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Calculations of two-loop virtual corrections to b\sl¿lÀ in the standard model
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We present in detail the calculation of the virtualO(as) corrections to the inclusive semileptonic rare decay
b→sl1l 2. We also include thoseO(as) bremsstrahlung contributions which cancel the infrared and mass
singularities showing up in the virtual corrections. In order to avoid large resonant contributions, we restrict the
invariant mass squareds of the lepton pair to the range 0.05<s/mb

2<0.25. The analytic results are represented

as expansions in the small parametersŝ5s/mb
2 , z5mc

2/mb
2 and s/(4mc

2). The new contributions drastically
reduce the renormalization scale dependence of the decay spectrum. For the corresponding branching ratio

~restricted to the aboveŝ range! the renormalization scale uncertainty gets reduced from;613% to ;
66.5%.

DOI: 10.1103/PhysRevD.65.074004 PACS number~s!: 12.39.Hg, 11.10.Ef, 13.20.He
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I. INTRODUCTION

RareB decays are an extremely helpful tool for exam
ing the standard model~SM! and searching for new physics
Within the SM, they provide checks on the one-loop stru
ture of the theory and allow one to retrieve information
the Cabibbo-Kobayashi-Maskawa~CKM! matrix elements
Vts andVtd , which cannot be measured directly.

The first measurement of the exclusive rare decayB
→K* g was obtained in 1992 by the CLEO Collaboratio
@1#. Somewhat later, also the inclusive transitionB→Xsg
was observed by the same collaboration@2#. Although chal-
lenging for the experimentalists, the inclusive decays
clean from the theoretical point of view, as they are w
approximated by the underlying partonic transitions, up
small and calculable power corrections which start
O(LQCD

2 /mb
2) @3,4#.

The measured photon energy spectrum@5# and the
branching ratio for the decayB→Xsg @2,6,7# are in good
agreement with the next-to-leading logarithmic~NLL ! stan-
dard model predictions~see e.g.@8–14#!. Consequently, the
decayB→Xsg places stringent constraints on the extensio
of the SM, such as two Higgs doublet models@10,15,16#,
supersymmetric models@17–22#, etc.

B→Xsl
1l 2 is another interesting rare decay mode wh

has been extensively considered in the literature in
framework of the SM and its extensions~see e.g@23–28#!.
This decay has not been observed so far, but it is expecte
be measured at the operatingB factories after a few years o
data taking~for upper limits on its branching ratio we refer t
@29,30#!. The measurement of various kinematical distrib
tions of the decayB→Xsl

1l 2, combined with improved data
on B→Xsg, will tighten the constraints on the extensions
the SM or perhaps even reveal some deviations.

The main problem of the theoretical description ofB

→Xsl
1l 2 is due to the long-distance contributions fromc̄c

resonant states. When the invariant massAs of the lepton
pair is close to the mass of a resonance, only mod
0556-2821/2002/65~7!/074004~28!/$20.00 65 0740
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dependent predictions for such long distance contributi
are available today. It is therefore unclear whether the th
retical uncertainty can be reduced to less than620% when
integrating over these domains@31#.

However, restrictingAs to a region below the resonance
the long distance effects are under control. The correction
the pure perturbative picture can be analyzed within
heavy quark effective theory~HQET!. In particular, all avail-

able studies indicate that for the region 0.05, ŝ5s/mb
2

,0.25 the non-perturbative effects are below 10%@32–37#.
Consequently, the differential decay rate forB→Xsl

1l 2 can
be precisely predicted in this region using renormalizat
group improved perturbation theory. It was pointed out in t
literature that the differential decay rate and the forwa
backward asymmetry are particularly sensitive to new ph
ics in this kinematical window@38–40#.

Calculations of the next-to-leading logarithmic~NLL !
corrections to the processB→Xsl

1l 2 have been performed
in Refs. @24# and @28#. It turned out that the NLL result
suffers from a relatively large (616%) dependence on th
matching scalemW . To reduce it, next-to-next-to leadin
~NNLL ! corrections to the Wilson coefficients were recen
calculated by Bobeth et al.@41#. This required a two-loop
matching calculation of the effective theory to the full S
theory, followed by a renormalization group evolution of th
Wilson coefficients, using up to three-loop anomalous
mensions@41,11#. Including these NNLL corrections to th
Wilson coefficients, the matching scale dependence is ind
removed to a large extent.

As pointed out in Ref.@41#, this partially NNLL result
suffers from a relatively large (;613%) renormalization
scale (mb) dependence@mb;O(mb)# which, interestingly
enough, is even larger than that of the pure NLL result. R
cently we showed in a letter@42# that the NNLL corrections
to the matrix elements of the effective Hamiltonian dras
cally reduce the renormalization scale dependence. The
of the current paper is to present a detailed description of
rather involved calculations and to extend the phenome
©2002 The American Physical Society04-1
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logical part. We will discuss in particular the methods whi
allowed us to tackle the most involved part, viz. the calcu
tion of theO(as) two-loop virtual corrections to the matri
elements of the operatorsO1 andO2. We also comment on
the O(as) one-loop corrections toO7–O10. Furthermore,
we include those bremsstrahlung contributions which
needed to cancel infrared and collinear singularities in
virtual corrections. As shown already in@42#, the new con-
tributions reduce the renormalization scale dependence f
;613% to;66.5%.

The paper is organized as follows: In Sec. II we revie
the theoretical framework. Our results for the virtualO(as)
corrections to the matrix elements of the operatorsO1 and
O2 are presented in Sec. III, whereas the corresponding
rections to the matrix elements ofO7 , O8 , O9 andO10 are
given in Sec. IV. Section V is devoted to the bremsstrahlu
corrections. The combined corrections~virtual and brems-
strahlung! to b→sl1l 2 are discussed in Sec. VI. Finally, i
Sec. VII, we analyze the invariant mass distribution of t
lepton pair in the range 0.05< ŝ<0.25.

II. EFFECTIVE HAMILTONIAN

The appropriate framework for studying QCD correctio
to rareB decays in a systematic way is the effective Ham
tonian technique. For the specific decay channelsb→sl1l 2

( l 5m,e), the effective Hamiltonian is derived by integratin
out the heavy degrees of freedom. In the context of the s
dard model, these are thet quark, theW boson and theZ0

boson. Because of the unitarity of the CKM matrix, t
CKM structure factorizes when neglecting the combinat
Vus* Vub . The effective Hamiltonian then reads

Heff52
4GF

A2
Vts* Vtb(

i 51

10

Ci~m!Oi~m!. ~1!

Following Ref.@41#, we choose the operator basis as follow

O15~ s̄LgmTacL!~ c̄LgmTabL!, ~2!

O25~ s̄LgmcL!~ c̄LgmbL!,

O35~ s̄LgmbL!(
q

~ q̄gmq!,

O45~ s̄LgmTabL!(
q

~ q̄gmTaq!,

O55~ s̄LgmgngrbL!(
q

~ q̄gmgngrq!,

O65~ s̄LgmgngrTabL!(
q

~ q̄gmgngrTaq!,

O75
e

gs
2

mb~ s̄LsmnbR!Fmn ,
07400
-
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:

O85
1

gs
mb~ s̄LsmnTabR!Gmn

a ,

O95
e2

gs
2 ~ s̄LgmbL!(

l
~ l̄ gml !,

O105
e2

gs
2 ~ s̄LgmbL!(

l
~ l̄ gmg5l !,

where the subscriptsL andR refer to left- and right-handed
components of the fermion fields.

The factors 1/gs
2 in the definition of the operatorsO7 , O9

andO10, as well as the factor 1/gs present inO8 have been
chosen by Misiak@24# in order to simplify the organization
of the calculation: With these definitions, the one-lo
anomalous dimensions@needed for a leading logarithmi
~LL ! calculation# of the operatorsOi are all proportional to
gs

2 , while two-loop anomalous dimensions@needed for a
next-to-leading logarithmic~NLL ! calculation# are propor-
tional to gs

4 , etc.
After this important remark we now outline the princip

steps which lead to LL, NLL, NNLL predictions for the de
cay amplitude forb→sl1l 2:

~1! A matching calculation between the full SM theo
and the effective theory has to be performed in order to
termine the Wilson coefficientsCi at the high scalemW
;mW ,mt . At this scale, the coefficients can be worked o
in fixed order perturbation theory, i.e. they can be expan
in gs

2 :

Ci~mW!5Ci
(0)~mW!1

gs
2

16p2
Ci

(1)~mW!

1
gs

4

~16p2!2
Ci

(2)~mW!1O~gs
6!. ~3!

At LL order, only Ci
(0) are needed, at NLL order alsoCi

(1) ,
etc.. While the coefficientC7

(2) , which is needed for a NNLL
analysis, is known for quite some time@9#, C9

(2) and C10
(2)

have been calculated only recently@41# ~see also@43#!.
~2! The renormalization group equation~RGE! has to be

solved in order to get the Wilson coefficients at the low sc
mb;mb . For this RGE step the anomalous dimension ma
to the relevant order ings is required, as described abov
After these two steps one can decompose the Wilson co
cientsCi(mb) into a LL, NLL and NNLL part according to

Ci~mb!5Ci
(0)~mb!1

gs
2~mb!

16p2
Ci

(1)~mb!

1
gs

4~mb!

~16p2!2
Ci

(2)~mb!1O~gs
6!. ~4!

~3! In order to get the decay amplitude, the matrix e
ments^sl1l 2uOi(mb)ub& have to be calculated. At LL preci
sion, only the operatorO9 contributes, as this operator is th
4-2
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only one which at the same time has a Wilson coeffici
starting at lowest order and an explicit 1/gs

2 factor in the
definition. Hence, at NLL precision, QCD corrections~vir-
tual and bremsstrahlung! to the matrix element ofO9 are
needed. They have been calculated a few years ago@24,28#.
At NLL precision, also the other operators start contributin
viz. O7(mb) and O10(mb) contribute at tree-level and th
four-quark operatorsO1 , . . . ,O6 at one-loop level. Accord-
ingly, QCD corrections to the latter matrix elements a
needed for a NNLL prediction of the decay amplitude.

The formally leading term;(1/gs
2)C9

(0)(mb) to the am-
plitude for b→sl1l 2 is smaller than the NLL term
;(1/gs

2)@gs
2/(16p2)#C9

(1)(mb) @23#. We adapt our systemat
ics to the numerical situation and treat the sum of these
terms as a NLL contribution. This is, admittedly some abu
of language, because the decay amplitude then starts out
a term which is called NLL.

As pointed out in step~3!, O(as) QCD corrections to the
matrix elementŝ sl1l 2uOi(mb)ub& have to be calculated in
order to obtain the NNLL prediction for the decay amplitud
In the present paper we systematically evaluate virtual c
rections of orderas to the matrix elements ofO1 , O2 , O7 ,
O8 , O9 andO10. As the Wilson coefficients of the gluoni
penguin operatorsO3 , . . . ,O6 are much smaller than thos
of O1 and O2, we neglect QCD corrections to their matr
elements. As discussed in more detail later, we also incl
those bremsstrahlung diagrams which are needed to ca
infrared and collinear singularities from the virtual contrib
tions. The complete bremsstrahlung corrections, i.e. all
finite parts, will be given elsewhere@44#. We anticipate that
the QCD corrections calculated in the present paper subs
tially reduce the scale dependence of the NLL result.

