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Supernova neutrino oscillations: A simple analytical approach
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Analyses of observable supernova neutrino oscillation effects require the calculation of the electron~an-
ti!neutrino survival probabilityPee along a given supernova matter density profile. We propose a simple
analytical prescription forPee, based on a double-exponential form for the crossing probability and on the
concept of maximum violation of adiabaticity. In the case of two-flavor transitions, the prescription is shown
to reproduce accurately, in the whole neutrino oscillation parameter space, the results of exact numerical
calculations for generic~realistic or power-law! profiles. The analytical approach is then generalized to cover
three-flavor transitions with~direct or inverse! mass spectrum hierarchy, and to incorporate Earth matter
effects. Compact analytical expressions, explicitly showing the symmetry properties ofPee, are provided for
practical calculations.
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I. INTRODUCTION

Observable effects of supernova neutrinos in undergro
detectors represent a subject of intense investigation in a
particle physics, both on general grounds~see the reviews in
@1,2#! and in relation to the SN 1987A event~see@3# for an
updated analysis and bibliography!. In particular, flavor os-
cillations in supernovae may shed light on the problem
neutrino masses and mixing, by means of the~potentially
strong! associated matter effects~see, e.g.,@1,4–6# for re-
views of early works, and@7–20# for an incomplete list of
recent studies!. In particular, dramatic effects on oscillation
have been predicted, related to the type of neutrino m
spectrum hierarchy and to Earth matter crossing.

Given the importance of supernova neutrino oscillatio
for both particle physics and astrophysics, it would be de
able to have a simple and complete description of the m
important quantity involved in the calculations, namely,
the electron~anti!neutrino survival probabilityPee.1 Ap-
proximate treatments ofPee have been proposed in the li
erature to cover parts of the parameter space in a piece
fashion, e.g., by using either the adiabatic approximation
the so-called resonance condition~see@21,7,10,11# for recent
examples!, with inherent limitations in the range of applica
bility. In particular, it has been recently realized, first in t
context of solar@22,23# and then of supernova@16,17# neu-
trinos, that the time-honored resonance condition canno
meaningfully extended at large neutrino mixing. Thus, ap
from brute-force numerical calculations ofPee ~see, e.g.,
@24,18–20#!, a truly unified approach, valid in the whol
three-flavor oscillation parameter space and applicable to
neric supernova density profiles, seems still lacking in
literature, as far as we know.

In this work, we propose a simple, unified analytical a
proach to the calculation ofPee, based on a double
exponential form for the crossing probability@25,26# and on

1The key role ofPee(n) and Pee( n̄), related to the practical un
distinguishability of supernova muon and tau~anti!neutrinos, is
neatly discussed in@5,7#.
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the condition of maximum violation of adiabaticity@22,23#
~replacing the popular resonance condition!. In the case of
two-flavor transitions~Sec. II!, our prescription is shown to
reproduce accurately the results of exact numerical calc
tions for generic~realistic or power-law! profiles, in the
whole neutrino oscillation parameter space. The analyt
approach is then generalized to cover three-flavor transit
with ~direct or inverse! mass spectrum hierarchy~Sec. III!,
and to incorporate Earth matter effects~Sec. IV!. Compact
analytical expressions, explicitly showing the symme
properties ofPee and useful for practical calculations, ar
summarized in the final section~Sec. V!, to which we refer
the impatient reader.

II. TWO-FLAVOR TRANSITIONS

In this section we discuss numerical and analytical cal
lations of the survival probabilityPee for neutrinos and an-
tineutrinos, assuming two-family mixing betweenne and an-
other active neutrino (na5nm or nt). A simple analytical
prescription will be shown to reproduce very accurately
exact numerical results forPee.

A. 2n transitions: Notation

In the case of two-familyne→na oscillations (a5m or
t), we label the mass~m! eigenstates (n1 ,n2) so thatn1 is
the lightest,

Dm25m2
22m1

2.0, ~1!

and parametrize the mixing matrixU as

S Ue1 Ue2

Ua1 Ua2
D 5S cosu sinu

2sinu cosu D , ~2!

where uP@0,p/2#. In vacuum,ne→na oscillations can be
described in terms of the pathlength~x! and of the oscillation
wave number

k5Dm2/2E, ~3!
©2002 The American Physical Society08-1
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E being the neutrino energy. In matter, thene→na dynamics
also depends on thene2na interaction potential difference
@27#

V~x!5A2GFNe~x!, ~4!

where Ne(x) is the electron density profile. In appropria
units,

V~x!

eV2/MeV
57.5731028Ye~x!

r~x!

g/cm3
, ~5!

wherer(x) is the matter density andYe(x) is the electron/
nucleon number fraction.

In supernovae,r(x) @and thusV(x)# can be approxi-
mately described by a power law,r(x)}x23 @28#. In the
present work, power-law potentials are parametrized as

V~x!5V0S x

R(
D 2n

, ~6!

wheren53 ~unless otherwise stated!, and distances are con
ventionally reported in units of the solar radius,R(

56.963108 m.
Figure 1 shows an example of ‘‘realistic’’ neutrino pote

FIG. 1. Neutrino potential profilesV(x) considered in this work.
Dashed curve: ‘‘realistic’’ potential, as graphically reduced from
supernova simulation performed in@29# assuming 14.6M ( for the
ejecta. Solid line: ‘‘power-law’’ potential (V}x23) which best fits
the realistic one.
07300
tial profile V(x) ~dashed curve!, as graphically reduced from
the supernova simulation published in@29# for the case of
M514.6M ( , M being the mass of the ejecta. In the sam
figure, the solid line represents the best-fit power-law pot
tial (n53), corresponding to take V0
51.531028 eV2/MeV in Eq. ~6!. For definiteness, we will
use the realistic or the power-law curves in Fig. 1 as rep
sentativeV(x) profiles for our calculations. However, ou
main results are applicable to generic supernova density
files.

