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Structural change of Cooper pairs and momentum-dependent gap in color superconductivity
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The two-flavor color superconductivity is studied over a wide range of baryon density with a single model.
We pay special attention to thespatial-momentum dependence of the gap and to thespatialstructure of Cooper
pairs. At an extremely high baryon density@;O(1010r0) with r0 being the normal nuclear matter density#, our
model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak
near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth
function of momentum at lower densities@;O(10r0)# due to strong color magnetic and electric interactions.
To study the structural change of Cooper pairs from high density to lower density, the quark correlation in the
color superconductor is studied both in momentum space and in coordinate space. The size of the Cooper pair
is shown to become comparable to the averaged interquark distance at low densities. Also, the effects of the
momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are
shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS super-
conductivity in metals.
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I. INTRODUCTION

Because of asymptotic freedom and Debye screenin
QCD, deconfined quark matter is expected to be realized
baryon densities much larger than the normal nuclear ma
density@1#. Furthermore, any attractive quark-quark intera
tion in cold quark matter causes an instability of the Fer
surface by the formation of Cooper pairs and leads to
color superconducting phase@2–6#.

The current understanding of color superconductivity h
been based on two different theoretical approaches. One
analysis by the one-loop Schwinger-Dyson equation w
perturbative one gluon exchange, which is valid at asym
totically high densities@7–9#. The dominant contribution to
the superconducting gap at very high density comes from
collinear scattering through the long range magnetic glu
exchange@10#. In such a weak-coupling regime, the form
tion of Cooper pairs takes place only in a small region n
the Fermi surface. The other approach to the color super
ductivity is the mean-field approximation with QCD inspire
4-Fermi model which is introduced to study lower dens
regions@4,5,11,12#. In this approach, magnitude of the ga
becomes as large as 100 MeV and is almost constant in
vicinity of Fermi surface as a function of momentum.

The main purpose of this paper is to calculate the sup
conducting gap over a wide range of baryon density wit
single model and to make a bridge between high and
density regimes. In particular, we make an extensive anal
on the structural change in spatial-momentum dependenc
Cooper pair from high to low densities. At relatively lo
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baryon densities, the gluonic attraction becomes effective
all quarks inside the Fermi sea and sizable Cooper pai
takes place for wide range of momentum away from
Fermi surface. This is in contrast with the phonon interact
with an intrinsic Debye cutoff in the BCS-type supercondu
tivity @13#. The spatial-momentum dependence of the ga
diffuseness of the Fermi surface, quark-quark correlation
the superconductor and the spatial size of Cooper pairs
the characteristic quantities which reflect the departure fr
the weak-coupling picture. So far, only a few investigatio
have been made along this line@3,14,15#.

Throughout the paper, we limit our discussions to 2-flav
color superconductivity partly because our primary intere
are in low densities and partly because the analysis is sim
than in the three-flavor case@16#. To investigate how the
weak-coupling picture is modified at low densities in a qua
tative manner, we adopt a model called the improved lad
approach in which the one-loop Schwinger-Dyson equat
with infrared safe running coupling is used. This model
known to reproduce the physics of the QCD vacuum and
qq̄ meson properties reasonably well@17–19#. For recent
applications of similar kind of models to QCD at finite tem
perature and density, see the review@20#. As we will show
later, the model can naturally reproduce the corr
asymptotic behavior of the superconducting gap, in the h
density limit. Therefore, it is a suitable model for our pu
pose to study the color superconductivity for a wide range
density. To make our analysis as simple as possible, we u
gluon propagator with a minimal static and dynamical c
rections~Debye screening and Landau damping!. The similar
form of the gluon propagator is also adopted in Ref.@21#.

This paper is organized as follows. In Sec. II, we defi
our model and derive relevant gap equations. We first c
sider the weak-coupling region at high density and disc
the general properties of the gap as a function of the spa
©2002 The American Physical Society14-1
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momentum. In Sec. III, we solve the momentum-depend
gap equation numerically for a wide range of density. A la
structural change of the momentum-dependent gap will
shown. The quark and antiquark occupation numbers,
correlation of quarks in the color superconductor, and
coherence length are also investigated. Summary and
cluding remarks are given in the last section. In Appendix
the gauge dependence of the gap equation is discusse
Appendix B, we derive the asymptotic behavior of the spa
quark-quark correlation in the weak coupling.

II. GAP EQUATION WITH SPATIAL MOMENTUM
DEPENDENCE

In this section, we define our model and derive relev
gap equations in two flavor QCD with the one-gluon e
change interaction. We start with the standard Schwing
Dyson equation for the quark self-energy with four mome
tum dependence@7#. Then it is reduced to a gap equatio
with spatial-momentum dependence. General propertie
the solution of our gap equation in the weak-coupling lim
are also examined. The gap with spatial-momentum dep
dence enables us to study the diffuseness of the Fermi
face and the the structure of Cooper pairs in the color su
conductor.

Throughout this paper, we use the following notation
the four and three momenta:kr5(k0,k), k5uku, k̂5k/k.
Also, we limit ourselves to the system at zero temperat
and work in the Minkowski space with the quark and glu
propagators obeying the Feynman boundary condition.

A. The model

Let us start with the definition of quark self-energy a
the superconducting gap. Using the standard Nam
Gor’kov formalism with a two component Dirac spinorC

5(c,c̄ t), the quark self-energyS(kr) with the Minkowski
4-momentumkr is written as

S~kr!5S0
21~kr!2S21~kr!5S 0 D̄~kr!

D~kr! 0
D , ~2.1!

where the superconducting gapD and D̄[g0D†g0 enter
through the off-diagonal components ofS. The diagonal
components ofS is neglected throughout this paper@7#.
S(kr) and S0(kr) are the full and free quark propagator
respectively. The free propagator is taken to be a fo
S0

21(kr)5diag.(k”1m” ,(k”2m” )T). We ignore the mass ofu
andd quarks.

