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Expansion of bound-state energies in powers ofmÕM and „1ÀmÕM …
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Elaborating on a previous Letter@A. Czarnecki and K. Melnikov, Phys. Rev. Lett.87, 013001~2001!#, we
use a new approach to compute energy levels of a nonrelativistic bound state of two constituents, with masses
m andM, by systematic expansions—one in powers ofm/M and another in powers of (12m/M ). Technical
aspects of the calculations are described in detail. Theoretical predictions are given forO„a(Za)5

… radiative
recoil andO„(Za)6

… pure recoil corrections to the average energy shift and hyperfine splitting relevant for
hydrogen, muonic hydrogen, and muonium.
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I. INTRODUCTION

Precision studies, both theoretical and experimental
nonrelativistic QED bound states have historically provid
a wealth of information about fundamental physical para
eters such as the fine structure constant and the masses
electron, muon and proton@2#. In order to keep pace with th
ever-improving precision of current experiments, incre
ingly intricate theoretical calculations must be performe
Fortunately, the emergence of new calculational techniq
has brought many such calculations within reach.

In a previous Letter@1#, we introduced a practical algo
rithm which allows a calculation of the bound-state ene
levels in a given order of perturbation theory~in a andZa)
as an expansion in powers and logarithms ofm/M with an
arbitrary precision. The opposite situation, the calculation
the energy levels to all orders ina but in a fixed order in the
ratio m/M , has been studied in the literature@3–6#. We il-
lustrated the method by calculating theO„a(Za)5

… radiative
recoil corrections to the average energy shift and hyper
splitting of a nonrelativistic QED bound state. This analy
result enabled us to resolve a discrepancy between two
vious calculations ofO„a(Za)5m2/M … corrections to the av-
erage energy shift, thereby removing a major source of
oretical uncertainty in the isotope shift~i.e. the difference
between the 2S to 1S transition energies in deuterium an
hydrogen!.

In this paper we extend our previous results in seve
ways. For instance, we illustrate how the energy shifts
also be expanded as a series in (12m/M ). Beyond its ap-
plicability to situations wherem;M , this expansion method
provides a useful cross-check on the comparably more d
cult method of expanding inm/M . We also examine the
convergence properties of these expansions in order to a
tain some general guidelines about the accuracy of the t
cated series that necessarily arise when using these ex
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sions. In addition, we present a calculation of the pure re
corrections using an expansion inm/M .

The rest of this paper is organized as follows. In Sec
we discuss the framework of the calculation and our exp
sion method in general terms. Section III contains a deta
technical description of the calculation. In Sec. IV w
present and discuss the results of our calculations for
O„a(Za)5

… radiative recoil andO„(Za)6
… pure recoil cor-

rections to the average energy shift and hyperfine splitting
a generic QED bound state. Our results are summarize
Sec. V. Finally, the Appendix illustrates the techniques w
which a class of loop integrals—the so-called eikon
integrals—can be evaluated.

II. FRAMEWORK OF THE CALCULATION

Nonrelativistic bound states can be conveniently d
scribed by an effective field theory which exploits a sepa
tion in the energy scalesm, mv, andmv2 @7#. This approach
is facilitated further by the use of dimensional regularizati
@8–11#. The basic idea is that the Coulomb potential suppl
the dominant interaction and all other interactions prov
corrections which can be evaluated using the familiar tim
independent perturbation theory of quantum mechan
These corrections can be divided into two classes.

The first class is that of the so-called ‘‘soft’’ contribution
governed by long-range potential terms. These contributi
can be evaluated for arbitrary masses of the constituent
ticles because the essential soft dynamics of a nonrelativ
bound state, as described by the Schro¨dinger equation, are
characterized by the reduced mass of the system rather
the individual masses of the consituents. As a result, once
soft contributions are obtained in the equal mass case@9,10#,
the more general mass case follows easily.

