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We present the exa@(«) correction to the process*e’ﬂff_+ v,f#e, for ISR®&FSR at and beyond
CERN LEP2 energies. We give explicit formulas for the completely differential cross section. As an important
application, we compute the size of the respective subleading correctiddéadf) to the ff cross section,
where L is the respective big logarithm in the renormalization group sense so that it is identifiable as
=In|s//m¢ whens is the square@’e~ c.m.s. energy. Comparisons are made with the available literature. We
show explicitly that our results have the correct infrared limit, as a cross-check. Some comments are made
about the implementation of our results in the framework of the Monte Carlo event genetator
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Currently, the final CERNe*e™ collider LEP2 data positrons and the masses of the final state fermion and anti-
analysis is in its beginning stages, and the desired total prdermion are exactly taken into account in contrast with the

cision tags on the important LEP2 physics processes literature. Thus, by comparing with the two calculations in
. ff.f#e are already called out in Refl]. It has been Refs.[4,5] as we do here, we get a measure of the size of the

demonstrated in Refl] that the Monte CarldMC) event mass corrections as well as cross checks on both our differ-
generator programk [2], hereafter referred to as tlke MC engilﬂracv%r?(ui;'rgfgarr?itzeg drgzuml;[)sll.ows In Sec. | we set our
generator and the semianalytical programmTER [ 3] realize : 9 : s

these precisions.2 — 1% in most channels for inclusive notational conventions. In Sec. I, we present our exact am-

: . o plitudes for theO(«) virtual corrections to initial-state and
cross sections and that for the fully differential distributions, g, gtate real radiation. In Sec. 11, we derive the differential

the kk MC gen_erator again me_ets mos_t of the requirement ross sections corresponding to these amplitudes in a form
for the LEP2 final data analysis. _In this Paper, We Preésentsq | for comparisons. In Sec. IV, we compare these results
exact results on th@(e) correction to the single hard iy those in Refs[4,5] while illustrating our results as they
bremsstrahlung processese™ —ff+y, f#e. This correc-  are used in thack MC generator in Ref[2]. Section V
tion is an important contribution to the differential distribu- contains our Summary remarks. The Appendix contains tech-
tions as they are realized in thex MC generator which pica| details about the scalar integrals.

allows the very demanding precisions just cited to be

achieved.
Specifically, the exact results for ti&(«) corrections to I. PRELIMINARIES
s-channel annihilation hard bremsstrahlung processes under
study here were also considered in Rd#%,5]. We differ In this section we set our notational conventions. We will

from these results as follows. Concerning Réi, the entire  use the conventions of Reff2,6,7] for our spinors. These
result was given only for the case in which the photon angleconventions are based on the Kleiss-StirliBy\Weyl spinors
variables are all integrated out; here, we give the fully dif-augmented as described in Relf&,6,7] with the rules for
ferential results. With regard to Rdb], the completely dif-  controlling their complex phases, or equivalently, the three
ferential results were given as well but the mass correctionaxes of the fermion rest frame in which the spin of that
were omitted. In our work, the masses of the electrons anfermion is quantized. We sometimes refer to this fermion rest
frame as the global positioning of spiGPS frame and to
the rule for determining it as the GPS rule. The resulting
*Permanent address: Institute of Nuclear Physics, ulconventions for the fermion spinors are then called the GPS

Kawiory 26a, PL 30-059 Cracow, Poland. spinor conventions. See Ref&,6,7] for more details. Let us
"Permanent address: Department of Physics and Astronomy, UniRow turn to the kinematics.
versity of Tennessee, Knoxville, TN 37996-1200. The process under discussion here is shown in Fig. 1, the
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one-loop virtual correction to the hard bremsstrahlung pro€lectron line emission. Here, from the latter result, we first
cesse e" —ff+1y, for f#e. We will treat both the initial ~obtain the respective initial-stasechannel result by crossing

state radiatior(ISR) case and the final state radiatifSR ~ the outgoing electron line with the incoming positron line,
case. We denote the four momenta and helicity of theand replacing the respective final state fidy while adding

e ,e",f, andf as p; and\;,j=1,... 4,respectively. We alsoz bpson excha_nge. The results are translated_into GPS
denote the charge dby Q; in units of the positron charge ~ conventions. Then, in Sec. Il B, we provide the detailed form
The rest mass of fermiofiis denoted bym;. The photon factors appearing in the ipitial state amplitudes.l The corre-
momentum and helicity will be denoted kyando. With our ~ SPonding final state amplitudes are presented in Secs. II C
GPS conventions for spinors, we induce the following polar-and ID.

ization vectors for photons: A. ISR s-channel exact result

. . In this subsection, we define notation and set up the exact
u,(k)y*u u,(k)y* '
(e"(B))* ZM, (e"(2))* = oK) 7"u,(0) ,  contribution for one real photon and one virtual photon emit-
V2u- 5 (K)us(B) V2U- 5 (K)ug(d) ted from the electron lines in the processe™ —ff+y. The
(1.2 amplitude for real plus virtual photon emission from the ini-

where the auxiliary 4-vectog is exploited here to simplify il state may be written

our expressions as needed. It satisfi##¥s=0. The second 202

choice withu,({), as defined in Refl2], is already an ex- M fR(l):#M ISRO o+ fily+Taln), (2.
ample of this exploitation—it often leads to simplifications in T

the resulting photon emission amplitudes.