In the ladder approximation of the one gluon exchan
the Schwinger-Dyson equation forS is written as

S~kr!52 i E d4q

~2p!4
g2Ga

mS~qr!Gb
nDmn

ab~qr2kr!,

~2.2!

whereDmn
ab is the gluon propagator in medium andGm

a is the
quark-gluon vertex.
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To study the flavor antisymmetric, color antisymmetr
and J501 channel ~which is the most attractive channe
within the one gluon exchange model!, we assume the fol-
lowing structure of the gap function@7,9,23#:

D~kr!5~l2t2Cg5!„D1~kr!L1~ k̂!1D2~kr!L2~ k̂!….
~2.3!

Heret2 is the Pauli matrix acting on the flavor space,l2 is
a color antisymmetric Gell-Mann matrix, andC is the charge
conjugation.L6( k̂)[(16 k̂•a)/2 is the projector on positive
(1) and negative (2) energy quarks.D6 will be identified
as the gap in quark and antiquark channel, respectively.

For the spinor and color structures of the vertex in E
~2.2!, we use the bare vertexGm

a 5diag„gmla/2,
2(gmla/2)t

… @7#. For g2 in Eq. ~2.2!, we use a momentum
dependent couplingg2(q,k) which does not diverge at low
momentum scale. In the ‘‘improved ladder approximatio
@17#, g2(q,k) is taken to be

g2~q,k!5
16p2

b0

1

ln„~pmax
2 1pc

2!/L2
…

, pmax5max~q,k!,

~2.4!

whereb05(11Nc22Nf)/3, pc
2 plays a role of a phenomeno

logical infrared regulator, andL dictates the logarithmic de
creases of the vertex at high momentum. The quark pro
gator in the improved ladder approximation in the vacuum
known to have a high momentum behavior consistent w
that expected from the renormalization group and the op
tor product expansion. For the numerical values ofL and
pc

2 , we adopt 400 MeV and 1.5L2 respectively. They are
determined to reproduce the low energy meson properties
Nf52 by solving the Schwinger-Dyson equation for th
quark propagator and the Bethe-Salpter equation for theqq̄
bound state in the vacuum@18#.

We use the following gluon propagator in medium in E
~2.2! in the Landau gauge,

Dmn~kr!52
Pmn

T

k21 iM 2uk0u/ uku
2

Pmn
L

k21mD
2

, ~2.5!

wherePmn
T,L are the transverse and longitudinal projectors s

isfying the relations,Pi j
T 5d i j 2 k̂i k̂ j ,P00

T 5P0i
T 50, andPmn

L

52gmn1kmkn /kr
22Pmn

T . The longitudinal part of the
propagator has static screening by the Debye massmD

2

5(Nf /2p2)g2m2, while the transverse part has dynamic
screening by the Landau damping@M25(p/4)mD

2 # @22#. The
above form of the propagator is a quasi-static approxima
of the full gluon propagator in the sense that only the lead
frequency dependence is considered. The same form is
adopted in Ref.@21#.

Here we make a brief comment on the gauge-parametj
dependence of the gap equation. Although physical qua
ties should be gauge invariant, special truncation schem
the diagrams such as the ladder approximation introdu
4-2
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gauge-parameter dependence. It has been claimed that~i! D1

is gauge invariant at extremely high density@7#, and~ii ! the
gauge dependent contribution only begins to decrease a
traordinarily high densitiesm.108 MeV and seems to con
verge to the result of the Landau gauge (j50) @24#. We will
show in Appendix A that, if one appropriately treats the m
mentum dependence, thej-dependence survives in the ga
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equation forD1 but gives a subleading contribution. Und
this remark, we will consider only the Landau gaugej
50) throughout this paper.

The gap equation under the approximations shown ab
is obtained from the 2-1 element of the Schwinger-Dys
~matrix! equation~2.2!. Then the final form of the gap equa
tion for D6(kr)5D6(k0 ,k) reads
D6~kr!5
Nc11

2Nc
i E d4q

~2p!4
g2~q,k!H 1

2
tr„L6~ k̂!gmL2~ q̂!gn

…

D1~qr!

q0
22E1

2 ~q!2uD1~qr!u2

1
1

2
tr„L6~ k̂!gmL1~ q̂!gn

…

D2~qr!

q0
22E2

2 ~q!2uD2~qr!u2J Dmn~qr2kr!, ~2.6!
l
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whereE6(q)(5q7m) is the reduced energy for free quar
~for E1) and for antiquarks~for E2).

B. Analytic properties of the gap in the weak coupling

1. Gap equation in the weak-coupling limit

Let us first study the analytic properties of the gap eq
tion with spatial-momentum dependence. To obtain anal
cally tractable equations, we consider here the we
coupling ~high density! limit. This ‘‘weak-coupling
approximation’’ implies the approximation where we ta
only the color-magnetic interaction and the real part ofD1 .
Momentum dependence ofg2(q,k) is neglected. Contribu-
tions from the antiquarks proportional toD2 and the
momentum-dependent factor originating from the project
operator in Eq.~2.6! are also neglected. We also ignore t
imaginary part of the propagator because it is factorg2

smaller than the real part. In Eq.~2.6!, the frequency integra
is performed by picking up quasiparticle poles in the qu
propagator. After integrating over the angular variable,
obtain the following gap equation with the spatia
momentum dependence

D1~k!5
g2

144p2E0

`

dq
D1~q!

AE1
2 ~q!1D1

2 ~q!

3S q

k
lnF ~q1k!61M4~ek

12eq
1!2

~q2k!61M4~eq
12ek

1!2G
1~eq

1→2eq
1!D , ~2.7!

where E1(q)[q2m and we have definedD1(q)
[D1(eq

1 ,q) for notational simplicity.eq
1 is the quasiparti-

cle energy as a solution of (eq
1)25E1

2 (q)1D1
2 (eq

1 ,q). This
is the final form of an approximate gap equation in the we
-
i-
k-

n

k
e

-

coupling limit. D1(k) corresponds tothe gap of the on-shel
quasiparticlesin the color superconductor sincek0 is taken
to beek

1 .

2. Gap near the Fermi surface in weak coupling limit

Let us consider the behavior of the gap near the Fe
surface. As we claimed in the Introduction, the gap equat
~2.7! reproduces the correct high density solution near
Fermi surface, which was previously derived in Refs.@7,10#
for frequency dependent gap, and in Ref.@9# for momentum
dependent gap. For this purpose, we pick up the most sin
lar part of the integrand by takingq5k5m in the bracket
except for the term (eq

12ek
1)2 in the denominator. Then Eq

~2.7! reduces to

D1~k;m!5
g2

72p2E0

`

dq
D1~q!

