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Calculations of two-loop virtual corrections to b—sI™1~ in the standard model
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We present in detail the calculation of the virt@d{«;) corrections to the inclusive semileptonic rare decay
b—sl™l1~. We also include thos&(as) bremsstrahlung contributions which cancel the infrared and mass
singularities showing up in the virtual corrections. In order to avoid large resonant contributions, we restrict the
invariant mass squarexbf the lepton pair to the range O.SSImﬁs 0.25. The analytic results are represented
as expansions in the small parameterss/m2, z=mZ/mg ands/(4m?2). The new contributions drastically
reduce the renormalization scale dependence of the decay spectrum. For the corresponding branching ratio
(restricted to the above range the renormalization scale uncertainty gets reduced frerh13% to ~
+6.5%.
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I. INTRODUCTION dependent predictions for such long distance contributions
are available today. It is therefore unclear whether the theo-
RareB decays are an extremely helpful tool for examin- retical uncertainty can be reduced to less tHa20% when
ing the standard modé6M) and searching for new physics. integrating over these domaif31].
Within the SM, they provide checks on the one-loop struc- However, restrictingy/s to a region below the resonances,
ture of the theory and allow one to retrieve information onthe long distance effects are under control. The corrections to
the Cabibbo-Kobayashi-Maskaw@KM) matrix elements the pure perturbative picture can be analyzed within the
Vs andV,q4, which cannot be measured directly. heavy quark effective theofHQET). In particular, all avail-
The first measurement of the exclusive rare de@ay gaple studies indicate that for the region 0<05=s/m?
—K*y was obtained in 1992 by the CLEO Collaboration g 25 the non-perturbative effects are below 1[82—37.
[1]. Somewhat later, also the inclusive transitiBrR-Xsy  consequently, the differential decay rate By-X "1~ can
was observed by the same collaboratj@h Although chal-  he precisely predicted in this region using renormalization
lenging for the experimentalists, the inclusive decays argq,p improved perturbation theory. It was pointed out in the
clean f_rom the theoretical point of View, as th_ey are Welljerature that the differential decay rate and the forward-
approximated by the underlying partonic transitions, up tQy,ck\ward asymmetry are particularly sensitive to new phys-
smali and2 calculable power corrections which start ks in this kinematical windowW38—44.
O(Age/ mp) [3.41. Calculations of the next-to-leading logarithmi{®NLL)
The measured photon energy spectrb] and the  cqrrections to the process— X 1~ have been performed
branching ratio for the decaB—Xsy [2,6,7] are in good i Refs. [24] and [28]. It turned out that the NLL result
agreement with the next-to-leading logarithnidLL) stan-  gfers from a relatively large% 16%) dependence on the
dard model predictiongsee e.g[8-14)). Consequently, the matching scalew,,. To reduce it, next-to-next-to leading
decayB— Xy places stringent constraints on the extensiong\NLL ) corrections to the Wilson coefficients were recently
of the SM, such as two Higgs doublet mod¢lD,15,16,  cajculated by Bobeth et aJ41]. This required a two-loop
supersymr+n<a_tr!c mode[d7-22, etc. _matching calculation of the effective theory to the full SM
B— Xl "1 is another interesting rare decay mode whichiheory, followed by a renormalization group evolution of the
has been extensively c0n5|dered in the literature in th&yjison coefficients, using up to three-loop anomalous di-
framework of the SM and its extensioksee e.d23-28).  mensjong41,11]. Including these NNLL corrections to the
This decay has not been observed so far, but it is expected {gijson coefficients, the matching scale dependence is indeed
be measured at the operatiBdactories after a few years of amoved to a large extent.
data takingfor upper limits on its branching ratio we referto  pq pointed out in Ref[41], this partially NNLL result
[29,30). The measurement of various kinematical distribu-gfrers from a relatively large~ +=13%) renormalization
tions of the deca3— X4l *I ~, combined with improved data ¢.gje w,) dependencé u,~O(m,)] which, interestingly
on B— Xy, will tighten the constraints on t_he_ extensions of enough, is even larger than that of the pure NLL result. Re-
the SM or perhaps even reveal some deviations. cently we showed in a lettg#2] that the NNLL corrections
The main problem of the theoretical description Bf {5 the matrix elements of the effective Hamiltonian drasti-
—Xdl "1~ is due to the long-distance contributions fr@m  cally reduce the renormalization scale dependence. The aim
resonant states. When the invariant mgssof the lepton  of the current paper is to present a detailed description of the
pair is close to the mass of a resonance, only modelrather involved calculations and to extend the phenomeno-
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logical part. We will discuss in particular the methods which 1 —

allowed us to tackle the most involved part, viz. the calcula- Os=g—mb(SLU“VTabR)GZV,
tion of the O(ag) two-loop virtual corrections to the matrix S

elements of the operatof3; andO,. We also comment on o2

the O(as) one-loop corrections t®7—019. F_urtherm_ore, Og= _2(§L7,MbL)E (Tqu),
we include those bremsstrahlung contributions which are s [

needed to cancel infrared and collinear singularities in the

virtual corrections. As shown already j42], the new con- e? _ _
tributions reduce the renormalization scale dependence from OlOZ_Z(SL'yMbL)zl: (Iy*ysl),
~*13% to~ *£6.5%. s

The paper is organized as follows: In Sec. Il we review
the theoretical framework. Our results for the virt@2(«s)
corrections to the matrix elements of the operat®rsand
O, are presented in Sec. lll, whereas the corresponding cot, |
rections to the matrix elements &f;, Og, Og and O, are
given in Sec. IV. Section V is devoted to the bremsstrahlun
corrections. The combined correctiofdrtual and brems-
strahlung to b—sl|*|~ are discussed in Sec. VI. Finally, in
Sec. VII, we analyze the invariant mass distribution of the

lepton pair in the range 0.85s<0.25.

where the subscripts and R refer to left- and right-handed
components of the fermion fields.

The factors ]gi in the definition of the operatoi®;, Og
dO4q, as well as the factor @/ present inOg have been
chosen by Misia24] in order to simplify the organization
%f the calculation: With these definitions, the one-loop
anomalous dimensionfneeded for a leading logarithmic
(LL) calculation of the operator€; are all proportional to
g2, while two-loop anomalous dimensioseeded for a
next-to-leading logarithmidNLL) calculatioi are propor-
tional tog?, etc.

Il. EFFECTIVE HAMILTONIAN After this important remark we now outline the principal
steps which lead to LL, NLL, NNLL predictions for the de-
cay amplitude folb—sI*|:

(1) A matching calculation between the full SM theory
and the effective theory has to be performed in order to de-
ntgs-rmine the Wilson coefficient€; at the high scaleu,
~myy,Mm;. At this scale, the coefficients can be worked out

The appropriate framework for studying QCD corrections
to rareB decays in a systematic way is the effective Hamil-
tonian technique. For the specific decay chanbelss|™|~
(I=pu,e), the effective Hamiltonian is derived by integrating
out the heavy degrees of freedom. In the context of the sta
dard model, these are thequark, theW boson and th&® = ' X ;
boson. Because of the ﬁlitarity of the CKM matrix, the !n f|>2<ed order perturbation theory, i.e. they can be expanded
CKM structure factorizes when neglecting the combination'” s -

ViV, The effective Hamiltonian then reads g2
4G, 10 Ci ) =CO ) + _16;2Ci(1)(#~w)
He=——=VitVin 2, Ci(1)Oi(p). (D
\/E i=1 g4
S
C&(uw) +0(g9). 3
Following Ref.[41], we choose the operator basis as follows: (16m72)2 ' Hw 9s
0;= (5L, T, ) (L y*To,), (20 AtLL order, only C(” are needed, at NLL order alsg{*),
etc.. While the coefficient!{?) , which is needed for a NNLL
0= (s 7,0 (cLy"by), analysis, is known for quite some tinj8], C?) and C{?

have been calculated only recenthl] (see alsd43]).
o o (2) The renormalization group equatigRGE) has to be
Oz=(s. J’MbL)E (ay*a), solved in order to get the Wilson coefficients at the low scale
q Mp~Mmy. For this RGE step the anomalous dimension matrix
to the relevant order i is required, as described above.
— (e a AT After these two steps one can decompose the Wilson coeffi-
Qs (57T bL)% (@7, cientsC;(uyp,) into a LL, NLL and NNLL part according to

2
— — 0s(p)
05=(sLyMyVypr>§ (ay“y"y"q), Cilp)=C(pap) + ;quzc‘(l)(“b)
— al — v a gg(ﬂb) () 6
O6=(SLY, Y0¥, T bgg (qy*y"y"Tq), + mci (o) +0(g9). 4

e _ (3) In order to get the decay amplitude, the matrix ele-
O7=—my(s a*’br)F,,, ments(sl™1~|O;(up)|b) have to be calculated. At LL preci-
9s sion, only the operatoDq contributes, as this operator is the
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only one which at the same time has a Wilson coefficient L U g),x 7

starting at lowest order and an explicitg}/factor in the (sI"170i[b) == 7—[Fi"(Oo)uect Fi"(O7)reel, (6)
definition. Hence, at NLL precision, QCD correctiofsr-
tual and bremsstrahlundgo the matrix element ofDg are
needed. They have been calculated a few yearq 24,@§.

At NLL precision, also the other operators start contributing,

where the operator®; and O, are defined as

H H ~ a ~ a
viz. O;(up) and O i) contribute at tree-level and the 07:_807' 09:_309. 7
four-quark operator®, ... ,Og at one-loop level. Accord- A 4
ingly, QCD corrections to the latter matrix elements are
needed for a NNLL prediction of the decay amplitude. We present the final results for the QCD corrected matrix

The formally leading term~(1/g2)C{(u,) to the am-  elements in the form of Eq6).
plitude for b—sl*l~ is smaller than the NLL term
~(1/9§)[gﬁ/(16772)]Cél)(Mb) [23]. We adapt our systemat- A. Regularized @(ay) contribution of O; and O,
ics to the numerical situation and treat the sum of these two
terms as a NLL contribution. This is, admittedly some abus |
of language, because the decay amplitude then starts out wi
a term which is called NLL. M;=(sI*17]O;|b) (i=1,2) (8)

As pointed out in steg3), O(as) QCD corrections to the
matrix elementgs!®1~|O;(up)|b) have to be calculated in
order to obtain the NNLL prediction for the decay amplitude.
In the present paper we systematically evaluate virtual co
rections of orderg to the matrix elements dd,, O,, O,
Og, Og and04;,. As the Wilson coefficients of the gluonic

The full set of the diagrams contributing to the matrix
ements

at O(ag) is shown in Fig. 1.

