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Expansion of bound-state energies in powers ah/M and (1—m/M)

lan Blokland and Andrzej Czarnecki
Department of Physics, University of Alberta, Edmonton, Canada AB T6G 2J1

Kirill Melnikov *
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
(Received 20 December 2001; published 19 March 2002

Elaborating on a previous LettgA. Czarnecki and K. Melnikov, Phys. Rev. Le&7, 013001(2001)], we
use a new approach to compute energy levels of a nonrelativistic bound state of two constituents, with masses
m andM, by systematic expansions—one in powersmM and another in powers of (im/M). Technical
aspects of the calculations are described in detail. Theoretical predictions are givetuiate)®) radiative
recoil andO((Z«)®) pure recoil corrections to the average energy shift and hyperfine splitting relevant for
hydrogen, muonic hydrogen, and muonium.
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[. INTRODUCTION sions. In addition, we present a calculation of the pure recoil
corrections using an expansionim'M.

Precision studies, both theoretical and experimental, of The rest of this paper is organized as follows. In Sec. Il
nonrelativistic QED bound states have historically providedwe discuss the framework of the calculation and our expan-
a wealth of information about fundamental physical param-sion method in general terms. Section Il contains a detailed
eters such as the fine structure constant and the masses of teehnical description of the calculation. In Sec. IV we
electron, muon and protd]. In order to keep pace with the present and discuss the results of our calculations for the
ever-improving precision of current experiments, increas-O(a(Za)®) radiative recoil and?((Za)®) pure recoil cor-
ingly intricate theoretical calculations must be performed.rections to the average energy shift and hyperfine splitting of
Fortunately, the emergence of new calculational techniquea generic QED bound state. Our results are summarized in
has brought many such calculations within reach. Sec. V. Finally, the Appendix illustrates the techniques with

In a previous Lettef1], we introduced a practical algo- which a class of loop integrals—the so-called eikonal
rithm which allows a calculation of the bound-state energyintegrals—can be evaluated.
levels in a given order of perturbation thedig « andZa)
as an expansion in powers and logarithmayM with an
arbitrary precision. The opposite situation, the calculation of
the energy levels to all orders mbut in a fixed order in the
ratio m/M, has been studied in the literatui@-6]. We il- Nonrelativistic bound states can be conveniently de-
lustrated the method by calculating tt¥a(Z«)®) radiative  scribed by an effective field theory which exploits a separa-
recoil corrections to the average energy shift and hyperfingon in the energy scales, mv, andmo? [7]. This approach
splitting of a nonrelativistic QED bound state. This analyticis facilitated further by the use of dimensional regularization
result enabled us to resolve a discrepancy between two prégg—11]. The basic idea is that the Coulomb potential supplies
vious calculations 0O(a(Za)°m?/M) corrections to the av- the dominant interaction and all other interactions provide
erage energy shift, thereby removing a major source of thegorrections which can be evaluated using the familiar time-
oretical uncertainty in the isotope shifte. the difference independent perturbation theory of quantum mechanics.
between the 3 to 1S transition energies in deuterium and These corrections can be divided into two classes.
hydrogen. The first class is that of the so-called “soft” contributions,

In this paper we extend our previous results in severafjoverned by long-range potential terms. These contributions
ways. For instance, we illustrate how the energy shifts caman be evaluated for arbitrary masses of the constituent par-
also be expanded as a series in—(h/M). Beyond its ap- ticles because the essential soft dynamics of a nonrelativistic
plicability to situations wheren~ M, this expansion method bound state, as described by the Sdimger equation, are
provides a useful cross-check on the comparably more difficharacterized by the reduced mass of the system rather than
cult method of expanding im/M. We also examine the the individual masses of the consituents. As a result, once the
convergence properties of these expansions in order to ascawft contributions are obtained in the equal mass £add)],
tain some general guidelines about the accuracy of the trurthe more general mass case follows easily.
cated series that necessarily arise when using these expan-The “hard” contributions make up the second class, and

these contributions lead to the interactions that can be char-
acterized bys(r) potential terms. Such terms result from the