AE1
2 ~q!1uD1~q!u2

ln
~bm!2

ueq
122ek

12u
,

~2.8!

where b52(2m/M )25(2/Nf)(32p/g2). This equation
makes sense only in the vicinity of the Fermi surfaceuk
2mu!d and coincides to the one derived in Ref.@9#.

In the weak-coupling regime@g/(3A2p)!1#, the ap-
proximate solution of this equation is known to be@9#

D1~k;m!>D1~m!cosS g

3A2p
ln

uk2mu1ek
1

D1~m! D ,

D1~m!>2bm e2(3p2/A2)/g, ~2.9!

whereek
1>„uk2mu21D1

2 (m)…1/2. This solution is a symmet-
ric function of (k2m) and decreases asuk2mu increases.
Inclusion of the color-electric interaction only modifies th
prefactor asb→(2/Nf)

5/2256p4/g5, which enhances the ga
in the weak coupling. The characteristic form of the g
e2c/g in Eq. ~2.9!, which is not the BCS forme2c/g2

, was
first derived in Ref.@10#.
4-3
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3. Gap far from the Fermi surface in weak coupling limit

Next, we examine the behavior of the gap far from t
Fermi surface. Whenk@m, the gap equation~2.7! can be
cast into the following differential equation:

k
d2

dk2
D1~k!13

d

dk
D1~k!1

g2

3p2

1

k
D1~k!50, ~2.10!

where we have assumed thatD1(k)→0 as k→`. The
asymptotic solution of this equation forg2,3p2 is

D1~k@m!}k2l, l511A12g2/3p2. ~2.11!

Therefore, in the weak couplingg!1, the gap decrease
slowly as 1/k2 for k@m and does not vanish for arbitrar
largek. This long tail is a direct consequence of the gluon
interaction which allows scattering of quarks with an ar
trary energy-momentum transfer. Otherwise, the gap can
take the nonzero value far away from the Fermi surface.

This is in sharp contrast to the gap in the standard we
coupling BCS superconductivity in metals,1 where

DBCS~p!5H D, uep2eFu,vD ,

0 otherwise,
~2.12!

with ep ,eF and vD being the electron energy, the electro
Fermi energy and the ultraviolet Debye cutoff of the phon
-
te

s

th

07401
-
ot

k-

n

interaction originating from the lattice structure, respective
As we mentioned above, the long tail in Eq.~2.11! is inti-
mately related to the absence of theintrinsic ultraviolet cut-
off such asvD in QCD.

C. Full gap equation

Now let us derive the full gap equation with momentu
dependence from the original gap equation~2.6! with 4 mo-
mentum dependence.

In Eq. ~2.6!, we adopt the static gluon propagator with th
Debye screening~for the electric part! and the Landau damp
ing ~for the magnetic part!. The imaginary part of the gap
function will be neglected as we stated before. Using
approximationPmn

L '2dm0dn0 and performing theq0 and
angular integration, the gap equation becomes

D6~k!5E
0

`

dqV6~q,k;eq
1 ,ek

6!
D1~q!

AE1~q!21uD1~q!u2

1E
0

`

dqV7~q,k;eq
2 ,ek

6!
D2~q!

AE2~q!21uD2~q!u2
,

~2.13!

where we used a simplified notation:D6(ek
6 ,k)→D6(k),

andV6 is defined by
V6~q,k;q0 ,k0!5
g2~q,k!

48p2

q

kF1

3
lnS ~k1q!61M4~q02k0!2

~k2q!61M4~q02k0!2D 1~q0→2q0!1 f MGG
1

g2~q,k!

48p2

q

kF ~k6q!21mD
2

2qk
lnS ~k1q!21mD

2

~k2q!21mD
2 D 1 f ELG . ~2.14!
ed
dis-
pole
-
on-

ers

e
Eq.
he
Here f EL is just a constant, andf MG is a rather complicated
function of q and k. Since no singularity appears inf EL,MG

when mD50, M50 andq5k5m are taken, they are con
sidered to be subleading contribution and will be neglec
in the following analysis. In the definition ofV6 , the first
~second! term corresponds to the magnetic~electric! gluon
contribution. We call the first integral in Eq.~2.13! as
‘‘quark-pole contribution’’ and the second integral a
‘‘antiquark-pole contribution’’, becauseE15q2m(E25q
1m) is involved in the former~latter!. Near the Fermi sur-
faceq;m, the first integral in Eq.~2.13! gives the dominant

1This is a solution of the simplest gap equation discussed in
original BCS paper@13#

DBCS~k!5
1

2 (
k8

Vk,k8

DBCS~k8!

A~ek2m!21DBCS~k8!2

where Vk,k8Þ0 for eF2vD,ek,k8,eF1vD and Vk,k850, other-
wise.
d

contribution due to the small denominator (E1
2 1uD1u2)1/2

5$(q2m)21uD1u2%1/2;0.
At extremely high density, the Cooper pairing is expect

to take place only near the Fermi surface as we have
cussed. In this case, we can safely neglect the antiquark-
contribution for calculatingD1 . Furthermore, one may re
place the momentum dependent vertex by the coupling c
stant on the Fermi surfaceg2(q,k)→g2(q5m,k5m). If m
is large enough,g2(q5m,k5m) may be identified with the
standard running couplingg2(m)5(16p2/b0)/ln(m2/LQCD

2 ).
Thus, keeping only the magnetic interaction, one recov
the gap equation~2.7! for D1 with g2→g2(m) in the weak-
coupling limit.

