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Frame dependence of spin-one angular conditions in light front dynamics
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We elaborate the frame dependence of the angular conditions for spin-1 form factors. An extra angular
condition is found in addition to the usual angular condition relating the four helicity amplitudes. Investigating
the frame dependence of angular conditions, we find that the extra angular condition is in general as compli-
cated as the usual one, although it becomes very simple imthe0 frame involving only two helicity
amplitudes. It is confirmed that the angular conditions are identical in frames that are connected by kinematical
transformations. The higlp? behavior of the physical form factors and the limiting behavior in special
reference frames are also discussed.
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[. INTRODUCTION in the 1970s within light-front dynamics, see Frankfurt and
Strikman[8].) At Q?=0, the chargd G¢(Q?)], magnetic
Bosons with spin 1 are ubiquitous in modern particle[Gy(Q?) ], and quadrupolé¢ Go(Q?)] form factors define
physics. In the standard model the fundamental interactionthe chargee, the magnetic moment,, and the quadrupole
are described by gauge bosons, such as the phdtérand  momentQ,, respectively. In the limit of zero radius of the
Z, and the gluon. These particles are considered to be trulgound stategor large binding energieswhether confined or
elementary; i.e., they occur as quanta of local fields. nonconfined, the values @f; andQ, approach the canonical
In hadron physics many vector mesons composed of aalues[5] of a spin-1 object with mass and charges:
qguark and an antiquark are found and understanding their
structure is a challenging problem in quantum chromody- € £

namics(QCD), related to the mechanism of confinement and M= Qu=- m2° (1.3)
the detailed nature of the interactions between the constitu-
ents. Universality requires that the values obtained in Ehl

Moreover, the deuteron is an interesting laboratory for thenust be the same as those of the fundamental gauge bosons
application of QCD to nuclear physics. At large distances thaV= in the tree approximation to the standard model. Also, at
deuteron is evidently well described as a spin-1 composite dfirgeQ? (in the limit Q> V2mMA ocp), these form factors are
two nucleon clusters with binding energy2.2 MeV, to-  required to approach the universal ratios given by
gether with small admixtures &A and virtual meson com-

ponents. However, at short distances, in the region where all . . 2 Q? ..
six quarks overlap within a distanée~1/Q, one can show Gc(Q9):6m(Q):Go(QY) = | 1~ 5] :2:-1, (1.2)

rigorously that the deuteron state in QCD necessarily has
“fractional parentage” 1/9np), 4/45(AA), and 4/5 “hidden  which were obtained in a light-cone frame with" =0.
color” (nonnuclear components[1]. At any momentum Equation(1.2) should hold at large momentum transfers in
scale, the deuteron cannot be described solely in terms afie case of composite systems such asptheeson and deu-
conventional nuclear physics degrees of freedom, but in printeron, with corrections of ordef ocp/Q and Agep/m ac-
ciple any dynamical property of the deuteron is modified bycording to QCD. The ratios are the same as those predicted
the presence of non-Abelian “hidden color” componeis  for the electromagnetic couplings of th¢" for all Q2 in the
Alternatively one may describe the deuteron structure irstandard model at the tree level.
terms of uncolored degrees of freedom only, but then a tower Furthermore, there are constraints on the current matrix
of excited nucleons and'’s is involved[3,4]. elements, since there are only three form factors for the
Although these spin-1 systente.g., W=, the p meson, spin-1 systems. A constraint well known from the literature
and the deutergndo not seem to share a common internal[9] is the angular condition obtained by demanding rotational
structure, the universality of spin-1 systefb$ severely con- covariance for the current matrix elements given by
strains them. According to this universality, the fundamental
constraints on the magnetic and quadrupole moments of had- Gh.n=(p"h’'|3*|ph), (1.3
ronic and nuclear states imposed by the Compton-scattering
sum rules[6] and the behavior of the electromagnetic form where|ph) is an eigenstate with momentusand helicityh.
factors of composite spin-1 systerfig at large momentum For example, in the Drell-Yan-We¢DYW) frame and the
transfer are the same as those of a corresponding elementdrgmes that are connected to the DYW frame by only kine-
particle of the same spin and charg€or a review and ref- matic transformations, the angular condition is given as
erences to the early calculations of the deuteron form factorkb,9,10
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(1+27I)Gi++Gi——\/S_WGJto—GSfO' (1.4) In this work, we analyze the frame dependence of the
angular conditions for spin-1 systems. Interestingly, in addi-

where »=Q?4m?. Kondratyuk and Strikmarf11] have tion to the angular condition given by E@l.4), we find
shown that the additive model for the current operator ofanother one. Elaborating the frame dependence of these an-
interacting constituents is consistent with the angular condigular conditions in the generalized Breit and target rest
tion only for the first two terms of the expansion &f in  frames as well as the DYW frame, we confirm the advantage
powers of the momentum transi@r If the angular condition of using the DYW frame in the calculation of exclusive pro-
is not satisfied, an identical extraction of form factorscesses. The complexity of each angular condition in general
(Gc,Gw,Gg) from the light-front current matrix elements depends on the reference frame. In the DYW frame, the extra

ferent extraction schemes for the spin-1 form factors in thdc@l models are expected to satisfy it without any difficulty.
literature[5,12—14. As an exampleG¢, Gy, andGq can We also substantiate that the angular conditions are identical

be given in terms 06 ", Ggo, andG_ in the DYW frame in refe_rence frames that are co_nnepted by.kinematicgl trans-

4" =0, q,=Q, andg,=0 as follows]5] formatlons. _Such an investigation is also important in ana-
T Y lyzing the highQ? behavior of spin-1 form factors. We con-

firm that the angular conditions are consistent with the high-

+ J—
Ge= = 1 1_6 7 Gio 27-3 G Q? behavior predicted by perturbative QGBQCD for the
2p (27+1)| 3 " \25 3 three physical form factorgb,9,10.

