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Quadrupole moments of baryons
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Quadrupole moments of decuplet baryons and the octet-decuplet transition quadrupole moments are calcu-
lated using Morpurgo’s general QCD parametrization method. Certain relations among the decuplet and the
octet to decuplet transition quadrupole moments are derived. These can be used to predict theD quadrupole
moments which are difficult to measure.
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I. INTRODUCTION

We use Morpurgo’s QCD parametrization@1# to calculate
all baryon octet-decuplet transition and decuplet quadrup
moments and to derive certain relations between them.
chosen method makes it clear from the outset that the re
obtained do not depend on the particular quark-quark in
action model. We compare our relations with those obtai
in a group theoretical analysis. Finally, we provide numeri
estimates that can be compared with experiment.

Unfortunately, quadrupole moments of the decuplet ba
ons are still unknown. They are important for providing e
dence for baryon nonsphericity. We believe that the elec
quadrupole moment of theV2, as well as the octet-decuple
transition quadrupole moments, are amenable to meas
ment and we discuss some possible techniques in the s
mary.

II. MORPURGO’S GENERAL PARAMETRIZATION
METHOD FOR QUADRUPOLE MOMENTS

The general parametrization~GP! method, developed by
Morpurgo, is based on the symmetries and the quark-gl
dynamics of the underlying field theory of quantum chrom
dynamics~QCD!. Although noncovariant in appearance,
invariants that are allowed by Lorentz invariance are
cluded in the operator basis~see below!.

The basic idea is toformally define, for the observable a
hand, a QCD operatorV and QCD eigenstatesuB& expressed
explicitly in terms of quarks and gluons. The correspond
matrix element can, with the help of the unitary operatorV,
be reduced to an evaluation in the basis of auxiliary thr
quark statesuFB&

^BuVuB&5^FBuV†VVuFB&5^WBuOuWB&. ~1!

The auxiliary statesuFB& are pure three-quark states wi
orbital angular momentumL50. The spin-flavor wave func
tions @2# contained inuFB& are denoted byuWB&. The opera-
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tor V dresses the pure three-quark states withqq̄ components
and gluons and thereby generates the exact QCD eigens
uB&. Furthermore, it is implied thatV contains a Foldy-
Wouthuysen transformation allowing the auxiliary states
be written in terms of Pauli spinors.

One then writes the most general expression for the
eratorO, in the present case for the electric quadrupole
eratorQ, that is compatible with the space-time and inn
QCD symmetries. The orbital and color space mat
elements1 are absorbed intoa priori unknown parameters
calledB andC, multiplying the spin-flavor invariants appea
ing in the expansion ofO. The method has been used
calculate various properties of baryons and mesons@1,3#.

The electric quadrupole operator is composed of a tw
and three-body term in spin-flavor space

Q5B(
iÞ j

3

ei~3s izs jz2si•sj !

1C (
iÞ j Þk

3

ek~3s izs jz2si•sj !, ~2!

whereei5(113t iz)/6 is the charge of thei th quark. More
general operators containing second and third powers of
quark charge are conceivable@4# but are not considered here
Their contribution is suppressed by factors ofe2/4p
51/137. Thez-component of the Pauli spin~isospin! matrix
si (ti) is denoted bys iz (t iz).

Decuplet baryon quadrupole momentsQB* and octet-
decuplet transition quadrupole momentsQB→B* are obtained
by calculating the matrix elements of the quadrupole ope
tor in Eq.~2! between the three-quark spin-flavor wave fun
tions uWB&

QB* 5^WB* uQuWB* &,

QB→B* 5^WB* uQuWB&, ~3!

1Note that on the right-hand side of the last equality in Eq.~1! the
integration over spatial and color degrees of freedom has been
formed.
©2002 The American Physical Society17-1
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TABLE I. Two-quark (B) and three-quark (C) contributions to quadrupole moments of decuplet baryo
in the SU~3! symmetry limit (r 51) and with broken flavor symmetry. SU~3!-flavor symmetry breaking is
characterized by the ratio ofu-quark ands-quark massesr 5mu /ms . Two types~quadratic and cubic! of
flavor symmetry breaking are considered.

Q(r 51) Q~quadratic! Q~cubic!

