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Frame dependence of spin-one angular conditions in light front dynamics
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We elaborate the frame dependence of the angular conditions for spin-1 form factors. An extra angular
condition is found in addition to the usual angular condition relating the four helicity amplitudes. Investigating
the frame dependence of angular conditions, we find that the extra angular condition is in general as compli-
cated as the usual one, although it becomes very simple in theq150 frame involving only two helicity
amplitudes. It is confirmed that the angular conditions are identical in frames that are connected by kinematical
transformations. The high-Q2 behavior of the physical form factors and the limiting behavior in special
reference frames are also discussed.
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I. INTRODUCTION

Bosons with spin 1 are ubiquitous in modern partic
physics. In the standard model the fundamental interact
are described by gauge bosons, such as the photon,W6 and
Z, and the gluon. These particles are considered to be t
elementary; i.e., they occur as quanta of local fields.

In hadron physics many vector mesons composed o
quark and an antiquark are found and understanding t
structure is a challenging problem in quantum chromo
namics~QCD!, related to the mechanism of confinement a
the detailed nature of the interactions between the cons
ents.

Moreover, the deuteron is an interesting laboratory for
application of QCD to nuclear physics. At large distances
deuteron is evidently well described as a spin-1 composit
two nucleon clusters with binding energy;2.2 MeV, to-
gether with small admixtures ofDD and virtual meson com
ponents. However, at short distances, in the region wher
six quarks overlap within a distanceR;1/Q, one can show
rigorously that the deuteron state in QCD necessarily
‘‘fractional parentage’’ 1/9~np!, 4/45 ~DD!, and 4/5 ‘‘hidden
color’’ ~nonnuclear! components@1#. At any momentum
scale, the deuteron cannot be described solely in term
conventional nuclear physics degrees of freedom, but in p
ciple any dynamical property of the deuteron is modified
the presence of non-Abelian ‘‘hidden color’’ components@2#.
Alternatively one may describe the deuteron structure
terms of uncolored degrees of freedom only, but then a to
of excited nucleons andD’s is involved @3,4#.

Although these spin-1 systems~e.g., W6, the r meson,
and the deuteron! do not seem to share a common intern
structure, the universality of spin-1 systems@5# severely con-
strains them. According to this universality, the fundamen
constraints on the magnetic and quadrupole moments of
ronic and nuclear states imposed by the Compton-scatte
sum rules@6# and the behavior of the electromagnetic for
factors of composite spin-1 systems@7# at large momentum
transfer are the same as those of a corresponding eleme
particle of the same spin and charge.~For a review and ref-
erences to the early calculations of the deuteron form fac
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in the 1970s within light-front dynamics, see Frankfurt a
Strikman@8#.! At Q250, the charge@GC(Q2)#, magnetic
@GM(Q2)#, and quadrupole@GQ(Q2)# form factors define
the chargee, the magnetic momentm1 , and the quadrupole
momentQ1 , respectively. In the limit of zero radius of th
bound states~or large binding energies!, whether confined or
nonconfined, the values ofm1 andQ1 approach the canonica
values@5# of a spin-1 object with massm and chargee:

m15
e

m
, Q152

e

m2 . ~1.1!

Universality requires that the values obtained in Eq.~1.1!
must be the same as those of the fundamental gauge bo
W6 in the tree approximation to the standard model. Also
largeQ2 ~in the limit Q@A2mLQCD!, these form factors are
required to approach the universal ratios given by@5#

GC~Q2!:GM~Q2!:GQ~Q2!→S 12
Q2

6m2D :2:21, ~1.2!

which were obtained in a light-cone frame withq150.
Equation~1.2! should hold at large momentum transfers
the case of composite systems such as ther meson and deu-
teron, with corrections of orderLQCD/Q and LQCD/m ac-
cording to QCD. The ratios are the same as those predi
for the electromagnetic couplings of theW6 for all Q2 in the
standard model at the tree level.

Furthermore, there are constraints on the current ma
elements, since there are only three form factors for
spin-1 systems. A constraint well known from the literatu
@9# is the angular condition obtained by demanding rotatio
covariance for the current matrix elements given by

Gh8h
m

5^p8h8uJmuph&, ~1.3!

whereuph& is an eigenstate with momentump and helicityh.
For example, in the Drell-Yan-West~DYW! frame and the
frames that are connected to the DYW frame by only kin
matic transformations, the angular condition is given
@5,9,10#
©2002 The American Physical Society02-1
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~112h!G11
1 1G12

1 2A8hG10
1 2G00

1 50, ~1.4!

where h5Q2/4m2. Kondratyuk and Strikman@11# have
shown that the additive model for the current operator
interacting constituents is consistent with the angular con
tion only for the first two terms of the expansion ofJ1 in
powers of the momentum transferQ. If the angular condition
is not satisfied, an identical extraction of form facto
(GC ,GM ,GQ) from the light-front current matrix element
Gh8h

1 is not attained. As a consequence, there are indeed
ferent extraction schemes for the spin-1 form factors in
literature@5,12–14#. As an example,GC , GM , andGQ can
be given in terms ofG10

1 , G00
1 , andG12

1 in the DYW frame
q150, qx5Q, andqy50 as follows@5#

GC5
1

2p1~2h11! F16

3
h

G10
1

A2h
2

2h23

3
G00

1

1
2

3
~2h21!G12

1 G ,

GM5
2

2p1~2h11! F ~2h21!
G10

1

A2h
1G00

1 2G12
1 G ,

GQ5
1

2p1~2h11! F2
G10

1

A2h
2G00

1 1
h11

h
G12

1 G .

~1.5!