III. VIRTUAL O„aS… CORRECTIONS
TO THE CURRENT-CURRENT OPERATORS

O1 AND O2

In this chapter we present a detailed calculation of
virtual O(as) corrections to the matrix elements of th
current-current operatorsO1 andO2. Using the naive dimen-
sional regularization scheme~NDR! in d5422e dimen-
sions, both ultraviolet and infrared singularities show up
1/en poles (n51,2). The ultraviolet singularities cancel aft
including the counterterms. Collinear singularities are re
larized by retaining a finite strange quark massms . They are
cancelled together with the infrared singularities at the le
of the decay width, taking the bremsstrahlung procesb
→sl1l 2g into account. Gauge invariance implies that t
QCD corrected matrix elements of the operatorsOi can be
written as

^sl1l 2uOi ub&5F̂ i
(9)^O9& tree1F̂ i

(7)^O7& tree, ~5!

where^O9& treeand^O7& treeare the tree-level matrix elemen
of O9 andO7, respectively. Equivalently, we may write
07400
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^sl1l 2uOi ub&52
as

4p
@Fi

(9)^Õ9& tree1Fi
(7)^Õ7& tree#, ~6!

where the operatorsÕ7 andÕ9 are defined as

Õ75
as

4p
O7 , Õ95

as

4p
O9 . ~7!

We present the final results for the QCD corrected ma
elements in the form of Eq.~6!.

A. RegularizedO„as… contribution of O1 and O2

The full set of the diagrams contributing to the matr
elements

Mi5^sl1l 2uOi ub& ~ i 51,2! ~8!

at O(as) is shown in Fig. 1.
As indicated in this figure, the diagrams associated w

O1 and O2 are topologically identical. They differ only by
the color structure. While the matrix elements of the opera
O2 all involve the color structure

(
a

TaTa5CF1, CF5
Nc

221

2Nc
, ~9!

there are two possible color structures for the correspond
diagrams ofO1, viz.

t15(
a,b

TaTbTaTb and t25(
a,b

TaTbTbTa. ~10!

The structuret1 appears in diagrams 1~a!–1~d! and t2 in
diagrams 1~e! and 1~f!. Using the relation

(
a

Tab
a Tgd

a 52
1

2Nc
dabdgd1

1

2
daddbg ,

we find thatt15Ct1
1 andt25Ct2

1 with

Ct1
52

Nc
221

4Nc
2

and Ct2
5

~Nc
221!2

4Nc
2

.

InsertingNc53, the color factors areCF5 4
3 , Ct1

52 2
9 and

Ct2
5 16

9 . The contributions fromO1 are obtained by multi-

plying those fromO2 by the appropriate factors, i.e. b
Ct1

/CF521/6 andCt2
/CF54/3, respectively. In the fol-

lowing descriptions of the individual diagrams we therefo
restrict ourselves to those associated with the operatorO2.

In the current paper we use the modified minimal subtr
tion MS renormalization scheme which is technically impl
mented by introducing the renormalization scale in the fo
4-3
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FIG. 1. Complete list of two-loop Feynman diagrams forb→sg* associated with the operatorsO1 andO2. The fermions (b, s andc
quarks! are represented by solid lines, whereas the curly lines represent gluons. The circle-crosses denote the possible locations
virtual photon~which then splits into a lepton pair! is emitted.
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m̄ 25m2 exp(gE)/(4p), followed by minimal subtraction. The
precise definition of the evanescent operators, which is n
essary to fully specify the renormalization scheme, will
given later. The remainder of this section is divided in
eight subsections. Sections III A 1–III A 6 deal with the di
grams 1~a!–1~d! which are calculated by means of Mellin
Barnes techniques@45#. Section III A 7 is devoted to the dia
grams 1~e! which are evaluated by using the heavy ma
expansion procedure@46#. Among the diagrams 1~f! only the
one where the virtual photon is emitted from the cha
quark line is non-zero. As it factorizes into two one-loo
diagrams, its calculation is straightforward and does not
quire to be discussed in detail. It is, however, worth menti
ing already at this point that it is convenient to omit th
diagram in the discussion of the matrix elements ofO1 and
O2 and to take it into account together with the virtual co
rections toO9. Finally, in Sec. III A 8, we give the results fo
the dimensionally regularized matrix elements^sl1l 2uOi ub&
( i 51,2).

1. The building blocks Ib and Jab

For the calculation of diagrams 1~a!–1~d! it is advisable
to evaluate the building blocksI b and Jab first. The corre-
sponding diagrams are depicted in Fig. 2.
07400
c-

s

-
-

After performing a straightforward Feynman parametriz
tion followed by the integration over the loop momentum
the analytic expression for the building blockI b reads

I b52
gs

4p2
G~e!m2eegEe~12e!eipe~r br”2r 2gb!

3L
l

2E0

1

dx@x~12x!#12e

3F r 22
mc

2

x~12x!
1 idG2e

, ~11!

wherer is the momentum of the virtual gluon emitted fro
thec-quark loop. The termid is the ‘‘i e prescription.’’ In the
full two-loop diagrams, the free indexb will be contracted
with the corresponding gluon propagator. Note thatI b is
gauge invariant in the sense thatr bI b50.

The building blockJab is somewhat more complicated
Using the notation introduced by Simma and Wyler@47#, it
reads
FIG. 2. The building blocksI b andJab which are used for the calculation of the two-loop diagrams 1~a!–1~d!. The curly and wavy lines
represent gluons and photons, respectively.
4-4
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Jab5
egsQu

16p2 FE~a,b,r !D i 51E~a,b,q!D i 6

2E~b,r ,q!
r a

q•r
D i 232E~a,r ,q!

r b

q•r
D i 25

2E~a,r ,q!
qb

q•r
D i 26

2E~b,r ,q!
qa

q•r
D i 27GL l

2
, ~12!

whereq and r denote the momenta of the~virtual! photon
and gluon, respectively. The indicesa and b will be con-
tracted with the propagators of the photon and the glu
respectively. The matrixE(a,b,r ) is defined as

E~a,b,r !5
1

2
~gagbr”2r”gbga! ~13!

and the dimensionally regularized quantitiesD i k occurring in
Eq. ~12! read

D i 554B1E
S
dx dy@4~q•r !xy~12x!e

1r 2x~12x!~122x!e1q2y~222y12xy2x!e

1~123x!C#C212e,

D i 654B1E
S
dx dy@24~q•r !xy~12y!e

2q2y~12y!~122y!e2r 2x~222x12xy2y!e

2~123y!C#C212e,

D i 2352D i 2658B1~q•r !E
S
dx dy xyeC212e, ~14!

D i 25528B1~q•r !E
S
dx dy x~12x!eC212e,

D i 2758B1~q•r !E
S
dx dy y~12y!eC212e,

whereB15(11e)G(e)egEem2e andC is given by

C5mc
222xy~q•r !2r 2x~12x!2q2y~12y!.

The integration over the Feynman parametersx andy is re-
stricted to the simplexS, i.e. yP@0,12x#, xP@0,1#. Due to
Ward identities, the quantitiesD i k are not independent of on
another. Namely,

qaJab50 and r bJab50
07400
n,

imply that D i 5 andD i 6 can be expressed as

D i 55D i 231
q2

q•r
D i 27, D i 65

r 2

q•r
D i 251D i 26. ~15!

2. General remarks

After inserting the above expressions for the buildi
blocks I b andJab into diagrams 1~a!,1~b! and 1~c!,1~d!, re-
spectively, and introducing additional Feynman paramet
we can easily perform the integration over the second-lo
momentum. The remaining Feynman parameter integrals
however, non-trivial. In Refs.@12# and@48#, where the analo-
gous corrections to the processesb→sg and b→sg were
studied, the strategy used to evaluate these integrals is
following:

The denominators are represented as complex Me
Barnes integrals~see below and Refs.@12,48#!.

After interchanging the order of integration and approp
ate variable transformations, the Feynman parameter i
grals reduce to Eulerb andG functions.

Finally, by Cauchy’s theorem the remaining complex i
tegral over the Mellin variable can be written as a sum o
residues taken at certain poles ofb and G functions. This
leads in a natural way to an expansion in the small ratiz
5mc

2/mb
2 .

However, this procedure cannot be applied directly in
present case: While the processesb→sg and b→sg are
characterized by the two mass scalesmb and mc , a third
mass scale, viz.q2, the invariant mass squared of the lept
pair enters the processb→sl1l 2. For values ofq2 satisfying

q2

mb
2
,1 and

q2

4mc
2
,1,

most of the diagrams allow a naive Taylor series expans
in q2 and the dependence of the charm quark mass can a
be calculated by means of Mellin-Barnes representatio
This method does not work, however, for the diagram in F
1~a! where the photon is emitted from the internals-quark
line. Instead, we apply a Mellin-Barnes representation twi
as we discuss in detail in Sec. III A 4. Using these metho
we get the results for diagrams 1~a!–1~d! as an expansion in
ŝ5q2/mb

2 , z5mc
2/mb

2 and ŝ/(4z) as well as ln(ŝ) and ln(z).
This implies that our results are meaningful only for sm
values of ŝ. Fortunately, this is exactly the range of ma
theoretical and experimental interest in the phenomenol
of the processb→sl1l 2.

3. Calculation of diagram 1(b)

We describe the basic steps of our calculation of the d
gram in Fig. 1~b! where the photon is emitted from the in
ternalb-quark line. Our notations for the momenta are set
in Fig. 3~a!.

Inserting the building blockI b yields the following ana-
lytic expression for this diagram:
4-5
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M2@1b#5
ieQdgs

2

4p2
CFG~e!e2gEem4e~12e!eipe~4p!2eE

0

1

dx
@x~12x!#12e

$r 22mc
2/@x~12x!#1 id%e

3E ddr

~2p!d
ū~p8!~r br”2r 2gb!L

p” 81r”1mb

~p81r !22mb
2
ga

p”1r”1mb

~p1r !22mb
2
gbu~p!•

1

r 2
. ~16!

Applying a Feynman parametrization according to

1

D1D2D3D4
e

5
G~31e!

G~e!
E

S

du dv dy ye21

@uD11vD21~12u2v2y!D31yD4#31e
, ~17!
e,
the
n
the

-
to

n
in
with

D15~p81r !22mb
2 , D25~p1r !22mb

2 , ~18!

D35r 2, D45r 22mc
2/@x~12x!#, ~19!

and performing the integral over the loop momentumr, we
obtain

M2@1b#52
eQdgs

2

64p4
~12e!CFG~2e!e2gEem4e

3E
0

1

dx@x~12x!#12e

3E
S
dv du dy ye21ū~p8!

3F P1

Db
112e

1
P2

Db
2e

1
P3Db

Db
2e Gu~p!, ~20!

where the Feynman parametersu, v andy run over the sim-
plex S, i.e u,v,y.0 andu1v1y<1. P1 , P2 and P3 are
polynomials in the Feynman parameters and the quantityDb
reads

Db5mb
2~u1uv1v2!2q2uv1

mc
2y

x~12x!
.

FIG. 3. ~a! Momentum flow in diagram 1~b!, where the virtual
photon is emitted from theb-quark line~see Sec. III A 3!; ~b! mo-
mentum flow in the vertex correction diagram in Fig. 1~e! ~see Sec.
III A 7 !.
07400
For q2<mb
2 it is positive in the integration region. Therefor

one is allowed to do a naive Taylor series expansion of
integrand inq2. In order to simplify the resulting Feynma
parameter integrals, it is convenient to first transform
integration variablesx, y, u andv according to

u→ ~12v8!~211v81u8!

v8
, v→ ~12v8!~12u8!

v8
,

x→x8, y→y8v8.

The integration region of the new variables is given byu8
P@(12v8),1# andv8,x8,y8P@0,1#. Taking the correspond
ing Jacobian into account and omitting primes in order
simplify the notation, we find

M2@1b#52
eQdgs

2

64p4
~12e!CFG~2e!e2gEem4e

3E
0

1

dx@x~12x!#12e

3E
0

1

dvE
12v

1

duE
0

1

dy~vy!e21~12v !ū~p8!