B. 2n transitions: Neutrinos

Following @5#, the calculation ofPee(n) from the initialn
state in matter to the finaln detection in vacuum2 can be
factorized as

Pee~n!5~1,0!S cos2u sin2u

sin2u cos2u D
3S 12Pc~n! Pc~n!

Pc~n! 12Pc~n!
D

3S cos2um sin2um

sin2um cos2um
D S 1

0D , ~7!

where Pc(n) is the so-called crossing probability fo
neutrinos3 @Pc(n)5P(n2m→n1)#, and um is the effective
mixing angle in matter at the origin, defined by

sin 2um5
sin 2u

A~cos 2u2V/k!21sin22u
, ~8!

cos 2um5
cos 2u2V/k

A~cos 2u2V/k!21sin22u
. ~9!

Note that in Eq.~7! it is understood that oscillating terms a
averaged out, thus providing an incoherentn state at detec-
tion.

The high supernova core density~at the start of neutrino
free streaming! implies V/k@1 in Eqs.~8! and ~9!, so that
sin 2um.0 and cos 2um.21. From Eq.~7!, one can then re-
duce the calculation ofPee to that ofPc ,

Pee~n!5cos2u Pc~n!1sin2u@12Pc~n!# ~10!

5Ue1
2 Pc~n!1Ue2

2 @12Pc~n!#. ~11!

1. Numerical approach

One possible approach to the calculation ofPc ~andPee)
is the numerical integration of the neutrino evolution equ
tions along the supernova potential profile, as advocate

2The discussion of possible Earth matter effects is postpone
Sec. IV.

3The casesPc.0 andPcÞ0 discriminate adiabatic and nonadia
batic transitions in matter.
8-2
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some recent works@18–20#, as well as in a few earlier one
~see, e.g.,@24#!. For the purposes of our work, we have pe
formed a numerical~Runge-Kutta! calculation forPc , as-
suming the two potential profiles in Fig. 1.

Figures 2 and 3 show our numerical results as dotted
lines for Pc(n) in the mass-mixing plane (Dm2/E,tan2u),
for the case of power-law and realistic potentia
respectively.4 The ‘‘bumpy’’ structure of the realisticV(x)
profile is reflected by the ‘‘wiggling’’ behavior ofPc in Fig.
3, leading to significant differences with thePc isolines of
Fig. 2 in part of the parameter space. However, one can
that, for Dm2/E→0, the detailed structure ofV(x) is irrel-
evant, andPc(n)→cos2u in both Figs. 2 and 3~extremely
nonadiabatic limit!.

Although brute-force numerical calculations ofPc can
provide, in principle, ‘‘exact’’ results, it should be stress
that they do not represent an optimal and efficient appro
in the case of supernovae. Computer routines for integra
are typically time-consuming, being required to track a la

4The solid curves in Figs. 2 and 3 correspond to our analyt
approximation forPc , as discussed later.

FIG. 2. Two-flavor transitions: neutrino crossing probabil
Pc(n) in the parameter space (Dm2/E,tan2u) for the power-law
potential profile in Fig. 1. Dotted curves: exact numerical calcu
tions. Solid curves: results of the analytical prescription in E
~12!–~14!. Isolines ofPc for antineutrinos~not shown! can be ob-
tained by reflection around the axis tan2u51. See the text for de-
tails.
07300
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number of oscillation cycles along a potential profile spa
ning many orders of magnitude. Instabilities and inaccu
cies in the numerical results can easily emerge for reali
potentials~as we experienced!, as a consequence of sudde
variations in the lowest orderV(x) derivatives.5 Moreover,
numerical integration produces additional but useless~unob-
servable! information on oscillating factors and phases, a
is thus inefficient for practical purposes.6 Last, but not least,
the uncertainties affecting simulated supernova density p
files make it preferable to perform several approximated~but
quick! calculations ofPc for different trial functionsV(x),
rather than a single~but time-consuming! exact numerical
calculation for a fixedV(x).

2. Analytical approach

The previous discussion indicates that a handy analyt
approximation to the numerical results forPc , applicable in
the whole parameter space, is highly desirable. We prop
~and motivate below! the following analytical recipe in three
steps:

l

5Indeed, we think that some numerical artifacts~fake wiggles!
might be present in the numerical calculations ofPee as graphically
reported in@24#.

6For instance, the authors of@18,19# need to time-average thei
numerical probabilities, in order to force an incoherent initial st
for the implementation of Earth matter effects.

-
.

FIG. 3. As in Fig. 2, but for the realistic potential profile i
Fig. 1.
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~i! Identify the pointxp where the potential equals the
wave number,

V~xp!5k; ~12!

~ii ! calculate the so-calleddensity scale factor rat that point,

r 52F 1

V~x!

dV~x!

dx G
x5xp

21

; ~13!

~iii ! insert the abover in the double-exponentialparametri-
zation for Pc(n) ~originally derived in the context of sola
neutrinos@25,26#!,

Pc~n!5
exp~2prk cos2u!21

exp~2prk !21
. ~14!

