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Supernova neutrino oscillations: A simple analytical approach
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Analyses of observable supernova neutrino oscillation effects require the calculation of the eleatron
ti)neutrino survival probabilityP.. along a given supernova matter density profile. We propose a simple
analytical prescription foP.., based on a double-exponential form for the crossing probability and on the
concept of maximum violation of adiabaticity. In the case of two-flavor transitions, the prescription is shown
to reproduce accurately, in the whole neutrino oscillation parameter space, the results of exact numerical
calculations for generi¢realistic or power-lawprofiles. The analytical approach is then generalized to cover
three-flavor transitions witldirect or inversg mass spectrum hierarchy, and to incorporate Earth matter
effects. Compact analytical expressions, explicitly showing the symmetry propertits ofre provided for
practical calculations.
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[. INTRODUCTION the condition of maximum violation of adiabaticif22,23
(replacing the popular resonance conditioim the case of
Observable effects of supernova neutrinos in undergrountvo-flavor transitiongSec. 1), our prescription is shown to
detectors represent a subject of intense investigation in astréeproduce accurately the results of exact numerical calcula-
particle physics, both on general grour{dse the reviews in tions for generic(realistic or power-law profiles, in the
[1,2]) and in relation to the SN 1987A eve(gee[3] for an  whole neutrino oscillation parameter space. The analytical
updated analysis and bibliographyn particular, flavor os- approach is then generalized to cover three-flavor transitions
cillations in supernovae may shed light on the problem ofwith (direct or inversg mass spectrum hierarctigec. 11,
neutrino masses and mixing, by means of tpetentially —and to incorporate Earth matter effe¢®ec. I\V). Compact
strong associated matter effectsee, e.g.[1,4—@ for re-  analytical expressions, explicitly showing the symmetry
views of early works, andi7—20] for an incomplete list of properties ofP.. and useful for practical calculations, are
recent studies In particular, dramatic effects on oscillations summarized in the final sectigi®ec. Vj, to which we refer
have been predicted, related to the type of neutrino mase impatient reader.
spectrum hierarchy and to Earth matter crossing.
Given the importance of supernova neutrino oscillations Il. TWO-FLAVOR TRANSITIONS
for both particle physics and astrophysics, it would be desir-
able to have a simple and complete description of the most N this section we discuss numerical and analytical calcu-
important quantity involved in the calculations, namely, of lations of the survival probability.. for neutrinos and an-
the electron(antjneutrino survival probabilityP,..> Ap- tineutrinos, assuming two-family mixing betweepand an-
proximate treatments dP,, have been proposed in the lit- other active neutrino ,=v, or v;). A simple analytical
erature to cover parts of the parameter space in a piecewigéescription will be shown to reproduce very accurately the
fashion, e.g., by using either the adiabatic approximation ofxact numerical results fdPee.
the so-called resonance conditi@®e[21,7,10,1] for recent
exampleg with inherent limitations in the range of applica- A. 2v transitions: Notation
bility. In particular, it has been recently realized, first in the
context of solaf22,23 and then of supernovid6,17 neu-
trinos, that the time-honored resonance condition cannot b
meaningfully extended at large neutrino mixing. Thus, apar%
from brute-force nume.ri_cal calculations dffee. (see, e.g., Am2=mZ—m2>0, 1)
[24,18-20), a truly unified approach, valid in the whole
thre_e-flavor oscillation parameter space and_ applic_able_ 10 9&nd parametrize the mixing matrix as
neric supernova density profiles, seems still lacking in the

In the case of two-familyw.— v, oscillations @=u or
7), we label the masém) eigenstatesi;,v,) so thatv, is
e lightest,

Iiteratur.e, as far as we know. . 3 _ U U cosfd sin@
In this work, we propose a simple, unified analytical ap- ( el ez) _ —sing 0 ()
proach to the calculation oP.., based on a double- Ua Ugx singcose |»

exponential form for the crossing probabili5,26 and on

where 6e[0,7/2]. In vacuum,v.— v, oscillations can be
described in terms of the pathlendtt) and of the oscillation
The key role ofP¢(») and Pee(;), related to the practical un- wave number
distinguishability of supernova muon and t&ant)neutrinos, is
neatly discussed if6,7]. k=Am?/2E, 3
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., neutrino potential profile for M = 14.6 Mg tial profile V(x) (dashed curve as graphically reduced from
W T T T the supernova simulation published [i29] for the case of
i ] M=14.6Mg, M being the mass of the ejecta. In the same
100R power-law ] figure, the solid line represents the best-fit power-law poten-
SEN realistic ] tial (n=3), corresponding to take V,

=1.5x10"8 eV?/MeV in Eq. (6). For definiteness, we will
use the realistic or the power-law curves in Fig. 1 as repre-
sentativeV(x) profiles for our calculations. However, our
main results are applicable to generic supernova density pro-
files.

