in the next iteration of the cro
assessments.

In the past few years, and mainly because of the existe
of this data set, several advances have been made:

~1! The systematic and simultaneous study, via anal
representations, of the forward data, boths tot andr, for pp,
p̄p, p6p, K6p, gp, andgg scattering. Such a program wa
initiated by the COMPAS group@12#, and pursued in Refs
@8,13#.

~2! The general recognition that a Regge pole model@13#
has a much wider range of applicability than previously e
pected while it was also recognized that the exchan
degenerate Reggeons were not preferred by the forward
tering data@14#.

~3! The rediscovery@15# of former ideas@16,17# such as a
2-component soft Pomeron, with one component tak
quark counting into account and the other being unive
and rising with energy, or of full lifting of degeneracy fo
lower meson trajectories@18#.

~4! The impossibility to distinguish between wide rang
of analytic parametrizations when using data atAs>9 GeV
@8#.

We want to examine in detail those conclusions, and
to which extents the models considered in@8# can be ex-
tended to lower energy, i.e., above the resonance re
;3 GeV. A new quantitative procedure of ranking mode
by the quality of the fit to the current experimental data
suggested and used. In Sec. II, we shall concentrate on
cross sections, and propose this new ranking scheme. In
III, we shall extend our analysis to all forward data, and s
that this changes the picture considerably. In Sec. IV,
shall comment on some models proposed recently, and w
were not considered directly in the previous analysis. In S
V, we shall comment on cosmic ray data. To conclude,
shall present the possible alternatives, and analyze thei
spective drawbacks and advantages.

II. FITS TO LOWER-ENERGY TOTAL CROSS SECTIONS

As it will turn out, the consideration ofr(s) data results
in a very constrained fit, but some of the sub-samples of d
are poorly fitted to. This might be blamed on the quality a
systematic errors on the forward-scattering data forr(s).
Hence the first and safest constraint must be the reproduc
of s tot(s) data only. In this case, the number of possib
models that achieve a goodx2 per degree of freedom
(x2/DOF) is quite large. To describe the different possib
ties we will need some notations to classify variants, and
shall use the following:

sa7b5
1

s
„R1ab~s!6R2ab~s!1Pab1Hab~s!…, ~1!

where
R1ab(s)5Y1

ab
•(s/s1)a1, with s151 GeV2,
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R2ab(s)5Y2
ab
•(s/s1)a2,

Pab5sCab is the Pomeron simple pole atJ51,
Hab(s) stands for one of the three following possibilitie
a supplementary simple pole atJ5a` , with a`.1:

Eab5Xab~s/s1!a`;

a double pole atJ51:

Lab5s~Bab ln~s/s1!1Aab!;

a triple pole atJ51:

L2ab5s@Babln
2~s/s0!1Aab#.

In the general case, the constantsCab and Aab are inde-
pendent and they are associated with a different behavio
t. But at t50, as is the case for our fits, they cannot
distinguished. They mix and we are left, when we consi
logarithms, with just linear or quadratic forms in lns:

Pab1Lab5sBab ln~s/s1!1sZab

and

Pab1L2ab5sBab ln2~s/s0!1sZab ,

whereZab5Cab1Aab .
In the following we will restrict ourselves to fits wheres0

is process-independent. We have also considered fits with
ratio Zab /Bab kept process-independent

Pab1Lab5slab„B ln~s/s1!1A…,

with lpp51, as well as fits to the form RRE, without any
term.

We fit to 3 pairs of reactions for particle and antipartic
pp andp̄p, p6p, andK6p, one reaction with particlesS2p
and two reactions coupled only to C511 trajectories:gp
andgg.

The counting of parameters then goes as follows:
one intercept, and 6 residues~i.e., 7 parameters! for each

C511 Reggeon;
one intercept and 4 residues~i.e., 5 parameters! for each

C521 Reggeon.

Concerning the Pomeron terms, unless otherwise indica
by the subscriptn f , we impose factorization of theg cross
sections: Hgg5dHgp5d2Hpp and/or Pgg5dPgp5d2Ppp
with the same value ofd. This leads to:

1 parameterd;
4 parameters for the constant termZab ;
4 parametersBab 1 one intercept for E or one scale facto

s0 for L2.

When considering several singularities for the Pome
term, we usually treat them as independent. However, w
we implement factorization, we take the same value ofd for
all singularities. This leads to:

9 parameters for PL;
10 parameters for PL2 or PE.
4-2
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TABLE I. The x2/DOF of best models fitting all cross section data down to 4 GeV. Numbers in
represent the area of applicability of each model. In parenthesis, we indicate the number of parameterNpar)
for each model.

Asmin in GeV ~number of points!
Model code (Npar) 3 ~725! 4 ~580! 5 ~506! 6 ~433! 7 ~368! 8 ~330! 9 ~284! 10 ~229!

RREn f(19) 1.38 1.15 0.91 0.87 0.89 0.90 0.93 0.91
RREqc(17) 1.39 1.17 0.93 0.89 0.90 0.91 0.93 0.92
RRLn f(19) 1.31 0.96 0.82 0.80 0.85 0.85 0.86 0.85
RRPL(21) 1.33 0.98 0.85 0.83 0.87 0.88 0.84 0.74
(RR)dPnf L2(20) 1.24 0.99 0.82 0.79 0.83 0.84 0.83 0.73
RRPnf L2u(21) 1.26 0.97 0.81 0.79 0.82 0.83 0.82 0.75
(RR)dP L2u(17) 1.28 1.0 0.82 0.81 0.83 0.83 0.83 0.76
a
an

a

3
ro

th

f
le

th
is

la
lo
on
-
co

th
en

io

ie

iv
W
th
s

s

th
ce
th

os-
ure
on-

on-
yet.
bet-

le-
and

ing
els
ct
ata

her
we
in

ese
-
. We
ral
tter

the
data
ve

tor
n

on
le,
Furthermore, we have considered several possibilities
constrain the parameters. The following notations are
tached as either superscript or subscript to the model vari
in each case.

d means degenerate leading Reggeon trajectoriesa1
5a2. This lowers the number of parameters by 2 units,
one has only one intercept, and one coupling for theS2p
cross section;

u means universal for the rising term~independent of pro-
jectile hadron!. This reduces the number of parameters by
units. Assuming again the same factorization for all Pome
singularities, we get 6 parameters for PLu , and 7 for PL2u ;

nf means that we have not imposed factorization for
residues of Hab(s) in the case of thegg andgp cross sec-
tions. This adds one parameter to the fit in the case o
single Pomeron singularity, and two or three for multip
singularities;

qc means that approximate quark counting rules of
additive quark model@19# are imposed on the residues. Th
means that theu, d, and s couplings can be deduced from
pp, pp, andKp scattering, and used to predictSp. Hence
this lowers the number of parameters by 1 unit per singu
ity to which this rule is applied. It should be noted that ana
gous counting rules also follow from the so-called glu
dominance model@20# for the dominant asymptotic contri
bution to the cross sections. These counting rules were
firmed to some extent recently in the global fits of@8#.