However, other choices of the current matrix elements can
made to express the right-hand side of Eq.~1.5! and the
expression also depends on the reference frame. A few
amples of other expressions on the right-hand side of
~1.5! can be found in Ref.@15#. The angular conditions ar
also useful in testing the validity of model calculations. E
pecially, as stressed in the recent literature@16–20#, the zero-
mode contribution is necessary to get the correct result
the form factors unless the good component of the curren
used. Even if the good component of the current is used
was noted that the zero-mode contribution is necessary
the calculation of spin-1 form factors@21#. Such an observa
tion of zero-mode necessity has been made by checking
angular conditions and the degree of necessity can be q
tified by examining the angular conditions.

As discussed above, the constraints from universality
the angular conditions are in principle very useful for mod
building and a self-consistency check of theoretical or p
nomenological models for spin-1 objects. However, th
constraints do depend on the reference frame. For exam
in the Breit frame whereq1Þ0, a less informative prediction
of asymptotic form factors is made@22# instead of Eq.~1.2!:

GC~Q2!:GQ~Q2!→ Q2

6m2 :1 ~1.6!

in the limit Q@2m. Thus, it is important to examine th
frame dependence of the constraints that are useful for m
building and phenomenology.
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In this work, we analyze the frame dependence of
angular conditions for spin-1 systems. Interestingly, in ad
tion to the angular condition given by Eq.~1.4!, we find
another one. Elaborating the frame dependence of these
gular conditions in the generalized Breit and target r
frames as well as the DYW frame, we confirm the advanta
of using the DYW frame in the calculation of exclusive pr
cesses. The complexity of each angular condition in gen
depends on the reference frame. In the DYW frame, the e
angular condition is particularly simple so that most theor
ical models are expected to satisfy it without any difficul
We also substantiate that the angular conditions are iden
in reference frames that are connected by kinematical tra
formations. Such an investigation is also important in a
lyzing the high-Q2 behavior of spin-1 form factors. We con
firm that the angular conditions are consistent with the hi
Q2 behavior predicted by perturbative QCD~PQCD! for the
three physical form factors@5,9,10#.

In the next section~Sec. II!, the front-form~LFD! polar-
ization vectors are presented in arbitrary frames. In Sec.
we derive the relation between the current operator and
form factors and starting from general grounds obtain
most general angular conditions. We show that there are
deed two angular conditions and discuss the reason why
should be regarded as consistency conditions. In Sec. IV
elaborate the details of the angular conditions in the DY
generalized Breit, and target-rest frames. In Sec. V, we
cuss the large momentum transfer behavior of the form f
tors in each reference frame. We also consider the limit
behavior of the form factors in approaching special Breit a
target-rest frames. Conclusions follow in Sec. VI. In Appe
dix A, the front-form boost and helicity operators generati
the polarization vectors used in this work are summarized
Appendix B, the kinematical Lorentz transformations th
connect the different frames are detailed in specific case

II. POLARIZATION VECTORS IN LIGHT-FRONT
DYNAMICS

For the polarization vectors in three dimensions we u
the standard spherical tensors for spin 1@23#:

eW~0!5~0,0,1!, eW~6 !57
1

&
~1,6 i ,0!. ~2.1!

We define the polarization vectors in a specific frame
boosting the four-vectors„0,eW (M )… to that specific frame.
The vectors we obtain will depend on the Lorentz transf
mation. In the front form we need the kinematical front-for
boosts. They are given in Appendix A.

We note that the LF components we use satisfy the
lowing relations:

pW'
2 522prpl , p•q5p1q21p2q11prql1plqr ,

~2.2!
2-2
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FRAME DEPENDENCE OF SPIN-ONE ANGULAR . . . PHYSICAL REVIEW D 65 073002
where we use the spherical components of the three mom
tum vectors to simplify the notation. They are defined
follows:

pr52
px1 ipy

&
, pl5

px2 ipy

&
. ~2.3!

Occasionally, we use the notationph with h511,0,21 for
pr , pz , and pl , respectively. Then the usual relation f
spherical tensors applies:

~ph!* 5~21!hp2h. ~2.4!

The polarization vectors in the rest system, where
four-momentum has the LF components (p1,p1,p2,p2)
5(m/&,0,0,m/&), are

«̊ ff~6 !5~0,71/&,2 i /&,0!, «̊ ff~0!5~1/&,0,021/& !.
~2.5!

Upon application of the front-form boost, Eq.~A5!, we find
the polarization vectors

« ff~p1,pl ,p2;1 !

« ff~p1,p1,p2;0!

« ff~p1,p1,p2;2 !
J 55

S 0,
21

&
,

2 i

&
,

pr

p1D ,

S p1

m
,
p1

m
,
p2

m
,
pW'22m2

2mp1 D ,

S 0,
1

&
,

2 i

&
,

pl

p1D .

~2.6!

It is easy to check that these are mutually orthogonal, tra
verse, and satisfy the closure property if one uses the f
form for the metric.

III. CURRENTS

For a spin-1 particle the current operator has the form

Jab
m ~p8,p!52gab~p81p!mF1~q2!1~gb

mqa2ga
mqb!F2~q2!

1
qaqb~p81p!m

2m2 F3~q2!, ~3.1!

where the momentap andp8 are the momenta of the particl
before and after absorption of a photon with momentumq
5p82p. The coefficient functionsFi(Q

2) in Eq. ~3.1! are
given by the physical form factors: i.e.,

F15GC2
2

3
hGQ ,

F252GM ,

F35
1

11h F2GC1GM1S 11
2

3
h DGQG . ~3.2!

A spin tensorG is obtained by taking matrix elements wit
the polarization vectors, viz.,
07300
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Gh8h
m

5«* a~p8;h8!Jab
m «b~p;h!. ~3.3!