B. 2v» transitions: Neutrinos

— Following [5], the calculation o4 ») from the initial »
1 state in matter to the finab detection in vacuufcan be
E factorized as

sirfd cosd
1-P.(v) P.(v)

: X( Pe(v) 1—Pc<v>)

X(coszem sinzam)(l)

1 sirf6,, cog6, ’

(cos’-e sinze)
Pee( v)=(1,0)

(7)

where P.(v) is the so-called crossing probability for
neutrino$ [P.(v)=P(v,m—v1)], and 6, is the effective
mixing angle in matter at the origin, defined by

FIG. 1. Neutrino potential profileg(x) considered in this work.
Dashed curve: “realistic” potential, as graphically reduced from the

supernova simulation performed [[89] assuming 148l for the sin 26,,= sin 26 , 8
ejecta. Solid line: “power-law” potential \(=x %) which best fits J(cos 20— V/k)?+sirf26
the realistic one.
b N he v, d ” cos 20— V/k ©
E being the neutrino energy. In matter, t v, dynamics COS X, = — .
also depends on the,— v, interaction potential difference J(cos 20— V/k)*+sirf20
[27] Note that in Eq(7) it is understood that oscillating terms are
V(X) = V2GeNL(X), 4 a}veraged out, thus providing an incoherenstate at detec-
(X) = V2GENe(x) @ o
where Ng(x) is the electron density profile. In appropriate  The high supernova core densiigt the start of neutrino
units, free streamingimplies V/k>1 in Egs.(8) and(9), so that
sin 26,,=0 and cos 8,,=—1. From Eq.(7), one can then re-
V(X) p(X) duce the calculation oP.. to that of P,
————=7.57% 107 8Y (x)—=, (5)
eV?/MeV g/en? Pod v)=C0OZ0 Py(v) +siRO[1—Py(v)]  (10)
wherep(x) is the matter density and.(x) is the electron/ _ Uich( v)+U§2[1— P.(1)]. (11)

nucleon number fraction.

In supernovaep(x) [and thusV(x)] can be approxi-
mately described by a power law(x)*x 3 [28]. In the
present work, power-law potentials are parametrized as One possible approach to the calculationPgf(and P,,)
is the numerical integration of the neutrino evolution equa-
tions along the supernova potential profile, as advocated in

1. Numerical approach

—-n

: (6)

V(X)=V, R

wheren=3 (unless otherwise statgdnd distances are con-  2The discussion of possible Earth matter effects is postponed to

ventionally reported in units of the solar radiuRq Sec. IV.

=6.96x10° m. 3The case$.~0 andP.#0 discriminate adiabatic and nonadia-
Figure 1 shows an example of “realistic” neutrino poten- batic transitions in matter.
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neutrino crossing probability P, (power-law potential) neutrino crossing probability P, (realistic potential)
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FIG. 2. Two-flavor transitions: neutrino crossing probability  FIG. 3. As in Fig. 2, but for the realistic potential profile in
P.(v) in the parameter space\(m?/E,tarfg) for the power-law  Fig. 1.

potential profile in Fig. 1. Dotted curves: exact numerical calcula- _ . .
tions. Solid curves: results of the analytical prescription in Eqs.NUmber of oscillation cycles along a potential profile span-

(12—(14). Isolines ofP,, for antineutrinognot shown can be ob- NiNG many orders of magnitude. Instabilities and inaccura-

tained by reflection around the axis @ 1. See the text for de- Cies in the numerical results can easily emerge for realistic
tails. potentials(as we experiencedas a consequence of sudden

variations in the lowest ordev(x) derivativess Moreover,

some recent workgl8—-20, as well as in a few earlier ones numerical integration produces additional but useles®b-
(see, e.g.[24]). For the purposes of our work, we have per- servablg information on oscillating factors and phases, and
formed a numericalRunge-Kutta calculation forP., as- s thus inefficient for practical purposs.ast, but not least,
suming the two potential profiles in Fig. 1. the uncertainties affecting simulated supernova density pro-

Figures 2 and 3 show our numerical results as dotted isdfles make it preferable to perform several approximéated
lines for P¢(v) in the mass-mixing planeAm?E,tarf6),  quick) calculations ofP, for different trial functionsV(x),
for the case of power-law and realistic potentials,rather than a singlébut time-consumingexact numerical
respectivelys The “bumpy” structure of the realistid/(x) calculation for a fixedv(x).
profile is reflected by the “wiggling” behavior oP.. in Fig.

3, leading to significant differences with tie, isolines of 2. Analytical approach

Fig. 2 in part of the parameter space. However, one can note The previous discussion indicates that a handy analytical
that, for Am*E—0, the detailed structure af(x) is irrel-  approximation to the numerical results B, applicable in
evant, andP(»)—cos6 in both Figs. 2 and 3extremely  the whole parameter space, is highly desirable. We propose
nonadiabatic limit (and motivate belowthe following analytical recipe in three

Although brute-force numerical calculations & can  steps:
provide, in principle, “exact” results, it should be stressed
that they do not represent an optimal and efficient approach————

in the case of supernovae. Computer routines for integrations|ngeed, we think that some numerical artifa¢take wiggles
are typically time-consuming, being required to track a largemight be present in the numerical calculationsqf, as graphically
reported in[24].
SFor instance, the authors 018,19 need to time-average their
“The solid curves in Figs. 2 and 3 correspond to our analyticahumerical probabilities, in order to force an incoherent initial state
approximation forP., as discussed later. for the implementation of Earth matter effects.
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(i) Identify the pointx, wherethe potential equals the (as originally advocated if83]) for generic density profiles;
wave number (i) it holds in both octants o®; (iii) it reproduces the ex-
tremely nonadiabatic limit at smat and (iv) it reproduces