3F Q1

Db
112e

1
Q2

Db
2e

1
Q3Db

Db
2e Gu~p!, ~21!

where, in terms of the new variables,Db reads

Db5mb
2~12v !u1q2

~12v !2~12v2u!~12u!

v2

1mc
2 vy

x~12x!
.

Q1 , Q2 and Q3 are rational functions in the new Feynma
parameters. After performing the Taylor series expansion
q2, the remaining integrals are of the form
4-6
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E
0

1

dx dv dyE
12v

1

du@x~12x!#12e~vy!e21~12v !

3
1

vm

P~x,y,u,v !

Db,0
n12e

, ~22!

where P(x,y,u,v) is a polynomial inx, y, u, v; Db,05Db
(q250); n andm are non-negative integers. We further fo
low the strategy used in@12,48# and represent the denomin
tors Db,0

l as Mellin-Barnes integrals. The Mellin-Barnes re
resentation for (K22M2)2l reads (l.0)

1

~K22M2!l
5

1

~K2!l

1

G~l!

1

2p i Eg
dsS 2

M2

K2 D s

G~2s!

3G~l1s!. ~23!

The integration pathg runs parallel to the imaginary axis an
intersects the real axis somewhere between2l and 0. The
Mellin-Barnes representation ofDb,0

l is obtained by making
the identifications

K2↔mb
2u~12v ! and M2↔2mc

2yv/@x~12x!#.

Interchanging the order of integration, it is now an easy t
to perform the Feynman parameter integrals since the m
complicated ones are of the form

E
0

1

da ap(s)~12a!q(s)5b„p~s!11,q~s!11…. ~24!

The integration pathg has to be chosen in such a way th
the Feynman parameter integrals exist for values ofsPg. By
inspection of the explicit expressions, one finds that this
the case if the pathg is chosen such that Re(s).2e. ~Note
that in this papere is always a positive number.! To perform
the integration over the Mellin parameters, we close the
integration path in the right half-plane and use the resi
theorem to identify the integral with the sum over the re
dues of the poles located at

s50,1,2,3, . . .

s512e,22e,32e, . . .
~25!

s5122e,222e,322e, . . . ,

s51/222e,3/222e,5/222e, . . . .
07400
k
st

t

is

e
-

In view of the factor (mc
2/mb

2)s stemming from the Mellin-
Barnes formula~23!, the evaluation of the residues at th
pole positions listed in Eq.~25! corresponds directly to an
expansion inz5mc

2/mb
2 . Note that closing the integration

contour in the right half-plane yields an overall minus si
due to the clockwise orientation of the integration path. Af
expanding ine, we get the form factors ofM2@1b# @see Eq.
~6!# as an expansion of the form

F2
(7,9)@1b#5 (

i ,l ,m
c2,i lm

(7,9) ŝizl lnm~z!, ~26!

where i and m are non-negative integers andl is a natural
multiple of 1

2 @see Eq.~25!#. Furthermore, the powerm of
ln(z) is bounded by four, independent of the values ofi andl.
This becomes clear if we consider the structure of the po
There are three poles ins located near any natural numberk,
viz. at s5k, s5k2e and s5k22e. Taking the residue a
one of them yields a term proportional to 1/e2 from the other
two poles. In addition, there can be an explicit 1/e2 term
from the integration over the two-loop momenta. Therefo
the most singular term can be of order 1/e4 and, after ex-
panding ine, the highest possible power of ln(z) is four.

4. Calculation of diagram 1(a)

To calculate the diagram in Fig. 1~a! where the photon is
emitted from the internals quark, we proceed in a simila
way as in the previous subsection, i.e., we insert the build
block I b , introduce three additional Feynman paramet
and integrate over the loop momentumr. The characteristic
denominatorDa is of the form

Da5~Amb
21Bq21Cmc

21 id!

and occurs with powers 2e or 112e. The coefficientsA, B
and C are functions of the Feynman parameters. After su
able transformations, they read

A5uv~12v !, B5uv2~12u!,

C52
y~12v !

x~12x!
,

with u, x, y, vP@0,1#. From this we conclude that the resu
of this diagram is not analytic inq2. We are therefore no
allowed to Taylor expand the integrand. Instead, we ap
the Mellin-Barnes representation twice and write
1

Da
l

5
1

~Bq2!lEg
dsE

g8
ds8

G~s1l!G~2s8!G~s82s!eips8

~2p i !2G~l!
FAmb

2

Bq2 G sF2
Cmc

2

Amb
2G s8

. ~27!
4-7
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The integration pathsg and g8 are again parallel to the
imaginary axis and2l,Re(s),Re(s8),0. l takes one of
the two values 2e and 112e. We have written Eq.~27! in
such a way that non-integer powers appear only for posi
numbers, i.e. we made use of the formula

~x6 id!a5e6 ipa~2x7 id!a.

As in the preceding subsection, the exact positions of
integration pathsg andg8 are dictated by the condition tha
the Feynman parameter integrals exist for values ofs ands8
lying thereon. Forl52e, we find that these integrals exist

2e,Re~s!,Re~s8!,0.

Closing the integration contour for thes ands8 integration in
the left and right half-plane, respectively, and applying
residue theorem results in an expansion inŝ and z. As
Re(s8).Re(s), the termG(s82s) in Eq. ~27! does not gen-
erate any poles. Forl52e, the poles which have to be take
into account are located at

s8512e,22e,32e, . . .

s52e,212e,222e, . . .

s85122e,222e,322e, . . .

s522e,2122e,2222e, . . .

s850,1,2, . . . .

For l5112e, we find that the Feynman parameter integr
exist if

2e,Re~s8!,0 and 212e,Re~s!,22e.

This condition implies that the poles ats52e,22e in the
above list must not be taken into account when applying
residue theorem.

The final result for the form factors@Eq. ~6!# of this dia-
gram is of the form

F2
(7,9)@1a#5 (

i , j ,l ,m
ci , j ,l ,m

(7,9) ŝi lnj~ ŝ!zl lnm~z!, ~28!

wherei, j, l andm all are non-negative integers. The rema
ing four diagrams in Fig. 1~a! and 1~b! exhibit no further
difficulties.

5. Calculation of diagrams 1(c)

Inserting the building blockJab allows us to calculate
directly the sum of the two diagrams shown in Fig. 1~c!.
After performing the second loop integral, one obtains
07400
e

e

e

s

e

-

M2@1c#5
eQugs

2CF

256p4
~11e!G~2e!e2gEem4ee2ipe

3E dx dy du dv
ve~12u!11e~12x!

@x~12x!#11e

3ū~p8!F P1

Dc
112e

1
P2

Dc
2e

1
P3Dc

Dc
2e Gu~p!, ~29!

whereP1 , P2 and P3 are polynomials in the Feynman pa
rameters, which all run in the interval@0,1#. Dc reads@using
v85v(12u)#

Dc5mb
2uv8y2q2yv8~u1yv8!

2
v8

x~12x!
$mc

22q2y~12x!@12y~12x!#%.

Note that we do not expand inq2 at this stage of the calcu
lation. Instead, we use the Mellin-Barnes representation~23!
with the identification

K2↔mb
2uv8y

and

M2↔q2yv8~u1yv8!1
v8

x~12x!
$mc

22q2y~12x!

3@12y~12x!#%.

This representation does a good job, since (2M2/K2)s turns
out to be analytic inq2 for ŝ,4z, as in this rangeM2/K2 is
positive for all values of the Feynman parameters. We the
fore do the Taylor expansion with respect toq2 only at this
level. Evaluating the Feynman parameter integrals as we
the Mellin-Barnes integral, we find the result as an expans
in z and ŝ/(4z) which can be cast into the general form

F2
(7,9)@1c#5 (

i ,l ,m
c2,i lm

(7,9) ŝizl lnm~z!, ~30!

wherei andm are non-negative integers andl 52 i ,2 i 1 1
2 ,

2 i 11, . . . .

6. Calculation of diagrams 1(d)

After inserting the building blockJab and performing the
second-loop integral, the sum of the diagrams in Fig. 1~d!
yields
4-8
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M2@1d#5
eQugs

2CF

256p4
~11e!G~2e!e2gEem4e

3E
S
dx dyE

S
du dv

ve

@x~12x!#11e
ū~p8!

3F P1

Dd
112e

1
P2

Dd
2e

1
P3Dd

Dd
2e Gu~p!, ~31!

whereP1 , P2 and P3 are polynomials in the Feynman pa
rametersx, y, u andv. The parameters (x,y) and (u,v) run
in their respective simplex. The quantityDd reads

Dd5mb
2uS u1

yv
12xD

1q2yvF yv

~12x!2
1

u

12x
2

~12y!

x~12x!G
1

mc
2v

x~12x!
.

Next, we use the Mellin-Barnes representation~23! with the
identification

K2↔mb
2uS u1

yv
12xD ,

M2↔q2yvF yv

~12x!2
1

u

12x
2

~12y!

x~12x!G
1

mc
2v

x~12x!
.

Again, (2M2/K2)s is analytic inq2 for ŝ,4z, which allows
us to perform a Taylor series expansion with respect toq2. In
order to perform the integrations over the Feynman par
eters, we make suitable substitutions, e.g.

x→x8, y→ ~12x8!@y82~12v8!#

v8
,

v→u8v8, u→u8~12v8!. ~32!

The new variablesx8,u8,v8 run in the interval@0,1#, while
y8 varies in @12v8,1#. Evaluating the integrals over th
Feynman and Mellin parameters, we find the result as
expansion inz andŝ/(4z) which can be cast into the gener
form

F2
(7,9)@1d#5 (

i ,l ,m
c2,i lm

(7,9) ŝizl lnm~z!. ~33!

i and m are non-negative integers andl 52 i ,2 i 1 1
2 ,2 i

11, . . . .
07400
-

n

7. Calculation of diagram 1(e)

We consider one of the diagrams in Fig. 1~e! in some
detail and redraw it in Fig. 3~b!. The matrix element is pro-
portional to 1/De , where

De5@~ l 2r !22mc
2#@~ l 2q2r !22mc

2#

3@~ l 2q!22mc
2#@ l 22mc

2#r 2. ~34!

q is the four-momentum of the off-shell photon, whilel and
r denote loop momenta. Asq2,4mc

2 in our application, we
use the heavy mass expansion~HME! technique@46# to
evaluate this diagram. In the present case, as the gluo
massless, the HME boils down to a naive Taylor series
pansion of the diagram~before loop integrations! in the four-
momentumq. Expanding 1/De in q, we obtain

1

De
5 (

n,m,i , j ,k
Ce~n,m,i , j ,k!

3
~q2! i~q•r ! j~q• l !k

r 2@ l 22mc
2#n@~ l 2r !22mc

2#m
. ~35!

Using the Feynman parametrization

1

@ l 22mc
2#n@~ l 2r !22mc

2#m

5
G~n1m!

G~n!G~m!
E

0

1 vm21~12v !n21

@ l 222v~ l •r !2mc
21vr 2#n1m

dv, ~36!

we can perform the integration over the loop momentuml.
The integral over the loop momentumr can be done using
the parametrization

1

r 2 S 1

r 22
mc

2

v~12v !
D p

5
G~11p!

G~p!

3E
0

1 up21

S r 22
umc

2

v~12v !
D p11 du.

~37!

The remaining integrals over the Feynman parametersu and
v all have the form of Eq.~24! and can be performed easily
The other two diagrams in Fig. 1~e! where the virtual photon
is emitted from the charm quark can be evaluated in a sim
way. The diagrams where the photon is radiated from thb
quark or thes quark vanish.