The results of such an exceedingly simple analyti
recipe are shown as solid isolines forPc in Fig. 2 ~power-law
case! and Fig. 3~realistic case!, to be compared with the
corresponding dashed isolines~exact numerical results!. The
agreement between numerical and analytical estimates oPc
is extremely good in the whole parameter space, the dif
ence beingdPc5231022 in the worst cases.7 The final ac-
curacy for Pee is even better, since Eq.~10! implies dPee
5ucos 2uudPc,dPc .

Notice that, in the exact power-law case@Eq. ~6!#, the
calculation ofr through Eqs.~12! and ~13! is trivial:

r

R(

5
1

n S V0

k D 1/n

. ~15!

In the case of a realistic potential profile, the only mod
complication is the numerical solution of Eq.~12! and the
evaluation of the derivative in Eq.~13! for the given~tabu-
lated or parametrized! function V(x).

Our effective analytical prescription forPc(n) in super-
novae@Eqs. ~12!–~14!# stems from several recent improv
ments in the understanding of nonadiabatic transitions
discussed below. Although such improvements have b
mainly tested in solar neutrino oscillations, they are of
applicable also to supernovan oscillations.

3. Discussion of the analytical prescription

Equation ~14!, originally derived for the solar neutrino
~exponential! density profile@25,26# within the unnecessary
restrictionu,p/4, was explicitly shown in@30,31# to hold
for u>p/4 as well, especially for appropriately chosen de
sity scale factorsr @23#. The double-exponential form ofPc
for u>p/4 has also been recently applied to the transitio
of high-energy neutrinos from the decay of hypothetical m
sive particles trapped in the Sun@32#, and to the transitions
of supernova neutrinos@15–17#. Such parametrization forPc
has thus several desirable properties:~i! It is a good ansatz

7We have investigated a variety of supernova density profi
available in the published or unpublished literature, and obtai
similarly good results~not shown!.
07300
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~as originally advocated in@33#! for generic density profiles
~ii ! it holds in both octants ofu; ~iii ! it reproduces the ex-
tremely nonadiabatic limit at smallk; and ~iv! it reproduces
the single-exponential, Landau-Zener~LZ! limit at small u
~see, e.g.,@5#!. As a final remark on Eq.~14!, it should be
noted that the single- and double-exponential forms forPc
involve, in general, a functionF(u) depending on the poten
tial profile ~see Table I in@33#!. Our choice in Eq.~14! cor-
responds to takingF(u)512tan2u, which is the exact resul
for a solar-like~exponential! profile, and represents the lead
ing prefactor ofF in a 1/n expansion8 for a supernova-like
~power-law! profile @33#. We have checked that the inclusio
of the full ~more complicated! expression forF(u) in the
power-law case@33,5,16# does not lead to a significant im
provement in the~already high! accuracy ofPc of our ana-
lytical prescription, and thus we advocate the simpler fo
for Pc given in Eq.~14! also for supernovae.

The concept of a ‘‘running’’ density scale factorr
5r (xp) @as in Eq.~13!# was also originally introduced in the
context of solar neutrinos@26#, typically by calculatingr at
the pointxp5xres defined by the so-called ‘‘resonance’’ con
dition V(xres)5Dm2cos 2u ~see, e.g.,@33#!. Such a choice for
xp , although successful at relatively smallu, is clearly not
applicable foru>p/4 @34#, and fails to describe correctly
nonadiabatic transitions at smallk, wherePcÞ0 at u;p/4
@22,23#. For largeu, the resonance condition can be mislea
ing, if not meaningless, and it is more appropriate to char
terize Pc through the pointxMVA where maximum violation
of adiabaticity~MVA ! is attained@22,23,16#. Indeed, in the
context of solar neutrinos, the prescriptionxp5xMVA for
r (xp) is more accurate and physically more consistent th
xp5xres @23#. In the context of supernova neutrino oscill
tions, it has also been recently suggested thatxMVA might
play an important role as well@16,17#, although the authors
of @16,17# do notuse the prescriptionr 5r (xMVA), but make
an improved WKB calculation of the LZ exponent forPc
~involving a numerical integration in the complex plane!.
However, we have verified that the prescriptionr 5r (xMVA)
gives very accurate results forPc in the whole mass-mixing
plane for supernovae~very close to the solid isolines in Figs
2 and 3!, making it unnecessary, in practice, to resort
WKB-inspired or other relatively complicated approaches.
fact, our Eq.~12! is just a suitable approximation of the MVA
condition, as we now discuss.

For a monotonicV(x) profile, the MVA point is uniquely
defined in terms of the flex point of cos 2um(x) @23#,

S d2cos 2um~x!

dx2 D
x5xMVA

50. ~16!

For a power-law profile as in Eq.~6!, the above equation
implies that

V~xMVA !5k•g~n,u!, ~17!

s
d 8The exponential profile case can be seen as then→` limit of the
power-law profile case@33#.
8-4
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SUPERNOVA NEUTRINO OSCILLATIONS: A SIMPLE . . . PHYSICAL REVIEW D 65 073008
where

g~n,u!5
cos 2u

2

22n

122n

6A12
22n

122n
1S cos 2u

2

22n

122nD 2

, ~18!

and the6 sign must be chosen so thatg.0. Forn close to
3 ~supernova case!, by keeping only the leading term in th
expansion of the square root ing(n,u), one obtains

n52→g51, ~19!

n53→g.11
cos 2u21

10
, ~20!

n54→g.11
cos 2u21

7
, ~21!

namely,g.1 for n.361, up to;10% errors.
A fractional errord in the evaluation ofV(xMVA) leads,

for power-law potentials, to a fractional errord/n in the
evaluation ofr (xMVA). Therefore, by setting in any caseg
51 @and thusV5k, as in Eq.~12!, rather thanV5kg, as in
Eq. ~17!# we expect a mere few % variation in the runnin
value of r, which is of little relevance whenr is inserted in
Pc through Eq.~14!, as we have numerically checked.