V(xp)=k; (120 the single-exponential, Landau-Zen@Z) limit at small ¢

(see, e.g.[5]). As a final remark on Eq(14), it should be

(i) calculate the so-calledensity scale factor at that point, noted that the single- and double-exponential formsHgr

1 dv(x)]?! involve, in general, a functiok (#) depending on the poten-
=] : (13 tial profile (see Table | if33]). Our choice in Eq(14) cor-
V(x) dx x=x, responds to taking (#) = 1 — tar?6, which is the exact result

for a solar-like(exponential profile, and represents the lead-
(iii) insert the above in the double-exponentigbarametri-  ing prefactor ofF in a 1h expansiofi for a supernova-like
zation for P(v) (originally derived in the context of solar (power-law profile [33]. We have checked that the inclusion
neutrinos[25,26)), of the full (more complicatex expression for=(#6) in the

power-law cas¢33,5,16 does not lead to a significant im-

exp2mrk cosf) —1 (14  Provement in thealready high accuracy ofP of our ana-
exp2mrk)—1 - lytical prescription, and thus we advocate the simpler form
] . ~ for P, given in Eq.(14) also for supernovae.

The results of such an exceedingly simple analytical Tphe concept of a “running” density scale factar
recipe are shown as solid isolines Ry in Fig. 2 (power-law ~ — r(xp) [as in Eq.(13)] was also originally introduced in the
cas¢ and Fig. 3(realistic casg to be compared with the context of solar neutrinof26], typically by calculatingr at
corresponding dashed isolingexact numerical resulksThe  he pointx, =X,es defined by the so-called “resonance” con-
ggreement between numerical and analytical estimat&s pf dition V(x,.) = Am2cos 2 (see, e.9}33]). Such a choice for
is extremely good in tr_‘? whole parameter space, the differy  aithough successful at relatively small is clearly not
ence beingpP.=2X10"“ in the worst caseé_.‘l’he_ final ac- gpplicable forg=m/4 [34], and fails to describe correctly
curacy forPe is even better, since Eq10) implies 6Pee  nonadiabatic transitions at sméll whereP #0 at 6~ /4

Pc( v)=

= |005_29| OP<6Pc. [22,23. For larged, the resonance condition can be mislead-
Notice that, in the exact power-law caBgq. (6)], the  jng if not meaningless, and it is more appropriate to charac-
calculation ofr through Eqs(12) and(13) is trivial: terize P, through the poini,,, Where maximum violation
EPNIVAEL of adiabaticity(MVA) is attained[22,23,18. Indeed, in the
_:_(_0 (15) context of solar neutrinos, the prescriptio= Xy, for
Ro nlk r(xp) is more accurate and physically more consistent than

p=Xres [23]. In the context of supernova neutrino oscilla-
ons, it has also been recently suggested ak might
play an important role as weflL6,17], although the authors
of [16,17] do notuse the prescription=r (Xyya), but make
an improved WKB calculation of the LZ exponent fér,

Our effective analytical prescription fd?.(v) in super- (i . Coop o
_ involving a numerical integration in the complex plane
novae[Egs. (12—(14)] stems from several recent improve- However, we have verified that the prescriptionr (Xys )

ments in the understanding of nonadiabatic transitions, ?gives very accurate results fo, in the whole mass-mixing

In the case of a realistic potential profile, the only modestg
complication is the numerical solution of E¢L2) and the
evaluation of the derivative in Eq13) for the given(tabu-
lated or parametrizedunction V(x).

g;s?rl:lss'?d tbglci);/lv. Alltrrlorlljghtrﬁlmh lrrilllpr:i)vr?metr;ts harve lf:)tee lane for supernovagery close to the solid isolines in Figs.
ainly teste solar neutrino osciiiations, they are ofter, g 3, making it unnecessary, in practice, to resort to

applicable also to supernovaoscillations. WKB-inspired or other relatively complicated approaches. In
fact, our Eq.(12) is just a suitable approximation of the MVA
condition, as we now discuss.

Equation (14), originally derived for the solar neutrino For a monotonid/(x) profile, the MVA point is uniquely
(exponential density profile[25,26 within the unnecessary defined in terms of the flex point of cog,ax) [23],
restriction < /4, was explicitly shown if30,3]] to hold
for 6= /4 as well, especially for appropriately chosen den- (dzcos ZBm(x))
sity scale factors [23]. The double-exponential form &, - E—
for 6==/4 has also been recently applied to the transitions dx
of high-energy neutrinos from the decay of hypothetical mas-
sive particles trapped in the Syi82], and to the transitions For a power-law profile as in Ed6), the above equation
of supernova neutrindd5-17. Such parametrization fd?, implies that
has thus several desirable propertigsit is a good ansatz

3. Discussion of the analytical prescription

=0. (16)

X=Xpmva

V(Xmwa) =k-g(n,0), (17)
"We have investigated a variety of supernova density profiles
available in the published or unpublished literature, and obtained ®The exponential profile case can be seen asitheo limit of the

similarly good resultgnot shown. power-law profile casg33].
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where
_cosZﬁ 2—n
9(n.0)=—— 17,
+\/1 2-n [cos2) 2—n\? 18
NIl 1= 18

and the=x sign must be chosen so thgit-0. Forn close to
3 (supernova caseby keeping only the leading term in the
expansion of the square root g{n, #), one obtains

n=2—g=1, (29
3 1 cos20—1 20
n=3-g=l+—7>—, (20
cos20—1
n=4—>g:1+T, (21

namely,g=1 for n=3*=1, up to~10% errors.