Il. FRAMEWORK OF THE CALCULATION

*Email address: blokland@phys.ualberta.ca relativistic region of loop-momentum integrals, and they are
"Email address: czar@phys.ualberta.ca usually obtained as Taylor expansions of scattering ampli-
*Email address: melnikov@slac.stanford.edu tudes in terms of the spatial momentum components of the
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FIG. 1. The forward-scattering radiative-recoil diagrams. The
bold line represents the heavy constituent of the bound &agea
proton if we consider hydrogérand the thin line represents the
light one (an electroh Diagrams with the crossed photons in the —py — - _p,
t-channel are not displayed.

FIG. 2. The forward-scattering pure recoil diagrams.
external particles, which are taken to be on-shell. At lowest o
order ina, the hard diagrams should be evaluated exactly afactors (propagators where the terms within these factors
threshold, whereby the constituents have zero relative velorfj-hGpend d'geger‘t'y on tge fexternal scales. Fourth, l;nte_g.r attla
ity. This implies that the relevant loop-momentum integralsf[ € Expande mtegrgn S rom every region over the |n_|t|a
depend on only two scales)andM. The hard contributions integration volume—in other words, ignoring the constraints
have a much more complicated dependence on the mag%at identify the regions. Finally, add the contributions aris-
scales than the soft contributions do, and this is why we will"d from the individual regions in order to obtain the final
expand the hard scattering diagrams in powers of eitiiét result. The fourth step of this algorithm requires further ex-
or (1—m/M). By expanding théntegrands we are left with planation, since by ignoring the constraints on the individual
only homogeneous, one-scale integrals to evaluate, and thfggions, it may appear as i contr|.but|ons to the total integral
constitutes a substantial simplification. This method lend$'© counted more than once. Th'_s does not happen because
itself to automation so that many terms of the expansion caﬁ‘e extra <_:ontr|but|ons to t_he total !nte_g_ral that are introduced
be obtained, with the only limitation being set by the avail- y removing the constraints on individual regions can be

able computing power. High-performance symbolic aIgebraFXpressed as scale-less integrals, and scale-less integrals van-

software is of great help in such computatidne useFoRM ish in dimensional regularization. This implies that the inte-
[12)) grals from the various regions are different analytic functions

Ourm/M expansion method is motivated by a procedureOf the parameters of the problem. In the next section, we will

in which Feynman diagrams are expanded in large masséisemonstrate this algorithm in detail.
and momentd13—15. Although this procedure was origi-
nally expressed in a different way, it can be reformulated
more practically using the notion of momentum regions. The
algorithm, which is applied directly to the loop integrals, In the previous Lettef1], we outlined the expansion pro-
consists of five stepgl6]. First, identify the large and small cedure for the radiative recoil diagrams. These diagrams are
external scales in the integrals. Second, divide the integratioshown in Fig. 1.

volume into regions so that the momentum flow through any We will now describe the expansion procedure using the
of the internal lines is of the order of one of the externalpure recoil diagrams, since a few additional complications
scales. More specifically, the stateménat M asserts that arise. These diagrams are shown in Fig. 2.

k?>m? in Euclidean space. Third, perform Taylor expan- To illustrate the method we focus on the last diagram in
sions within every region for any individual denominator Fig. 2 and consider the following scalar integral:

IIl. PROCEDURE

|
f [dPk,][dPk,]
(K2)(K3) (ky+ ko) [ (Ky+ ko) 2+ 2(ky + ko) p1](K2+ 2kyp1) (K3 — 2Ky po+i 8) (K3 + 2kypy+i6)

(€

073015-2



EXPANSION OF BOUND-STATE ENERGIES IN POWER. . . PHYSICAL REVIEW D 65 073015

Here[ dPk] stands ford®k/(27)P, p;=mQ, andp,=MQ, whereQ=(1,0,0,0) is the time-like unit vector. Only the relevant
infinitesimal imaginary parts of the propagators have been displayed. We are going to illustrate the expansion of the integral
in Eq. (1) in powers ofm/M following the five steps outlined above.