The ‘‘hard’’ contributions make up the second class, a
these contributions lead to the interactions that can be c
acterized byd(r ) potential terms. Such terms result from th
relativistic region of loop-momentum integrals, and they a
usually obtained as Taylor expansions of scattering am
tudes in terms of the spatial momentum components of
©2002 The American Physical Society15-1
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external particles, which are taken to be on-shell. At low
order ina, the hard diagrams should be evaluated exactl
threshold, whereby the constituents have zero relative ve
ity. This implies that the relevant loop-momentum integr
depend on only two scales,m andM. The hard contributions
have a much more complicated dependence on the m
scales than the soft contributions do, and this is why we w
expand the hard scattering diagrams in powers of eitherm/M
or (12m/M ). By expanding theintegrands, we are left with
only homogeneous, one-scale integrals to evaluate, and
constitutes a substantial simplification. This method len
itself to automation so that many terms of the expansion
be obtained, with the only limitation being set by the ava
able computing power. High-performance symbolic alge
software is of great help in such computations~we useFORM

@12#!.
Our m/M expansion method is motivated by a procedu

in which Feynman diagrams are expanded in large ma
and momenta@13–15#. Although this procedure was origi
nally expressed in a different way, it can be reformula
more practically using the notion of momentum regions. T
algorithm, which is applied directly to the loop integra
consists of five steps@16#. First, identify the large and sma
external scales in the integrals. Second, divide the integra
volume into regions so that the momentum flow through a
of the internal lines is of the order of one of the extern
scales. More specifically, the statementk;M asserts that
k2.m2 in Euclidean space. Third, perform Taylor expa
sions within every region for any individual denominat

FIG. 1. The forward-scattering radiative-recoil diagrams. T
bold line represents the heavy constituent of the bound state~e.g. a
proton if we consider hydrogen! and the thin line represents th
light one ~an electron!. Diagrams with the crossed photons in th
t-channel are not displayed.
07301
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factors ~propagators! where the terms within these facto
depend differently on the external scales. Fourth, integ
the expanded integrands from every region over the ini
integration volume—in other words, ignoring the constrain
that identify the regions. Finally, add the contributions ar
ing from the individual regions in order to obtain the fin
result. The fourth step of this algorithm requires further e
planation, since by ignoring the constraints on the individ
regions, it may appear as if contributions to the total integ
are counted more than once. This does not happen bec
the extra contributions to the total integral that are introduc
by removing the constraints on individual regions can
expressed as scale-less integrals, and scale-less integrals
ish in dimensional regularization. This implies that the in
grals from the various regions are different analytic functio
of the parameters of the problem. In the next section, we
demonstrate this algorithm in detail.

III. PROCEDURE

In the previous Letter@1#, we outlined the expansion pro
cedure for the radiative recoil diagrams. These diagrams
shown in Fig. 1.

We will now describe the expansion procedure using
pure recoil diagrams, since a few additional complicatio
arise. These diagrams are shown in Fig. 2.

To illustrate the method we focus on the last diagram
Fig. 2 and consider the following scalar integral:

FIG. 2. The forward-scattering pure recoil diagrams.
E @dDk1#@dDk2#

~k1
2!~k2

2!~k11k2!2@~k11k2!212~k11k2!p1#~k1
212k1p1!~k1

222k1p21 id!~k2
212k2p21 id!

. ~1!
5-2
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Here@dDk# stands fordDk/(2p)D, p1[mQ, andp2[MQ, whereQ5(1,0,0,0) is the time-like unit vector. Only the releva
infinitesimal imaginary parts of the propagators have been displayed. We are going to illustrate the expansion of the
in Eq. ~1! in powers ofm/M following the five steps outlined above.

There are five momentum regions to be considered. In the first one all the momenta are of the order of the largeM.
In this case one can expand the electron propagators inmQki . The resulting integrals are all of the form

E @dDk1#@dDk2#

~k1
2!a1~k2

2!a2~k11k2!2a3~k1
222k1p2!a4~k2

212k2p2!a5
, ~2!

with some integer powersai . One immediately recognizes that all these integrals are identical with the general two
self-energy integrals of the particle with massM for which the general solution is known@17#.