A fractional erroré in the evaluation oV (xy) leads,
for power-law potentials, to a fractional errd/n in the
evaluation ofr (xy\a). Therefore, by setting in any case
=1 [and thusV=k, as in Eq.(12), rather tharW=kg, as in
Eq. (17)] we expect a mere few % variation in the running
value ofr, which is of little relevance when is inserted in
P. through Eq.(14), as we have numerically checked.

In conclusion, the conditioV(x,) =k in Eq. (12) repre-

PHYSICAL REVIEW D 65 073008
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FIG. 4. Two-flavor transitions: analytical results for the electron

sents a good approximation to the MVA condition for super-neutrino survival probability Ps. in the mass-mixing plane
nova neutrino oscillations, and can be used to replace th@Am? tarfé), at a representative neutrino enerdgy=15 MeV).

time-honored (but inapplicable at largef) resonance
prescriptior® One has then to calculaf¢hrough Eq.(13)]
the correspondingrunning value of the density scale factor
r=r(xp) [provided by Eq(15) for an exact power-law pro-
file], insertr in the double-exponential form foP. [Eq.
(14)], and finally getP¢. through Eq.(10). Our analytical
prescription is applicable to generipower-law or realistig
V(x) profiles in the whole 2 parameter space, with a typical
percent accuracy iRe.

Figure 4 explicitly reports the results of such a prescrip-

tion for P, for the two profiles in Fig. 1, and for a repre-
sentative supernovaenergy E=15 MeV). Notice that the
P.. isolines for the power-law profilédotted curver are
simply calculated through elementary functidfsgs. (12)—
(15)]. Notice also that thé,. isolines for the realistic and

Solid curves: realistic potential. Dotted curves: power-law potential.
Isolines of P, for antineutrinos(not shown can be obtained by
reflection around the axis taf=1. See the text for details.

quasivacuum oscillatioiQVO) solutions to the solar neu-
trino problem[36]. Conversely, for oscillation parameters
within the so-called large mixing angl&MA ) solution at
Am?=10"° eV?, or within the multiple vacuum oscillation
(VO) solutions ahm?<10~° eV? [36], transitions in super-
nova matter become, respectively, purely adiabatic or ex-
tremely nonadiabatic, with no significant dependence on the
details of theV(x) profile.

A final technical remark is in order. For solar neutrinos, it
was shown in23] that the MVA-inspired recipe foP, [r

power-law cases in Fig. 4 appear to differ significantly in two = (Xwwa)] has to be matched and replaced, at sikallith

regions:(i) at relatively small mixing (taf¥=<0.1); and(ii)
at nearly maximal mixing (t&@®<1) with Am?
~108*! eV2, In connection with solar neutrinos, this fact

r=const[31,22. The constanflimiting) value forr can be
elegantly derived, through a perturbative approfz8], in
terms of an integral involviny/(x) in the convective zone of

implies that the detailed supernova density profile can béhe Sun, wher&/(x) experiences a sudden drop. Conversely,
relevant for the oscillation parameters corresponding to thé supernovaey(x) vanishes in a smoother way at lange

so-called small mixing angléSMA), low Am? (LOW), and

and the smalk correction ¢ =const) becomes unnecessary
in practice. We have numerically checked that such correc-
tion does not appreciably improve the accuracy of the simple

9t is curious to note that, in the context of solar neutrinos, theMVA-inspired recipe in Eqs(12)—(14). Therefore, concern-

relevance of the point wheré=k (as opposed to the resonance

ing the calculation ofP. in supernova neutrino transitions,

point) was suggested if85] and then abandoned in the literature. we advocate the use of Eqd.2)—(14) in the whole 2 pa-

See alsd22] for an updated discussion.

rameter space.

073008-5



G. L. FOGLI, E. LISI, D. MONTANINO, AND A. PALAZZO

C. 2v transitions: Antineutrinos

PHYSICAL REVIEW D65 073008

calculated at the point, whereV(x,)=k [Eq. (12)]. The

The extension of our analytical prescription from the neu-2ccuracy of such analytical prescription, as compared with

trino case to the antineutrino case can be obtained throu

the replacementV/k— —V/k in Pg.. By conventionally
keepingV>0 (and 6 unaltered, this implies

Ped |+ Am?) =P v|—Am?). (22)

The change of sign oAm? for neutrinos is equivalent to a

swap of the mass labels12,

Peel V|_Am2)EPee( V|+Am2)1H21 (23

corresponding tdJ2 < U2, and siff—cog6.1°

The above_two equations imply that, for fixexm?>0
[Eqg. (2)], Pedv) can be obtained from Eq$10) and (14)
through a -2 swap, namely,

Pee(j) =Ped V)12

=it Po(v) +cofo[1—P(v)], (24)
where
Pe(v)=Pc(»)1..2
_exp(2ark sirfg)—1 -

exp2mrk)—1 °

with r [Eq. (13)] to be evaluated at the samé-independent
poin_txp defined for the neutrino case in Ed2). Isolines of

P.(v) from Eq. (25 are just the mirror imageground the
axis taf#=1) of those obtained foP.(v) in Figs. 2 and 3.