This form can be derived on very general grounds. First,
write down all tensors of third rank that can be construc
usinggab , p8m, andpm alone. There are 14 possible stru
tures. As the matrix elements are obtained by contrac
with the polarization vectors«* a(p8;h8) and «b(p;h), the
structures containing a factorpa8 or pb do not contribute to
the matrix element. Therefore, only six remain and we wr

Jab
m ~p8,q!5 f 1gabp8m1 f 2gabpm1 f 3ga

mpb81 f 4gb
mpa

1 f 5p8mpapb81 f 6pmpapb8 . ~3.4!

Second, we require current conservation, which me
qmGh8h

m (p8,p)50 for all m, h8, and h. Contracting withq
gives

05~ f 12 f 2!gab~m22p8•p!1 f 3qapb81 f 4qbpa

1~ f 52 f 6!papb8 ~m22p8•p!. ~3.5!

We can immediately conclude thatf 15 f 2 and f 55 f 6 . In
order to reduce the number of terms further, we again c
tract with the polarization vectors and see that

«* ~p8;h8!•q52«* ~p8;h8!•p, «~p;h!•q5«~p;h!•p8.
~3.6!

So we are left with the term (f 42 f 3)papb8 . This structure is
independent of the one containing (f 52 f 6), because the lat-
ter originates from a term that contains the factorp8m1pm

while the former does not. So we conclude thatf 35 f 4 ,
which means that only three independent form factors
main.

Next we impose Hermiticity: i.e.,

^p8h8uJmuph&5^phuJmup8h8&* , ~3.7!

which gives, after some rearrangement,

«* a~p8;h8!Jab
m ~p8,p!«b~p;h!

5«* a~p8;h8!Jba
m* ~p,p8!«b~p;h!. ~3.8!

This is an identity for allp, p8, h, andh8, so we find

Jab
m ~p8,p!5Jba

m* ~p,p8!. ~3.9!

If we apply this identity to the structures we found, we s
that the coefficients of the tensors must be real, which me
that F1 , F2 , andF3 in Eq. ~3.1! are real.1

The symmetry ofJab
m (p8,p) entails relations between th

matrix elements too. If we, in addition, applyeW (h)*
5(21)heW (2h), which we owe to the fact that the polariza
tion vectors are standard spherical tensors, we can dedu

1Note that the kinematic region for this discussion is space li
i.e., q2,0.
2-3
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Gh8h
m* ~p8,p!5~21!h81hG2h82h

m
~p8,p!. ~3.10!

The explicit expressions we are writing down in the ne
sections of course satisfy these identities.

Equation ~3.1! can be split in an obvious way into th
piecesJ(1)F1 , J(2)F2 , andJ(3)F3 . Then we find for the
polarization tensorG5G(1)F11G(2)F21G(3)F3 with
the partial tensors

Gh8h
m

~1!52~p81p!m«* ~p8;h8!•«~p;h!,
07300
t

Gh8h
m

~2!52p8•«~p;h!«* m~p8;h8!

2p•«* ~p8;h8!«m~p;h!,

Gh8h
m

~3!52
~p81p!m

2m2 p8•«~p;h!p•«* ~p8;h8!.

~3.11!

Clearly, we need three simple scalar products which we s
write in the front form only:
rom the

tion
«* ~p8;0!•«~p;0!5
p812~pW'

2 2m2!1p12~pW'8
22m2!22p81p1pW'8 •pW'

2m2p81p1 ,

«* ~p8;0!•«~p;h!5
p81ph2p1p8h

mp1 ,

«* ~p8;h8!•«~p;h!52
11h8h

2
,

«* ~p8;0!•p5
p812pW'

2 1p12pW'8
21m2~p8122p12!22p81p1pW'8 •pW'

2mp81p1 ,

«* ~p8;h!•p5
p81p2h2p1p82h

p81 , ~3.12!

where we made the obvious identificationph511↔pr , ph521↔pl .
Using these expressions, the matrix elements of the polarization tensors can be easily found. Hermiticity follows f

simultaneous replacementsp↔p8 andpl↔2pr .

A. Symmetries of the polarization tensor

The formulas above tell us that the polarization tensor has the following forms

G~ i !5S ai ci ei*

bi di 2bi*

ei 2ci* ai

D , ~3.13!

which is valid for all three contributionsG( i ), i 51,2,3. Using an obvious notation, we find for the complete polariza
tensor the form

G5S a1F11a3F3 c1F11c2F21c3F3 e3* F3

b1F11b2F21b3F3 d1F11d2F21d3F3 2(b1F11b2F21b3F3)*

e3F3 2(c1F11c2F21c3F3)* a1F11a3F3

D
5S G11

1 G10
1 G12

1

G01
1 G00

1 G02
1

G21
1 G20

1 G22
1
D . ~3.14!

Apparently, the tensor components we obtain here satisfy an additional identity

G11
1 5G22

1 5G11
1* . ~3.15!
2-4
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This result is specific for the choice ofm: it is true for the
good currentJ1, but does not apply to the terrible curre
J2. The matrix elementsG11

2 and G22
2 are not real, but

they are complex conjugates.
Using the explicit expressions, we see that the nine ma

elements ofG have four relations that involve a phase fac
only, viz.

G11
1 5G22

1 , G12
1 5G21

1* , G02
1 52G01

1* ,

G10
1 52G20* 1 . ~3.16!

