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Decay constants, light quark masses, and quark mass bounds from light quark pseudoscalar
sum rules
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The flavorud and us pseudoscalar correlators are investigated using families of finite energy sum rules
~FESR’s! known to be very accurately satisfied in the isovector vector channel. It is shown that the combina-
tion of constraints provided by the full set of these sum rules is sufficiently strong to allow determination of
both the light quark mass combinationsmu1md , ms1mu and the decay constants of the first excited pseu-
doscalar mesons in these channels. The resulting masses and decay constants are also shown to produce
well-satisfied Borel transformed sum rules, thus providing nontrivial constraints on the treatment of direct
instanton effects in the FESR analysis. The values ofmu1md and ms1mu obtained are in good agreement
with the values implied by recent hadronict decay analyses and the ratios obtained from ChPT. New light
quark mass bounds based on FESR’s involving weight functions which strongly suppress spectral contributions
from the excited resonance region are also presented.
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I. INTRODUCTION

The divergence of the flavori j axial vector current in
QCD is related to the corresponding pseudoscalar densit
the Ward identity

]mAi j
m5~mi1mj !q̄i ig5qj . ~1!

As has been long recognized, this fact, together with
analyticity of the correlator,P i j (q

2), defined by

P i j ~q2!5 i E d4xeiq•x^0uT„]mAi j
m~x!]nAi j

n †~0!…u0&

[~mi1mj !
2P̂ i j ~q2!, ~2!

allows one to write down sum rules which relate the lig
quark mass combinationsmi1mj to the decay constants o
the flavor i j pseudoscalar mesons@1#. These sum rules
which include the basic unsubtracted dispersion relation~in-
volving P i j9 , and/or its derivatives! @1–6#, the Borel trans-
formed version of this relation@3,5,7–14#, and finite energy
sum rules@10,15–20#, have been used to either place boun
on mu1md andms1mu , or estimate their values.

The basic forms of these relations are, for the uns
tracted dispersion relation~DR!, the corresponding Bore
sum rule~BSR! @7#, and finite energy sum rules~FESR’s!,

P i j9 ~Q2!52E
0

`

ds
r i j ~s!

~s1Q2!3
~3!
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M6B@P i j9 #~M2!5E
0

`

dse2s/M2
r i j ~s!

.E
0

s0
dse2s/M2

r i j ~s!

1E
s0

`

dse2s/M2
r i j

OPE~s! ~4!

21

2p i Rusu5s0

dsw~s!P i j ~s!

5E
0

s0
dsw~s!r i j ~s!, ~5!

respectively, withr i j the spectral function ofP i j , s0 in line
2 of Eq.~4! the ‘‘continuum threshold’’@beyond whichr i j is
approximated by its operator product expansion~OPE!
form#, M the Borel mass, andw(s) in Eq. ~5! any function
analytic in the region of the contour.B@P i j9 #(M2) in Eq. ~4!
is the Borel transform of the OPE representation ofP i j9 (Q2)
@7#.

The LHS of either Eq.~3! or ~4! can be evaluated usin
the OPE provided the relevant scale (Q or M ) is large com-
pared to the QCD scale. For the FESR case, the cond
that s0 be similarly large is necessary, but not sufficient,
allow reliable evaluation of the LHS using the OPE. T
reason is that, except at extremely larges0, the OPE is ex-
pected to break down over some portion of the circle,usu
5s0, sufficiently near the timelike real axis@21#. In the fla-
vor ud vector channel, where the spectral function has b
determined very accurately from hadronict decay data
@22,23#, one can, in fact, verify this breakdown: FESR’s i
volving the weightsw(s)5sk with k50,1,2,3, which do not
suppress contributions from the region near the timelike r

cs,
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axis, are typically rather poorly satisfied at scales 2 Ge2

,s0,mt
2 @24#. At these scales, however, this breakdow

turns out to be very closely localized to the vicinity of th
timelike axis: as soon as one restricts one’s attention
weights with even a single zero ats5s0, the corresponding
FESR’s are very accurately satisfied over this whole rang
s0 @24#. Thus, for the ‘‘intermediate’’ scales 2 GeV2,s0
,4 GeV2 which will be of interest to us, we must als
include, as a condition for the reliability of the OPE repr
sentation of the LHS of Eq.~5!, the further requirement tha
w(s0)50. We will refer to FESR’s satisfying this criterion a
‘‘pinch-weighted’’ FESR’s~PFESR’s! in what follows.

In the region belows;4 GeV2, where the resonances i
the channels of interest (i j 5ud,us) are well-separated, th
spectral function will be dominated by contributions fro
the flavor i j pseudoscalar resonances,P. In the convention
where f p592.4 MeV andf K5113.0 MeV @25#, the corre-
sponding contribution tor i j , ignoring interference, is

@r i j ~s!#P52 f P
2mP

4B~s! ~6!

whereB(s)5d(s) in the narrow width approximation, with
the standard Breit-Wigner generalization to finite width,

B~s!5
1

p

GPmP

@~s2mP
2 !21GP

2mP
2 #

. ~7!

Experimentally, bothf p and f K are very accurately known
while the higher resonance@p(1300) andp(1800) for i j
5ud andK(1460) andK(1830) fori j 5us] decay constants
are unknown at present.1 The positivity of r i j (s), together
with the fact that the weights appearing in the spectral in
grals of Eqs.~3! and ~4! are.0, implies that thep ~or K)
pole contributions provide lower bounds to these integr
The same is true for Eq.~5! as long as the weightw(s)
employed is positive for 0,s,s0. These lower bounds al
low one to obtain corresponding lower bounds formu1md
and ms1mu @1#. To actually determinemu1md and ms
1mu , rather than just set bounds on them, however,
must at present provide theoretical input for the higher re
nance contributions. These contributions cannot be expe
to be negligible since thef P

2mP
4 factors for allP are formally

of the same order in the chiral expansion. In fact, in exist
analyses, the higher resonance contributions are typic
larger than thep ~or K) pole contributions—as an exampl
the p(1300) andp(1800) contributions to thes0-weighted
FESR used to determinemu1md in Refs.@10,20# are a factor
of ;223 times thep pole contribution.

Two approaches to constraining the higher resonance
tributions exist in the literature. In the first, additional su
rules have been used to provide an estimate of the de

1f p(1300) and f K(1460) could, in principle, be determined using da
from hadronict decay, but this would require disentangling the
contributions from spin 1 resonance contributions in the same
gion. Neither theud nor us spin decomposition for the excite
resonance region has been performed to date.
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constant of the first excited resonance@3,4,9,13,15–18#. In
the second, resonance dominance has been assumed to
good approximation, even in the 3p ~or Kpp) threshold
region, and known chiral perturbation theory~ChPT! expres-
sions for the threshold values of the spectral functions u
to normalize sums-of-Breit-WignerAnsätze for the higher
resonance contributions. Since the thresholds are typic
several resonance widths~or more! removed from the reso
nance masses, the peak normalizations~the features of the
resonance contributions to which the sum rule determi
tions of themi1mj are dominantly sensitive! will be am-
biguous in this approach, depending, for example, on
treatment of thes dependence of the ‘‘off-shell width.’’ Po-
tential dangers of this threshold normalization approach h
been discussed in Refs.@26,27#. The situation in theus sca-
lar channel, where the near-threshold behavior of the spe
function is significantly constrained by knownKp I 51/2
s-wave phase shifts, is particularly instructive. As shown
Ref. @27#, the near-threshold spectral function implie
through unitarity, by theKp phases and the resulting Omn
representation of the timelike scalarKp cannotbe well rep-
resented by the tail of a Breit-Wigner resonance form; a s
nificant background component, interfering constructive
with the resonance contribution in the threshold region,
required. The near-threshold normalization of the resona
contribution is, therefore, significantly reduced, producing
corresponding reduction in the value of the spectral funct
at theK0* (1430) resonance peak. This reduction is very s
nificant numerically: theK0* (1430) peak value of theus sca-
lar spectral function obtained in Ref.@27# ~albeit with some
additional assumptions about the high-s behavior of theKp
phase and the form of the Omnes representation! is a factor
of ;3 smaller than that obtained, using the thresho
resonance-dominance assumption~TRDA!, in Ref. @11#.
Even if one questions the additional assumptions which
into the precise numerical value of the reduction in this ca
one should bear in mind that the TRDAAnsatzfor the us
scalar channel was shown to correspond to a value of
slope of the timelikeKp form factor at threshold incompat
ible with that known from ChPT@27#. Further evidence of
the potential problems of the TRDA approach are provid
by the results of Ref.@24#. In Ref.@24#, the TRDAAnsätzeof
Refs. @10,20# for the ud pseudoscalar channel and of Re
@11,28# for the us scalar channel were tested using famili
of PFESR’s in which the OPE scales used were the sam
those employed in the earlier analyses.If the TRDA spectral
Ansatzfor a given channel is a good representation of
physical spectral function in that channel, and if the scale
the original analysis was such that the OPE representa
could be reliably employed, then PFESR’s constructed us
the same spectral ansatz for the same correlator should
be well satisfied. It turns out that, in both theud pseudo-
scalar andus scalar channels, the TRDA ansatz produce
very poor match between the OPE and spectral integral s
of the various PFESR’s@24#. In contrast, the match corre
sponding to theus scalar spectral function of Ref.@27# is
quite reasonable@24#.