D. 2» transitions: Summary
A neat summary of the previous analytical results #or
and v can be obtained by introducing a new notation:

exp(*=2mrk cog6)—1

Pe= exp( = 27rk)— 1 (26)
C[Pem (), ,
l1-Pv) (4. @

In terms ofP_ , the expressions &4 ) and Pee(j) for 2v
transitions are unified as
Pee=UgP: +Ug(1-PJ), (28)
where the+ sign applies to neutrinos, while the sign to
antineutrinos.
In the above equation, for any sigrt{, bothV andk are
kept>0. All physical cases are covered by lettiigpan its
whole rangg 0,77/2]. The density scale factar[Eq. (13)] is

g$f<act numerical results, is at the percent level for both real-

Istic and power-law density profiles, as demonstrated in Figs.
2 and 3 for the representative cases shown in Fig. 1. In the
power-law cas¢Eq. (6)], the calculation of is further sim-
plified [Eq. (15)].

Ill. THREE-FLAVOR TRANSITIONS
WITH HIERARCHICAL MASS SPECTRA

Supernova neutrinos can provide peculiar tests of three-
flavor oscillations in matter, owing to the wide dynamical
range ofV(x) in collapsing star¢see[7—14,18—-20and ref-
erences therein for recenv&tudies. It is thus important to
generalize the previousi2results to the case ofi3transi-
tions, as we do in this section for the phenomenologically
interesting cases with hierarchical mass spectra. We think it
useful to review the derivation oPZ’ (recovering some
known results with no reference to the ofteimis)used con-
cept of “resonant transition.”

A. 3v transitions: Notation and phenomenological input

We assume mixing among three active neutrinos
(ve,v,,v,) and three mass eigenstates (v,,v3) through a
unitary matrix! U. The matrix elementbl; relevant forng
are parametrized in terms of two mixing angle&, )

= (613,612 [5],

U2,=cog¢ cofw, (29)
UZ,=cog ¢ sirfe, (30)
UZ,=sirte. (31

The kinematical parameters are completed by two inde-
pendent squared mass differencésf,m?). The dynamics
is fixed byV(x), and the full supernovaidparameter space

S;, IS

Sz, = (6m*,m?,w,6,V). (32)

Solar and reactor neutrino oscillation analyses suggest
(36,37

smP=|mi—m?|<7x10* eV? (33
while atmospheric neutrino analyses indicgg&,38
m?=|mj—m3 J~3x10 % eV?, (34)
thus favoring the so-called hierarchical hypothd8ig]
SmP<m?, (35

very often used in the literature.

0such well-known 2 symmetry properties are repeated here, in  *in the context of supernova neutrinds$ can be taken real with-

preparation for the more complicated 8ase.

out loss of generality.
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Under the assumption of EQ35), we parametrize the mass spediup to an overall mass scalas

sm?  sm?
( — St t mz) direct hierarchy,
(MM MI=N e o (36
( B R N mz) inverse hierarchy,

where, conventionallym%—m"1{2>0 (<0) identifies the so- Ugi’m in matter are defined in analogy to E¢89)—(31), but

called case of directinverse hierarchy, whilem%—m§>0 with neutrino mixing angles,, and ¢, in matter given by
for both hierarchies. As far a8, w €[ 0,77/2], such a conven-

tion can be shown to cover all physical cases, both in sin 2w
vacuum and in mattgi0]. sin 2wy, = AT . (42
Besides Eqs(33)—(35), a further phenomenological input V(cos 20— cos'¢ V/k ) ?+sin2w
comes from the combination of reactor and atmospheric neu-
trino data, providind37,38 cos 2w — V/K,
COS 2wy, = — ,
sitg=UZ,<few %. (37) J(cos 2w—cos ¢ V/k )+ sif2w s
As a consequence of the hierarchical assumption of Eq.
(35 [and, to some extent, also of E§7)], the 3v dynamics and
approximately reduces to the dynamics in twe 3ub-
systems, dominated by relatively Idiv) and high(H) values sin 2¢
of the matter density, according to parameter space factoriza- Sin 2¢,= — , (44
tion V(cos 2w —V/ky)%+sirf2¢
S3V2 L2V® H2V= ( 5m21 (,(),V CO$2¢) ®(m21 ¢1V) (38) cos 2¢_ V/kH
COS 2= - )
(see[5] and references therginThe corresponding “low” ™ J(cos 20— Viky)2+sir24
and “high” neutrino oscillation wave numbers are defined by (45
k= om?/2E (39  at zeroth order ism?/m? [5]. The (high density initial con-
dition V/k_ > 1 leads then to cosf,~—1=cos 2v, and to
and the known expression
kyy=m?/2E, 40
" 49 Pod 1) = UZ,PL (1) Py(r) +UZ[ 1P (1) Py(»)
respectively.