We need two more equations that express the fact that t
are only three independent form factors. These consiste
conditions are the two angular conditions proper. Since
are working only with the1 component of the current, w
shall use the following shorthand notation:

Ga5G11
1 5G22

1* , Gb5G01
1 52G02

1* ,

Gc5G10
1 52G20

1* , Gd5G00
1 ,

Ge5G21
1 5G12

1* . ~3.17!

We can now solve forFi in an obvious way. First, we
obtainF3 from Ge , thenF1 from Ga andF3 . Then, we have
a choice whether we want to obtainF2 from Gb , Gc , or Gd ;
these solutions we denote byF2

b , F2
c , andF2

d , respectively.
As these results must coincide, the identity of these th
results form the angular conditions:F2

b5F2
c5F2

d . We find

F15
1

a1
Ga2

a3

a1e3
Ge ,

F35
1

e3
Ge ,

F2
b5

1

b2
F2

b1

a1
Ga1Gb1

a3b12a1b3

a1e3
GeG ,

F2
c5

1

c2
F2

c1

a1
Ga1Gc1

a3c12a1c3

a1e3
GeG ,
07300
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F2
d5

1

d2
F2

d1

a1
Ga1Gd1

a3d12a1d3

a1e3
GeG .

~3.18!

The relations, Eq.~3.10!, reduce the nine complex ele
ments of the polarization tensor to nine real numbers.
there are only three real independent form factors, we n
six linear relations to realize the reduction from nine to thr
The equations above serve this purpose. By equating the
and imaginary parts of the two sides of the first three of E
~3.18!, we find six relations that must hold for the comp
nents ofGh8h

m . Having thus achieved the reduction to th
minimum number of independent functions, the other eq
tions must be considered to beconsistency conditions. As the
three equations expressingF2 in terms of the tensor compo
nents are not independent, but form a system of rank 2 o
one complex equation or two real ones remain.

In the literature usually only one is given, said to be t
angular condition. From our considerations it must be cle
that there are indeed two conditions.

B. Angular conditions

The angular conditions~AC! can now be formulated suc
cinctly:

F2
b5F2

c , F2
b5F2

d , F2
c5F2

d . ~3.19!

We shall write these conditions explicitly for unspecified k
nematics.

The first one, denoted henceforth by AC 1, is

F2
b2F2

c50

5
p812p1

p81p1 FGa1
m2

2

~p811p1!2

~p81pr2p1p8r !2 GeG
2m

p1

p81

1

p81pr2p1p8r Gb

1m
p81

p1

1

p81pl2p1p8 l Gc . ~3.20!

The second one, AC 2, is
F2
b2F2

d50

5F2
1

p81 1
m2~p8121p12!12~p81pr2p1p8r !~p81pl2p1p8 l !

~p811p1!@m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !#GGa2m
p1

p81

1

p81pr2p1p8r Gb

2
2m2p81p1

p811p1

1

m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !
Gd1F m2

2p81

p8122p12

~p81pr2p1p8r !2

2
m2

2~p811p1!~p81pr2p1p8r !2

m2~p8122p12!212~p8121p12!~p81pr2p1p8r !~p81pl2p1p8 l !

@m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !# GGe .

~3.21!

The last one is
2-5
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F2
c2F2

d50

5F2
1

p1 1
m2~p8121p12!12~p81pl2p1p8 l !~p81pl2p1p8 l !

~p811p1!@m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !#GGa2m
p81

p1

1

p81pr2p1p8r Gc

2
2m2p81p1

p811p1

1

m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !
Gd

1F2
m2

2p1

p8122p12

~p81pr2p1p8r !22
m2

2~p81p1!~p81pr2p1p8r !2

3
m2~p8122p12!212~p8121p12!~p81pr2p1p8r !~p81pl2p1p8 l !

@m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !# GGe . ~3.22!

If we substitute Eq.~3.20! into Eq. ~3.21!, we see that it is equivalent to Eq.~3.22!, as it must be, because these equatio
are not independent as there are only two independent angular conditions.

Clearly, these conditions are quite complicated. We can simplify them by factoring out some common factors, at th
time avoiding denominators that may vanish. Instead of Eqs.~3.20!,~3.21! we get the conditions AC 1,

2~p812p1!~p81pr2p1p8r !2~p81pl2p1p8 l !Ga22mp12~p81pr2p1p8r !~p81pl2p1p8 l !Gb

12mp812~p81pr 82p1p8r !2Gc1m2~p812p1!~p811p1!2~p81pl2p1p8 l !Ge50 ~3.23!

and AC 2,

2~p81pr2p1p8r !2@m2~p1222p81p12p812!12~p81pr2p1p8r !~p81pl2p1p8 l !#Ga12m~p811p1!~p81pr2p1p8r !

3@m2~p812p1!212~p81pr2p1p8r !~p81pl2p1p8 l !#Gb14m2p812~p81pr2p1p8r !2Gd1m2@m2~p8122p12!2

12~p1212p81p12p812!~p81pr2p1p8r !~p81pl2p1p8 l !#Ge50. ~3.24!
a
e
I

m

nc
n

a

n
W

e
s

est

he
Clearly, these conditions are minimal, as we cannot elimin
any of the five tensor components to obtain a simpler on

It is useful to realize the phase relations that occur.
addition to the relations expressed in Eqs.~3.13!, ~3.16! we
can use the fact that (pl)* 52pr and the fact thatGa andGd
are real to infer that both angular conditions have the for

CaGa1Cbe2 ifGb1Cce
ifGc1CdGd1Cee

22ifGe50,
~3.25!

where the coefficientsCa ,...,Ce are real andf is the argu-
ment of the complex numberp81pr2p1p8r , given by

tanf5
p1py82p81py

p1px82p81px
. ~3.26!