As indicated in this figure, the diagrams associated with
rDl and O, are topologically identical. They differ only by
the color structure. While the matrix elements of the operator
O, all involve the color structure

penguin operator®s, . .. ,0g are much smaller than those

of O, andO,, we neglect QCD corrections to their matrix 5

elements. As discussed in more detail later, we also include S TaTa=C 1, C :Nc_l 9)
those bremsstrahlung diagrams which are needed to cancel a ko TN

infrared and collinear singularities from the virtual contribu-
tions. The complete bremsstrahlung corrections, i.e. all theyere are two possible color structures for the corresponding
finite parts, will be given elsewhefd4]. We anticipate that diagrams 0f0;, viz.
the QCD corrections calculated in the present paper substan- ’
tially reduce the scale dependence of the NLL result.
7=2, TATPTAT® and 7,=2, TeT°T°T2. (10)
a,b a,b
Ill. VIRTUAL O(as) CORRECTIONS
TO THE CURRENT-CURRENT OPERATORS The structurer; appears in diagrams(d—-1(d) and 7, in
O, AND O, diagrams {e) and Xf). Using the relation

In this chapter we present a detailed calculation of the
virtual O(«s) corrections to the me}trix elemgnts_of the D TaﬁT{;g:—i%ﬁyﬁ Egaﬁgﬁy,
current-current operatof3; andO,. Using the naive dimen- a 2N 2
sional regularization schem@DR) in d=4—2¢ dimen-
sions, both ultraviolet and mfrared _smgula_r!tles show up asye find thatr;=C. 1 and 7,=C__1 with
1/€" poles (1=1,2). The ultraviolet singularities cancel after ! 2
including the counterterms. Collinear singularities are regu-
larized by retaining a finite strange quark mass They are B NZ-1 B (NZ—-1)?
cancelled together with the infrared singularities at the level Cr=- AN2 and Cr,= AN
of the decay width, taking the bremsstrahlung prockss ¢ ¢
—sl*l~g into account. Gauge invariance implies that the ) . )
QCD corrected matrix elements of the operatorscan be  NSertingNc=3, the color factors ar€=3, C, =—3 and
written as C.,= . The contributions fronD, are obtained by multi-
plying those fromO, by the appropriate factors, i.e. by
C71/CF=—1/6 andCTZICF=4/3, respectively. In the fol-
(sI"17]10i|b) =F{*( Og)yreet F{(O7) ree: (5 lowing descriptions of the individual diagrams we therefore
restrict ourselves to those associated with the opef@jor
In the current paper we use the modified minimal subtrac-
where(Og)yee@nd({O;)yee are the tree-level matrix elements tion MS renormalization scheme which is technically imple-
of Og and O+, respectively. Equivalently, we may write mented by introducing the renormalization scale in the form
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FIG. 1. Complete list of two-loop Feynman diagrams lfiersy* associated with the operato® andO,. The fermions b, sandc
quarks are represented by solid lines, whereas the curly lines represent gluons. The circle-crosses denote the possible locations where the
virtual photon(which then splits into a lepton paiis emitted.

d) f

;2:,“2 exp(ye)/(4), followed by minimal subtraction. The After performing a_straightforward Feynman parametriza-
precise definition of the evanescent operators, which is nedion followed by the integration over the loop momentum,
essary to fully specify the renormalization scheme, will bethe analytic expression for the building blotk reads

given later. The remainder of this section is divided into

eight subsections. Sections Il A1-Ill A6 deal with the dia-

grams 1a)-1(d) which are calculated by means of Mellin- Os e e e 5

Barnes techniquegl5]. Section 1l1 A7 is devoted to the dia- lg=— 2 ST (e)u e’ (1—€e)e' ™ (rgf —r°yp)

grams 1e) which are evaluated by using the heavy mass &

expansion proceduf@6]. Among the diagrams(f) only the N (1

one where the virtual photon is emitted from the charm XLEJ dX{x(1—x)]* "¢

quark line is non-zero. As it factorizes into two one-loop 0

diagrams, its calculation is straightforward and does not re- m2 —e

quire to be discussed in detail. It is, however, worth mention- [ 2 —— +is| (11)
ing already at this point that it is convenient to omit this X(1=x)

diagram in the discussion of the matrix elementsOgfand

O, and to take it into account together with the virtual cor- . ) )

rections toOy. Finally, in Sec. Il A8, we give the results for Wherer is the momentum of the virtual gluon emitted from
the dimensionally regularized matrix elemetgs$*1~|O;|b)  thec-quark loop. The termd is the “i e prescription.” In the

(i=1,2). full two-loop diagrams, the free indeg will be contracted
with the corresponding gluon propagator. Note thatis
1. The building blocks |, and J,g gauge invariant in the sense th&t ;=0.

The building blockJ,; is somewhat more complicated.
Using the notation introduced by Simma and Wjl&7], it
reads

For the calculation of diagramgd—1(d) it is advisable
to evaluate the building blockis; and J,,; first. The corre-
sponding diagrams are depicted in Fig. 2.

FIG. 2. The building blocksz andJ,z which are used for the calculation of the two-loop diagrai@-11(d). The curly and wavy lines
represent gluons and photons, respectively.
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egQ imply thatAis andAig can be expressed as
=——| E(a.B.1)Ais+E(a,B,9)Aig

Ja
# 16 , ,
' . a .. L :

A|5:A|23+ qTA|27, A|6:qTA|25+A|26. (15)

Mo . r .
_E(Birvq)EAl23_ E(avr!q)q%AIZS

P 2. General remarks
_E(“’r'Q)ﬁA'ZG After inserting the above expressions for the building
blocksl; andJ,z into diagrams (a),1(b) and Xc),1(d), re-
a . A spectively, and introducing additional Feynman parameters,
_E('B’r’q)ﬂm” LE’ 12 e can easily perform the integration over the second-loop
momentum. The remaining Feynman parameter integrals are,
Whereq andr denote the momenta of tlﬂ(g”‘tuab photon hOWeVer, non-trivial. In RefS{.’LZ] and[48], where the analo-
and gluon, respectively. The indices and 8 will be con- ~ gous corrections to the processdes-sy and b—sg were
tracted with the propagators of the photon and the gluonStudied, the strategy used to evaluate these integrals is the

respectively. The matri€(a,3,r) is defined as following: . .
The denominators are represented as complex Mellin-

1 Barnes integralésee below and Ref$12,48).

E(a,B,r)= E(yayﬁf—fylgya) (13 After_interchanging thg order of integration and appropri—
ate variable transformations, the Feynman parameter inte-
grals reduce to Euleg andI" functions.

and the dimensionally regularized quantitieig occurring in Finally, by Cauchy’s theorem the remaining complex in-
Eqg. (12) read tegral over the Mellin variable can be written as a sum over
residues taken at certain poles gfandI" functions. This
Ai5=4B+J dx dy[4(q-r)xy(1—x)e Ier:_lr:jzs/;nn2 a natural way to an expansion in the small ratio
S = C b .

) ) However, this procedure cannot be applied directly in the
+rox(1—x)(1—2x)e+Qy(2—2y+2xXy—X) e present case: While the procesdes:sy and b—sg are
+(1-3x)c]Cc 1, characterized by the two mass scaleg and m., a third
mass scale, viz?, the invariant mass squared of the lepton
pair enters the process—s!|*| ™. For values ofy? satisfying
Ai6=4B+de dy[ —4(q-r)xy(1—y)e
2 2

—0%y(1-y)(1—2y)e—r?x(2—2x+2xy—Yy)e q—<1 and q—<1,
m; 4m?
—(1-3y)Cc]Cc 7,

most of the diagrams allow a naive Taylor series expansion

in g2 and the dependence of the charm quark mass can again

be calculated by means of Mellin-Barnes representations.

This method does not work, however, for the diagram in Fig.

1(a) where the photon is emitted from the interrsadjuark

Ai = _83+(q.r)f dx dy X1—x)eC™ 1€, line. Instead, we apply a Mellin-Barnes representation twice,
S as we discuss in detail in Sec. lll A4. Using these methods,

we get the results for diagramsgal—1(d) as an expansion in

Ai23=—Ai26=8B*(q-r)de dy xyeC17¢ (14
S

a—n2 2 — 2 2 - =
ook _ P s=qg/mg, z=mg/mg ands/(4z) as well as In§) and Ing).
Ai=88B (q-r)fsdxdyy(l y)eC ’ This implies that our results are meaningful only for small
values ofs. Fortunately, this is exactly the range of main
whereB* = (1+ €)' (e)e”eu2€ andC is given by theoretical and experimental interest in the phenomenology

of the procesd—sl*|
C=mZ-2xy(q-r)—r2x(1-x)—q?y(1—y).
3. Calculation of diagram 1(b)
Thg integration over thg Feynman parameteendy is re- We describe the basic steps of our calculation of the dia-
stricted to the simple§, i.e.ye[0,1-x], xe[0,1]. Due to  gram in Fig. 1b) where the photon is emitted from the in-
Ward identities, the quantitiesi, are not independent of one ternalb-quark line. Our notations for the momenta are set up

another. Namely, in Fig. 3a).
Inserting the building block ; yields the following ana-
q“J.=0 and rBJaﬁzo lytic expression for this diagram:
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Mz[lb]z 471-2

ddr YN 2
Xf UP)(rpglf =roypl

(2m)

Applying a Feynman parametrization according to

. 1
cFr(e)eZVEm“f(l—e)e'“(4w)*ff dx
0
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[X(1—-x)]*"¢
{r2=mZ[x(1—x)]+i6}€

p'+r+my p+r+mg P 1
w u(p): —. 16
(p’+r)2—mt2,y (p+r)2—m§y (P) r2 (18
dudvdyy?
(17

1 _F(3+6)J
D,D,D;D5 T'(e) Jg

with

D,=(p'+r)?2—mZ, Dy=(p+r)>-m2, (19

Ds=r?, D,=r?—mZ/[x(1—x)], (19
and performing the integral over the loop momentumve

obtain

eQy02
M,[1b]=—
A1b] 64

(1— €)CeI'(2€)e?7E€ yu 2¢
1
_ 1—€
X fo dx[xX(1—x)]

xf dv du dy ¥ tu(p’)
S

P, P

P3Ap
1+26+ 2e
Ab Ab

2e
Ab

u(p), (20)

where the Feynman parametersy andy run over the sim-
plex S i.e u,v,y>0 andu+v+y=<1. P,;, P, and P; are
polynomials in the Feynman parameters and the quastity
reads

2
mcy

X(1—Xx)"

Abzmg(u+UU+v2)—QZUU+

P 0, v P v
g
2
\Z lr
2,
r\\‘?ZQo T
a) b)

FIG. 3. (a) Momentum flow in diagram (b), where the virtual
photon is emitted from thé-quark line(see Sec. Il A 3, (b) mo-
mentum flow in the vertex correction diagram in Fige)l(see Sec.
NA7).