At low densities, sizable diffusion of the Fermi surfac
occurs and the weak-coupling approximations leading to
~2.7! are not justified. Therefore, we need to solve t
coupled gap equations, Eq.~2.13!, numerically. In particular,
the replacementg2(q,k)→g2(q5m,k5m) is not justified
whenq andk are not close tom. The contribution from the
antiquark-pole is also not entirely negligible.

e

4-4
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D. Occupation number, correlation function and coherence
length

To clarify the structural change of the color superco
ductor from high to low densities, it is useful to examine t
following physical quantities related to the gap function.
by

l
a

07401
-

~i! The quark and antiquark occupation number in ea
momentum state: This is a fundamental quantity characte
ing the diffuseness of the Fermi surface. It is related to
diagonal ~1-1! element of the quark propagator in th
Nambu-Gor’kov formalism:
and the

color
s

al
^c j
†b~ t,y!c i

a~ t,x!&super5 lim
x0→y02e

„2 i @S11# i j
ab~x2y!g0

…

5E d3q

~2p!3
eiq(x2y)F $L1~ q̂!u~m2uqu!1L2~ q̂!%~P3

c!ab~1F! i j 1H 1

2 S 12
E1~q!

AE1~q!21uD1~q!u2
D L1

1
1

2 S 11
E2~q!

AE2~q!21uD2~q!u2D L2J ~12P3
c!ab~1F! i j G , ~2.15!

whereP3
c is a projection matrix to the third axis in the color space. From this expression, one can extract the quark

antiquark occupation numbers as

n6
1,2~q!5

1

2 S 12
E6~q!

AE6~q!21uD6~q!u2D , n1
3 ~q!5u~m2q!, n2

3 ~q!50, ~2.16!

where the superscripts~1,2 and 3! stand for color indices. Since the third axis in the color space is chosen to break the
symmetry, quarks with the third color do not contribute to form Cooper pairs. When the gap is zeroD650, the system reduce
to the ordinary quark matter with a sharp Fermi sphere;n1

1,2(q)5u(m2q) andn2
1,2(q)50.

~ii ! Theq-q andq̄-q̄ correlation functions in the momentum spaceŵ6(q) and in the coordinate spacew6(r ): They reflect
the internal structure of the Cooper pairs in color superconductor. These correlations are related to the off-diagon~1-2!
element of the quark propagator:

^c i
a~ t,x!c j

b~ t,y!&super5 lim
x0→y01e

i @S12# i j
ab~x2y!

5E d3q

~2p!3
eiq(x2y)S L1~ q̂!D1~q!

2AE1~q!21uD1~q!u2
1

L2~ q̂!D2~q!

2AE2~q!21uD2~q!u2
D ~ ig5C!~l2t2! i j

ab . ~2.17!
s

rd
ŵ6(q) is simply extracted from the above andw6(r ) is de-
fined as the Fourier transform

ŵ6~q!5
D6~q!

2AE6~q!21uD6~q!u2
,

w6~r !5NE d3q

~2p!3
ŵ6~q!eiqr, ~2.18!

where N is a normalization constant determined
*d3r uw1(r )u251.

~iii ! The coherence lengthjc characterizing the typica
size of a Cooper pair: It is defined simply as a root me
square radius ofw1(r ):
n

jc
25

E d3rr 2uw1~r !u2

E d3r uw1~r !u2

5

E
0

`

dkk2udŵ1~k!/dku2

E
0

`

dkk2uŵ1~k!u2

.

~2.19!

A measure of the coherence lengthjc in the weak-coupling
limit is known as the Pippard length, which is given byjp
5„pD1(m)…21 @25#. It is shown in Appendix B that the
quark correlationw1(r ) in the weak-coupling limit behave
as

w1~r→`!}
sin~mr !

~mr !3/2
•e2r /(pjp). ~2.20!

In a typical type-I superconductor in metals, the Pippa
length is of the semi-macroscopic orderjp;1024 cm,
4-5
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FIG. 1. The momentum depen
dence of the gapD1 from step 1
to step 4 at high density,m
5212L. The dotted line is a resul
of the magnetic interaction alon
~step 1!. The dashed line is the
gap with both magnetic and elec
tric interactions included~step 2!.
The dot-dashed line is the gap i
which the momentum dependen
coupling g2(q,k) is used~step 3!
instead of the momentum inde
pendent couplingg2(m,m) ~step
2!. The solid line is the gap as a
solution of the full gap equation
~2.13! with g2(q,k) and the anti-
quark pole~step 4!.
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whereas inverse Fermi momentum is of the microscopic
der kF

21;1028 cm. The inverse of the Debye cutoff is i
between the two scalesvD

21;1026 cm. Therefore there is a
clear scale hierarchy,D!vD!kF . Because of the absence
the intrinsic scalevD , similar scale hierarchy in QCD a
extremely high density readsme2c/g!m. At lower densities,
however, such scale separation becomes questionable fog is
not small.

III. NUMERICAL RESULTS

In this section, we present numerical results of t
momentum-dependent gap and the other physical quant
In Sec. III A, we show solutions of the gap equations at v
high density. Then we discuss whether the result has sim
ity to that in the BCS superconductivity for metals@see Eq.
~2.12!#. What makes the color superconductor unique is
absence of the intrinsic cutoff scalevD . Nevertheless, we
will see that similar relation as Eq.~2.12! holds under the
replacementvD→D at least at extremely high density. W
will also examine how the results of the gap equation in
weak-coupling limit~2.7! are modified when the effects suc
as the color-electric interaction, the momentum depend
coupling and the antiquark-pole contribution are taken i
account.

In Secs. III B and III C, we repeat the same calculations
lower densities and show a qualitative difference from
weak-coupling limit. Substantial modification of the Ferm
surface at low densities will be explicitly shown by compu
ing the occupation number. Quark correlation in the co
superconductor and the size of the Cooper pair are calcul
in Sec. III D. The results indicate that the color supercond
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tivity at low densities is no longer similar to the usual BC
type superconductivity.

In Secs. III A and III B, starting from the simplest ga
equation in the weak-coupling limit~2.7!, we will include the
contributions of color-electric interaction, momentum
dependent coupling and antiquark pole, step by step. T
procedure clarifies the importance of each contribution.
us define each step below, for later convenience.

Step 1: We solve the gap equation forD1 in the weak-
coupling limit Eq.~2.7! where only thecolor-magneticinter-
action is taken into account. The momentumindependent
couplingg2(m,m) is used in this step.

Step 2: The Debye-screenedcolor-electric interaction is
further added to step 1. This corresponds to solving
~2.13! for D1 with neglecting the antiquark-pole contribu
tion and with making a replacementg2(q,k)→g2(m,m).