This angle can be set to zero by a rotation of the refere
frame about thez axis. This rotation being kinematical i
LFD, we may expect the phase relations to be satisfied
ways.

It may turn out for some kinematics that these relatio
simplify. This happens to be the case in, e.g., the DY
frame, wherep815p1 and pW'50. Moreover, whenqW is
purely longitudinal, i.e.,qW'50, we can rotate the referenc
frame such thatpW'5pW'8 50. Then, both angular condition
are identically satisfied, as all coefficients vanish.
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IV. SPECIFIC FRAMES

We consider three specific frames: the Drell-Yan-W
frame, Breit frame, and target-rest frame~TRF!. For simplic-
ity, only the kinematics and the angular conditions in t
form F2

b2F2
c50 ~AC 1! and F2

b2F2
d50 ~AC 2! are pre-

sented in this section.

A. Drell-Yan-West frame

1. Kinematics

For the DYW frame,

p5„p1,0,0,m2/~2p1!…,

q5„0,qx ,qy ,qW'
2 /~2p1!…,

p85p1q

5„p1,qx ,qy ,~qW'
2 1m2!/~2p1!…, ~4.1!

with the identificationqx5Q cosf, qy5Q sinf, one finds
the explicit formulas
2-6
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p5„p1,0,0,m2/~2p1!…,

q5„0,Q cosf,Q sinf,Q2/~2p1!…,

p85„p1,Q cosf,Q sinf,~Q21m2!/~2p1!…,
~4.2!

and

qr52
Q

&
eif, ql5

Q

&
e2 if. ~4.3!

2. Angular conditions

We write the angular conditions mentioned in the pre
ous section.

AC 1:
07300
-

e2 ifGb1eifGc50. ~4.4!

AC 2:

~2m21Q2!Ga12&mQe2 ifGb22m2Gd12m2e22ifGe

50. ~4.5!

B. Breit frame

1. Kinematics

We define the quantityb as

b5A11S Q

2mD 2

. ~4.6!

Then,
ividing

ns do not
p5S 2mb2Q cosu

2&
,2

Q sinu cosf

2
,2

Q sinu sinf

2
,
2mb1Q cosu

2&
D ,

p85S 2mb1Q cosu

2&
,
Q sinu cosf

2
,
Q sinu sinf

2
,
2mb2Q cosu

2&
D ,

q5S Q cosu

&
,Q sinu cosf,Q sinu sinf,2

Q cosu

&
D . ~4.7!

2. Angular conditions

By now, we give only the two linearly independent conditions. We simplify the expressions as much as possible by d
out common factors to find the two conditions.

AC 1:

22&bQ2 cosu sin2 uGa1~2bm2Q cosu!2sinue2 ifGb

1~2bm1Q cosu!2 sinueifGc28&bm2 cosue22ifGe50. ~4.8!

AC 2:

2@4bmQcosu2Q2 cos2 u12b2~2m21Q2sin2 u!#sin2 uGa24&mQ~b2 sin2 u2cos2 u!sinue2 ifGb

1~2bm1Q cosu!2sin2 uGd1@~8m21Q2 sin2 u!cos2 u14bmQcosu sin2 u24b2m2 sin2 u#e22ifGe50.

~4.9!

We note that Eqs.~4.8! and~4.9! are reduced to results in the DYW frame, Eqs.~4.4! and~4.5!, respectively, ifu5p/2 as they
should, because the two frames are related by a kinematical transformation in that case and the angular conditio
change under any kinematical transformation.

C. Target-rest frame

1. Kinematics

Using againb andk, defined as

k5
Q2

2m
, ~4.10!

we find
2-7
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p5S m

&
,0,0,

m

&
D .

q5S k1bQ cosu

&
,bQ sinu cosf,bQ sinu sinf,

k2bQ cosu

&
D ,

p85p1q5S m1k1bQ cosu

&
,bQ sinu cosf,bQ sinu sinf,

m1k2bQ cosu

&
D . ~4.11!

2. Angular conditions

We give again only the two conditions after simplification by dividing out as many common factors as possible.

AC 1:

2b2Q2~k1bQ cosu!sin2 uGa1&bm2Q sinue2 ifGb1&bQ~m1k1bQ cosu!2sinueifGc

2~k1bQ cosu!~2m1k1bQ cosu!2e22ifGe50. ~4.12!

AC 2:

2b2Q2@k214km12m21b2Q212b~2m1k!Q cosu#sin2 uGa1&bQ~2m1k1bQ cosu!

3@k212bkQ cosu1b2Q2 cos 2u#sinue2 ifGb12b2Q2~m1k1bQ cosu!2 sin2 uGd

1@~k1bQ cosu!2~2m1k1bQ cosu!21b2Q2~k222m212bkQ cosu1b2Q2 cos2 u!#sin2 ue22ifGe50.

~4.13!
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We note that Eqs.~4.12! and~4.13! are identical to Eqs.~4.4!
and ~4.5! if b sinu51.

V. LIMITING CASES

In order to be able to interprete the angular conditions,
studied the dependence onQ in the limits Q→0 and Q
→`. We shall use the notation

AC 1⇔Ra
1Ga1Rb

1Gb1Rc
1Gc1Re

1Ge50,

AC 2⇔Ra
2Ga1Rb

2Gb1Rd
2Gd1Re

2Ge50. ~5.1!

A. Q\0 limit

Using the definition of the physical form factors atQ2

50, i.e.,

eGC~0!5e, eGM~0!52mm1 , eGQ~0!5m2Q1 ,
~5.2!

we find, from Eq.~3.2!,

F1~0!51, F2~0!52
2mm1

e
,

F3~0!5211
2mm1

e
1

m2Q1

e
. ~5.3!
07300
e

According to the universality condition given by Eq.~1.1!, in
the limit of bound-state radiusR→0 the form factorsFi(0)
for i 52,3 are reduced to

F2~0!522, F3~0!50. ~5.4!