Finally, we have sometimes assumed that the ratio of
residues of different singularities is process-independ
This is noted by including these singularities in braces$ %.
We have also considered the possibility that factorizat
works for the lowerC511 trajectories, with the samed as
for the Pomeron. We indicate this by putting the singularit
in brackets@ #.

All reasonable combinations of these constraints g
more than 256 different variants of the parametrizations.
shall consider here only seven representative models
give ax2/DOF smaller than 1.5 for all considered energie
Further results may be found in Appendixes A and B.

Table I gives the results for the minimum center-of-ma
energy considered in the fitAsmin53 GeV. Note that be-
cause of the large number of points, slight deviations of
x2/DOF from 1 result in a very low confidence level. Hen
we have shown the area of applicability of the models as
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energy values for whichx2/DOF<1.0.
As can be seen, the data are compatible with many p

sibilities, and one cannot decide at this level what the nat
of the Pomeron is, and whether any of the regularities c
sidered above is realized. Note that 9~respectively 23! mod-
els shown in Appendix A fit the data well~i.e., with a
x2/DOF,1) for Asmin54 GeV ~respectively 5 GeV!.
Hence it seems that sub-leading trajectories and other n
asymptotic characteristics do not manifest themselves
One can see that the logarithmic increases in general fit
ter than simple powers, even at large energyAs;10 GeV,
but that the difference inx2/DOF is not large enough to
reach any firm conclusion. Quark counting can be imp
mented for each possible rising term, but on the other h
one can choose a universal~beam-independent! rise as well.
It is interesting that a reasonable degeneracy of the lead
Reggeon trajectories can be implemented only in mod
which have a ln2s Pomeron. The latter degeneracy is in fa
expected to hold in global fits to the forward scattering d
of all hadronic processes, when one includesK1p scattering,
which has an exotics-channel in view of duality.

We can choose two approaches to distinguish furt
amongst the above models. We can add more data, which
shall do in the next section, but we want first to examine
detail the quality of the fits. Indeed, despite the fact that th
models do fit the data wellglobally, several other character
istics may be considered, and demanded on the results
shall present here a set of indicators which quantify seve
aspects of the fits, and which will enable us to assess be
the quality of the models.

Indicators measuring the quality of the fits

The best known such quantity is certainly thex2/DOF, or
more precisely the confidence level~C.L.!.

However, because Regge theory does not apply in
resonance region, no model is expected to reproduce the
down to the lowest measured energy. The cutoff we ha
given in Table I isad hoc: we know the fits must fail at some
point, but we cannot predict where. Hence another indica
will be the range of energy of the data that the model ca
reproduce with ax2/DOF<1.0.

Furthermore, the quality of the data varies depending
which quantity or which process one considers. In princip
4-3
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J. R. CUDELLet al. PHYSICAL REVIEW D 65 074024
one could introduce some kind of data selection, but t
would undoubtedly bias the fits one way or the other. T
other option is to assign a weight to each process or quan
which takes into account the quality of the data. Given t
this will be done to compare models together, we are c
tainly entitled to choose the weights as determined by
best fit. Hence we introduce

wj5minS 1,
1

x j
2/nop

D
where j 51, . . . 9 refers to the process, and we define t
renormalizedxR

2 as

xR
2[(

j
wjx j

2 .

Finally, if a fit is physical in a given range, then its p
rameters must be stable if one considers part of the ra
different determinations based on a sub-sample must be c
patible. Hence another indicator will deal with thestability
of the fit.

We have developed a series of statistical quantities
enable us to measure the above features of the fits. All th
indicators are constructed so that the higher their value
better the quality of the data description.

(1) The Applicability Indicator. It characterizes the rang
of energy which can be fitted by the model. This range ca
principle be process-dependent, but we shall not cons

TABLE II. Model quality indicators for the models kept in Tabl
I. Bold-faced characters indicate the best model for a given ind
tor.

Model Code AM C1
M C2

M UM R1
M R2

M S1
M rank PM

simple pole
RR En f(19) 2.6 91. 81. 51. 25. 0.88 0.18 208
RR Eqc(17) 2.6 86. 79. 88. 28. 0.94 0.15 252

simple1double pole
RRLn f(19) 2.6 76. 95. 36. 29. 0.79 0.16 212
RRPL(21) 2.2 65. 99.7 59. 26. 0.81 0.082 162

simple1triple pole
(RR)dPnfL2(20) 2.5 59. 99.9 38. 28. 0.88 0.098 120
RRPnfL2u(21) 2.5 68. 99.7 34. 26. 0.91 0.008 182
(RR)dPL2u(17) 2.6 99.8 99.7 185. 28. 0.88 0.16 296
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such a case here. The range of applicability is, by definiti
the range of data where fit has a confidence level~C.L.!
bigger than 50%. One of the simplest variants is as follow

Aj
M5wj ln~Ej

M ,high/Ej
M ,low!, AM5

1

Nsets
(

j
Aj

M ~2!

where j is the multi-index denoting the pair~data subset,
observable!; Nsets is the number of such subsets,Ej

M ,high is
the highest value of the energy in the area of applicability
the modelM in the data subsetj ; Ej

M ,low is the lowest value
of the energy in the area of applicability of the modelM in
the data subsetj, andwj is the weight determined from the
best fit in the same interval~hencewj will depend itself on
Ej

M ,high and Ej
M ,low). In our case the applicability indicato

takes the form:

AM5
1

9
~App,s

M 1Ap̄p,s
M

1Ap1p,s
M

1Ap2p,s
M

1AK1p,s
M

1AK2p,s
M

1AS2p,s
M

1Agp,s
M 1Agg,s

M !. ~3!

Inspection of the fit results shows that for some modificat
of the parametrizations we obtain rather good fits start
from Emin54 or 5 GeV but with negative contributions t
the total cross sections from terms corresponding to the
change of the Pomeron-like objects at the low energy par
the area of applicability as defined above. This is unphys
and we are forced to add an additional constraint to the a
of applicability: We exclude from it the low energy pa
where at least in one collision there is a negative contribut
from the total sum of the Pomeron-like~asymptotically ris-
ing! terms. The situation is illustrated in Tables XI and XI
of the Appendixes where excluded intervals are marked
minus as upper case index at thex2/DOF value. It is inter-
esting that some models turned out to have an empty are
applicability once this criterion was imposed.

(2) Confidence-1 Indicator:

C1
M5C.L.%

where the C.L. refers to the whole area of applicability of t
modelM.

(3) Confidence-2 Indicator:

C2
M5C.L.%

a-
d
TABLE III. Representative models fitting all cross section andr data down to 5 GeV. Numbers in bol
represent the area of applicability of each model.