The calculations which we present have been done usinghere the real photon emission amplitudetis >R, and
the programrorm of Ref. [9]. For thet-channel case, we the factorsl,, contain spinor dependence. They will be
presented similar results in R¢fL0] in connection with the  specified in the next section.
respective O(a?)L  corrections needed for the  |n GPS conventions, the amplitudel 'SR for the initial

0.061%(0.054%) total precision tag achieved in Réfl]  state radiation of a single photon is given by
for the LEP1 or SLAC Linear collidefSLC) luminosity pro-

cess in the Monte Carlo event generaterumi 4.04 in Ref.
[12]. Just as in the latter case, here a considerable effort iSMISR(O)
needed to simplify our initial rawrORM output in order to
make a practical application of the respective results in the
context of a Monte Carlo environment such as kxeMC + e_Qev_( P2, N) £5(— Pot m+K)
generator in Ref[2]. As in Ref.[10], we only present the 2kp,
final simplified expressions in this paper for the sake of clar-
ity.
Our metric is that of Bjorken and Drell in Reff13] and
we effect our gauge invariant calculation in the 't Hooft— Where
Feynman gauge. With these preliminary remarks, we turn
now in the next section to the calculation of our process of

P| eQe— *
)\:| = Tpiv(pz,)\z)lvll(pldl_ m_k)éa'u(pll)\l)

XMlu(pll)\l)! (22)

u(ps,\3) YUQL'B‘UAU(M,)M)

interest. M,=ie2Q; >
Bz s'—M3+iTgs' /Mg
=*
Il. EXACT RESULTS ON THE VIRTUAL CORRECTION soeB
to ete —ff+1y, f#e Xy°9, w, (2.3

In this section we calculate the exact virtual correction t0js the annihilation scattering spinor matrix.

efe —ff+ v, f#e. We proceed in analogy with our re- The form factors may be obtained from the corresponding
sults on the virtual correction for thechannel dominated t-channel result in Ref.10] for electron line emission. Spe-
low angle Bhabha scattering process with a single hardifically, thes channel result can be obtained by crossing the
bremsstrahlung in Ref10]. outgoing electron line with the incoming positron line, and
Specifically, we express the exact amplitude for one reafeplacing the final state bff. We also include the effects of
and one virtual photon emitted from the electron lines in thez exchange in the channel.
procesete” —ff+ y using the GPS conventiof,7,2). In Our previous calculations of-channel bremsstrahlung
Ref.[10], the correspondingchannel result was obtained for [10] used the Chinese magic conventi¢fg] for the photon
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polarizations. The GPS version of the magic photon polar- Using the magic polarization vector in E(.1) and ne-
ization vector is related to the Chinese magic conventionglecting fermion masses gives
[14] by

: 2s_4(P3,P4)
_ ISR(0)_ 3 / o
e*GP%k,B,U): U'ECh'nesfk,,B,— 0_)_ (2_4) M 1 |Qe0'e le,)\s(s )IOSU(pllk)SU( pz,k) '
(2.6)
The purpose of this change is to recover the more standard .
convention of defining photon polarization in terms of in- Where the photo propagator is
coming states. The choice of magic polarization vector af- eB.f.B
fects the amplitude(2.1) only through the definition of G, ,(s')= > 9N 9 , (2.7)
/\/l'fR(O). The remaining factors may thus be obtained di- ' B55zs'—M3+ilgs' /Mg
rectly by crossing from our previouschannel results. d
The magic choice of auxiliary vector for initial state ra- an
diation is 0 p p 0 p; p
|0=—\/§7\1)\3$(27(h{ ? ' ,h : 4:|)
_ h 0 p2 pl o )\1 )\2, g )\3 )\4
B=hi . VWL (2.9
. . We now turn to calculating the form factors and spinor fac-
with the definition tors.
Qo H1= K2, B. Initial state form factors
Qo d1 Q2 . o
h o 1 R =\ Oip if | moT ML= T M2, It remains to describe the form factors and spinor factors
o 2|, o= M= — b1 needed to compute\ PR, The spinor factors , are
(2.5 given by
|
N (0.0, ( k)sf)\l(p4apl)s)\l(plvp3)_Sf)\l(p4vp2)s)\1(p21p3) 2.9
= s_ K)s , , .
! 1 PO R S D P2)S— o(P5,Pa)S—» (P4, P2)Sy,(P2,Ps) o
V20s_, (p1,K)S, (P2.K)S (P4, K)S, (D3 .K)

S—U(plapZ)S—o’( p4!p3)|0

where the spinor product & (p,q)=u_,(p)u,(q). The factors ; , are crossed versions of {+7,)/27, in Ref.[10].

We will begin by writing the dominant terrfy,. Expressions can be found in Rg5] for all of the scalar integrals needed
for the form factors, which were previously calculated usingrihpackagd 9], which implements the methods of RE15].
The integrals in Ref[5] are not quite adequate, because of the possibility nhaiméls. However, it was possible to
analytically continue when necessary, and to reproduce the numerical resultsrefphekage. Thus, an expression for the
form factors in terms of logarithms and dilogarithms is now available. Details oa ¢hannel version of the scalar integrals
used in Ref[10] may be found in the Appendix.