In the next sectior{Sec. I)), the front-form(LFD) polar-

ization vectors are presented in arbitrary frames. In Sec. lll,

' we derive the relation between the current operator and the
form factors and starting from general grounds obtain the
most general angular conditions. We show that there are in-
deed two angular conditions and discuss the reason why they
should be regarded as consistency conditions. In Sec. IV, we

elaborate the details of the angular conditions in the DYW,
generalized Breit, and target-rest frames. In Sec. V, we dis-
cuss the large momentum transfer behavior of the form fac-
(1.5 tors in each reference frame. We also consider the limiting
' behavior of the form factors in approaching special Breit and

However, other choices of the current matrix elements can birget-rest frames. Conclusions follow in Sec. V1. In Appen-
made to express the right-hand side of Ef.5) and the dix A, the front-form boost and helicity operators generating
expression also depends on the reference frame. A few efhe polarization vectors used in this work are summarized. In

amples of other expressions on the right-hand side of E¢f\PPendix B, the kinematical Lorentz transformations that
(1.5 can be found in Ref[15]. The angular conditions are connect the different frames are detailed in specific cases.

also useful in testing the validity of model calculations. Es-
pecially, as stressed in the recent literafiré—20, the zero-
mode contribution is necessary to get the correct result for Il POLARIZATION VECTORS IN LIGHT-FRONT
the form factors unless the good component of the current is DYNAMICS
used. Even if the good component of the current is used,
was noted that the zero-mode contribution is necessary f
the calculation of spin-1 form factof21]. Such an observa-
tion of zero-mode necessity has been made by checking the
angular conditions and the degree of necessity can be quan- 1
tified by examining the angular conditions. €(0)=(0,0,1), &(*x)=F—(1,%i,0). (2.7

As discussed above, the constraints from universality and V2
the angular conditions are in principle very useful for model
building and a self-consistency check of theoretical or phe-
nomenological models for spin-1 objects. However, these We define the polarization vectors in a specific frame by
constraints do depend on the reference frame. For examplbposting the four-vector§0,6(M)) to that specific frame.
in the Breit frame wherg™ # 0, a less informative prediction The vectors we obtain will depend on the Lorentz transfor-
of asymptotic form factors is made?2] instead of Eq(1.2): mation. In the front form we need the kinematical front-form

boosts. They are given in Appendix A.

We note that the LF components we use satisfy the fol-
2y. 2 .
Gc(Q):Go(Q7)— 6m7'1 (1.6 lowing relations:

2 +
+ §(277— 1)G_

Gy o | 29-1) S
M_2p+(27]+1)_( n— )\/ﬂ

oo 1 Gio_ 7+1
O 2pT (29t | " 2y

't For the polarization vectors in three dimensions we use
%he standard spherical tensors for spif23]:

2

in the limit Q>2m. Thus, it is important to examine the
frame dependence of the constraints that are useful for model ﬁf =-2p'p', p-g=p"q +p q +pq+pdq,
building and phenomenology. (2.2

073002-2



FRAME DEPENDENCE OF SPIN-ONE ANGULR . .. PHYSICAL REVIEW D 65 073002

where we use the spherical components of the three momen- Gﬁ/hzs*a(p’;h’)\]gﬁsﬁ(p;h)' (3.3
tum vectors to simplify the notation. They are defined as
follows: This form can be derived on very general grounds. First, we
) . write down all tensors of third rank that can be constructed
(__ Pxtipy o PxT iRy (2.3  UsiNgg,s, p'*, andp* alone. There are 14 possible struc-
va o Vv o ' tures. As the matrix elements are obtained by contracting

with the polarization vectors**(p’;h’) ands?(p;h), the
Occasionally, we use the notatig with h=+1,0~1 for  structures containing a factg, or ps do not contribute to
p", p,, andp', respectively. Then the usual relation for the matrix element. Therefore, only six remain and we write
spherical tensors applies:

Jop(P', ) =T190sP" “+ T2905P" + f3045P 5+ F405P,

(P*=(=1"p~" (2.4
+Eep Pl fep PPl (3.4)
The polarization vectors in the rest system, where the 5P PaPp TeP PaPs
four-momentum has the LF componentp™(p*,p?p~) Second, we require current conservation, which means

=(m/v2,0,0m/v2), are a,Ghn(p’,p)=0 for all u, h’, andh. Contracting withg

By(+£)=(0F1N2,~iIV2,0), #4(0)=(1W2,00-12).  9VeS

2. )
9 0=(f1—f2)gup(Mm*=p"-p)+ 130,05+ 40P,
Upon application of the front-form boost, EGAS), we find S,
the polarization vectors +(fs—fe)PaPp(M™—p’-p). 3.9
( -1 —i pf We can immediately conclude th&j{=f, and f5=fg. In
(0,—, —, —) order to reduce the number of terms further, we again con-
A 2 v2 P tract with the polarization vectors and see that
eq(p™,p,p5+) p* p! p? pr2—m?
en(p*,p',p%0) ¢ = (F'E'E'zm—+)' e*(p’;h")-q=—¢*(p';h")-p, &(p;h)-q=e&(p;h)-p’.
en(p*,ptp%—) P 3.6
1 —-i p
(O,—, —, p_+) . So we are left with the termf(— fg)pap/’;. This structure is
\ V2 V2 P independent of the one containinfs - fg), because the lat-