+UZ[1—Pu(»)]. (46)

B. 3w transitions: Neutrinos with direct hierarchy On the basis of Eq38) and of our 2 prescription in Egs.

For neutrinos with direct mass hierarchy, the factorization(12)—(14), P, (v) and P4(v) can be analytically expressed

of dynamics in Eq(38) leads tq[5] as
Ped ¥)=(U%;,U%.UZ) exp(27r k cofw)—1
P (v)= 4
1-P(v) Puv) O L(v) exp(2mr k) —1 “7)
X P.(v) 1-P(v) O
and
0 0 1
1 0 0 Ugl,m Pu(v)= exp(ZerkHcoquS)—l (48)
X 0 1_ PH(V) PH(V) ng,m , eXFxZ’]TerH)_ 1
0 PH(V) 1_ PH(V) U§3’m Where
(41)
1 dv(x)]*t
whereP_ and P, are the crossing probabilities for the low "LH= 1900 "dx : (49

and high density transitions, respectively, and the elements X=X H
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and the pointx, andxy are defined by th&=k conditiort?
[Eq. (12)]
V(XL ) =KL h- (50)

Equations(46)—(50) allow the calculation ofP.(v) in the
whole 3v parameter space for direct hierarchy.

C. 3w transitions: Antineutrinos with direct hierarchy

PHYSICAL REVIEW D65 073008
namely, thev, survival probability for inverse hierarchy
equals thev, survival probability for direct hierarchyEqg.
(53)], under the substitutioh)2; < U2,

Ped 1) =UZ[1-P (1 ]+U5PL(v), (56)

with P (v) defined as in Eq47).

The antineutrino case can be obtained in analogy to the E. 3w transitions: Antineutrinos with inverse hierarchy

neutrino case[Eqgs. (41)—(45)] through the replacement
VIK. y— —VIK_ . In particular, theantineutrino mixing
angles in matter are given by

i %0 sin 2w 51
Sin 2w, = ,
™ J(cos 2w+ V cod gk, )2+ sirf2w
o €os 2w+ V/k,
COS 2w = :
™ J(cos 2w+ V cod gk, )2+ sif2w
(52

and analog_ously fogm. Ihe initial high-density condition
gives cos &= +1=cos v, and leads to

Ped 1) =U4L[1-PL(]+ULPL(»). (53
Our analytical prescription foP,_(;) is then obtained, after
the necessary changes have been made, fron(2by.

—  exp2mr k. sirfw)—1
L(V = )

E‘X[I(27Tr|_k|_) -1

(59

with r| defined as in Eq9449) and (50).

D. 3w transitions: Neutrinos with inverse hierarchy

In analogy with the previous subsection, it can be easily
realized that

Ped( ]+ 6m2, —m2) =P v| - Sm2,+ m?)

=Ped V| + 5m21 + m2)1<_>2, (57)
which, applied to Eq(46), gives

Ped 1) =UZP (1) Py(»)+UZ[1- P (1)]Pu(»)

+UZ[1-Py(»)], (58)
with P (v) and P4(v) defined as in Eqs(54) and (48),
respectively.

Notice that we have writteRy(») and notPy(») in Eq.
(58), since the -2 swap makes no change ki, defined
in terms ofm{—m3Z, and of UZ;. One can then drop the
argument ofP; and simply writé®

Pu(v)=Pu(»)=Py. (59)

F. 3w transitions: Summary |

The 3v results in Eqs(46), (53), (56), and (58) can be
summarized as

For fixed mass spectrum and mixing angles, neutrino and

antineutrino probabilities can be transformed one into the

other by flipping the signs oW/k_y or, equivalently, by
flipping the signs attached #m? andm?, while keepingV
>0. The = 6m? sign flip is equivalent to the &2 swap of
mass labels(as discussed for the 12 case, leading to
U2, — U2, [namely, sikw—coSw, with no change ing or

Ugs]. The =m? sign flip is instead equivalent to swap hier-

archy[see Eq(36)].
From such symmetry properties one obtains

Pod v|+ 6m2, —m?) =P v|— Sm?, +m?)

Epee(ﬂ"' 5m21+m2)l<—>21 (55)

2In principle, Eq.(38) implies an effective potentiaV(x)coS¢
for the L subsystem, and thug(x, )cog¢=k, . However, we have
checked that, within the phenomenological bound in €4), the
resulting difference in the calculation &f.. is completely negli-
gible. We prefer then the simpler conditidM{x, )=k, , analogous
to V(xy) =k for the H subsystem.

P3t=UZ X+ U5Xo+UZ%Xs, (60)

where the coefficientX; are given in Table |, in terms of
P (v), P (v), andPy.

The parametrization dng given in Eq.(60) and Table |
agrees with the results previously obtained 8. In addi-
tion, however, we have provided explicit analytical approxi-
mations forP, [Egs.(47) and (54)] and for Py [Eq. (48)],
allowing a straightforward calculation d?3" in the whole
mass-mixing parameter space, for genefrealistic or
power-law potential profiles.

G. 3w transitions: Summary ||

An alternative summary foP2% can be obtained by intro-
ducing, in analogy with the 2 case, the notation

13A formal distinction betweetP,,(») and PH(7) was kept in the
notation of[7] and then dropped ifg].
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TABLE I. CoefficientsX; to be used in the parametrizationl%i; given in Eq.(60), according to the four
possible combinations of neutrino types 6r v) and mass spectrum hierarcliglirect or inversg The

coefficients agree with those derived in Rdfg9].