In view of the above observations, we do not employ t
TRDA Ansatzfor the excited pseudoscalar contributions, b

e-
3-2
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instead constrain these contributions, in analogy to the tr
ment of the isovector vector and scalar channels in Ref.@29#,
by analyzing simultaneously two continuous families
PFESR’s, corresponding to the weightswN

A(y)5(12y)(1
1Ay) andwD

A(y)5(12y)2(11Ay), wherey[s/s0. As we
will show, the set of these constraints is sufficiently strong
allow determination of not only the excited resonance de
constants, but also the light quark mass combinations.
input required for this analysis, and the related BSR analy
is outlined briefly in the next section. Our final results, t
gether with a discussion of existing quark mass analyses
provided in Sec. III while Sec. IV contains our conclusion

II. INPUT FOR THE PFESR AND BSR ANALYSES

In this paper we perform both PFESR and BSR analy
of the flavor i j 5ud and us pseudoscalar correlators. Th
general BSR and PFESR forms are given in Eqs.~4! and~5!.
Lower bounds for the quark mass combinationsmi1mj are
obtained by neglecting spectral contributions other th
those associated with thep ~or K) pole on the RHS’s of
these equations, and employing the relevant OPE~which de-
pends onmi1mj ) on the LHS. In order to extend this analy
sis and obtain an actual determination ofmi1mj , rather than
just a lower bound on it, it is necessary to use the sum
constraints to simultaneously determine the resonance re
contributions to the relevant spectral functionand mi1mj .
This is possible only because the corresponding pole co
butions to the spectral function are very accurately know
and to the extent that it is possible to construct a reason
spectralAnsatzdescribing the resonance region. In the
mainder of this section we discuss the input required on b
the spectral and OPE sides of the BSR’s and PFESR’s
ployed in our analysis.

A. Input to the PFESR and BSR spectral integral sides

We take as our spectralAnsatzfor the ud pseudoscalar
channel the expression

rud~s!52 f p
2 mp

4 d~s2mp
2 !12 f 1

2m1
4B1~s!12 f 2

2m2
4B2~s!,

~8!

wherem1,2 are the Partial Data Group 2000~PDG2000! @25#
masses of thep(1300) andp(1800), f 1,2 are their~as yet
undetermined! decay constants, andB1,2(s) are the standard
Breit-Wigner forms. We have employed PDG2000 values
all resonance widths. The corresponding expression
rus(s) is obtained by the replacementsp→K, p(1300)
→K(1460) andp(1800)→K(1830). In order that thisAn-
satzprovide a good representation of the spectrum over
whole range required in the PFESR spectral integralss0

cannot be taken much greater thanm2
2; if it is, an unphysical

‘‘gap,’’ with little spectral strength, will be present in th
integration region. We therefore requires0 to remain less
than about (m21G2)2.4 GeV2. To create a good analysi
window in s0 without at the same time sacrificing good co
vergence of the integratedD50 OPE series, we also tak
s0.3 GeV2. Note that, sincem2

2 lies in the lower half of the
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resulting analysis window, 3 GeV2,s0,4 GeV2, it is nec-
essary to include the second resonance in the spectralAnsatz.
Although the structure of the PFESR and BSR weights
such that the second resonance contribution is weighted
strongly than the first resonance contribution to the spec
integral, the former is typically not negligible~especially for
the BSR analysis, and fors0 in the upper part of the PFESR
analysis window!.

It is worth stressing that it is necessary to use the fin
width representation of the resonance contributions~rather
than the simpler narrow width approximation! in order to
minimize uncertainties in the determination of the dec
constantsf 1 and f 2. The reason is that, by using the expe
mental widths~together with their experimental errors!, one
to some extent incorporates a partial representation of c
tinuum contributions. There are two pieces of evidence
suggest that this approximation is actually rather accurate
least for the purposes of PFESR determinations of resona
decay constants. The first concerns the isovector vector c
nel. In this channel, if one ignores the experimental spec
data and instead uses the PFESR OPE integrals to fit
decay constants of a spectralAnsatzconsisting of a sum of
Breit-Wigner resonance contributions in which one emplo
PDG2000 values for the resonance masses and widths,
obtains a value of ther decay constant in agreement with th
experimental value to better than the experimental error@29#.
The second piece of evidence concerns a channel in w
there is known to be considerable non-resonant backgro
namely the flavorus scalar channel. As noted already in Se
I, a spectralAnsatzfor this channel was constructed by C
langelo, De Fazio, Nardulli, and Paver@27# ~CFNP! using
unitarity and the Omnes relation for the timelike scalarKp
form factor. BSR’s and PFESR’s based on thisAnsatzshow a
good match between OPE and spectral integral sides, o
ms has been fixed@27,24#. An important feature of the spec
tral Ansatz, for our purposes, is that it displays a significa
continuumKp contribution above threshold not well repre
sented by the tail of aK0* (1430) resonance contribution
This is the type of situation where one might expect a su
of-resonances approximation to the spectral function to p
duce a theoretical systematic error in the determination
any resonance decay constants extracted by fitting to the
ues of the PFESR~or BSR! OPE integrals. However, if one
takes the OPE to be fixed~using the value ofms correspond-
ing to the CFNPAnsatz!, and fits the resonance decay co
stants of the less realistic sum-of-resonancesAnsatzto the
PFESR OPE integrals~using PDG2000 input for the reso
nance masses, widths and errors! one finds that the outpu
K0* (1430) decay constant matches that of the CFNPAnsatz
to better than 3%. Since the uncertainties in the decay c
stants produced by the use of the sum-of-resonances form
in both of the examples discussed above, less than;3%,
and since such an uncertainty would have negligible imp
on the total errors on our decay constant determinations
low, we will neglect this error in what follows.

The ability to avoid unphysical spectral gaps represen
potential advantage of the PFESR framework over its B
counterpart. For BSR’s, the continuum threshold,s0, is usu-
3-3
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ally set by requiring an optimal stability window with respe
to the Borel mass,M. Taking thei j 5us analysis of Ref.@12#
as an example, and considering the case,LQCD5380 MeV,
which most closely corresponds to the current experime
determination ofas(mt

2), the stability window is optimized
for s0 between 6 and 8 GeV2 @12#. The resulting spectra
Ansatz, therefore, has a gap with very little spectral stren
from about 5 to 6 or 8 GeV2. It is also worth noting that,
after Borel transformation, the scale relevant to the runn
coupling in the OPE ism5M . For the correlators of interes
to us the convergence of the transformedD50 series be-
comes good only forM2 greater than about 2 GeV2. Even if
one is willing to tolerate a spectral gap by allowings0
;6 GeV2, this means thats0 /M2 will be ;1 – 2 over much
of any putative stability window inM. Such a condition sig-
nals non-trivial contributions from the ‘‘continuum’’ region
where only a relatively crude approximation to the spec
function is being employed. This leaves only a small ran
of M having both good OPE convergence and accepta
small continuum contributions~say less than;30% of the
D50 OPE term!. With such a small range ofM, the BSR
constraints are not sufficiently strong to allow a simultane
determination of the quark masses and excited resonanc
cay constants. In the case of PFESR’s, empirical evide
from the isovector vector channel suggests that contribut
analogous to the less reliable continuum BSR contributi
~i.e., those contributions from the region of the contourusu
5s0 near the timelike real axis, where the OPE is expec
to break down! are strongly suppressed by the restriction
weights satisfyingw(s0)50.

