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Three-dimensional heterotic string theory: New approach and extremal solutions
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We develop a new formalism for the bosonic sector of low-energy heterotic string theory toroidally com-
pactified to three dimensions. This formalism is based on the use of a single nonquadratic real matrix potential
which transforms linearly under the action of a subgroup of the three-dimensional charging symmetries. We
formulate a new charging symmetry invariant approach for the symmetry generation and straightforward
construction of asymptotically flat solutions. Finally, using the developed approach and the established formal
analogy between the heterotic and Einstein-Maxwell theories, we construct a general class of heterotic string
theory extremal solutions of the Israel-Wilson-Perjes type. This class is asymptotically flat and charging
symmetry complete; it includes the extremal solutions constructed before and possesses the nontrivial bosonic
string theory limit.
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I. INTRODUCTION

Field theory limits of superstring theory include som
concrete modifications of classical general relativity@1#.
These effective field theories describe the dynamics of so
set of the superstring excitation modes restricted by the
responding limit conditions. In the low-energy limit of he
erotic string theory one deals with the zero-mass modes
which the bosonic sector includes the dilaton, Kalb-Ramo
Abelian gauge, and metric fields. These fields live in
multidimensional space-time and interact in a supergra
controlled form~see@2# and references therein!.

A solution space of the low-energy limit of heterot
string theory has been extensively studied during the
several years@3–9#; its investigation actively continues at th
present time. The main part of the physically and mathem
cally interesting solutions was found for the theory toroida
compactified to three and lower dimensions~see, however,
some higher-dimensional examples in@10# and works re-
ferred to there!. The reason for such activity generation
closely related to the fact of hidden symmetry enhancem
in the process of toroidal compactification@11,12#. A quali-
tatively important new situation takes place in the case
toroidal compactification to three dimensions, when the h
erotic string theory becomes the three-dimensional symm
ric space model coupled to gravity@13#. Such a theory be-
longs to a class described in@14# and possesses the comple
integrability property after the subsequent reduction to t
dimensions@15,16#. In this sense the heterotic string theo
is also of the same type as the Einstein, Kaluza-Klein,
Einstein-Maxwell theories@17–20#.

In our approach we consider the three-dimensional h
erotic string theory in a remarkable explicit Einstei
Maxwell form. In @21# a new form of the null-curvature ma
trix representation of the theory was established. This form
based on the use of the Ernst matrix potentials@22#. The
Ernst matrix potential formulation is a straightforward mat
generalization of the conventional formulation of stationa
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Einstein-Maxwell theory@23# to the heterotic string theory
case. In fact this generalization includes the Einste
Maxwell theory as a special case~see @22# and this work
below!, and gives a convenient and simple method for
symmetry analysis of the theory. In@22# we classified the
three-dimensional group of hidden symmetries in the mat
valued Einstein-Maxwell form; namely, we separated it in
the shift, electric-magnetic rotation, and Ehlers and Harris
type parts of the transformations~compare with the ones in
@18,24#; see also@25#!. The full subgroup of charging sym
metries was also constructed, i.e., the total set of the sym
try transformations that preserve the asymptotic flatn
property of the solutions~see references in@25# for the
Einstein-Maxwell theory analogies!. A representation of the
theory was established that is linear with respect to the ac
of whole set of charging symmetry transformations.

In this article we continue and conclude this line of inve
tigation of three-dimensional heterotic string theory. We d
velop in detail the above mentioned representation and
mulate a new approach to the theory, which is based on
use of a new single nonquadratic matrix potential. This p
tential has the lowest possible matrix dimensionality comp
ible with the structure of the symmetric space model of
theory and gives a powerful and most compact tool for
theory investigation. We introduce three doublets of mat
potentials defined in terms of this underlying one. Any do
blet consists of one scalar and one vector matrix poten
both these potentials undergo linear transformations w
the charging symmetry subgroup acts. We formulate a n
method for the symmetry generation and straightforw
construction of the solutions which guarantees the charg
symmetry completeness property of the result. Our appro
is especially useful for work with asymptotically flat solu
tions, which attract the main interest in the physical appli
tions of string theory~see@8# for string theory based black
hole physics!. We also establish a relation between our n
representation and the null-curvature matrix one. This gi
some new simplifications and promising possibilities in co
struction of the two-dimensional solutions using the inve
scattering transform method. We hope to illustrate this sta
ment in the near future. In this article we apply the ne
©2002 The American Physical Society06-1
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OLEG V. KECHKIN PHYSICAL REVIEW D 65 066006
formalism for straightforward construction of the chargi
symmetry invariant class of asymptotically flat extremal s
lutions of the Israel-Wilson-Perjes type. We ‘‘rediscover’’ th
well-known corresponding Einstein-Maxwell theory solutio
class@26#, and give its straightforward generalization to t
heterotic string theory case. Our class of solutions is clos
related to those known in the literature@7,27,28#, and also
includes the nontrivial subclass of extremal bosonic str
theory solutions, i.e., solutions without multidimension
Abelian gauge fields.