26 ter originates from a term that contains the fagbdt -+ p#

It is easy to check that these are mutually orthogonal, trané’-"ﬂ!leh the form(ra]r doels nk(])t. So we concludfe tﬁgf,t=f4,
verse, and satisfy the closure property if one uses the fronhich means that only three independent form factors re-

form for the metric. ' . o .
Next we impose Hermiticity: i.e.,

For a spin-1 particle the current operator has the form

which gives, after some rearrangement,
Iis(P',P)=—0ap(P’ +P)*F1(0?) + (950~ gh0p) F2(a?)
g , g e*“(p’;h")34s(p’.p)e’(p;h)
. dudp(p’+p)*

o Fald?), (3.2) =e*%(p’;sh") 4% (p,p")e(pih). (3.8

where the momentaandp’ are the momenta of the particle This is an identity for allp, p’, h, andh’, so we find
before and after absorption of a photon with momeniym p o ,
=p’ —p. The coefficient function&;(Q?) in Eq. (3.1) are Jap(P',P)=Jga (P,P). 3.9

[ he physical f f Die.
given by the physical form factors: i.e., If we apply this identity to the structures we found, we see

2 that the coefficients of the tensors must be real, which means
F1=Gc—37Gq, thatF,, F,, andF; in Eq. (3.1) are reaft
The symmetry ofi;5(p’,p) entails relations between the
Fo=—Gy, matrix elements too. If we, in addition, applﬁ(h)*

=(- 1)“5(— h), which we owe to the fact that the polariza-

(3.2 tion vectors are standard spherical tensors, we can deduce

2

A spin tensorG is obtained by taking matrix elements with  INote that the kinematic region for this discussion is space like,
the polarization vectors, viz., i.e., g°<0.
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Gii(p' . P)=(—D" G, (p'p). (.10 Ghp(2)=—p"-e(p;h)s**(p';h")
The explicit expressions we are writing down in the next —p-e*(p";h")e*(p:h),
sections of course satisfy these identities.
Equation(3.1) can be split in an obvious way into the u (p'+p)* o
piecesJ(1)F;, J(2)F,, andJ(3)F5. Then we find for the Ghin(3)=— 5z P -e(pih)p-e*(p";h").
polarization tensorG=G(1)F;+G(2)F,+ G(3)F; with (3.1

the partial tensors

u , . Clearly, we need three simple scalar products which we shall
G (D) =—(p"+p)*e*(p';h")-e(p;h), write in the front form only:

*(p':0)- -0)—p/ﬂ(ﬁi_mmp+2(ﬁi2_m2)‘zp'+P+ﬁi-m
e (p, e(p;v)= 2m2pr+p+ )
pl+ph_p+p/h

e*(p’;0)-e(p;h)= —

1+h'h
2 1

e*(p'ih')-e(pih)=~

p'+2ﬁf+p+2ﬁ12+m2(p'+2—p+2)—2p'+p+ﬁi'Fﬂ
!+t ’

2mp' " p

e*(p';0)-p=

r+n~—h +n’—h

pp —pp
pr+ 1 (312

e*(p';h)-p=

where we made the obvious identificatiph= 1< p’, p"="1epl.
Using these expressions, the matrix elements of the polarization tensors can be easily found. Hermiticity follows from the

simultaneous replacemens-p’ andp'« —p'.

A. Symmetries of the polarization tensor

The formulas above tell us that the polarization tensor has the following forms

a G g
G(i)=| b d —bf|, (3.13
e —cf aq

which is valid for all three contribution&(i), i=1,2,3. Using an obvious notation, we find for the complete polarization
tensor the form

a;F,+asF; c1F1+cyFy+csFg e;F3
e;F, —(c1F1+coF,+c3Fg)* a;F;+asF;

Gi, Gi, Gi_
=| Gor Ga Go |. (3.14
G', G, G'_

Apparently, the tensor components we obtain here satisfy an additional identity
GIl,=G ' _=GI*. (3.1
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This result is specific for the choice of it is true for the g 1 d, azd; —a;d,
good current)™, but does not apply to the terrible current Fo=g| ~ 2. CatCat —( o —
J~. The matrix element$>, and G__ are not real, but 2 ' s (3.18

they are complex conjugates. _ _
Using the explicit expressions, we see that the nine matrix The relations, Eq(3.10, reduce the nine complex ele-
elements ofG have four relations that involve a phase factorments of the polarization tensor to nine real numbers. As

only, viz. there are only three real independent form factors, we need
six linear relations to realize the reduction from nine to three.
Gi,=G’_, GI_=G*, Gj_=-Ggr, The equations above serve this purpose. By equating the real
and imaginary parts of the two sides of the first three of Eqs.
Gi,=—G*;. (3.16  (3.18, we find six relations that must hold for the compo-

W d tw tions that the fact that th nents ofG},, . Having thus achieved the reduction to the
© nee 0 more equations that express the fact that Neig; iy im number of independent functions, the other equa-

are iny three independent form facftqrs. These ConSiSten(‘t}/ons must be considered to bensistency conditionés the
cond|t|on§ are the ?wo angular conditions proper. Since VShree equations expressikg in terms of the tensor compo-
are working only W'.th the+ component of.the current, we nents are not independent, but form a system of rank 2 only
shall use the following shorthand notation: one complex equation or two real ones remain.