B. Input to the PFESR and BSR OPE sides

The OPE representation ofP i j9 (Q2) is known up to di-
mensionD56, with the dominantD50 perturbative contri-
bution known to 4-loop order@11,28#. The D50 term is
given by @28#

@P i j9 ~Q2!#D505
3

8p2

~m̄i1m̄j !
2

Q2 S 11
11

3
ā114.1793ā2

177.3683ā3D , ~9!

where ā[a(Q2)5as(Q
2)/p, m̄k[mk(Q

2), with as(Q
2)

andm(Q2) the running coupling and running mass at sc
m25Q2 in the modified minimal subtraction (MS) scheme.
The D52 term involves quark mass corrections to the le
ing D50 result. For i j 5ud it is numerically negligible,
while for i j 5us it is given by @28#

@Pus9 ~Q2!#D5252
3

4p2

~m̄s1m̄u!2m̄s
2

Q4 S 11
28

3
ā1F8557

72

2
77

3
z~3!G ā2D . ~10!
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In writing Eq. ~10!, we have dropped terms involvingmu,d ,
except in the overall prefactor (m̄s1m̄u)2. The D54 ud
contributions are@11#

@Pud9 ~Q2!#D545
~m̄u1m̄d!2

Q6 S 1

4
V41

4

9
āV3

ss2F11
26

3
āG

32m̂^ūu&2
3

28p2
m̄s

4D , ~11!

where V4 and V3
ss are the RG invariant modifications o

^aG2& and^mss̄s& defined in Ref.@11#, m̂5(mu1md)/2, and
we have dropped numerically negligible terms ofO(m̂4); the
D54 us contributions are, similarly,@11#

@Pus9 ~Q2!#D545
~m̄s1m̄u!2

Q6 S 1

4
V41F11

64

9
āGV3

ss

22^msūu&F11
23

3
āG

2
3

7p2 F1

ā
1

155

24 Gm̄s
4D , ~12!

where we have again dropped terms suppressed by powe
m̂/ms relative to those shown, except in the overall (m̄s

1m̄u)2 prefactor. Finally, theD56 contributions are@11#

@P i j9 ~Q2!#D565
~m̄s1m̄u!2

Q8 S 23@^migq̄js•Gqj

1mjgq̄is•Gqi&#2
32

9
p2arVSA@^q̄iqi&

2

1^q̄ jqj&
229^q̄iqi&^q̄ jqj&# D , ~13!

whererVSAdescribes the deviation of the four-quark conde
sates from their vacuum saturation values.

In writing down the theoretical representation ofP i j for
use on the LHS’s of our BSR’s and PFESR’s, one must b
in mind that, in scalar and pseudoscalar channels, potent
important contributions from direct instantons exist whi
are not incorporated in the standard OPE representatio
P i j @30#. Such contributions are, in fact, needed to produc

Borel transform,B@P̂ud#(M2), which behaves correctly~i.e.,
is independent ofM ) in the chiral limit @30–33#. The instan-
ton liquid model~ILM ! @34# provides a tractable framewor
for estimating such contributions. In the ILM, an avera
density ~related to the value of the gluon condensate! and
fixed average size are employed for the instanton distri
tion. Phenomenological constraints require the average
stanton size,r I to be .1/0.6 GeV @31,32,34#. Instanton
contributions toB@Pud#(M2) then exceed one-loop pertu
bative contributions belowM2;1 GeV2, but drop to less
3-4
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than;15% of this contribution forM2;2 GeV2 @32#.2 Di-
rect instanton contributions have been neglected in re
treatments of theud and us pseudoscalar channels, apa
from the BSRud analyses of Refs.@13,14#, both of which
employed the ILM. The numerical impact of the neglect
these contributions should be small for BSR analyses
scalesM2.2 GeV2 since the Borel transform is known t
rather strongly suppress ILM contributions with increasi
scale.3 This is, however,not true of FESR analyses, fo
which ILM contributions fall off, relative to theD50 per-
turbative contributions, much more slowly with increasi
s0.

In what follows, we will use the ILM to estimate direc
instanton contributions to thewN

A and wD
A PFESR’s. ILM

contributions to PFESR’s corresponding to polynom
weights can be evaluated using the result@36#

21

2p i Rusu5s0

ds sk@P̂ i j ~s!# ILM

5
23h i j

4p E
0

s0
ds sk11J1~r IAs!Y1~r IAs!, ~14!

wherehud[1, hus is anSU(3)-breaking factor whose valu
in the ILM is ;0.6 @32#, and the result is relevant to scale
;1 GeV2.

One should bear in mind that phenomenological supp
for the ILM exists primarily for those scales (;1 GeV2)
where instanton contributions are numerically important
pseudoscalar BSR’s, and that this scale is significantly lo
than that (;3 –4 GeV2) relevant to our PFESR analysis.
is, therefore, useful to have an independent test of our us
the ILM representation of instanton effects. In this rega
one can take advantage of the much stronger suppressio
ILM contributions in the BSR framework. The basic idea
as follows. One first determines the excited meson de
constants for the channel of interest, using the PFESR fra
work. These values then determine thes,s0 part of the
spectralAnsatzfor a BSR treatment of the same chann
~The spectral function fors.s0 is, as usual, approximate
using the continuumAnsatz; we fix the continuum threshold
s0, following standard practice, by optimizing the stability
the output, in this case, the quark mass combination,mi
1mj , with respect toM2.! For M2;2 GeV2, where ~1!
convergence of the Borel transformedD50 series is still
reasonable and~2! continuum contributions are still rela
tively small ~not yet exceeding;30% of perturbative con-
tributions!, the resulting BSR should then allow determin
tion of the only remaining unknown,mi1mj , with good
accuracy. The ILM contributions play little role on the OP

2The combination of 2-, 3- and 4-loop contributions rough
doubles the Borel transformed 1-loopD50 contribution atM2

52 GeV2, hence further suppressing the ratio of ILM to perturb
tive contributions.

3For example, the bound obtained in Ref.@14# is raised by,5%
if ILM contributions are turned off@35#.
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1ILM side of the BSR’s at these scales, but are import
for the PFESR’s, and hence for the values of the resona
decay constants used as input to the BSR’s. If the ILM r
resentation of direct instanton effects is reasonable at
scale of the PFESR analysis, the PFESR and BSR dete
nations ofmi1mj , which will then have been obtained us
ing the same excited resonance decay constants, shou
compatible within their mutual errors. Since the continuu
approximation for the spectral function is a relatively cru
one, and the stability criterion for choosings0 typically
leaves a gap in the BSR spectral model, there are uncer
ties in the BSR analysis beyond those associated with
uncertainties in the OPE input, which are shared by
PFESR and BSR analyses. In order to get a rough estima
these additional uncertainties we allows0 to vary in an in-
terval of size 1 GeV2, i.e., by60.5 GeV2 about the value
corresponding to optimal stability, and assign a620% error
to the size of continuum spectral contributions. Since thes0
values we obtain are.3.7 GeV2, we consider the latter es
timate sufficiently conservative.4 The uncertainties onmi
1mj induced by use of the continuum approximation a
then not large, particularly in the region nearM252 GeV2,
where the BSR continuum contributions are less than;30%
of theD50 OPE term. The BSR/PFESR cross-check is, a
result, most reliable at these scales.5

Numerical values of the input required on the OP
1ILM side of the sum rules are as follows:r I

51/(0.6 GeV) @32,34#, as(mt
2)50.3346.022 @22,23#,

^asG
2&5(0.0760.01) GeV4 @37#, (mu1md)^ūu&5

2 f p
2 mp

2 ~the GMOR relation!,6 0.7,^s̄s&/^ūu&[r c,1

@11,28#; ^gq̄sFq&5(0.860.2 GeV2)^q̄q& @39# and rVSA
5565 ~i.e., allowing, to be conservative, up to an order
magnitude deviation from vacuum saturation for the fo
quark condensates!. The D50,2 and 4 contributions to the
OPE integral have been evaluated using conto
improvement@40,41#, which is known to improve conver
gence and reduce residual scale dependence@41#. For this
purpose, we employ the analytic solutions for the runn
coupling and running mass obtained using the known 4-lo
truncated versions of theb @42# andg @43# functions, with
the value ofas(mt

2) noted above as input.