In conclusion, the conditionV(xp)5k in Eq. ~12! repre-
sents a good approximation to the MVA condition for sup
nova neutrino oscillations, and can be used to replace
time-honored ~but inapplicable at largeu) resonance
prescription.9 One has then to calculate@through Eq.~13!#
the corresponding~running! value of the density scale facto
r 5r (xp) @provided by Eq.~15! for an exact power-law pro
file#, insert r in the double-exponential form forPc @Eq.
~14!#, and finally getPee through Eq.~10!. Our analytical
prescription is applicable to generic~power-law or realistic!
V(x) profiles in the whole 2n parameter space, with a typica
percent accuracy inPee.

Figure 4 explicitly reports the results of such a prescr
tion for Pee for the two profiles in Fig. 1, and for a repre
sentative supernovan energy (E515 MeV). Notice that the
Pee isolines for the power-law profile~dotted curves! are
simply calculated through elementary functions@Eqs. ~12!–
~15!#. Notice also that thePee isolines for the realistic and
power-law cases in Fig. 4 appear to differ significantly in tw
regions:~i! at relatively small mixing (tan2u&0.1); and~ii !
at nearly maximal mixing (tan2u&1) with Dm2

;102861 eV2. In connection with solar neutrinos, this fa
implies that the detailed supernova density profile can
relevant for the oscillation parameters corresponding to
so-called small mixing angle~SMA!, low Dm2 ~LOW!, and

9It is curious to note that, in the context of solar neutrinos,
relevance of the point whereV5k ~as opposed to the resonan
point! was suggested in@35# and then abandoned in the literatur
See also@22# for an updated discussion.
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quasivacuum oscillation~QVO! solutions to the solar neu
trino problem @36#. Conversely, for oscillation paramete
within the so-called large mixing angle~LMA ! solution at
Dm2*1025 eV2, or within the multiple vacuum oscillation
~VO! solutions atDm2&1029 eV2 @36#, transitions in super-
nova matter become, respectively, purely adiabatic or
tremely nonadiabatic, with no significant dependence on
details of theV(x) profile.

A final technical remark is in order. For solar neutrinos,
was shown in@23# that the MVA-inspired recipe forPc @r
5r (xMVA)# has to be matched and replaced, at smallk, with
r 5const@31,22#. The constant~limiting! value for r can be
elegantly derived, through a perturbative approach@23#, in
terms of an integral involvingV(x) in the convective zone o
the Sun, whereV(x) experiences a sudden drop. Converse
in supernovae,V(x) vanishes in a smoother way at largex,
and the small-k correction (r 5const) becomes unnecessa
in practice. We have numerically checked that such corr
tion does not appreciably improve the accuracy of the sim
MVA-inspired recipe in Eqs.~12!–~14!. Therefore, concern-
ing the calculation ofPc in supernova neutrino transitions
we advocate the use of Eqs.~12!–~14! in the whole 2n pa-
rameter space.

e

FIG. 4. Two-flavor transitions: analytical results for the electr
neutrino survival probability Pee in the mass-mixing plane
(Dm2,tan2u), at a representative neutrino energy (E515 MeV).
Solid curves: realistic potential. Dotted curves: power-law potent
Isolines of Pee for antineutrinos~not shown! can be obtained by
reflection around the axis tan2u51. See the text for details.
8-5
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C. 2n transitions: Antineutrinos

The extension of our analytical prescription from the ne
trino case to the antineutrino case can be obtained thro
the replacementV/k→2V/k in Pee. By conventionally
keepingV.0 ~andu unaltered!, this implies

Pee~ n̄u1Dm2![Pee~nu2Dm2!. ~22!

The change of sign ofDm2 for neutrinos is equivalent to a
swap of the mass labels 1↔2,

Pee~nu2Dm2![Pee~nu1Dm2!1↔2 , ~23!

corresponding toUe1
2 ↔Ue2

2 and sin2u↔cos2u.10

The above two equations imply that, for fixedDm2.0
@Eq. ~1!#, Pee( n̄) can be obtained from Eqs.~10! and ~14!
through a 1↔2 swap, namely,

Pee~ n̄ ![Pee~n!1↔2

5sin2u Pc~ n̄ !1cos2u@12Pc~ n̄ !#, ~24!

where

Pc~ n̄ ![Pc~n!1↔2

5
exp~2prk sin2u!21

exp~2prk !21
, ~25!

with r @Eq. ~13!# to be evaluated at the same (u-independent!
point xp defined for the neutrino case in Eq.~12!. Isolines of
Pc( n̄) from Eq. ~25! are just the mirror images~around the
axis tan2u51) of those obtained forPc(n) in Figs. 2 and 3.

D. 2n transitions: Summary

A neat summary of the previous analytical results forn

and n̄ can be obtained by introducing a new notation:

Pc
6[

exp~62prk cos2u!21

exp~62prk !21
~26!

5H Pc~n! ~1 !,

12Pc~ n̄ ! ~2 !.
~27!

In terms ofPc
6 , the expressions ofPee(n) andPee( n̄) for 2n

transitions are unified as

Pee
2n5Ue1

2 Pc
61Ue2

2 ~12Pc
6!, ~28!

where the1 sign applies to neutrinos, while the2 sign to
antineutrinos.