Asmin in GeV and number of data points
Model code (Npar) 3 ~904! 4 ~742! 5 ~648! 6 ~569! 7 ~498! 8 ~453! 9 ~397! 10 ~329!
RREn f(19) 1.8 1.4 1.1 1.1 1.1 1.1 1.0 1.0
RRLn f(19) 1.6 1.1 0.97 0.97 1.0 0.96 0.94 0.93
RRPL(21) 1.6 1.1 0.98 0.98 0.99 0.94 0.93 0.91
(RR)dPnfL2(20) 1.9 1.2 1.0 1.0 0.99 0.94 0.93 0.92
RRPnfL2u(21) 1.8 1.1 0.97 0.97 0.97 0.92 0.93 0.92
(RR)dPL2u(17) 2.0 1.3 1.0 1.0 0.98 0.94 0.93 0.93
4-4
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where the C.L. refers to the intersection of the areas of
plicability of all models qualified for the comparison@we
choose hereAs>5 GeV for the fits withoutr parameter~see
Table XI! andAs>9 GeV for the fits withr data~see Table
XIV !#.

(4) Uniformity Indicator. This indicator measures th
variation of thex2/nop from bin to bin for some data bin
ning motivated by physics:

UM5H 1

Nsets
(

j

1

4 FxR
2~ t !

Nnop
t

2
xR

2~ j !

Nnop
j G 2J 21

, ~4!

where t denotes the total area of applicability, andj is a
multi-index denoting the pair~data set, observable!. In our
case we use the calculation of thexR

2/nop for each collision
separately, i.e., the sum runs as in the case of the applic
ity indicator.

(5) Rigidity Indicator. As the measure of the rigidity o
the model we propose to use the indicator

R1
M5

Nnop
M ~A!

11Npar
M . ~5!

TABLE V. Quality indicators in five representative models fi
ting well all forward data.

Model Code AM C1
M C2

M UM R1
M R2

M S1
M S2

M
rank
PM

RRPnfL2u(21) 2.2 68. 85. 23. 29. 0.90 0.22 0.10 222
(RR)dPnfL2(20) 2.2 50. 82. 18. 31. 0.90 0.27 0.41 178
(RR)dPL2u(17) 2.0 50. 83. 16. 32. 0.88 0.30 0.67 174
RRLn f(19) 1.8 73. 81. 17. 32. 0.78 0.29 1.3 222
RRPL(21) 1.6 67. 82. 26. 29. 0.75 0.21 1.1 173

TABLE IV. The values of thex2 per data point (x2/nop) for
each process in three representative models, forAs.5 GeV.

Reaction Number of RRPn fL2u RRPL RREn f

data points
spp 112 0.87 0.87 0.89
s p̄p 59 1.2 1.0 1.1
sp1p 50 0.78 0.78 1.4
sp2p 106 0.89 0.90 0.88
sK1p 40 0.71 0.72 1.0
sK2p 63 0.61 0.62 0.72
sS2p 9 0.38 0.38 0.39
sgp 38 0.62 0.75 0.59
sgg 30 0.7 0.95 0.55
rpp 74 1.8 1.6 1.8
r p̄p 11 0.55 0.47 0.60
rp1p 8 1.5 1.6 2.7
rp2p 30 1.2 1.3 2.1
rK1p 10 1.0 1.1 0.83
rK2p 8 0.96 1.2 1.8
07402
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The most rigid model has the highest value of the numbe
data points per adjustable parameter. The exact theorT
~with no adjustable parameters! has the rigidity valueRT

5Nnop
M (A)—the total number of data points in the area

applicability. This indicator takes into account the set
known regularities in the data that were incorporated into
model to reduce the number of adjustable parameters an
increase the statistical reliability of the parameter estima

(6) Reliability Indicator:

R2
M5

2

Npar~Npar21! (
i . j 51

N

Q~90.02Ci j
R! ~6!

whereCi j
R is the correlation matrix element in % calculate

in the fit at the low edge of the applicability area. This ind
cator characterizes the goodness of the parameter error
trix. For the diagonal correlator this indicator is maximal a
equals 1.

(7) Stability-1 Indicator:

S1
M5H 1

NstepsNpar
M (

steps
(
i j

~Pt2Pstep! i

3~Wt1Wstep! i j
21~Pt2Pstep! jJ 21

~7!

where Pt is the vector of parameters values obtained fro
the model fit to the whole area of applicability;Pstep is the
vector of parameters values obtained from the model fi
the reduced data set on thestep, in our casestepmeans shift
in the low edge of the fit interval to the right by 1 GeV;
there are no steps thenS1

M50 by definition;Wt and Wstep

are the error matrix estimates obtained from the fits to
total and to the reduced on the steps data samples from the
domain of applicability.

We give the results of these comparisons in Table II a
Appendix A, Table X.

The development of these indicators is needed to allow
to verify automatically the rough features of a large quan
of models~see Appendixes A and B!. Hence, as a first ‘‘nu-
merical trigger’’ to indicate the best fits, we have adopted
simple ranking scheme, which complements the usual ‘‘b
x2’’ criterion. As all the features measured by the indicato
are highly desirable, we adopt for the rank, in a given e
semble of models, a definition that gives equal weight to
indicators

I k
m5~Am,C1

m ,C2
m ,Um,R1

m ,R2
m,S1

m! ~8!

where the indexm describes the model, and indexk de-
scribes the indicator type.

TABLE VI. x2/DOF of two excluded parametrizations.

Asmin in GeV
Model code (Npar) 3 4 5 6 7 8 9
FFP-97@23# 101 16.26 3.28 2.3 2.3 2.39 2.3
Lipkin TCP @24# 4.63 3.14 2.54 2.61 2.86 3.07 3.4
4-5
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Having calculated all components of the indicators, it
easy, for a given indicator, to assign a number of points t
given modelM:

Pk
M5 (

m5” M
„2Q~ I k

M2I k
m!1d I

k
M ,I

k
m…. ~9!

The rank of models is then obtained via the total amoun
points of the model:

PM5(
k

Pk
M5(

k
(

m5” M
„2Q~ I k

M2I k
m!1d I

k
M ,I

k
m…. ~10!

TABLE VII. The x2 of the cosmic ray data, corrected in seve
different ways@27–31#, for each of the best parametrizations fittin
the accelerator data.

Experiment Nikolaevet al. Block et al.
Model Code x2 x2/nop x2 x2/nop x2 x2/nop
RRPnfL2u(21) 1.62 0.23 14.31 2.04 3.30 0.47
(RR)dPnfL2u(19) 1.73 0.25 13.96 1.99 3.45 0.49
RRLn f(19) 2.52 0.36 24.25 3.46 2.19 0.31
RRPL(21) 2.93 0.42 25.48 3.64 2.34 0.33
can

07402
a

f

In this approach, the best models are the models with
highestPM value. In Tables II and V, and in the Appendixe
we present the ranking of 33 recently discussed paramet
tions: 28 of them had a sufficiently high C.L. for comparis
on thes tot data and 21 of them had a sufficiently high C.
for comparison on thes tot(s) andr(s) data.