-

4For the analogous cases of theud vector and axial vector chan
nels, where the hadronic spectral functions are known experim
tally from hadronict decay data, themaximumdeviation of the
actual spectral function from its 4-loop OPE continuum approxim
tion is less than;1/3 of the OPE version in the interval 2 GeV2

,s,mt
2 @22#. Note that these scales are smaller than those

which we will be employing the continuum approximation, and th
we are concerned with theaverage, rather than maximum, deviation
in the ranges.s0.

5The ratio of the continuum to theD50 OPE contribution grows
relatively rapidly with M2. For theud case, for example, it has
already reached;50% by M253 GeV2 and ;65% by M2

54 GeV2.
6Deviations from the Gell-Mann–Oakes–Renner~GMOR! rela-

tion have recently been shown to be at most 6%@38#. The resulting
error on thems analysis is completely negligible.
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III. RESULTS AND DISCUSSION

In this section we present our results. We first discuss
quark mass bounds, obtained by neglecting the reson
spectral contributions proportional tof 1,2

2 and then discuss
the more complicated analysis in which bothmi1mj and f 1,2
are obtained simultaneously. Finally we provide a detai
discussion of the relation of our results to other recent s
rule determinations of the light quark masses.

A. Quark mass bounds

Bounds for the light quark masses based on the kno
values of thep or K pole contributions and the positivity o
the spectral function, whether obtained using the dispers
formulation, BSR’s or FESR’s, all depend on the scale e
ployed in the OPE. Since, at the scales for which the res
ing bounds are of phenomenological interest, theO(a2) and
O(a3) terms in the integratedD50 OPE series are not nu
merically negligible, earlier versions of these bounds, ba
on two-loop and three-loop forms of theD50 part of
Pud,us , are superceded by the work of Ref.@6# ~LRT!, which
employed the 4-loop OPE expression. The bounds of L
are based on the dispersion relation forP i j9 , and the higher
derivative moments thereof. Restricting our attention to
results in LRT corresponding most closely to the experim
tal value as(mt

2)50.334, i.e.,LQCD
(3) 5380 MeV, the most

stringent bounds arise from what in LRT is called the ‘‘qu
dratic inequality’’@6#. These bounds decrease with increas
OPE scale,Q2, and, forQ254 GeV2, yield ~from Figs. 2
and 3 of LRT!

@ms1mu#~m52 GeV!.105 MeV

@mu1md#~m52 GeV!.8.1 MeV. ~15!

Normally one would expect the convergence of the 4-lo
D50 OPE series to be quite good at scales as large asQ2

54 GeV2. In this case, however, the denominator appear
on the RHS of the quadratic bound@see Eq.~19! of LRT#,
which has the form

@3F 0
QCDF 2

QCD22~F 1
QCD!#511

25

3
ā161.79ā2

1517.15ā31•••, ~16!

is very slowly converging, behaving as 110.8310.61
10.51 at Q254 GeV2. The bounds in Eq.~15! are thus
likely to have a significant residual uncertainty associa
with the truncation atO(a3).7 The behavior of theD50
series is in fact much better for the zeroth moment L
bound. At the lowest scale shown in Fig. 1 of LRT (Q

7If one wished to work, e.g., at a scale such that theO(a3) term in
Eq. ~16! were less than;20% of the leading term, one would nee
to go toQ2;9 GeV2, at which scale the bounds on@ms1mu#(m
52 GeV) and@mu1md#(m52 GeV) would be reduced to;60
and;3.4 MeV, respectively.
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51.4 GeV), the behavior of theD50 series is 110.45
10.2210.15, already quite well-converged. The correspon
ing bound onms1mu which, reading from Fig. 1, is

@ms1mu#~m52 GeV!.80 MeV, ~17!

thus seems to us to be subject to significantly less truncat
induced uncertainty. Although the zeroth moment bound
mu1md is not quoted in LRT, the result of Eq.~17!, together
with the resultR[2ms /(mu1md)524.461.5 determined
from ChPT@44#, would imply

@mu1md#~m52 GeV!.6.6 MeV. ~18!

The result of Eq.~18! is in good agreement with the boun
obtained by the same authors@6# from the study of theud
scalar channel8 using constraints on the timelike scala
isoscalarpp form factor from ChPT andpp phase shift
data in the region 4mp

2 ,s,(500 MeV)2 ~see Fig. 4 of
LRT!,

@mu1md#~m52 GeV!.6.8 MeV. ~19!

An analogous bound forms was obtained from a treatment o
the us scalar correlator employing ChPT constraints for t
timelike scalarKp form factor @46#. Taking the case from
that reference corresponding to the plausible assumption
the one-loop ChPT expression for theKp form factor is
accurate to the 0.5– 1% level in the region 0,s,mK

2 2mp
2 ,

the resulting bound is

8The D50 OPE series corresponding to this bound has the s
~good! convergence behavior as that given for the zeroth mom
bound above.

FIG. 1. The behavior of the weightw20(y) in the PFESR inte-
gration region.
3-6
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ms~m52 GeV!.65 MeV, ~20!

which is less stringent than that in Eq.~17!. Other recent
bounds are~1! that obtained in Ref.@45# by combining the
upper bound on̂q̄q&(1 GeV) allowed by the analysis of th
D→K* ln l vector form factor with the~assumed to be well
satisfied! GMOR relation

@mu1md#~2 GeV!.6.8 MeV, ~21!

and ~2! that obtained in Ref.@14# using BSR’s and Ho¨lder
inequalities at scales;mt

@mu1md#~2 GeV!.4.2 MeV. ~22!

Note that the latter bound was obtained including ILM co
tributions on the OPE side of the sum rule; the bound
;5% higher if ILM contributions are turned off@35#. All
other bounds noted above were obtained neglecting d
instanton contributions. This neglect should have little i
pact on dispersive bounds such as that of Eq.~17! since, if
one uses the ILM to estimate these effects, the lower bo
of Eq. ~17! is reduced by only 3 MeV.

An alternate approach to using the positivity ofr i j to
obtain quark mass bounds is to employ PFESR’s w
weights satisfyingw(s)>0 in the region 0,s,s0. A poten-
tial advantage of this approach is the freedom to cho
weights which strongly suppress contributions from the
cited resonance region. Strong suppression of this t
should lead to bounds which are ‘‘close’’ to the actual ma
values. One can arrange such strong suppression by cho
w(y)5(12y)Np(y) with N sufficiently large. Herep(y) is
a ‘‘residual polynomial’’ which has to be chosen in such
way as to~1! keep the coefficients inw(y) small~thus avoid-
ing the growth of unknown higherD contributions!9 and~2!
retain good convergence of the integratedD50 OPE series.
The construction of such weights was considered in a dif
ent context previously@47#. Here we consider quark mas
bounds based on PFESR’s employing the three weight
this type constructed in Ref.@47#. It turns out that both the
D50 OPE convergence and the stringency of the resul
bounds is best for the case of the weight calledw20(y) in
Ref. @47#, so we present results only for this case. The
havior of w20(y) in the integration region (0,y,1) is
shown in Fig. 1.~Its explicit form may be found in Ref
@47#.! For s054 GeV2, the contour-improvedD50 OPE
series for thew20 PFESR, truncated atO(a3), converges
quite reasonably, behaving as;110.5510.2810.19. More-
over, since, for example, if we defineyK(1460)

[mK(1460)
2 /4 GeV2, w20(yK(1460))50.11, there will be

nearly an order of magnitude suppression of excited re

9Without this constraint, working with high powers of the fact
(12y) typically produces polynomials with large coefficients f
the higher degreeyk terms. Sinceyk terms with largek are associ-
ated with OPE contributions of large dimension, which are poo
constrained phenomenologically, largeyk coefficients signal poten
tially large, and essentially unknown, non-perturbative contri
tions @48,49#, and hence must be avoided.
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nance contributions, relative to theK contribution, in theus
channel. Unfortunately, theD50 convergence deteriorates
one tries to go to lowers0, where this suppression would b
much stronger. Ignoring possible direct instanton contrib
tions, one obtains

ms~2 GeV!.93 MeV. ~23!

The convergence is obviously not sufficiently rapid that o
should rule out values of the bound a further;5 or so MeV
lower. The analogous bound formu1md is

@mu1md#~2 GeV!.6.6 MeV. ~24!