Since the target is intact in theQ→0 limit, pm5p8m and
thus we findGa5Gd or G11

1 5G00
1 . All other spin-flip am-

plitudes vanish in this limit regardless of reference fram
This can be understood because the spin would not flip if
target is intact and also the direction of spin would not ma
in this limit. Moreover, all the coefficients~Ra

i , etc.! in Eq.
~5.1! vanish inQ→0 limit, and thus both angular condition
AC 1 and AC 2 are trivially satisfied.

B. Behavior for Q\`

Imposing a naturalness condition—namely, all three ter
in Eq. ~3.1! should be of the same order inQ—one can find
that the form factorsFi(Q

2) behave asF1(Q2);F2(Q2)
;(Q2/m2)F3(Q2) in the large-Q2 limit. Using this, we can
derive the high-Q2 behaviors of the helicity amplitudesGh8h

1

and the coefficients~Ra
i , etc.! of the angular conditions. In

Table I, we summarize the results.
As we can see from Table I, the high-Q behavior of each

helicity amplitude in general depends on the reference fra
This is so because the helicities and components of the
rent do mix in general, although the physical form factors
of course identical for anyQ regardless of the referenc
frame. Only in frames connected by a kinematic transform
2-8
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TABLE I. Leading behavior forQ→` of the tensor componentsGa ,...,Ge , and the coefficients
Ra

1,...,Re
2 in the different reference frames considered. The Breit frame~BF! and TRF are kinematically

connected to the DYW frame only in particular anglesuBF5p/2 anduTRF5u05sin21(1/b), respectively.

Q→`

DYW Breit TRF
uÞ0,p/2 u5p/2 u50 uÞ0,u0 u50 u5u0

Ga 1 Q Q Q Q2 Q2 1
Gb Q Q2 Q2 0 Q4 0 Q
Gc Q Q2 Q2 0 Q2 0 Q
Gd Q2 Q3 Q3 Q3 Q4 Q4 Q2

Ge 1 Q Q 0 Q2 0 1
Ra

1 0 Q3 0 0 Q6 0 0
Rb

1 1 Q2 Q2 0 Q2 0 Q
Rc

1 1 Q2 Q2 0 Q6 0 Q
Re

1 0 Q 0 Q Q6 Q6 0
Ra

2 Q2 Q4 Q4 0 Q8 0 Q4

Rb
2 Q Q3 Q3 0 Q8 0 Q3

Rd
2 1 Q2 Q2 0 Q8 0 Q2

Re
2 1 Q2 Q2 1 Q8 0 Q2
k
(
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n
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orth
tion that keeps the light-front timet5t1z/c ~50! invariant
are the helicity amplitudesGh8h

1 the same@24#. Indeed, our
results summarized in Table I are essentially identical in
nematically connected frames such as DYW, Breitu
5p/2), and TRF (u5u0).2 Note thatu0→p in the limit
Q→`. It is interesting to find that in all cases the behav
of the helicity amplitudes in these frames is consistent w
the perturbative QCD predictions obtained in theq150
frame. Indeed, PQCD predicts@25# that the helicity-0 to
helicity-0 matrix elementG00

1 ~or Gd! is the dominant helic-
ity amplitude at largeQ2 @5#. For example, in the deutero
form factor@9# calculation using the factorization theorem
PQCD one can show that the five intermediate gluons c
necting the six quarks can be arranged in such a way tha
gluon polarizations and quark helicities alternate to allow
maximum amplitude when the initial helicity-0 state trans
to the final helicity-0 state. Further, in theq150 frame,
PQCD predicts that the helicity-flip amplitudesG10

1 (Gc)
andG12

1 (Ge) are suppressed by factors ofQ1 andQ2, re-
spectively:

Gc5a
LQCD

Q
Gd Ge5bS LQCD

Q D 2

Gd , ~5.5!

wherea andb are constants and there are also correction
orderLQCD/m @5,22#. Our results, based on the naturalne
condition, coincide with these PQCD predictions. From
table, we also find thatG11

1 (Ga) should be suppressed b
two powers ofQ compare to the dominantG00

1 in the high-Q
limit. However, neither our analysis nor PQCD can fix t

2The reason for an extra powerQ for the Breit (u5p/2) and TRF
(u5u0) frames in comparison to DYW can be understood by
kinematic factors in the relation between (GC ,GM ,GQ) andGh8h

1 .
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constantsa andb. Both angular conditions, AC 1 and AC 2
are satisfied independent ofa andb. Thus both angular con
ditions are consistent with the PQCD predictions.

On the other hand, in the frames that are not connecte
DYW by a kinematical transformation the results are n
consistent with the PQCD predictions as one can see f
Table I. Since there are contributions from embedded st
@26# in q1Þ0 frames, there are no reasons why they sho
be consistent with the leading-order PQCD predictions. N
ertheless, it is interesting to note thatGd dominates regard-
less of the reference frame. We now discuss some detai
AC 1 and AC 2 in each reference frame.

1. Drell-Yan-West frame

The first angular condition, AC 1, is simple. It reads

e2 ifGb1eifGc50. ~5.6!

The leading-Q behavior of the left-hand side~LHS! of AC 1
is

m

Q
~Rb

1Gb1Rc
1Gc! ;

Q→`

2
p1

2&
S 4F112F21

m2

Q2 F3D
1

p1

2&
S 4F112F21

m2

Q2 F3D .

~5.7!

