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Structural change of Cooper pairs and momentum-dependent gap in color superconductivity
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The two-flavor color superconductivity is studied over a wide range of baryon density with a single model.
We pay special attention to tlspatiatmomentum dependence of the gap and tosghetial structure of Cooper
pairs. At an extremely high baryon densjiity O(10'%) with p, being the normal nuclear matter dengityur
model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak
near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth
function of momentum at lower densities- O(10p.) ] due to strong color magnetic and electric interactions.
To study the structural change of Cooper pairs from high density to lower density, the quark correlation in the
color superconductor is studied both in momentum space and in coordinate space. The size of the Cooper pair
is shown to become comparable to the averaged interquark distance at low densities. Also, the effects of the
momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are
shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS super-
conductivity in metals.
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[. INTRODUCTION baryon densities, the gluonic attraction becomes effective for
all quarks inside the Fermi sea and sizable Cooper pairing
Because of asymptotic freedom and Debye screening itakes place for wide range of momentum away from the
QCD, deconfined quark matter is expected to be realized forermi surface. This is in contrast with the phonon interaction
baryon densities much larger than the normal nuclear matterith an intrinsic Debye cutoff in the BCS-type superconduc-
density[1]. Furthermore, any attractive quark-quark interac-tivity [13]. The spatiakmomentum dependence of the gap,
tion in cold quark matter causes an instability of the Fermidiffuseness of the Fermi surface, quark-quark correlations in
surface by the formation of Cooper pairs and leads to théhe superconductor and the spatial size of Cooper pairs are
color superconducting pha$2—6]. the characteristic quantities which reflect the departure from
The current understanding of color superconductivity haghe weak-coupling picture. So far, only a few investigations
been based on two different theoretical approaches. One is &@ve been made along this lip@ 14,13
analysis by the one-loop Schwinger-Dyson equation with Throughout the paper, we limit our discussions to 2-flavor
perturbative one gluon exchange, which is valid at asympcolor superconductivity partly because our primary interests
totically high densitie§7—9]. The dominant contribution to are in low densities and partly because the analysis is simpler
the superconducting gap at very high density comes from théhan in the three-flavor cadel6]. To investigate how the
collinear scattering through the long range magnetic gluonveak-coupling picture is modified at low densities in a quali-
exchangd10]. In such a weak-coupling regime, the forma- tative manner, we adopt a model called the improved ladder
tion of Cooper pairs takes place only in a small region nea@pproach in which the one-loop Schwinger-Dyson equation
the Fermi surface. The other approach to the color superconvith infrared safe running coupling is used. This model is
ductivity is the mean-field approximation with QCD inspired known to reproduce the physics of the QCD vacuum and the
4-Fermi model which is introduced to study lower densityqg meson properties reasonably well7—19. For recent
regions[4,5,11,12. In this approach, magnitude of the gap applications of similar kind of models to QCD at finite tem-
becomes as large as 100 MeV and is almost constant in thgerature and density, see the revig2@]. As we will show
vicinity of Fermi surface as a function of momentum. later, the model can naturally reproduce the correct
The main purpose of this paper is to calculate the superasymptotic behavior of the superconducting gap, in the high
conducting gap over a wide range of baryon density with adensity limit. Therefore, it is a suitable model for our pur-
single model and to make a bridge between high and lowpose to study the color superconductivity for a wide range of
density regimes. In particular, we make an extensive analysidensity. To make our analysis as simple as possible, we use a
on the structural change in spatial-momentum dependence gfuon propagator with a minimal static and dynamical cor-
Cooper pair from high to low densities. At relatively low rections(Debye screening and Landau dampinihe similar
form of the gluon propagator is also adopted in Rat].
This paper is organized as follows. In Sec. Il, we define
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momentum. In Sec. lll, we solve the momentum-dependent To study the flavor antisymmetric, color antisymmetric
gap equation numerically for a wide range of density. A largeand J=0" channel(which is the most attractive channel
structural change of the momentum-dependent gap will bevithin the one gluon exchange mojelve assume the fol-
shown. The quark and antiquark occupation numbers, theowing structure of the gap functidi7,9,23:

correlation of quarks in the color superconductor, and the

coherence length are also investigated. Summary and con- A (k )= (\,7,Cys) (A (K,)A . (K)+A_(k,)A_(K)).
cluding remarks are given in the last section. In Appendix A, g P g 2.3
the gauge dependence of the gap equation is discussed. In

Appendix B, we derive the asymptotic behavior of the spatiabere r, is the Pauli matrix acting on the flavor spaae, is

quark-quark correlation in the weak coupling. a color antisymmetric Gell-Mann matrix, a@is the charge
conjugationA . (k)= (1=k- a)/2 is the projector on positive
Il. GAP EQUATION WITH SPATIAL MOMENTUM (+) and negative {) energy quarksA. will be identified
DEPENDENCE as the gap in quark and antiquark channel, respectively.

In this section, we define our model and derive relevant For the spinor and color structures c;f_thg vertexam Eq.
gap equations in two flavor QCD with the one-gluon ex-(2-2: e use the2 _bare  vertexI', =diag(y,\"/2,
change interaction. We start with the standard Schwinger= (¥x}*/2)) [7]. Forg”in Eq. (2.2, we use a momentum
Dyson equation for the quark self-energy with four momen-dependent coupling (q,k)“_WhICh does not diverge at low )
tum dependencg7]. Then it is reduced to a gap equation momegtum s_cale. In the “improved ladder approximation
with spatial-momentum dependence. General properties dft /) 9°(0,K) is taken to be
the solution of our gap equation in the weak-coupling limit

are also examined. The gap with spatial-momentum depen- 1672 1

dence enables us to study the diffuseness of the Fermi sur9 (4:K)= Bo In((p2ot p2IAZ)’ Pmax=max(q,k),
face and the the structure of Cooper pairs in the color super- ma e 2.4
conductor. '

Throughout this paper, we use the following notation forwhereﬂo=(11NC—2Nf)/3, pg plays a role of a phenomeno-

the four and three moment&’= (k% k), k=|k|, k=k/k. |ogical infrared regulator, and dictates the logarithmic de-
Also, we limit ourselves to the system at zero temperaturgreases of the vertex at high momentum. The quark propa-
and work in the Minkowski space with the quark and gluongator in the improved ladder approximation in the vacuum is
propagators obeying the Feynman boundary condition.  known to have a high momentum behavior consistent with
that expected from the renormalization group and the opera-
A. The model tor product expansion. For the numerical valuesAofand

2 2 .
Let us start with the definition of quark self-energy andPc+ We adopt 400 MeV and 1.5\% respectively. They are
the superconducting gap. Using the standard Nambudetermined to r_eproduce the I_ow energy meson properties for
Gor’kov formalism with a two component Dirac spindf N¢=2 Dby solving the Schwinger-Dyson equation for_the

:(wjt), the quark self-energ¥ (k,) with the Minkowski quark propagator and the Bethe-Salpter equation foqthe

A-momenturrk . is written as bound state in the vacuupi8].