These bounds should be compared only to those bou
listed above which also neglect possible instanton effects
expected, the rather strong suppression of excited reson
contributions relative toK pole term produces a bound o
ms , Eq. ~23!, which is more stringent than the zeroth m
ment LRT bound. Themu1md bound of Eq.~24!, however,
remains comparable to the LRTmu1md bound, though still
having the advantage that one would expect it to represe
better approximation to the true value. If one now incorp
rates an estimate of direct instanton effects using the IL
the bounds of Eqs.~23! and ~24! are reduced to

ms~2 GeV!.84 MeV ~25!

and

@mu1md#~2 GeV!.5.7 MeV. ~26!

The bound of Eq.~25! remains slightly more stringent tha
that of Eq.~17!. A more stringent bound onmu1md ,

@mu1md#~2 GeV!.6.9 MeV, ~27!

can be obtained using Eq.~25! in combination with the mass
ratios obtained from ChPT@44#.

To go beyond these bounds, we must attempt to also
termine the excited resonance decay constants as part o
PFESR analysis. This extension of the analysis is descr
in the next section.

B. Quark masses and excited meson decay constants

To simultaneously extractmi1mj and the corresponding
excited pseudoscalar decay constants, we have perform
combined analysis of PFESR’s based on the weight fami
wN

A(y) and wD
A(y). Our s0 analysis window was 3 GeV2

<s0<4 GeV2. For theses0, the D50 OPE series con-
verges well for allA>0, and the spectralAnsatzshould be of
the correct qualitative form. Larger values ofA correspond to
larger relative contributions from the excited resonance
gion, and hence are useful for constraining the unkno
resonance decay constants. To explore sensitivities to
choice of analysis regions, we have also considered the
ternate ranges 3.6 GeV2<s0<4 GeV2 and 2<A<6, as
well as considering separatewN

A(y) and wD
A(y) analyses

~thus checking the mutual consistency of the PFESR’s co
sponding to the two weight families!. The only significant

y

-
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KIM MALTMAN AND JOACHIM KAMBOR PHYSICAL REVIEW D 65 074013
impact of uncertainties in the experimental input for the re
nance parameters is that occurring in theud analysis, asso-
ciated with thep(1300) width; this is a consequence of th
rather wide range, 200,G(p(1300)),600 MeV given in
the PDG2000 compilation. In what follows, we quote erro
from this source separately, labelling them with the subsc
‘‘ G.’’ Uncertainties associated with changes in thes0 andA
analysis windows and weight family choice are added
quadrature and denoted by the subscript ‘‘method.’’ Fina
those errors denoted by the subscript ‘‘theory’’ are obtain
by combining in quadrature errors associated with uncert
ties in the OPE input parametersrVSA, ^asG

2&, as(mt
2) and

r c and our estimate of the error due to truncation of
dominantD50 OPE contribution at 4-loop order. The latt
is obtained by evaluating theO(a4) contribution that would
result if we assumed continued geometric growth of the
efficients, i.e., the presence of an additional term;422ā4 in
the polynomial factor of Eq.~9!.10 It turns out that, when
ILM contributions are included, thes0 dependence of the
theoretical side is such that the contribution of the sec
resonance on the spectral side must be relatively smal
both channels. As a result, the corresponding decay con
can be determined with only limited accuracy. When quot
results for the second decay constant in this case, we
therefore, display only the range of values allowed by
combined@i.e., ‘‘theory,’’ ‘‘method’’ and ~for theud channel
only! ‘‘ G ’’ # errors. The analysis of theud channel has been
described briefly already in Ref.@51#.

The results obtained from the analysis, when ILM con
butions are included on the theoretical side of the PFES
are as follows. For theud channel we have

@mu1md#~2 GeV!57.860.8G60.5theory60.4method MeV
~28!

f p(1300)52.2060.39G60.18theory

60.18method MeV ~29!

0, f p(1800),0.37 MeV, ~30!

and for theus channel

ms~2 GeV!510064theory65method MeV ~31!

f K(1460)521.461.6theory62.3method MeV
~32!

0, f K(1830),8.9 MeV. ~33!

Note that the ‘‘theory’’ errors do not yet include an estima
of the error associated with the crudeness of the ILM rep
sentation of direct instanton effects. We will return to th
point below. From Eqs.~28! and~29!, we see that the uncer
tainty in thep(1300) width is, in fact, the dominant sourc
of error in the determination of bothmu1md and f p(1300).

10In view of the discussion in Sec. 5 of Ref.@50#, this estimate is
likely to be a very conservative one.
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To get a feel for the relative size of the various contributio
to the ‘‘theory’’ error we note that, for theud case, the errors
in @mu1md#(2 GeV) due to the uncertainties noted abo
on the input parametersrVSA, ^asG

2&, as(mt
2) and trunca-

tion at O(a3) are60.25, 60.05, 60.28 and60.25 MeV,
respectively. The corresponding contributions to the err
on ms(2 GeV) are61.5, 60.4, 62.3 and63.1 MeV, re-
spectively, with a further contributions of60.2 MeV due to
the range ofr c employed in this case. The agreement b
tween the OPE and spectral integral sides of the vari
PFESR’s corresponding to the results above is very go
The fit quality for theus channel is displayed, for thewN

A and
wD

A families, in Figs. 2 and 3, respectively. The analogouswN
A

andwD
A fits for theud channel are shown in Figs. 4 and 5

Ref. @51#, respectively. The ratioR525.662.6 implied by
the above results is in good agreement with the value, 2
61.5 obtained from ChPT in Ref.@44#.

If one repeats the PFESR analysis, but now with the IL
contributions set to zero, one finds, for theud case,

@mu1md#~2 GeV!59.961.2G61.0theory60.5method MeV
~34!

f p(1300)52.4160.50G60.21theory

60.27method MeV ~35!

f p(1800)51.3660.16G60.09theory

60.11method MeV, ~36!

FIG. 2. The OPE1ILM versus hadronic~spectral integral! sides
of the us wN

A family of PFESR’s, forms1mu , f K(1460) and f K(1830)

given by the central values of Eqs.~31!, ~32! and ~33!. The solid
lines are the hadronic integrals, the dashed lines the correspon
OPE integrals. The lower, middle and upper lines in each case
respond toA50, 2 and 4, respectively.
3-8
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DECAY CONSTANTS, LIGHT QUARK MASSES, AND . . . PHYSICAL REVIEW D65 074013
and, for theus case,

ms~2 GeV!511667theory63method MeV ~37!

f K(1460)522.962.1theory61.2method MeV ~38!

f K(1830)514.561.5theory60.4method MeV. ~39!

The corresponding OPE versus spectral integral matc
again excellent. This is illustrated for theus case, for thewN

A

family of PFESR’s, in Fig. 4.~The agreement for the corre
spondingwD

A PFESR’s as well as that for theud case is not
shown explicitly, but is, in fact, of equal quality to that fo
theus wN

A family.! The resulting mass ratio,R523.362.8, is
also in good agreement with that obtained from ChPT.
thus see that, while the PFESR fit provides a good dete
nation ofmi1mj and the resonance decay constantsonce the
form of the theoretical side of the sum rule (i.e., wheth
including or excluding ILM contributions) has been fixed, it
does not, by itself, provide any additional evidence as
whether inclusion or exclusion of these contributions is
vored. While inclusion of ILM effects is, of course, indicate
by arguments external to the PFESR analysis, the PFE
analysis itself shows only that, in the absence of these c
tributions, significantly larger values of the relevant qua
mass combination and second resonance decay constan
required in both theud andus channels.