On the other hand, it is also possible to use these ind
tors directly, as characterizing each model. For instance
we analyze the first two lines of Table II, we directly se
from column 1 that simple-pole models apply in as big
energy band as the other models. The second and third
umns tell us however that the best C.L. are achieved
triple-pole models with the double-pole models closely b
hind. The fourth column tells us that while most models
not reproduce all data equally well~see also Table IV!, the
most uniform model is (RR)dPL2u(17). The fifth column
indicates that the models apply in similar energy ranges
have similar numbers of parameters. Similarly, we see fr
the sixth column that the reliability of the error matrices
similar. However, the seventh column clearly indicates t
the parameters of RRPL(21), (RR)dPn fL2(20) and
RRPn fL2u(21) are very sensitive to the minimum energ
considered, and hence that these models are not stable
respect to that minimum energy.

III. FITS TO ALL LOWER-ENERGY FORWARD DATA

Given that the fits to total cross sections are unable
decide on the singularity structure of the amplitudes, one

l

ert.
TABLE VIII. Parameters of three representative models, defined as in Eq.~1!, for As.5 GeV.

Model RRPn fL2u RRLn f RREn f

x2/DOF 0.97 0.97 1.12
CL@%# 67.98 73.37 2.08
Parameter Mean Uncertainty Param. Mean Uncert. Param. Mean Unc
s0 34.0 5.4 A 30.3 3.6 a` 1.0959 0.0021
a1 0.533 0.015 a1 0.7912 0.0080 a1 0.6354 0.0095
a2 0.4602 0.0064 a2 0.4555 0.0063 a2 0.4420 0.0099
Zpp 35.83 0.40 B 6.71 0.22 Xpp 18.45 0.41
Zpp 21.23 0.33 lpp 0.6833 0.0045 Xpp 11.74 0.24
ZKp 18.23 0.30 lKp 0.6429 0.0073 XKp 10.45 0.19
ZSp 35.6 1.4 lSp 1.059 0.056 XSp 18.44 1.1
Zgp 29.4 3.0 lgp 0.00356 0.000048 Xgp 0.0592 0.0012
Zgg 20.4 5.0 lgg 9.3731026 5.231027 Xgg 0.000 161 9 9.731026

Y1
pp 42.1 1.3 Y1

pp 105.8 2.9 Y1
pp 66.1 1.2

Y2
pp 32.19 0.94 Y2

pp 33.36 0.96 Y2
pp 35.3 1.6

Y1
pp 17.8 1.1 Y1

pp 60.9 2.4 Y1
pp 29.40 0.37

Y2
pp 5.72 0.16 Y2

pp 5.79 0.16 Y2
pp 6.04 0.26

Y1
Kp 5.72 1.40 Y1

Kp 49.3 2.5 Y1
Kp 16.43 0.33

Y2
Kp 13.13 0.38 Y2

Kp 13.42 0.38 Y2
Kp 14.07 0.62

Y1
Sp 2250. 130. Y1

Sp 82.4 6.4 Y1
Sp 26. 35.

Y2
Sp 2320. 150. Y2

Sp 10. 22. Y2
Sp 72. 67.

Y1
gp 0.0339 0.0079 Y1

gp 0.292 0.013 Y1
gp 0.1187 0.0047

Y1
gg 0.00028 0.00015 Y1

gg 0.000814 0.000040 Y1
gg 0.00036 0.00010

d 0.00371 0.00035
B 0.3152 0.0095
4-6
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turn to other data, namely the real part of the forward am
tude. It can be obtained through analyticity ands→u cross-
ing symmetry from the form of the cross section~see Appen-
dix C!. If one keeps the same minimum energy, then a jo
fit to both cross sections and real parts reaches a very di
ent conclusion. We show in Table III the models whi
achieve ax2/DOF less than 1 forAs>5 GeV.

The clearest outcome of this is that all models with
simple pole Pomeron are then eliminated. The bestx2/DOF
for these is 1.12 for RREn f . Although these values may no
seem too problematic, one has to realize that we are fittin
a large number of data points~648 for As.5 GeV!, hence
this model is rejected at the 98% C.L.

A. Evaluation of the data set

However, one needs to check where these values
x2/DOF come from. Hence we can look in detail at the va
ous processes and quantities fitted. We show in Table IV
results of 3 representative models. The first two are kep
Table III, whereas we came to the conclusion that the thir
excluded. We see that the main difference comes from thr
parameter data, which are much better fitted by the first
models than by the third. However, it is rather difficult
reach a definite conclusion, given the fact that these data
not perfectly fitted by any model, in particular thepp and
pp data.

B. Best models for all forward data

We can generalize the previous quality indicators to
full set of forward data. We give in Table V and in Append
B the quality indicators for representative models fitting bo
total cross sections andr parameters. We have introduced
second stability indicator,S2, which is analogous to the
stability-1 indicator

S2
M5H 1

2Npar
M (

i j
~Pt2Pt(nor)! i~Wt1Wt(nor)! i j

21

3~Pt2Pt(nor)! jJ 21

. ~11!

In this case, we fit the whole set of the model parameter
the full area of applicability@superscriptt# and the same se
of parameters but to the data sample withoutr-data@super-
script t(nor)]. This indicator characterizes the reproducib
ity of the parameters values when fitting to the reduced d
sample and reduced number of observables but with
same number of adjustable parameters. This indicator m
be strongly correlated with the uniformity indicators. We a
S2

m to the list of indicators enteringI k
m in Eq. ~8! when we

determine the best models for the full set of data, and run
sums for all indicators for 15 sets of data instead of 9, as

now include the real parts ofpp, p̄p, K6p andp6p.
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As we can see, the two parametrizations based on do
poles and on triple poles achieve comparable levels of q
ity, and one cannot decide which is the best based on th
indicators. In Sec. VI, we shall explain which physics arg
ments lead us to prefer the triple pole alternative.

IV. OTHER MODELS

We have tried to impose the Johnson-Treiman-Freu
@21,22# relation for the cross section differencesDs(N)
55Ds(p),Ds(K)52Ds(p), and the models correspond
ing to this are marked by an indexc in Appendixes A and B.
These rules, while not being totally excluded, never lead
an improvement of the fit, and in some case degrade th
considerably. It is interesting to note however that they p
duce the two parametrizations with fewest parameters
ceptable above 8 GeV.

We also considered alternative models which have b
proposed or rediscovered recently@23,24#, and confront them
with our full dataset. From Table VI, one sees clearly that
parameter values and possibly the model themselves h
practically zero confidence levels at all starting collision e
ergiesAsmin from 3 to 10 GeV.

V. OTHER DATA

As in the previous studies@8# of fitting the data sample
@12#, we have also excluded all cosmic data points@25,26# in
this study of the analytic amplitude models. There are t
reasons for that: the original numerical Akeno~Agasa! data
are not available and there are contradictory statements@27–
31# concerning the cross section values of the cosmic d
points from both Fly’s Eye and Akeno~Agasa!.

Having selected the models which reproduce best the
celerator data, we are now able to clarify how well they m
the three cosmic rays data samples. For each cosmic
samples, i.e. those of the original experiments@25,26#, those
corrected by Nikolaevet al. @28,29#, and those corrected b
Block et al. @31# ~see also@27#!, we calculate thex2/nop for
each model with parameters fixed at the beginning of th
areas of applicability defined by accelerator data. The res
are shown in Table VII.