II. THREE-DIMENSIONAL HETEROTIC STRING
THEORY

The action for the bosonic sector of low-energy hetero
string theory reads@1#

SD5E dDXudetGMNu1/2e2FS RD1F ,MF ,M

2
1

12
HMNKHMNK2

1

4
FMN

I FI MND , ~2.1!

where HMNK5]MBNK2 1
2 AM

I FNK
I 1 cyclic $M ,N,K% and

FMN
I 5]MAN

I 2]NAM
I . Here XM is the M th (M51, . . . ,D)

coordinate of the physical space-time of signature (2,
1, . . . ,1),GMN is the metric, andF,BMN , and AM

I (I
51, . . . ,n) are the dilaton, Kalb-Ramond, and Abelia
gauge fields.

As declared in the Introduction, in this paper we consid
the theory~2.1! toroidally compactified to three dimension
Let us briefly describe this compactification@11–13#. First of
all, let us putD5d13 and denoteYM5Xm (m51, . . . ,d)
andxm5Xd1m,m51,2,3. Second, let us separate all the fie
components into scalar, vector, and two-rank tensor qua
ties with respect to transformations of the coordinatesxm. As
a result one has three scalar matricesG, B, andA of dimen-
sions d3d, d3d, and d3n constructed from the compo
nents Gmk ,Bnk , and AmI5Am

I , respectively, and also th
scalar function

f5F2 lnudetGu1/2. ~2.2!

Then there are three column vector matrix columnsVW 1 ,VW 2,
andVW 3 of dimensionsd31, d31, andn31. They read

V1 mm5Gmk
21Gk d1m ,

V2 mm5Bm d1m2BmkV1 km1
1

2
Am

I V3 Im ,

V3 Im52Ad1m
I 1Am

I V1 mm . ~2.3!

Finally, there are two tensor fields; they consist of the n
matrix quantities
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hmn5e22f@Gd1m d1n2GmkV1 mmV1 kn#,

bmn5Bd1m d1n2BmkV1 mmV1 kn

2
1

2
@V1 mmV2 mn2V1 mnV2 mm#. ~2.4!

Let us now perform the toroidal compactification of th
first d dimensions. In fact, this procedure is equivalent
consideration of the special situation when all the field co
ponents areYm independent. Thus, below all the quantiti
are considered as functions of the coordinatesxm. The use of
the motion equations allows one to introduce the pseu
scalar fieldsu, v, and s ~they are thed31, d31, and n
31 columns! and accordingly, the relations

¹3VW 15e2fG21F¹u1S B1
1

2
AATD¹v1A¹sG ,

¹3VW 25e2fG¹v2S B1
1

2
AATD¹3VW 11A¹3VW 3 .

¹3VW 35e2f~¹s1AT¹v !1AT¹3VW 1 , ~2.5!

where all the vector operations are defined, respectively
the three-metrichmn . Thus the tensor fieldbmn is nondy-
namical; following@13# we putbmn50 in our analysis. This
restriction does not put any new ones on the remaining
namical quantities. The resulting effective three-dimensio
system coincides with a symmetric space model coupled
gravity @13#. To express it in terms convenient for our co
sideration, let us introduce the following matricesG, B, and
A @21#:

G5S 2e22f1vTGv vTG

Gv G D , B5S 0 2wT

w B D ,

A5S sT1vTA

A D , ~2.6!

where w5u1Bv1 1
2 As. Then, let us define the@2(d11)

1n#3@2(d11)1n# matrix M as
6-2
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M5S G 21 G 21~B1T! G 21A
~2B1T!G 21 ~G2B1T!G 21~G1B1T! ~G2B1T!G 21A

A TG 21 A TG 21~G1B1T! 11A TG 21A
D , ~2.7!
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whereT5 1
2 AA T. This matrix satisfies the restrictions

M T5M, MLM5M, ~2.8!

where

L5S 0 1 0

1 0 0

0 0 21
D , ~2.9!

so it parametrizes the symmetric spaceO(d11,d11
1n)/O(d11)3O(d111n). The resulting three-
dimensional theory can be expressed in terms of the th
metrichmn and the matrixM; the corresponding action read

S35E d3xh1/2~2R31L3!, ~2.10!

where

L35
1

8
Tr~¹M M 21!2. ~2.11!

previosuly the representation~2.10!,~2.11! was considered in
@13# with another form of the null-curvature matrixM. In
@29# a symplectic matrix representation was found for t
special symmetric space model withd5n51. In @30# one
can find the unitary null-curvature matrix for the system w
d51,n52.