L We use the following gluon propagator in medium in Eg.

A(k,) (2.2) in the Landau gauge,

3(k,) =Sy (k) =S (k)= ",
Ackp) 0 pr Pt

D/.LV(kp):_ 2 - L - l“’z,

K2+iM?|ko|/|k|  k2+md

_ (2.5
where the superconducting gap and A=y,ATy, enter
through the off-diagonal components &f. The diagonal
components of2 is neglected throughout this papgf].  whereP},, are the transverse and longitudinal projectors sat-
S(k,) and Sy(k,) are the full and free quark propagators, isfying the relationsP] = &, —kk;,PT =PI =0, and P
. . ij ] 1™ 100 Oi ’ mv
reslpectlvely. The free propT)agator is taken to be a form:_g +k,k,/k2—PT  The longitudinal part of the
— —di _ ; mv pvi Bp uv:
S‘rj]d(dkp) ?Ilag'(l“’i’(k #)’). We ignore the mass of propagator has static screening by the Debye ma%s
anadd guarks. o =(N¢/27?)g?u?, while the transverse part has dynamical
In the ladder approximation of the one gluon exchange,S ina by the Landau d ipig 2= (r/4)m2] [22]. Th
the Schwinger-Dyson equation far is written as creening by In€ Landau amplm _(T.r_ )m.D] - 'Ne
above form of the propagator is a quasi-static approximation

4 of the full gluon propagator in the sense that only the leading
S(k.)= _if 2115(q ) TYD3(q. — k), frequency dependence is considered. The same form is also
(%) (27-r)"'g aS(A) 15D, = k,) adopted in Ref[21].
(2.2 Here we make a brief comment on the gauge-parangeter

dependence of the gap equation. Although physical quanti-
WhereDfﬁ is the gluon propagator in medium aﬁ@ isthe ties should be gauge invariant, special truncation scheme of
quark-gluon vertex. the diagrams such as the ladder approximation introduces
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gauge-parameter dependence. It has been claime()tat equation forA , but gives a subleading contribution. Under
is gauge invariant at extremely high dendi#], and(ii) the  this remark, we will consider only the Landau gauge (
gauge dependent contribution only begins to decrease at ex=0) throughout this paper.

traordinarily high densitieg.>10® MeV and seems to con- The gap equation under the approximations shown above
verge to the result of the Landau gaudge=(0) [24]. We will is obtained from the 2-1 element of the Schwinger-Dyson
show in Appendix A that, if one appropriately treats the mo-(matrix) equation(2.2). Then the final form of the gap equa-
mentum dependence, tiedependence survives in the gap tion for A (k,) = A (ko,k) reads

N.+1 d“q

_ . A+(qp)
Ai(kp)_ ZNC If(zﬂ)492(q’k)

93— E2(q)—]A.(q,)|?

1 N N
Etr(At(k) YHA_(Q) ")

X A_(q,)
"2—E2(q)—|A_(q,)|

1 N N
+§tr(Ai(k)’yﬂA+(q)’yV 2 D,M,V(qp_kp)! (26)

whereE. (q)(=q= u) is the reduced energy for free quarks coupling limit. A . (k) corresponds tthe gap of the on-shell
(for E.) and for antiquarksfor E_). quasiparticlesin the color superconductor sinég is taken
to bee, .

B. Analytic properties of the gap in the weak coupling 2. Gap near the Fermi surface in weak coupling limit

1. Gap equation in the weak-coupling limit Let us consider the behavior of the gap near the Fermi
Let us first study the analytic properties of the gap equasurface. As we claimed in the Introduction, the gap equation
tion with spatial-momentum dependence. To obtain analyti{2.7) reproduces the correct high density solution near the
cally tractable equations, we consider here the weakFermi surface, which was previously derived in R¢#%10]
coupling (high density limit. This “weak-coupling for frequency dependent gap, and in R@f for momentum
approximation” implies the approximation where we take dependent gap. For this purpose, we pick up the most singu-
only the color-magnetic interaction and the real part\gf.  lar part of the integrand by taking=k= u in the bracket
Momentum dependence of(q,k) is neglected. Contribu- except for the termd; — ;)% in the denominator. Then Eq.
tions from the antiquarks proportional tdA_ and the (2.7) reduces to
momentum-dependent factor originating from the projection
operator in Eq(2.6) are also neglected. We also ignore the g? (= AL(Q) (bu)?
imaginary part of the propagator because it is faaér A+(k”“):_zj dd—= 22 1o
. 72m?Jo - EL(@)+H]AL (@) leg?— e’
smaller than the real part. In E.6), the frequency integral
is performed by picking up quasiparticle poles in the quark (2.9
propagator. After integrating over the angular variable, we
obtain the following gap equation with the spatial- where b=2(2u/M)2=(2/N)(327/g?). This equation
momentum dependence makes sense only in the vicinity of the Fermi surfdke
— u|< 8 and coincides to the one derived in REJ].
In the weak-coupling regimég/(3y2m)<1], the ap-