For o=\, usingr;=2p;-k/s,

fo=47B L 1imt 2y atr) g +R 413+ ki In(1
0=4mByEs(s,me) + 2( i) i-r, T =y (ry,ra)+R(rp,ry) A=T,)(r%1,) n(1—ry—ry)
ro(2+r 1-rqi—r
L 1) ( ( 1 2)—i77], (2.10
(I-rp(1—-ry) ro
with L=In(s/m?), the infrared Yennie-Frautschi-SoGv&S) factor
Mo s _ o[ s 4% s
47Bypg(S,m)= 4Inm+1 InW—l—m —In ey —1+T+|7-r 2InW—1 (2.12

and
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R(x,y)=|n2(1—x)+2In(l—x)[ln(% +imy+2 SAXx+y)—2 Sr{%) (2.13
_ y . y 1-x—y X
—Inz(l—x)+2In(l—x)[ln(l_x_y +imp+21In Xy In( T« )—2 S[{m)

+2 SHX)+2 s;{u) 2.1
P02 S ey (214

The second expression is preferred for calculaR{g,y)/x whenx may be small. Foorr=—\,r, andr, are interchanged in
Eqg. (2.1D.
The coefficients of the spinor terms in EQ.1) are, foroc=\,

(ri—ry) ry(1—ry;—ry) r1+r2[1—r1—r2 1 J ry+r,
fi= IN(1—rq—ry)+ + =0, 1(R(r{,ro)+——=6, _1R(r,,r
ATy At T T T ) T2 0 R T e b R
1-ri—r r{+r 1 r 1-rq—r
+ L2 CHRL I ——2](n—1 2—i77) (2.19
(I-ry)(1-ry) (2(1—ry) 1-ry 14 ro
and
2—r,—ry 1-ri—ry(2-r1, 2(1—rq—r1y) 1
=2— —r,—r,)+ + —r,—
f2=2 2(1-r)(1—r,) ry(ri+ry)\l—r, In(1=ry=r2) ri+r, 1 r1+r2|n(l f1=r2)
(1=rq—ry)(2+r1—r15) 1 ro 1 rq
2r2(1-1,) R(rl,r2)+Z 1_E 50’1R(r1,r2)—z 1_6 Oq,—1R(rz,r1)
1-r;—ry (Z—rz r,—ry )( 1-ry;—r, )
A-r-rp)| 1 201-1) 7 219

The coefficientd, , ares-channel versions of; = 7,)/2in it =2(L—1—im)+2In(1—r)(Inr+im)+2In(1—r,)
Ref. [10]. For o=—A\,r; andr, are interchanged in Egs.

(2.19 and(2.16. X(Inry+im)—In?(1-ry)—In(1-r,)
The leading log limit is obtained by finding which terms " o+ a4 "
give rise to the leading powers of the “big logarithn” 3In(1=ry)+3In(1=rz)+2 SHry)+2 Spry)
when the above expressions are integrated oyeandr,. rq ro
These come from collinear terms whergor r, go to zero. + 1__r15a,—x1+ 1__r250',)\1 (2.18

In the collinear limits, when averaged over the azimuthal _
angle, only thef, terms remain to ordet? andL, i.e., to  Wwithout mass corrections.

next leading logNLL) order. Using the identities Mass corrections we have calculated primarily without
any approximations, however, in the following we shall
R(0y)=0 present them in the approximation,</s. In particular, in

this approximation, we checked by explicit calculation that
the result which we obtain for the mass corrections in fact
agrees with that implied by the prescription in Réf6]. This
prescription is valid for the spin-averaged differential distri-
bution in the limitm.<< /s, but since mass terms are located
in the separatéhelicity conservation violatingspin ampli-
tudes, it is not difficult to “undo” the spin summation. The
technique of Ref[16] was originally applied to tree level
R(X,Y)=2In(1=x)(Iny+im)—In*(1—x) photon emissions. Following the Appendix B of Rgf0] we
can apply it also to our case of emission of one virtual and

1 B 1 .
;R(x,y)—z 1- y IN(1-y)—2Iny—2i

for x—0,

+2 Spx) one real photon.
Taking advantage of the freedom which we have for pre-
for y—0, (217 senting mass terms in the,< /s approximation, the intro-
duction of the mass correction leads to a replacemerit, of
the NLL limit of the form factorf, is found to be by fo+ fg‘e, where
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(mg_ 2Ma (11 15| (1=ry)(1=ry) The form factorsf,; , and the spinor factors, , are final-
fo o= S \ry 1y 1+(1—rq—ry)?2 state analogs of those in the previous section, and will be
2 1 1 2 . . .
defined in the next subsection.
X{fo—4m Bypg(s’,me) The amplitudeM 75RO for the final state radiation of a
Co[L4In(l-ry—ry)—1-in]} (2.19 single photon can be obtained from the initial state amplitude
roe ' M 'SRO) by crossing. Crossing leads to spinors with negative
with YES infrared factor energy. A consistent choice of branches gives
47 Bypg(S',Me) =47 Bypg(S,Me) +IN(1—=r1—r3) u(=p,—N)=iv(p,\), v(=p,—N)=iu(p,\).
(2.23
Mo .
X 4Inﬁ—2L+1+2m Then we obtain
—In?(1—ry—ry). (2.20 pl eQr— _
o _ MESFON | = o U(pa M) Mu(Ba— M+ K)£5u(Pa Na)
Mass corrections first appear at order NLL, and to this order, Pa
eQr— .
- Tpau(paa)\s)ég(lbs‘F m+K)
F(MINLL_ 2m; r | (A=ryd—ry) -
0 s \rp ry)1+(1-r;—ry)? XMiv(pg,Na), (2.29
m
x{In(1—r;—r,)| 2L—1-2mi—4 |n#’) where
e J—
_ N2)Ye0S B u(pg A
+In2(1—r;—ry)+2In(1—ry)(Inr,+im) M;=ie?Q, > v(P2 2)72%. rt(P1 M)
)\B:%Zl S_MB+|FBS/MB
=
+2In(1=ry)(Inri+iam);. (2.21) XVUgL'Bw,L- (2.29