[UD,+vD,+(1—Uu—v—y)D3s+yD,3" ¢’

Forg°< mﬁ it is positive in the integration region. Therefore,
one is allowed to do a naive Taylor series expansion of the
integrand ing?. In order to simplify the resulting Feynman
parameter integrals, it is convenient to first transform the
integration variableg, y, u andv according to

(1—v')(—1+v'+u") (1—v")(1—u")
u— s vV—————,

v’ v’

x—=Xx",  y—=y'v'.

The integration region of the new variables is givenuy
e[(1-v'),1] andv’,x",y’ €[0,1]. Taking the correspond-
ing Jacobian into account and omitting primes in order to
simplify the notation, we find

2
e
M,[1b]=— GQ"%S

(1— €)CeI'(2€)e?7E€ e
A

1
_ 1-¢€
X fo dX[x(1—x)]

X foldv Ll_vdujoldy(vy)f_l(l—U)U(p')

Q1

1+2e
Ab

Q2
AZe

Qs34
AZe

u(p), (21)

where, in terms of the new variables, reads

,(1=0)%(1-v-u)(1-u)

02

Ap=mi(1-v)u+q

2 VY

Rl v

Q1, Q, and Q3 are rational functions in the new Feynman
parameters. After performing the Taylor series expansion in
g?, the remaining integrals are of the form
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1 1 e In view of the factor m2/m?)® stemming from the Mellin-
f dx dv dyj dulx(1=x) 1" “(vy)* (1-v) Barnes formula(23), the evaluation of the residues at the
0 1-v . . . .
pole positions listed in Eq25) corresponds directly to an
1 P(X,y,u,v) expansion inz=m2/mZ. Note that closing the integration
X— ' (22 contour in the right half-plane yields an overall minus sign

n+2e
o™ Apo due to the clockwise orientation of the integration path. After
expanding ine, we get the form factors dfl,[1b] [see Eq.

where P(x,y,u,v) is a polynomial inx, y, U, v; Apo=A4Ap (6)] as an expansion of the form
|-

(q?=0); n andm are non-negative integers. We further fo
low the strategy used if12,48 and represent the denomina-
torsAg’O as Mellin-Barnes integrals. The Mellin-Barnes rep-

resentation for K2—M?)~* reads §>0) F91bl= D) cih9s77 InM(z), (26)
ilbm 7

s wherei and m are non-negative integers ahds a natural
I'(—s) multiple of 3 [see Eq.(25)]. Furthermore, the powem of
In(2) is bounded by four, independent of the values afdl.
This becomes clear if we consider the structure of the poles.
XT(A+s). (23 There are three poles Blocated near any natural numbder
viz. at s=k, s=k—e€ and s=k—2e. Taking the residue at
one of them yields a term proportional tas4from the other
two poles. In addition, there can be an explicie?Lterm
from the integration over the two-loop momenta. Therefore,
the most singular term can be of ordeel/and, after ex-
panding ine, the highest possible power of #(is four.

1 1 1 1 2
(KZ_MZ))\ - (KZ))\ F()\) ﬁJ’de o F

The integration path runs parallel to the imaginary axis and
intersects the real axis somewhere between and 0. The
Mellin-Barnes representation aﬁgyo is obtained by making
the identifications

2, 2 2 2
Kfempu(l-v) and M7= =meyu/[X(1=X)]. 4. Calculation of diagram 1(a)
Interchanging the order of integration, it is now an easy task To calculate the diagram in F|g(& where the photon is
to perform the Feynman parameter integrals since the mogimitted from the internas quark, we proceed in a similar
complicated ones are of the form way as in the previous subsection, i.e., we insert the building
block I, introduce three additional Feynman parameters
1 and integrate over the loop momentumThe characteristic
fo daa’®(1-a)%®=pB(p(s)+1q(s)+1). (249  denominator, is of the form

The integration pathy has to be chosen in such a way that
the Feynman parameter integrals exist for valueseof. By
inspection of the explicit expressions, one finds that this is . .-
Lhepcasle if the pathrxg)slclhosxepn suéh that @(; e (Notel ";nd occurs with powerseor 1+ 2e€. The coefficientsA, B
that in this papek is always a positive numbeiTo perform andC are functhns of the Feynman parameters. After suit-
the integration over the Mellin parametsr we close the able transformations, they read

integration path in the right half-plane and use the residue
theorem to identify the integral with the sum over the resi-
dues of the poles located at

A.=(AMmi+Bg?+Cmi+i o)

A=uv(l-v), B=uv?(1-u),

s=0,12,3... C:_Y(l—v)'
X(1—x)
s=1—¢€,2—€,3—¢,... ) )
(25) with u, X, y, v €[0,1]. From this we conclude that the result

s=1—-2¢,2—-2¢,3—2¢, ..., of this diagram is not analytic iq?. We are therefore not
allowed to Taylor expand the integrand. Instead, we apply
s=1/2—2¢€,3/2—2¢€,5/2—2€, . .. . the Mellin-Barnes representation twice and write
aml cm?]®

i 1 f dsf ds,l“(s+)\)l“(—s )I(s'—s)e'™ 27
Y Y

(2mi)?T(N)

BZ|| An?
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The integration pathsy and v’ are again parallel to the eQ,92Cr _
imaginary axis and- A <Re(s)<Re(s')<0. \ takes one of M,[1c]= ﬁ(lﬂt €)' (2€)e?7Ee 4 g2 me

the two values 2 and 1+ 2e. We have written Eq(27) in
such a way that non-integer powers appear only for positive . 1ie
numbers, i.e. we made use of the formula Xf dx dy du d v (l-w (1)

[X(1=x)]*"

X*i8)*=e 17T (—xFid)“.

( ) ( ) P, P, P,
l+25+E+ 2e

AC AC AC

u(p), (29

xu(p’)
As in the preceding subsection, the exact positions of the
integration pathgy andy’ are dictated by the condition that
the Feynman parameter integrals exist for values arfids’

lying thereon. Foi = 2¢, we find that these integrals exist if WherePy, P, and P; are polynomials in the Feynman pa-
rameters, which all run in the interved,1]. A. readsusing

— e<Re(s)<Re(s')<0. v’ =v(1-w)]
Closing the integration contour for tlseands’ integration in Ac=miuv'y—q?yv’(u+yv')
the left and right half-plane, respectively, and applying the ,
residue theorem results in an expansionsirand z. As . m2—g2y(1—x)[1—y(1—x)]}.
Re(s’)>Re(s), the termI'(s’' —s) in Eq. (27) does not gen- X(l—X){ - L=y Iy

erate any poles. For=2e, the poles which have to be taken

into account are located at

Note that we do not expand u at this stage of the calcu-
, lation. Instead, we use the Mellin-Barnes representd@3n
s'=l-€2-€3-¢, ... with the identification

S=—¢€,—1—€¢,—2—¢€, ...

KZ2emiuv'y
s'=1-2¢€,2—2€6,3—2€, ...
and
s=—2¢,—1—-2¢,—2—2€, ...
$'=0,12 M2 02y’ (U+yo' )+ —— (M2 — g2y (1—X)
A2, . (1) \me
For\=1+2e, we find that the Feynman parameter integrals X[1-y(1-x)]}.

exist if

This representation does a good job, sineeM?/K?)® turns

out to be analytic irg? for s<4z, as in this rangd12/K? is
positive for all values of the Feynman parameters. We there-
fore do the Taylor expansion with respectdd only at this
fevel. Evaluating the Feynman parameter integrals as well as
the Mellin-Barnes integral, we find the result as an expansion

—e<Rgs')<0 and —1—e<Rgs)<—2e.

This condition implies that the poles a& —¢€,—2¢€ in the
above list must not be taken into account when applying th
residue theorem.

The final result for the form factor€Eq. (6)] of this dia-

gram is of the form in zands/(4z) which can be cast into the general form
F<27v9>[1a]=i§m ¢S IN(9)ZIN"(z), (28 F{Tor 1c]=i2m cSilsiZ Inm(2), (30)

wherei, j, | andm all are non-negative integers. The remain- ] L -
ing four diagrams in Fig. () and Xb) exhibit no further ~Wherei andm are non-negative integers ahet —i,—i+ 3,
difficulties. —i+1....

5. Calculation of diagrams 1(c) 6. Calculation of diagrams 1(d)

Inserting the building blockl,; allows us to calculate After inserting the building blocK,; and performing the
directly the sum of the two diagrams shown in Figc)l  second-loop integral, the sum of the diagrams in Figl) 1
After performing the second loop integral, one obtains yields
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2 7. Calculation of diagram 1(e)
_ eng:sCF 2yge, Ae
Mz[ld]——256ﬂ4 (1+el'(2e)e”Eu We consider one of the diagrams in Figellin some
detail and redraw it in Fig. (®). The matrix element is pro-
e portional to 1A, where

v _
X | dxd fdud —u(p’
fs Y)s U[x(l—x)]HE o
Pi | P2 P3Ag

+—+
Aé+26 ASE Age

Ae=[(1=r)?=mZJ[(1=q—1)*~m(]
up). (3D X[(1=q)*~mZ][12—mg]r2 (34

o g is the four-momentum of the off-shell photon, whiland
whereP;, P, and P; are polynomials in the Feynman pa- r denote loop momenta. Ag°<4m? in our application, we
rameters, y, u andv. The parametersx(y) and (U,v) run  yse the heavy mass expansiHME) technique[46] to

in their respective simplex. The quantily; reads evaluate this diagram. In the present case, as the gluon is
massless, the HME boils down to a naive Taylor series ex-
5 yvu pansion of the diagrartbefore loop integrationsn the four-
Ag=mpu| u+ . . .
1-x momentumg. Expanding 14, in g, we obtain

1_
yv+u (1-y)

2 - l . -
+q°yv (1-x)2 1-x Xx(1-x) A_e:n,r%j,k Ce(n,m,i,j,k)
2 ) .
Mcv 2yi -1)(a-l k
o SR o)
r2[12—mZ]"[ (1 —r)2—m{]
Next, we use the Mellin-Barnes representat{@f) with the . o
identification Using the Feynman parametrization
K2—miul u+ Yo ) 1
o (17~ [ (1=)?=mE]"
M2 02 yo U (1-y) _T(ntm) 1 v™ 1 (1—p)"t i (3
ayv (1-x)? 1-x X(1—X) I'(n)I'(m) 0[|2—20(|-r)—m§+vr2]”+m ’

2
Mev we can perform the integration over the loop momentum
X(1—x)" The integral over the loop momentumcan be done using

the parametrization

Again, (—M?/K?)% is analytic ing? for s<4z, which allows

us to perform a Taylor series expansion with respecftdn 1 1 P T(1+p)
order to perform the integrations over the Feynman param- — - =T )
eters, we make suitable substitutions, e.g. r r2_ c P
v(l—v)
1_X! r__ 1_ !
oty Ay =] fl v
v’ X u.
°lr2- umg )pﬂ
v—u'v’, u—u'(1-v'). (32 v(l-v)