AL (k)= g? f*dq AL(q) proximate solution of this equation is known to [$]
U 1aart)o TVEL (@) 1A% () .
A (k~@)=A, (u)cod — ke
o[ 9, @R M e —e)? I S N WP
KL (@=k)®+M*(eq — )2 )
A (p)=2bue” B7Nh2, (2.9
+ __+
+l€q— Eq))’ 27 wheree, = (|k— u|?+ A% ()2 This solution is a symmet-

ric function of (k—u) and decreases ak— u| increases.
Inclusion of the color-electric interaction only modifies the
where E.(q)=q—ux and we have definedA (q)  prefactor ah— (2/N;)%?256m%/g°, which enhances the gap
EA+(E$ ,q) for notational simpncityf; is the quasiparti- in the weak coupling. The characteristic form of the gap
cle energy as a solution o&{)?=E% (q)+A% (e; ,0). This e %9 in Eq. (2.9), which is not the BCS forme~°/9°, was
is the final form of an approximate gap equation in the weakfirst derived in Ref[10].
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3. Gap far from the Fermi surface in weak coupling limit interaction originating from the lattice structure, respectively.
As we mentioned above, the long tail in E@.11) is inti-
mately related to the absence of thérinsic ultraviolet cut-
off such aswp in QCD.

Next, we examine the behavior of the gap far from the
Fermi surface. Whek> u, the gap equatiori2.7) can be
cast into the following differential equation:

d2 d 2 :
+(k)+3 A+(k)+ g A+(k)=0, (2.10 C. Full gap equation
Now let us derive the full gap equation with momentum

dependence from the original gap equati@rb) with 4 mo-
where we have assumed that, (k)—0 as k—o. The mepntum dependence. g gap equatiare)

. . . . 2 .
asymptotic solution of this equation fgr<37 is In Eqg. (2.6), we adopt the static gluon propagator with the

S - _ e e Debye screeninffor the electric paijtand the Landau damp-
Avlkz k™™, A=1+y1=g"3m. (213 ing (for the magnetic part The imaginary part of the gap
Therefore, in the weak coupling<1, the gap decreases function will be neglected as we stated before. Using the
slowly as 1K for k> and does not vanish for arbitrary @PProximationP,,~—3,06,, and performing theg, and
large k. This long tail is a direct consequence of the gluonicangular mtegratlon the gap equation becomes

interaction which allows scattering of quarks with an arbi- (q)
; Al
trary energy-momentum transfer. Otherwise, the gap cannot A . J dqV.(q,k; eq L€) 3 5
take the nonzero value far away from the Fermi surface. VEL (@)% +]A 1 (a)]
This is in sharp contrast to the gap in the standard weak- . A_(q)

coupling BCS superconductivity in metdisyhere +f dqVa(q.k;e; ,er) -(9 ,

o ENE (@A (@)

B A, |e,— el <wp,
ABY(p)= (2.12 (2.13

otherwise,

with €,,€r and wp being the electron energy, the electron where we used a simplified notation:. (e, ,k)—A_(Kk),
Fermi energy and the ultraviolet Debye cutoff of the phononandV . is defined by

|
(k+@)8+M*(go—ko)?
(k—a)°+M*(do—ko)?

g%(a.k) g[(ktq>2+m%m(<k+q>2+m%

g’@k gl
487> k|3

V.(0g,k;dg,ko) = +(do— —do) + fue

(2.19

EL|-

4872 k 29k (k—q)2+mj

Herefg is just a constant, antlyg is a rather complicated contribution due to the small denominatdg(+|A | |?)Y2
function of g andk. Since no singularity appears fig, ye ~ ={(q— u)?+|A,|2Y?~0.

whenmp=0, M=0 andq=k= u are taken, they are con- At extremely high density, the Cooper pairing is expected
sidered to be subleading contribution and will be neglectedo take place only near the Fermi surface as we have dis-
in the following analysis. In the definition of. , the first  cussed. In this case, we can safely neglect the antiquark-pole
(second term corresponds to the magneftigectrig gluon contribution for calculating , . Furthermore, one may re-
contribution. We call the first integral in Eq2.13 as Place the momentum dependent vertex by the coupling con-
“quark-pole contribution” and the second integral as Stant on the Fermi surfaag?(q,k)—g*(q=pu,k=pu). If u
“antiquark-pole contribution”, becaus&, =q—u(E_=q IS large enoughg?(q= u,k= ) may be identified with the

+ ) is involved in the formex(atten. Near the Fermi sur- Standard running coupling®() = (16a2/ Bo)/In(u*/ Adcp)-

faceq~ u, the first integral in Eq(2.13 gives the dominant 1hus, keeping only the magnetic_interaction, one recovers
the gap equatiof2.7) for A, with g2—g?(u) in the weak-
coupling limit.
At low densities, sizable diffusion of the Fermi surface
occurs and the weak-coupling approximations leading to Eq.
(2.7) are not justified. Therefore, we need to solve the

1This is a solution of the simplest gap equation discussed in the
original BCS papef13]

ABCS(k) = 1 E Vi APCK') coupled gap equations, E@.13, numerically. In particular,

V(e— )%+ AB(K")2 the replacement?(q,k)—g2(q=u,k=pu) is not justified

where V, o #0 for eg— wp<e<ertwp and V, =0, other-  wheng andk are not close tq:. The contribution from the
wise. antiquark-pole is also not entirely negligible.
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D. Occupation number, correlation function and coherence (i) The quark and antiquark occupation number in each
length momentum state: This is a fundamental quantity characteriz-
To clarify the structural change of the color supercon-iNg the diffuseness of the Fermi surface. It is related to the
ductor from high to low densities, it is useful to examine thediagonal (1-1) element of the quark propagator in the
following physical quantities related to the gap function. ~ Nambu-Gor’kov formalism:

<¢j’fb(t,y) PEX) ) super  NiM (=i [Slﬂf}b(x—)/) ")

X0—>y0*6
q ) ] 1 E.(q)
= 1909 LA L — A_ PYan(1p)ii+1=| 1—
f(zw)f%e {A (@ 0(n—d)+A_(Q}HP3)an( F)J+|2 Eaomnan ™
P PP G )A_]u—Pg)ab(lF)ij , 2.1
217 VE_(@?+[A (o)

wherePj is a projection matrix to the third axis in the color space. From this expression, one can extract the quark and the
antiquark occupation numbers as

_ E-(q)
\/Et(Q)2+|At(Q)|2

where the superscript4,2 and 3 stand for color indices. Since the third axis in the color space is chosen to break the color
symmetry, quarks with the third color do not contribute to form Cooper pairs. When the gap 5 zer0, the system reduces
to the ordinary quark matter with a sharp Fermi sphafe(q) = 6(x—q) andn*¥q)=0.