So if we assumeF3 ;
Q→`

(Q2/m2)H3 andF1 , F2 , andH3 are
of the same order inQ2 for Q→`, then both terms are equa
in magnitude.

AC 2 is more involved, but still easy. Its LHS behaves f
Q→` to leading order as follows:

e

2-9
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m2

Q2 ~Ra
2Ga1Rb

2Gb1Rd
2Gd1Re

2Ge! ;
Q→`

m2p1F1

2
~4F11H3!2~4F112F21H3!1

1

2
~4F114F21H3!G . ~5.8!

The term involvingGe does not contribute in leading order.

2. Breit frame

First AC 1. We multiply by (m/Q)4:

m4

Q4 ~Ra
1Ga1Rb

1Gb1Rc
1Gc1Re

1Ge! ;
Q→`

m3F2
1

4
~4F11H3!sin2 u cosu

2
~4F114F21H3!cosu1$4F11F2~31cos 2u!1H3%

8~11cosu!2 sin4 u

2
~4F114F21H3!cosu2$4F11F2~31cosu!1H3%

8~12cosu!2 sin4 uG . ~5.9!

Actually, Re
1Ge is two ordersQ/m down compared to the other three terms. The contributions of the three terms that r

in leading order will depend on the angleu. For example, foru50 all vanish identically and we find that then the leading ord
is lower than (Q/m)4. For u5p/2 only the termsRb

1Gb andRc
1Gc survive and cancel each other.

The leading order of AC 2 is (Q/m)5. We find

m5

Q5 ~Ra
2Ga1Rb

2Gb1Rd
2Gd1Re

2Ge! ;
Q→`

m3F2
4F11H3

8&
sin4 u1

4F112F2~11cosu!1H3

4&~12cosu!2~11cosu!
sin6 u

2
~4F114F21H3!~324 cosu1cos 2u!

16&~12cosu!4
sin6 uG , ~5.10!

and again the term withGe is not of leading order. Foru→0, the first term is of orderu4, while the two others are of orde
u2 and cancel each other exactly at this order. So for smallu the contributions ofGb andGd dominate. Foru5p/2, all three
terms are of the same order. This situation corresponds exactly with AC 2 in the DYW frame.

3. Target rest frame

Since the leading term in AC 1 is of order (Q/m)8, we multiply it with (m/Q)8 and find

m8

Q8 ~Ra
1Ga1Rb

1Gb1Rc
1Gc1Re

1Ge! ;
Q→`m4 sin2 u

512&
@~248264 cosu216 cos 2u!F11~2212 cos 2u22 cosu

12 cosu cos 2u!H31~48164 cosu116 cos 2u!F1

1~212 cosu24 cosu cos 2u216 cos2 u!H3

1~10115 cosu16 cos 2u1cos 3u!H3#. ~5.11!

The contribution fromGe is not of leading order. The other three terms are comparable in size, but the details depend
angleu.

AC 2 is different, as onlyGb andGd contribute in leading order, which is (Q/m)12. We find
073002-10
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m12

Q12~Rb
2Gb1Rd

2Gd! ;
Q→` m5 sin2 u

256&
@2~4F114F21H3!1~4F114F21H3!#cosu~11cosu!~314 cosu1cos 2u!.

~5.12!
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VI. CONCLUSIONS

In this work we elaborated the frame dependence of
angular conditions for spin-1 systems. We found that ther
an additional angular condition in addition to the well-know
one given by Eq.~1.4!. In theq150 frame including DYW,
Breit (u5p/2), and TRF (u5u0), we find that the addi-
tional condition is very simple involving only two helicity
amplitudes as shown in Eq.~4.4! and most quark model
rather easily satisfy it. Thus it does not seem to provide
strong a constraint as the usual condition, Eq.~4.5!. How-
ever, inq1Þ0 frames, the additional condition is genera
as complicated as the usual one. Since theq150 frame~e.g.,
DYW! is in principle restricted to the spacelike region of t
form factors, it may be useful to impose the additional co
dition in processes involving the timelike region. As a res
of the recent development@27# of the effective treatment in
timelike exclusive processes, we can see that the rang
applicability for the angular conditions inq1Þ0 frames is
quite broad. Nevertheless, it seems rather clear from
spin-1 form factor discussion that the analysis of exclus
processes is greatly simplified in the DYW frame and
generalq150 frames. We note that the angular conditio
given by Eqs.~4.4! and~4.5! are identical in any frame con
nected to the DYW frame by kinematical transformations

We also find that both angular conditions in theq150
frame are consistent with the PQCD predictions. Our pred
tions for theQ dependence of the helicity amplitudes bas
on the naturalness condition as well as the angular cond
are also consistent with the PQCD predictions given by
~5.5!. However, the proportionality constantsa andb can be
fixed neither by our analysis nor by PQCD. Some other
puts such as experimental data are needed to find these
ues. For example, in the deuteron analysis a value near 5
obtained fora @28#. Nevertheless, it is interesting to note th
for some particular values ofa and b the relations among
F1 , F2 , andF3 are greatly simplified. Fora5b50, we find
that F2 /F1522 andF3 /F150, which are identical to Eq
~5.4! for a point particle. Since the form factors for a poi
particle do not depend onQ2 at the tree level, one can un
derstand this universality result rather easily. Also, fora
5&m/LQCD and b52m2/LQCD

2 we find thatF2 /F1521
and F3 /F1521. Even though the results are simple f
these particular values ofa and b, it is not yet clear what
their importance is. In order to analyze the values ofa andb,
one may need to have some sort of bound-state informa
for the spin-1 system. Work along this line, using a sim
but exactly solvable model, is in progress.
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APPENDIX A: CONVENTIONS OF POLARIZATION
VECTORS AND LF BOOST AND HELICITY OPERATORS

We note that sometimes in the literature calculations
performed using LF dynamics, but at the same time empl
ing instant-form polarization vectors. In this work, we ha
used the LF polarization vectors@see Eq.~2.6!# generated by
the LF boost and helicity operators@29,30# briefly summa-
rized below.