There are five momentum regions to be considered. In the first one all the momenta are of the order of the lakfje mass
In this case one can expand the electron propagatarsQrk . The resulting integrals are all of the form

dk,J[d°k
f [d7ky][d k] @

(kD)31(k3)®2(ky+K2)23(KE — 2k, p,)24(K3+ 2k,p,) %

with some integer powers; . One immediately recognizes that all these integrals are identical with the general two-loop
self-energy integrals of the particle with madsfor which the general solution is knowA7].

Next, there is a momentum region whére- M andk,~m. By usingk;~M to expand the electron propagators we obtain
Eq. (2) again. Withk,~m, the (k;+k,)? and (k5+ 2k,p,) factors can also be expanded, so that the only denominator factors
which depend ork, are (3) and (X,p,). Since we are working at threshold, we hawe=MQ, which leads to

[d®k,] B
f mbﬂszﬁ4mﬁ_Q 3

so that this region provides no contribution to the amplitude for this particular diagram.

The third momentum region hds~M and k,~M but k;+k,~m. After a Taylor expansion in small variables, the
integrals in this region factorize into products of two simple one-loop integrals.

In the fourth regionk;~m andk,~M. A Taylor expansion in small variables allows the integrals in this region to be
factored into one-loop integrals as

f [dPk, ] J [dPk,]
(k3)21(K2+ 2kyp1)®2(2kypy) 38 ) (K3)34(k3+2Kap2) %

4

Thek, integral is a trivial one-loop integral. THg integral can be converted to the same simple form, along with integrals
like Eq. (3), by multiplying it by factors of

L (Kit2kapy)  (2kipy)
(kp) (kD)

®

until eithera, or az is brought to zero.
The fifth region is characterized by the conditioyr~k,~m. In this case, the heavy particle propagators can be expanded
into static, or as we will call themgikonal propagators. The integrals in this region are of the form

dPk,][dPk
f : [d”k,][d"k;] ®)

k$)21(K3)22( Ky + ko) 223 (Kq + Ko) 2+ 2(Kg + Ko) p1 124(KE + 2Ky 1) 35( 2Ky po— i 8)26(2K,po+i 8)37 .

Notice how the eikonal propagators arising frok?{ 2kp-+i8) factors acquire-ié pole terms. Such terms are important in
this region and must be carefully accounted for. The integral in(gcan be simplified using the identity

1 __55( 11 ) o
(K2+2kp)(2kp) k2| (2kp)  (k2+2kp)/’

Once one of the seven factors in E§) has been removed, an identity can be constructed from the observation that the
remaining six factors are linearly dependent. Using such an identity, the integrals in this fifth region can be expressed as one
of four types of integrals. The first type is the two-loop self-energy integral of a particle with mé&sswhich the general

solution is known17]. The remaining three types contain eikonal propagators:

E__f [dPk,1[d k]
L) (K3)2a(k2)2( Ky — kp) 283(K3+ 2k,opy) 242Ky £ 6)%

+

®
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— f [dPk,][d k] ©
20 ) (K)Aa(k3)22(K2+ 2Ky 1) 229 (kg + Kp) 2+ 2(Ky + Kp) P1]24(2kopy £ 6)%
. [dPk,][dPk,]
Es = .
° f (k?)21(k3)22(ky — kp) 233( 2k, po i 8)%4(2kop, i )% 10