Step 3: Same as step 2 except for the use ofg2(q,k)
instead ofg2(m,m).

Step 4: The antiquark-pole contribution is also taken in
account in step 3. This gives the complete solution of our
coupled gap equations, Eq.~2.13!.

Throughout the all steps,g2 in the Debye screening mas
mD is taken to beg2(m,m) for simplicity. In step 3 and step
4, we use a phenomenological valueL5400 MeV andpc

2

51.5L2 for g(q,k) as we have already mentioned in Se
II A.

A. Momentum dependence of the gap at high density

In this subsection, we solve the gap equations at chem
potential m5212L.1.6 TeV. This corresponds to th
baryon densityrB51.131011r0 with r050.17 fm23 being
the normal nuclear matter density. At this extremely hi
density, we expect that the full gap equation, Eq.~2.13!, is
4-6
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STRUCTURAL CHANGE OF COOPER PAIRS AND . . . PHYSICAL REVIEW D65 074014
well approximated by its weak-coupling limit, Eq.~2.7!. Fur-
thermore, the analytic solution Eq.~2.9! is expected to give a
fair approximation of Eq.~2.7! around the Fermi surface. I
Fig. 1, we show the numerical results of the four steps. I
evident that all the results have a very narrow peak at
Fermi surface. This peak is not a singular one, but ha
plateau with the width of 2D1(k5m), as we will show later.
At high momentumk@m, the decrease of the gap obeys t
power law. This is consistent with the analytic solution, E
~2.11!. Such a long tail is due to the unscreened nature of
color-magnetic interaction and is quite different from the b
havior of the gap in the standard BCS-type superconduc
ity. Let us look into each step in more detail.

Steps 1 and 2: Comparing the gap with the magnet
interaction alone~the dotted line! and the gap with both mag
netic and electric interactions~the dashed line!, we find that
the electric interaction induces a large enhancement~about
10 times! of the gap almost independently of momentu
This is already suggested by the analytic studies in Sec.

This enhancement may be understood in a qualita
manner. In the coordinate space, the Debye-screened ele
interaction behaves as a Yukawa potential. Such a sh
range interaction can form only a loosely bound Cooper p
with a large size. In fact, if one solves the gap equation w
the electric interaction alone, one finds a very small g
compared to the dotted line in Fig. 1. The situation becom
different when the magnetic and electric interactions coex
Small size Cooper pairs are formed primarily by the lon
range magnetic interaction. Then, even the short-range e
tric interaction becomes effective to generate further attr
tion between the quarks. This cooperative effect c

FIG. 2. D1 and D2 as the solutions to the full coupled ga
equation in step 4 at high density,m5212L.
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qualitatively explain the reason why addition of the elect
interaction enhances the gap.

Steps 3 and 4: To see the effect of the momentum depe
dent couplingg2(q,k), let us compare the dot-dashed lin
@where g2(q,k) is used# with the dashed line@where
g2(m,m) is used#. Sinceg2(q,k) works as a weight factor in
the momentum integral in the gap equation, substantial
ference should appear between the two cases if the cont
tion away from the Fermi surface is not negligible in th
integral. However, we find no significant difference betwe
the two cases at high density. This implies that the co
superconductivity at high density is governed by the phys
near the Fermi surface.

Let us examine the last stage, step 4, where the antiqu
pole contribution is included. The solid line in Fig. 1
D1(k) obtained by solving thefull coupled gap equation
~2.13! for D1 andD2 . Since the difference from the prev
ous step is small, we can conclude that the quark-pole do
nance is indeed a good approximation at very high dens
The antiquark gapD2(k) is shown in a separate figure~Fig.
2! together withD1(k) ~the same as the solid line in Fig. 1!.
Unlike D1(k), the antiquark gapD2(k) is a smoothly de-
creasing function of the momentum. AlthoughD2 is not
small compared toD1 , it does not imply that the sizable
antiquark Cooper pairs exist in the system because the n
ber of antiquarks are much smaller than quarks as we
show in Sec. III D.

Finally, Fig. 3 shows a comparison between the mom
tum dependence of the numerical solutionD1 in step 4~the
solid line which is the same as the solid line in Fig. 2! with
the analytic solution near the Fermi surface~2.9! ~the dashed
line!. The peak height of the analytic solution is adjusted
that the solid and dashed lines coincide atk5m. In the vi-
cinity of the Fermi surface@Fig. 3~a!#, the momentum depen
dence of the analytic solution agrees with the numerical
lution reasonably well. Note that the peak is not a singu
one as we mentioned before. On the other hand, as is sh
in Fig. 3~b! the deviation becomes considerable away fro
the Fermi surface. In particular, the asymmetry with resp
to the Fermi surfacek5m represents the deviation from
weak coupling analytic solution. Note that the coincidence
k;0 is accidental because the analytic result~2.9! is valid
only near the Fermi surface.

In this subsection, we have solved the momentu
dependent gap equations at high densitym5212L. The char-
acteristic features of the momentum-dependent gap are~i!
there is a sharp peak at the Fermi surface, and~ii ! the gap
n

r

FIG. 3. Comparison of the numerical solutio
of D1 in step 4~the solid line! and the analytic
solution ~2.9! ~the dashed line! at high density,
m5212L. The latter is normalized to the forme
at k5m. ~a! Near the Fermi surface;~b! global
behavior.
4-7
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FIG. 4. Same as Fig. 1 excep
that the density is lower,m52L
5800 MeV.
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decays rapidly but is nonzero for momentum far away fr
the Fermi surface. The property~i! is similar to the standard
BCS superconductivity@see Eq.~2.12!# but ~ii ! is not, due to
the absence of intrinsic ultraviolet Debye-cutoff of the g
onic interaction in QCD. As for the magnitude of the gap
high density, the color-electric interaction enhances the
considerably. The effects of the momentum-dependent c
pling g2(q,k) and the antiquark pairing are shown to be n
important at high density.

B. Momentum dependence of the gap at low density

In this subsection, we carry out the same calculations
in Sec. III A at lower densitym52L5800 MeV ~which
corresponds to the baryon densityrB513.2r0). In Fig. 4, we
show the numerical results of the four steps. One of the m
differences from the high density case is the absence
sharp peak. The width of the peak in Fig. 4 in terms ofk/m
is much wider than that in Fig. 1. This large modification
the gap function will be attributed to the larger coupling
low density, because the Cooper pairs far from the Fe
surface are easily formed. Therefore, this implies that
physics of superconductivity is no longer limited on t
Fermi surface. We confirm this below by more detail
analysis of each steps.