As the results for the sum of all the diagrams in Fig. 1~e!
are compact, we explicitly give their contribution to the for
factors Fa

( j ) (a51,2; j 57,9). We obtain Fa
(7)@1e#50,

F1
(9)@1e#5 4

3 F2
(9)@1e# and
4-9
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F2
(9)@1e#5S m

mc
D 4e 1

e
F8

3
1

128

45
S ŝ

4z
D

1
256

105
S ŝ

4z
D 2

1
2048

945
S ŝ

4z
D 3G

2F124

27
1

12416

3645
S ŝ

4z
D 1

11072

42525
S ŝ

4z
D 2

2
4971776

4465125
S ŝ

4z
D 3G . ~38!

3. Unrenormalized form factors of O1 and O2

We stress that the diagram 1~f! where the virtual photon is
emitted from the charm quark line is the only one in Fig
which suffers from infrared and collinear singularities. A
this diagram can easily be combined with diagram 4~b! as-
sociated with the operatorO9, we take it into account only in
Sec. IV A where the virtual corrections toO9 are discussed

The unrenormalized form factorsFa
(7,9) of ^sl1l 2uOaub&

(a51,2), corresponding to diagrams 1~a!–1~e!, are obtained
in the form

Fa
(7,9)5 (

i , j ,l ,m
ca,i j lm

(7,9) ŝi lnj~ ŝ!zl lnm~z!,

where i, j and m are non-negative integers andl 52 i ,2 i
1 1

2 ,2 i 11, . . . . Wekeep the terms withi and l up to 3,
after checking that higher order terms are small for 0.05< ŝ
<0.25, the range considered in this paper. As we will g
the full results for the counterterm contributions to the fo
factors in Sec. III B and the renormalized form factors
Sec. III C and in Appendix B, it is not necessary to explici
present the somewhat lengthy expressions for the unre
malized form factors. But, in order to demonstrate the c
cellation of ultraviolet singularities in the next section, w
list the divergent parts of the unrenormalized form facto
F1

(7) , F1
(9) , F2

(7) andF2
(9) :

F2,div
(9) 5

128

81e2
2

4

25515e
~189011260ip

15040Lm21260Ls1252ŝ127ŝ214ŝ3!

1
8

2835e
F42012520Lm21260Lz

12016S ŝ

4z
D 11296S ŝ

4z
D 2

11024S ŝ

4z
D 3G ,

~39!

F2,div
(7) 5

92

81e
,

07400
e

or-
-

:

F1,div
(9) 52

64

243e2
1

2

76545e
~189011260ip

15040Lm21260Ls1252ŝ127ŝ214ŝ3!

2
4

8505e
F2808512520Lm21260Lz

27056S ŝ

4z
D 26480S ŝ

4z
D 2

25888S ŝ

4z
D 3G ,

F1,div
(7) 52

46

243e
,

whereLs5 ln(ŝ), Lz5 ln(z), Lm5 ln(m/mb) andz5mc
2/mb

2 .

B. O„as… counterterms to O1 and O2

So far, we have calculated the two-loop matrix eleme
^sl1l 2uCiOi ub& ( i 51,2). As the operators mix under reno
malization, there are additional contributions proportional
Ci . These counterterms arise from the matrix elements of
operators

(
j 51

12

dZi j Oj , i 51,2, ~40!

where the operatorsO1–O10 are given in Eq.~2!. O11 and
O12 are evanescent operators, i.e., operators which vanis
d54 dimensions. In principle, there is some freedom in
choice of the evanescent operators. However, as we wa
combine our matrix elements with the Wilson coefficien
calculated by Bobeth et al.@41#, we must use the same defi
nitions:

O115~ s̄LgmgngsTacL!~ c̄LgmgngsTabL!216O1 , ~41!

O125~ s̄LgmgngscL!~ c̄LgmgngsbL!216O2 . ~42!

The operator renormalization constantsZi j 5d i j 1dZi j are of
the form

dZi j 5
as

4p S ai j
011

1

e
ai j

11D
1

as
2

~4p!2 S ai j
021

1

e
ai j

121
1

e2
ai j

22D 1O~as
3!. ~43!

Most of the coefficientsai j
lm needed for our calculation ar

given in Ref.@41#. As some are new~or not explicitly given
in @41#!, we list those fori 51,2 andj 51, . . . ,12:
4-10
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â115S 22
4

3
0 2

1

9
0 0 0 0 2

16

27
0

5

12

2

9

6 0 0
2

3
0 0 0 0 2

4

9
0 1 0

D ,

a17
1252

58

243
, a19

1252
64

729
, a19

225
1168

243
,

a27
125

116

81
, a29

125
776

243
, a29

225
148

81
.

~44!
e

ie

e
p

ss

am

i

e to
o-

i-
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i-
We denote the counterterm contributions tob→sl1l 2 which
are due to the mixing ofO1 or O2 into four-quark operators
by Fi→4quark

ct(7) andFi→4quark
ct(9) . They can be extracted from th

equation

(
j

S as

4p D 1

e
ai j

11^sl1l 2uOj ub&1-loop

52S as

4p D @Fi→4quark
ct(7) ^Õ7& tree1Fi→4quark

ct(9) ^Õ9& tree#,

~45!

wherej runs over the four-quark operators. As certain entr
of â11 are zero, only the one-loop matrix elements ofO1 ,
O2 , O4 , O11 andO12 are needed. In order to keep the pr
sentation transparent, we relegate their explicit form to A
pendix A.

The counterterms that are related to the mixing ofOi ( i
51,2) into O9 can be split into two classes: The first cla
consists of the one-loop mixingOi→O9, followed by taking
the one-loop corrected matrix element ofO9. It is obvious
that this class contributes to the renormalization of diagr
1~f!. As we decided to treat diagram 1~f! only in Sec. IV A
~when discussing virtual corrections toO9), we proceed in
the same way with the counterterm just mentioned. There
07400
s

-
-

s,

however, a second class of counterterm contributions du
Oi→O9 mixing. These contributions are generated by tw
loop mixing of O2 into O9 as well as by one-loop mixing
and one-loop renormalization of thegs factor in the defini-
tion of the operatorO9. We denote the corresponding contr
bution to the counterterm form factors byFi→9

ct(7) andFi→9
ct(9) .

We obtain

Fi→9
ct(9)52S ai9

22

e2
1

ai9
12

e D 2
ai9

11b0

e2
, Fi→9

ct(7)50, ~46!

where we made use of the renormalization constantZgs

given by

Zgs
512

as

4p

b0

2

1

e
, b05112

2

3
Nf , Nf55. ~47!

Besides the contribution from operator mixing, there a
ordinary QCD counterterms. The renormalization of t
charm quark mass is taken into account by replacingmc
throughZmc

•mc in the one-loop matrix elements ofO1 and

O2 ~see Appendix A!. We denote the corresponding contr
bution to the counterterm form factors byFi ,mcren

ct(7) and

Fi ,m ren
ct(9) . We obtain
c

F1,mcren
ct(7) 5F2,mcren

ct(7) 50; F1,mcren
ct(9) 5

4

3
F2,mcren

ct(9)

F2,mcren
ct(9) 5H 2

32

945e
F105184S ŝ

4z
D 172S ŝ

4z
D 2

164S ŝ

4z
D 3G2

32

2835
F10511260 ln

m

mc

1S ŝ

4z
D S 33611008 ln

m

mc
D1S ŝ

4z
D 2S 3961864 ln

m

mc
D1S ŝ

4z
D 3S 4161768 ln

m

mc
D G J , ~48!
in
where we have used the pole mass definition ofmc which is
characterized by the renormalization constant

Zm512
as

4p

4

3 F3

e
16 lnS m

mD14G . ~49!

If one wishes to express the results forFi ,mcren
ct(9) in terms of the
MS definition of the charm quark mass, the expressions
Eqs.~48! get changed according to

Fi ,mcren
ct(9) →Fi ,mcren

ct(9) 1DFi ,mcren
ct(9) , ~50!

whereDFi ,mcren
ct(9) reads
4-11
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DF1,mcren
ct(9) 5

4

3
DF2,mcren

ct(9) ,

DF2,mcren
ct(9) 5

64

945
F105184S ŝ

4z
D 172S ŝ

4z
D 2

164S ŝ

4z
D 3G

3S ln
m

mc
1

2

3D . ~51!
ig
nt
-

er
-
th

1

on

07400
We stress at this point that we always use the pole m
definition in the following, i.e., Eqs.~48! for Fi ,mcren

ct( j ) .

The total countertermsFi
ct( j ) ( i 51,2; j 57,9) which

renormalize diagrams 1~a!–1~e! are given by

Fi
ct( j )5Fi→4quark

ct( j ) 1Fi→9
ct( j )1Fi ,mcren

ct( j ) . ~52!

Explicitly, they read
F2
ct(9)52F2,div

(9) 2
4

25515
F574012520p22840ip1840Lm~1923ip254Lz148Lm!13780Lz~2213Lz!

1420Ls~3ip1216Lm!2630Ls
21252ŝ~122Lm!254Lmŝ222ŝ3~114Lm!16048S ŝ

4z
D ~18Lm29Lz21!

17776S ŝ

4z
D 2

~10Lm25Lz13!11536S ŝ

4z
D 3

~42Lm221Lz119!G ,

F2
ct(7)52F2,div

(7) 1
2

2835
~840Lm170ŝ17ŝ21 ŝ3!,

~53!

F1
ct(9)52F1,div

(9) 1
2

76545
F2623002840ip12520p21840Lm~23ip254Lz148Lm2791!13780Lz~3Lz188!

1420Ls~3ip1216Lm!2630Ls
21 ŝ~2522504Lm!254ŝ2Lm22ŝ3~114Lm!26048S ŝ

4z
D ~28190Lm245Lz!

27776S ŝ

4z
D 2

~27162Lm231Lz!2768S ŝ

4z
D 3

~2951564Lm2282Lz!G ,

F1
ct(7)52F1,div

(7) 2
1

8505
~840Lm170ŝ17ŝ21 ŝ3!.
al-
The divergent parts of these counterterms are, up to a s
identical to those of the unrenormalized matrix eleme
given in Eq.~39!, which proves the cancellation of ultravio
let singularities.

As mentioned before, we will take diagram 1~f! into ac-
count only in Sec. IV A. The same holds for the count
terms associated with theb ands quark wave function renor
malization and, as mentioned earlier in this subsection,
O(as) correction to the matrix element ofdZi9O9. The sum
of these contributions is

dZ̄c^Oi&1-loop1
as

4p

ai9
11

e
@dZ̄c^O9& tree1^O9&1-loop#,

dZ̄c5AZc~mb!Zc~ms!21,

and provides the counterterm that renormalizes diagram~f!.
We use on-shell renormalization for the externalb and
squark. In this scheme the field strength renormalization c
stants are given by
n,
s

-

e

-

Zc~m!512
as

4p

4

3 S m

mD 2eS 1

e
1

2

e IR
14D . ~54!

So far, we have discussed the counterterms which renorm
ize the O(as) corrected matrix elementŝsl1l 2uOi ub& ( i
51,2). The corresponding one-loop matrix elements@of or-
der O(as

0)# are renormalized by adding the counterterms

as

4p

ai9
11

e
^O9& tree.