At threshold, theE; integrals are exactly zero for similar on-shell self-energy integrals. As an additional cross-check,
reasons as are needed to establish Bj. This leaves us we note that in the limit that the two masses are equal, we
with two new types of integral€; andE,, required for the havey=0, so that the positronium result8,10] can be re-
recoil calculations. The calculations for radiative recoil dia-covered from the leading term of this expansion.
grams involveE, but notE; integrals. In Appendix A, we Another method has been propogé®] for dealing with
outline the procedure by which tHe, andE, integrals can similar problems involving more than one mass-energy-
be evaluated. distance scale. Intermediate parameters are introduced to
We shall now describe a second method of expansiorgeparate various scales and the calculations are performed in
relevant to the scenario where the two bound-state constitdeur dimensions. An advantage of such an approach is that it
ents have similar, but not necessarily equal, masses. ARvoids various complications arising when workingDrdi-
though this scenario is not realized by any common QEDmensions. However, it spoils the homogeneity of integrals
bound states, this second expansion can provide a usefahd it is not clear whether one can apply integration-by-parts
check on the first expansion method. algorithms, which are crucial for larger calculations involv-
The essential idea is to introduce an expansion parametérg many terms of expansions.

m
1— —

M (11)

y:
so that the external momentum of the light partigle, can
be written in terms ofy and the external momentum of the
heavy particlep,, via

p1=(1-y)p>. (12)

Then, any massive propagator containipg can be ex-
panded, as a series in powers\pfin terms of the corre-
sponding propagators containiipg:

o

-2

n=0

(2ykp,)"

(K>+2kpp)"* 1 49

k2+2kp

As a result, the two-scale general scalar integral in(Egis
expanded, as a series in powersypfn terms of two-loop

IV. RESULTS AND DISCUSSION

We have applied our algorithms to compute the
O(a(Za)®) radiative recoil corrections to the average energy
shift and the hyperfine splitting of a general QED bound
state composed of two spin-1/2 particles with magsesd
M. In this case the soft contribution is absent and the hard
corrections shown in Fig. 1 are the only diagrams we have to
consider. We have done the calculation in a general covariant
gauge; the cancellation of the gauge parameter dependence
serves as a check of the computation.

For theSwave ground state enerdgywe define

1
E= Eaver"'( 530) EhfS! (14)

whereJ=0,1 is the total spin of the two fermions forming
the bound state.
For the hyperfine splitting we obtain

8(Za)*u® 13 m[{ 15 M 1 6f3 17 m\?/3
radrec N T B P T T S T o =
OEpts 3mM a(Za){In2 4+M 471_2Inm+2+ 772+877 +3In2 M 2+6In2
+(m)3 61 ,M 1037 M 133 ggg 5521+3| ) (m) (163+6| 2)
— — n —| | = n
M/ {1272 m 7042 T2 28872 M/ | 48
. m)® 331I 2M . 5761I M 691 943 206653 m 612 15
M/ 12072 m " 30002 ™m T 220" 22 " 800072 M 120+ n (15)
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where u=mM/(m+ M) is the reduced mass of the bound state.
For the spin-independent energy shift we find

31139 m(3 6{; 14 m\?/ 127
rad reg 5'U’_ o | = _3___ - _
SERAICS o (Za) | 3 2In2+ 5| 2 T 2In2|+| o ( 32+8In2)
+m3 8 _M 55 M 47 3{; 85 2|2+m4 55+4|2
M 320 m 18,2 'm 36 2 gm2 <" M 24" %M
L(m 5 37I M 29 |M+1027 3¢3; 370667 izt m\® 67+4| )
| 15022 m * 50072 ™"m " 360~ #2  36000,2 2" M 20 "
m\7( 199 ,M 1750 M 887 3¢3 241491119
+| 5In Nt T 2 T T (16)
7002 M 735072 M w2 185220007

To our knowledge the term@(m®/M?3) and higher are new for both andE..,, While the other terms have been obtained
previously[19]. The coefficient of thed(m/M) term in Eq.(16) was the subject of some controversy, since two different
numerical results have been reported, RE26—22 and[23].