It turns out that the original cosmic experimental data
best fitted by our high-rank parametrizations. The d
sample corrected by Blocket al. data is also fitted well, as
the data points were lowered within the limits of the unc
tainties reported in the original experimental publications

VI. ANALYSIS AND CONCLUSION

The above analysis shows that there are several scen
which can account for the observed forward hadronic sc
tering amplitudes. These scenarios all have their merits,
some of them have problems. Although only prelimina
conclusions can be drawn based on these data, we can
line these various possibilities, and present their con
quences.
4-7
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J. R. CUDELLet al. PHYSICAL REVIEW D 65 074024
A. Possible parametrizations

The three possible scenarios consist of simple, doubl
triple poles in the complexJ plane accounting for the rising
part of the cross section. We give in Table VIII the para
eters of each model. All have the same parametrization
the exchange of the leading meson trajectories, but the
ues of the various intercepts and residues are very differ
The C521 part of the amplitude is rather stable, but t
C511 part turns out to be very model-dependent as
mixes with the Pomeron contribution, with in some cas
much larger values of the intercepta1 than those normally
expected from duality-breaking in strong interaction physi
Because of this, the lower energy data cannot fix the na
of the Pomeron as the details of thea/ f contribution are not
known. The data forSp scattering sometimes lead to a neg
tive a/ f contribution, which is incompatible with Regg
theory, and to an extrapolation at high energy that oversh

the pp and p̄p cross sections. However, the size of the er
bars clearly shows that acceptable values are allowed
that these data do not introduce much of a constraint on
fit.

1. Simple poles

The first scenario is the simplest conceptually: t
Pomeron would correspond to some glueball trajectory,
have properties similar to those of the mesons. This mo
has the advantage that it must then factorize, and hence i
be generalized easily and successfully to many other
cesses. The residues of the Pomeron can also be made t
compatible with quark counting.

It provides good fits to all data forAs>9 GeV, accept-
able fits for the total cross sections forAs>5 GeV, but fails
to reproduce jointly the total cross section and ther param-
eter forAs>5 GeV. One can of course take the attitude th
the data have problems, and not include them, or that th
are sub-dominant effects at these energies, and that it is n
ral for the model not to be extended so low. On the other s
of the energy spectrum, one expects to have unitarity cor
tions at very large energies. In practice, however, this mo
differs by a few percent from the RRPL2u parametrization,
mentioned below, up to LHC energies, and hence unitariz
corrections do not need to be introduced yet.

This model shows a non-degeneracy of the dominant
son trajectories, with somewhat largera/ f intercepta1 and
somewhat smallerr/v intercept a2, which may well be
compatible with the known trajectories.

Furthermore, it is well known that one needs to introdu
a new simple pole to account for DIS data in such a scena
Such a new rising term seems to be totally absent from
soft data, which seems rather odd, but cannot be ruled
We give in Table VIII, column 3, the best parameters for t
model in the fit to total cross sections.

2. Double poles

One can also assume that the amplitude contains a do
pole atJ51. This then provides for a rising lns term in the
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total cross section, as well as a constant term. This kind
parametrization~shown in Table VIII, column 2! gives ex-
cellent fits to the soft data, and can be extended to de
inelastic scattering@18# without any further singularity. Fur-
thermore, it never violates unitarity, and hence it can
extended to arbitrarily large energies.

However, it suffers from several drawbacks. First of a
the Pomeron term becomes negative below 9.5 GeV,
hence processes which couple only to the Pomeron
Zweig’s rule would have negative cross sections if one u
factorization. However, the latter is proven only for simp
poles, and hence this problem is not a sufficient reason
reject these parametrizations. Similarly, the split of the le
ing meson trajectories is quite big, somewhat bigger th
what a normal duality-breaking estimate or a linear extra
lation of the known resonances would allow@32#. As a result,
the Pomeron in this class of variants is inevitably comp
mising with the crossing even Reggeon in the Regge reg
in the sense that it must effectively counter-balance the
cessive contribution of the Reggeon. Thus the Pomeron t
in this case may be representing more than the asymp
behavior of the amplitude. One may therefore say tha
Pomeron associated with reasonably degenerate Regg
may be more natural from the point of view of duality. B
again, one cannot prove linearity of the trajectories, he
the model may survive. Finally, it seems that quark count
is respected to a very good approximation by the coefficie
of the log and of the constant term. This only reinforces
problem of negativity as it is very difficult to conceive
nonfactorizing pole which would nevertheless respect qu
counting.

3. Triple poles

Finally, the best fits are given by models that contain
triple pole atJ51, which then produce ln2s, ln s and constant
terms in the total cross section. The best parameter value
this model are given in Table VIII, column 1. The most i
teresting properties may be that the constant term resp
quark counting to a good approximation, whereas the l2s
term can be taken as universal, i.e., independent of the
cess, as advocated in@16,17# and rediscovered in@15# ~see
also @33#!. The universality of the rising term is expected
the case of the eikonal unitarization of a bare Pomeron w
the intercept larger than 1, because the coefficient of
rising term turns out to depend only on the intercept a
slope of the bare Pomeron@34#. But for the J-plane singu-
larities of double and triple pole types considered in t
paper, the structure of such a singularity@35# and the origin
of its universality is less obvious. Nevertheless, such a
gularity atJ51 may in fact have a theoretical explanatio
recently, Bartels, Lipatov and Vacca@36# discovered that
there are, in fact, two types of Pomeron in LLA: in additio
to the well-known Balitskii-Fadin-Kuraev-Lipatov~BFKL!
Pomeron associated with 2-gluon exchanges, and with
intercept bigger than 1, there is a second one associated
C511 three-gluon exchanges and having an intercept p
4-8
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HADRONIC SCATTERING AMPLITUDES: MEDIUM- . . . PHYSICAL REVIEW D 65 074024
cisely located at 1. It is tempting to speculate that, after u
tarization is performed in the gluon sector, the BFK
Pomeron would finally lead to a universal Heisenberg-ty
Pomeron, exclusively connected with the gluon sector.

Furthermore, the degeneracy of the lower trajectorie
respected to a very good approximation, and the mo
seems extendible to deep inelastic scattering@37#. This
model also respects unitarity by construction.

One must note that in some processes, the falling ln2(s/s0)
term from the triple pole ats,s0 is important in restoring
the degeneracy of the lower trajectories at low energy. He
the squared logarithm manifests itself not only at very h
energies, but also at energies below its zero.

Thus we feel that this solution is the one that curren
meets all phenomenological and theoretical requirement

B. Future prospects

One problem remaining in the analysis of the forwa
data is the difficulty in adequately fitting the data for ther
parameter inpp and inp1p reactions. The extraction of th
r data from the measurements of the differential cross s
tions data at smallt is a delicate problem. A re-analysis o
these data may be needed, but it will call for simultaneo
fits to the total cross section data and to the elastic differ
tial cross sections in the Coulomb-nuclear interference
gion and in the diffractive cones, and hence for an extens
of the parametrization considered here to the non-forw
region. One could also consider a class of analytic mod
not incorporated in our fits and ranking procedures, a clas
which the rising terms would turn on at some dynami
thresholdst ~demanding the use of exact dispersion re
tions!, or add lower trajectories to the existing models. Bo
approaches would lead to many extra parameters, and wi
the subject of a future study.