(i) Theg-q andg-qg correlation functions in the momentum spa}zg(q) and in the coordinate spage.(r): They reflect
the internal structure of the Cooper pairs in color superconductor. These correlations are related to the off-dia@onal
element of the quark propagator:

(PP supe=  NIM i[ Sl (x—y)

1
nlf(q)=§(l ) n3(q)=6(u—q), n(q)=0, (2.16

X0~>y0+e
d*q AL(@A () A (@A (q) ) |
= ia(x-y) C)(Np7p)2P. 2.1
f<2w>3e (2¢E+<q>2+|A+<q>|2+2¢E<q>2+|A<q>|2 (70 harel 240
|
Ai(q) is simply extracted from the above agd.(r) is de- * ~
;fned as the Fourier transform , J d*rr?le. ()2 fo dkiclde .. (k)/dk*
&= = p
[@rlecr [ ezl
“ AL
bo(a)- 9 (2.19

2VE.(@)*+[A (o)
A measure of the coherence lengthin the weak-coupling
limit is known as the Pippard length, which is given By

d3a . , =(mwA,(w)) ! [25]. It is shown in Appendix B that the
P(r)= Nf (277)3901(@8'“, (2.189  quark correlationp_(r) in the weak-coupling limit behaves
as
where N is a normalization constant determined by g,>+(r_>c><j)c>cM.Err/(7r§F,)_ (2.20
Jd¥ e, (r)][?=1. (ur)¥?

(i) The coherence lengt. characterizing the typical
size of a Cooper pair: It is defined simply as a root mean In a typical type-lI superconductor in metals, the Pippard
square radius op . (r): length is of the semi-macroscopic ord§5~10*4 cm,
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.......... 1: magnetic
—---- 2: magnetic + electric

2
--= 3:with ¢ (¢,%)
— 4: with antiquark pole

FIG. 1. The momentum depen-
dence of the gapr, from step 1
to step 4 at high densityu
=212\ . The dotted line is a result
of the magnetic interaction alone
(step 2. The dashed line is the
gap with both magnetic and elec-
tric interactions includedstep 2.
The dot-dashed line is the gap in
which the momentum dependent
coupling g?(qg,k) is used(step 3
instead of the momentum inde-
pendent couplingg®(u,u) (step
2). The solid line is the gap as a
solution of the full gap equation
(2.13 with g%(q,k) and the anti-
quark pole(step 4.

S
I|IIII|IIII|

A, [MeV]
‘\

III|IIII|II\

<
p—
8}
w

k/

whereas inverse Fermi momentum is of the microscopic ortivity at low densities is no longer similar to the usual BCS-
der kz'~10"8 cm. The inverse of the Debye cutoff is in type superconductivity. _ _

between the two scalesy*~10"° cm. Therefore thereisa !N Secs. llIA and 1B, starting from the simplest gap
clear scale hierarchyy <wp<kg. Because of the absence of €duation in the weak-coupling limi2.7), we will include the

the intrinsic scalewp,, similar scale hierarchy in QCD at contributions of color-electric interaction, momentum-
extremely high density readse™°9< 1. At lower densities, dependent coupling and antiquark pole, step by step. This

: . . procedure clarifies the importance of each contribution. Let
Eg\tlvsr\:wzrl,l such scale separation becomes questionalgasior us define each step below, for later convenience.
Step I We solve the gap equation fdr, in the weak-
coupling limit Eq.(2.7) where only thecolor-magnetianter-
ll. NUMERICAL RESULTS action is taken into account. The momentundependent
couplingg?(u,x) is used in this step.

In this section, we present numerical results of the Step 2 The Debye-screenecblor-electricinteraction is
momentum-dependent gap and the other physical quantitief/rther added to step 1. This corresponds to solving Eg.
In Sec. 11l A, we show solutions of the gap equations at very'2-13 for A with neglecting the antiquark-pole contribu-
high density. Then we discuss whether the result has simila?o? and with making a replacemegt(q, k) —g(x, ).
ity to that in the BCS superconductivity for metdlee Eq. . Step 3 ?ame as step 2 except for the useg3(q,k)
(2.12)]. What makes the color superconductor unique is thdnstead ofg*(s, u). o .
absence of the intrinsic cutoff scale. Nevertheless, we Step 4 The antiquark-pole contribution is also taken into

) - : ’ account in step 3. This gives the complete solution of our full
will see that similar relation as Eq2.12 holds under the :

. i coupled gap equations, E(®.13.

replacemeniwp— A at least at extremely high density. We
will also examine how the results of the gap equation in the Throughout the all stepg? in the Debye screening mass
weak-coupling limit(2.7) are modified when the effects such Mp is taken to beg?(w,u) for simplicity. In step 3 and step
as the color-electric interaction, the momentum dependerft, We use a phenomenological valte=400 MeV andp?
coupling and the antiquark-pole contribution are taken into=1.5A% for g(q,k) as we have already mentioned in Sec.
account.