Next, there is a momentum region wherek1;M andk2;m. By usingk1;M to expand the electron propagators we obt
Eq. ~2! again. Withk2;m, the (k11k2)2 and (k2

212k2p2) factors can also be expanded, so that the only denominator fa
which depend onk2 are (k2

2) and (2k2p2). Since we are working at threshold, we havep2[MQ, which leads to

E @dDk2#

~k2
2!a~2k2p21 id!b

50, ~3!

so that this region provides no contribution to the amplitude for this particular diagram.
The third momentum region hask1;M and k2;M but k11k2;m. After a Taylor expansion in small variables, th

integrals in this region factorize into products of two simple one-loop integrals.
In the fourth region,k1;m and k2;M . A Taylor expansion in small variables allows the integrals in this region to

factored into one-loop integrals as

E @dDk1#

~k1
2!a1~k1

212k1p1!a2~2k1p1!a3
E @dDk2#

~k2
2!a4~k2

212k2p2!a5
. ~4!

The k2 integral is a trivial one-loop integral. Thek1 integral can be converted to the same simple form, along with integ
like Eq. ~3!, by multiplying it by factors of

15
~k1

212k1p1!

~k1
2!

2
~2k1p1!

~k1
2!

~5!

until eithera2 or a3 is brought to zero.
The fifth region is characterized by the conditionk1;k2;m. In this case, the heavy particle propagators can be expa

into static, or as we will call them,eikonal, propagators. The integrals in this region are of the form

E @dDk1#@dDk2#

~k1
2!a1~k2

2!a2~k11k2!2a3@~k11k2!212~k11k2!p1#a4~k1
212k1p1!a5~2k1p22 id!a6~2k2p21 id!a7

. ~6!

Notice how the eikonal propagators arising from (k222kp1 id) factors acquire2 id pole terms. Such terms are important
this region and must be carefully accounted for. The integral in Eq.~6! can be simplified using the identity

1

~k212kp!~2kp!
5

1

k2 S 1

~2kp!
2

1

~k212kp!
D . ~7!

Once one of the seven factors in Eq.~6! has been removed, an identity can be constructed from the observation th
remaining six factors are linearly dependent. Using such an identity, the integrals in this fifth region can be expresse
of four types of integrals. The first type is the two-loop self-energy integral of a particle with massm for which the general
solution is known@17#. The remaining three types contain eikonal propagators:

E1
65E @dDk1#@dDk2#

~k1
2!a1~k2

2!a2~k12k2!2a3~k2
212k2p1!a4~2k1p16 id!a5

, ~8!
073015-3
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E2
65E @dDk1#@dDk2#

~k1
2!a1~k2

2!a2~k1
212k1p1!2a3@~k11k2!212~k11k2!p1#a4~2k2p16 id!a5

, ~9!

E3
665E @dDk1#@dDk2#

~k1
2!a1~k2

2!a2~k12k2!2a3~2k1p26 id!a4~2k2p26 id!a5
. ~10!
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At threshold, theE3 integrals are exactly zero for simila
reasons as are needed to establish Eq.~3!. This leaves us
with two new types of integrals,E1 andE2, required for the
recoil calculations. The calculations for radiative recoil d
grams involveE2 but not E1 integrals. In Appendix A, we
outline the procedure by which theE1 andE2 integrals can
be evaluated.

We shall now describe a second method of expans
relevant to the scenario where the two bound-state cons
ents have similar, but not necessarily equal, masses.
though this scenario is not realized by any common Q
bound states, this second expansion can provide a us
check on the first expansion method.

The essential idea is to introduce an expansion param

y512
m

M
~11!

so that the external momentum of the light particle,p1, can
be written in terms ofy and the external momentum of th
heavy particle,p2, via

p15~12y!p2 . ~12!