D2 24B22C 24B22C 24B22C
D0 0 0 0
D1 4B12C 4B12C 4B12C
D11 8B14C 8B14C 8B14C

S* 2 24B22C 2(4B12C)(112r )/3 2(4B12C)(11r 1r 2)/3
S* 0 0 2(B2C)(12r )/3 @2B(11r 22r 2)2C(22r 2r 2)#/3
S* 1 4B12C @4B(21r )22C(124r )#/3 @4B(212r 2r 2)22C(122r 22r 2)#/3

J* 2 24B22C 2(4B12C)(2r 1r 2)/3 2(4B12C)(r 1r 21r 3)/3
J* 0 0 4(B2C)(r 2r 2)/3 @4B(2r 2r 22r 3)22C(r 1r 222r 3)#/3

V2 24B22C 2(4B12C)r 2 2(4B12C)r 3
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whereB denotes a spin 1/2 octet baryon andB* a member of
the spin 3/2 baryon decuplet.

A. Missing one-quark quadrupole operator

In applications of the GP, a hierachy in the importance
one-, two-, and three-body operators is often found. O
body operators usually give a larger contribution to the m
trix element than two-body operators, and two-body ope
tors are usually more important than three-body opera
@1#. This hierachy results from the additional gluon e
changes needed to generate two-quark and three-quark
erators. The quark-gluon couplingas5g2/4p is such that
diagrams involving higher powers ofg are suppressed. In th
GP method this is regarded as an empirical fact; in QCD w
a large number (Nc) of colors this is becauseg2 is inversely
proportional toNc , i.e., g}1/ANc, and diagrams involving
higher powers ofg are suppressed.

However, for quadrupole moments, one-body opera
containing rank 2 spherical harmonics in orbital space, e
eiY

2( x̂), do not contribute, because the GP method empl
only L50 wave functions. In Morpurgo’s formulation, an
possibleD-state admixture in the QCD statesuB& is moved
from the wave function to the effective two- and three-qua
operatorsQ acting in spin-flavor space. Even ifD-waves
were included in the Hilbert space, the orbital one-body c
tribution would be small due to the smallD-state probability
in the nucleon andD wave functions@5#. In any case, for
quadrupole moments, we are left with two- and three-qu
operators.

B. Two- and three-quark quadrupole operators

The two- and three-body operators in Eq.~2! act in spin-
flavor space. Although they formally operate on valen
quark states, they are mainly a reflection of theqq̄ and gluon
degrees of freedom that have been eliminated from the
bert space, and which reappear as a quadrupole tensor in
07301
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space@6,7#. As spin tensors of rank 2, they can induce sp
1/2→3/2 and 3/2→3/2 transitions.

Evaluating Eq.~2! between, e.g.,N and D spin-isospin
wave functions leads to the following results for theD and
the N→D quadrupole moments

QD15^WD1uQ[2]1Q[3] uWD1&54B12C,

Qp→D15^WD1uQ[2]1Q[3] uWp&52A2B22A2C.
~4!

Similarly, the electric quadrupole moments for the other d
cuplet baryons and the octet-decuplet transition moments
calculated and listed in Tables I and II. In this way Morpu
go’s method yields an efficient parameterization of bary
quadrupole moments in terms of few unknown paramete

C. Determination of the GP constants

In order to determine the two constantsB andC we need
two experimental inputs. From recent measurements of
ratio of electric quadrupole over magnetic dipole amplitud
in electromagnetic pionproduction (E2/M1 andC2/M1 ra-
tios! @8,9#, one can extract theN→D transition quadrupole
moment Qp→D1. For a first determination ofQD1 from
photo-pionproduction data in theD resonance region se
Ref. @8#. Because the decuplet quadrupole moments or o
octet-decuplet transition quadrupole moments are not
very well known, we cannot fix the smaller constantC with
sufficient accuracy at this stage. Therefore, we assumC
'0 for the numerical evaluation. Our assumption that thr
body ~C! terms in the charge operator are smaller than tw
body ~B! terms is supported by work using the GP@3# and
the 1/Nc expansion@4# methods. In both methods,uC/Bu is
estimated to be at most 0.3.

We take the following approach in determining the co
stant B. In a quark model with exchange currents, it w
found that theN→D andD quadrupole moments receive th
7-2
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TABLE II. Two-quark ~B! and three-quark~C! contributions to the octet-decuplet transition quadrup
moments in the SU~3! symmetry limit (r 51) and with broken flavor symmetry. SU~3!-flavor symmetry
breaking is characterized by the ratio ofu-quark ands-quark massesr 5mu /ms . Two types~quadratic and
cubic! of flavor symmetry breaking are considered.