In Secs. Il B and 1l C, we repeat the same calculations at
lower densities and show a qualitative difference from the
weak-coupling limit. Substantial modification of the Fermi In this subsection, we solve the gap equations at chemical
surface at low densities will be explicitly shown by comput- potential x=2'2A=1.6 TeV. This corresponds to the
ing the occupation number. Quark correlation in the coloraryon densitypg=1.1X 10tp, with po=0.17 fm 3 being
superconductor and the size of the Cooper pair are calculatgtle normal nuclear matter density. At this extremely high
in Sec. Il D. The results indicate that the color superconducdensity, we expect that the full gap equation, E213), is

A. Momentum dependence of the gap at high density
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5c ] qualitatively explain the reason why addition of the electric
C — A ] interaction enhances the gap.
N A Steps 3 and 4To see the effect of the momentum depen-
C ] dent couplingg?(q,k), let us compare the dot-dashed line
5 3F 3 [where g?(q,k) is used with the dashed line[where
g ] 9°(u, 1) is used. Sinceg?(q,k) works as a weight factor in
< 2F -~ the momentum integral in the gap equation, substantial dif-
C ] ference should appear between the two cases if the contribu-
1 - tion away from the Fermi surface is not negligible in the
- T . integral. However, we find no significant difference between
oC I I 3 the two cases at high density. This implies that the color
0 1 2 3 superconductivity at high density is governed by the physics
K/ near the Fermi surface.
FIG. 2. A, andA_ as the solutions to the full coupled gap Let us examine the last stage, step 4, where the antiquark-
equation in step 4 at high densiy=2%2A. pole contribution is included. The solid line in Fig. 1 is

A, (k) obtained by solving thdull coupled gap equation
well approximated by its weak-coupling limit, E€.7). Fur-  (2.13 for A, andA _. Since the difference from the previ-
thermore, the analytic solution E(.9) is expected to give a 0us step is small, we can conclude that the quark-pole domi-
fair approximation of Eq(2.7) around the Fermi surface. In nance is indeed a good approximation at very high density.
Fig. 1, we show the numerical results of the four steps. It isThe antiquark gap _ (k) is shown in a separate figu(gig.
evident that all the results have a very narrow peak at th@) together withA , (k) (the same as the solid line in Fig.. 1
Fermi surface. This peak is not a singular one, but has &nlike A (k), the antiquark ga@ _(k) is a smoothly de-
plateau with the width of & (k= ), as we will show later. creasing function of the momentum. Although_ is not
At high momentunk> u, the decrease of the gap obeys thesmall compared ta\, , it does not imply that the sizable
power law. This is consistent with the analytic solution, Eq.antiquark Cooper pairs exist in the system because the num-
(2.11). Such a long tail is due to the unscreened nature of théer of antiquarks are much smaller than quarks as we will
color-magnetic interaction and is quite different from the be-show in Sec. Il D.
havior of the gap in the standard BCS-type superconductiv- Finally, Fig. 3 shows a comparison between the momen-
ity. Let us look into each step in more detail. tum dependence of the numerical solutidn in step 4(the

Steps 1 and 2 Comparing the gap with the magnetic solid line which is the same as the solid line in Fig.véth
interaction alongthe dotted lingand the gap with both mag- the analytic solution near the Fermi surfd2e9) (the dashed
netic and electric interactior(he dashed line we find that  line). The peak height of the analytic solution is adjusted so
the electric interaction induces a large enhancent@bpout that the solid and dashed lines coincidekatu. In the vi-

10 times of the gap almost independently of momentum.cinity of the Fermi surfacéFig. 3(a)], the momentum depen-
This is already suggested by the analytic studies in Sec. Il Gdence of the analytic solution agrees with the numerical so-

This enhancement may be understood in a qualitativdution reasonably well. Note that the peak is not a singular
manner. In the coordinate space, the Debye-screened electdoe as we mentioned before. On the other hand, as is shown
interaction behaves as a Yukawa potential. Such a shorin Fig. 3(b) the deviation becomes considerable away from
range interaction can form only a loosely bound Cooper pairghe Fermi surface. In particular, the asymmetry with respect
with a large size. In fact, if one solves the gap equation withto the Fermi surfac&k=pu represents the deviation from
the electric interaction alone, one finds a very small gapveak coupling analytic solution. Note that the coincidence at
compared to the dotted line in Fig. 1. The situation become&~0 is accidental because the analytic regfl®) is valid
different when the magnetic and electric interactions coexistonly near the Fermi surface.

Small size Cooper pairs are formed primarily by the long- In this subsection, we have solved the momentum-
range magnetic interaction. Then, even the short-range eledependent gap equations at high dengity2'?A. The char-
tric interaction becomes effective to generate further attracacteristic features of the momentum-dependent gap(iare
tion between the quarks. This cooperative effect carthere is a sharp peak at the Fermi surface, @ndhe gap

484 . (?) T 6 (],J) T
r —— numerical solution | —— numerical solution
i ---- analytic solution ] s~ - analytic solution  — . : :
sk i FIG. 3. Comparison of the numerical solution
= f 1 = of A, in step 4(the solid ling and the analytic
s [ 1 =2 solution (2.9 (the dashed lineat high density,
= o w=21A. The latter is normalized to the former
C ] at k=pu. (@) Near the Fermi surfaceb) global
L ] behavior.
481 : L : ! I L
0.99999 1'(;;%00 1.00001 00.0 03 L0 15 20

K/
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80 [
1 — 1: magrletic =
— - '\\ ---- 2: magnetic + electric
- //’ \ . 2
|~ \ --- 3:with g (¢,k)
60 | \ . . -
f \ — 4: with antiquark pole
N
|— hY -
N
N N :
= 40 — \\ ] ;
= ~ FIG. 4. Same as Fig. 1 except
< B M 7 that the density is lowerp=2A
=800 MeV.

decays rapidly but is nonzero for momentum far away froml, the momentum dependent coupling makes the magnitude
the Fermi surface. The properti) is similar to the standard of the gap considerably smaller. This is one of the evidences
BCS superconductivitjsee Eq(2.12] but (ii) is not, due to  that the momentum integration is not any more dominated by
the absence of intrinsic ultraviolet Debye-cutoff of the glu-the small region near the Fermi surface. The reason why the
onic interaction in QCD. As for the magnitude of the gap atsuppression of the gap takes place instead of the enhance-
high density, the color-electric interaction enhances the gagent is understood as follows. Consider the gap at the Fermi
considerably. The effects of the momentum-dependent cousrfaceA , (k= ). In the momentum integration of the gap
pling g?(g,k) and the antiquark pairing are shown to be nOtequation, Eq(2.13, atk=u,g%(q,k= ) <g2(p, 1) for p