G,=G!,=G™*, G,=G},=—-G* In the literature usually only one is given, said to be the

aoTr o 0+ 0= angular condition From our considerations it must be clear
G.=G'y=—-G'*, Gy=Ggo, that there are indeed two conditions.
Ge=Gf+=Gi’i. (3.17 B. Angular conditions

) . ) The angular conditionfAC) can now be formulated suc-
We can now solve folF; in an obvious way. First, we cinctly:

obtainF; from G, thenF, from G, andF;. Then, we have
a choice whether we want to obtéf} from Gy, G, or Gy’ Fo=FS, F5=F3, FS=F3. (3.19
these solutions we denote B, FS, andFY, respectively.
As these results must coincide, the identity of these thre
results form the angular conditionsF5=F5=FJ. We find

é(Ve shall write these conditions explicitly for unspecified ki-
nematics.
The first one, denoted henceforth by AC 1, is

1 ag b_pc_
-G, —— FO-FS=0
F1 alGa ae Ce 22
B pr+_p+ s m2 (p/++p+)2
F3:iGe, - p/+ + a 2 (p/+pr_p+p/r)2 e
€3
p* 1 G
b L[ _ b aghy—a;bs T e
2 b2 a b ae; el p,+ 1
+M— ———1———7Ge. 3.2
1 Cq aszCi—a;Cs p" p'Tp'—pTp" C 329
F§=— - Ga+Gc el .
Col & a,€3 The second one, AC 2, is
Fo—F3=0
:[_i_i_ m2(pr+2+p+2)+2(pr+pr_p+plr)(pr+p|_p+pl|) }G _m£ 1 G
p/+ (pr++p+)[m2(p/+_p+)2+2(p/+pr_p+p/r)(pr+pl_p+pll)] a p/+ p/+pr_p+p/r b
- 2m2p/+p+ 1 - m2 p/+2_p+2
pr++p+ m2(p/+_p+)2+2(pr+pr_p+prr)(p/+p|_p+pr|) d 2pr+ (pr+pr_p+prr)2
- m2 m2(p7+2_p+2)2+2(p/+2+p+2)(pr+pr_p+prr)(pr+pl_p+pr|) s
2(p" +p ) (p' P —pp'")? [m*(p' " —p¥)*+2(p" " p"—p p' (P "p'—pTp')] ¢

(3.21

The last one is
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F5—F3=0
:[_i_i_ m2(pr+2+p+2)+2(p/+p|_p+pr|)(pr+pl_p+prl) }G _mﬂ 1 s
p+ (p/++p+)[m2(p/+_p+)2+2(p/+pr_p+p/r)(p/+pl_p+p/l)] a p+ p/+pr_p+p/r c
2m2pr+p+ 1 s
pr++p+ mz(p/+_p+)2+2(p/+pr_p+p/r)(p/+p|_p+p/|) d
m2 p/+2_p+2 m2
+| —
[ 2p+ (pr+pr_p+prr)2 2(p/+p+)(pr+pr_p+prr)2
XmZ(p/+2_p+2)2+2(p/+2+p+2)(pr+pr_p+plr)(p/+pl_p+pll)}G (3 22
[mZ(pr+_p+)2+2(p/+pr_p+p/r)(pr+pl_p+p/|)] e- .

If we substitute Eq(3.20 into Eq.(3.21), we see that it is equivalent to E@.22), as it must be, because these equations
are not independent as there are only two independent angular conditions.

Clearly, these conditions are quite complicated. We can simplify them by factoring out some common factors, at the same
time avoiding denominators that may vanish. Instead of E220),(3.21) we get the conditions AC 1,

2(p" =pN)(P TP =P TP AP TP = p P )Ga—2mp A (p' TP —pTp ) (p' Tp'~pTp")Gy
+2mp F3(p’ T p —ptp'N2G+mA(p’ = pt)(p' T +ph)A(p' Tp'—pTp’)Ge=0 (3.23
and AC 2,
2(p' P =ptp’HAMA(pTP=2p TpT—p T +2(p" TP —pTp’ (P TP —p TP )IGat2m(p’ T HpT)(p TP —p ')
X[m?(p’ " =p*)2+2(p" *p"—p p' ) (p' p'—pTp’)IGp+4mPp FA(p' T —pTp’")?Gy+ m m(p' F2—p*?)?
+2(p*2+2p pt—p ) (p"p —p p ) (p' ' ~ptp')]G=0. (3.24

Clearly, these conditions are minimal, as we cannot eliminate IV. SPECIFIC FRAMES
any of the five tensor components to obtain a simpler one.
It is useful to realize the phase relations that occur. Inf
addition to the relations expressed in E(13, (3.16 we
can use the fact thap()* = —p" and the fact thaG, andG4
are real to infer that both angular conditions have the form

We consider three specific frames: the Drell-Yan-West
rame, Breit frame, and target-rest fraifiéRF). For simplic-
ity, only the kinematics and the angular conditions in the
form F5—F5=0 (AC 1) and F5—F3=0 (AC 2) are pre-
sented in this section.