The new variables’,u’,v’ run in the interval 0,1], while &7

y' varies in [1_1’,’.1]‘ Evaluating the i_ntegrals over the The remaining integrals over the Feynman parametensd

Feynman and Mellin parameters, we find the result as ag 4 have the form of Eq(24) and can be performed easily.

expansion irz ands/(4z) which can be cast into the general The other two diagrams in Fig(é) where the virtual photon

form is emitted from the charm quark can be evaluated in a similar
way. The diagrams where the photon is radiated frombthe

7,9 _ 79250 |am quark or thes quark vanish.
P )[ld]_i;m ChimS'Z IN"(2). 33 As the results for the sum of all the diagrams in Figg)1

are compact, we explicitly give their contribution to the form

i and m are non-negative integers ane —i,—i+3,—i factors Fg) (a=1,2; j=7,9). We obtain ng)[le]:o,

+1,... . F{Ol1e]=4FP[1e] and
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oy a1 |~ 4eq 8+128 s £©) _ 64 . L8901 1260
Z[e]_ﬁc el3 " 25\ 4z Lav= T a2 m( T
~ 2 ~ 3 . . R
L 256 s 2048 s 5040, — 1260 + 258+ 2782+ 48Y)
105\4z) ~ 945\ 4z ,
124 12416 s , 11072 s\? ~ 8505 | —8085+2520,— 1260,
|27 7 36454z " 42525| 4z X o L
S S S
~ 3 _ - _ e _ >
_aem7rg 8 8 r05d | - .| -sond ] |
4465125 4z) |
. 46
3. Unrenormalized form factors of @ and O, F(féif ~ i

We stress that the diagran(filwhere the virtual photon is
emitted from the charm quark line is the only one in Fig. 1
which suffers from infrared and collinear singularities. As whereL¢=In(s), L,=In(2), L, =In(u/my) andz=m?/m3.
this diagram can easily be combined with diagrath) 4s-
sociated with the operat@,, we take it into account only in

Sec. IV A where the virtual corrections @ are discussed. B. O(as) counterterms to O, and O,

The unrenormalized form factos{"? of (sI1~|0,|b) So far, we have calculated the two-loop matrix elements
(a=1,2), corresponding to diagramsal—1(e), are obtained (sII~|C;0;|b) (i=1,2). As the operators mix under renor-
in the form malization, there are additional contributions proportional to

C, . These counterterms arise from the matrix elements of the
operators

FU9= > ci%.8 Inl(8)ZIn™(2),

12
i,j,I,m

>, 82;0;, =12, (40)
=1
wherei, | and m are non-negative integers ahe —i,—i

+3,—i+1,... . ith o

N 1'. We.keep the terms with and| up to :% where the operator®,-04, are given in Eq(2). O,; and
ifter checking that higher order terms are small for &85 5 416 evanescent operators, i.e., operators which vanish in
=0.25, the range considered in this paper. As we Will givey—4 gimensions. In principle, there is some freedom in the

the full results for the counterterm contributions to the for_mchoice of the evanescent operators. However, as we want to

factors in Sec. Il1B and the renormalized form factors in ., mpine our matrix elements with the Wilson coefficients

Sec. lll C and in Appendix B, it is not necessary to explicitly calculated by Bobeth et dl41], we must use the same defi-
present the somewhat lengthy expressions for the unrenog; -

malized form factors. But, in order to demonstrate the can-
cellation of ultraviolet singularities in the next section, we
list the divergent parts of the unrenormalized form factors: Oy1= (EL?, Y,y TaCL)(a_'y“y”y"TabL)—l6Ol, (42)
FO EO® EM gndEE - pavea
11 P 27

128 O1= (s V,JV%TCL)(?L y*y"y7b)—160,. (42)

4
9 - = __ %
Fiov= 51~ 75515 1890+ 12607

The operator renormalization consta#{s= 9;; + 6Z;; are of

+504Q , ~ 126 o+ 255+ 2752 + 48%) the form
8 a
+ 835 420+2520.,— 1260, 57, =ﬁ aﬂ-l+ _ailjl
~ A2 ~\ 3
12016 | +1294 — | +1024 > o 1, 1
4z 4z 4z) |’ + 5 a+ —ait+ —Zaizj2 +0(ad). (43
(4) € €
(39
Most of the coefficients™ needed for our calculation are
() — 2 given in Ref.[41]. As some are nevor not explicitly given
2dv 81e’ in [41]), we list those foi=1,2 andj=1, ...,12:
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-2 f 0 _3 0O 0 0 O _1_6 0 E E a12z_ﬁ a12:_ﬁ a22:_1168

A 3 9 27 12 9 243 "9 7290 19 243 @
6 00 2 0000 -2 0 1 of L2 76, 148
3 9 2781 297243 2 g81°

We denote the counterterm contributionsbtessi*|~ which  however, a second class of counterterm contributions due to
are due to the mixing oD, or O, into four-quark operators O;— Og mixing. These contributions are generated by two-
by F{uan @nd F{ Yy an They can be extracted from the loop mixing of O, into Og as well as by one-loop mixing
equation and one-loop renormalization of tlgg factor in the defini-
tion of the operato©4. We denote the corresponding contri-

a1 bution to the counterterm form factors (%) and F™(%).
2 (ﬁ zailjl<3|+| _|Oj|b>1-loop We obtain
j
ag ~ ~ a_22 a_12 a_l]_
= — (E [Ficizl)quarléoﬂtree"‘ Ficigl)quarléog>tree], ::t_(>99): B ( ;29 n _;9 B |92 O, ;2379):0, 45
€ €
(45)

where we made use of the renormalization cons@gnt

wherej runs over the four-quark operators. As certain entriegyiyen by
of al! are zero, only the one-loop matrix elements@f,
0,, 04, 0;; andO;, are needed. In order to keep the pre- g By 1 >
sentation transparent, we relegate their explicit form to Ap- Z,=1- s P70 =, Bo=11-=N;, N{=5. (47
pendix A. s 47 2 € 3

The 'counterterms that. are related ta the_ mlxmgppf(l Besides the contribution from operator mixing, there are
=1.2) into Og can be split into wo classes: The first Classordinary QCD counterterms. The renormalization of the
consists of the one-loop mixinQ;— Og, followed by taking

. . X charm quark mass is taken into account by replagimg
the one-loop corrected matrix element ©f. It is obvious q y rep

) : L . throughZ,, -m. in the one-loop matrix elements @, and
that this class contributes to the renormalization of diagram 9N &m,: Me P !

1(f). As we decided to treat diagrantflonly in Sec. IVA Oz (See Appendix A We denote the correspocT(g;ng contri-
(when discussing virtual corrections @), we proceed in Pution to the counterterm form factors by and

i,mcren
the same way with the counterterm just mentioned. There is;ﬁtf,?c)ren. We obtain

FCt(7) — FCt(?) — 0; FCt(g) _ i FCt(g)

1,m.ren 2mcren Lmcren— 3" 2meren

S s

z

FCt(g) —

2,m.ren

105+ 1260 In-—

105+ 84( - —2835{ =

S
‘51;[ 4z) 712

2 ~\3
64 >

2
(396+ 8641n ﬁ) +
mC

+ +§
4z

4z

3
(336+ 1008 I (416+ 768 1In i) } (48)
m me

C

4z

where we have used the pole mass definitiomgfwhich is

3 mas MS definition of the charm quark mass, the expressions in
characterized by the renormalization constant

Egs.(48) get changed according to

413

—+61In
€

As

n=1-773

%) +4/. (49 FEUo) = FEO)  + AR (50

i,mcren i,mcren i,mcrens

If one wishes to express the results Rﬁ,ﬁi{en in terms of the  whereA Fffr(i),en reads
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4 We stress at this point that we always use the pole mass
AFCI(Q) —_A ct(9)

Lmgren= 3 AF2m en: definition in the following, i.e., Eqs(48) for F i ooren:

The total counterterm&=") (i=1,2; j=7,9) which
(o) 64 s 32 32 renormalize diagrams(d)—1(e) are given by

AFS® = 1 105+84 — | +72 —| +64 —
Me 945 4z 4z 4z . . ) .
I:iCt(]) = F?ﬁ%quark“‘ Fici(%_F Fﬁtrgzren' (52)
nti 2 51
Mt 3) (52) Explicitly, they read

4 . .
Fo®)=—F&) ﬁﬁ[ 5740+ 2520m°— 840 7+ 840L , (19— 3im—54L,+48L ) + 3780 ,(—2+3L,)

~ ~ ~ S
+420L4(3im+2+6L,)—630L2+252%5(1—2L ) —54L,8*— 253 (1+4L )+ 604&{ E) (18L,—9L,—1)

3
S
E) (421,211 ,+19)

~\ 2

S

+ 7776{ E) (10L,—5L,+3)+ 1536(
2

th(7): - Fg&iv—}_ 2835

(840L ,+ 705+ 752 +5%),
(53

2
F{O=—f® + ﬁs{ —62300- 840 m+ 252072+ 840L ,( — 3i m— 54L ,+48L ,— 791) + 3780 ,(3L .+ 89)

s
4z

+420L(3im+2+6L,)—630L5+5(252-504L ) — 54s°L ,— 2s%(1+4L ) — 604({ (28+90L,—45L,)

~\2 3
S S
— 777% 4—) (27+62L ,—31,)— 768( E) (295+564 ,— 282_2)} ,

z

1 APV
Fe=—F ()~ gE0a(840L .+ 705+ 7s2+5s%).

The divergent parts of these counterterms are, up to a sign, ag 4 pw\?1

identical to those of the unrenormalized matrix elements le(m):l—ﬂg(a) ;+E—+4 . (54)
given in Eq.(39), which proves the cancellation of ultravio- IR

let singularities. So far, we have discussed the counterterms which renormal-

As mentioned before, we will take diagranffllinto ac-  ize the O(ag) corrected matrix element&s!™|~|O;[b) (i
count only in Sec. IV A. The same holds for the counter-=1 2). The corresponding one-loop matrix elemdwfsor-

terms associated with ttieands quark wave function renor-  der 0(a2)] are renormalized by adding the counterterms
malization and, as mentioned earlier in this subsection, the

O(a) correction to the matrix element @&;,04. The sum ag Ay

of these contributions is (Og)1ree-

47 €
11

> as Aig .
6Z 4{Oi)1-100pT yp T[ 6Z 4 Og)1reet {Og)1-100p] C. Renormalized form factors of O, and O,
We decompose the renormalized matrix element©Opf

6Z,=\Z ,(mp)Z,(mg)—1, (i=1,2) as

and provides the counterterm that renormalizes diagrdm 1 (sI™l *|Ci(°)oi|b)
We use on-shell renormalization for the exterrmland

squark. In this scheme the field strength renormalization con- _~O _ ¥\ e =
stants are given by Ci 2. LFi (Og)treet Fi(O7) el (55
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TABLE I. Coefficients in the decomposition &) and f{” for three values ofn.. See Eq(60).