Only the LL part off, contributes to the mass correction, to  The magic polarization vector for final state radiation is
order NLL. The result2.19 gives the complete effect of the
mass corrections for the ISR neglecting the terms that are [

suppressed by higher powersmf/s as usual. h 0 53 )F:“
o 3 4

C. Final state radiation Using this in Eq.(2.24 gives, in the massless limit,

The amplitudes for final state radiation can be obtained by
crossing the incoming electron with the outgoifigand the

incoming positron with the outgoing Thus, p;< —py, MERO=iQ,6e3G_, _, (), 25 4(Ps3,P4) ,
Pp — Pz, N> —\g, and A, —\3 in the results of the 42 So(P1,K)S4(P2,k)
previous sections. (2.26

The final state radiatioFSR amplitude can be written in . . .
analogy with the ISR reng(Q?) P with propagator2.7) andl, given again by Eq(2.8).

2.2 D. Final state form factors

FSR(1)_ 1€ FSROYF L F 1 L f 1 o
M 167211 (ot fali+Tal2). (222 The spinor factors, , appearing invt 75* are given by

S\,(P1,P4)S-,(P2,P4) + 5, ,(P1,P3)S-\,(P3,P2)
S—(P4,P3)S-(P2,P1)S)\ ,(P1,P3)S-),(P3.P2) 0’

Ti= V2481, (e kS (Pa.k) o

V205, (P4, K)s_ ) (3, K)S,(P1,K)S (P2, K)
S_o(P4,P3)S-o(P1,P2)10

(2.28

|2:
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As before, letr;=2p; - k/s. We can obtain the form faCth_lb
for o= —\3 by substituting

ri——rg/(1=rz—rg), ry—=—r4/(1=rz—ry,)

(2.29

in Eq. (2.11), and foro= + A3 by interchanging 5 andr, in
Eq.(2.29. (Sincek?=0, we have +r,=r3+r,.) Then, for
0':)\3,

fo=47 Byps(s',my) +2 L_zmﬁ_l_iw)_ -
M, 1-r,
(r3+:jz(ll—_r:;_rA)'S\(fg.u)Jrﬁ(Uvrfﬂ)
+113r4[13—r:3_2 nrs o

ra(1—rz—ry)
ra(L—ry)(rg+ry)

(rg—rg(1—rz—ry)

v 2(1-r3)(1—ry)

IN(1=rg—ry)—

PHYSICAL REVIEW 15 073030
with

1-X—y’'1-x—y

ﬁ(x,y)=R(

1—x

X ) +2Sax)—2Spx+y). (2.3)

:2Inxln(

The expressiori2.31) is obtained from Eq(2.13 using the
dilogarithm identity

s —X
1-x
The imaginary parts in Eq2.30 were obtained by assuming
theis terms in Eq(2.11) came from a small positive imagi-
nary partorsors’. Foro=—N\g3, fg=1fy(r4,rz) insteadr;
andr, are interchanged.

The coefficients of the spinor terms in EQ.22) are, for
O':)\s,

—Sp(x)—%lnz(l—x). (2.32

rg+ry
21y

l_rg_r4 l
ra(l-ry) 2

50'_1]§(r3,r4)

r3+ry = — (1-r3—ry) { rs  rfg—Iy ]
+———06,R(ryr3)+ ———{1+ —+ ————tInrg, 2.3
ary ORIt A |V 2y (233
— 1—r3—ry)(2—r3—r 1-r3—r r 1—ra—r
f2=2—( 37 T4)( 3 4)_ s”Maf,_ T IN(1=rg—rg)— 374
2(1-r3)(1—ry) ra(rz+ry) 1-ry ra+ry rs+r,
(1-r3—ry)(2—r3—3ry)— 1 rs — 1
><|n(1—l’3—r4)]+ 2['[21(1—[‘4) .\(I‘3,r4)+z 1_a 50.’_1R(|'3,r4)—z 1
[ I— 1-r3—ry |2—r3 ra—rs ]
— —16,1R(rq,r3)— —2tInr,. 2.3
rs) RIS d=r | 7s 2=y 3 (239

For o= —\3, r3 andr, are interchanged in Eq&.33 and
(2.34).

The NLL limit is obtained as in the initial state radiation
case, except that now the collinear limits are wiegror r 4

become small. Only the form factdt, survives to order
NLL, and using the identities

1_—

2 2
yR(x,y) = mln X+ X In(1—x) fory—0,

E(x,y)= —2InxIn(1-y)—2 Spy) forx—0,
(2.39

we find

N =47 Bypg(s’,mp) +2(L—1—im)— 2 Inrgln(1—r )
—=2Inryn(1—r3)—In(1-r3)—In(1—r,)—2 SQAr3)
—2SHr) = 5,37 85—\, 4 (2.36

without mass corrections.
Spin-averaged mass corrections can be obtained from the

initial state case(2.19 by crossing. The result is thdft,
=
—fot+f,", where

(1=r3)(1-ry)
1+(1—r3—ry)?