important at high density. <q, while g?(q,k= ) =9g?(u,u) for u>q. Therefore, the
momentum-dependent coupling always acts to reduce the
magnitude of the integral as compared to the momentum-
In this subsection, we carry out the same calculations agdependent one.
in Sec. IlIA at lower densityu=2A=800 MeV (which Now, let us include the antiquark excitation in the gap
corresponds to the baryon density=13.2,). In Fig. 4, we  equation(step 4. The solution of our full gap equatid2.13
show the numerical results of the four steps. One of the maiis shown by the solid line. The antiquark-pole contribution
differences from the high density case is the absence of @anhances the gap by 10%. The difference between the solid
sharp peak. The width of the peak in Fig. 4 in term&hgf  and dot-dashed lines is not huge but the absolute magnitude
is much wider than that in Fig. 1. This large modification of of the enhancement is larger than that in the extremely high
the gap function will be attributed to the larger coupling atdensity case shown in Fig. 1. The reason for this enhance-
low density, because the Cooper pairs far from the Fermiment is clear: As one decreases density, the chemical poten-
surface are easily formed. Therefore, this implies that thdial becomes small, which plays a role of the intrinsic energy
physics of superconductivity is no longer limited on thegap for antiquark excitation. Therefore, the antiquark-pole
Fermi surface. We confirm this below by more detailedcontribution becomes non-negligible. This also suggests that
analysis of each steps. the more low-momentum antiquarks are present at low den-
Steps 1 and 2 Comparing the dotted linevith the mag-  sity which will be confirmed in Secs. Il D by computing the
netic interaction aloneand the dashed linémagnetic and occupation number of antiquarks.
electric interactionsin Fig. 4, we again find that the addition ~ Finally, in Fig. 5, we compare the quark-gap (the solid
of the color-electric interaction induces a large enhancemerline) and the antiquark gapg _ (the dashed line As in the
of the gap. case of high density, the antiquark gap is a smooth func-
Steps 3 and 4 The result of step 3whereg?(q,k) is  tion of k and is not small compared b, .
used is shown as the dot-dashed line, which should be com- In this subsection, we found that the momentum depen-
pared with the previous steggthe dashed line where dence of the gap at low density is quite different from that at
9°(u, ) is used. In contrast to the high density case in Figvery high density. The sharp peak at the Fermi surface dis-

B. Momentum dependence of the gap at low density
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25 sity gradually gets broadened and simultaneously the magni-
tude of the gap increases as we decrease the density.
In Fig. 6(b), the gap at the Fermi surfacde, (u) is shown
as a function of the chemical potential. It decreases mono-
tonically asw increases, but turns into an increase for
>10° MeV. The analytic solution is also shown in Figb®
The magnitude of the analytic solution is normalized to the
numerical solution at the highest densiy=2'?A=1.6
> X 10° MeV. At high density,u-dependence of the numeri-
“““““““““““ = cal result is in good agreement with the analytic form which
has a parametric dependence, (u)xg °u exp(—37%/
J2g) with g2=g?(u,x). On the other hand, the difference
K/ of the two curves at low density implies the failure of the
FIG. 5. Same as Fig. 2 except that the density is lower, Weak-coupling approximation. As we have seen before, the
—2A =800 MeV. use ofg?(q,k) and the antiquark-pole has non-negligible ef-
fects on the gap in the low density regime.

20

T TorT
'
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!
>

15
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|IIII||||I|IIII|III|
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/

(]
—_
[\
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appears. The gap equation in the weak-coupling lighif) is
no longer a good approximation and all the contributions D. Occupation numbers

neglected in the weak-coupling limit are not negligible. Al g4 t4r we have seen that the weak-coupling picture of the

these results allow us to conclude that the color Spercondu(f:'olor superconductivity is modified at low densities. In order

tivity at low density is not a phenomenon just around the - g .
Fermi surface. In Secs. IID and IIIE below, we wil to see how the Fermi surface is diffused by the Cooper pair

ing, let us evaluate the occupation numbers of quarks and

strengthen this picture by looking at other quantities such agl,ntiquarks. Since we have solved the full gap equagon3

tphaeirquark occupation numbers and the size of the COOp%r A (k), we can immediately obtain the occupation num-

' bers using Eq(2.16).

In Fig. 7, the occupation numbers of quafk&g. 7(a)]
and antiquarkgFig. 7(b)] are shown at high density

Let us now examine how the gap at high density with a=2?A and at lower densitieg.=2A,22A. One finds that
sharp peak changes into the gap at low density with only @he quark occupation numbers are almost a step function at
broad bump. In Fig. &), we show the gap , (k) as a so- high density, while it is smeared out for a wide region of
lution of the full gap equatioristep 4 for a wide range of momentum at low densities. The diffuseness of the Fermi
densities. Since the actual position of the Fermi surfaceurface is found to be of the order &f, («), which is con-
moves as we vary the density, we usq. as a horizontal sistent with the definition in Eq2.16).
axis in the figure in order to show the change of the global Figure 7b) implies that a small amount of the antiquarks
behavior. The figure shows that the sharp peak at high deralso participate in the color superconductivity. Although the

C. Density dependence of the gap

a
25_ () ] T T TTTITI T |(l|j)|||||| T T TTTT]|
u —2'A 7 20 —@— numerical solution _|
20 AN - 2°A = —— analytic solution
- —-=2’A 1 -
. 22A 15 _
E P o . %
<+ 10 — = v+
- 1 <10 |
SE =
0_ | "'—;:-:_ STl- C ol r el L 1 aanl
0 1 2 3 10° 10* 10° 10°

Kk y | f[MeV] |
FIG. 6. (a) A, (k) as a function ok/u for various densitieg.=2"A with n=1,2,3,12. All the calculations are done with the momentum
dependent verteg?(q,k) and with the antiquark-pole contributiotb) Chemical potential dependence of the gap(k= ) in the full
calculation compared with the analytic result which is normalized at the highest dgnsi2}?A .
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lZFlG- 7. Occupation numbers of quarkg” (@) and antiquarks FIG. 8. The correlation functions in the momentum space at
n> (b) for several different densities. several different densities for quarks and for antiquarkgb).
antiquark gapd _ is of the same order of the quark gap , We can compute the size of a Cooper pair from the cor-

the antiquark occupation number is generally suppressed duglation function. Figure @) shows the coherence length
to the large energy denominatd(k+u)?+[A_|*}*% As  of a quark Cooper pair defined as the root mean square ra-
one decreases the density, however, such suppression is refias of the correlation functiofsee Eq(2.19]. The size of
tively weakened and the magnitude of the antiquark occupaa Cooper pair becomes smaller as we go to lower densities.