Then, any massive propagator containingp1 can be ex-
panded, as a series in powers ofy, in terms of the corre-
sponding propagators containingp2:

1

k212kp1

5 (
n50

`
~2ykp2!n

~k212kp2!n11
. ~13!

As a result, the two-scale general scalar integral in Eq.~1! is
expanded, as a series in powers ofy, in terms of two-loop
07301
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on-shell self-energy integrals. As an additional cross-che
we note that in the limit that the two masses are equal,
havey50, so that the positronium results@9,10# can be re-
covered from the leading term of this expansion.

Another method has been proposed@18# for dealing with
similar problems involving more than one mass-ener
distance scale. Intermediate parameters are introduce
separate various scales and the calculations are perform
four dimensions. An advantage of such an approach is th
avoids various complications arising when working inD di-
mensions. However, it spoils the homogeneity of integr
and it is not clear whether one can apply integration-by-pa
algorithms, which are crucial for larger calculations invol
ing many terms of expansions.

IV. RESULTS AND DISCUSSION

We have applied our algorithms to compute t
O„a(Za)5

… radiative recoil corrections to the average ener
shift and the hyperfine splitting of a general QED bou
state composed of two spin-1/2 particles with massesm and
M. In this case the soft contribution is absent and the h
corrections shown in Fig. 1 are the only diagrams we have
consider. We have done the calculation in a general covar
gauge; the cancellation of the gauge parameter depend
serves as a check of the computation.

For theS-wave ground state energyE we define

E5Eaver1S 1

4
2dJ0DEhfs, ~14!

whereJ50,1 is the total spin of the two fermions formin
the bound state.

For the hyperfine splitting we obtain
dEhfs
rad rec.

8~Za!4m3

3mM
a~Za!H ln 22

13

4
1

m

M S 15

4p2
ln

M

m
1

1

2
1

6z3

p2
1

17

8p2
13 ln 2D 2S m

M D 2S 3

2
16 ln 2D

1S m

M D 3S 61

12p2
ln2

M

m
1

1037

72p2
ln

M

m
1

133

72
1

9z3

2p2
1

5521

288p2
13 ln 2D 2S m

M D 4S 163

48
16 ln 2D

1S m

M D 5S 331

40p2 ln2
M

m
1

5761

300p2 ln
M

m
1

691

240
1

9z3

2p2 1
206653

8000p2 13 ln 2D2S m

M D 6S 577

120
16 ln 2D J , ~15!
5-4
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wherem5mM/(m1M ) is the reduced mass of the bound state.
For the spin-independent energy shift we find

dEaver
rad rec.a~Za!5

m3

m2 H 139

32
22 ln 21

m

M S 3

4
1

6z3

p2
2

14

p2
22 ln 2D 1S m

M D 2S 2
127

32
18 ln 2D

1S m

M D 3S 2
8

3p2
ln2

M

m
2

55

18p2
ln

M

m
1

47

36
2

3z3

p2
2

85

9p2
22 ln 2D 1S m

M D 4S 2
55

24
14 ln 2D

1S m

M D 5S 37

60p2 ln2
M

m
1

29

900p2 ln
M

m
1

1027

360
2

3z3

p2 2
370667

36000p2 22 ln 2D1S m

M D 6S 2
67

20
14 ln 2D

1S m

M D 7S 199

70p2
ln2

M

m
2

1759

7350p2
ln

M

m
1

887

210
2

3z3

p2
2

241491119

18522000p2
22 ln 2D J . ~16!

To our knowledge the termsO(m3/M3) and higher are new for bothEhfs andEaver, while the other terms have been obtain
previously @19#. The coefficient of theO(m/M ) term in Eq.~16! was the subject of some controversy, since two differ
numerical results have been reported, Refs.@20–22# and @23#.

Our result for this term,

a~Za!5
m3

m2

m

M S 3

4
1

6z3

p2
2

14

p2
22 ln 2D .21.32402796a~Za!5

m3

m2

m

M
, ~17!

is in excellent agreement with the numerical result of Ref.@23# where the coefficient21.324029(2) was obtained, and h
since been confirmed in an independent analytical calculation@24#.