Q(r 51) Q~quadratic! Q~cubic!

p→D1 2A2(B2C) 2A2(B2C) 2A2(B2C)
n→D0 2A2(B2C) 2A2(B2C) 2A2(B2C)

S2→S* 2 0 22A2(2B1C)(12r )/3 2A2(2B1C)(22r 2r 2)/3
S0→S* 0 2A2(B2C) A2(B2C)(21r )/3 A2@2B(22r 12r 2)2C(41r 1r 2)#/6
L0→S* 0 A6(B2C) A6(B2C)r A6@2Br2C(r 1r 2)#/2
S1→S* 1 2A2(B2C) 2A2@B(42r )2C(112r )#/3 2A2@B(422r 1r 2)2C(11r 1r 2)#/3

J2→J* 2 0 22A2(2B1C)(r 2r 2)/3 2A2(2B1C)(r 1r 222r 3)/3
J0→J* 0 2A2(B2C) 2A2(B2C)(r 12r 2)/3 A2@2B(2r 2r 212r 3)2C(r 1r 214r 3)#/3
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largest contribution from two-bodyqq̄ terms in the charge
operator. The following relations between the neutron cha
radius r n

2 , the D1, and thep→D1 quadrupole moments
were obtained@7#

A2Qp→D15QD15r n
2 . ~5!

The reasons for the existence of these quark model relat
are: ~i! one-quark and three-quark operators are suppre
for r n

2 , QD1, and Qp→D1, ~ii ! these observables are dom
nated by the same two-body charge operatorr [2] , ~iii ! there
is a definite relation between the monopole (C0) term in
r [2] , which is responsible for the nonvanishing neutr
charge radius, and the quadrupole (C2) term in r [2] that
produces a nonzero quadrupole moment of theD1. In other
words, all three observables are dominated by the cloud
qq̄ pairs—effectively described by the two-quark exchan
currents—and as a consequence are simply related.

Similar relations betweenr n
2 , QD1, andQp→D1 were ob-

tained in the pion cloud model@6# where theqq̄ degrees of
freedom enter in terms of an explicit pion contribution to t
baryon wave functions, and in previous quark model cal
lations @10#.

From Eq. ~4! it is clear that the quark model relatio
betweenQD1 andQp→D1 can only be exact ifC50. This is
not the case. Nevertheless, it is well satisfied by the exp
mental neutron charge radius and thep→D1 quadrupole
moment extracted from the electromagnetic pionproduc
data@8,9,11#. This provides some experimental evidence
the smallness of the constantC. By comparing Eq.~4! for the
caseC50 with Eq. ~5!, we obtain

B5r n
2/4.

III. RESULTS FOR SPECTROSCOPIC QUADRUPOLE
MOMENTS

In this section we present our results for baryon quad
pole moments and interpret them in terms of the hig
SU~6! spin-flavor symmetry group and its SU~3! flavor and
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SU~2! isospin subgroups. The spin-flavor symmetry co
bines the spin 1/2 flavor octet baryons and the spin 3/2 fla
decuplet baryons into the symmetric56 dimensional repre-
sentation of the SU~6! spin-flavor group. If the spin-flavor
symmetry was exact, octet and decuplet masses would
equal, the charge radii of neutral baryons would be zero,
all baryon quadrupole moments would vanish. In particu
MD15M p , r D0

2
5r n

250, andQD15Qp→D150 @12#.

A. SU„6… spin-flavor symmetry breaking

SU~6! symmetry is only approximately realized in natur
It is broken by spin-dependent terms in the strong interac
Hamiltonian. Their presence explains why decuplet bary
are heavier than their octet member counterparts with
same strangeness. Likewise, it is broken by the sp
dependent electric quadrupole operators in Eq.~2!. These
have different matrix elements for spin 1/2 octet and spin
decuplet baryons, and give rise to nonzero quadrupole
ments for decuplet baryons.

In the first column (r 51) of Table I we show our results
for the decuplet quadrupole moments in terms of the
constantsB and C describing the contribution of two- an
three-quark operators, assuming that SU~3!-flavor symmetry
is exact. Table II lists the corresponding expressions for
octet-decuplet quadrupole transition moments. We obse
that the decuplet quadrupole moments are proportiona
their charge, and that the octet-decuplet transition mome
between the negatively charged baryons are zero. Both
sults follow from the assumed flavor symmetry of the stro
interaction.