C,G,+Cpe '?Gp+ C.e' G+ CyGy+Cee 2%G,=0,
(3.29 A. Drell-Yan-West frame

_ . 1. Ki i
where the coefficient€,,...,C. are real andp is the argu- inematices

ment of the complex numbex’ *p'—p*p’", given by For the DYW frame,
_ PRy Ry p=(p*.00m?/(2p")),
tang= Pl —p Dy (3.26
This angle can be set to zero by a rotation of the reference a=(0.ax.dy ,df/(2p+)),

frame about thez axis. This rotation being kinematical in
LFD, we may expect the phase relations to be satisfied al-

wa p'=p+q
ysS.
It may turn out for some kinematics that these relations
simplify. This happens to be the case in, e.g., the DYW =(p*,q, dy (ﬁf+m2)/(2p+)) (4.1)

frame, wherep’*=p* and g, =0. Moreover, wheng is

purely longitudinal, i.e.§, =0, we can rotate the reference

frame such thap, =p; =0. Then, both angular conditions with the identificationg,=Q cos¢, q,=Q sin¢, one finds
are identically satisfied, as all coefficients vanish. the explicit formulas
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p=(p*,0,0m?/(2p")), e %Gy +e'?G.=0. (4.9
q=(0,Q cos¢,Qsin¢,Q?/(2p")), AC 2:
p'=(p*,Qcosep,Qsing,(Q*+md)/(2p™)) (2m?+Q?)G,+2v2mQe '*G,—2m?Gy+2m?e 2'¢G,
(4.2) =0. (4.5)
and
B. Breit frame
q=- gemﬁ, ql:ge—uﬁ 4.3 1. Kinematics
v2 v2 We define the quantitys as
2. Angular conditions Q 2
We write the angular conditions mentioned in the previ- =\ 1+ m) ' (4.6
ous section.
AC 1: Then,

2mB—Qcosfd Qsinfdcos¢yp Qsindsing 2m,8+Qcos€)
2v2 ’ 2 ’ 2 ’ 2v2 ’

p/

(2m,8+Qcos€ Qsinfcos¢p Qsindsing 2mB—Q cosh
2v2 2 ’ 2 ’ 2v2 ’

0 0
( Qcos Qcos ) ' @7

,Qsinfcosgp,Qsindsing,—
Q $,Q ¢ s

2. Angular conditions

By now, we give only the two linearly independent conditions. We simplify the expressions as much as possible by dividing
out common factors to find the two conditions.
AC 1:

—2v28Q? cosd sir? 6G,+ (28m—Q cosd)?sinfe %Gy,
+(28m+Q cosh)? sinbe' *G,.— 8v2 Bm? cosfe %' ¢G,=0. 4.8
AC 2:
—[4BmQcosf— Q?cog 6+ 2B2(2m?+ Q3?sir? 6)]sir? 6G,— 4v2mQ(B? sir? 6—cos 0)sine G,
+(2B8m+ Q cosh)?sir? 6G4+[(8m?+ Q? sir? A)cos §-+4BmQcosd sir? 6—48°m? sir? §le 2'¢G,=0.
(4.9

We note that Eq94.8) and(4.9) are reduced to results in the DYW frame, E@k4) and(4.5), respectively, ifd= 7/2 as they
should, because the two frames are related by a kinematical transformation in that case and the angular conditions do not
change under any kinematical transformation.

C. Target-rest frame
1. Kinematics
Using againB and «, defined as

Q2

T om’

K (4.10

we find
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m m
p=|—,0,0—].
(fz V2
_ k+ BQ cosh ) ) ) k— BQ cosh
= ( —‘/2 ,BQ sinf cose,BQ sindsin g, —‘/2 ) ,
I pige|MTKEBQCOSE L Mt Kk—BQcosh
p —p+q—( v ,BQ sinfcos¢,BQ sindsing, ", ) (4.11

2. Angular conditions

We give again only the two conditions after simplification by dividing out as many common factors as possible.

AC 1:

— B?Q?(k+ BQ cosb)sir? G, +v2Bm?Q sinfe” ' ?Gy+v2 BQ(m+ k+ BQ cosh)?sin he' *G,

—(k+ BQ cosh)(2m+ k+ BQ cosh)?e 2 *G,=0.

AC 2:

(4.12

— B2Q? k?+ 4xkm+2m?+ B2Q?+2B(2m+ k) Q cosé]sir? 6G,+v2BQ(2m+ k+ BQ cosh)
X[ k?+2BKQ cosf+ B?Q? cos 20]sin b~ "G, + 2 82°Q%(m+ k+ BQ cosh)? sir? 0G4

+[(k+ BQ cosh)?(2m+ k+ BQ cosh)?+ B2Q?(k>—2m?+ 2 Bk Q cosh+ B2Q? co 6)]sir? fe 2 ¢G,=0.

We note that Eq94.12 and(4.13 are identical to Eq94.4)
and(4.5) if Bsin6=1.

V. LIMITING CASES

In order to be able to interprete the angular conditions, we

studied the dependence @ in the limits Q—0 and Q
—oo. We shall use the notation

AC 1&RIG,+REG,+RIG+RIG,=0,
AC 2sR2G,+R2G,+R3G4+ R2G,=0. (5.2)
A. Q—0 limit

Using the definition of the physical form factors @f
=0, ie.,

eGe(0)=e, eGy(0)=2mu;, eGgy(0)=m?Q,,
(5.2
we find, from Eq.(3.2),
2mu
Fi(0)=1, Fp(0)=——_—,
2m m?
F3(0)=—1+ e’“+%. (5.3

(4.13

According to the universality condition given by E@.1), in
the limit of bound-state radiuR— 0 the form factord=;(0)
for i=2,3 are reduced to

F,(0)=—-2, F3(0)=0. (5.9

Since the target is intact in th@—0 limit, p#=p’#* and
thus we findG,=Gq or G|, =Ggy. All other spin-flip am-
plitudes vanish in this limit regardless of reference frames.
This can be understood because the spin would not flip if the
target is intact and also the direction of spin would not matter
in this limit. Moreover, all the coefficient&R},, etc) in Eq.
(5.1 vanish inQ—0 limit, and thus both angular conditions
AC 1 and AC 2 are trivially satisfied.