=0.25
k{(0,0) —12.715+ 0.094699
k{(0,1) —0.078836-0.074138
k{*(1,0) —38.742-0.67862
k{(1,1) —0.0393010.00017258
k{(2,0) —103.83-2.5388
k{”(2,1) —0.044702- 0.0026288
k{*(3,0) —313.75-8.4554
k(*(3,1) —0.051133-0.022753
k{"(0,0) —0.76730-0.11418
k{"(0,1) 0

k{"(1,0) —0.28480-0.18278
k{"(1,1) —0.0032808 0.020827
k{"(2,0) 0.056108- 0.23357
k{"(2,1) 0.016376-0.020913
k{"(3,0) 0.62438-0.027438
k{"(3,1) 0.030536+ 0.0091424

=0.29 =0.33
—11.973+0.16371 —11.355+0.19217
—0.0812710.059691 —0.079426-0.043950
—28.432-0.25044 —21.648-0.063498
—0.040243-0.016442 —0.029733-0.031808
—57.114-0.86486 —33.788-0.24902
—0.0351910.027909 —0.0020505-0.040170
—128.80-2.5243 —59.105-0.72977
—0.017587% 0.050639 0.052779-0.038212
—0.68192-0.074998 —0.59736-0.044915
0 0
—0.23935-0.12289 —0.19856-0.081587
0.00274240.019676 0.0074152-0.016527

—0.0018555-0.17500
0.022864+0.011456
0.28248-0.12783
0.029027 0.0082265

—0.039209-0.12242
0.022282-0.0006252p
0.085946-0.11020
0.012166-0.019772

whereOg= (ag/4m) Oy and O, = (ag/47)O,. The form fac-
tors F(® and F{"), expanded up t&* and z® of the renor-
malized sum of diagrams (8—-1(e) read (.=Inm./m,

=lnm.=L,2)

po_ (1424 16 64
L=\ T 729 T 223" ™ g7be | bu
16 (16 32 ) .
243 #-s" | 1215~ 135° | -#S
4 8 .
52 2
+<2835 3157 | LeS
16 32 ) 5 20, 0
*| 76545 gs082 | L+S" 2a3tn
(56)
(256 32 128
2 _Lc L
243 81" 9 M
A DO
TgrtubsT| T 205" 257 |eS
8 16 )
o -2 2
( 945" 105° )LMS
32 64 512
_— 5-3 7 2 (9)
+( 25515 2835 )" s grbatts
(57)
208 416
7)_ 7 7)_ 7
F{ >——2—43LM+f( ), FY —ﬁLMH( ) (58)

The analytic results fof{?, {7, {) andf{"” are rather
lengthy. We decompose them as follows:

fP= > kPnsLIZLY +E pOSLL. (59

i,j,hm

The quantitieSpg'?i)j collect the half-integer powers of

=mZ/mi=mZ. This way, the summation indices in the
above equation run over integers only. We list the coeffi-
cients;cfib,)m andp(b) in Appendix B.

If we give the charm guark mass dependence in numerical
form, the formulas become simpler. For this purpose, we

write the functionsf{” as

=3 KO3

(a=1,2;b=7,9:1=0,...,3:j=0,1). (60)

The numerical values for the quantitie®’(i,j) are given in
Tables I and 1l forrAnc=0.250.29,0.33. Fonumerical val-

ues corresponding tan,=0.27.0.29,0.31 werefer to
Tables | and Il in the letter versigm2].

IV. VIRTUAL CORRECTIONS TO THE MATRIX
ELEMENTS OF THE OPERATORS O, Og, Og AND Oy,

A. Virtual corrections to the matrix element
of Og and Oy

As the hadronic parts of the operatdds and O, are
identical, the QCD corrected matrix element®f, can eas-
ily be obtained from the one oDy. We therefore present
only the calculation forsI™l~|Og|b) in some detail. The
virtual corrections to this matrix element consist of the ver-

074004-13



ASATRYAN, ASATRIAN, GREUB, AND WALKER PHYSICAL REVIEW D 65 074004

TABLE II. Coefficients in the decomposition dt” and 4" for three values ofn,. See Eq(60).

m.=0.25 me=0.29 m.=0.33
k$(0,0) 9.5042-0.56819 6.6338-0.98225 4.3035-1.1530
k{(0,1) 0.47298+ 0.44483 0.48763+0.35815 0.47656+ 0.26370
k(1,0) 7.4238+4.0717 3.3585+ 1.5026 0.73780+ 0.38096
k®(1,1) 0.2358% 0.0010355 0.24146-0.098649 0.17840-0.19082
k(2,0) 0.33806+ 15.233 —1.1906+ 5.1892 —2.3570+ 1.4941
k®(2,1) 0.268210.015770 0.21115-0.1674% 0.012303-0.24102
k$(3,0) —42.085+50.732 —17.120+ 15.146 —9.2008+ 4.3786
k®(3,1) 0.30680-0.13652 0.10552-0.30383 —0.316670.22927
k{"(0,0) 4.6038+0.68510 4.0915+0.44999 3.5842+0.26949
k{(0,1) 0 0 0
k{(1,0) 1.7088+ 1.0967 1.43610.73732 1.1910+ 0.48952
k{(1,1) 0.019685- 0.12496 —0.016454-0.11806 —0.044491 0.099160
k{(2,0) —0.33665+ 1.4014 0.011133-1.0500 0.23525+0.73452
k{(2,1) —0.098219-0.12548 —0.13718-0.068733 —0.13369-0.0037518
k{)(3,0) —3.7463+0.16463 —1.6949+0.76698 —0.51568+0.66118
k{(3,1) —0.18321 0.054854 —0.17416+0.049359 —0.072997% 0.11863
tex correction shown in Fig. (®) and of the quark self- Adding the self-energy contributions and the vertex cor-
energy contributions. The result can be written as rection, we get the ultraviolet finite results
- _O)| _ X rpO) g
(sI"17]Cq00|b)=Cq”| = 7| [F& (Og)tree © 16 20, 16, 116,
~ Fg —§+§S+§S +ES +finf1 (63)
+F§(O7)edl, (61)
with Og=(agddm)Oy and CL=(4m/a)[CO+ (ad ( ra ) 2
4m)C{M. my) 8. . 1., 1.
We evaluate diagram(B) keeping the strange quark mass fin= g|1stosT+3s
€IrR

mg as a regulator of collinear singularities. The unrenormal-

ized contributions of diagram(B) to the form factorsF{’) i)ze
andF{ read my, 2 2,
+ = In(r)+ zIn(r)— zIn“(r), (64
2 2 3 €R 3 3
A [
m, 4 m, 8
FO[4b]=— 2 3t eb 3 o 2 L1,
IR = — — — —
Fg 33 1+ 23+ 33 . (65
X “+1A2+1A3+1| +8| 2| 2
s ES §s En(r) §n(r) §n (r) - N . | .
At this place, it is convenient to incorporate diagraitfi) 1
16 20. 16., 116, together with its counterterms discussed in Sec. IIl B.
T3t gst3stt 7S, It is easy to see that the two loops in diagraff) factor-

(62) ize into two one-loop contributions. The charm loop has the
Lorentz structure 0©4 and can therefore be absorbed into a
, modified Wilson coefficient: The renormalized diagrai) 1
is properly included by modifyindc{’ in Eq. (61) as fol-
lows:

1. 1.
1+ 55+ 87

2
(7) — _ &
Fy[4b] 3s 55t 3

where we kept all terms up &'. €z andr = (m2/mZ) regu-
larize the infrared and collinear singularities in EG2).

Theb- ands-quark self-energy contributions are obtained - - - 4
by multiplying the tree level matrix element @ by the CP—CPmed= Cgo)’L(C(zo)“L §C(10))Ho, (66)
quark field renormalization factobZ,=Z,(my)Z,(ms)
—1, where the explicit form forZ,(m) (in the on-shell
schemegis given in Eq.(54). where the charm-loop functiod reads(in expanded form
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6@@6@66‘6‘@-&.\ ()QGG“G—W\@\
S 2\ S 2
& 2\ & 2\
b S 05 AQ s b S 2Q s b 05 s
C 2
a) c) €)
77 (119727
S, S,
é 2 é 2\
b &B Oy @) s b (S Q s b [ s
/\ . SO /\\
b) d) f)

FIG. 4. Some Feynman diagrams for>sy* or b—sl*|~ associated with the operataBs, Og andOg. The circle-crosses denote the
possible locations where the virtual photon is emitted, while the crosses mark the possible locations for gluon bremsstrahlung. See text.

M
Ho—ﬁ[ 1260+ 2520 Ir(ac

a2 ~\3
+43 > +25 >
4z 4z) |’

In the context of virtual corrections also tki¥ €) part of this

3 where the infrared and collinear singular pBt is identical
+100¢ -~ to the one oF{") in Eq. (64). Note that the on-shell value for
the renormalization factoZmb was used in Eq(68). There-

fore, when using the expression 6”9 in the form given
(67) above, the pole mass fon, has to be used at lowest order.

loop function is needed. We neglect it here since it will drop C. Virtual corrections to the matrix element of Og
out in combination with gluon bremsstrahlung. Note that ) _
H0=h(z,§)+8/9 In(w/my), with h defined in[41]. Fmally, we present our results for thg corrgcnons to the
_ _ _ matrix elements ofOg. The corresponding diagrams are
B. Virtual corrections to the matrix element of O shown in Figs. 4) and 4d). Including the counterterm
We now turn to the virtual corrections to the matrix ele-
ment of the operato®,, consisting of the vertexsee Fig. ag 16

4(a)] and self-energy corrections. The ultraviolet singularities ~ C86ZsXS!"1"[O7[b)yee  Where  6Zg7=—— o=,
of the sum of these diagrams are cancelled when adding the
counterterm amplitude

7 ields the ultraviolet and infrared finite result
C7[Z77Zmb/Z§s— 1KsI™171O7|b) ree y

here z,—1- 22 68 I*1-|C504|b
where  Zy=1-7—-—. (68) (s 80s|b)
~ o ~ ~
The expressions fdZ, andZgy_are given in Eqs(49) and =C§3°)( - ﬁ)[Fgg>(og>tree+ F{(07) ved,
(47), respectively. The renormalized result for the contribu-
tion proportional toC, can be written as (72

(sl |c7o7|b>=(:<7°>< - 5)

4 with CQ=C{V. The expanded form factofs§’ and F§"”