On the other hand, the inclusion of other data may v
well allow one to decide finally amongst the various pos
bilities. One can go to deep-inelastic data, but the prob
here is that the photon occupies a special position in Re
theory, and hence the singularities of deep inelastic scatte
~DIS! amplitudes do not need to be the same as thos
hadronic amplitudes. One can also extend the models to
forward data and off-diagonal amplitude such as those
diffractive scattering. Such steps will involve new para
eters associated mainly with form factors, but there are m
data, hence there is the hope that this kind of system
study may be generalized, and that in the future we m
decide on the nature of Regge singularities.

Finally, it is our intention to develop the ranking schem
further, probably along the lines of@38#, and to fine-tune the
definition of indicators, in order that periodic cross asse
ments of data and models be available to the commu
@39#.
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TABLE IX. Ranking of the 28 models having nonzero area
applicability amongst the 33 in this paper, following Eq.~10!, when
only total cross sections are fitted to.

Model Code PAM PC
1
M PC

2
M PUM PR

1
M PR

2
M PS

1
M

Rank
PM

RRL2qc(17) 54 50 18 56 30 50 40 298

(RR)dPL2u(17) 46 58 46 58 30 24 34 296

(RRc)
dPL2u(15) 30 42 54 54 46 22 46 294

@RqcL2qc#Rc(12) 14 44 14 50 52 46 58 278

RRL2(18) 52 54 16 44 18 38 44 266

(RR)dPqcL2u(16) 28 52 22 46 38 36 42 264

(RRc)
dPqcL2u(14) 18 26 30 40 55 34 52 255

RREqc(17) 50 36 8 48 30 50 30 252

RRcL
qc(15) 24 32 34 32 46 5 54 227

RRcE
qc(15) 22 38 10 52 20 57 22 221

RRcPL(19) 4 56 56 42 4 0 56 218

@RqcLqc#R(14) 12 48 24 36 55 10 28 213

RRLn f(19)* 57 28 36 10 35 14 32 212

RRLqc(17) 57 8 32 26 50 16 20 209

RREn f(19) 48 40 12 30 10 30 38 208

RRcL2qc(15) 32 0 20 4 46 57 48 207

RRL2n f(19) 44 34 6 20 10 54 26 194

(RR)dPn fL2(20)* 42 4 58 16 24 32 18 194

RRPEu(19) 26 46 44 28 10 27 12 193

RRPL2u(19)* 36 14 42 14 35 41 8 190

(RR)dPnfL2u(19) 40 2 48 22 24 27 24 187

RRPnfL2u(21) 38 24 51 6 15 44 4 182

@RqcLqc#Rc(12) 16 16 26 8 58 5 50 179

(RR)d$PL2%n f(18) 20 18 4 38 6 50 36 172

RRPL(21)* 8 20 51 34 15 18 16 162

RRL(18) 34 10 28 18 41 8 14 153

(RR)dPL(19) 0 12 0 0 0 41 1 54

(RR)dPnfLu(18) 2 22 2 2 2 20 1 51
4-9
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TABLE X. Quality indicators of the the 28 models having nonzero area of applicability amongst t
models considered in this paper, following Eqs.~2!–~7! when only total cross sections are fitted.

Quality indicators

Model Code AM C1
M C2

M UM R1
M R2

M S1
M

RRLn f(19)* 2.60148 75.54 94.64 35.50 29.05 0.789 0.156

RRLqc(17) 2.60148 59.26 94.09 49.68 32.28 0.794 0.09

RRL2qc(17) 2.58120 97.36 87.91 131.7 28.17 0.941 0.18

RRL2(18) 2.58067 97.52 87.00 85.08 26.68 0.902 0.19

RR Eqc(17) 2.56576 86.15 79.29 88.38 28.17 0.941 0.14

RR En f(19) 2.56568 91.45 80.78 51.16 25.35 0.883 0.17

(RR)dPL2u(17) 2.55303 99.78 99.67 184.6 28.17 0.875 0.16

RRL2n f(19) 2.54792 81.62 77.64 41.85 25.35 0.942 0.14

(RR)dPnfL2(20)* 2.53820 58.94 99.88 37.60 27.67 0.884 0.098

(RR)dPnfL2u(19) 2.53154 54.71 99.72 44.31 27.67 0.877 0.11

RRPnfL2u(21) 2.52375 67.76 99.73 34.40 26.41 0.910 0.00

RRPL2u(19)* 2.52351 62.59 99.65 37.14 29.05 0.906 0.018

RRL(18) 2.52103 59.95 93.52 39.85 30.58 0.693 0.06

RRcL2qc(15) 2.50642 54.11 88.31 26.54 31.69 0.952 0.25

(RRc)
dP L2u(15) 2.47739 94.20 99.75 97.71 31.69 0.838 0.22

(RR)dPqcL2u(16) 2.46789 97.49 92.53 87.39 29.82 0.900 0.19

RRPEu(19) 2.44915 95.83 99.66 49.82 25.35 0.877 0.05

RRcL
qc(15) 2.42625 78.91 94.41 51.99 31.69 0.667 0.33

RRcE
qc(15) 2.39977 89.51 79.88 95.81 27.13 0.952 0.10

(RR)d$PL2%n f(18) 2.39430 64.63 72.14 70.24 22.84 0.941 0.16

(RRc)
dPqcL2u(14) 2.38295 75.32 93.62 74.78 33.80 0.890 0.31

@RqcLqc#Rc 2.37016 63.32 92.89 34.57 39.00 0.667 0.289

@RqcL2qc#Rc(12) 2.36985 94.28 83.36 91.56 33.38 0.924 0.49

@RqcLqc#R(14) 2.36207 96.86 92.55 59.94 33.80 0.736 0.14

RRPL(21)* 2.18238 64.98 99.73 58.88 26.41 0.810 0.082

RRcPL(19) 1.93416 99.20 99.84 78.20 21.70 0.561 0.37

(RR)dPnfLu(18) 1.62709 65.46 65.46 14.98 12.11 0.810 0.00

(RR)dPL(19) 1.40760 62.17 62.17 14.83 11.50 0.906 0.00
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APPENDIX A: FITS TO TOTAL CROSS SECTIONS ONLY

In this appendix, we present the results for fits to to
cross sections for 33 models, which are variations on
parametrizations referred to in the main text, following t
convention explained after Eq.~1!. Table IX gives our results
for the ranking of the models, according to Eq.~10!. Table X
gives the values of the quality indicators associated w
each model. Table XI shows the values of thex2/DOF as a
function of energy. The value with a2 exponent indicates
that the model has a negative Pomeron contribution in
low-energy region of the fit. The models marked with * i
dicate that the extrapolation of theSp cross sections over
shoot thepp or go belowp1p, or thatC511 residues are
negative.
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APPENDIX B: FITS TO TOTAL CROSS SECTIONS
AND TO THE r PARAMETER