B. SU„3… flavor symmetry breaking

In order to get an idea of the degree of SU~3! flavor sym-
metry breaking induced by the electromagnetic transition
erator, we replace the spin-spin terms in Eq.~2! by expres-
sions with a ‘‘quadratic’’ quark mass dependence

s is j→s is jmu
2/~mimj !

as obtained from a one-gluon exchange interaction betw
7-3
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A. J. BUCHMANN AND E. M. HENLEY PHYSICAL REVIEW D 65 073017
the quarks. Flavor symmetry breaking is then characteri
by the ratior 5mu /ms of u ands quark masses, which is
known number. We use the same mass foru andd quarks to
preserve the SU~2! isospin symmetry of the strong intera
tion, that is known to hold to a very good accuracy.

For comparison, we also use a flavor symmetry break
of ‘‘cubic’’ quark mass dependence

s is j→s is jmu
3/~mi

2mj !,

that follows from the two-body gluon exchange charge d
sity @13#. This leads to expressions forQB* andQB→B* con-
taining terms up to third order inr. No additional parameter
are introduced in this way.

We emphasize that this treatment is not exact. The
method of including SU~3! symmetry breaking is to intro
duce additional operators and parameters, which guaran
that flavor symmetry breaking is incorporated to all ord
@14#. There are then so many undetermined constants tha
theory can no longer make predictions. We expect that
approximate treatment includes the most important phys
effect.

In the second and third columns of Tables I and II w
present the analytic expressions for the decuplet and
octet-decuplet transition quadrupole moments with quadr
or cubic type of flavor symmetry breaking taken into a
count.

C. Relations among quadrupole moments

Even though the SU~6! and SU~3! symmetries are broken
there exist—as a consequence of the underlying uni
symmetries—certain relations among the quadrupole
ments. A relation is the stronger the weaker the assumpt
required for its derivation. We are therefore interested
those relations that hold even when SU~3! symmetry break-
ing is included in the charge quadrupole operator. These
the ones, which are most likely satisfied in nature. The
quadrupole moments~10 diagonal decuplet and 8 decuple
octet transition quadrupole moments! are expressed in term
of only two constantsB andC. Therefore, there must be 1
relations between them. Given the analytical expression
Tables I and II, it is straightforward to verify that the follow
ing relations hold

05QD21QD1, ~6a!

05QD0, ~6b!

052QD21QD11, ~6c!

05QS* 222QS* 01QS* 1, ~6d!

053~QJ* 22QS* 2!2~QV22QD2!, ~6e!

05Qp→D12Qn→D0, ~6f!

05QS2→S* 222QS0→S* 01QS1→S* 1, ~6g!

05QD22QS* 22A2QS2→S* 2, ~6h!
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05QD12QS* 11A2Qp→D12A2QS1→S* 1,
~6i!

05QS* 02
1

A2
QS0→S* 01

1

A6
QL0→S* 0, ~6j!

05QS* 22QJ* 22
1

A2
QJ2→J* 22

1

A2
QS2S* 2,

~6k!

05QJ* 01
1

A2
QJ0→J* 02A2

3
QL0→S* 0. ~6l!

These twelve combinations of quadrupole moments do
depend on the flavor symmetry breaking parameterr. In fact,
Eqs. ~6a!–~6d! are already a consequence of the assum
SU~2! isospin symmetry of the strong interaction, and ho
irrespective of the order of SU~3! symmetry breaking. Equa
tion ~6e! is the quadrupole moment counterpart of the ‘‘equ
spacing rule’’ for decuplet masses. The latter was obtai
from considering SU~3! invariance of the strong interactio
with a second order symmetry breaking perturbation@15#.
The remaining relations connect states in the octet and
cuplet, and the assumption of SU~6! symmetric spin-flavor
wave functionsuWB& in the auxiliary states is needed to d
rive them.

There are also fourr-dependent relations,2 which can be
chosen as

05
1

3
~2r 11!QD11QS* 2, ~7a!

05
1

6
A2~r 21!Qp→D11QS* 0, ~7b!

05A2r 2Qp→D12A2QJ0→J* 01QJ* 0, ~7c!

05r 2QD22QV2. ~7d!

With the ‘‘cubic’’ SU~3! symmetry breaking, we obtain
the same relations as in Eqs.~6a!–~6l! with the exception of
Eqs. ~6j! and ~6l! involving the neutral baryons@16#. These
no longer hold independently but their sum is again a va
relation. There are now fiver-dependent relations which ca
be chosen as

05
1

3
~11r 1r 2!QD11QS* 2, ~8a!

05~r 2r 2!QD12A2~21r 2!Qp→D1

16A2QS0→S* 0, ~8b!