X [F(79)<69>tree+ F(77)<67>tree-|a (69)

with O;=(ag/47)0; and CP=C® . The expanded form o 104 32 1184 40 _\.
factorsF® andF{" read F§)= o 2_7772+ (_27 - 3”2)5
16 1. 1. 1. 14212 32 193444 560
F=— 11+ s+ -5+ -5°|, (70) it ) g R
[ S A A 135 375"\ T9as T 27 ™S
@ 32 32 . . 128, 16 ..,
F7 =§L’u+§+85+63 +ES +fir‘|f1 (71) +§LS(1+S+S +S), (73)
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o 32 8 , 44 8 For the combination of the interference terms between the
Fe'=—glutzm—g5 g™ tree-level and the one-loop matrix element®f [Fig. 4(a)]
and the corresponding bremsstrahlung correctiéigs 4(¢e)]
+(4 , 40 2, ( 32, 316) we make the ansatz
-7 — =S T —1I|s
3 3 9 9
dF77 drvm drbrems
200265838L ~3 24 T Ty
>7 51539 o(s+s2+8%). (74 ds ds ds
dry,_

2~2,..5 * 2
.\ 2GZme VAV
V. BREMSSTRAHLUNG CORRECTIONS em) FMb,potel VisVie

4 487°

ds
First of all, we remark that in the present paper only those . A
bremsstrahlung diagrams are taken into account which are X (1—8)24(1+2Is)
needed to cancel the infrared and collinear singularities ap-
pearing in the virtual corrections. All the other bremsstrah-
lung contributiongwhich are finitg, will be given elsewhere
[44].
It is known[28,24] that the contribution to the inclusive where C(O)_C(l)
decay width coming from the interference between the treez bremsstrahlung corrections is provided by the replace-
level and the one-loop matrix elements@§ [Fig. 4b)] and

from the corresponding bremsstrahlung correctigfig. MMt {O7)uee—[1+ “s/Ww7(S)]<O7>tree In order to sim-
4(f)] can be written in the form plify the calculation ofw,(S), we make the important obser-

vation that the form factor&!") and F{") have the same
infrared divergent part; [Egs.(71) and(63)], whereas={”)
andF{) are finite. Taking into account that thdimensions

the decay widthdI'(b—s1*17)/ds corresponding to the ma-

(77

~ o ~
x| 2[CPPP—wr(s) |,

This time, the encapsulation of virtual

dF99 dFth drgrgems
—=—=* ~
ds ds ds

trix element
dr 2GEMp pordl ViV
,\99 aem) b, pole| tb| M(b—>S|+| D)
ds \4m 483
X(1-3)2(1+25) = (11 [CPBO+ EPBE+ THBGb) e
(78)
g2l
X 2|C9 | = wo(S) | (75) is given by
~ 2
whereC{ =47/ a(CP+ ag/4mwC§H). This procedure cor- dl'(b—Xd"17) [ aem 2GEM; potel VisViol®
responds to encapsulating the virtual and bremsstrahlung ds 4 4873
corrections in the tree-level calculation by replac{i@p)ee .
through [1+ (as/ 7) 0o(S)1(Og)yee- The function wg(s) X(1-8)7[1+0(d~4)]
= w(S), which contains all information on virtual and brems- o211 (0)12 1 172(0)]2
strahlung corrections, can be found[i24,2§ and is given X{[1+(d=2)s](|IC57 "+ CLo')
by +4[1+(d—2)/5]|CP)?

. 4 . 2 a2 +4(d—1)RegCPITL*)). (79
wg(S)=— §L|(s) - §In(1—s)|n(s) - 5772
one concludes that the combination

5+4s . 25(1+5S)(1-2s)
1-s5)—

———FIn(1- = —In(s) ~ _ .
3(1+2s) 3(1-5)3(1+25) AVt |ICQO72 dryy
5+ 95— 62 1+(d—2)s ds
+ - ~_ A 76 ~
6(1—s)(1+2s) (76) |CLO) -2 dryn

, (80)
4(1+(d—2)/s) ds

ReplacingC{) by CL™9 [see Eq.(66)] in Eq. (75), dia-
gram Xf) and the corresponding bremsstrahlung correctionss free of infrared and collinear singularities. Defining analo-
are automatically included. gously
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|’é§0)|—2 drggems

Arbrems: _ =
1+(d—2)s ds
E(O) -2 drbrems
ey _drz @)
4(1+(d—-2)/s) ds
and using the identity
|CP|~2 dl'ge P72 dry,
1+(d—2)s ds 4(1+(d—2)/s) ds
=AY+ AT (82)

one concludes that alsAT'P®™s s finite. This is because

dl"g/ds and dT'7;/ds are finite due to the Kinoshita-Lee-
Nauenberg theorem and becaudé' is finite as mentioned
above. The calculation cAI""®™Sjs straightforward, as the
integrand, expanded ig, leads to unproblematic integrals.

Using the explicit results foATY"™, ATP®™Sand we(s), one
can readily extract»;(s) from Eq. (82):

“ 8 4 . 2
w7(S):_§|n<mib)—§Li(S)—§1T2

2 1n@in1-9- £ -
——=ns)I(L—s)—-——=IN(L—S
3 32+s

2 5(2—-25—s%) .
——ﬁM(S)
3 (1-5)%(2+5)
1 16—11s— 1752

I8 (24915 9

The reasoning for the interference terms between the tree-

level matrix element 00, and the one-loop matrix element

of Og and vice versa is analogous: We may combine this
contribution with the corresponding bremsstrahlung terms

coming from the interference of diagram@&yand 4f) mak-
ing the ansatz

dl'z dI'7g . drogm

ds ds ds
(84)
dl7e [ @em 2Glzzmg,pole|V:csvtbl2 ~lo
— == (1—5)
ds |47 4873

~ ~ o ~
xlz[ 2Rg CLOTO* )?Swm(s) .

PHYSICAL REVIEW D 65 074004

[CQ~2 dIgd
1+(d—2)s ds

virt
mixed

RgCPTP* ] dIyg
4(d—1) ds

(85

and

&2 drgers

1+(d—2)s ds

brems_
mixed

Rq'égo)'égo)* ] -1 dr?rgems
C 4d-D) ds

(86)
are finite. For the functiormm(%) we obtain

. 4 M 4 . 2 )
w79(s)=—§ln m—b —§LI(S)—§7T
+75

—In(1-5s)
S

2 . ~ 1
- §In(s)|n(1—s)— 9

1 5-9s

2s(3-25) .
- T
18 1-5

(87

Note that the procedure described here does work only if one
of the functionsw,(S), we(S) or w-¢(S) is known already.

Finally, we remark that the combined virtual and brems-
strahlung corrections to the operat@r, (which has the
same hadronic structure &) is described by the function
wg(g), too:

dFlO,lO_ dr\{i(;t,lo dI‘E[f%S 89)
ds ds ds

dl—‘10,102 a’em) z Glzzmg,pole|v?svtb| 2
ds 4w 4873

X (1—8)%(1+2s)

X

~ a ~
2CR)1*— wg(s)

whereC{Y=c{}.

VI. CORRECTIONS TO THE DECAY WIDTH
FOR b—Xd*I~

In this chapter we combine the virtual corrections calcu-
lated in Secs. lll, IV and the bremsstrahlung contributions

The corresponding encapsulation is realized by the replaceliscussed in Sec. V and study their influence on the decay

ment <07,9>treeﬁ[1+(aslw)w79(%)]<o7,9>tree- This time,
we make use of the fact that the quantities

width dT'(b—XJ *17)/ds. In the literature(see e.g[41]),
this decay width is usually written as
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TABLE lll. Coefficients appearing in Eq90) for u=2.5 GeV,u=5 GeV andu=10 GeV. Foray(u)
(in the MS schemg we used the two-loop expression with five flavors angm;)=0.119. The entries
correspond to the pole top quark mass=174 GeV. The superscrifg0) refers to lowest order quantities
while the superscriptl) denotes the correction terms of ordey.

u=2.5 GeV u=5 GeVv u=10 GeV
a 0.267 0.215 0.180
c® —0.697 —0.487 -0.326
c® 1.046 1.024 1.011
(AL, Ay (—0.360,0.031) €0.321,0.019) €0.287,0.008)
AP -0.164 —0.148 —-0.134
(AL ALy (4.241-0.170) (4.129,0.013) (4.131,0.155)
(TELO) by (0.115,0.278) (0.374,0.251) (0.576,0.231)
(U Uty (0.045,0.023) (0.032,0.016) (0.022,0.011)
(W, W) (0.044,0.016) (0.032,0.012) (0.022,0.009)
(A9 AY) (—4.372,0.135) £4.372,0.135) €4.372,0.135)
dl(b—XJ*17) values forA;, Ag, Aio’ Tg, Ug, and W, from [41], while
— cl®, ¢ and AL =CL*M can be found if48]. For com-
pleteness we list them in Table IIl.
Cer ZGEmg,po|e|V?st|2 - In Fig. 5~vzfer jllustrate the renormalization sgale depen-
=\ 7 18,3 (1—-9) dence of R&€;(s). The dashed curves are obtained Aby ne-
glecting the corrections calculated in this paper, ke:(s),
X[(1+28)(|CM2+ B2 Fi", FY) and F{" are put equal to zero in EG90). The
three curves correspond to the values of the renormalization
+4(1+2/5)|CEM?+ 12 RgCEMCE™ ) ], scale u=2.5 GeV (lowesy, =5 GeV (middle) and
(89 =10 GeV (uppermost The solid curves are obtained by

taking into account the new corrections. In this case, the
where the contributions calculated so far have been absorbdeWwest, middle dand uppermost CWVF Corresporlldgte ﬁO N
into the effective Wilson coefficient€S", CE" and CSM. It GeV, 5 GeV and 2.5 GeV, respectively. We conclude that the

turns out that also the new contributions calculated in thenew corrections significantly reduce the renormalization

o
present paper can be absorbed into these coefficients. Faic@le dependence of RE'(s). o
lowing as closely as possible the “parametrization” given Figure 6 shows the renormalization scale dependence of

recently by Bobettet al. [41], we write ReCg"(s). Again, the dashed curves are obtained by neglect-
ing the new corrections in Eq90), i.e., F{>, F$Y) andF{”

(;gff: 1+ as(w) wg(S) are put to zero. We stress thaiy(s) is retained, as this
function has been known before. The three curves corre-
A A A spond to the values of the renormalization sqate2.5 GeV
X[Ag+Toh(z,5) +Ugh(15)+Woh(05)] (lowesh, u=5 GeV (middle) and u=10 GeV (uppermost
as( )
— ZW (Cg-O)Fgg)+C(ZO)F(29)+A(80)F(89)) (90) 026 __l LI I L L R N L L L ) N |__
~ ag(pm) . -0.28 | .
C‘?ﬂ: 1+ = w7(s))A7 z?'b"
o —0.3
A1) CORM) . CORD) L AOED i
=4 (CPR+ ORI+ APRE) -0.32 |
as(p) ~034 £ | | | R
~eff_ S ~ | N TN T N N Y N T O A Y N N T A
Cio=|1+ “)9(3))'“107 005 01 015 02 025
where the expressions fdl'(_Z,é) and wg(_g) [see Eqs(67) FIG. 5. The three solid curves illustrate the dependence of
and(76)] were already available in the literatuii24,28,41.  ReCef(S) when the new corrections are included. The dashed

The quantitiesw,(S) and F{’s}, on the other hand, have curves are obtained when switching off these corrections. We set

been calculated in the present paper. We take the numericai,=0.29. See text.
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oL ]
I~ 3 |
f05
e b 1
3 5 N { { | I | { | | I | { | { I { | | N 0 i 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ]
0.05 0.1 0.15 02  0.25 0.05 0.1 0é5 02 025

8

FIG. 6. The three solid curves illustrate tpe dependence of FIG. 7. The three solid lines show the dependence of

ReCS"(s) when the new corrections are included. The dashequuarR(g)_Whe_n including the corrections to the matrix elements cal-
curves are obtained when switching off these corrections. We sélated in this paper; the dashed lines are obtained when switching

r?]c=0.29. See text. off these corrections. We sat,=0.29. See text.