In this appendix, we present the results for fits to to
cross sections and ther parameter for 33 models, which ar
variations on the parametrizations referred to in the m
text, following the convention explained after Eq.~1!. Only
21 of these passed through qualification tests in this c
Tables XII–XIV are presented as in Appendix A. It should
noted that for model RRPL2u(19) with highest rank, corre-
sponding to model RRPn fL2u(21) with the extra imposition
of factorization on thePab residues, tends to choose a neg
tive value for the ReggeonC511 residue ingg cross sec-
tions. Although this does not exclude it as the residue
4-10
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TABLE XI. x2/DOF as a function of the minimum energy of the fit for the 33 models considered in
paper when only total cross sections are fitted.

x2/DOF vsAsmin in GeV

Model Code (Npar) 3 4 5 6 7 8 9 10

RREn f(19) 1.38 1.15 0.91 0.87 0.89 0.90 0.93 0.91

RREqc(17) 1.39 1.17 0.93 0.89 0.90 0.91 0.93 0.92

RRcE
qc(15) 2.37 1.47 1.05 0.91 0.90 0.91 0.93 0.91

RRLn f(19)* 1.31 0.96À 0.82 0.80 0.85 0.85 0.86 0.85

RRL(18) 1.33 0.98 0.85 0.83 0.87 0.87 0.87 0.86

RRLqc(17) 1.33 0.99À 0.85 0.83 0.87 0.87 0.87 0.85

RRcL
qc(15) 2.20 1.22 0.95À 0.84 0.86 0.86 0.87 0.85

@RqcLqc#R(14) 1.44 1.03 0.88À 0.85 0.89 0.87 0.88 0.87

@RqcLqc#Rc(12) 2.20 1.22 0.95À 0.84 0.86 0.86 0.87 0.85

RRL2n f(19) 1.45 1.19 0.94 0.90 0.91 0.91 0.94 0.92

RRL2(18) 1.33 1.05 0.88 0.85 0.91 0.89 0.90 0.89

RRL2qc(17) 1.33 1.06 0.88 0.85 0.88 0.88 0.90 0.89

RRcL2qc(15) 2.28 1.33 0.99 0.87 0.87 0.88 0.90 0.89

@RqcL2qc#Rc(12) 2.39 1.38 1.03 0.89 0.90 0.89 0.91 0.91

(RR)dLqc(15) 2.63 2.02 1.37 1.27 1.22 1.21 1.25 1.08

(RR)dPL(19) 2.34 1.84 1.34 1.24 1.21 1.21 1.22 0.97

(RR)dPqcEu(16) 1.44 1.16 1.02 1.01 1.06 1.06 1.05 1.04

(RR)d$PL2%n f(18) 1.91 1.56 1.06 0.97 0.95 0.95 0.99 0.94

RRPL(21)* 1.33 0.98À 0.85À 0.83À 0.87 0.88 0.84 0.74

RRcPL(19) 1.33 0.98À 0.85À 0.83À 0.87À 0.87À 0.84 0.74

RRPLu,n f(20)2 2.24 1.42 1.14 1.03 0.97À 0.91À 0.84À 0.74À

RRPLu(18)2 2.24 1.43 1.16 1.05 0.99À 0.93À 0.85À 0.76À

(RR)dPnfLu(18) 2.66 2.10 1.73 1.58 1.43 1.37 1.25 0.96

(RR)dPqcLu(15) 2.74 2.27 2.06 2.06 2.12 2.15 2.19 2.38

(RR)dPnf L2(20)* 1.24 0.99 0.82 0.79 0.83 0.84 0.83 0.73

RRPL2u(21) 1.26 0.97 0.81 0.79 0.82 0.83 0.82 0.75

RRPL2u(19)* 1.27 0.98 0.82 0.80 0.84 0.84 0.83 0.76

(RR)dPnf L2u(19) 1.27 0.99 0.82 0.80 0.83 0.83 0.82 0.75

(RR)dP L2u(17) 1.28 1.00 0.82 0.81 0.83 0.83 0.83 0.76

(RR)dPqcL2u(16) 1.30 1.04 0.88 0.87 0.91 0.91 0.90 0.86

(RRc)
dP L2u(15) 2.08 1.19 0.90 0.82 0.83 0.83 0.82 0.75

(RRc)
dPqcL2u(14) 2.11 1.22 0.96 0.88 0.90 0.90 0.89 0.86

RRPEu(19) 1.36 1.04 0.89 0.86 0.87 0.86 0.83 0.76
t

g

rm

ve
:

large errors, we have preferred to present in this paper
details of the next best ranking parametrization.

APPENDIX C: FORMULAS

We give here the formulas used in this paper. The ima
nary part of the amplitude, which we take ass times the total
cross section, is parametrized as the sum of several te
I n , with @see Eq.~1!#:

I pole
1 5C1~s/s1!a1 ~C1!
07402
he
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s,

I pole
2 57C2~s/s1!a2 ~C2!

I L5CLs ln~s/s1! ~C3!

I L25CL2s ln2~s/s0!. ~C4!

All terms have charge conjugationC511, except I pole
2

which hasC521. We can obtain the corresponding additi
real parts throughs to u crossing symmetry and analyticity
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TABLE XII. Ranking of the the 21 models having nonzero area of applicability amongst the 33 m
considered in this paper, following Eq.~10! when cross sections andr parameters are fitted.

Model Code PAM PC
1
M PC

2
M PUM PR

1
M PR

2
M PS

1
M PS

2
M RankPM

RRPL2u(19)* 42 26 42 42 34 28 12 4 230
RRPnfL2u(21) 44 36 44 40 15 31 10 2 222
RRLn f(19)* 30 42 26 24 34 18 18 30 222
(RRc)

dPL2u(15) 34 20 36 20 28 24 28 14 204
(RR)dPnfL2u(19) 40 8 40 22 34 22 16 12 194
@RqcLqc#Rc(12) 14 32 18 10 42 6 24 38 184
(RRc)

dPqcL2u(14) 20 16 10 36 19 36 22 22 181
(RR)dPqcL2u(16) 18 14 8 38 8 38 30 26 180
RRcL2qc(15) 6 30 6 4 6 44 44 40 180
(RR)dPnfL2(20)* 38 2 28 32 25 31 14 8 178
(RR)dPL2u(17) 36 0 34 18 30 26 20 10 174
RRPL(21) * 2 34 32 44 15 16 6 24 173
RRcL

qc(15) 24 38 24 8 10 4 32 32 172
RRL2qc(17) 10 28 4 2 2 42 40 42 170
@RqcL2qc#Rc(12) 12 18 0 6 22 40 38 34 170
RRLqc(17) 28 6 20 30 44 12 4 18 162
RRPEu(19) 22 44 12 16 4 20 34 6 158
@RqcLqc#R(14) 16 24 14 12 19 14 36 20 155
RRL2(18) 8 22 2 0 0 34 42 44 152
RRcPL(19) 4 12 38 14 12 0 26 36 142
RRL(18) 26 10 16 26 39 8 8 0 133

TABLE XIII. Quality indicators of the 21 models having nonzero area of applicability amongst th
models considered in this paper, following Eqs.~2!–~7! and ~11! when cross sections andr parameters are
fitted.