We now turn to the BSR analyses of theud andus chan-
nels, which should provide additional constraints on the IL
modeling of instanton effects in the PFESR analyses.
pressions for the Borel transforms of the OPE side of
sum rules can be found in Refs.@11,12,28#, and that for the

FIG. 3. The OPE1ILM versus hadronic~spectral integral! sides
of the us wD

A family of PFESR’s forms1mu , f K(1460) and f K(1830)

given by the central values of Eqs.~31!, ~32! and ~33!. The identi-
fication of OPE and hadronic integrals, and the casesA50,2,4 is as
for Fig. 2 above.
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Borel transform of the ILM contributions in Ref.@13#. We
take central values for all OPE input, and employ the cor
sponding central values for the excited resonance decay
stants, determined above, as input to the BSR analysis
facilitate the BSR-PFESR comparison, we quote only th
errors present in the BSR analysis which donot also enter
the PFESR analysis, namely those associated with~1! the
60.5 GeV2 variation of the continuum threshold paramet
s0 about its optimal stability value and~2! the assumed 20%
uncertainty in the size of the continuum spectral contrib
tion. ~Additional errors, associated with uncertainties in t
values of the OPE input parameters, are common to b
analyses, and the corresponding errors, as a result,
strongly correlated between the PFESR and BSR tr
ments.! To be conservative, we take, as our estimates
these errors, the maximum change in the value extracted
mi1mj in our BSR analysis window~see below! produced
by the stated variations ins0 and the magnitude of the con
tinuum contribution. These two sources of error have be
combined in quadrature in quoting results below. A conve
tional rule-of-thumb is that the BSR analysis window shou
be restricted toM2 values for which the perturbative con
tinuum contribution is less than;50% of the OPE contribu-
tion ~for a discussion see, for example, Ref.@52#!. Since, for
theud case, this corresponds toM2 less than;3 GeV2, we
work with a BSR analysis window 2 GeV2<M2

<3 GeV2.
The dependence of@mi1mj #(2 GeV) onM2 in the ex-

tended range 2 GeV2<M2<4 GeV2 resulting from the
BSR ILM analyses is shown in Fig. 5 fori j 5us. ~The analo-

FIG. 4. The OPE versus hadronic~spectral integral! sides of the
us wN

A family of PFESR’s forms1mu , f K(1460) and f K(1830) given
by the central values of Eqs.~37!, ~38! and~39!, i.e., in the absence
of ILM contributions. The identification of OPE and hadronic int
grals, and the casesA50,2,4 is as for Fig. 2 above.
3-9
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KIM MALTMAN AND JOACHIM KAMBOR PHYSICAL REVIEW D 65 074013
gous result fori j 5ud is shown in Fig. 6 of Ref.@51#.! The
solid line corresponds to the optimal stability value ofs0, the
upper and lower lines to values 0.5 GeV2 lower and higher,
respectively. The quark mass values obtained from
analysis are

@mu1md#~2 GeV!57.560.9 MeV ~40!

ms~2 GeV!59169 MeV. ~41!

These results are to be compared to the central PFESR
ues of Eqs.~28! and~31! above. The consistency of the tw
determinations is excellent for theud channel, but only mar-
ginally acceptable for theus channel. The consistency of th
central PFESR and BSRus determinations can be improve
by allowing somewhat larger values ofhus . For example,
hus50.8 produces a central valuems(2 GeV)597 MeV,
with a corresponding central BSR determination
69 MeV, while hus51 corresponds toms(2 GeV)
592 MeV ~PFESR! and 87610 MeV. In view of the size
of the BSR errors, such improvement cannot be taken
physically meaningful; this exercise does, however, indic
that errors comparable in size to the difference of the PFE
and BSR central values, associated with the crudeness o
ILM representation of instanton effects, may still be pres
in the PFESR results. We will therefore include an additio
ILM-induced error, to be discussed in more detail below,
the final version of our errors for the light quark masses.

FIG. 5. The value of@ms1mu#(2 GeV), as a function of the
square of the Borel mass,M2, extracted from the BSR analysis o
the us pseudoscalar correlator described in the text. The solid
corresponds tos054.22 GeV2, which produces optimal stability
for ms1mu with respect toM2 in the window 2 GeV2<M2

<3 GeV2. The lower ~short! dashed line corresponds tos0

54.72 GeV2 and the upper~long! dashed line tos053.72 GeV2.
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For the case in which ILM contributions are included, t
BSR results, corresponding to central values of all input, a
the corresponding central values of the resonance decay
stants, are

@mu1md#~2 GeV!58.860.6 MeV

ms~2 GeV!510066 MeV, ~42!

which are to be compared to the central values of Eqs.~34!
and ~37!. The PFESR determinations in both cases lie s
nificantly outside the range allowed by the BSR error.

Consistency between PFESR and BSR analyses thu
vors inclusion of the ILM contributions. To see that the lev
of inconsistency between the PFESR and BSR results in
absence of ILM contributions is, in fact, significant, the fo
lowing exercise is useful. Rather than optimizing the PFE
analysis by varying simultaneouslymi1mj , f 1 and f 2, we
may, for each value ofmi1mj , find the values off 1 and f 2
which produce the best OPE versus spectral integral ma
We then use these values off 1 and f 2, as usual, as input to
the corresponding BSR analysis and look for those value
mi1mj for which the PFESR input value is compatible wi
the BSR output value, within the additional errors of t
BSR analysis.

For theud case, in the absence of ILM contributions, th
compatibility is obtained only for@mu1md#(2 GeV) less
than 8.1 MeV~PFESR value!/7.6 MeV ~BSR value!. Tak-
ing the ‘‘marginal’’ case, corresponding to the PFESR va
@mu1md#(2 GeV)58.1 MeV to be specific, one finds tha
although the quality of the OPE1ILM versus spectral inte-
gral match is significantly worse than that for the fully op
mized fit above, it is perhaps still acceptable~see Fig. 6 for
the fit quality for thewD case; the quality is comparable
though marginally better, for thewN case!. Thus, in this case,
although the inclusion of ILM contributions is favored, w
do not consider it possible to rule out their absence. No
however, that the analysis, in the absence of ILM contrib
tions, is only self-consistent for values ofmu1md compat-
ible with those obtained from the analysis including IL
contributions. The value off p(1300) obtained in this case
1.74 MeV, also turns out to be compatible, within erro
with that given by Eq.~29!.

For the us case, in the absence of ILM contribution
compatibility is achieved only forms(2 GeV) less than 94
MeV ~PFESR value!/89 MeV ~BSR value!. The ‘‘best’’ fit
PFESR solution for such a value ofms , however, represent
an extremely poor quality OPE1ILM versus spectral inte-
gral match.11 We thus find no acceptable, consistent spec
solution in theus case without the inclusion of ILM contri-
butions. This, of course, also favors the inclusion of su
contributions for theud channel.

In view of these observations, we take as our final cen
values those obtained from the PFESR analysis with di
instanton contributions estimated using the ILM. Because

11The averageOPE versus spectral integral discrepancy over
s0 ,A analysis window is, for example, 23% for thewD PFESR
family.
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the crudeness of the ILM, however, we need to include
estimate of the uncertainties associated with the use of
ILM in our final errors. We estimate this uncertainty as d
scribed in the following paragraph.

First we note that, for a fixed spectralAnsatzand fixeds0,
the shift in mu1md (ms1mu) produced by including ILM
contributions on the theoretical side of our PFESR’s, av
aged over thes0 values in the analysis window and the fu
set of PFESR weights employed, is;8% (;5%). The
much larger (;20%) difference between the ILM and no
ILM best-fit values given in Eqs.~28! and ~34! is not an
accurate reflection of the relative size of OPE and ILM co
tributions to the theoretical PFESR integrals. Rather, the
that ILM contributions decrease with increasings0, while the
dominantD50 OPE contributions increase with increasi
s0, means that the OPE1ILM sum is less strongly increasin
with s0 than is the OPE term alone. This behavior on t
theoretical side of the PFESR’s can only be matched on
spectral integral side if the ratio of the second to the fi
resonance spectral contributions is smaller in the O
1ILM case. Since the decrease in the size of direct instan
contributions with increasings0 is an expected feature o
such contributions, independent of the precise details of
ILM implementation, this type of qualitative shift in th
structure of the resonance contributions to the spectral fu
tion is expected to be a general feature, so long as insta
contributions are not, in fact, negligible at the scales of
analysis. The incompatibility of the BSR and PFESR resu

FIG. 6. Theud OPE-spectral integral match obtained for thewD
A

PFESR family using as PFESR input the value@mu

1md#(2 GeV)58.1 MeV, the largest PFESR input for which
PFESR and BSR values ofmu1md are consistent. All notation is a
for the PFESR figures above. This largest ‘‘marginal’’mu1md

value produces the best OPE-spectral integral match among t
input values for which the PFESR input and BSR output values
consistent; the fit quality, moreover, deteriorates rapidly as one g
to lower values of the PFESR input.
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obtained when one neglects direct instanton contribution
the PFESR analysis strongly suggests that they are, ind
not negligible. We, therefore, take, as a~hopefully conserva-
tive! estimate of the ILM-induced uncertainty, the maximu
of ~i! the 8% ~5%! average ILM contribution and~ii ! the
difference between the central values of the ILM PFESR a
BSR extractions. In the flavorud case, the difference o
central values is only 0.3 MeV, so the ILM-induced erro
60.6 MeV, is determined by the average ILM contributio
in the us case, the average ILM contribution is only 5 Me
so the error,69 MeV, is determined by the difference o
the central values given in Eqs.~31! and ~41!.