2The parameter combinationsBr, Cr, Br2, and Cr2, when ex-
pressed in terms of quadrupole moments lead to fourr-dependent
relations among the quadrupole moments. We thank R. Lebed
pointing out the proper number ofr-dependent relations.
7-4
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QUADRUPOLE MOMENTS OF BARYONS PHYSICAL REVIEW D65 073017
05rQS* 22QJ* 2, ~8c!

05~r 2r 2!QD11A2~r 1r 3!Qp→D1

23A2QJ0→J* 0, ~8d!

05r 3QD22QV2. ~8e!

Other combinations of the expressions in Tables I and II
be written down if desirable.

D. Comparison with Lebed’s quadrupole moment relations

It is interesting to compare our results with a pure SU~6!
symmetry analysis of baryon quadrupole moments@17#. Af-
ter decomposing the product56^ 565313651% 35% 405
% 2695 into its irreducible representations, the most gene
quadrupole operatorQ is expressed in terms of operato
transforming according to the405and2695dimensional rep-
resentations of SU~6! spin-flavor symmetry:

Q5Q4051Q2695. ~9!

The 1 and 35 dimensional representations, which conta
only zero-body~constants! and one-body operators do n
contribute for an angular momentumJ52 operator such as
Q. Lebed’s twelve quadrupole moment relations@17# were
derived by neglecting theQ2695 terms. The latter give nu
merically small matrix elements because they require a p
uct of three SU~6! symmetry breaking operators, and a
therefore suppressed. Omitting theQ2695 operators amounts
to neglecting the three-quark termsQ[3] in the present ap-
proach.

Our results in Tables I and II with only two-quark~B!
terms retained satisfy all twelve Lebed relations independ
of whether and how SU~3!-flavor symmetry is broken@18#.
This shows that our analytic expressions for the elec
quadrupole moments are compatible with a rigorous gr
theoretical approach.

When we include three-body (C) operators but no SU~3!
symmetry breaking, ten of his relations are still satisfi
whereas the~8,0!, ~8,1!3 relations are violated. This sugges
that our three-body operators transform as flavor octets in
limit r 51.

Finally, if three-body operators are considered and SU~3!
symmetry is explicitly broken, only the~64,3!, ~64,2!, ~35,2!,
and~27,2! relations with isospinI>2 are satisfied. These ca
be obtained from linear combinations of our Eqs.~6a!–~6g!.
The restriction to quadrupole operators that are linear in
quark charge implies that one has onlyI 50 andI 51 opera-
tors, which cannot affectI>2 combinations. Lebed’s rela
tions involve more quadrupole moments than our relati
because isospin symmetry is not assumed in Ref.@17#.

3The first number stands for the dimension of the irreduci
SU~3!-flavor representation, and the second for the isospinI and the
dimension 2I 11 of the particular SU~2!-isospin representation in
volved.
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E. Numerical results

After neglecting three-body operators (C50), one can
express the 18 quadrupole moments in terms of only
constant,B, which we have determined from the empiric
neutron charge radiusr n

2520.113(3) fm2 @19#. Numerical
values are listed in Tables III and IV for the cases witho
(r 51) and with (r 50.6) flavor symmetry breaking. Th
electric quadrupole moments of the charged baryons ar
the same order of magnitude asr n

2 , while those of the neutra
baryons are considerably smaller. We expect that the in
sion of three-quark operators will not change the sign and
order of magnitude of the numerical results obtained.

With the cubic type of SU~3! symmetry breaking we ob
tain similar numerical values. For the quadrupole mome
of most charged baryons and all transition quadrupole m
ments differences between both types of symmetry break
are of the order of 20%. Larger differences occur forQS* 0,

e

TABLE III. Numerical values for the quadrupole moments
decuplet baryons in units of (fm2) according to the analytic expres
sions in Table I withB5r n

2/4 andC50. The experimental neutron
charge radius@19#, r n

2520.113(3) fm2, and the SU~3! symmetry
breaking parameter@20#, r 50.6, are used as input values.

Q(r 51) Q~quadratic! Q~cubic!