Our result for this term,

m3, 06 14, 1.32402796x(Za)5 = w
TR " aw

,u,
m2 M

a(Za)® 17

is in excellent agreement with the numerical result of R28] where the coefficient-1.324029(2) was obtained, and has
since been confirmed in an independent analytical calcul@fidh

The expansions im/M of Egs.(15) and(16) do not yield accurate results for increasing valueséil, even though an
untruncated series can be expected to converge on the intetvaE[0,1). The convergence of the terms in the series which
we have calculated is depicted in Fig. 3. The upper graph shows the hyperfine splitting calculations as a fungtiéraot
the lower graph shows the corresponding results for the average energy shift. In both cases, several curves are plotted, eact
representing the sum of the fildtterms of the expansion, whelkeis shown in the legend. The graphs suggest that more terms
in the series would be required to obtain reliable values of the hyperfine splittimy fdrlarger than about 0.2; our series for
the spin-independent energy shift should be reliablaritv values up to about 0.5.

The expansion iy=1—m/M aims to address the region wheméM is large(i.e., m~M). For the hyperfine splitting we
find

8(Za)*ul| | 3 m 3 21 25
5E[f;§re°z—( Y ﬁ+—+2ln2—— +1-— —ﬁ————ln2+
3mM 472 82 32 M 472 8n2 4 96
m) 2 | ) 19 A m)3 1 3 no 55
M 7Tz 8"“ 38 M)\ gg2 16 N<~ 576
m\*/ 57 o 2147 1 m) >3 3 ) 631
M/ la0072 32 ° 23040 M/ | 20,2 64"° 7680
m\® 41389 3 3.5 46679 L m\’[ 141709 3 2 10561
"M/ | 1176002 128" 64512 352800,2 256 < 16128
m\8/ 5539481 3 157753 18
"™/ | 127008062 512" 2 258048 (18)

and for the spin-independent energy shift we obtain
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9 35 31 m 9 39 7 45 m\?[ 61 9 119
SERAIC o (Zar )5” L BTN e LA | B e I L +-In2— ==
272 A2 12 M 272 2742 2 32 M A2 4 72
|2+31+1m4233+1| 571
8" 288 M/ | 6oom2 16 11520
m 509 1 1., 187 L 6( 135311 1 n2 13439
M 12002 327° 73840 T\ "M/ | 3528002 64" ° 32256
m) 39721 1 o 1427 o 8 5683891 . 1 | 16901 19
M) | 1176002 128" ¢ 40320 M/ | 190512002 @ 256 < 55296Q |- (19
|
In Fig. 4 we illustrate the convergence of these series. 8(Za)ul (3 w2
Both graphs suggest that the terms we have calculated in thiSE[$= —=mm 12T mm ——=8In2+2In(Za)*
expansion should yield reliable results fo¥ M larger than m
about 0.15. 5
Although neither expansion can handle arbitrary values of + m iln M —7InM—InM— 121n2
m and M, the bound-state energy level corrections for any M/\2742° M 272 'm m
m/M ratio can be reliably calculated with one of the expan-
sions. To illustrate this, we have spliced together the two 13 3373 93 m\?[ 9 oM 27 M
expansions in Fig. 5. The expansions merge nicely at an "1t 2 2 +4_77_2 v ;In E”L;ln_
m/M value of 0.15, thereby providing a useful check on
these methods. It is also important, in the context of future M 66(5
applications of these methods, to have covered the entire -2 In— 13In 2—§+—2+— . (22
range ofm/M. 77 2m*

We have also calculated the correspondifd§(Za)®)
pure recoil corrections. For the hyperfine splitting we obtai