In the above equation, for any sign (6), bothV andk are
kept.0. All physical cases are covered by lettingu span its
whole range@0,p/2#. The density scale factorr @Eq. ~13!# is

10Such well-known 2n symmetry properties are repeated here,
preparation for the more complicated 3n case.
07300
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calculated at the pointxp where V(xp)5k @Eq. ~12!#. The
accuracy of such analytical prescription, as compared w
exact numerical results, is at the percent level for both re
istic and power-law density profiles, as demonstrated in F
2 and 3 for the representative cases shown in Fig. 1. In
power-law case@Eq. ~6!#, the calculation ofr is further sim-
plified @Eq. ~15!#.

III. THREE-FLAVOR TRANSITIONS
WITH HIERARCHICAL MASS SPECTRA

Supernova neutrinos can provide peculiar tests of thr
flavor oscillations in matter, owing to the wide dynamic
range ofV(x) in collapsing stars~see@7–14,18–20# and ref-
erences therein for recent 3n studies!. It is thus important to
generalize the previous 2n results to the case of 3n transi-
tions, as we do in this section for the phenomenologica
interesting cases with hierarchical mass spectra. We thin
useful to review the derivation ofPee

3n ~recovering some
known results! with no reference to the often~mis!used con-
cept of ‘‘resonant transition.’’

A. 3n transitions: Notation and phenomenological input

We assume mixing among three active neutrin
(ne ,nm ,nt) and three mass eigenstates (n1 ,n2 ,n3) through a
unitary matrix11 U. The matrix elementsUei relevant forPee

3n

are parametrized in terms of two mixing angles (f,v)
5(u13,u12) @5#,

Ue1
2 5cos2f cos2v, ~29!

Ue2
2 5cos2f sin2v, ~30!

Ue3
2 5sin2f. ~31!

The kinematical parameters are completed by two in
pendent squared mass differences (dm2,m2). The dynamics
is fixed byV(x), and the full supernova 3n parameter space
S3n is

S3n5~dm2,m2,v,f,V!. ~32!

Solar and reactor neutrino oscillation analyses sugg
@36,37#

dm25um2
22m1

2u&731024 eV2, ~33!

while atmospheric neutrino analyses indicate@37,38#

m2.um3
22m1,2

2 u;331023 eV2, ~34!

thus favoring the so-called hierarchical hypothesis@39#

dm2!m2, ~35!

very often used in the literature.

11In the context of supernova neutrinos,U can be taken real with-
out loss of generality.
8-6
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Under the assumption of Eq.~35!, we parametrize the mass spectra~up to an overall mass scale! as

~m1
2 ,m2

2 ,m3
2!5H S 2

dm2

2
,1

dm2

2
,1m2D direct hierarchy,

S 2
dm2

2
,1

dm2

2
,2m2D inverse hierarchy,

~36!
i

t
e

E

riz

by

io

w
en

d

where, conventionally,m3
22m1,2

2 .0 (,0) identifies the so-
called case of direct~inverse! hierarchy, whilem2

22m1
2.0

for both hierarchies. As far asf,vP@0,p/2#, such a conven-
tion can be shown to cover all physical cases, both
vacuum and in matter@40#.

Besides Eqs.~33!–~35!, a further phenomenological inpu
comes from the combination of reactor and atmospheric n
trino data, providing@37,38#

sin2f5Ue3
2 &few %. ~37!

As a consequence of the hierarchical assumption of
~35! @and, to some extent, also of Eq.~37!#, the 3n dynamics
approximately reduces to the dynamics in two 2n sub-
systems, dominated by relatively low~L! and high~H! values
of the matter density, according to parameter space facto
tion

S3n.L2n ^ H2n5~dm2,v,V cos2f! ^ ~m2,f,V! ~38!

~see@5# and references therein!. The corresponding ‘‘low’’
and ‘‘high’’ neutrino oscillation wave numbers are defined

kL5dm2/2E ~39!

and

kH5m2/2E, ~40!

respectively.

B. 3n transitions: Neutrinos with direct hierarchy

For neutrinos with direct mass hierarchy, the factorizat
of dynamics in Eq.~38! leads to@5#

Pee~n!5~Ue1
2 ,Ue2

2 ,Ue3
2 !

3S 12PL~n! PL~n! 0

PL~n! 12PL~n! 0

0 0 1
D

3S 1 0 0

0 12PH~n! PH~n!

0 PH~n! 12PH~n!
D S Ue1,m

2

Ue2,m
2

Ue3,m
2

D ,

~41!

wherePL and PH are the crossing probabilities for the lo
and high density transitions, respectively, and the elem
07300
n
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Uei,m
2 in matter are defined in analogy to Eqs.~29!–~31!, but

with neutrino mixing anglesvm andfm in matter given by

sin 2vm5
sin 2v

A~cos 2v2cos2f V/kL!21sin22v
, ~42!

cos 2vm5
cos 2v2V/kL

A~cos 2v2cos2f V/kL!21sin22v
,

~43!

and

sin 2fm5
sin 2f

A~cos 2v2V/kH!21sin22f
, ~44!

cos 2fm5
cos 2f2V/kH

A~cos 2v2V/kH!21sin22f
,

~45!

at zeroth order indm2/m2 @5#. The~high density! initial con-
dition V/kL,H@1 leads then to cos 2fm.21.cos 2vm and to
the known expression

Pee~n!5Ue1
2 PL~n!PH~n!1Ue2

2 @12PL~n!#PH~n!

1Ue3
2 @12PH~n!#. ~46!