Iy

2
Fmy_ 2Mi (T3 Ta
s

0 s \ry

[ fo— 47 Byesi(s)

mg .
-2 L_Zlnﬁ_l_m , (2.37

where
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47 B S)=4m Bypg(s',m;)—IN(1l—rz—r 1
7 Bvrsi(S) 7T Byl M) TN U= (P =Py 12)%= = 5 BiBis(1—r))[ 2+ cos )

Mg .
X 4InH—2L+1+2m

e +cog6y)], (3.3
+IN*(1—rz—ry). (238 with (i,j)=(1,2) or (2,1), and

Again, mass corrections first appear at order NLL, and to this Am2 2o
order, =\/1-— B=[1-—2" (3.4
, Bt s Bi 32(1—ri)2 ( )

?(mf)NLL_ me r3 I’4 (1—!’3)(1—[’4) . . . .
0 T s a _3 m We will be setting these mass factors to unity in the follow-
ing, and adding mass corrections at the end via(E4.9 or
Eq. (2.37).

mg m;
Xiln(l—=rz—ry)| 4 InH—2L+4 In—
f

. The coefficients; are defined in terms of the standard

vector and axial vector fermion couplingsand A, and X
=V2+A? Y=2VA by

+1+27ri)—In2(1—r3—r4)+2In(1—r3)
Fo=XeXix2+2QeQsVeVix1+Q2Q7,

X'”“”'”(l‘“)'”rs]- 239 F1=YeYprz+2QeQrAcA i, (3.5
The result(2.37 gives the complete effect of FSR mass cor-Where
rections neglecting terms suppressed by higher powers of et it hA2 L aa2\2 , 271
mfz/s as usual. X1=8'(s'=MP[(s'=MZ)“+(s'Tz/Mz)]"~,
X2=8"°[(s' =M2)%+(s'Tz/Mz)?] %, (3.9

IIl. DIFFERENTIAL CROSS SECTION

The initial state differential cross section for real plus vir-
This section translates our amplitudes into differentialtual photon emission may be expressed as
cross sections, and sets up comparisons with other related
results. The initial state differential cross section for emitting ~ dg'oR® 1
one real photon may be written =

= R M ISR(0) *M ISR(1) )
d2Qdr,dr, (4m)*s’ ;0 MM

do!SRO (3.7

Z |M (3.1

dZerldr2 2(477)4 If is convenient to rewrite Eq(2.1) as

. 2.2
where the summed, squared real photon amplitude leads to MISRO_ e€ b MISRO) 3.8

4_6 1672

Q e
ISR(0)[2 _ 2, .2
| M3 |*= [(t +t )(Fo—Fy)+(ui+up) in terms of a virtual correction factor

X(F0+F1)], (32) U:f0+f1|1+f2|2. (39)
where the invariantas;, t; may be written inYFs3 style  The differential cross sectiofB8.7) can then be written in
[17,2] effective angle notation: terms of a spin-averaged virtual correction factoj times

1 the cross section for pure real initial state radiation:
tlz(pi—pi+2)2=—Zﬁfﬂis(l—ri)[z—cos(ali) dor!SRD= (4)d g 'SRO), (3.10
—cog 65)1, where

> o[ MERO)2 2{Uil[Fo+F1+7\1(F2+Fs)]"‘U):l[Fo_Fl"‘M(Fz_F3)]}
A X

o,N1.M3 1
(v)= = (3.1))
S MmISROpR (Fot+Fo)(ui+ud)+(Fo—Fp)(ti+t5)

O’,)\l,)\s

with
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v =Ufvy A+ UGN
oA =tduy oyt s (3.12
and
F2=YeXtx2T2QeQAcViX1,
F3=XeYix212QeQsVeAsrx: - (3.13

In the NLL approximation, where the, andf, terms in Eq.(2.1) may be neglected, we may use the relatfoh=(f).
Then Eq.(3.11) simplifies to

[fo(ra,rUus+fo(ra,r)UZl(Fo+Fo)+[fo(ry,ra)ts+fo(ry,rot2l(Fo—Fy)
(Ui+ud)(Fo+Fo) +(t5+t5)(Fo—Fy)

(fo)=2

Fo[fo(ry, o) (1408 010) +Fo(r,,r1)(1+C0S0,) ]+ 2F [fo(ry,15)c08011+ Fo(r2,11)c0S0,]
 Fo[(1=r)2A(1+C020,0) + (1= 1) A1+ 0205 ]+ 2F [ (1—T4)2 c0SOy1+ (1 — 1 )2 COSOyy]

(3.14

with (fot=2(L=1—im+2In(1—ry)(Inr,+im)

?o(ri,rj)=2(1—r,-)2f0(ri,r,—). (3.19 +2In(1—ry)(Inry+im)—In*(1—ry)—In?(1—r,)