The terms in the first line of Eq22) are in agreement with

"the result first obtained if25]. The remaining terms, arising
solely from the hard-scale contributions in Eg0), can be

sErec hard 8(Za)u m)? used to obtain an analytic approximation to the funcfi¢x)

m 1 5
—| —5=-—6In2+ —

hfs EVIRI 2 T \M nearx=1 in Eq.(72) of [26].
For the hard contribution to the spin-independent energy
9 M 27 M M 23 shift we find
+—In —+ —In——In———
€ 272 272 M m 12 3
SERCh. (7 4)6 M(4In2— 5)
383 93 m\% 3 25 m?
> —t — |+ M 2 —6In2+ — 12
m?  A4n? m24||v| 8|M 12, 3 8
(20 M\ 72 m 3"m 2273
The divergences in this result are canceled by soft-scale " m ’ 4N 2_3_1 n m ¢ _ianM
terms, which can be calculated by extending the calculation M 6 M 372 M
of [9,10] to the unequal mass case, resulting in
113 M M 6¢; 1565 62
(Za)®u® 1 - 8072|nm— m 2 72772+§
5Erec sof_ 7 ™ | "~ log(2ua)— —
m2M 2 3 4e (23)
mM 230 The m/M term of this expansion is in agreement with a
+t4—+ 7 (21 calculation in Ref[6]. To our knowledge, the subsequent
/.L

terms of this expansion are new. In addition, we have calcu-
lated these energy level shifts as an expansion in
Combining the results of Eq§20) and(21), we find that the  (1—m/M), but for brevity we shall omit these results.

total (Za)® pure recoil contribution to the hyperfine splitting  In spite of the fact that the hard-scale contribution to the
is average energy shift given by E@3) is finite at this order,
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HFS (in units of EgZa?®)

2.9
2.8
2.7
26
25
2.4
2.3
22

21

AE (in units of a(Zo)*u¥/m?)

Bound State HFS

T T T

m'M

FIG. 3. O(a(Z)®) radiative recoil contributions to the hyper-
fine splitting and average energy shift in M expansion.

HFS (in units of EpZa?)

AE (in units of a(Zet)’p¥/m?)

Bound State HFS
-0.8 T T T T
4 i
12 J
R e -
BT .
A8 [ 4
2 . -
Oy
227 o — 4
24 1 o{%
2. Sl
26 1 ! 1 Ol(y )
0 0.2 04 0.6 0.8 1
m'M
Average Energy Shift
3 I 1 T T
o9
29 O(y,) =—===== -
o
B Yo} 777 -
28 e o)
27 F T .
26 | TN -
25 F N i
24 | 4
23 -
2.2 1 L 1 1
. 0 02 0.4 0.6 0.8 1
m'M

FIG. 4. O(a(Za)®) radiative recoil contributions to the hyper-
fine splitting and average energy shift in the- /M expansion.
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Bound State HFS

HFS (in units of EpZa?)

3 T T T

AE (in units of aZot’u¥m?)

FIG. 5. O(a(Za)®) radiative recoil contributions to the hyper-

fine splitting and average energy shift for arbitrary valuesatnd
M.

soft contributions are also present and are needed to arrive at
the physical result for this quantity. These soft contributions
can be obtained by a calculation completely analagous to the
one that produced Eq@21).

V. CONCLUSIONS

We have demonstrated a method by which the corrections
to the energy levels of a QED bound state, with constituents
of massm andM, can be expanded in either powersnafM
or (1-m/M). Both expansions are applied directly to the
integrands of the loop integrals arising from the hard-scale
contributions to the energy shifts. We have demonstrated the
utility of these procedures by computing several terms in the
expansions for thex(Za)® radiative recoil and Z«)® pure
recoil corrections to both the average energy shift and the
hyperfine splitting of a general QED bound state.

Further studies of QED bound-state problems, using the
methods described in this paper, might involve higher-order
corrections to the energy level shifts. Even in the absence of
a complete calculation of such terms, it might be feasible to
extract the terms enhanced by one or more factors of
In(M/m) by examining the singularities of the contributions
from different expansion regions. Since these singularities
must cancel in the complete result, their coefficients can be
found by a partial calculation of the divergent parts of those
contributions which can be evaluated most easily.