B. Behavior for Q—«

Imposing a naturalness condition—namely, all three terms
in Eq. (3.1) should be of the same order @—one can find
that the form factorsF;(Q?) behave asF;(Q?)~F,(Q?)
~(Q%/m?)F4(Q?) in the largeQ? limit. Using this, we can
derive the high®? behaviors of the helicity amplitud@ﬁ,h
and the coefficient¢éR),, etc) of the angular conditions. In
Table |, we summarize the results.

As we can see from Table I, the highbehavior of each
helicity amplitude in general depends on the reference frame.
This is so because the helicities and components of the cur-
rent do mix in general, although the physical form factors are
of course identical for anyQ regardless of the reference
frame. Only in frames connected by a kinematic transforma-
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TABLE |. Leading behavior forQ—« of the tensor component§,,...,G., and the coefficients
RiRg in the different reference frames considered. The Breit fraBf® and TRF are kinematically
connected to the DYW frame only in particular anglag= 7/2 and 6= 6,=sin"}(1/8), respectively.

Qe
DYW Breit TRF

0+ 0,72 9= /2 9=0 9+ 0,6, 9=0 0= 16,
Ga 1 Q Q Q & Q? 1
Gp Q Q* Q? 0 Q! 0 Q
Gc Q Q?* Q? 0 Q? 0 Q
Gy Q? Q° Q° Q° Q! Q* Q?
Ge 1 Q Q 0 Q? 0 1
R: 0 Qs 0 0 QS 0 0
RE 1 Q? Q? 0 Q? 0 Q
R: 1 Q? Q? 0 Q° 0 Q
Re 0 Q 0 Q Q° Q° 0
Rg Q2 Q4 Q4 0 QS 0 Q4
R? Q Q Q? 0 Q° 0 Q?
Rg 1 Q2 QZ 0 Q8 0 QZ
Ré 1 QZ QZ 1 Q8 0 QZ

tion that keeps the light-front time=t+z/c (=0) invariant  constantsa andb. Both angular conditions, AC 1 and AC 2,
are the helicity amp"tUde@;fh the samd24]. Indeed, our are satisfied independent afandb. Thus both angular con-

results summarized in Table | are essentially identical in ki-ditions are consistent with the PQCD predictions.
nematically connected frames such as DYW, Bre@ (  Onthe other hand, in the frames that are not connected to

=m/2), and TRF @=6,).2 Note thatf,— = in the limit ~DYW by a kinematical transformation the results are not
Q—. Itis interesting to find that in all cases the behaviorconsistent with the PQCD predictions as one can see from
of the helicity amplitudes in these frames is consistent with'@ble I. Since there are contributions from embedded states
the perturbative QCD predictions obtained in thgg=0  [26]in g” #0 frames, there are no reasons why they should
frame. Indeed, PQCD predic{®5] that the helicity-0 to be consistent Wlth the I_eadmg-order PQCD _pred|ct|ons. Nev-
helicity-0 matrix elemenG, (or Gg) is the dominant helic- ertheless, it is interesting to note thay dominates regard-

ity amplitude at largeQ? [5]. For example, in the deuteron less of the refer(_—:-nce frame. We now discuss some details of
form factor[9] calculation using the factorization theorem of AC 1 @nd AC 2 in each reference frame.

PQCD one can show that the five intermediate gluons con-
necting the six quarks can be arranged in such a way that the
gluon polarizations and quark helicities alternate to allow a The first angular condition, AC 1, is simple. It reads
maximum amplitude when the initial helicity-0 state transits

to the final helicity-O state. Further, in thg" =0 frame, e %G, +e'?G,=0. (5.6
PQCD predicts that the helicity-flip amplitudeﬁio(GC)

and G _(G,) are suppressed by factors ©f andQ?, re-  The leading® behavior of the left-hand sid&HS) of AC 1

1. Drell-Yan-West frame

spectively: is
AQCD AQCD 2 + 2
Ge=a—2-Gq Ge=b|—2=| Gq, (5.5 m PR m
Q Q —(R;Gp+R;G,) ~ ———|4F+2F,+ —F
Q( bGb+R:Ge) oy | AP 2Rt 57 Fs
wherea andb are constants and there are also corrections of + m2
order A gcp/m [5,22]. Our results, based on the naturalness + —(4F1+ 2F,+ §F3).
condition, coincide with these PQCD predictions. From the 2v2
table, we also find thaG , (G,) should be suppressed by (5.7
two powers ofQ compare to the dominasg, in the highQ
limit. However, neither our analysis nor PQCD can fix the Qo

So if we assum&; ~ (Q%m?)H; andF,, F,, andH; are
of the same order iQ? for Q—, then both terms are equal
2The reason for an extra powérfor the Breit (/= 7/2) and TRF  in magnitude.
(6= 6,) frames in comparison to DYW can be understood by the AC 2 is more involved, but still easy. Its LHS behaves for
kinematic factors in the relation betweeB4,Gy ,Go) andG,,,.  Q—o to leading order as follows:
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2 Q- 1 1
(R2G,+R2G,+ R3G4+ R%G,) ~ m?p™* §(4F1+H3)—(4F1+2F2+H3)+§(4F1+4F2+H3) . (5.8

Q| 3

The term involvingG, does not contribute in leading order.