+3In(1—rq)+3In(1—r,)+2 SArq,)+2 SAr,)
If we further drop the dependence dl in Eq. (3.3,
letting 6;;— 6 for fixed 0, then we get a simpler approxima- ri(1-ry) ra(1-ro) (3.20
tion. The angle dependence can be factored out of the cross 1+(1-rp)?  1+(1-rp?’ )
section Eq.(3.7), leading to

with mass corrections given by E(.19. This form is use-
d U|15R(1) 1/Q.€%\2 ful fqr comparison with cher results on _the differential cross
= ( 2) ool foyHo(r1,r2), (3.16  section, as we will see in the next section.
2 An analogous expression can be found for the final state
emission cross section. The spin-averaged version of the fi-
with the definition nal state form factof2.36) is

drdr, 2

1 N =47Byeg(s’ M) +2(L—1—im)—2Inrzin(1—r,)
Ho(rlarz):ﬂ[(l_rl)z"‘(l_rz)z], (3.17)
12 —=2Inr In(1—=r3)—In(1—=rg3)—In(1l—ry,)

the total Born cross section s
2 SHr3)—2 SHry) TH(i-rq?
Q2Q2e4 1
Goz%j d?Q —F0(1+c0526)+Flcos¢9 , _ M4 (3.21)
2(4m)*s 2 1+(1_r4)2! .
(3.18

with mass corrections given by E.37).
and approximate spin-averaged form factor

IV. PARTLY DIFFERENTIAL CROSS SECTION
(fo) (1—r,)%fo(rq,ro)+(1—r)%fo(rp,rq) AND COMPARISONS
0 (1=rp)?+(1-rp)° '

We may compare our spin-averaged initial state radiation
(3.19 form factor with one published in Ref5]. In our notation,

. o ] this result may be written as
It can be shown that this approximation is valid to order

NLL. ¥ ¥
fin(rq,ro) +fin(ro,r
The NLL expressior2.8) then leads to the spin-averaged N= n(r 2; in(rz 21), 4.1
form factor (1=ry)°+(1-rp)
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with
~ 2 5 ) 21—r1—r2 ’ rq
fin(re,r2)=(1—r;—ry+r3)[4mReByrg(S,me) +2(L—1)]+[1+(1—r1,)°]j In“(ry) +In 1—r —In r—
A —rhim 12
1—r1—l’2 772 rlrz(l_rl_rz) 1 3r2 I‘l
+28F<—1—I’2 )+28ﬂr1+r2)—?] 11, 1_r2+1—? |n—1_rl_r2
2r1r2(l—l’l—r2) (l—l’l—l’z) 3 2I’1r2 I’ll’z
- T T, —aIn(l—rl—rz)+r2(3r2+2r1)ln(r1)—r1+r2+1_—r2+r2(1—r2).
4.2
|
The NLL limit of this expression may be obtained by sum- dolSRO@ Q2?1422 y
ming the two collinear limits where,— 0 separately. Carry- iz 2,290 1 (L-D=6,(2)00 (4.9

ing this out leads precisely to our spin-averaged NLL expres-
sion(2.20. Thus, we agree with Ref5] to NLL order. Note
that the expressiofi, does not include mass corrections, in the notation of Ref{4], where this result matches the real
which were not calculated in Ref5]. part of Eq.(2.11).

By integrating out the separate dependence;dn favor The real plus virtual ISR cross section is
of the variablez=s'/s =1—r,;—r,, we may obtain a result
which can be compared to Rg#]. To begin, we consider da_I18R(1) 1
the pure real photon ISR cross section, and work in the ap ==

2\ 2
e 1-z—-rg
Qez) (Toj dl’ldl’zﬁ(l—z—l’l—rz)
r

proximation where the effective angleés in Eq. (2.3) are dz 2\ 4w 0
replaced by a common angte Then X(FolHo(r1,r2) 4.9
d O_IlSR(O) 202
e
drydr, 22 FoHo(r1.r2) (4.3 where we use the NLL expressi¢d.20 for the virtual form

factor, and will add mass corrections later. Doing the integral
in terms ofH, defined by Eq(3.17). Integratingr, andr,  and keeping all infrared terms and terms of ortlérand L

with the constraing=1—r,—r, gives gives
do'fR(O) Qgez 1-z-r, do'SR@) 262 1+ 22 2
_ z (1-2)
———50'f dridro 8(1—z—ry—r15) 1 — e \41 _
dz 4m? 70, t2 v dz 2?0001 S| 1= 1+22
XHo(ry,ra), (4.9 1/Q%e?\? 1+2°
sl ——]{—LlInz
2 - - S 2\ 47?2) "0 12
wherery=mg(1—2z)/s is the kinematic minimum value of
r, or r,. The result of the integral is, exactly, +2InzIn(1-2)+2 S1-2)+3Inz
dolSRO Q2?1422 (1-2)2 , 2(1-2)
= —_— — + —_ )
dz 472 70\ 17 1+27° 4.5 "zt 42 | (4.10
Mass corrections, obtained by the prescription of Ref'where we use the notation of REA] for
[16], have the effect of replacingy by Hy+H, in Eq.(4.3),
where
v Qze?
2m§ rl r2 Z 611(3):W{ZWByps(s,me)‘l‘L_l} (411)
Hin(r1,r2)=—— Lo 17 2MHo(rr2). (4.6

The mass correction is obtained by multiplying the pure
real mass correction by the single virtual photon form factor
evaluated in terms o’ rather thans. Thus, we add to the

Integrating the mass term gives

2

1-z-rg 2z mg ) , >
f drodroHp(rq,r)=— 1—+o —|. (4.7  differential cross section a mass term
o —Z S
.. . 2.2
The total mass-corrected real photon emission cross section dom €