In a more general context, these expansion techniques are
applicable to a plethora of other types of problems involving
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multiloop calculations with more than one external scale. APPENDIX A: CALCULATION OF EIKONAL INTEGRALS

Many kinds of superficially disparate physical problems of- L . . .
ten depend on a few common classes of loop integrals, An expansion in powers af/M typically gives rise to
thereby reducing the number of technical hurdles which relntegrals containing eikonal propagators such dep(2i 9),
strict the progress of precision calculations in particle phys- arising from expansions in the momentum region where the
ics. loop momenta are al-m. The easiest way to solve them is
to employ the integration-by-parts techniqUigg,2g so that
any integral of the form in Eqg8) and (9) can be algebra-
ically expressed as a combination of the two-loop on-shell
This work was supported in part by the Natural Sciencesself-energy integrals and four new master integrals. The lat-
and Engineering Research Council of Canada and the DOEer are the only integrals we have to compute, and the results
under grant number DE-AC03-76SF00515. read
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Jt_J [d°ky][d ko]
) (K Q- 11 8)(Ka+i8)[ (Kytkp)2—14i 5]
- 2T (1— e)['(3e—2)B(4e—3,2¢—1)— (17 1) Jal'| 2 3853 !
—(47):)(6)(6)(6, )= (1xDy7l| 2= 5|B| 5 —3e,— 5+ €],
(A1)
Ji_j [d°ky][d ko]
2 (k1Q*i8)(ks—1+i8)[ (ki +kp)2—1+i6]
N 3 1 1
i(4W)DF(2€—§)B(—E+€,—E+€ . (AZ)
|
Please note that there is a typographical errorJgprin [1]. Introducing a second parameter from the identity in Eq.
For clarity, we now outline the process by which these mastA3), thek, integral can be evaluated, yielding
ter integrals are calculated.
Starting withJ; , we can Wick rotate the momenta and _, I'(2e—1) d)\ d p_2+ 7\_2+)\+1 1oz
subsequently ignore the poles. After shiftikg to ki —k, 1= (417)P PP 4
and using the identity (AB)
1 N With the substitution
= d\ —, A3
ABf B(e,B)Jo  [A+BA]*HF (A3) (N2+1)2
p=dz——, (A7)
A
we have
we can readily integrate over the remaining parameters to
[dk ][de 1 ™ obtain the result fod; in Eq. (Al). The evaluation ofl;
f ! 2 ) starts by introducing a Feynman parameter to combine and
0 [kf+ 1+M(k;Q—k,Q+1)]? integrate over thé,-dependent factors, and is followed by

(A4)  the introduction of a parameter from the identity in E43).
Turning to J; , we note that the-id pole term in the
Thek; integral can be evaluated, after completing the squar@ikonal propagator prohibits a Wick rotation. Instead, the

and usingQ?=—1, so that identity
P fm ax —Pfx LI o A8
3= I'(e) f f [dPk,] . (a5) xTaxis P L x—aTim (x—a), (A8)
(4m)>" +x+1 Ak,0|
2 with respect to thekg integral, allows us to write
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J =37 +AJ, (A9)
with
L [dPkq[dPkp] ok 1)
AJ1_27T'f(|<§+i5)[(k1+k2)2—1+i5]' (A10)

A Feynman parameter can be introduced to evaluateéthe
integral inAJ;. After performing thek‘f integral, we have

_ —2al(e) fl )
Y (amP2mPlo

J|

wherek denotes the — 1)-dimensional spatial momentum
associated withk;. Working in hyperspherical coordinates,
and using

dP—1k
[X—X(1—X)+x(1—x)k?]¢’

(A1)

PHYSICAL REVIEW D 65 073015

27 (D-1)12
D-1() —
fd Q NEEEE (A12)
2
we obtain
aJm  T(e) [t (= kP 2dk
LI U Y |
(4m)° (3 )o 0 [x2+x(1—x)k?]¢
r 5—6
(A13)
with k=|k|. With the substitution
k=/ X Al4
= EZ, ( )

thex andzintegrals can be evaluated in termsBofunctions,
yielding the result in Eq(A1). The evaluation ofl, pro-
ceeds in a similar fashion.
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