Including our additional estimate of ILM-induced erro
and combining all sources of error in quadrature, our fi
results for the light quark masses thus become

@mu1md#~2 GeV!57.861.2 MeV ~43!

ms~2 GeV!5100612 MeV. ~44!

Since the PFESR-BSR consistency is excellent for theud
channel, but marginal for theus channel, an alternate dete
mination ofms , using the result of Eq.~43! above in com-
bination with the ChPT-determined mass ratioR524.4
61.5, might be preferable. The result of this determinatio

ms~2 GeV!595615 MeV, ~45!

is in good agreement with that of Eq.~44!, with only slightly
larger errors. Recall thatself-consistentversions of the com-
bined PFESR-BSR analysis in which direct instanton con
butions are neglected, in fact, yield values for the light qu
masses completely compatible with those of Eqs.~43! and
~44!. For the resonance decay constants, we note that
though the value of the second resonance decay consta
sensitive to whether or not one includes ILM contribution
that of the first resonance is largely insensitive to the pr
ence or absence of ILM contributions, the central values
fering by considerably less than the uncertainties on the
dividual determinations. We thus believe that, although
ILM may represent a relatively crude model for implemen
ing direct instanton effects, the determination of thep(1300)
and K(1460) decay constants given by Eqs.~29! and ~32!
should be reliable to within the stated errors. Combini
these errors in quadrature we then have, for our final res

f p(1300)52.2060.46 MeV ~46!

f K(1460)521.462.8 MeV. ~47!

That these values differ by a factor of;10 is compatible
with the fact that the excited pseudoscalar decay const
vanish in the chiral limit, and hence are proportional to t
relevant quark mass combination near that limit.

C. Discussion

Other recent sum rule analyses exist for the pseudosc
ud @10,20# and us @11,12# channels. In addition, sum rul
analyses of theus scalar correlator@11,27,28,53,54#, and of
flavor breaking in hadronict decay @47,48,55–58#, have
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been used to extractms . In this section we discuss the rela
tion of our work to that of these earlier references.

For theud pseudoscalar channel, Ref.@20# ~P98! repre-
sents an update of Ref.@10#. ~The latter employed 3-loop
versions for the OPED50 contribution, the running mas
and the running coupling, P98 the 4-loop versions.! We
therefore restrict our discussion to the latter analysis. T
resonance part of the P98 spectral function is of the TR
form, but rescaled by an overall factor 1.5. Two poin
should be borne in mind regarding the value quoted formu
1md in P98. The first is that the analysis is based on FES
involving the weightsw(s)51 and s. For these weights
however, the corresponding vector isovector channel FES
are not well-satisfied at the scales employed in P98.~The
OPE side has a significantly weakers0 dependence than th
spectral integral side, the latter being obtained, in this ca
from experimentalt decay data@24#.! The second point is
that the ratio of quoted values for the running mass at sc
1 and 2 GeV,m(1 GeV)/m(2 GeV)51.31 @20#, differs
from that, 1.38, obtained using 4-loop running with the ce
tral ALEPH determination ofas(mt) as input. The results o
P98 thus correspond to a smaller value,as(mt)50.307, the
effect of which would be to produce a larger value ofmu
1md . One would thus expect a poor match between
OPE and spectral integral sides of PFESR’s employing
P98 spectralAnsatzand centralmu1md value in combina-
tion with current central values for the OPE input. This
confirmed by the results shown in Figs. 7 and 8, which c
respond, respectively, to the output from thewN

A and wD
A

PFESR weight family analyses, in ours0 ,A analysis win-
dow, obtained using the P98 central value formu1md and
the P98 spectralAnsatz. If one performs a re-analysis, sti

FIG. 7. Theud OPE-spectral integral match obtained for thewN
A

PFESR family using the central values of all OPE input, the quo
P98 value of@mu1md#(1 GeV) and the P98 spectralAnsatz. All
notation is as for the PFESR figures above.
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using the P98 spectralAnsatz, but now optimizing the value
of mu1md using the PFESR approach, one finds, using c
tral values for all OPE input, and including ILM contribu
tions,

@mu1md#~2 GeV!56.8 MeV. ~48!

The same analysis, without ILM contributions, similar
yields

@mu1md#~2 GeV!57.3 MeV. ~49!

Both of these values are, in fact, in agreement with th
corresponding to the upper part of thes0 range displayed in
Fig. 2 of P98, though not with those fors0;2 GeV2. In
both cases, however, the quality of the OPE(1ILM) versus
spectral integral match is much inferior to that obtained o
tained using the solutions formu1md , f p(1300) and f p(1800)
above. The optimized match is significantly better when IL
contributions are included than when they are not. Howe
in spite of optimization, the consistency between thewN

A and
wD

A PFESR families is not good for the P98 spectralAnsatz:
as shown in@51#, the match forwN

A is best where that forwD
A

is worst, and vice versa~see Figs. 2,3 in@51#!.
For the us pseudoscalar channel, the BSR analyses

Refs. @11# ~JM! and @12# ~DPS! both employ a TRDA con-
struction for theK(1460) andK(1830) contributions to the
spectralAnsatz, but differ in their assumptions about the rel
tive sizes of the two resonance decay constants: JM ass
f 2

2m2
4/ f 1

2m1
450.25, DPS that the spectral contributions of t

two resonances at threshold are approximately equal~for
PDG2000 values of the masses and widths, this correspo
to f 2

2m2
4/ f 1

2m1
4.1.8). The two analyses also differ in the

d
FIG. 8. Theud OPE-spectral integral match obtained for thewD

A

PFESR family using the central values of all OPE input, the quo
P98 value of@mu1md#(1 GeV) and the P98 spectralAnsatz. All
notation is as for the PFESR figures above.
3-12
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treatment of the theoretical side, JM employing 3-loop e
pressions on the OPE side and DPS the 4-loop express
which became available subsequent to the publication of
JM paper.

We have updated the JM BSR analysis to include 4-lo
contributions to the running mass, coupling andD50 OPE
term. For OPE input we use the values employed in
analyses above. Including ILM contributions on the theor
ical side of the BSR, we then find that the JM spectralAn-
satz, rJM , corresponds to

ms~2 GeV!59667 MeV. ~50!

Neglecting instanton contributions, as in JM, we obtain
stead

ms~2 GeV!59866 MeV. ~51!

~The errors in these equations have the same meanin
those for the BSR analyses above.! If, however, we employ
rJM , as input, not to a BSR analysis, but to our usual PFE
analysis, we find for our central values

ms~2 GeV!5107 MeV ~52!

if ILM contributions are included, and

ms~2 GeV!5111 MeV ~53!

if they are not. The fit quality for the optimized match
rather poor when ILM contributions are included, but is qu
good when they are not. The latter point is illustrated for
wN

A family of PFESR’s in Fig. 9~the quality of the match for

FIG. 9. Theus pseudoscalar OPE-spectral integral match
tained for thewN

A PFESR family using the JM spectralAnsatz, cen-
tral values of all OPE input, and no ILM contributions, after op
mization of ms1mu in a combinedwN

A , wD
A PFESR analysis. All

notation is as for the PFESR figures above.
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the wD
A family, which is not shown, is even better!. Despite

the existence of both a good quality PFESR OPE or spec
integral match and an excellent BSR stability window, ho
ever, we see that the no-ILM PFESR and BSRms determi-
nations based onrJM are inconsistent, just as was the ca
for the determinations associated with the spectralAnsatz
based on the values off K(1460) and f K(1830) obtained from the
no-ILM PFESR analysis. This is, in fact, not surprisin
since the optimized PFESR spectralAnsatzturns out to be
rather similar torJM , the K(1460) decay constants of th
two models, for example, differing by less than 6%.