— =& Vi
is then dridr, 42 0, (8" ) Hm(r1,r2) o0, (4.12
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5.107 T T
oA _ @)
b1 ~%Bi11
ZBorn B .77 X 8 2 o
0.-10™ ¥4
F 1 _=.10-4 L L
—05F ¢ O@*)LL ] 510 + O(c?) NLL &
: F * R (@) *k**
o O(a?) NLL ] o O(a?) Exact %
(o) M’i&: L1070 O(?) IN * "
© O(a?) Exact ] TR
i , . * O(o?) BVNB :
—10F xO()IN . ~15-107 | ]
[« O(e?) BVNB ] ‘“‘
] Umax
—9 .10~4 1 L 1
_ - 1 4= 10 25 50 75 1.00
=15 b s ST s ‘ i ibutiorg® — g2
25 50 75 1.00 FIG. 4. Next-to-leading-log contributior8;”’— B3i1, for the

vrs3f MC program(the EEX3 option of thexk MC generatoy, as
FIG. 2. This is theg{?) distribution for thevFsaf MC program 4 function of the cub ma,. It is divided by the Born cross section.
(vrsdf is the EEX3 matrix element option of thec MC generator
in Ref.[2]), as a function of energy cut,. It is divided by the ~Adding the mass corrections and using the notation of Eq.

Born cross section. The IN result is from RE5], and the Berends— (4.8) gives the complete real plus virtual cross section at

van Neerven—Burger@VNB) result is from Ref[4]. order NLL,
do'SR(M) 1 262\ 2 47
where T Vi sHiy T 2T _c
dz 0'051 (3)51 + 2 4772 UOL:(]_—Z Inz+z
v Qze? 1+7?
o,%(s")= W{ZwBYFS(s’,me)+L+In z—1} + 11— [-LInz+2InzIn(1-2)+31Inz
2 3 —In?z+2 Sp1-2)] (4.15
_ sVie) 4 Qee mo L3 . .
1(s) 4772)Inz(2lnae L 5
This result agrees precisely with the terms(#26) of Ref.
2z 413 [4] through ordera®L.
' ' We illustrate the agreement we have found above in Figs.

2-5 for the caseff_=,u,‘,u+. In Fig. 2, we show the com-
Integrating overr, andr, with z=1—r;—r, and keeping pIeteﬂ(lz) distribution for our exact result, our NLL and LL

only infrared terms and terms of ordey we obtain approximate results, the result of Igarashi and Nakazawa
et al.[5], and the result of Berend al.[4]. What we see is
do 262 o, Q2e? that there is a very good general agreement between all of
m__ = 0'0[ 8Vi(s)— —LlInz{. these results. To better assess the difference between them,
dz 4w 1-z ! Am we plot in Fig. 3 the difference between the respective
(4.14 O(a?) and O(a?) results. Again we see very good agree-
.004 - T B @) (2)20'10‘4“""""‘ A AR R
2 (1 MNLL
6 ?Bor s E
OBo.003 |+ O(a?) LL E 1.5-10
3 o O(a?) Exact
o O(e?) NLL F N
e 3 L1074 E O(a?) IN b
.002 o O(a?) Exact E 1.0-10 x 0(?)
I * O(a?) BVNB
oolf Ol IN # 5-107 F #*%H’I‘—
* O(a?) BVNB 3
000 Jemenasensossmmmsms— 0-1074
E <
—.001 F W_ s B 10—4 E 4
Vmax Umax
= 1 1 1 _ 104 L | 1 1
00 25 50 75 1.00 k=10 25 50 75 1.00
FIG. 3. Differencep{?)— g{") for the vrsdf MC program (the FIG. 5. Sub-NLL contributiong{?)— {2}, for the yrs3f MC
EEX3 option in thekk MC generator, as a function of the cut program(the EEX3 option of the&xck MC generatoy, as a function
Umax- It is divided by the Born cross section. of the cutv . It is divided by the Born cross section.
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ment except for the hardest possible photons, where then thiessor D. Schlatter and the ALEPH, DELPHI, L3 and OPAL
LL result differs significantly from the others. Collaborations, respectively, for their support and hospitality
To isolate the respective predictions for the NLL effect, while this work was completed. B.F.L.W. would like to thank
we plot in Fig. 4 the respective differences between our LLProfessor C. Prescott of Group A at SLAC for his kind hos-
O(«?) result and the other four results. We see that there ipitality while this work was in its developmental stages. This
again very good agreement but, at the level ob015 4, the  work was supported in part by the US DOE, contract DE-
result of Ref[4] is somewhat smaller in magnitude than the FG05-91ER40627, by the Polish Government, grant KBN
other three NLL results in the& radiative return regime 2P03B08414 and KBN 2P03B14715, by the US—Poland
above a cut of 0.75. Maria Sklodowska—Curie Fund Il PAA/DOE-97-316, and by
Finally, in the Fig. 5 we isolate the size of the three NNLL NATO grant PST.CLG.977751.
results by plotting the difference between our NLL result and

our exact result, the result from R¢6] and the result from APPENDIX: SCALAR INTEGRALS
Ref.[4]. We again see that the most pronounced difference in _ _ _
the results occurs for the regime abayg,=0.75 where the Previously, in Ref[10], the analogous exact virtually cor-

result of Ref[4] differs by 0.5< 10" from the other two for ~ rected photon cross sections were expressed in ¢channel
Umax<0.975 and differs from the exact result by %.50"* using scalar integral functions which were calculated by a
for vma,c>0.975. The result from Ref5] differs from the numerical package FF described in Ref5]. In the present
exact result by 0.2 1074 for v,,,,c>0.975 but is essentially Paper, we have expressed these functions directly in terms of
indistinguishable from it for smaller values of,,,. We con-  logarithms and dilogarithms. This appendix will give the ex-
clude that our exact result for th@(a?) correction_(lz) has pressions for the individual scalar integrals in thehannel.