On the basis of Eq.~38! and of our 2n prescription in Eqs.
~12!–~14!, PL(n) and PH(n) can be analytically expresse
as

PL~n!5
exp~2pr LkLcos2v!21

exp~2pr LkL!21
~47!

and

PH~n!5
exp~2pr HkHcos2f!21

exp~2pr HkH!21
, ~48!

where

r L,H52F 1

V~x!

dV~x!

dx G
x5xL,H

21

, ~49!
8-7
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and the pointsxL andxH are defined by theV5k condition12

@Eq. ~12!#

V~xL,H!5kL,H . ~50!

Equations~46!–~50! allow the calculation ofPee(n) in the
whole 3n parameter space for direct hierarchy.

C. 3n transitions: Antineutrinos with direct hierarchy

The antineutrino case can be obtained in analogy to
neutrino case@Eqs. ~41!–~45!# through the replacemen
V/kL,H→2V/kL,H . In particular, theantineutrino mixing
angles in matter are given by

sin 2v̄m5
sin 2v

A~cos 2v1V cos2f/kL!21sin22v
, ~51!

cos 2v̄m5
cos 2v1V/kL

A~cos 2v1V cos2f/kL!21sin22v
,

~52!

and analogously forf̄m . The initial high-density condition
gives cos 2f̄m.11.cos 2v̄m and leads to

Pee~ n̄ !5Ue1
2 @12PL~ n̄ !#1Ue2

2 PL~ n̄ !. ~53!

Our analytical prescription forPL( n̄) is then obtained, afte
the necessary changes have been made, from Eq.~25!,

PL~ n̄ !5
exp~2pr LkLsin2v!21

exp~2pr LkL!21
, ~54!

with r L defined as in Eqs.~49! and ~50!.

D. 3n transitions: Neutrinos with inverse hierarchy

For fixed mass spectrum and mixing angles, neutrino
antineutrino probabilities can be transformed one into
other by flipping the signs ofV/kL,H or, equivalently, by
flipping the signs attached todm2 andm2, while keepingV
.0. The6dm2 sign flip is equivalent to the 1↔2 swap of
mass labels~as discussed for the 2n case!, leading to
Ue1

2 ↔Ue2
2 @namely, sin2v↔cos2v, with no change inf or

Ue3
2 #. The 6m2 sign flip is instead equivalent to swap hie

archy @see Eq.~36!#.
From such symmetry properties one obtains

Pee~nu1dm2,2m2![Pee~ n̄u2dm2,1m2!

[Pee~ n̄u1dm2,1m2!1↔2 , ~55!

12In principle, Eq.~38! implies an effective potentialV(x)cos2f
for the L subsystem, and thusV(xL)cos2f5kL . However, we have
checked that, within the phenomenological bound in Eq.~37!, the
resulting difference in the calculation ofPee is completely negli-
gible. We prefer then the simpler conditionV(xL)5kL , analogous
to V(xH)5kH for the H subsystem.
07300
e
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namely, thene survival probability for inverse hierarchy
equals then̄e survival probability for direct hierarchy@Eq.
~53!#, under the substitutionUe1

2 ↔Ue2
2 ,

Pee~n!5Ue2
2 @12PL~n!#1Ue1

2 PL~n!, ~56!

with PL(n) defined as in Eq.~47!.

E. 3n transitions: Antineutrinos with inverse hierarchy

In analogy with the previous subsection, it can be eas
realized that

Pee~ n̄u1dm2,2m2![Pee~nu2dm2,1m2!

[Pee~nu1dm2,1m2!1↔2 , ~57!

which, applied to Eq.~46!, gives

Pee~ n̄ !5Ue2
2 PL~ n̄ !PH~n!1Ue1

2 @12PL~ n̄ !#PH~n!

1Ue3
2 @12PH~n!#, ~58!

with PL( n̄) and PH(n) defined as in Eqs.~54! and ~48!,
respectively.

Notice that we have writtenPH(n) and notPH( n̄) in Eq.
~58!, since the 1↔2 swap makes no change inPH , defined
in terms of m3

22m1,2
2 and of Ue3

2 . One can then drop the
argument ofPH and simply write13

PH~ n̄ !5PH~n![PH . ~59!

F. 3n transitions: Summary I

The 3n results in Eqs.~46!, ~53!, ~56!, and ~58! can be
summarized as

Pee
3n5Ue1

2 X11Ue2
2 X21Ue3

2 X3 , ~60!

where the coefficientsXi are given in Table I, in terms o
PL(n), PL( n̄), andPH .

The parametrization ofPee
3n given in Eq.~60! and Table I

agrees with the results previously obtained in@7,9#. In addi-
tion, however, we have provided explicit analytical appro
mations forPL @Eqs. ~47! and ~54!# and for PH @Eq. ~48!#,
allowing a straightforward calculation ofPee

3n in the whole
mass-mixing parameter space, for generic~realistic or
power-law! potential profiles.

G. 3n transitions: Summary II

An alternative summary forPee
3n can be obtained by intro

ducing, in analogy with the 2n case, the notation

13A formal distinction betweenPH(n) andPH( n̄) was kept in the
notation of@7# and then dropped in@9#.
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TABLE I. CoefficientsXi to be used in the parametrization ofPee
3n given in Eq.~60!, according to the four

possible combinations of neutrino types (n or n̄) and mass spectrum hierarchy~direct or inverse!. The
coefficients agree with those derived in Refs.@7,9#.

Type Hierarchy X1 X2 X3

n direct PL(n)PH @12PL(n)#PH 12PH

n̄ direct 12PL( n̄) PL( n̄) 0

n inverse PL(n) 12PL(n) 0

n̄ inverse @12PL( n̄)#PH PL( n̄)PH
12PH
en

d

-

of
,

al-

ls
.
l-

es:

-

d,

ove
s,

,

be

-

PL
65

exp~62pr LkLcos2v!21

exp~62pr LkL!21
~61!