Steps 1 and 2: Comparing the dotted line~with the mag-
netic interaction alone! and the dashed line~magnetic and
electric interactions! in Fig. 4, we again find that the additio
of the color-electric interaction induces a large enhancem
of the gap.

Steps 3 and 4: The result of step 3@where g2(q,k) is
used# is shown as the dot-dashed line, which should be co
pared with the previous step~the dashed line! where
g2(m,m) is used. In contrast to the high density case in F
07401
t
p

u-
t

s

in
a

t
i

e

nt

-

.

1, the momentum dependent coupling makes the magni
of the gap considerably smaller. This is one of the eviden
that the momentum integration is not any more dominated
the small region near the Fermi surface. The reason why
suppression of the gap takes place instead of the enha
ment is understood as follows. Consider the gap at the Fe
surfaceD1(k5m). In the momentum integration of the ga
equation, Eq.~2.13!, at k5m,g2(q,k5m),g2(m,m) for m
,q, while g2(q,k5m)5g2(m,m) for m.q. Therefore, the
momentum-dependent coupling always acts to reduce
magnitude of the integral as compared to the momentu
independent one.

Now, let us include the antiquark excitation in the g
equation~step 4!. The solution of our full gap equation~2.13!
is shown by the solid line. The antiquark-pole contributi
enhances the gap by 10%. The difference between the s
and dot-dashed lines is not huge but the absolute magni
of the enhancement is larger than that in the extremely h
density case shown in Fig. 1. The reason for this enhan
ment is clear: As one decreases density, the chemical po
tial becomes small, which plays a role of the intrinsic ene
gap for antiquark excitation. Therefore, the antiquark-p
contribution becomes non-negligible. This also suggests
the more low-momentum antiquarks are present at low d
sity which will be confirmed in Secs. III D by computing th
occupation number of antiquarks.

Finally, in Fig. 5, we compare the quark-gapD1 ~the solid
line! and the antiquark gapD2 ~the dashed line!. As in the
case of high density, the antiquark gapD2 is a smooth func-
tion of k and is not small compared toD1 .

In this subsection, we found that the momentum dep
dence of the gap at low density is quite different from that
very high density. The sharp peak at the Fermi surface
4-8
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STRUCTURAL CHANGE OF COOPER PAIRS AND . . . PHYSICAL REVIEW D65 074014
appears. The gap equation in the weak-coupling limit~2.7! is
no longer a good approximation and all the contributio
neglected in the weak-coupling limit are not negligible. A
these results allow us to conclude that the color spercon
tivity at low density is not a phenomenon just around t
Fermi surface. In Secs. III D and III E below, we wi
strengthen this picture by looking at other quantities such
the quark occupation numbers and the size of the Coo
pair.

C. Density dependence of the gap

Let us now examine how the gap at high density with
sharp peak changes into the gap at low density with on
broad bump. In Fig. 6~a!, we show the gapD1(k) as a so-
lution of the full gap equation~step 4! for a wide range of
densities. Since the actual position of the Fermi surf
moves as we vary the density, we usek/m as a horizontal
axis in the figure in order to show the change of the glo
behavior. The figure shows that the sharp peak at high d

FIG. 5. Same as Fig. 2 except that the density is lower,m
52L5800 MeV.
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sity gradually gets broadened and simultaneously the ma
tude of the gap increases as we decrease the density.

In Fig. 6~b!, the gap at the Fermi surfaceD1(m) is shown
as a function of the chemical potential. It decreases mo
tonically asm increases, but turns into an increase form
.106 MeV. The analytic solution is also shown in Fig. 6~b!.
The magnitude of the analytic solution is normalized to t
numerical solution at the highest densitym5212L.1.6
3106 MeV. At high density,m-dependence of the numer
cal result is in good agreement with the analytic form whi
has a parametric dependenceD1(m)}g25m exp(23p2/
A2g) with g25g2(m,m). On the other hand, the differenc
of the two curves at low density implies the failure of th
weak-coupling approximation. As we have seen before,
use ofg2(q,k) and the antiquark-pole has non-negligible e
fects on the gap in the low density regime.

D. Occupation numbers

So far we have seen that the weak-coupling picture of
color superconductivity is modified at low densities. In ord
to see how the Fermi surface is diffused by the Cooper p
ing, let us evaluate the occupation numbers of quarks
antiquarks. Since we have solved the full gap equation~2.13!
for D6(k), we can immediately obtain the occupation num
bers using Eq.~2.16!.

In Fig. 7, the occupation numbers of quarks@Fig. 7~a!#
and antiquarks@Fig. 7~b!# are shown at high densitym
5212L and at lower densitiesm52L,22L. One finds that
the quark occupation numbers are almost a step functio
high density, while it is smeared out for a wide region
momentum at low densities. The diffuseness of the Fe
surface is found to be of the order ofD1(m), which is con-
sistent with the definition in Eq.~2.16!.

Figure 7~b! implies that a small amount of the antiquar
also participate in the color superconductivity. Although t
m
FIG. 6. ~a! D1(k) as a function ofk/m for various densitiesm52nL with n51,2,3,12. All the calculations are done with the momentu
dependent vertexg2(q,k) and with the antiquark-pole contribution.~b! Chemical potential dependence of the gapD1(k5m) in the full
calculation compared with the analytic result which is normalized at the highest densitym5212L.
4-9
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HIROAKI ABUKI, TETSUO HATSUDA, AND KAZUNORI ITAKURA PHYSICAL REVIEW D 65 074014
antiquark gapD2 is of the same order of the quark gapD1 ,
the antiquark occupation number is generally suppressed
to the large energy denominator$(k1m)21uD2u2%1/2. As
one decreases the density, however, such suppression is
tively weakened and the magnitude of the antiquark occu
tion number increases, as can be seen from Fig. 7~b!.