a total precision tag of 1510 4. Its NLL effect has already The notation for the scalar integrals will match Rf0],

been implemented in thex MC generator in Ref[2]. W'trh I_F;]nematllcrl}gtatlcr)nl d\(la\;‘;tr;‘etc\i/vln dSencsr.n:nar;drll Orf tr;snpat\-d
We have also made the analogous study to Figs. 2—5 f ef. The scalar integrals 0 denominators are denote

500 GeV. We find very similak results, with the total pre- and the ones appearing in the form factors are
cision tag of 2x 10~ 4. _
g By,=B(mZ;m,,me),
V. CONCLUSIONS . )
B,5=B(mg—sri;m,,mg),
In this paper, we have presented exact results for the vir-

tual correction to the process'e”—ff+y for the ISR Bys= B(mzy;me,me),
®FSR. The results are already in use in kkeMC generator
in Ref.[2] in connection with the final LEP2 data analysis. B,s=B(s;mg,m,),
We have compared our results with those in Rgds5]
and in general we find very good agreement, both at 200 B3,=B(s";my,my), (A1)

GeV and at 500 GeV. For example, the size of the NNLL

correction is shown to be at or below the level 0k20™%  where the first argument is the square of the momentum
for all values of the energy cut parameter. Our results ar¢hrough the diagram, and the remaining arguments are the
fully differential and are therefore ideally suited for MC masses of the two lines. These functions are UV divergent,
event generator implementation. This has been done in thieut only the following finite combinations are needed:

KK MC generator in Ref[2]. To compare our results with

the results in Refs[4], we have partially integrated them r s’ mi sr

accordingly. While the results in Rdf5] are also fully dif- B3~ 834:|ns_ri+ m2—sr: Inﬁ_'”’ (A2)
ferential, they lack the complete mass corrections that our ¢ ' ¢

results do have. In this way, one sees that our results are in s’

fact unique. They are an important part of the complete B,s—Bgs=In—, (A3)
O(«?) corrections to the R production process needed for S
precision studies of such processes in the final LEP2 data
analysis and in the future TESLA-LC physics.

Note addedAfter we had submitted this paper, we be-
came aware of related work by G. Rodrigo, A. Gehrmann-De
Ridder, M. Guilleaume and J. H. Kuhn, Eur. Phys. J2Z  The mass term in EA2) has been dropped when applying
81 (2001). These authors also agree with the analogous rethis expression, since the mass corrections are added explic-
sults of Ref.[4], when the photon azimuthal angle is inte- itly to the massless limit of the calculation using the pre-
grated and the photon polarization is summed for the ISRscription of Ref[16].

s’
BlZ_ Bg4zln_2_i’7T. (A4)
m

e

process. The integrals for three and four denominators are obtained
from the appendix of Ref[5]. For three denominators, we
ACKNOWLEDGMENTS need the expressions
Two of the authors(S.J. and B.F.L.W.would like to N s 2 o _
thank Professor G. Altarelli of the CERN TH Div. and Pro- Ciog= C(Me, M), Mg —Sri;m,, Mg, M),
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) 2 2 2
cli. =C(m2—sr;,s’,mZ;m,,my,m,), 1 s s m 2mw _
134 € l eryree SC124=§|HZEZ—|H—2|H—’ZY—T+7TI In?y (A8)
_ 2 o o e e e
C234=C(M,s",S;Me, M, Me),
Cio4= C(mg ,s,mg;my,me,me), The expressiolfA5) is an analytic continuation of the one in

Ref.[5], as required sinc15\1<m(29 is possible, and the expres-

where the first three arguments are the squares of the externghn (A6) drops mass terms. In particular, the photon mass
momenta, and the next three are the masses of the three lingggyatorm,, is dropped whenever possible
y :

in cyclic order. The results are The expression with four denominators is
1 .m? m2 w?
sr;Cl =——In2—e—8;{1——e)——, (A5)
2 stj 8 s?r;Di =In2—’—2In S I n mf’(ln ° —iw)
. , i~1234 mé Hg Hg Hef Eg
o 1ost 1 (1-rps 11—
(1—r]-)sC1'34—§In —2—5 m2 —Eln r 571_2 s’
Me e ! T2yt - - —2miin. (A9
i

2

m 1-r;

+In—1In !
SI;

s’ 1-r,
+2In—2In :

e ' All of these expressions have been checked for agreement

2 N 5772 with the FF package. The functioR defined in Egs(2.13
—Sp< e) —2SF{ s(lT) i and(2.14 and appearing in the virtual photon factors is the

St i IR-finite combination

s’ 1-r,
— i In—; — 2 In( J), (AB) g § )
< Fi R(ri,rj)=s(CyagtsrD,)—srClL,—(1—ry)sCl,
1,8 ,s s +(ry+r2)sChay. (A10)
(I’1+I’2)SC‘234=§|I’] m—é—zm m_§+7ﬂ In;,

(A7)  This completes this appendix.
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