Now let us use the motion equations and Eq.~2.8! and
introduce on shell the vector matrixVW according to the rela-
tion

¹3VW 5¹M L M; ~2.12!

then from Eq.~2.8! it follows that VW T52VW . Then, from
Eqs.~2.6!, ~2.7!, and~2.12! one concludes that the matrice
M and VW have equivalent natural block matrix structur
they are 535 block matrices. Using straightforward calcul
tions one can check that

VW 15VW 12
T , VW 25VW 14

T , VW 35VW 15
T , ~2.13!

where the indices enumerate the corresponding ma
blocks. Let us also define the following set of scalar qua
ties:

S052M11, S15M222M 11
21M 12

T M12,

S25M242M 11
21M 12

T M14,

S35M252M 11
21M 12

T M15. ~2.14!
06600
e-
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We state that these scalar and vector potentials can be e
tively explored for the construction of all the multidimen
sional fields of the heterotic string theory~2.1!. That is, for
the D5(d13)-dimensional line element one has

dsd13
2 5~dY1V1mdxm!TS1

21~dY1V1ndxn!1S0ds3
2 ,
~2.15!

whereY is the d-dimensional coordinate column with com
ponentsYm andds3

25hmndxmdxn. Then, for the matter fields
one has the following expressions:

eF5uS0 detS1u1/2,

Bmk5
1

2
~S1

21S22S2
TS1

21!mk ,

Bm d1n5H V2n1
1

2
~S1

21S22S2
TS1

21!V1n2S1
21S3V3nJ

m

,

Bd1m d1n5
1

2
@V1m

T ~S1
21S22S2

TS1
21!V1n1V1m

T V2n

2V1n
T V2m#,

Am
I 5~S1

21S3!mI ,

Ad1m
I 5~2V3m1S3

TS1
21V1m! I . ~2.16!

Equations~2.13!–~2.16! allow one to translate any solutio
of the three-dimensional problem~2.10!,~2.11! into the form
of the physical fields of the heterotic string theory~2.1!.
They are especially useful in the framework of the soluti
approaches based on the use of the null-curvature matrixM.
This situation arises when one uses the Kramer-Neugeb
geodesic method@25# or the Belinsky-Zakharov inverse sca
tering transform technique@17#. Equations~2.13!–~2.16! also
play an important role in our new approach to thre
dimensional heterotic string theory, which is developed
the next section.

III. NEW APPROACH

For the following analysis it is necessary to introduce
pair of Ernst matrix potentials@22#. These are the matricesX
andA, where

X5G1B1
1

2
AA T, ~3.1!
6-3
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OLEG V. KECHKIN PHYSICAL REVIEW D 65 066006
andA is the potential introduced in the previous section.
terms of these potentials the three-dimensional Lagran
L3 takes the following form:

L35Tr F1

4
~¹X2¹AA T!G 21~¹X T2A¹A T!G 21

1
1

2
G 21¹A¹A TG ; ~3.2!

here G5 1
2 (X1X T2AA T). The simplest solution of this

three-dimensional theory, which corresponds to em
Minkowskian space-time, is given by the matricesX05S
5diag (21,21;1, . . . ,1),A050, and by the three-
dimensional metrichmn5dmn @see Eqs.~2.6!,~3.1!#. Follow-
ing the conventional terminology of general relativity@25#
we call the solutions ‘‘asymptotically flat’’ ifX→S,A→0
when the three-point with the coordinatesxm tends to spatial
infinity ~note that time is taken as one of the compactifi
dimensions!. Let us now introduce the following pair of ma
trix potentials:

Z152~X1S!212S, Z25A2~X1S!21A. ~3.3!

The map (X,A)→(Z1 ,Z2) coincides with the inverse one;
similar substitution is familiar in stationary Einstein
Maxwell theory@31#. Our new approach is based on the u
of the single (d11)3(d111n) matrix potentialZ, where

Z5~Z1 Z2!. ~3.4!