Type Hierarchy X1 X5 X3
14 dil’eCt PL(V)PH [1_ PL(V)]PH 1- PH
M direct 1-P.(v) P.(v) 0
v inverse P (v) 1-P.(v) 0
v inverse [1-P.(1)]Py PL(»)Py 1Py

exp(* 27t k coSw)—1

Pf: exp=2mr k )—1 (6D
_{ Py (), .
B 1_P|_(;) (_)1

and

b _ exp( =27 ykycoSé) — 1 63
H™ exp(=2mryky) —1 €3

[exq—ZWerHsinzqﬁ) (+),
|1 (=),

(64)

H. 3w transitions: RepresentativeP . calculations

Figure 5 shows a representative analytical calculation of
P3” in the slice ¢m? tarfw) of the 3v parameter space,
which is relevant for thé& transition in supernovdéeq. (38)]
and for its connection with solar neutrino oscillations. Cal-
culations(solid lineg'* are made at fixeE=15 MeV, m?
=3x10"°% eV?, and takp=4x10"° (P};=0.48), for the
power-law profile in Fig. 1. The upper panels refentdeft)
andw (right) in the case of direct hierarchy. The lower panels
refer tov (left) and v (right) in the case of inverse hierarchy.
Notice that all calculations for this figure involve only el-
ementary functions, the density scale faatbeing explicitly
given by Eq.(15) for a power-law profile.

A glance at Fig. 5 shows two apparent symmetries:
Ped(v) and P v) for direct hierarchy look like the mirror
image of P.((v) and P.(v) for inverse hierarchy, respec-

where, in the last equation, we have used the phenomendvely. This (approxmat@e symmetry originates from the

logical inputs in Egs.(34) and (37), implying that

small value ofUZ, used in the calculations of Fig. 5. Indeed,

27t ykycoSgs>1 for typical supernova potential profiles and neglecting the third ternfproportional tOUe3) in Eq. (69),

neutrino energles

Equation(60) can then be written in the equivalent form

P =UZ P P, +U%(1- PP, +U%(1-Py),

(65)

where the sign assignment fﬁ’rf’H is given in Table 1l for
the four possible combinations of neutrino typesof ») and
mass hierarchydirect or inversg

The neat 3 summary given in Eq9461),(63),(65) and in
Table Il makes the symmetry propertiesl‘éﬁz3 rather trans-
parent. Passing from to v, or from direct to inverse hierar-
chy, appears to simply require appropriate sign flips.

TABLE II. Signs assigned td° and P;, to be used in the
parametrization oﬂD % given in Eq.(65), according to the four

possible combmatlons of neutrino types ¢r u) and mass spec-
trum hierarchy(direct or inversg

Type Hierarchy P Py
v direct + +
v direct - -
v inverse + -
M inverse - +

and using Eq(28) (with the identificationP; =P[’), it is

P3V~ P PZV

ee’

(66)

namely, the 3 probability is obtained from the 2 probabil-
ity through a modulation factdPy; . Using Eq.(66) and the
symmetry properties in Eq$55) and (57), it follows that

P3(v,direct =P}, P24(v) =P, P2%(1)1..,

=P3(v,inversé;. ., (67)
and
v, D D2V/.\_ D D2V
Pee( V,dlreCD— PH Pee( V) - PH Pee( V)l<—>2
=P3(v,inversg,..,, (68)

as previously observed in Fig. 5. We remark that the above
Eqgs.(67) and(68) represent approximate mirror symmetries,
which become exact only fot2,=0. However, forU%,
obeying the bound in Eq37), such symmetries are broken,
at most, at the few percent level.

“The dotted curves in Fig. 5 include Earth matter effects, to be
discussed in the next section.
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3v survival probability (power-law + Earth mantle)

E=15MeV, m*=3x107eV? tanp =4 x 107°
L FRRELLL LG ARLL B USLL I LR AL LB %"”””\ AR L L IR UEELL MR A ELl

AT

o
T

FIG. 5. Three-flavor transitions: analytical re-
sults for Pg. in the mass-mixing subspace
(6m? tarfw), assuming the power-law profile in
Figg 1 and fixing E=15MeV, m?
=3x10%eV?, and takp=4%x10° (P,
=0.48). Dotted lines include Earth matter effects
for a representative path of 8500 km in the
mantle (assumingp=4.5 glcnd and Y.=1/2).
The upper panels refer o (left) and v (right) in
the case of direct hierarchy. The lower panels re-
fer to v (left) and v (right) in the case of inverse
hierarchy.
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IV. INCLUDING EARTH MATTER EFFECTS Pe= Pis. (71)

We briefly review known analytical results about Earth
matter effects, for the sake of completeness and selfThe task is thus reduced to the 2alculations ofPg(») and
consistency of the paper. For recent phenomenological stug(v), which are independent of m? and of the hierarchy
ies of such effects in the supernova neutrino context see, e.gype (direct or inversg Analytical expressions fdPg can be
[7-9,18-20. given for particularly simplgor approximatefisituations of