_1_ 3_ 54 2 H
The solid curves take the new corrections into account. Now/Vhereg(z) =1—8z+8z°—2"—122° In(2) is the phase space

the lowest, middle and uppermost curve corresponglto factor, and
=2.5 GeV, 5 GeV and 10 GeV, respectively. We conclude 2ay(my) £(2)
that the new corrections significantly reduce the renormaliza- K(z)=1— 2o ) 114) (93)

tion scale dependence of R'(S), too. 37 9(2)

Whe_n cal_culatmg the d_ecay W|dt_1189), we retal_n only incorporates the next-to-leading QCD correction to the semi-
terms linear inag (and thus inw;, wg) in the expressions for . . .
Zefia | =effi2 ~ off12 i leptonic decayf49]. The functionf(z) has been given ana-
[C8"%, |C§'|* and |Cfgl°. In the interference term lytically in Ref. [50]:
Re(CS™CE™) too, we keep only linear contributions .
By construction, one has to make the replacemeanis , (25 239 25,
in thi (2)=—(1-2°)|+——F52z+ 5z
— w79 and w7— w+g in this term. 4 3 4
Our results include all the relevant virtual corrections and
those bremsstrahlung diagrams which generate infrared and
collinear singularities. There exist additional bremsstrahlung
terms coming, e.g., from one-lodp, and O, diagrams in
which both the virtual photon and the gluon are emitted from +(1-22) 17 E‘ZJF 1_722
the charm quark line. These contributions do not induce ad- 3 3 3
ditional renormalization scale dependence as they are ultra-
violet finite. Using our experience froim—sy andb—sg,

+zlIn(z)

X

4 17
20+90z— §z2+ 323) +2% In%(2)(36+ Z)

In(1-2)

—4(1+302%+ 2%)In(z)In(1—2z) — (1+ 162+ %)

these contributions are not expected to be large, but to give a
definitive answer concerning their size they have to be cal- X[6 Li(z)— m2]— 322331+ z)| m2— 4 Li(\/2)
culated[44].
. _ 1-z
VII. NUMERICAL RESULTS FOR  Rgyan(S) +4Li(—+2)—2In(2)In 1) | (99
+4z

The decay width in Eq89) has a large uncertainty due to
5 . . . ~
trr:e fac.tormb'po,e. Following common practice, we consider  \we now turn to the numerical results fBRquar(S) for
the ratio 0.05<5<0.25. In Fig. 7 we investigate the dependence of

1 dr(b—XJ*17) unar_k(é) on the renprmalization scaje. The §oliq lines are
_ s , (91  obtained by including the new NNLL contributions, as ex-
I'(b—X.ev) ds plained in Sec. VI. The three solid curves correspongcto
=2.5 GeV (lowest ling, u=5 GeV (middle ling and u
in which the factom;, . drops out. The explicit expression =10 GeV(uppermost ling The three dashed curveéagain

for the semi-leptonic decay widthi(b— X.ev,) reads w=2.5 GeV for the lowestu=5 GeV for the middle and
n=10 GeV for the uppermost lingon the other hand, show

the results without the new NNLL corrections, i.e., they in-

unark( %) =

I'(b—X.ev) . . :
clude the NLL results combined with the NNLL corrections
G2m m?2 to the matching conditions as obtained by Bobettlal. [41].
F'''b,pole 2 c,pole c . . -
= 3 [Vl 5 K| —]|. (92  From this figure, we conclude that the renormalization scale
192 M, pole b dependence gets reduced by more than a factor of 2. Only for
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1.5||||||||||||||||| 1.5IIII|II|||IIII|IIII

(a)

] FIG. 8. (8 Ry for m,
h =0.27 (dashed ling m.=0.29
1 (solid line) and m,=0.31 (dash-
' dotted line and u=5 GeV. (b)
-------------------- Ryuail(S) for m.=0.25 (dashed
line), m,=0.29 (solid line) and
m.=0.33 (dash-dotted ling and

0 | | I 11 1 | I | I I - I 11 1 1 M=5 GeV. See teXt.
5 0.1 0.15 0.2 0.256 0.05 0.1 0.15 0.2 0.25
8 8

—
(7 LR B

7
—
ST

Ruer(8) [104]
Ryar(8) [1074]

TT T T[T V¥

©
o

T

|
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low values ofs (s~0.05), where the NLLx dependence is NNLL level the uncertainty due ton. is larger than the
small already, the reduction factor is smaller. For the intedeftover u dependence, even for the less conservative range

grated quantity we obtain of m,. For the integrated quantitRy,« we have an uncer-
025 tainty of +7.6% whenm, is varied between 0.27 and 0.31.
Ryuari™ dsRyuard('S) Varying m. in the more conservative range, the correspond-
0.05 ing uncertainty amounts ter 15%.
=[1.25+0.08 )] X105, (95 A more detailed numerical analysis f(una,k(é) and

Rquarks including the errors which are due to uncertainties in
where the error is obtained by varying between 2.5 GeV other input parameters as well as non-perturbative effects,
and 10 GeV. Before our corrections, the result iRg, Wil be given in Ref.[44].
=(1.360.18)x 10 °[41]. In other words, the renormaliza-  To conclude: We have calculated virtual corrections of
tion scale dependence got reduced from+13% to O(as) to the matrix elements ad;, O,, O;, Og, Og and
~*6.5%. 045. We also took into account those bremsstrahlung correc-

Among the errors oquuark(%) which are due to the un- tions which cancel the infrared and collinear singularities in

certainties in the input parameters, the one inducednpy the virtual cor[ections. The renormalization scale depen-
=m./m, is known to be the largest. We repeat at this pointd€nce 0fRq,.i(S) gets reduced by more than a factor of 2.
thatm, enters(unlike in B— X.y) already the one-loop dia- The caICt_JIat|on of the remaining bremsstrahlung contribu-
grams associated witB; and O,. We did the renormaliza- tions (which are expected to be rather smaihd a more
tion of the charm quark mass in such a way tmthas the detailed numerical analysis are in progré44].

meaning of the pole mass in the one-loop expressions. The

meaning ofm,; in the corresponding two-loop matrix ele- ACKNOWLEDGMENTS

ments, on the other hand, is not fixédr a discussion of this C.G. would like to thank the members of the Yerevan
issue forB— Xy, see Ref[14]). As the running charm mass Physics Institute for the kind hospitality extended to him
at a scale of(my) is smaller than the pole mass, it numeri- when this paper was finalized. We thank K. Bieri and P.
cally makes a difference whether one inserts a pole mass- @liniger for helpful discussions. This work was partially sup-

a running mass value fan. in the two-loop contributions. In  ported by Schweizerischer Nationalfonds and SCOPES pro-
a thorough phenomenological analysis this issue should cegram.

tainly be included when estimating the theoretical error. We

decide, however, to postpone the quantitative discussion of ~ APPENDIX A: ONE-LOOP MATRIX ELEMENTS

this point and will take it up when also the finite bremsstrah- OF THE FOUR QUARK OPERATORS

lung contibutions, which complete the NNLL calculation of , . .

R (e lablé44]. For the time bei nteroret N order to fix the counterterm{";2) . (i=1,2) in Eq.
quarS), are availa *l. For the imeé being, we interpret (45, we need the one-loop matrix elements

m, to be the Qole mass in the two-loop contributions. In F'g‘(slﬂ ~|04[b) 1100 Of the four-quark operatoi®;, O,, Oy,

8(a) we varym. between 0.27 and 0.31, while in Figl8  0,, and O,,. Due to the 1¢ factor in Eq.(45), they are

the more conservative range 026,<0.33 is considered. needed up t@(e!). The explicit resultdin expanded form
Comparing Fig. 7 with Figs.(@) and 8b), we find that at the read

. w\2( 4 4 s 5\? s\’ e , s
<S| [ |02|b>l—loopz(ﬁ) &4-?35 —315+25 E +10 E + 64 E +F35 1057-—100 E
s\ -
+ 12% E) J <09>tr661 (AL)
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4
<S|+| _|Ollb>1—loop: §<S|+| _|02| b>1—|oopa

(A2)
L w2 N 16 2 .
<S| | |O4|b>1—loop:_ m—b §+ 9745(7054‘75 +5s°) <O7>tree+ ﬁ‘f‘ ﬁ(—42(}|— 1260 7T—1260_S+ 252
“ “ 4e ~ A -
+2752+4s%) + 5505420 7+910-630L 7 — 420~ 31572+ 318.2- 1265+ 5°) <og>t,ee] :
(A3)
1100y e — A2 1 42, 8 §2+16 5’ o) A4
<S | 11| >l-|00p_ 27 m. 514z 7\4z 63 7 < 9>tree1 ( )
+1 - 3 +1 -

<S| I |012|b>1—loop:Z<5| I |011|b>1—loop- (A5)

APPENDIX B: FULL $AND z DEPENDENCE OF THE FORM FACTORS F (%

In this appendix we give the dependenceféﬁ) (a=1,2; b=7,9) [see Eq.(59)] on s andz We decompose them as
follows:

b by 2ipj b) 20y i
fé’=_2 ngi)“ms'Léz'Lg‘JriEj Pg,i)jsll-]s-

i,j,l,m

The quantitiep); collect the half-integer powers af=mZ/mg=mZ. This way, the summation indices in the above equation

run over integers only. On the following pages, we list the numerical value§’}f, andp{), for

i=0,...,3; j=0,1; 1=-3,...,3 and m=0,...,4.