2. Breit frame

First AC 1. We multiply by (/Q)*:

m* Qe 1
E(R;Ga+R%Gb+RgGC+RgGe) ~m? —Z(4F1+H3)Sin2 6 cosd
(4F+4F,+Hg)cosO+{4F+F,(3+cos 29) +Hj} o
8(1+cosh)? sin
4F,;+4F,+H3)cosf—14F;+F,(3+cosd)+H
_( 1 2 3) {4F 1+ F( ) 3} sinf ol (5.9

8(1—cosh)?

Actually, RéGe is two ordersQ/m down compared to the other three terms. The contributions of the three terms that remain
in leading order will depend on the angleFor example, fo= 0 all vanish identically and we find that then the leading order
is lower than Q/m)*. For #= /2 only the termsR%Gb and R(%GC survive and cancel each other.

The leading order of AC 2 isQ/m)®. We find

5 Qﬂoo
m 4F,+H 4F,+2F,(1+cosf)+H
1 3sin4 0+ 1 2( ) 3

5 (R2G,+R2Gy + R2Gy+ R2G,) ~ md| — sirf 0
aBGaT RpGp+ RiGy+ ReGe 4v2(1—cos6)?(1+ cosb)

Q5
4F+4F,+H3)(3—4 cosf+cos 20
(4R, 2+ Ha) )sin60 , (5.10
16v2(1—cosh)*

and again the term witfs,, is not of leading order. Fof— 0, the first term is of orde#*, while the two others are of order
62 and cancel each other exactly at this order. So for smtile contributions oG, andG4 dominate. For= 7/2, all three
terms are of the same order. This situation corresponds exactly with AC 2 in the DYW frame.

3. Target rest frame
Since the leading term in AC 1 is of orde®(m)&, we multiply it with (m/Q)® and find

m® Q—=m? sir? ¢
1 1 1 1
§(RaGa+ R,Gp+ R:G.+R:Ge) ~ 51—2\&[(—48— 64 cosf— 16 cos V)F+(—2+2 cos 26— 2 cosd

+2 cosf cos 20)H;+ (48+ 64 cosh+ 16 cos H)F4
+(—12cosf—4 cosh cos 20— 16 co §)H,
+(10+ 15 cos#+ 6 cos 2+ cos 3)H]. (5.11

The contribution fromG, is not of leading order. The other three terms are comparable in size, but the details depend on the
angleé.
AC 2 is different, as onlyG, and G contribute in leading order, which i€/m)*2. We find
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mt? , . Q7T m’sin 6
@(Rbi—l— RiGy) ~ W[ —(4F+4F,+H3)+ (4F;+4F,+Hj3)]cosd(1+ cosh)(3+4 cosf+ cos 20).
(5.12
|
VI. CONCLUSIONS tional Science FoundatiaiiNT-9906384. B.L.G.B. wants to

, hank the Department of Physics at NCSU for their hospital-
In this work we elaborated the frame dependence of th.(i%ty when this work was completed. C.R.J. thanks for the

angular conditions for spin-1 systems. We found that there i o ) - ; .

an additional angular condition in addition to the WeII-knownESf’iﬁga::g ﬁgi:h'?'hzh%zﬁﬁ g:rrz)allirrgr;esnutpztrc\(/)rrl#epuLtli?:g\;/eCrZSelrtﬁletr
) b . . )

one given by Eq(1.4). In theq” =0 frame including DYW, and the National Energy Research Scientific Computer Cen-

Breit (0:77./.2)' gnd TRF b= 00.)' we find that the ac_id_l- ter are also acknowledged for the grant of computing time.
tional condition is very simple involving only two helicity

amplitudes as shown in Eq4.4 and most quark models

rather easily satisfy it. Thus it does not seem to provide as APPENDIX A: - CONVENTIONS OF POLARIZATION
strong a constraint as the usual condition, Eg5). How- VECTORS AND LF BOOST AND HELICITY OPERATORS

ever, inq” #0 frames, the additional condition is generally  \we note that sometimes in the literature calculations are
as complicated as the usual one. Sinceghe-0 frame(e.g.,  performed using LF dynamics, but at the same time employ-
DYW) is in principle restricted to the spacelike region of thejng instant-form polarization vectors. In this work, we have
form factors, it may be useful to impose the additional con-;sed the LF polarization vectofsee Eq(2.6)] generated by
dition in processes involving the timelike region. As a resultine |LF boost and helicity operatof&9,30 briefly summa-

of the recent developmef27] of the effective treatment in  yized below.

timelike exclusive processes, we can see that the range of |y order to define the conventions in this work, we define

applicability for the angular conditions ig™ #0 frames is the front-form component#=(p*,p,pp~) with the
quite broad. Nevertheless, it seems rather clear from oUjefinition

spin-1 form factor discussion that the analysis of exclusive

processes is greatly simplified in the DYW frame and in pO:+ pd

generalg™ =0 frames. We note that the angular conditions p-=

given by Eqgs(4.4) and(4.5 are identical in any frame con- \Z

nected to the DYW frame by kinematical transformations.
We also find that both angular conditions in th&=0

frame are consistent with the PQCD predictions. Our predic- 0 0 0

tions for theQ dependence of the helicity amplitudes based

on the naturalness condition as well as the angular condition _ _

are also consistent with the PQCD predictions given by Eq. 9= 197

(5.5. However, the proportionality constardsandb can be

fixed neither by our analysis nor by PQCD. Some other in-

puts such as experimental data are needed to find these V"’Fhe kinematical front-form boost is given by

ues. For example, in the deuteron analysis a value near 5 was

obtained fora [28]. Nevertheless, it is interesting to note that SN _iAsl PL _ioKk3

for some particular values & and b the relations among Lir(0, 3 x) = exp(—IV2o™- B exp —ixK™), - (A3)