D2 0.113 0.113 0.113
D0 0 0 0
D1 20.113 20.113 20.113
D11 20.226 20.226 20.226
S* 2 0.113 0.083 0.074
S* 0 0 20.008 20.017
S* 1 20.113 20.105 20.107
J* 2 0.113 0.059 0.044
J* 0 0 20.009 20.023
V2 0.113 0.041 0.024

TABLE IV. Numerical values for the octet-decuplet transitio
quadrupole moments in units of (fm2) according to the analytic
expressions in Table II withB5r n

2/4 andC50. The experimental
neutron charge radius@19#, r n

2520.113(3) fm2, and the SU~3!
symmetry breaking parameter@20#, r 50.6, are used as input value
The experimentalN→D transition quadrupole moments extracte
from the measuredE2/M1 ratios Qp→D1

exp
520.105(16) fm2 @8#,

andQp→D1
exp

520.085(13) fm2 @9# agree well with our results us
ing C50.

Q(r 51) Q~quadratic! Q~cubic!

p→D1 20.080 20.080 20.080
n→D0 20.080 20.080 20.080
S2→S* 2 0 0.021 0.028
S0→S* 0 20.080 20.035 20.028
L0→S* 0 20.069 20.042 20.042
S1→S* 1 20.080 20.090 20.084
J2→J* 2 0 0.013 0.014
J0→J* 0 20.080 20.035 20.034
7-5
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A. J. BUCHMANN AND E. M. HENLEY PHYSICAL REVIEW D 65 073017
QJ* 0, andQV2. Here, the details of how flavor symmetry
broken are important. For example, from Eq.~8e! we obtain
QV250.024 fm2 compared toQV250.041 fm2 following
from Eq. ~7d!. Nevertheless, if a quadrupole moment of th
order of magnitude is measured, one could distinguish
tween various theoretical approaches@21#.

In the SU~3! limit, the quadrupole moments of the neutr
baryons are exactly zero. In addition, the transition mome
involving the negatively charged baryons are zero, beca
of U-spin conservation, which forbids such transitions if fl
vor symmetry is exact@22#. Furthermore, the sum of all de
cuplet quadrupole moments is zero in this limit.

IV. SUMMARY

Morpurgo’s general QCD parametrization method is us
to relate the spectroscopic quadrupole moments of all m
bers of the baryon decuplet and the corresponding oc
decuplet transition quadrupole moments. Our analysis
cludes two- and three-quark currents. Because the me
relies mainly on the symmetries of QCD, our predictions
to a large extent model independent. The model depend
resides in our approximate treatment of flavor-symme
breaking. A more rigorous approach will mainly affect th
numerically small quadrupole moments.

We have found eleven relations between the quadrup
moments that are independent of the way SU~3!-flavor sym-
metry is broken. Among them are four relations, which f
low already from the assumption of SU~2! isospin symmetry
of the strong interaction and the linearity of the elect
quadrupole moment operator in the quark charge. Th
should be very well satisfied in nature.

We have compared our results with a purely group th
retical analysis of quadrupole moments by Lebed. Our the
reproduces all Lebed relations. In addition, we find that so
of his relations are more general, and hold even with cer
types of three-quark operators included.

Measurements of baryon quadrupole moments are d
cult but within reach. They are important for determining t
geometric shape of baryons. For example, theV2 baryon
lives sufficiently long to observe the x rays emitted when i
s
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captured into an outer Bohr orbit of a heavy nucleus a
cascades down to a state with a lower principal quant
number@23#. The x ray frequency depends on whether t
charge distribution of theV2 is spherically symmetric or
deformed. If it is deformed, the additional interaction ener
between its quadrupole moment and the electric field gra
ent of the nucleus will lead to a frequency shift proportion
to QV2. It has also been suggested to measure the degre
longitudinal spin polarization of an initially transversely p
larized V2 beam when passing through a crystal@24#. The
interaction between the crystal electric field and theV2

quadrupole moment results in a longitudinal polarizatio
which is again proportional toQV2.

In the Primakoff reactionY1Pb→Y* 1Pb, a high en-
ergy octet hyperonY is inelastically scattered in the electro
magnetic field of, e.g., aPb nucleus, and a decuplet hypero
Y* is produced in the final state@25#. An octet-decuplet tran-
sition quadrupole moment will affect theY* production rate
and its size may be extracted from the Primakoff cross s
tion. Transition quadrupole moments can also be obtai
from the cross section for kaon photoproduction. In the cr
section forgp→K1S* 0→K1L0g @26# the radiative decay
width for S* 0→L0g with its magnetic dipole (M1) and
electric quadrupole (E2) contributions enters. TheE2 con-
tribution is a measure of the transition quadrupole mome

With the help of the present theory the experimenta
inaccessible quadrupole moments can be obtained from t
that can be measured, and the geometric shape of bar
can be calculated in various models@6#.
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