In discussing the DPS analysis of theus pseudoscalar
channel, one should bear in mind that the result quoted
DPS,ms(1 GeV)5155625 MeV corresponds to~1! an av-
erage of the values obtained usingLQCD

(3) 5280 MeV and
380 MeV, ~2! an average over values associated with
range ofs0, and ~3! neglect ofmu in the OPE prefactor.12

Since the choiceLQCD
(3) 5280 MeV is not consistent with the

ALEPH determination ofas(mt), we restrict our attention to
the DPS results obtained usingLQCD

(3) 5380 MeV, which
corresponds very closely to the central ALEPH determi
tion. Restoringmu in the overall OPE prefactor, and readin
off from Fig. 2 of DPS, concentrating on the curve corr
sponding tos056 GeV2, which displays the best stability o
ms with respect toM2, the central DPS BSR determinatio
becomesms(2 GeV)597 MeV. Since the details of the
spectralAnsatzemployed are not fully specified in DPS, w
are unable to quote errors equivalent to those of our B
analyses above. If, however, we fix the ratio of decay c
stants in such a way as to ensure exact equality of
K(1460) andK(1830) contributions to the spectral functio
at physical threshold, and neglect ILM contributions, as
DPS, we find that, after performing our usual PFESR ana
sis, the resulting spectralAnsatz, run through a BSR analysi
with s056 GeV2, reproduces the DPS central value exac
Estimating our BSR errors as for the analyses above, we
have, for our DPS-like BSR determination,

ms~2 GeV!59766 MeV. ~54!

The PFESR OPE versus spectral integral match corresp
ing to this BSR determination is reasonable~see Fig. 10 for
the wN

A family case; the fit quality for thewD
A family is not

shown, but is better than for thewN
A family!. The central

no-ILM PFESRms value,

ms~2 GeV!5109 MeV, ~55!

however, is again inconsistent with the corresponding B
value. The situation is not improved by including ILM con
tributions: re-doing the PFESR analysis, still with the co
strained form of the spectralAnsatz, but now incorporating
ILM contributions on the theoretical side, one finds a po
quality optimized OPE1ILM versus spectral integral match

12Restoringmu to the prefactor, using ChPT values for the qua
mass ratios, and converting to the scalem52 GeV, the DPS result
becomesms(2 GeV)5109618 MeV.

-
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We conclude this section with a reminder of the valu
obtained forms via sum rule analyses of other channe
Recent treatments of the correlator of]m( s̄gmu) @27,53,54#,
for which the low-s part of the spectral function is con
strained byKp phases, yield values ofms(2 GeV) in the
range 115625 MeV, compatible with either the ILM or no
ILM results above. Assumptions about the form of t
Omnes representation of the timelike scalarKp form factor,
and the behavior of theKp phase in the regions
.2.9 GeV2, where experimental phase data does not ex
however, enter the construction of the spectral function u
in those analyses, so that a significant theoretical system
error is present, in addition to the errors quoted in Re
@27,53,54#. A much cleaner approach, in principle, is the e
traction of ms via PFESR analyses of the flavor-breaki
difference ofud and us vector-plus-axial-vector correlato
sums. The hadronic spectral function required in this cas
measurable in hadronict decay. There are two basic comp
cations, first, that the OPE representation of the longitud
contribution to thet hadronic decay width is very badl
behaved at those scales which are kinematically allow
@59–62# and, second, that, because of the rather strong
cellation in theud-us spectral difference, the extracted valu
of ms is quite sensitive to even;1% uncertainties in the
value of uVusu. The first problem can be handled by appr
priate weight choices@47#. The second is numerically rel
evant because the central values of the determination
uVusu based on~1! experimentalKl3 data, uVusu50.2196
60.0023 and~2! Cabibbo-Kobayashi-Maskawa~CKM! uni-

FIG. 10. Theus pseudoscalar OPE-spectral integral match
thewN

A PFESR family involving the spectralAnsatzobtained from a
combinedwN

A , wD
A PFESR analysis after imposing the DPS-li

constraint on the ratio ofK(1460) andK(1830) decay constants
The results correspond to central values of all OPE input, an
neglect of ILM contributions. All notation is as for the PFES
figures above.
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tarity, in combination with the experimental value ofuVudu,
uVusu50.222560.0035,13 while consistent within errors, dif-
fer by ;1.3%. There has also been some confusion in
literature resulting from the use, in the various recent th
retical analyses, of three different sets of values for
weightedud-us spectral differences, corresponding to thr
different values ofBus , the total (V1A) branching fraction
into strange hadronic states.14 The strongud-us cancellation
makes the extracted value ofms quite sensitive to the~ap-
parently rather small! differences between theseBus values.
The discrepancies between the various values ofms reported
in the literature, all of which are nominally based on t
‘‘same’’ ~ALEPH! t decay data, turn out to be almost e
tirely a reflection of this sensitivity. The situation is dis
cussed in some detail in Ref.@64#, where the various analy
ses have also been updated to reflect the current experim
situation ~as reported in Ref.@58#!. Once common input is
employed, all hadronict determinations ofms are in excel-
lent agreement@64#. The dominant uncertainty remains th
associated withuVusu. Using central values ofuVudu anduVusu
corresponding to either~1! the PDG2000 best independe
individual determinations~CKMN! (uVudu50.9735 and
uVusu50.2196) or~2! the PDG2000 unitarity-constrained fi
~CKMU! (uVudu50.9749 anduVusu50.2225), one obtains

ms~2 GeV!5101618 MeV ~CKMN!, ~56!

and

ms~2 GeV!5114616 MeV ~CKMU! ~57!

respectively@64#. Either of these results is compatible wit
that obtained from the pseudoscalar channel analyses ab

IV. CONCLUSIONS

We have determinedmu1md , ms , and the decay con
stants of thep(1300) andK(1460) with good accuracy from
a combined PFESR-BSR study of theud and us pseudo-
scalar correlators. Our results show that it is important
require the consistency of the two different sum rule a
proaches. Indeed, we have seen that there existAnsätze for
the hadronic spectral functions which produce both
tremely good BSR stability plateaus and high-quality PFE
OPE(1ILM) versus spectral integral matches, but for whic
the output quark mass combinations are inconsistent. T
means that BSR or PFESR treatments, by themselves, do
provide sufficiently strong constraints to allow one to sim
taneously constrain the unknown quark masses, unkn

13The central value and ‘‘errors’’ quoted here correspond to
mid-point and extent of the PDG2000 unitarity-constrained
range.

14These three values, which are in the ratios 1:1.04:1.05 co
spond to~1! the preliminary~1998! ALEPH analysis of strange
decay modes@63#, ~2! the final~1999! version of this analysis@55#,
and ~3! the recent update~2000! reported by Davier@58#. Larger
values ofBus correspond to smaller values of theud-us difference,
and hence to lower values ofms .
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resonance decay constants and the theoretical modellin
direct instanton effects. The combination of the two a
proaches does, however, provide sufficiently strong c
straints. The consistency of the combined analysis is part
larly compelling for theud case. The values obtained for th
light quark masses are in excellent agreement with dete
nations from other sources, giving us further confidence
the reliability of the combined analysis. The correspond
determinations of thep(1300) andK(1460) decay constant
are accurate to 20% and 10% respectively. The latter de
mination is relevant to future improvements in the extract
of ms from hadronict decay data. WhileB factory data will
dramatically reduce the errors on the experimentalus vector-
plus-axial-vectort decay distribution, the ability to use thi
improvement to significantly reduce the errors on the co
sponding determination ofms will depend on one’s ability to
work with PFESR’s involving weights for which theud-us
cancellation is significantly reduced, so that the errors res
ing from the uncertainty inuVusu will, as a result, play a
significantly reduced role. The existence of significant th
retical systematic uncertainties in versions of this analy
which include longitudinal OPE contributions@62# means
Z

s.

B

t.
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that ‘‘non-inclusive’’ analyses~involving only the sum of
spin 0 and 1 correlator components! will eventually be re-
quired. A knowledge of the decay constants of the exci
strange pseudoscalar and scalar resonances allows a str
forward subtraction of the longitudinal contributions to th
experimental distributions. In the absence of an experime
spin separation, sum rule determinations of the strange sc
and pseudoscalar resonance decay constants with an
racy even a factor of three worse than that obtained above
the K(1460) are already extremely useful as input for su
non-inclusive analyses.
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