E. Correlation function and coherence length

One of the advantages of treating the momentum dep
dent gap is that we are able to calculate the correlation fu
tion which physically corresponds to the ‘‘wave function’’ o
the Cooper pair. Such correlations have been first studie
Ref. @15# in the context of the color superconductivity.

Using Eq.~2.18!, we calculate the correlation functions o
quarks and antiquarks,ŵ6(k). The results at various dens
ties are shown in Fig. 8. For quarks@Fig. 8~a!#, the correla-
tion function at very high density has a sharp peak at
Fermi surface but it becomes broader as we decrease
density. This is of course due to the broadening of the
which we found in Fig. 6.

For antiquarks@Fig. 8~b!#, the correlation is much weake
than that of quarks and is a smoothly decreasing function
k. Also, the magnitude of the correlation increases as
decrease the density. SinceD2(k)!m holds for densities
considered in this paper, the above features can be sim
understood by an approximate relation,ŵ2(k);D2(k)/2(k
1m).

FIG. 7. Occupation numbers of quarksn1
1,2 ~a! and antiquarks

n2
1,2 ~b! for several different densities.
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We can compute the size of a Cooper pair from the c
relation function. Figure 9~a! shows the coherence lengthjc
of a quark Cooper pair defined as the root mean square
dius of the correlation function@see Eq.~2.19!#. The size of
a Cooper pair becomes smaller as we go to lower densi
This tendency is understood by the behavior of the Pipp
lengthjp51/pD1(m) ~which gives a rough estimate of th
coherence length! together with the behavior ofD1(m)
shown in Fig. 6~b!.

Also, the Cooper pair becomes smaller as density
creases beyondm5212L. However, it does not necessari
imply the existence of tightly bound Cooper pairs. In fa
the size of a Cooper pair makes sense only in compariso
the typical length scale of the system, namely the avera
inter-quark distancedq defined as2

dq5S p2

2 D 1/3 1

m
.

As we go to higher densities, the ratiojc /dq increases mono-
tonically as shown in Fig. 9~b!. Namely loosely bound Coo
per pairs similar to the BCS superconductivity in metals
formed at extremely high densities.

2This is a result of free quarks. To obtain accurate densityr and
dq , we have to include contributions from interaction. Howev
such correction is suppressed by the power ofD1 /m.

FIG. 8. The correlation functions in the momentum space
several different densities for quarks~a! and for antiquarks~b!.
4-10
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STRUCTURAL CHANGE OF COOPER PAIRS AND . . . PHYSICAL REVIEW D65 074014
At the lowest density in Fig. 9, the size of the Cooper p
is less than 4 fm and the ratiojc /dq is less than 10. The
transition from jc /dq@1 to jc /dq;1 as m decreases is
analogous to the transition from the BCS-type superc
ductor to the so-called ‘‘strong coupling’’ superconduct
The weak-coupling BCS superconductivity may smoot
change into the Bose-Einstein condensation~BEC! of tightly
bound Cooper pairs as the coupling strength increases@26#.
Our result here suggests that the quark matter possibly
ized in the core of neutron stars may be rather like the B
of tightly bound Cooper pairs.

For better understanding of the internal structure of
quark Cooper pair, let us consider the correlation function
the coordinate space. Figure 10 shows the spatial correla
of a Cooper pair at various chemical potentials normalized
*d3r uw1(r )u251. As is expected, the density dependence
the quark correlation in the coordinate space is opposit
that in the momentum space. At high density, most of
quarks participating in forming a Cooper pair have the Fe
momentumkF5m giving a sharp peak in the momentu
space correlation. In the coordinate space, this correspon
an oscillatory distribution with a wavelengthl51/m without
much structure near the origin.@The oscillation is also evi-
dent from the factor sin(mr) in the approximate correlation
function Eq.~2.20! discussed in Sec. II E.# At lower densi-

FIG. 9. ~a! Density dependence of the coherence length.~b!
Ratio of the coherence lengthjc and the average interquark distan
dq as a function of the chemical potential.
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ties, accumulation of the correlation near the origin in t
coordinate space is much more prominent in Fig. 10. T
implies a localized Cooper pair composed of quarks w
various momentum. This is also seen by the broad mom
tum correlation in Fig. 8~a!.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied the spatial-momentum
pendence of a superconducting gap and the structure o
Cooper pairs in two-flavor color superconductivity, using
single model for a very wide region of density. Nontrivi
momentum dependence of the gap manifests itself at
densities, where relatively large QCD coupling allows t
Cooper pairing to take place in a wide region around
Fermi surface. Our results imply that the quark matter wh
might exist in the core of neutron stars or in the quark st
could be rather different from that expected from the we
coupling BCS picture.

Following is the summary of what we have discussed
this paper.

~1! At high density, the weak-coupling gap equation wi
the electric and magnetic gluons is a good approximati
The momentum dependent quark-gluon vertex and the c
pling to the antiquark pairing do not change the wea
coupling result. The gapD1(k) has a peak around the Ferm
surface with a width;2D1(m) and decreases rapidly ask
goes away from the Fermi surface. This is consistent with
analytic solution of the gap equation in the weak-coupli
limit. All the results indicate that the Cooper pairing tak
place only in a small region around the Fermi surface.

~2! At lower density, the weak-coupling gap equation
no longer a good approximation. The momentum-depend
vertex and the coupling to the antiquark pairing have n
negligible effects. The sharp peak at the Fermi surface
appears. These imply that a large number of Cooper p
away from the Fermi surface participate in the color sup
conductivity. This was confirmed by the quark occupati
numbers and the quark-quark correlation. Therefore, co
superconductivity at low density is not a phenomenon in
vicinity of the Fermi surface, but is a phenomenon with lar
modification of the Fermi surface.

FIG. 10. The quark-quark correlation functionw1(r ) in the co-
ordinate spacew1(r ) for several different chemical potentials
w1(r ) is normalized to be unity.
4-11
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HIROAKI ABUKI, TETSUO HATSUDA, AND KAZUNORI ITAKURA PHYSICAL REVIEW D 65 074014
~3! The qualitative change of color superconductiv
from high density to low density can be explicitly seen
the ratio of the size of the quark Cooper pair to the avera
inter-quark distance. At high density, the ratio is very lar
~about 105 at m;106 MeV) which is consistent with the
standard BCS-type superconductivity. At lower densiti
however, the ratio becomes small~about 10 at m
5800 MeV). This situation is rather similar to the ‘‘stron
coupling’’ superconductor which could be described by
Bose-Einstein condensate of tightly bound Cooper pairs.