C. Renormalized form factors of O1 and O2

We decompose the renormalized matrix elements ofOi
( i 51,2) as

^sl1l 2uCi
(0)Oi ub&

5Ci
(0)S 2

as

4p D @Fi
(9)^Õ9& tree1Fi

(7)^Õ7& tree#, ~55!
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TABLE I. Coefficients in the decomposition off 1
(9) and f 1

(7) for three values ofm̂c . See Eq.~60!.

m̂c50.25 m̂c50.29 m̂c50.33

k1
(9)(0,0) 212.71510.094699i 211.97310.16371i 211.35510.19217i

k1
(9)(0,1) 20.07883020.074138i 20.08127120.059691i 20.07942620.043950i

k1
(9)(1,0) 238.74220.67862i 228.43220.25044i 221.64820.063493i

k1
(9)(1,1) 20.03930120.00017258i 20.04024310.016442i 20.02973310.031803i

k1
(9)(2,0) 2103.8322.5388i 257.11420.86486i 233.78820.24902i

k1
(9)(2,1) 20.04470210.0026283i 20.03519110.027909i 20.002050510.040170i

k1
(9)(3,0) 2313.7528.4554i 2128.8022.5243i 259.10520.72977i

k1
(9)(3,1) 20.05113310.022753i 20.01758710.050639i 0.05277910.038212i

k1
(7)(0,0) 20.7673020.11418i 20.6819220.074998i 20.5973620.044915i

k1
(7)(0,1) 0 0 0

k1
(7)(1,0) 20.2848020.18278i 20.2393520.12289i 20.1985020.081587i

k1
(7)(1,1) 20.003280810.020827i 0.002742410.019676i 0.007415210.016527i

k1
(7)(2,0) 0.05610820.23357i 20.001855520.17500i 20.03920920.12242i

k1
(7)(2,1) 0.01637010.020913i 0.02286410.011456i 0.02228210.00062522i

k1
(7)(3,0) 0.6243820.027438i 0.2824820.12783i 0.08594620.11020i

k1
(7)(3,1) 0.03053610.0091424i 0.02902720.0082265i 0.01216620.019772i
e
ffi-

ical
we

t

er-
whereÕ95(as/4p)O9 andÕ75(as/4p)O7. The form fac-
tors Fi

(9) and Fi
(7) , expanded up toŝ3 and z3 of the renor-

malized sum of diagrams 1~a!–1~e! read (Lc5 ln mc /mb

5ln m̂c5Lz/2)

F1
(9)5S 2

1424

729
1

16

243
ip1

64

27
LcDLm

2
16

243
LmLs1S 16

1215
2

32

135
z21DLmŝ

1S 4

2835
2

8

315
z22DLmŝ2

1S 16

76545
2

32

8505
z23DLmŝ32

256

243
Lm

2 1 f 1
(9) ,

~56!

F2
(9)5S 256

243
2

32

81
ip2

128

9
LcDLm

1
32

81
LmLs1S 2

32

405
1

64

45
z21DLmŝ

1S 2
8

945
1

16

105
z22DLmŝ2

1S 2
32

25515
1

64

2835
z23DLmŝ31

512

81
Lm

2 1 f 2
(9) ,

~57!

F1
(7)52

208

243
Lm1 f 1

(7) , F2
(7)5

416

81
Lm1 f 2

(7) . ~58!
07400
The analytic results forf 1
(9) , f 1

(7) , f 2
(9) , and f 2

(7) are rather
lengthy. We decompose them as follows:

f a
(b)5 (

i , j ,l ,m
ka,i j lm

(b) ŝiLs
j zlLc

m1(
i , j

ra,i j
(b) ŝiLs

j . ~59!

The quantitiesra,i j
(b) collect the half-integer powers ofz

5mc
2/mb

25m̂c
2 . This way, the summation indices in th

above equation run over integers only. We list the coe
cientska,i j lm

(b) andra,i j
(b) in Appendix B.

If we give the charm quark mass dependence in numer
form, the formulas become simpler. For this purpose,
write the functionsf a

(b) as

f a
(b)5(

i , j
ka

(b)~ i , j !ŝiLs
j

~a51,2; b57,9; i 50, . . . ,3; j 50,1!. ~60!

The numerical values for the quantitieska
(b)( i , j ) are given in

Tables I and II form̂c50.25,0.29,0.33. Fornumerical val-
ues corresponding tom̂c50.27,0.29,0.31 we refer to
Tables I and II in the letter version@42#.

IV. VIRTUAL CORRECTIONS TO THE MATRIX
ELEMENTS OF THE OPERATORS O7 , O8 , O9 AND O10

A. Virtual corrections to the matrix element
of O9 and O10

As the hadronic parts of the operatorsO9 and O10 are
identical, the QCD corrected matrix element ofO10 can eas-
ily be obtained from the one ofO9. We therefore presen
only the calculation for̂ sl1l 2uO9ub& in some detail. The
virtual corrections to this matrix element consist of the v
4-13
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TABLE II. Coefficients in the decomposition off 2
(9) and f 2

(7) for three values ofm̂c . See Eq.~60!.

m̂c50.25 m̂c50.29 m̂c50.33

k2
(9)(0,0) 9.504220.56819i 6.633820.98225i 4.303521.1530i

k2
(9)(0,1) 0.4729810.44483i 0.4876310.35815i 0.4765610.26370i

k2
(9)(1,0) 7.423814.0717i 3.358511.5026i 0.7378010.38096i

k2
(9)(1,1) 0.2358110.0010355i 0.2414620.098649i 0.1784020.19082i

k2
(9)(2,0) 0.33806115.233i 21.190615.1892i 22.357011.4941i

k2
(9)(2,1) 0.2682120.015770i 0.2111520.16745i 0.01230320.24102i

k2
(9)(3,0) 242.085150.732i 217.120115.146i 29.200814.3786i

k2
(9)(3,1) 0.3068020.13652i 0.1055220.30383i 20.3166720.22927i

k2
(7)(0,0) 4.603810.68510i 4.091510.44999i 3.584210.26949i

k2
(7)(0,1) 0 0 0

k2
(7)(1,0) 1.708811.0967i 1.436110.73732i 1.191010.48952i

k2
(7)(1,1) 0.01968520.12496i 20.01645420.11806i 20.04449120.099160i

k2
(7)(2,0) 20.3366511.4014i 0.01113311.0500i 0.2352510.73452i

k2
(7)(2,1) 20.09821920.12548i 20.1371820.068733i 20.1336920.0037513i

k2
(7)(3,0) 23.746310.16463i 21.694910.76698i 20.5156810.66118i

k2
(7)(3,1) 20.1832120.054854i 20.1741610.049359i 20.07299710.11863i
ss
a

ed

or-

the
a

tex correction shown in Fig. 4~b! and of the quark self-
energy contributions. The result can be written as

^sl1l 2uC9O9ub&5C̃9
(0)S 2

as

4p D @F9
(9)^Õ9& tree

1F9
(7)^Õ7& tree#, ~61!

with Õ95(as/4p)O9 and C̃9
(0)5(4p/as)@C9

(0)1(as/
4p)C9

(1)#.
We evaluate diagram 4~b! keeping the strange quark ma

ms as a regulator of collinear singularities. The unrenorm
ized contributions of diagram 4~b! to the form factorsF9

(7)

andF9
(9) read

F9
(9)@4b#52

S m

mb
D 2e

e

4

3
1

S m

mb
D 2e

e IR

8

3

3S ŝ1
1

2
ŝ21

1

3
ŝ31

1

2
ln~r ! D1

8

3
ln~r !2

2

3
ln2~r !

1
16

3
1

20

3
ŝ1

16

3
ŝ21

116

27
ŝ3,

~62!

F9
(7)@4b#52

2

3
ŝS 11

1

2
ŝ1

1

3
ŝ2D ,

where we kept all terms up toŝ3. e IR andr 5(ms
2/mb

2) regu-
larize the infrared and collinear singularities in Eq.~62!.

Theb- ands-quark self-energy contributions are obtain
by multiplying the tree level matrix element ofO9 by the
quark field renormalization factordZ̄c5AZc(mb)Zc(ms)
21, where the explicit form forZc(m) ~in the on-shell
scheme! is given in Eq.~54!.
07400
l-

Adding the self-energy contributions and the vertex c
rection, we get the ultraviolet finite results

F9
(9)5

16

3
1

20

3
ŝ1

16

3
ŝ21

116

27
ŝ31 f inf , ~63!

f inf5

S m

mb
D 2e

e IR

8

3 S 11 ŝ1
1

2
ŝ21

1

3
ŝ3D

1
4

3

S m

mb
D 2e

e IR
ln~r !1

2

3
ln~r !2

2

3
ln2~r !, ~64!

F9
(7)52

2

3
ŝS 11

1

2
ŝ1

1

3
ŝ2D . ~65!

At this place, it is convenient to incorporate diagram 1~f!
together with its counterterms discussed in Sec. III B.

It is easy to see that the two loops in diagram 1~f! factor-
ize into two one-loop contributions. The charm loop has
Lorentz structure ofO9 and can therefore be absorbed into
modified Wilson coefficient: The renormalized diagram 1~f!
is properly included by modifyingC̃9

(0) in Eq. ~61! as fol-
lows:

C̃9
(0)→C̃9

(0,mod)5C̃9
(0)1S C2

(0)1
4

3
C1

(0)DH0 , ~66!

where the charm-loop functionH0 reads~in expanded form!
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FIG. 4. Some Feynman diagrams forb→sg* or b→sl1l 2 associated with the operatorsO7 , O8 andO9. The circle-crosses denote th
possible locations where the virtual photon is emitted, while the crosses mark the possible locations for gluon bremsstrahlung. S
op
a

e-

ie
t

u

r

r.

he
re
H05
1

2835
F2126012520 lnS m

mc
D11008S ŝ

4z
D

1432S ŝ

4z
D 2

1256S ŝ

4z
D 3G . ~67!

In the context of virtual corrections also theO(e) part of this
loop function is needed. We neglect it here since it will dr
out in combination with gluon bremsstrahlung. Note th
H05h(z,ŝ)18/9 ln(m/mb), with h defined in@41#.

B. Virtual corrections to the matrix element of O7

We now turn to the virtual corrections to the matrix el
ment of the operatorO7, consisting of the vertex-@see Fig.
4~a!# and self-energy corrections. The ultraviolet singularit
of the sum of these diagrams are cancelled when adding
counterterm amplitude

C7@Z77Zmb
/Zgs

2 21#^sl1l 2uO7ub& tree

where Z77512
as

4p

7

3e
. ~68!

The expressions forZmb
andZgs

are given in Eqs.~49! and
~47!, respectively. The renormalized result for the contrib
tion proportional toC7 can be written as

^sl1l 2uC7O7ub&5C̃7
(0)S 2

as

4p D
3@F7

(9)^Õ9& tree1F7
(7)^Õ7& tree#, ~69!

with Õ75(as/4p)O7 and C̃7
(0)5C7

(1) . The expanded form
factorsF7

(9) andF7
(7) read

F7
(9)52

16

3 S 11
1

2
ŝ1

1

3
ŝ21

1

4
ŝ3D , ~70!