In general, possible Earth matter effects preceding supeEarth matter crossing.
novav detection can be implemented by the final-state sub-
stitution[5] A. One shell
(UZ;,U%,U%) = (Pep,Pes,Pes) (69 If the v trajectory crosses only the Earth mantle, charac-

terized by an approximately consta@verage density,
in Eq. (60) or Eq.(65), whereP4j=P(v.— v;) in the Earth. Pg(v) is simply given by
Under the assumption of mass spectrum hierafelither

direct or inversg the 3v calculation ofP,; is further reduced Pe(v)=sinfo+sin 20p,sin( 20, — 20)

to a 2v problem([7], k,Sin 20
X sirf SN ) (72
(Pe1,Pez, Peg) =[cOS $(1— Pe),cod ¢ PE,sinzdﬂ.( ) m
70
where L is the total path length in the mantle, aag, is
where defined as in Eq942) and (43) with the appropriate poten-
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tial V in the mantlg Egs.(4) and(5)]. The antineutrino prob-  the core.Pg() is then obtained fronPg(v) through the

ability is obtained through the substitution replacement indicated in EG79).

o In the general case dfl different shells, not necessarily

Pe(v)= PE(v)|V,kLﬂ,V,kL, (73)  with constant density in each shell, the calculatiorPgfcan
also be performed analytically, through the perturbative ap-
leading to proach developed if45] in the context of solar neutrinos.
Pe(v) =sirfw+ sin 20n,sin( 20y —20) V. SUMMARY AND CONCLUSIONS
[ k.sin2w In the context of two-flavorantijneutrino transitions in
X sir? m (74) supernovae, we have described a simple and accurate ana-
m

lytical prescription for the calculation of the survival prob-
— ! ability P.., based on a double exponential form for the

wherewp, is defined through Eq$51) and (52). crossing probability, and inspired by the condition of maxi-

Figure 5 shows an example of Earth matter effe_ct§’§ij mum violation of adiabaticity. The prescription holds in the
for mantle crossing (dotted curves assuming p  \hole oscillation parameter space and for generic supernova
=4.5 glen?, Yo=0.5, andL=8500 km(parameters which gensity profiles. The analytical approach has then been gen-
are of interest for SN 1987A phenomenology; see, €.g.gralized to cover three-flavor transitions with mass spectrum
[8,9). The neutrino potential in the mantle is théfy  nhierarchy(either direct or inverseand to include Earth mat-
=1.7x10" 7 eV?/MeV, implying strong effects forVy  ter effects.

~k_ and thus forsm?~2EV~O(10"°) eV, which may The final prescription foP2% can be summarized as fol-
be relevant in connection with the so-called LMA solution to |o\ys:

the solar neutrino problefi86], as widely discussed recently (i) Assume a supernova potential profiféx)>0.
[7-9,18-20. Notice that the approximate symmetries in i) Fix the mixing anglesh= 65 [obeying Eq.(37)] and
Egs. (67) and (68) are preserved by Earth matter effects, ,_ 4 “ang calculate the matrix element, through Egs.
since they act mainly on the two-neutrihdaransition in the (29),(36). I

hierarchical approximatiofEq. (70)]. (i) Fix the “solar” and “atmospheric” squared mass dif-

_ ferences,dm?>0 andm?>0, respectivelyfwithin the phe-
B. Multiple shells nomenological restrictions in Eq&3)—(35)].

Neutrino oscillations across two Earth shells with differ-  (iv) At a given(ant)neutrino energyE, find the points,
ent densitiegmantle (M) + core (C)] were considered in andxy where the potential/ equals the wave numbeks
[41] in the context of supernovae, and intensively studied in= dm?/2E andky = m?/2E, respectively:

[42,43 on general grounds, with emphasis on interesting in-

terference properties peculiar to layered matisee also V(X ) =KL p.

[44]). Adapting, e.g., the notation §#3] to ours, the expres- ’ '
sion of Pg(v) for a mantle-core+mantle path in the Earth

(L=L+Le+Ly) reads (v) Calculate the corresponding density scale facters
- =M C M

andry as
Pe(v) = sirfo+ W;(W;Cc0s 2w+ W3sin 2w), (75
e(v) L(Wy 5sin20), (75 1 avw]
whereW, ; are the first and third component of the vector fLH=~ V(x) dx
X=XLH
W=2SyY ny+Sche, 76
wY M+ Sen (79 (both >0 for monotonically decreasing).
having definedy as (vi) Assign the= signs inP_" and P}, by choosing the
neutrino type ¢ or v) and hierarchy(direct or inversgin
Y=CnCc—(ny-Nc)SuSc, (77)  Table II, and calculate theR",, through

the vectorsy, andn; as
exp(=27r k coSw)—1

=+

Ny.c=(SiN 2wy ¢,0,— COS 2wy ¢), (79 L exp(x2mr k) —1
andCy, andC; as and
Cy cmcod SN2 79 + 21k cOZ ) — 1
m,c=CO 28I 20y ¢ TM'C (79) . _exp(x 27 4k oS @)

H exp(+2mryky)—1
(and similarly forSy ¢, with cos—sin), wherewy and w¢
are the effective neutrino mixing angles in the mantle and in  (vii) CalculateP3” as
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