This matrix potential is quadratic for bosonic string and no
quadratic for heterotic string theories. Using tedious
straightforward calculations and Eqs.~3.2!–~3.4!, one can
prove that in terms of the potentialZ the three-dimensiona
matter Lagrangian reads

L35Tr@¹Z~J2Z TSZ!21¹Z T~S2ZJZ T!21#,
~3.5!

where J5diag (21,21;1, . . . ,1) is the (d111n)3(d
111n) matrix. Equations ~2.10! and ~3.5! define the
Z-based formalism completely. The corresponding mot
equations are

¹2Z12¹ZJZ T~S2ZJZ T!21¹Z50,

R3 mn5Tr@Z,(m~J2Z TSZ!21Z ,n)
T ~S2ZJZ T!21#.

~3.6!

Our plan is to develop theZ formalism in detail; namely, we
would like to obtain its explicit relation to the null-curvatur
matrix representation, theZ-based scheme of calculation o
the multidimensional field components, and also the rep
sentation of all the hidden symmetries in terms ofZ. To
realize this program, let us express the matrixM from Eq.
~2.7! in terms of the Ernst matrix potentialsX and A, and
after that, using Eqs.~3.3!,~3.4!, let us translate the resu
into the Z language. After some nontrivial algebraic wo
one obtains that
06600
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M5D 1
TM1D11D 1

TM2D21D 2
TM 2

TD11D 2
TM3D22L,

~3.7!

where

M15H 21, M25H 21Z, M35Z TH 21Z, ~3.8!

and

H5S2ZJZ T. ~3.9!

In Eq. ~3.7! the constant matricesD1 andD2 read

D15~S 1 0!, D25S 1 2S 0

0 0 A2
D . ~3.10!

Note that the block components ofD1 are the (d11)3(d
11), (d11)3(d11) and (d11)3n matrices. The first
row blocks ofD2 have the same dimensionality; for the se
ond row one hasn3(d11), n3(d11), andn3n blocks.
Now let us calculate the vector matrixVW according to Eq.
~2.12!. In this calculation it is convenient to use the follow
ing multiplication relations, which can be easily establish
for the matricesD1 andD2:

D1LD 1
T52S, D1LD 2

T50, D2LD 2
T522J.

~3.11!

The result reads

VW 5D 1
TVW 1D12D 1

TVW 2D21D 2
TVW 2

TD11D 2
TVW 3D2 ,

~3.12!

where

¹3VW 15JW , ¹3VW 25H 21¹Z2JWZ,

¹3VW 35¹Z TH 21Z2Z TH 21¹Z1Z TJWZ,
~3.13!

and the vector currentJW reads

JW5H 21~ZJ¹Z T2¹ZJZ T!H 21. ~3.14!

Equations~3.7!–~3.10! and ~3.12!–~3.14! give a translation
of the solution expressed in terms of theZ-related quantities
(Ma ,VW a), a51,2,3, to the (M,VW ) form. The inverse rela-
tions can easily be obtained using the operators

P15
1

2
LD 1

TS, P252
1

2
LD 2

TJ. ~3.15!

The (M,VW )→(Ma ,VW a) map reads

M15P1
TMP11

1

2
S, VW 15P1

TVW P1 ,

M25P1
TMP2 , VW 252P1

TVW P2 ,
6-4
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M35P2
TMP22

1

2
J, VW 35P2

TVW P2 . ~3.16!

In proof of Eq. ~3.17! one can use the following projectiv
properties ofP1 andP2:

D1P151, D1P250, D2P150, D2P251;

P1
TLP15

1

2
S, P1

TLP250, P2
TLP252

1

2
J.

~3.17!

In Eq. ~3.16! the scalar and vector matrices are combined
three doublet ‘‘generations.’’ The constituents of any doub
have the equivalent matrix dimensionalities and, moreo
the same natural block structure. This block structure is
duced by Eqs.~2.6!, ~3.1!, ~3.3!, ~3.4!, ~3.8!, ~3.9!, ~3.13!,
and ~3.14!. One obtains that the constituents of the doubl
(M1 ,VW 1),(M2 ,VW 2), and (M3 ,VW 3) are the 232, 233,
and 333 block matrices, respectively, with the first row
the following structure: (131, 13d),(131, 13d, 13n),
and (131, 13d, 13n) ~the structure of the remaining row
is completely defined by the given information!. This means,
for example, that the ‘‘13’’ block component ofM2 ~we
denote it asM2,13) is the 13n matrix. Performing the appro
priate segmentation of the matricesD1 and D2 ~then D1
becomes 235, whereasD2 is the 335 block matrix! and
applying Eqs.~3.7! and ~3.12!, one obtains the explicit rela
tions between the (M,VW ) and (Ma ,VW a) block components.
The scalar part of the relations necessary in view of
~2.14! reads