Quality indicators
Model Code AM C1

M C2
M UM R1

M R2
M S1

M S2
M

RRPnfL2u(21) 2.20661 67.98 84.74 22.88 29.45 0.900 0.224 0.10
RRPL2u(19)* 2.20619 63.46 84.13 24.14 32.40 0.895 0.226 0.19
(RR)dPnfL2u(19) 2.18781 53.15 83.81 16.49 32.40 0.871 0.286 0.69
(RR)dPnfL2(20)* 2.18530 50.41 81.74 18.21 30.86 0.900 0.265 0.40
(RR)dPL2u(17) 1.99653 50.35 83.04 15.64 31.61 0.882 0.296 0.67
(RRc)

dPL2u(15) 1.88491 61.92 83.38 16.26 31.13 0.876 0.467 0.79
RRLn f(19)* 1.82464 73.37 81.09 16.63 32.40 0.784 0.289 1.30
RRLqc(17) 1.82281 52.97 78.17 17.56 36.00 0.743 0.198 1.08
RRL(18) 1.82274 53.59 77.18 16.73 34.11 0.686 0.217 0.00
RRcL

qc(15) 1.82270 68.31 79.68 12.48 28.31 0.667 0.525 1.31
RRPEu(19) 1.81878 73.98 73.74 15.46 22.65 0.830 0.526 0.28
(RRc)

dPqcL2u(14) 1.79558 60.29 67.08 19.94 30.20 0.912 0.429 1.10
(RR)dPqcL2u(16) 1.79315 58.40 66.41 19.98 26.65 0.917 0.470 1.24
@RqcLqc#R(14) 1.73409 63.29 76.41 13.09 30.20 0.747 0.533 1.08
@RqcLqc#Rc(12) 1.73264 65.79 78.13 13.03 34.85 0.682 0.440 1.93
@RqcL2qc#Rc(12) 1.72644 61.50 61.50 11.58 30.54 0.939 1.159 1.69
RRL2qc(17) 1.72618 64.20 64.20 11.23 22.06 0.941 1.318 2.50
RRL2(18) 1.72607 63.04 63.04 11.19 20.89 0.902 1.395 2.65
RRcL2qc(15) 1.72369 65.63 65.63 11.27 24.81 0.952 1.447 2.10
RRcPL(19) 1.99062 55.13 83.67 15.38 28.45 0.61 0.466 1.82
RRPL(21)* 1.60724 66.59 82.16 26.29 29.45 0.752 0.210 1.13
074024-12
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TABLE XIV. x2/DOF as a function of the minimum energy of the fit for the 33 models considered in
paper when cross sections andr parameters are fitted.

x2/DOF vsAsmin in GeV
Model Code (Npar) 3 4 5 6 7 8 9 10
RREn f(19) 1.83 1.38 1.12 1.10 1.10 1.05 1.02 1.02
RREqc(17) 1.84 1.39 1.13 1.12 1.11 1.06 1.02 1.02
RRcE

qc(15) 2.47 1.58 1.23 1.13 1.10 1.05 1.02 1.02
RRLn f(19)* 1.61 1.10 0.97À 0.97À 1.00 0.96 0.94 0.93
RRL(18) 1.63 1.13 0.99À 0.99À 1.02 0.97 0.95 0.94
RRLqc(17) 1.63 1.13 1.00À 0.99À 1.02 0.97 0.94 0.94
RRcL

qc(15) 2.20 1.30 1.08 1.01 1.02 0.97 0.94 0.94
@RqcLqc#R(14) 1.70 1.16 1.02 1.01 1.03 0.98À 0.95 0.94
@RqcLqc#Rc(12) 2.20 1.30 1.08 1.01 1.02 0.97À 0.94 0.94
RRL2n f(19) 1.83 1.34 1.11 1.10 1.11 1.06 1.01 1.00
RRL2(18) 1.68 1.22 1.04 1.04 1.06 1.01 0.97 0.97
RRL2qc(17) 1.68 1.22 1.04 1.04 1.05 1.01 0.97 0.97
RRcL2qc(15) 2.30 1.41 1.13 1.06 1.05 1.00 0.97 0.97
@RqcL2qc#Rc(12) 2.38 1.44 1.16 1.07 1.07 1.01 0.98 0.98
(RR)dLqc(15) 3.76 2.61 1.87 1.82 1.73 1.70 1.72 1.72
(RR)dPL(19) 3.45 2.37 1.81 1.76 1.71 1.69 1.73 1.72
(RR)dPqcEu(16) 2.35 1.53 1.24 1.23 1.21 1.17 1.17 1.17
(RR)d$PL2%n f(18) 2.81 1.98 1.40 1.34 1.27 1.20 1.13 1.12
RRPL(21)* 1.63 1.11 0.98À 0.98À 0.99À 0.94À 0.93À 0.91
RRcPL(19) 1.63 1.11 0.98À 0.98À 0.99À 0.94À 0.93À 0.91
RRPLu,n f(20)2 2.43 1.49 1.25 1.16 1.08 1.002 0.97À 0.92À

RRPLu(18)2 2.43 1.50 1.27 1.17 1.10 1.01 0.98À 0.93À

(RR)dPn fLu(18) 3.59 2.50 2.10 1.95 1.91 1.88 1.89 1.87
(RR)dPqcLu(15) 3.67 2.64 2.32 2.27 2.32 2.32 2.39 2.51
(RR)dPn fL2(20)* 1.92 1.23 1.00 1.00 0.99 0.94 0.93 0.92
RRPn fL2u(21) 1.75 1.14 0.97 0.97 0.97 0.92 0.93 0.92
RRPL2u(19)* 1.75 1.15 0.98 0.98 0.97 0.93 0.93 0.92
(RR)dPn fL2u(19) 1.96 1.26 0.99 0.99 0.98 0.93 0.93 0.93
(RR)dPL2u(17) 1.96 1.27 1.00 1.00 0.98 0.94 0.93 0.93
(RR)dPqcL2u(16) 1.98 1.29 1.04 1.04 1.03 0.98 0.97 0.97
(RRc)

dPL2u(15) 2.38 1.37 1.06 1.01 0.98 0.93 0.93 0.93
(RRc)

dPqcL2u(14) 2.40 1.39 1.10 1.05 1.03 0.98 0.97 0.97
RRPEu(19) 1.88 1.22 1.06 1.03 1.01 0.96 0.95 0.93
Rpole
1 52I pole

1 cotFp2 a1G ~C5!

Rpole
2 5I pole

2 tanFp2 a2G ~C6!
07402
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sCL ~C7!

RL25ps ln~s/s0!CL2 . ~C8!
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