F7
(7)5

32

3
Lm1

32

3
18ŝ16ŝ21

128

27
ŝ31 f inf , ~71!
07400
t

s
he

-

where the infrared and collinear singular partf inf is identical
to the one ofF9

(9) in Eq. ~64!. Note that the on-shell value fo
the renormalization factorZmb

was used in Eq.~68!. There-

fore, when using the expression forF7
(7,9) in the form given

above, the pole mass formb has to be used at lowest orde

C. Virtual corrections to the matrix element of O8

Finally, we present our results for the corrections to t
matrix elements ofO8. The corresponding diagrams a
shown in Figs. 4~c! and 4~d!. Including the counterterm

C8dZ87̂ sl1l 2uO7ub& tree where dZ8752
as

4p

16

9e
,

yields the ultraviolet and infrared finite result

^sl1l 2uC8O8ub&

5C̃8
(0)S 2

as

4p D @F8
(9)^Õ9& tree1F8

(7)^Õ7& tree#,

~72!

with C̃8
(0)5C8

(1) . The expanded form factorsF8
(9) and F8

(7)

read

F8
(9)5

104

9
2

32

27
p21S 1184

27
2

40

9
p2D ŝ

1S 14212

135
2

32

3
p2D ŝ21S 193444

945
2

560

27
p2D ŝ3

1
16

9
Ls~11 ŝ1 ŝ21 ŝ3!, ~73!
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F8
(7)52

32

9
Lm1

8

27
p22

44

9
2

8

9
ip

1S 4

3
p22

40

3 D ŝ1S 32

9
p22

316

9 D ŝ2

1S 200

27
p22

658

9 D ŝ32
8

9
Ls~ ŝ1 ŝ21 ŝ3!. ~74!

V. BREMSSTRAHLUNG CORRECTIONS

First of all, we remark that in the present paper only tho
bremsstrahlung diagrams are taken into account which
needed to cancel the infrared and collinear singularities
pearing in the virtual corrections. All the other bremsstra
lung contributions~which are finite!, will be given elsewhere
@44#.

It is known @28,24# that the contribution to the inclusiv
decay width coming from the interference between the tr
level and the one-loop matrix elements ofO9 @Fig. 4~b!# and
from the corresponding bremsstrahlung corrections@Fig.
4~f!# can be written in the form

dG99

dŝ
5

dG99
virt

dŝ
1

dG99
brems

dŝ

dG99

dŝ
5S aem

4p D 2 GF
2 mb,pole

5 uVts* Vtbu2

48p3

3~12 ŝ!2~112ŝ!

3F2uC̃9
(0)u2

as

p
v9~ ŝ!G , ~75!

whereC̃9
(0)54p/as(C9

(0)1as/4pC9
(1)). This procedure cor-

responds to encapsulating the virtual and bremsstrah
corrections in the tree-level calculation by replacing^O9& tree

through @11(as /p)v9( ŝ)#^O9& tree. The function v9( ŝ)
[v( ŝ), which contains all information on virtual and brem
strahlung corrections, can be found in@24,28# and is given
by

v9~ ŝ!52
4

3
Li ~ ŝ!2

2

3
ln~12 ŝ!ln~ ŝ!2

2

9
p2

2
514ŝ

3~112ŝ!
ln~12 ŝ!2

2ŝ~11 ŝ!~122ŝ!

3~12 ŝ!2~112ŝ!
ln~ ŝ!

1
519ŝ26ŝ2

6~12 ŝ!~112ŝ!
. ~76!

ReplacingC̃9
(0) by C̃9

(0,mod) @see Eq.~66!# in Eq. ~75!, dia-
gram 1~f! and the corresponding bremsstrahlung correcti
are automatically included.
07400
e
re
p-
-

-

ng

s

For the combination of the interference terms between
tree-level and the one-loop matrix element ofO7 @Fig. 4~a!#
and the corresponding bremsstrahlung corrections@Fig. 4~e!#
we make the ansatz

dG77

dŝ
5

dG77
virt

dŝ
1

dG77
brems

dŝ

dG77

dŝ
5S aem

4p D 2 GF
2mb,pole

5 uVts* Vtbu2

48p3

3~12 ŝ!24~112/ŝ!

3F2uC̃7
(0)u2

as

p
v7~ ŝ!G , ~77!

where C̃7
(0)5C7

(1) . This time, the encapsulation of virtua
and bremsstrahlung corrections is provided by the repla
ment ^O7& tree→@11as /pv7( ŝ)#^O7& tree. In order to sim-
plify the calculation ofv7( ŝ), we make the important obser
vation that the form factorsF7

(7) and F9
(9) have the same

infrared divergent partf inf @Eqs.~71! and~63!#, whereasF7
(9)

andF9
(7) are finite. Taking into account that ind dimensions

the decay widthdG(b→sl1l 2)/dŝ corresponding to the ma
trix element

M ~b→sl1l 2!

5^sl1l 2uC̃7
(0)Õ7

(0)1C̃9
(0)Õ9

(0)1C̃10
(0)Õ10

(0)ub& tree

~78!

is given by

dG~b→Xsl
1l 2!

dŝ
5S aem

4p D 2 GF
2mb,pole

5 uVts* Vtbu2

48p3

3~12 ŝ!2@11O~d24!#

3$@11~d22!ŝ#~ uC̃9
(0)u21uC̃10

(0)u2!

14@11~d22!/ ŝ#uC̃7
(0)u2

14~d21!Re~C̃7
(0)C̃9

(0)* !%. ~79!

one concludes that the combination

DGvirt5
uC̃9

(0)u22

11~d22!ŝ

dG99
virt

dŝ

2
uC̃7

(0)u22

4„11~d22!/ ŝ…

dG77
virt

dŝ
, ~80!

is free of infrared and collinear singularities. Defining ana
gously
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DGbrems5
uC̃9

(0)u22

11~d22!ŝ

dG99
brems

dŝ

2
uC̃7

(0)u22

4„11~d22!/ ŝ…

dG77
brems

dŝ
~81!

and using the identity

uC̃9
(0)u22

11~d22!ŝ

dG99

dŝ
2

uC̃7
(0)u22

4„11~d22!/ ŝ…

dG77

dŝ

5DGvirt1DGbrems, ~82!

one concludes that alsoDGbrems is finite. This is because
dG99/dŝ and dG77/dŝ are finite due to the Kinoshita-Lee
Nauenberg theorem and becauseDGvirt is finite as mentioned
above. The calculation ofDGbrems is straightforward, as the
integrand, expanded ine, leads to unproblematic integral
Using the explicit results forDGvirt, DGbremsandv9( ŝ), one
can readily extractv7( ŝ) from Eq. ~82!:

v7~ ŝ!52
8

3
lnS m

mb
D2

4

3
Li ~ ŝ!2

2

9
p2

2
2

3
ln~ ŝ!ln~12 ŝ!2

1

3

81 ŝ

21 ŝ
ln~12 ŝ!

2
2

3

ŝ~222ŝ2 ŝ2!

~12 ŝ!2~21 ŝ!
ln~ ŝ!

2
1

18

16211ŝ217ŝ2

~21 ŝ!~12 ŝ!
. ~83!

The reasoning for the interference terms between the t
level matrix element ofO7 and the one-loop matrix elemen
of O9 and vice versa is analogous: We may combine t
contribution with the corresponding bremsstrahlung ter
coming from the interference of diagrams 4~e! and 4~f! mak-
ing the ansatz

dG79

dŝ
5

dG79
virt

dŝ
1

dG79
brems

dŝ
~84!

dG79

dŝ
5S aem

4p D 2 GF
2mb,pole

5 uVts* Vtbu2

48p3
~12 ŝ!2

312F2Re~C̃7
(0)C̃9

(0)* !
as

p
v79~ ŝ!G .

The corresponding encapsulation is realized by the repl
ment ^O7,9& tree→@11(as /p)v79( ŝ)#^O7,9& tree. This time,
we make use of the fact that the quantities
07400
e-

s
s

e-

DGmixed
virt 5

uC̃9
(0)u22

11~d22!ŝ

dG99
virt

dŝ

2
Re@C̃7

(0)C̃9
(0)* #21

4~d21!

dG79
virt

dŝ
~85!

and

DGmixed
brems5

uC̃9
(0)u22

11~d22!ŝ

dG99
brems

dŝ

2
Re@C̃7

(0)C̃9
(0)* #21

4~d21!

dG79
brems

dŝ
~86!

are finite. For the functionv79( ŝ) we obtain

v79~ ŝ!52
4

3
lnS m

mb
D2

4

3
Li ~ ŝ!2

2

9
p2

2
2

3
ln~ ŝ!ln~12 ŝ!2

1

9

217ŝ

ŝ
ln~12 ŝ!

2
2

9

ŝ~322ŝ!

~12 ŝ!2
ln~ ŝ!1

1

18

529ŝ

12 ŝ
. ~87!

Note that the procedure described here does work only if
of the functionsv7( ŝ), v9( ŝ) or v79( ŝ) is known already.

Finally, we remark that the combined virtual and brem
strahlung corrections to the operatorO10 ~which has the
same hadronic structure asO9) is described by the function
v9( ŝ), too:

dG10,10

dŝ
5

dG10,10
virt

dŝ
1

dG10,10
brems

dŝ
~88!

dG10,10

dŝ
5S aem

4p D 2 GF
2mb,pole

5 uVts* Vtbu2

48p3

3~12 ŝ!2~112ŝ!

3F2uC̃10
(0)u2

as

p
v9~ ŝ!G ,

whereC̃10
(0)5C10

(1) .

VI. CORRECTIONS TO THE DECAY WIDTH
FOR b\Xsl

¿lÀ

In this chapter we combine the virtual corrections calc
lated in Secs. III, IV and the bremsstrahlung contributio
discussed in Sec. V and study their influence on the de
width dG(b→Xsl

1l 2)/dŝ. In the literature~see e.g.@41#!,
this decay width is usually written as
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TABLE III. Coefficients appearing in Eq.~90! for m52.5 GeV,m55 GeV andm510 GeV. Foras(m)
~in the MS scheme! we used the two-loop expression with five flavors andas(mZ)50.119. The entries
correspond to the pole top quark massmt5174 GeV. The superscript~0! refers to lowest order quantitie
while the superscript~1! denotes the correction terms of orderas .

m52.5 GeV m55 GeV m510 GeV

as 0.267 0.215 0.180
C1

(0) 20.697 20.487 20.326
C2

(0) 1.046 1.024 1.011
(A7

(0) ,A7
(1)) (20.360,0.031) (20.321,0.019) (20.287,0.008)

A8
(0) 20.164 20.148 20.134

(A9
(0) ,A9

(1)) (4.241,20.170) (4.129,0.013) (4.131,0.155)
(T9

((0)) ,T9
(1)) (0.115,0.278) (0.374,0.251) (0.576,0.231)

(U9
(0) ,U9

(1)) (0.045,0.023) (0.032,0.016) (0.022,0.011)
(W9

(0) ,W9
(1)) (0.044,0.016) (0.032,0.012) (0.022,0.009)

(A10
(0) ,A10

(1)) (24.372,0.135) (24.372,0.135) (24.372,0.135)
rb

th
F

en

e
ri

n-
e-

tion

y
the

the
ion

e of
ct-

rre-

ed
set
dG~b→Xsl
1l 2!

dŝ

5S aem

4p D 2 GF
2mb,pole

5 uVts* Vtbu2

48p3
~12 ŝ!2

3@~112ŝ!~ uC̃9
effu21uC̃10

effu2!

14~112/ŝ!uC̃7
effu2112 Re~C̃7

effC̃9
eff* !#,

~89!

where the contributions calculated so far have been abso
into the effective Wilson coefficientsC̃7

eff , C̃9
eff and C̃10

eff . It
turns out that also the new contributions calculated in
present paper can be absorbed into these coefficients.
lowing as closely as possible the ‘‘parametrization’’ giv
recently by Bobethet al. @41#, we write

C̃9
eff5S 11

as~m!

p
v9~ ŝ! D

3@A91T9h~z,ŝ!1U9h~1,ŝ!1W9h~0,ŝ!#

2
as~m!

4p
~C1

(0)F1
(9)1C2

(0)F2
(9)1A8

(0)F8
(9)! ~90!

C̃7
eff5S 11

as~m!

p
v7~ ŝ! DA7

2
as~m!

4p
~C1

(0)F1
(7)1C2

(0)F2
(7)1A8

(0)F8
(7)!