The expansions inm/M of Eqs.~15! and~16! do not yield accurate results for increasing values ofm/M , even though an
untruncated series can be expected to converge on the intervalm/MP@0,1). The convergence of the terms in the series wh
we have calculated is depicted in Fig. 3. The upper graph shows the hyperfine splitting calculations as a function ofm/M and
the lower graph shows the corresponding results for the average energy shift. In both cases, several curves are plo
representing the sum of the firstN terms of the expansion, whereN is shown in the legend. The graphs suggest that more te
in the series would be required to obtain reliable values of the hyperfine splitting form/M larger than about 0.2; our series fo
the spin-independent energy shift should be reliable form/M values up to about 0.5.

The expansion iny512m/M aims to address the region wherem/M is large~i.e., m;M ). For the hyperfine splitting we
find

dEhfs
rad rec.

8~Za!4m3

3mM H S 3z3

4p2
1

7

8p2
12 ln 22

79

32D 1S 12
m

M D S 2
3z3

4p2
2

21

8p2
2

3

4
ln 21

25

96D
1S 12

m

M D 2S 2
19

24p2
2

3

8
ln 22

19

384D 1S 12
m

M D 3S 2
1

8p2
2

3

16
ln 22

55

576D
1S 12

m

M D 4S 57

400p2
2

3

32
ln 22

2147

23040D 1S 12
m

M D 5S 11

40p2
2

3

64
ln 22

631

7680D
1S 12

m

M D 6S 41389

117600p2
2

3

128
ln 22

46679

645120D 1S 12
m

M D 7S 141709

352800p2
2

3

256
ln 22

10561

161280D
1S 12

m

M D 8S 5539481

12700800p2
2

3

512
ln 22

157753

2580480D J , ~18!

and for the spin-independent energy shift we obtain
073015-5
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dEaver
rad rec.a~Za!5

m3

m2 H S 9z3

2p2
2

35

4p2
1

31

12D 1S 12
m

M D S 2
9z3

2p2
1

39

2p2
2

7

2
ln 21

45

32D 1S 12
m

M D 2S 61

24p2
1

9

4
ln 22

119

72 D
1S 12

m

M D 3S 2
29

24p2
1

1

8
ln 21

31

288D 1S 12
m

M D 4S 233

600p2
1

1

16
ln 22

571

11520D
1S 12

m

M D 5S 509

1200p2
1

1

32
ln 22

187

3840D 1S 12
m

M D 6S 135311

352800p2
1

1

64
ln 22

13439

322560D
1S 12

m

M D 7S 39721

117600p2
1

1

128
ln 22

1427

40320D 1S 12
m

M D 8S 5683891

19051200p2
1

1

256
ln 22

16901

552960D J . ~19!
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In Fig. 4 we illustrate the convergence of these ser
Both graphs suggest that the terms we have calculated in
expansion should yield reliable results form/M larger than
about 0.15.

Although neither expansion can handle arbitrary values
m and M, the bound-state energy level corrections for a
m/M ratio can be reliably calculated with one of the expa
sions. To illustrate this, we have spliced together the t
expansions in Fig. 5. The expansions merge nicely at
m/M value of 0.15, thereby providing a useful check
these methods. It is also important, in the context of fut
applications of these methods, to have covered the en
range ofm/M .

We have also calculated the correspondingO„(Za)6
…

pure recoil corrections. For the hyperfine splitting we obt

dEhfs
rec hard.

8~Za!6m3

3mM H m

M S 2
1

2e
26 ln 21

5

12D1S m

M D 2

3S 1

e
1

9

2p2
ln2

M

m
1

27

2p2
ln

M

m
2 ln

M

m
2

23

12

1
33z3

p2
1

93

4p2D 1S m

M D 3S 2
3

2e
26 ln 21

25

12D J .

~20!