tion number increases, as can be seen from Kig. 7 This tendency is understood by the behavior of the Pippard
length £,=1/mA  (n) (which gives a rough estimate of the
E. Correlation function and coherence length coherence lengihtogether with the behavior ofA, (w)

One of the advantages of treating the momentum deperTc'—hOWn in Fig. 6b). . _
dent gap is that we are able to calculate the correlation func- Also, the Coope;zpalr becomes smaller as density in-
tion which physically corresponds to the “wave function” of Sr€3S€s beypngi=2 A..However, it does not ngcessarlly
the Cooper pair. Such correlations have been first studied iffiP!y the existence of tightly bound Cooper pairs. In fact,
Ref.[15] in the context of the color superconductivity. the size of a Cooper pair makes sense only in comparison to

Using Eq.(2.18, we calculate the correlation functions of € typical length scale of the system, namely the averaged

quarks and antiquarksg- (k). The results at various densi- inter-quark distancel, defined as
ties are shown in Fig. 8. For quarksig. 8a)], the correla- (772)1/31
d,= —

q

tion function at very high density has a sharp peak at the > .
Fermi surface but it becomes broader as we decrease the K

density. This is of course due to the broadening of the gap\s we go to higher densities, the raig/d, increases mono-
which we found in Fig. 6. tonically as shown in Fig. ®). Namely loosely bound Coo-

For antiquarkgFig. 8(b)], the correlation is much weaker per pairs similar to the BCS superconductivity in metals are
than that of quarks and is a smoothly decreasing function ofprmed at extremely high densities.

k. Also, the magnitude of the correlation increases as we

decrease the density. Since (k)<u holds for densities

considered in this paper, the above features can be simply2ryis s a result of free quarks. To obtain accurate densignd
understood by an approximate relatiam, (k) ~A _(k)/2(k  d,, we have to include contributions from interaction. However,
+u). such correction is suppressed by the poweAof/ .
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(@) | T
_I T T TTTTIT T IIIIIIII T T TTTTIT _M=2A
.
R I p=2A
2 10
» - = pu=2A
Sy _
=
o -
T ——
Nz
1 | | | | |
0 2 4 6 8 10 12
all 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII ,UT’
10° 10* 10° 10°
1[MeV] FIG. 10. The quark-quark correlation functign (r) in the co-
ordinate spacep,(r) for several different chemical potentials.
s (b) ¢, (r) is normalized to be unity.
10 T T TTTTIT T IIIIIIII T IIIIIII|

ties, accumulation of the correlation near the origin in the
coordinate space is much more prominent in Fig. 10. This
implies a localized Cooper pair composed of quarks with
various momentum. This is also seen by the broad momen-
tum correlation in Fig. ).

IV. SUMMARY AND DISCUSSION

IIIII|.|.|.| IIIIILlI] IIIIILI.I] IIIILI.I.I] 1111

In this paper, we have studied the spatial-momentum de-
100 bl pendence of a superconducting gap and the structure of the
10° 10* 10° 10° Cooper pairs in two-flavor_color s_uperconduqtivity, usi_ng a
4[MeV] single model for a very wide region of density. Nontrivial
momentum dependence of the gap manifests itself at low
FIG. 9. (a) Density dependence of the coherence length.  densities, where relatively large QCD coupling allows the
Ratio of the coherence length and the average interquark distance Cooper pairing to take place in a wide region around the
d, as a function of the chemical potential. Fermi surface. Our results imply that the quark matter which
might exist in the core of neutron stars or in the quark stars
At the lowest density in Fig. 9, the size of the Cooper paircould be rather different from that expected from the weak-
is less than 4 fm and the rati§./d, is less than 10. The coupling BCS picture.
transition from ¢./d>1 to &./dy~1 as u decreases is Following is the summary of what we have discussed in
analogous to the transition from the BCS-type superconthis paper.
ductor to the so-called “strong coupling” superconductor. (1) At high density, the weak-coupling gap equation with
The weak-coupling BCS superconductivity may smoothlythe electric and magnetic gluons is a good approximation.
change into the Bose-Einstein condensatf®EC) of tightly =~ The momentum dependent quark-gluon vertex and the cou-
bound Cooper pairs as the coupling strength increfagls  pling to the antiquark pairing do not change the weak-
Our result here suggests that the quark matter possibly reatoupling result. The gap , (k) has a peak around the Fermi
ized in the core of neutron stars may be rather like the BEGurface with a width~2A _(«) and decreases rapidly &s
of tightly bound Cooper pairs. goes away from the Fermi surface. This is consistent with the
For better understanding of the internal structure of theanalytic solution of the gap equation in the weak-coupling
quark Cooper pair, let us consider the correlation function idimit. All the results indicate that the Cooper pairing takes
the coordinate space. Figure 10 shows the spatial correlatigulace only in a small region around the Fermi surface.
of a Cooper pair at various chemical potentials normalized as (2) At lower density, the weak-coupling gap equation is
Jd3 |, (r)|?=1. As is expected, the density dependence oho longer a good approximation. The momentum-dependent
the quark correlation in the coordinate space is opposite twertex and the coupling to the antiquark pairing have non-
that in the momentum space. At high density, most of thenegligible effects. The sharp peak at the Fermi surface dis-
quarks participating in forming a Cooper pair have the Fermiappears. These imply that a large number of Cooper pairs
momentumkg=u giving a sharp peak in the momentum away from the Fermi surface participate in the color super-
space correlation. In the coordinate space, this corresponds ¢tonductivity. This was confirmed by the quark occupation
an oscillatory distribution with a wavelengih=1/u without ~ numbers and the quark-quark correlation. Therefore, color
much structure near the origifiThe oscillation is also evi- superconductivity at low density is not a phenomenon in the
dent from the factor sinr) in the approximate correlation vicinity of the Fermi surface, but is a phenomenon with large
function Eq.(2.20 discussed in Sec. Il EAt lower densi-  modification of the Fermi surface.
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(3) The qualitative change of color superconductivity acknowledge V.A. Miransky for his interest in the work.
from high density to low density can be explicitly seen by
the ratio of the size of the quark Cooper pair to the averaged APPENDIX A: GAUGE DEPENDENCE OF A,
inter-quark distance. At high density, the ratio is very large ) ) _
(about 16 at u~10° MeV) which is consistent with the ~In this appendix, we discuss the gauge parameter depen-
standard BCS-type superconductivity. At lower densitiesdence of the gap equation fdr, at high density. We write
however, the ratio becomes smalabout 10 at u the gauge dependent contribution to the gap equation for
=800 MeV). This situation is rather similar to the “strong A+(k) asl(k). Neglecting the antiquark pole, it becomes
coupling” superconductor which could be described by a