C̃10
eff5S 11

as~m!

p
v9~ ŝ! DA10,

where the expressions forh(z,ŝ) and v9( ŝ) @see Eqs.~67!
and ~76!# were already available in the literature@24,28,41#.
The quantitiesv7( ŝ) and F1,2,8

(7,9) , on the other hand, hav
been calculated in the present paper. We take the nume
07400
ed

e
ol-

cal

values forA7 , A9 , A10, T9 , U9, andW9 from @41#, while
C1

(0) , C2
(0) andA8

(0)5C̃8
(0,eff) can be found in@48#. For com-

pleteness we list them in Table III.
In Fig. 5 we illustrate the renormalization scale depe

dence of ReC̃7
eff( ŝ). The dashed curves are obtained by n

glecting the corrections calculated in this paper, i.e.,v7( ŝ),
F1

(7) , F2
(7) and F8

(7) are put equal to zero in Eq.~90!. The
three curves correspond to the values of the renormaliza
scale m52.5 GeV ~lowest!, m55 GeV ~middle! and m
510 GeV ~uppermost!. The solid curves are obtained b
taking into account the new corrections. In this case,
lowest, middle and uppermost curve correspond tom510
GeV, 5 GeV and 2.5 GeV, respectively. We conclude that
new corrections significantly reduce the renormalizat
scale dependence of ReC̃7

eff( ŝ).
Figure 6 shows the renormalization scale dependenc

ReC̃9
eff( ŝ). Again, the dashed curves are obtained by negle

ing the new corrections in Eq.~90!, i.e., F1
(9) , F2

(9) andF8
(9)

are put to zero. We stress thatv9( ŝ) is retained, as this
function has been known before. The three curves co
spond to the values of the renormalization scalem52.5 GeV
~lowest!, m55 GeV ~middle! andm510 GeV ~uppermost!.

FIG. 5. The three solid curves illustrate them dependence of

ReC̃7
eff( ŝ) when the new corrections are included. The dash

curves are obtained when switching off these corrections. We

m̂c50.29. See text.
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The solid curves take the new corrections into account. N
the lowest, middle and uppermost curve correspond tom
52.5 GeV, 5 GeV and 10 GeV, respectively. We conclu
that the new corrections significantly reduce the renormal
tion scale dependence of ReC̃9

eff( ŝ), too.
When calculating the decay width~89!, we retain only

terms linear inas ~and thus inv7 , v9) in the expressions fo
uC̃7

effu2, uC̃9
effu2 and uC̃10

effu2. In the interference term

Re(C̃7
effC̃9

eff* ) too, we keep only linear contributions inas .
By construction, one has to make the replacementsv9
→v79 andv7→v79 in this term.

Our results include all the relevant virtual corrections a
those bremsstrahlung diagrams which generate infrared
collinear singularities. There exist additional bremsstrahlu
terms coming, e.g., from one-loopO1 and O2 diagrams in
which both the virtual photon and the gluon are emitted fr
the charm quark line. These contributions do not induce
ditional renormalization scale dependence as they are u
violet finite. Using our experience fromb→sg andb→sg,
these contributions are not expected to be large, but to gi
definitive answer concerning their size they have to be
culated@44#.

VII. NUMERICAL RESULTS FOR Rquark„ ŝ…

The decay width in Eq.~89! has a large uncertainty due t
the factormb,pole

5 . Following common practice, we conside
the ratio

Rquark~ ŝ!5
1

G~b→Xcen̄ !

dG~b→Xsl
1l 2!

dŝ
, ~91!

in which the factormb,pole
5 drops out. The explicit expressio

for the semi-leptonic decay widthG(b→Xcene) reads

G~b→Xcen̄ !

5
GF

2mb,pole
5

192p3
uVcbu2gS mc,pole

2

mb,pole
2 D KS mc

2

mb
2D , ~92!

FIG. 6. The three solid curves illustrate them dependence of

ReC̃9
eff( ŝ) when the new corrections are included. The dash

curves are obtained when switching off these corrections. We

m̂c50.29. See text.
07400
,

e
-

d
nd
g

d-
a-

a
l-

whereg(z)5128z18z32z4212z2 ln(z) is the phase spac
factor, and

K~z!512
2as~mb!

3p

f ~z!

g~z!
~93!

incorporates the next-to-leading QCD correction to the se
leptonic decay@49#. The functionf (z) has been given ana
lytically in Ref. @50#:

f ~z!52~12z2!S 25

4
2

239

3
z1

25

4
z2D1z ln~z!

3S 20190z2
4

3
z21

17

3
z3D1z2 ln2~z!~361z2!

1~12z2!S 17

3
2

64

3
z1

17

3
z2D ln~12z!

24~1130z21z4!ln~z!ln~12z!2~1116z21z4!

3@6 Li~z!2p2#232z3/2~11z!Fp224 Li~Az!

14 Li~2Az!22 ln~z!lnS 12Az

11Az
D G . ~94!

We now turn to the numerical results forRquark( ŝ) for
0.05< ŝ<0.25. In Fig. 7 we investigate the dependence
Rquark( ŝ) on the renormalization scalem. The solid lines are
obtained by including the new NNLL contributions, as e
plained in Sec. VI. The three solid curves correspond tom
52.5 GeV ~lowest line!, m55 GeV ~middle line! and m
510 GeV ~uppermost line!. The three dashed curves~again
m52.5 GeV for the lowest,m55 GeV for the middle and
m510 GeV for the uppermost line!, on the other hand, show
the results without the new NNLL corrections, i.e., they i
clude the NLL results combined with the NNLL correction
to the matching conditions as obtained by Bobethet al. @41#.
From this figure, we conclude that the renormalization sc
dependence gets reduced by more than a factor of 2. Only

d
et

FIG. 7. The three solid lines show them dependence of

Rquark( ŝ) when including the corrections to the matrix elements c
culated in this paper; the dashed lines are obtained when switc

off these corrections. We setm̂c50.29. See text.
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FIG. 8. ~a! Rquark( ŝ) for m̂c

50.27 ~dashed line!, m̂c50.29

~solid line! and m̂c50.31 ~dash-
dotted line! and m55 GeV. ~b!

Rquark( ŝ) for m̂c50.25 ~dashed

line!, m̂c50.29 ~solid line! and

m̂c50.33 ~dash-dotted line! and
m55 GeV. See text.
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low values ofŝ ( ŝ;0.05), where the NLLm dependence is
small already, the reduction factor is smaller. For the in
grated quantity we obtain

Rquark5E
0.05

0.25

dŝRquark~ ŝ!

5@1.2560.08~m!#31025, ~95!

where the error is obtained by varyingm between 2.5 GeV
and 10 GeV. Before our corrections, the result wasRquark
5(1.3660.18)31025 @41#. In other words, the renormaliza
tion scale dependence got reduced from;613% to
;66.5%.

Among the errors onRquark( ŝ) which are due to the un
certainties in the input parameters, the one induced bym̂c
5mc /mb is known to be the largest. We repeat at this po
that mc enters~unlike in B→Xsg) already the one-loop dia
grams associated withO1 andO2. We did the renormaliza-
tion of the charm quark mass in such a way thatmc has the
meaning of the pole mass in the one-loop expressions.
meaning ofmc in the corresponding two-loop matrix ele
ments, on the other hand, is not fixed~for a discussion of this
issue forB→Xsg, see Ref.@14#!. As the running charm mas
at a scale ofO(mb) is smaller than the pole mass, it nume
cally makes a difference whether one inserts a pole mass
a running mass value formc in the two-loop contributions. In
a thorough phenomenological analysis this issue should
tainly be included when estimating the theoretical error.
decide, however, to postpone the quantitative discussio
this point and will take it up when also the finite bremsstra
lung contibutions, which complete the NNLL calculation
Rquark( ŝ), are available@44#. For the time being, we interpre
mc to be the pole mass in the two-loop contributions. In F
8~a! we vary m̂c between 0.27 and 0.31, while in Fig. 8~b!

the more conservative range 0.25<m̂c<0.33 is considered
Comparing Fig. 7 with Figs. 8~a! and 8~b!, we find that at the
07400
-

t

he

or

r-
e
of
-

.

NNLL level the uncertainty due tom̂c is larger than the
leftover m dependence, even for the less conservative ra
of m̂c . For the integrated quantityRquark we have an uncer-
tainty of 67.6% whenm̂c is varied between 0.27 and 0.31
Varying m̂c in the more conservative range, the correspo
ing uncertainty amounts to615%.

A more detailed numerical analysis forRquark( ŝ) and
Rquark, including the errors which are due to uncertainties
other input parameters as well as non-perturbative effe
will be given in Ref.@44#.

To conclude: We have calculated virtual corrections
O(as) to the matrix elements ofO1 , O2 , O7 , O8 , O9 and
O10. We also took into account those bremsstrahlung corr
tions which cancel the infrared and collinear singularities
the virtual corrections. The renormalization scale dep
dence ofRquark( ŝ) gets reduced by more than a factor of
The calculation of the remaining bremsstrahlung contrib
tions ~which are expected to be rather small! and a more
detailed numerical analysis are in progress@44#.
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APPENDIX A: ONE-LOOP MATRIX ELEMENTS
OF THE FOUR QUARK OPERATORS

In order to fix the countertermsFi→4quark
ct(7,9) ( i 51,2) in Eq.

~45!, we need the one-loop matrix elemen
^sl1l 2uOj ub&1-loop of the four-quark operatorsO1 , O2 , O4 ,
O11 and O12. Due to the 1/e factor in Eq. ~45!, they are
needed up toO(e1). The explicit results~in expanded form!
read
^sl1l 2uO2ub&1-loop5S m

mc
D 2eH 4

9e
1

4

2835
F23151252S ŝ

4z
D 1108S ŝ

4z
D 2

164S ŝ

4z
D 3G1

e

2835
F105p221008S ŝ

4z
D

1128S ŝ

4z
D 3G J ^Õ9& tree, ~A1!
4-20



s

ion

CALCULATIONS OF TWO-LOOP VIRTUAL . . . PHYSICAL REVIEW D 65 074004
^sl1l 2uO1ub&1-loop5
4

3
^sl1l 2uO2ub&1-loop,

~A2!

^sl1l 2uO4ub&1-loop52S m

mb
D 2eH F4

9
1

e

945
~70ŝ17ŝ21 ŝ3!G^Õ7& tree1F 16

27e
1

2

8505
~242011260ip21260Ls1252ŝ

127ŝ214ŝ3!1
4e

8505
~420ip19102630iL sp2420Ls2315p21315Ls

22126ŝ1 ŝ3!G^Õ9& treeJ ,

~A3!

^sl1l 2uO11ub&1-loop52
64

27S m

mc
D 2eF11

4e

5
S ŝ

4z
1

3

7
S ŝ

4z
D 2

1
16

63
S ŝ

4z
D 3D G ^Õ9& tree, ~A4!

^sl1l 2uO12ub&1-loop5
3

4
^sl1l 2uO11ub&1-loop. ~A5!

APPENDIX B: FULL ŝ AND z DEPENDENCE OF THE FORM FACTORS F 1,2
„7,9…

In this appendix we give the dependence off a
(b) (a51,2; b57,9) @see Eq.~59!# on ŝ and z. We decompose them a

follows:

f a
(b)5 (

i , j ,l ,m
ka,i j lm

(b) ŝiLs
j zlLc

m1(
i , j

ra,i j
(b) ŝiLs

j .