The divergences in this result are canceled by soft-s
terms, which can be calculated by extending the calcula
of @9,10# to the unequal mass case, resulting in

dEhfs
rec soft5

~Za!6m5

m2M2 F2
16

3 S log~2ma!2
1

4e D
14

mM

m2
1

230

27 G . ~21!

Combining the results of Eqs.~20! and~21!, we find that the
total (Za)6 pure recoil contribution to the hyperfine splittin
is
07301
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dEhfs
rec.

8~Za!6m3

3mM H 3

2
1

m2

mM F65

18
28 ln 212 ln~Za!21

1S m

M D S 9

2p2
ln2

M

m
1

27

2p2
ln

M

m
2 ln

M

m
212 ln 2

2
13

12
1

33z3

p2
1

93

4p2D 1S m

M D 2S 9

p2
ln2

M

m
1

27

p2
ln

M

m

22 ln
M

m
213 ln 22

4

3
1

66z3

p2
1

93

2p2D G J . ~22!

The terms in the first line of Eq.~22! are in agreement with
the result first obtained in@25#. The remaining terms, arising
solely from the hard-scale contributions in Eq.~20!, can be
used to obtain an analytic approximation to the functionf (x)
nearx51 in Eq. ~72! of @26#.

For the hard contribution to the spin-independent ene
shift we find

dEaver
rec hard.~Za!6

m3

m2 H m

M S 4 ln 22
7

2D
1S m

M D 2S 4

p2
ln

M

m
2

8

3
ln

M

m
2

12z3

p2
1

3

p2
1

8

3D
1S m

M D 3S 4 ln 22
31

6 D1S m

M D 4S 2
11

3p2
ln2

M

m

2
113

18p2
ln

M

m
22 ln

M

m
2

6z3

p2
2

1565

72p2
1

62

9 D J .

~23!

The m/M term of this expansion is in agreement with
calculation in Ref.@6#. To our knowledge, the subseque
terms of this expansion are new. In addition, we have ca
lated these energy level shifts as an expansion
(12m/M ), but for brevity we shall omit these results.

In spite of the fact that the hard-scale contribution to t
average energy shift given by Eq.~23! is finite at this order,
5-6
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FIG. 3. O„a(Za)5
… radiative recoil contributions to the hype

fine splitting and average energy shift in them/M expansion.

FIG. 4. O„a(Za)5
… radiative recoil contributions to the hype

fine splitting and average energy shift in the 12m/M expansion.
07301
soft contributions are also present and are needed to arriv
the physical result for this quantity. These soft contributio
can be obtained by a calculation completely analagous to
one that produced Eq.~21!.

V. CONCLUSIONS

We have demonstrated a method by which the correcti
to the energy levels of a QED bound state, with constitue
of massm andM, can be expanded in either powers ofm/M
or (12m/M ). Both expansions are applied directly to th
integrands of the loop integrals arising from the hard-sc
contributions to the energy shifts. We have demonstrated
utility of these procedures by computing several terms in
expansions for thea(Za)5 radiative recoil and (Za)6 pure
recoil corrections to both the average energy shift and
hyperfine splitting of a general QED bound state.

Further studies of QED bound-state problems, using
methods described in this paper, might involve higher-or
corrections to the energy level shifts. Even in the absenc
a complete calculation of such terms, it might be feasible
extract the terms enhanced by one or more factors
ln(M/m) by examining the singularities of the contribution
from different expansion regions. Since these singulari
must cancel in the complete result, their coefficients can
found by a partial calculation of the divergent parts of tho
contributions which can be evaluated most easily.