5H PL~n! ~1 !,

12PL~ n̄ ! ~2 !,
~62!

and

PH
65

exp~62pr HkHcos2f!21

exp~62pr HkH!21
~63!

.H exp~22pr HkHsin2f! ~1 !,

1 ~2 !,
~64!

where, in the last equation, we have used the phenom
logical inputs in Eqs. ~34! and ~37!, implying that
2pr HkHcos2f@1 for typical supernova potential profiles an
neutrino energies.

Equation~60! can then be written in the equivalent form

Pee
3n5Ue1

2 PL
6PH

61Ue2
2 ~12PL

6!PH
61Ue3

2 ~12PH
6!,

~65!

where the sign assignment forPL,H
6 is given in Table II for

the four possible combinations of neutrino types (n or n̄) and
mass hierarchy~direct or inverse!.

The neat 3n summary given in Eqs.~61!,~63!,~65! and in
Table II makes the symmetry properties ofPee

3n rather trans-

parent. Passing fromn to n̄, or from direct to inverse hierar
chy, appears to simply require appropriate sign flips.

TABLE II. Signs assigned toPL
6 and PH

6 , to be used in the
parametrization ofPee

3n given in Eq. ~65!, according to the four

possible combinations of neutrino types (n or n̄) and mass spec
trum hierarchy~direct or inverse!.

Type Hierarchy PL
6 PH

6

n direct 1 1

n̄ direct 2 2

n inverse 1 2

n̄ inverse 2 1
07300
o-

H. 3n transitions: RepresentativePee calculations

Figure 5 shows a representative analytical calculation
Pee

3n in the slice (dm2,tan2v) of the 3n parameter space
which is relevant for theL transition in supernovae@Eq. ~38!#
and for its connection with solar neutrino oscillations. C
culations~solid lines!14 are made at fixedE515 MeV, m2

5331023 eV2, and tan2f5431025 (PH
150.48), for the

power-law profile in Fig. 1. The upper panels refer ton ~left!
andn̄ ~right! in the case of direct hierarchy. The lower pane
refer ton ~left! andn̄ ~right! in the case of inverse hierarchy
Notice that all calculations for this figure involve only e
ementary functions, the density scale factorr being explicitly
given by Eq.~15! for a power-law profile.

A glance at Fig. 5 shows two apparent symmetri
Pee(n) and Pee( n̄) for direct hierarchy look like the mirror
image of Pee( n̄) and Pee(n) for inverse hierarchy, respec
tively. This ~approximate! symmetry originates from the
small value ofUe3

2 used in the calculations of Fig. 5. Indee
neglecting the third term~proportional toUe3

2 ) in Eq. ~65!,
and using Eq.~28! ~with the identificationPc

65PL
6), it is

Pee
3n.PH

6Pee
2n , ~66!

namely, the 3n probability is obtained from the 2n probabil-
ity through a modulation factorPH

6 . Using Eq.~66! and the
symmetry properties in Eqs.~55! and ~57!, it follows that

Pee
3n~n,direct!.PH

1Pee
2n~n!5PH

1Pee
2n~ n̄ !1↔2

.Pee
3n~ n̄, inverse!1↔2 ~67!

and

Pee
3n~ n̄,direct!.PH

2Pee
2n~ n̄ !5PH

2Pee
2n~n!1↔2

.Pee
3n~n, inverse!1↔2 , ~68!

as previously observed in Fig. 5. We remark that the ab
Eqs.~67! and~68! represent approximate mirror symmetrie
which become exact only forUe3

2 50. However, forUe3
2

obeying the bound in Eq.~37!, such symmetries are broken
at most, at the few percent level.

14The dotted curves in Fig. 5 include Earth matter effects, to
discussed in the next section.
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FIG. 5. Three-flavor transitions: analytical re
sults for Pee in the mass-mixing subspac
(dm2,tan2v), assuming the power-law profile in
Fig. 1 and fixing E515 MeV, m2

5331023 eV2, and tan2f5431025 (PH
1

50.48). Dotted lines include Earth matter effec
for a representative path of 8500 km in th
mantle ~assumingr54.5 g/cm3 and Ye51/2).

The upper panels refer ton ~left! and n̄ ~right! in
the case of direct hierarchy. The lower panels

fer to n ~left! and n̄ ~right! in the case of inverse
hierarchy.
th
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IV. INCLUDING EARTH MATTER EFFECTS

We briefly review known analytical results about Ear
matter effects, for the sake of completeness and s
consistency of the paper. For recent phenomenological s
ies of such effects in the supernova neutrino context see,
@7–9,18–20#.

In general, possible Earth matter effects preceding su
novan detection can be implemented by the final-state s
stitution @5#

~Ue1
2 ,Ue2

2 ,Ue3
2 !→~Pe1 ,Pe2 ,Pe3! ~69!

in Eq. ~60! or Eq. ~65!, wherePei5P(ne→n i) in the Earth.
Under the assumption of mass spectrum hierarchy~either

direct or inverse!, the 3n calculation ofPei is further reduced
to a 2n problem@7#,

~Pe1 ,Pe2 ,Pe3!.@cos2f~12PE!,cos2f PE ,sin2f#,
~70!

where
07300
lf-
d-
g.,

r-
-

PE5Pe2
2n . ~71!