The quantitiesra,i j
(b) collect the half-integer powers ofz5mc

2/mb
25m̂c

2 . This way, the summation indices in the above equat
run over integers only. On the following pages, we list the numerical values ofka,i j lm

(b) andra,i j
(b) for

i 50, . . . ,3; j 50,1; l 523, . . . ,3 and m50, . . . ,4.

Coefficients not explicitly mentioned below vanish. In the following we have coefficientsk1,i j lm
(9) andr1,i j

(9) for the decompo-
sition of f 1

(9) :

r1,00
(9) 53.8991m̂c

3 , r1,10
(9) 5223.3946m̂c

r1,20
(9) 52140.368m̂c , r1,30

(9) 57.79821m̂c
212319.726m̂c

k1,00lm
(9) 51

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

24.6181213.67166i 5.6296311.86168i 0 0 0

14.4621216.2155i 9.59321211.1701i 21.1851927.44674i 20.790123 0

216.0864126.7517i 54.2439214.8935i 215.4074229.787i 23.95062 0

214.73223.6892i 228.5761134.7514i 20.1481 0 0

2
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k1,01lm
(9) 51

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

20.049382720.103427i 0 0 0 0

20.592593 0 0 0 0

4.9597721.86168i 21.1851927.44674i 22.37037 0 0

29.2028721.65483i 21.053519.92898i 3.16049 0 0

2
k1,10lm

(9) 51
0 0 0 0 0

0 0 0 0 0

22.4850720.186168i 0 0 0 0

4.4744120.310281i 1.4814821.86168i 0 0 0

71.3855230.7987i 8.47677233.5103i 12.538927.44674i 20.790123 0.790123

218.1301166.1439i 149.596267.0206i 249.1852281.9141i 211.0617 0

272.89263.7828i 268.1351134.041i 63.6049 0 0

2
k1,11lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

22.6666721.86168i 21.18519 0 0 0

18.653927.44674i 24.74074229.787i 29.48148 0 0

241.610423.72337i 22.37037144.6804i 14.2222 0 0

D
k1,20lm

(9) 5S 0 0 0 0 0

20.40315820.0199466i 0 0 0 0

20.061316910.0620562i 0 0 0 0

37.128221.36524i 22.062121.86168i 5.33333 0.790123 0

212.74252.2081i 221.9215252.1272i 57.172427.44674i 22.37037 2.37037

244.68291108.713i 272.0152163.828i 2119.1112156.382i 221.3333 0

2137.2032106.832i 299.4371330.139i 168.889 0 0

D
k1,21lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0164609 0 0 0 0

25.3333323.72337i 22.37037 0 0 0

40.786222.3402i 214.2222267.0206i 221.3333 0 0

2111.356 119.148i 37.9259 0 0

D
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k1,30lm
(9) 5S 20.075941520.00295505i 0 0 0 0

20.0048089410.00369382i 0 0 0 0

21.8100210.0871741i 20.919459 20.197531 0 0

79.747521.72206i 57.317121.86168i 11.2593 2.37037 0

425.579276.6479i 268.8016269.5029i 129.35727.44674i 25.53086 4.74074

287.89461148.481i 417.6122311.522i 2227.162253.189i 234.7654 0

2279.2682135.118i 2146.8531652.831i 331.259 0 0

D
k1,31lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0219479 0 0 0 0

28.296325.58505i 23.55556 0 0 0

70.2698249.6449i 231.60492119.148i 237.9259 0 0

2231.893118.6168i 11.85191248.225i 79.0123 0 0

D .

We now give the coefficientsk1,i j lm
(7) andr1,i j

(7) for the decomposition off 1
(7) :

r1,00
(7) 51.94955m̂c

3 , r1,10
(7) 511.6973m̂c

r1,20
(7) 570.1839m̂c , r1,30

(7) 523.8991m̂c
211159.863m̂c

k1,00lm
(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

21.1426620.517135i 0 0 0 0

22.2035611.59186i 25.2174311.86168i 0.59259313.72337i 0.395062 0

1.8636623.06235i 24.66347 3.72337i 0.395062 0

21.2113112.89595i 2.9958822.48225i 24.14815 0 0

D
k1,01lm

(7) 50

k1,10lm
(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

22.0750311.39626i 20.44444410.930842i 0 0 0

225.925915.78065i 23.40101113.0318i 24.491713.72337i 0.395062 20.395062

11.4229215.2375i 234.0806111.1701i 10.3704118.6168i 2.37037 0

11.7509115.6984i 18.9564224.8225i 214.6173 0 0

D
k1,11lm

(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

20.0164609 0 0 0 0

1.0370410.930842i 0.592593 0 0 0

24.66347 7.44674i 2.37037 0 0

6.7375411.86168i 1.1851927.44674i 22.37037 0 0

D
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k1,20lm
(7) 5S 0 0 0 0 0

0 0 0 0 0

0.00555556 0 0 0 0

219.469111.59019i 211.677910.930842i 22.96296 20.395062 0

290.4953114.7788i 14.9329122.3402i 224.43813.72337i 1.18519 21.18519

23.8816232.8021i 282.7915139.0954i 32.2963144.6804i 5.92593 0

38.1415134.8683i 38.6436280.673i 241.5802 0 0

D
k1,21lm

(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

20.0164609 0 0 0 0

2.3703711.86168i 1.18519 0 0 0

213.990413.72337i 2.37037122.3402i 7.11111 0 0

27.542813.72337i 2.37037229.787i 29.48148 0 0

D
k1,30lm

(7) 5S 0 0 0 0 0

20.0001077810.00258567i 0 0 0 0

0.94681120.0258567i 0.488889 0.0987654 0 0

241.995211.63673i 230.209110.930842i 26.22222 21.18519 0

2189.354125.8196i 42.6566131.0281i 257.76513.72337i 2.76543 22.37037

45.1784252.4207i 2145.181188.7403i 70.9136181.9141i 11.0617 0

77.3602154.2499i 58.44912184.927i 296.0988 0 0

D
k1,31lm

(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

20.0164609 0 0 0 0

3.8518512.79253i 1.77778 0 0 0

227.3882113.0318i 8.2963144.6804i 14.2222 0 0

69.449511.86168i 1.18519274.4674i 223.7037 0 0

D .

We now give coefficientsk2,i j lm
(9) andr2,i j

(9) for the decomposition off 2
(9) :

r2,00
(9) 5223.3946m̂c

3 , r2,10
(9) 5140.368m̂c

r2,20
(9) 5842.206m̂c , r2,30

(9) 5246.7892m̂c
2111918.36m̂c

k2,00lm
(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

224.2913222.0299i 223.1111211.1701i 0 0 0

286.7723197.2931i 257.5593167.0206i 7.11111144.6804i 4.74074 0

96.51872160.51i 2325.463189.3609i 92.44441178.722i 23.7037 0

88.38011142.135i 171.4572208.509i 2120.889 0 0

D
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k2,01lm
(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.29629610.620562i 0 0 0 0

3.55556 0 0 0 0

229.7586111.1701i 7.11111144.6804i 14.2222 0 0

55.217219.92898i 6.32099259.5739i 218.963 0 0

D
k2,10lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0.846211.11701i 0 0 0 0

226.846411.86168i 28.88889111.1701i 0 0 0

2428.3131184.792i 250.86061201.062i 275.2337144.6804i 4.74074 24.74074

108.7812396.864i 2897.5751402.124i 295.1111491.485i 66.3704 0

437.341382.697i 408.812804.248i 2381.63 0 0

D
k2,11lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

16.111.1701i 7.11111 0 0 0

2111.923144.6804i 28.44441178.722i 56.8889 0 0

249.663122.3402i 14.22222268.083i 285.3333 0 0

D
k2,20lm

(9) 5S 0 0 0 0 0

20.013219110.11968i 0 0 0 0

0.36790120.372337i 0 0 0 0

2222.76918.19141i 2132.372111.1701i 232. 24.74074 0

21276.441313.249i 131.5291312.763i 2343.034144.6804i 14.2222 214.2222

268.0982652.279i 21632.091982.969i 714.6671938.289i 128. 0

823.2181640.989i 596.62221980.83i 21013.33 0 0

D
k2,21lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

20.0987654 0 0 0 0

32.122.3402i 14.2222 0 0 0

2244.7161134.041i 85.33331402.124i 128. 0 0

668.137 2714.887i 2227.556 0 0

D

074004-25
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k2,30lm
(9) 5S 20.014224310.0177303i 0 0 0 0

0.028853620.0221629i 0 0 0 0

10.860120.523045i 5.51675 1.18519 0 0

2478.485110.3323i 2343.902111.1701i 267.5556 214.2222 0

22553.471459.887i 412.8091417.017i 2776.143144.6804i 33.1852 228.4444

527.3682890.889i 22505.6711869.13i 1362.9611519.13i 208.593 0

1675.611810.709i 881.11723916.98i 21987.56 0 0

D
k2,31lm

(9) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

20.131687 0 0 0 0

49.7778133.5103i 21.3333 0 0 0

2421.6191297.87i 189.631714.887i 227.556 0 0

1391.362111.701i 271.111121489.35i 2474.074 0 0

D .

We now give coefficientsk2,i j lm
(7) andr2,i j

(7) for the decomposition off 2
(7) :

r2,00
(7) 5211.6973m̂c

3 , r2,10
(7) 5270.1839m̂c

r2,20
(7) 52421.103m̂c , r2,30

(7) 523.3946m̂c
212959.179m̂c

k2,00lm
(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

6.8559713.10281i 0 0 0 0

13.221429.55118i 31.3046211.1701i 23.55556222.3402i 22.37037 0

211.182118.3741i 27.9808 222.3402i 22.37037 0

7.26787217.3757i 217.9753114.8935i 24.8889 0 0

D
k2,01lm

(7) 50

k2,10lm
(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

12.450228.37758i 2.6666725.58505i 0 0 0

155.555234.6839i 20.4061278.1908i 26.9502222.3402i 22.37037 2.37037

268.5374191.4251i 204.484267.0206i 262.22222111.701i 214.2222 0

270.5057294.1903i 2113.7381148.935i 87.7037 0 0

D
k2,11lm

(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0987654 0 0 0 0

26.2222225.58505i 23.55556 0 0 0

27.9808 244.6804i 214.2222 0 0

240.4253211.1701i 27.11111144.6804i 14.2222 0 0

D

074004-26
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k2,20lm
(7) 5S 0 0 0 0 0

0 0 0 0 0

20.0333333 0 0 0 0

116.81529.54113i 70.067725.58505i 17.7778 2.37037 0

542.972288.6728i 289.59712134.041i 146.628222.3402i 27.11111 7.11111

2143.291196.813i 496.7492234.572i 2193.7782268.083i 235.5556 0

2228.8492209.21i 2231.8621484.038i 249.481 0 0

D
k2,21lm

(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0987654 0 0 0 0

214.2222211.1701i 27.11111 0 0 0

83.9424222.3402i 214.22222134.041i 242.6667 0 0

2165.257222.3402i 214.22221178.722i 56.8889 0 0

D
k2,30lm

(7) 5S 0 0 0 0 0

0.00064667820.015514i 0 0 0 0

25.6808710.15514i 22.93333 20.592593 0 0

251.97129.82039i 181.25525.58505i 37.3333 7.11111 0

1136.132154.918i 2255.942186.168i 346.59222.3402i 216.5926 14.2222

2271.071314.524i 871.0892532.442i 2425.4812491.485i 266.3704 0

2464.1612325.499i 2350.69511109.56i 576.593 0 0

D
k2,31lm

(7) 5S 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0987654 0 0 0 0

223.1111216.7552i 210.6667 0 0 0

164.329278.1908i 249.77782268.083i 285.3333 0 0

2416.697211.1701i 27.111111446.804i 142.222 0 0

D .
cl.
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