In a more general context, these expansion techniques
applicable to a plethora of other types of problems involvi

FIG. 5. O„a(Za)5
… radiative recoil contributions to the hyper

fine splitting and average energy shift for arbitrary values ofm and
M.
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multiloop calculations with more than one external sca
Many kinds of superficially disparate physical problems
ten depend on a few common classes of loop integr
thereby reducing the number of technical hurdles which
strict the progress of precision calculations in particle ph
ics.
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APPENDIX A: CALCULATION OF EIKONAL INTEGRALS

An expansion in powers ofm/M typically gives rise to
integrals containing eikonal propagators such as (2kp6 id),
arising from expansions in the momentum region where
loop momenta are all;m. The easiest way to solve them
to employ the integration-by-parts techniques@27,28# so that
any integral of the form in Eqs.~8! and ~9! can be algebra-
ically expressed as a combination of the two-loop on-sh
self-energy integrals and four new master integrals. The
ter are the only integrals we have to compute, and the res
read
J1
65E @dDk1#@dDk2#

~k1Q216 id!~k2
21 id!@~k11k2!2211 id#

5
1

~4p!D F2G~12e!G~3e22!B~4e23,2e21!2~171!ApGS 2e2
3

2DBS 5

2
23e,2

1

2
1e D G ,

~A1!

J2
65E @dDk1#@dDk2#

~k1Q6 id!~k2
2211 id!@~k11k2!2211 id#

56
Ap

~4p!D
GS 2e2

3

2DBS 2
1

2
1e,2

1

2
1e D . ~A2!
q.

to

and
y

he
Please note that there is a typographical error forJ2
6 in @1#.

For clarity, we now outline the process by which these m
ter integrals are calculated.

Starting withJ1
1 , we can Wick rotate the momenta an

subsequently ignore the poles. After shiftingk1 to k12k2
and using the identity

1

AaBb
5

1

B~a,b!
E

0

`

dl
lb21

@A1Bl#a1b
, ~A3!

we have

J1
15E @dDk1#@dDk2#

k2
2 E

0

` dl

@k1
2111l~k1Q2k2Q11!#2

.

~A4!

Thek1 integral can be evaluated, after completing the squ
and usingQ2521, so that

J1
15

G~e!

~4p!D/2E0

`

dlE @dDk2#

k2
2S l2

4
1l112lk2QD e . ~A5!
-

re

Introducing a second parameter from the identity in E
~A3!, thek2 integral can be evaluated, yielding

J1
15

G~2e21!

~4p!D E
0

`

dlE
0

`

dr r2eS rl2

4
1

l2

4
1l11D 122e

.

~A6!

With the substitution

r54z
~l/211!2

l2
, ~A7!

we can readily integrate over the remaining parameters
obtain the result forJ1

1 in Eq. ~A1!. The evaluation ofJ2
1

starts by introducing a Feynman parameter to combine
integrate over thek2-dependent factors, and is followed b
the introduction of a parameter from the identity in Eq.~A3!.

Turning to J1
2 , we note that the2 id pole term in the

eikonal propagator prohibits a Wick rotation. Instead, t
identity

E
2`

` dx

x2a6 id
5PE

2`

` dx

x2a
7 ipd~x2a!, ~A8!

with respect to thek1
0 integral, allows us to write
5-8
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J1
25J1

11DJ1 ~A9!

with

DJ152p i E @dDk1#@dDk2#d~k1
021!

~k2
21 id!@~k11k2!2211 id#

. ~A10!

A Feynman parameter can be introduced to evaluate thk2

integral inDJ1. After performing thek1
0 integral, we have

DJ15
22pG~e!

~4p!D/2~2p!DE0

1

dx

3E dD21k

@x2x~12x!1x~12x!k2#e
, ~A11!

wherek denotes the (D21)-dimensional spatial momentum
associated withk1. Working in hyperspherical coordinate
and using
v.

A

07301
E dD21V5
2p (D21)/2

GS D21

2 D , ~A12!

we obtain

DJ152
4Ap

~4p!D

G~e!

GS 3

2
2e D E0

1

dxE
0

` kD22dk

@x21x~12x!k2#e
,

~A13!

with k5uku. With the substitution

k5A x

12x
z, ~A14!

thex andz integrals can be evaluated in terms ofB functions,
yielding the result in Eq.~A1!. The evaluation ofJ2

2 pro-
ceeds in a similar fashion.
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