F1, F2, andF; are greatly simplified. Foa=b=0, we find  \yherek3=M~* is the third component of the boost genera-

thatF,/F,;=—2 andF3/F;=0, which are identical to EQ. {gr and the generatos! andE? are given by
(5.4) for a point particle. Since the form factors for a point

particle do not depend o®? at the tree level, one can un- 1 1

derstand this universality result rather easily. Also, or El=MTl=—(K!+J?), E?=M*"2=—(K?-J%).
=v2m/ A gep and b=2m? A2, we find thatF,/F,=—1 \Z V2

and F;/F;=—1. Even though the results are simple for (Ad)
these particular values @ andb, it is not yet clear what In the same convention, the LF helicity operator is given
their importance is. In order to analyze the values ahdb, by

one may need to have some sort of bound-state information

for the spin-1 system. Work along this line, using a simple hﬁ:exq_iﬂl;L_éL)JS exqiﬂJL.EL)_ (A5)

but exactly solvable model, is in progress.

(A1)

The metric tensogy is then

(A2)

= O O
o
|
H

O O O

One can write it in operator form as
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This operator is clearly a kinematic one, &5 P!, P?, EL, b. Transverse boosts
andE? all belong to the stability group of* =0. The helic-
ity has the eigenvectors;(h) with h=0,=1, Eq.(2.6), and

a fourth eigenvectof0,0,0,1. The latter does not correspond
to a genuine polarization vector. It has only a minus compo- 1 0 0

nent, which means that it is orthogonal to all four vectors Lo, :0)=| v25. 1 ol (B1)

with p~ =0, i.e.,p" — .
2 V2o, 1

We write L¢(v, ;0) explicitly

APPENDIX B: SYMMETRIES OF FRAMES AND

RELATIONS BETWEEN DIFFERENT FRAMES The transverse boosts are not symmetries of the target rest

In this section we give the kinematical Lorentz transfor-frame. ' '
mations that connect the different frames in specific cases. If we apply it to the DYW momentum transfer, we find
We stress that the frames can be transformed into each other

by general Lorentz transformation, but only in special cases Q?
can this be done using elements from the kinematical sub- Le(5, :0)doyw=| 0.QR, o +v2Qi-5,|. (B2
group alone.

The kinematical group is generated b K3, andE* and
E2. As all frames are invariant under rotations about the
axis, we shall not discus3®. We can use this kinematical
rotation to remove thep dependence of the angular condi-
tions. The interesting transformations atg/(0;y) and
Li(v.;0).

If one generalizes the definition of the DYW frame d0
=0, then this transformation is a symmetry of this frame, if
one allows for a perpendicular momentum in the initial state,

P, =v2p'U,, (B3)
1. Symmetries of frames
a. Boosts along the z axis otherwise, insisting o, =0 in the DYW frame, it is not.
L«#(0;x) is a symmetry of the Drell-Yan-West frame, but  In the Breit frame we find for the transformed momentum

not of the Breit frame or target rest frame. transfer
|
L(, ;0)Qgreir= (Q c0OSO/VZ,Q(sin O+ coshT | ),Q(— cosh+2 sindi-v, +coshv?)/2). (B4)
|
If we require this vector to have the form 2. Relations between different frames

) o If we want two reference frames to be connected by a
Upreir= (Q €OS6/V2,QsinfA’, —Q cosd/v2), (B5) | grentz transformation, we need to verify that both the initial
momenta(p) and the momentum transfefg) are related by

then we must find a vectar, that satisfies the same transformation.
In the case of the TRF and DYW frames the two are
(sin A+ coshu | )2=sir? 6. (B6) identical if p" =m/v2 and in additionB sin#=1. The corre-

sponding angle we denote . The latter condition en-
There are two classes of solutions: either 669 and sures that the momentum transfer in the TRF frame has van-

A-5,=0 or cosdi+2singh-v, =0. In the latter case the ishing plus component. Clearly, for every value@there is
length of the velocity vector is correlated with its direction an angleé, for which the TRF and DYW frames are kine-

through the relation matically connected.
If we try the same for the TRF and Breit frames, we find
v=—2tandn-v, . (B7)  that they are kinematically related for &)l at =0.
The DYW and Breit frames can only be related fér
If we denote the azimuthal angles @fands, by ¢ and y, = /2. Then the momentum transfer in the Breit frame has
respectively, then the vectdr in Eq. (B5) is given by the form
qBreit:(O:QﬁyO)- (Bg)

"= (=cod2¢—¢), —siN(2¢— ¢)). (B8)

We now try to find the transformation that transforms the

We conclude that there is a class of transverse boosts thatomentum transfer in the DYW frame into this special vec-
leaves the Breit frame invariant. tor. If we writev, =v0, , then we find the parameters
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The main conclusion from this exercise is that the three
; " Q mpa . ) .
v,=—N, v= W ex= —. (B10) frames considered here are only in special cases related by
v2p kinematical Lorentz transformations. In these cases the an-

We see that for any value @ we can connect the DYW gular conditions are the same. In all other cases we find
frame to the Breit frame witl9= /2. nonequivalent angular conditions.
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