There are several future problems.
First, there are still several corrections to our ‘‘full’’ ga

equation. They include the full hard-dense-loop correctio
and the Meissner effect in the gluon propagator, and also
use of the plasmino dispersion in the diagonal self-energ
the quark propagator. The latter effect induces only a s
leading change on the gap at the Fermi surface at high
sity @27,28#, but may have non-negligible effects at low
densities. For treating both the diagonal and off-diago
parts of the quark self-energy, the standard Eliashberg
malism must be used@29,13#. If we include all the above
effects, the gap equation with frequency and momentum
independent variables should be solved@30#.

Secondly, we assumed that there is no significant vacu
effects in the present paper. If the density is close to
critical density of chiral symmetry breaking, one must co
sider the interplay between the quark-antiquark conden
and the quark-quark condensate@10,12,31#. This also re-
quires us to treat the diagonal and off-diagonal compone
of the fermion self-energy simultaneously, which corr
sponds to the Hartree-Fock-Bogoliubov theory in many-bo
problem@32#.

Thirdly, we have taken the Landau gaugej50 in this
paper. As we discussed in Sec. II D and in Appendix A, thj
dependence in the gap equation remains as far as we pro
treat the momentum dependence in the gap equation.
though it is a subleading contribution relative to the magne
and electric interactions, it is desirable to develop a ga
invariant formalism especially when one treats the low d
sity region.

Lastly, it will be very intriguing to find a new way o
describing color superconductivity at low densities. T
small size Cooper pairs with coherence length comparab
the interquark distance suggests that BEC description ma
useful as in the analogous example in condensed m
physics.3
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APPENDIX A: GAUGE DEPENDENCE OF D¿

In this appendix, we discuss the gauge parameter de
dence of the gap equation forD1 at high density. We write
the gauge dependent contribution to the gap equation
D1(k) as I j(k). Neglecting the antiquark pole, it becomes

I j~k!5
g2

24p2E0

`

dq
q

kE21

1

d~cosu!

3
D1~q!

AE1~q!21D1~q!2
Kj~q,k;cosu!, ~A1!

whereq̂• k̂5cosu andKj is defined as

Kj~q,k;x!5j•
2qk

q21k222qk cosu

3H ~q2k cosu!~k2q cosu!

q21k222qk cosu
2

12cosu

2 J .

~A2!

I j(k) should be added to the right-hand side of Eq.~2.13!
whenjÞ0.

Now, if we setq5k5m before the angular integration
the kernel vanishes for all cosu, namelyKj(m,m;cosu)50.
This is the standard argument that the gauge paramete
pendence does not appear in the gap equation at extre
high density. However, if we first integrate over cosu, and
then take the limitq,k→m, the result is nonzero. This can b
seen explicitly by carrying out the angular integral ofKj and
by writing the result in terms of a variableY5(k/q
1q/k)/2>1:

E
21

1

d~cosu! Kj~q,k;cosu!5jS Y21

2
lnUY11

Y21U21D .

~A3!

If we take the limitY→1 in the right-hand side, the first term
disappears, but the second term survives and gives a ga
dependent contribution2j. One can trace back the origin o
this situation by introducing a small regulatore to the col-
linear region of the integral cosu;1. Then, the integral
above becomes

F~e,Y![E
21

12e

d~cosu!Kj~q,k;cosu!

5jS Y21

2
lnU Y11

Y211eU2 Y21

Y211e

Y11

2 D .

~A4!

The first term disappears irrespective of the order ofY→1
ande→10. However, the second term vanishes only wh
one takesY→1 beforee→0. Namely,
4-12
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lim
e→0

lim
Y→1

F~e,Y!50, ~A5!

lim
Y→1

lim
e→0

F~e,Y!5j. ~A6!

This noncommutability of the two limits arises from the fa
that F(e,Y) does not approach toF(0,Y) uniformly in the
regionY>1.

Therefore, if we integrate over the angular variable cou
exactly, the gap equation forD1(k) at high density has an
extra gauge-dependent contribution from the quark pole,

I j~k!52j
g2

24p2E0

`

dq
D1~q!

AE1~q!21D1~q!2

q

k

3S 12
~q2k!2

4qk
lnU~k1q!2

~k2q!2U D . ~A7!

Compared with the leading magnetic contribution with t
kernel of logarithmic singularity, the above contribution
considered to be a subleading effect.

APPENDIX B: PIPPARD LENGTH
IN THE WEAK-COUPLING LIMIT

In this appendix, we derive the Pippard length from t
correlation function in the weak-coupling region. We use
two-point correlation function of quarks defined in Eq.~2.18!

ŵ1~q!5
D1~q!

AE1~q!21D1~q!2
. ~B1!

Sinceŵ1(q) is a function ofq(.0) only, its Fourier trans-
formation is given by
.

-

07401
e

w1~r !5
N

2p2E0

`

dqq2 j 0~qr !ŵ1~q!

5
N

2p2r
E

0

`

dq sin~qr !
qD1~q!

A~q2m!21D1~q!2
,

~B2!

wherej 0(x)5x21sinx is the 0th order spherical Bessel fun
tion.

In the weak-coupling limit, the integral is dominated
q;m. Then, by replacingD1(q) by D1(m) and performing
the q integration approximately, one finds

w1~r !;
N

2p2r
E

0

`

dq sin~qr !
mD1~m!

A~q2m!21D1~m!2

;
Nm3

p2

sin~mr !

mr

D1~m!

m
K0„D1~m!r …,

~B3!

whereK0 is the 0th modified Bessel function of the seco
kind. Using its asymptotic form

K0~z! ;
z→`Ap

2z
e2z(

n50

`
G~n11/2!

G~2n11/2!

1

n! ~2z!n
,

we obtain

w1~r ! ;
r→`

NAm5D1~m!

2p3

sinmr

~mr !3/2
e2r /(pjp), ~B4!

wherejp[„pD1(m)…21 is the Pippard length.
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