The task is thus reduced to the 2n calculations ofPE(n) and
PE( n̄), which are independent of6m2 and of the hierarchy
type ~direct or inverse!. Analytical expressions forPE can be
given for particularly simple~or approximated! situations of
Earth matter crossing.

A. One shell

If the n trajectory crosses only the Earth mantle, char
terized by an approximately constant~average! density,
PE(n) is simply given by

PE~n!5sin2v1sin 2vmsin~2vm22v!

3sin2S kLsin 2v

2 sin 2vm
L D ~72!

where L is the total path length in the mantle, andvm is
defined as in Eqs.~42! and ~43! with the appropriate poten
8-10
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tial V in the mantle@Eqs.~4! and~5!#. The antineutrino prob-
ability is obtained through the substitution

PE~ n̄ !5PE~n!uV/kL→2V/kL
, ~73!

leading to

PE~ n̄ !5sin2v1sin 2v̄msin~2v̄m22v!

3sin2S kLsin 2v

2 sin 2v̄m

L D , ~74!

wherev̄m is defined through Eqs.~51! and ~52!.
Figure 5 shows an example of Earth matter effects onPee

3n

for mantle crossing ~dotted curves!, assuming r
54.5 g/cm3, Ye50.5, andL58500 km~parameters which
are of interest for SN 1987A phenomenology; see, e
@8,9#!. The neutrino potential in the mantle is thenVM
51.731027 eV2/MeV, implying strong effects forVM
;kL and thus fordm2;2EV;O(1025) eV2, which may
be relevant in connection with the so-called LMA solution
the solar neutrino problem@36#, as widely discussed recentl
@7–9,18–20#. Notice that the approximate symmetries
Eqs. ~67! and ~68! are preserved by Earth matter effec
since they act mainly on the two-neutrinoL transition in the
hierarchical approximation@Eq. ~70!#.

B. Multiple shells

Neutrino oscillations across two Earth shells with diffe
ent densities@mantle ~M! 1 core (C)# were considered in
@41# in the context of supernovae, and intensively studied
@42,43# on general grounds, with emphasis on interesting
terference properties peculiar to layered matter~see also
@44#!. Adapting, e.g., the notation of@43# to ours, the expres
sion of PE(n) for a mantle1core1mantle path in the Earth
(L5LM1LC1LM) reads

PE~n!5sin2v1W1~W1cos 2v1W3sin 2v!, ~75!

whereW1,3 are the first and third component of the vecto

W52 SMY nM1SCnC , ~76!

having definedY as

Y5CMCC2~nM•nC!SMSC , ~77!

the vectorsnM andnC as

nM ,C5~sin 2vM ,C ,0,2cos 2vM ,C!, ~78!

andCM andCC as

CM ,C5cosS kLsin 2v

2 sin 2vM ,C
LM ,CD ~79!

~and similarly forSM ,C , with cos→sin!, wherevM andvC
are the effective neutrino mixing angles in the mantle and
07300
.,

,

n
-

n

the core.PE( n̄) is then obtained fromPE(n) through the
replacement indicated in Eq.~73!.

In the general case ofN different shells, not necessaril
with constant density in each shell, the calculation ofPE can
also be performed analytically, through the perturbative
proach developed in@45# in the context of solar neutrinos.

V. SUMMARY AND CONCLUSIONS

In the context of two-flavor~anti!neutrino transitions in
supernovae, we have described a simple and accurate
lytical prescription for the calculation of the survival prob
ability Pee, based on a double exponential form for th
crossing probability, and inspired by the condition of ma
mum violation of adiabaticity. The prescription holds in th
whole oscillation parameter space and for generic supern
density profiles. The analytical approach has then been g
eralized to cover three-flavor transitions with mass spectr
hierarchy~either direct or inverse!, and to include Earth mat
ter effects.

The final prescription forPee
3n can be summarized as fo

lows:
~i! Assume a supernova potential profileV(x).0.
~ii ! Fix the mixing anglesf5u13 @obeying Eq.~37!# and

v5u12, and calculate the matrix elementsUei
2 through Eqs.

~29!,~30!.
~iii ! Fix the ‘‘solar’’ and ‘‘atmospheric’’ squared mass dif

ferences,dm2.0 andm2.0, respectively@within the phe-
nomenological restrictions in Eqs.~33!–~35!#.

~iv! At a given~anti!neutrino energyE, find the pointsxL
and xH where the potentialV equals the wave numberskL
5dm2/2E andkH5m2/2E, respectively:

V~xL,H!5kL,H .

~v! Calculate the corresponding density scale factorsr L
and r H as

r L,H52F 1

V~x!

dV~x!

dx G
x5xL,H

21

~both .0 for monotonically decreasingV).
~vi! Assign the6 signs inPL

6 and PH
6 by choosing the

neutrino type (n or n̄) and hierarchy~direct or inverse! in
Table II, and calculate thenPL,H

6 through

PL
65

exp~62pr LkLcos2v!21

exp~62pr LkL!21

and

PH
65

exp~62pr HkHcos2f!21

exp~62pr HkH!21
.

~vii ! CalculatePee
3n as
8-11



re

fu

s-
fer-

G. L. FOGLI, E. LISI, D. MONTANINO, AND A. PALAZZO PHYSICAL REVIEW D65 073008
Pee
3n5Ue1

2 PL
6PH

61Ue2
2 ~12PL

6!PH
61Ue3

2 ~12PH
6!.

~viii ! Finally, include possible Earth matter effects as
viewed in Sec. IV.

We think that such analytical prescription may be use
to simplify the calculation~and to help the understanding! of
supernova neutrino oscillation effects.
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