Bose-Einstein condensate of tightly bound Cooper pairs. _ 9° (=, q(?
There are several future problems. (k)= ﬁJ’O quj_ld(cosa)
First, there are still several corrections to our “full” gap
equation. They include the full hard-dense-loop corrections A, (Q)
and the Meissner effect in the gluon propagator, and also the ERCIE 5Ke(qg,k;cos6), (A1)
use of the plasmino dispersion in the diagonal self-energy of +H@)"+A.(9)

the quark propagator. The latter effect induces only a sub-
leading change on the gap at the Fermi surface at high den!
sity [27,28, but may have non-negligible effects at lower
densities. For treating both the diagonal and off-diagonal Ko(q,k:x)=¢£-
parts of the quark self-energy, the standard Eliashberg for- g q
malism must be usef9,13. If we include all the above
effects, the gap equation with frequency and momentum as (g—kcosf)(k—qcosd) 1-—cosh
independent variables should be soly&a. X 42+ k2~ 2qk cosf T
Secondly, we assumed that there is no significant vacuum
effects in the present paper. If the density is close to the (A2)
critical density of chiral symmetry breaking, one must con- ) )
sider the interplay between the quark-antiquark condensate(K) should be added to the right-hand side of E213
and the quark-quark condensdt0,12,3]. This also re- When&#0. _ _
quires us to treat the diagonal and off-diagonal components NOW, if we setq=k=u before the angular integration,
of the fermion self-energy simultaneously, which corre-the kernel vanishes for all c@s namelyK (., u;c0s6)=0.
sponds to the Hartree-Fock-Bogoliubov theory in many-body! his is the standard argument that the gauge parameter de-
problem([32]. p_endence.does not appear m_the.gap equation at extremely
Thirdly, we have taken the Landau gauge O in this high density. Hoyvever, if we first mtegrate over c_ﬂ)sand
paper. As we discussed in Sec. Il D and in Appendix A, &he then take _th_e I|m|q,ka_,u, the result is nonzero. This can be
dependence in the gap equation remains as far as we prope@§€n explicitly by carrying out the angular integrakof and
treat the momentum dependence in the gap equation. ARY writing the result in terms of a variablé=(k/q
though it is a subleading contribution relative to the magnetict a/K)/2=1:
and electric interactions, it is desirable to develop a gauge

hereq- k=cos# andK is defined as

2qk
2+ k?—2qgkcosh

invariant formalism especially when one treats the low den- d(cosf) K.(q,k:cosf)= 5( y-1 In Y+1 1).
sity region. -1 e 2 Y-1
Lastly, it will be very intriguing to find a new way of (A3)

describing color superconductivity at low densities. The o ) ) . i
small size Cooper pairs with coherence length comparable tt We take the limitY— 1 in the right-hand side, the first term
the interquark distance suggests that BEC description may éisappears, but the second term survives and gives a gauge-

useful as in the analogous example in condensed mattéependent contribution £. One can trace back the origin of
physics® this situation by introducing a small regulaterto the col-

linear region of the integral cas-1. Then, the integral

above becomes
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In

The first term disappears irrespective of the ordeivef 1
3An analysis along this line has been discussed in fafusing  and e— +0. However, the second term vanishes only when
the linear sigma model for the diquark field. one takesy —1 beforee— 0. Namely,
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lim lim F(e,Y)=0, (A5)
e—0 Y—1
lim limF(e,Y)=¢. (A6)

Y—1 e—0

This noncommutability of the two limits arises from the fact

that F(e,Y) does not approach t6(0,Y) uniformly in the
regionY=1.
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N (= .
@ (r)= ﬁfe dad?jo(ar) e+ (q)

N
2ar

gA . (q)
V= )2+ A ()%

J:dqsin(qr)
(B2)

. _ _1 . . .
Therefore, if we integrate over the angular variable @os WNeréjo(x)=x""sinxis the Oth order spherical Bessel func-

exactly, the gap equation fax, (k) at high density has an
extra gauge-dependent contribution from the quark pole,

q AL(Q)
VEL (@)% +A,(q)?

(@-k? |(k+a)?

9° (=
2472 )0

(k)= —¢ ;

. (A7)

Compared with the leading magnetic contribution with the
kernel of logarithmic singularity, the above contribution is

considered to be a subleading effect.

APPENDIX B: PIPPARD LENGTH
IN THE WEAK-COUPLING LIMIT

In this appendix, we derive the Pippard length from the
correlation function in the weak-coupling region. We use the

two-point correlation function of quarks defined in £g8.18

AL(g)
VEL()2+A,(9)?

¢+ (q)= (B1)

Since . (q) is a function ofg(>0) only, its Fourier trans-
formation is given by

tion.

In the weak-coupling limit, the integral is dominated at
g~ . Then, by replacing\ , (q) by A, (x) and performing
the g integration approximately, one finds

AL ()
V= p)?+ AL (n)?

N )
~—_— d i
@+ () szrJ’o gsin(qr)

Nu® sin(ur) A, (u)
- T S K@ ),

(B3)

whereK, is the 0th modified Bessel function of the second
kind. Using its asymptotic form

« e g & T(n+12) 1
o2~ V32 "2 T(—n+ 12 ni2o"’

we obtain

r—oo 5 H
[PA L (p) sinpr
ry~N e

Wheregpz(vrAA,u))*l is the Pippard length.
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