Coefficients not explicitly mentioned below vanish. In the following we have Coeffici;efﬁs*;n and p(lg,f for the decompo-
sition of f{):

p$=3.899m3, p{®)=—23.3946n,

p$%)=—140.368n,, p{%=7.7982 " —319.726n,

0 0 0 0

0 0 0 0 0

0 0 0 0 0
(9 —| —4.61812+3.67166 5.62963+1.86168 0 0 0

Ki0am™
14.4621 16.215% 9.59321-11.1701 —1.18519-7.44674 —0.790123 O

—16.0864+26.7517 54.2439-14.893%  —15.4074-29.787 —3.95062 O
—14.73-23.6892 —28.5761 34.7514 20.1481 0
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0 0 0 0
0 0 0 0 0
0 0 0 0 0
kym=| —0.04938270.103427 0 0 00
—0.592593 0 0 00
4.95977-1.86168  —1.18519-7.44674 —2.37037 0 O
~9.20287-1.65483  —1.0535+9.92898  3.16049 0
0 0 0 0
0 0 0 0
—2.48507-0.186168 0 0 0 0
4.47441-0.310281  1.48148-1.86168 0 0 0
71.3855-30.7987  8.47677-33.5108  12.5389-7.44674 —0.790123 0.79012
—18.1301+66.1439  149.506-67.0206 —49.1852-81.9141 —11.0617 0
~72.89-63.7828  —68.135+ 134.041 63.6049 0 0
0 0 0 00
0 0 0 00
0 0 0 00
K ym= 0 0 0 00
—2.66667- 1.86168 —1.18519 0 00
18.6530-7.44674  —4.74074-29.781 —9.48148 0 0
—41.6104-3.72337 —2.37037%44.6804 142222 0
0 0 0 0
—0.403158-0.0199466 0 0 0 0
—0.0613169- 0.0620562 0 0 0 0
37.1282-1.36524 22.0621-1.86168 5.33333 0790123 0
212.74-52.2081 —21.9215-52.1272 57.1724-7.44674 —2.37037 2.3703
~44.6829-108.718  272.015-163.828 —119.111-156.382 —21.3333 0
—137.203-106.832  —99.437330.139 168.889 0 0
0 0 00
00
00
Kym= 0.0164609 0 0 00
—5.33333-3.72337 —2.37037 0 00
40.786-22.3402  —14.2222-67.0206 —21.3333 0 0
~111.356 119.148 37.9259 0
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—0.0759415- 0.00295506 0 0 0 0
—0.00480894- 0.0036938R 0 0 0 0
—1.81002+ 0.0871741 —0.919459 ~0.197531 0 0
K gm= 79.7475-1.72206 57.31711.86168 11.2593 237037 0
425.579-76.6479 —68.8016-69.5029 129.357-7.44674 —553086 4.7407
— 87.8946+ 148.481 417.612-311522 —227.16-253.189 —34.7654 0
~279.268-135.118 - 146.853- 652.831 331.259 0 0
0 0 0 0 o
0 0 0 00
0 0 0 00
K ym= 0.0219479 0 0 0 0.
~8.2963- 5.5850% —3.55556 0 00
70.2698-49.6449  —31.6049-119.148 —37.9259 0 O
—231.893-18.6168 11.8519+248.225  79.0123 0

We now give the coefficients$?),,, andp{’) for the decomposition of{"):
p$73=1.94958n3, p{")=11.6973n,

p2,=70.1830n;, p{’d=—3.899In_ '+ 159.863n,

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
K(J&am: —1.14266-0.51713% 0 0 0 0
—2.20356+1.59186 —5.21743+1.86168 0.592593+3.72337 0.395062 O
1.86366-3.0623% —4.66347 3.72337 0.395062 0
—1.211312.89595  2.99588-2.4822% —4.14815 0
K (Jgﬂm:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Kg.?]).(]m: —2.07503+1.39626 —0.444444-0.930842 0 0 0
—25.9259+5.78065 —3.40101413.0318 —4.49173.72337 0.395062 —0.395062
11.4229-15.237% —34.0806+11.1701  10.3704+18.6168 2.37037 0
11.7509+ 15.6984 18.9564-24.822% —14.6173 0 0
0 0 0 0 0
0 0 0 00
0 0 0 00
K(lTl)JJm: —0.0164609 0 0 0 0
1.03704+0.930842 0.592593 0 0 0
—4.66347 7.44674 237037 0 O
6.73754+1.86168 1.18519-7.44674 —2.37037 O
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0 0 0 0 0
0 0 0 0 0
0.00555556 0 0 0 0
kam=| —19.469%1.59019 —11.6779-0.930842 ~2.96296  —0.395062 O
~90.4953-14.7788  14.9329-22.3402  —24.438-3.72337  1.18519 —1.18519
23.8816-32.8021  —82.7915-39.0954 32.2063+44.6804 592503 0
38.1415-34.8683  38.6436-80.673 —41.5802 0 0
0 0 0 00
0 0 0 00
0 0 0 00
Ky = —0.0164609 0 0 0 0
2.37037 1.86168 1.18519 0 00
—13.9904-3.72337 2.3703722.3402 711111 0 0
27.5428-3.72337  2.37037-29.787 —9.48148 0
0 0 0
—0.00010778- 0.00258567 0 0 0 0
0.946811- 0.0258567 0.488889 0.0987654 0 0
K am= ~41.9952-1.63678  —30.209% 0.930842 ~6.22222  —118519 O
—189.354+ 25.8196 42.6566r31.0281  —57.765+3.72337 2.76543 —2.37037
45.1784-52.4207 ~145.181+88.7408  70.9136-81.9141  11.0617 0
77.3602+ 54.2499 58.4491 184.927 —96.0988 0 0
0 0 0 00
0 0 0 00
0 0 0 00
Ky = —0.0164609 0 0 0 0
3.85185+2.79253 1.77778 0 00
—27.3882+-13.0318  8.2963+44.6804  14.2222 0 0
69.4495+ 1.86168  1.18519-74.4674 —23.7037 O

We now give coefficientsS}), andp$}) for the decomposition of$:
pSdo= —23.3946n7, p&)=140.368n,

p5)=842.206n;, ply= —46.789n; *+1918.36n,

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
(. =| —24.2913-22.0299 -23.111%+11.1701 0 0 0

K2.0am=—
—86.7723+97.2931 —57.5593+67.0206 7.1111H-44.6804 4.74074 O

96.5187160.51 —325.463+89.3609 92.4444+178.722 23.7037 0
88.380H 142.13% 171.457 208.509 —120.889 0
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0 0 0 0 0
0 0 0O 00
0 0 0O 00
kSJym=| 0.296296-0.620562 0 0 00
3.55556 0 0O 00
~29.7586+11.1701 7.1111%44.6804 14.2222 0 O
55.2172-9.92898  6.32099-59.5739 —18.963 0
0 0 0 0
0 0 0 0
0.8462+1.11701 0 0 0 0
—26.8464-1.86168 —8.88889-11.1701 0 0 0
~428.313-184.792 —50.8606201.062 —75.2337-44.6804 4.74074 —4.74074
108.781-396.864 —897.575-402.124  295.111491.485  66.3704 0
437.34-382.697  408.81-804.248 —381.63 0 0
0 0 0 00
0 0 0 00
0 0 0 0 0
Ky = 0 0 0 00
16.+11.1701 7.11111 0 00
~111.923-44.6804 28.4444-178.722 56.8889 0 0
249.663-22.3402  14.2222-268.083 —85.3333 0
0 0 0 0
~0.013219%0.11968 0 0 0 0
0.3679010.372337 0 0 0 0
—222.769-8.19141  —132.372-11.1701 ~32. ~4.74074 0
~1276.44-313.249  131.529-312.763 —343.034-44.6804 14.2222 —14.2222
268.098-652.279  —1632.09+982.969  714.667 938.289 128, 0
823.218-640.989  596.622- 1980.83 ~1013.33 0 0
00
00
0 0
Ky = ~0.0987654 0 0 00
32.+22.3402 14.2222 0 00
—244.716r134.041 85.3333-402.124  128. 0 O
668.137 —714.887 ~227.556 0
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—0.01422430.0177308 0 0 0
0.0288536-0.0221629 0 0 0
10.86010.523045 5.51675 1.18519 0 0
K(zg:z,(]m: —478.485+10.3323 —343.902-11.1701 —67.5556 —14.2222 0
—2553.47 459.887 412.809-417.017 —776.143-44.6804 33.1852 —28.4444
527.368-890.889 —2505.67/41869.13 1362.96+1519.13 208.593 0
1675.61810.709 881.1173916.98 —1987.56 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
= ~0.131687 0 o 0 0.
49.7778+33.5103 21.3333 0 0 O
—421.619+297.8% 189.63+714.887 227556 0 O
1391.36-111.701 —71.1111-1489.3% —474.074 O
We now give coefficients}),, andp$’) for the decomposition ofy"):
pd=—11.6973n3, p&)=—70.183%n,
pS=—421.103n,, p4d=23.3946n, ' —959.179n,
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
K= | 6.85597+3.10281 0 0 0o o0
13.2214-9.55118 31.3046-11.1701 —3.55556-22.3402 —2.37037 O
—11.182+18.3741 27.9808 —22.3402 —2.37037 O
7.2678717.3757 —17.9753+14.893% 24.8889 0
K(ZT(gJJm:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Ko =| 12.4502-8.37758  2.66667-5.5850% 0 0 0
155.555-34.6839 20.4061-78.1908 26.9502-22.3402 —2.37037 2.3703
—68.5374+-91.4251 204.484-67.0206 —62.2222-111.701 —14.2222 0
—70.505794.1903 —113.738+148.93% 87.7037 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0
= 0.0987654 0 0 00
—6.22222-5.5850% — 3.55556 0 0 0
27.9808 —44.6804 —14.2222 0 O
—40.4253-11.1701 —7.11111+44.6804 14.2222 O
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0 0 0
0 0 0 0 0
—0.0333333 0 0 0 0
k$Jom=| 116.815-9.54113  70.0677-5.5850% 17.7778 237037 0
542.972-88.6728 —80.5971-134.041 146.628-22.3402 —7.11111 7.1111
~143.29+196.813  496.749-234.572 —193.778-268.083 —35.5556 0
—228.849-209.21 —231.862+ 484.038 249.481 0 0
0 0 0 00
0 0 0 00
0 0 0 00
Ky = 0.0987654 0 0 0 0
—14.2222-11.1701 -7.11111 0 00
83.9424-22.3402  —14.2222-134.041 —42.6667 0 0
~165.257-22.3402 —14.2222-178.722 56.8889 0
0 0 0 0 0
0.000646678 0.015514 0 0 0 0
~5.68087+0.15514 —2.93333 ~0.592593 0 0
«am=|  251.971-9.82039 181.255-5.58505 37.3333 711111 0
1136.13-154.918  —255.94-186.168  346.59-22.3402 —16.5026 14.222
~271.07314.524  871.089-532.442 —425.481-491.485 —66.3704 O
—464.161-325.499  —350.695- 1109.56 576.593 0 0
0 0 0 00
0 0 0 00
0 0 0 00
K ym= 0.0987654 0 0 0o .
~23.111}16.7552 —10.6667 0 00
164.329-78.1908  —49.7778-268.083 —85.3333 0 0
~416.697-11.1701 —7.11111+446.804 142222 0
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