In order to define the conventions in this work, we defi
the front-form componentspff

m5(p1,p1,p2,p2) with the
definition

p65
p06p3

&
. ~A1!

The metric tensorgff is then

gff5hgh5S 0 0 0 1

0 21 0 0

0 0 21 0

1 0 0 0

D . ~A2!

The kinematical front-form boost is given by

L ff~vW' ;x!5exp~2 i&vW'
•EW'!exp~2 ixK3!, ~A3!

whereK35M 21 is the third component of the boost gener
tor and the generatorsE1 andE2 are given by

E15M 115
1

&
~K11J2!, E25M 125

1

&
~K22J1!.

~A4!

In the same convention, the LF helicity operator is giv
by

hff5exp~2 i&vW'
•EW'!J3 exp~ i&vW'

•EW'!. ~A5!

One can write it in operator form as

hff5
W1

P1 5J32
P1E22P2E1

P1 . ~A6!
2-11
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This operator is clearly a kinematic one, asJ3, P1, P2, E1,
andE2 all belong to the stability group ofx150. The helic-
ity has the eigenvectors« ff(h) with h50,61, Eq.~2.6!, and
a fourth eigenvector~0,0,0,1!. The latter does not correspon
to a genuine polarization vector. It has only a minus com
nent, which means that it is orthogonal to all four vecto
with p250, i.e.,p1→`.

APPENDIX B: SYMMETRIES OF FRAMES AND
RELATIONS BETWEEN DIFFERENT FRAMES

In this section we give the kinematical Lorentz transfo
mations that connect the different frames in specific ca
We stress that the frames can be transformed into each o
by general Lorentz transformation, but only in special ca
can this be done using elements from the kinematical s
group alone.

The kinematical group is generated byJ3, K3, andE1 and
E2. As all frames are invariant under rotations about thz
axis, we shall not discussJ3. We can use this kinematica
rotation to remove thef dependence of the angular cond
tions. The interesting transformations areL ff(0;x) and
L ff(vW' ;0).

1. Symmetries of frames

a. Boosts along the z axis

L ff(0;x) is a symmetry of the Drell-Yan-West frame, b
not of the Breit frame or target rest frame.
n

th
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b. Transverse boosts

We write L ff(vW' ;0) explicitly

L ff~vW' ;0!5S 1 0 0

&vW' 1 0

vW'
2 &vW' 1

D . ~B1!

The transverse boosts are not symmetries of the target
frame.

If we apply it to the DYW momentum transfer, we find

L ff~vW' ;0!qDYW5S 0,Qn̂,
Q2

2p1 1&QnW •vW'D . ~B2!

If one generalizes the definition of the DYW frame toq1

50, then this transformation is a symmetry of this frame
one allows for a perpendicular momentum in the initial sta

pW'5&p1vW' , ~B3!

otherwise, insisting onpW'50 in the DYW frame, it is not.
In the Breit frame we find for the transformed momentu

transfer
L ff~vW' ;0!qBreit5„Q cosu/&,Q~sinun̂1cosuvW'!,Q~2cosu12 sinun̂•vW'1cosuvW'
2 !/A2…. ~B4!
a
ial

re

an-
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d
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he
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If we require this vector to have the form

qBreit8 5~Q cosu/&,Q sinun̂8,2Q cosu/& !, ~B5!

then we must find a vectorvW' that satisfies

~sinun̂1cosuvW'!25sin2 u. ~B6!

There are two classes of solutions: either cosu50 and
n̂•vW'50 or cosuvW'

212 sinun̂•vW'50. In the latter case the
length of the velocity vector is correlated with its directio
through the relation

v522 tanun̂•vW' . ~B7!

If we denote the azimuthal angles ofn̂ andvW' by f andc,
respectively, then the vectorn̂8 in Eq. ~B5! is given by

n̂85„2cos~2c2f!,2sin~2c2f!…. ~B8!

We conclude that there is a class of transverse boosts
leaves the Breit frame invariant.
at

2. Relations between different frames

If we want two reference frames to be connected by
Lorentz transformation, we need to verify that both the init
momenta~p! and the momentum transfers~q! are related by
the same transformation.

In the case of the TRF and DYW frames the two a
identical if p15m/& and in additionb sinu51. The corre-
sponding angle we denote byu0 . The latter condition en-
sures that the momentum transfer in the TRF frame has v
ishing plus component. Clearly, for every value ofQ there is
an angleu0 for which the TRF and DYW frames are kine
matically connected.

If we try the same for the TRF and Breit frames, we fin
that they are kinematically related for allQ at u50.

The DYW and Breit frames can only be related foru
5p/2. Then the momentum transfer in the Breit frame h
the form

qBreit5~0,Qn̂,0!. ~B9!

We now try to find the transformation that transforms t
momentum transfer in the DYW frame into this special ve
tor. If we write vW'5vv̂' , then we find the parameters
2-12
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v̂'52n̂, v5
Q

2mb
, ex5

mb

&p1
. ~B10!

We see that for any value ofQ we can connect the DYW
frame to the Breit frame withu5p/2.
d

6.

olt

.

u
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The main conclusion from this exercise is that the th
frames considered here are only in special cases relate
kinematical Lorentz transformations. In these cases the
gular conditions are the same. In all other cases we
nonequivalent angular conditions.
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