M115M1,1122M2,111M3,11,

M1252M1,12G02M2,121~M2,21!
TG01M3,12,

M145M1,122M2,12G01~M2,21!
T2M3,12G0 ,

M155A2~M2,131M3,13!,

M225G0M1,22G01G0M2,221~M2,22!
TG01M3,22,

M245G0M1,222G0M2,22G01~M2,22!
T2M3,22G021,

M255A2~G0M2,231M3,23!; ~3.18!

whereas for the vector components@see Eq.~2.13!# one ob-
tains

VW 1252VW 1,12G01VW 2,121~VW 2,21!
TG01VW 3,12,

VW 1452VW 1,12G02VW 2,12G01~VW 2,21!
T2VW 3,12G0 ,

VW 155A2~VW 2,131VW 3,13!, ~3.19!

whereG05diag(21;1, . . . ,1) is thed3d matrix that gives
the trivial value of the metric components corresponding
the compactified dimensions. Equations~2.13!–~2.16! and
~3.18!,~3.19! allow one to transform the result obtained
terms ofZ to the form of the physical field components.
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The last problem in our program is theZ-based descrip-
tion of the hidden symmetries. First of all, from Eq.~3.5! it
follows that the transformation

Z→C1ZC2 ~3.20!

is a symmetry if

C1
TSC15S, C2

TJC25J, ~3.21!

i.e., if C1PO(2,d21) andC2PO(2,d211n). It is easy to
show that the realization of this symmetry transformation
the set ofZ-related quantities (Ma ,VW a) reads

M1→C1
21 TM1C1

21 , M2→C1
21 TM2C2 ,

M3→C2
TM3C2 , VW 1→C1

21 TVW 1C1
21 ,

~3.22!
VW 2→C1

21 TVW 2C2 , VW 3→C2
TVW 3C2 .

Also it is possible to establish the action of the symme
~3.20! on the null-curvature matrixM; namely, using Eq.
~3.7! and the projective relations~3.17!, one concludes that

M→C TMC, ~3.23!

whereC5C1C2 and

C1511P1~C1
2121!D1 , C2511P2~C221!D2 .

~3.24!

From Eq.~3.17! it follows that the matricesC1 andC2, which
represent theZ transformations given byC1 andC2 in terms
of M, commute, and also that both these matrices satisfy
restriction for the groupO(d11,d111n):

C TLC5L. ~3.25!

Equation ~3.25! contains all hidden symmetries for th
theory under consideration@13#. Of course, the genera
O(d11,d111n) symmetry transformation does not coin
cide with the one derived above. In fact we have detected
subgroupO(2,d21)3O(2,d211n) of the complete group
of symmetry transformations. There is some ‘‘missing’’ sym
metry from O(d11,d111n) whose action onM and Z
must be established. For our purposes it will be sufficien
construct it in the infinitesimal form.

To do this, let us denote the generators ofC1 andC2 asg1
and g2, i.e., let us put C1511g1 ,C2511g2 when
C1 , C2→1. For the corresponding generators in theM rep-
resentation from Eq.~3.24! one has

G152P1g1D1 , G25P2g2D2 . ~3.26!

These generators satisfy the algebra relation which follo
from Eq. ~3.25!:

GT52LGL. ~3.27!

It is easy to prove that the general solution of Eq.~3.27! can
be written in the form of
6-5
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G5G11G21G3 , ~3.28!

where

G352~P2Jg3
TP1

T2P1g3JP2
T!L. ~3.29!

Here g3 is an arbitrary constant parameter, whereasg1
T5

2Sg1S,g2
T52Jg2J in view of Eq.~3.21!. The generators

Ga define transformations of the null-curvature matrixM of
the form @see Eq.~3.24!#

daM5Ga
TM1MGa . ~3.30!

Then, using theMa↔M correspondence~3.16!, it is easy to
prove that the infinitesimalZ transformations read

d1Z5g1Z, d2Z5Zg2 ,

d3Z5g32ZJg3
TSZ. ~3.31!

Thus, the ‘‘missing’’ part of the hidden symmetries mov
the trivial Z value, i.e., it does not preserve the trivial spat
asymptotics of the fields. From this it follows that Eq.~3.20!
gives the general three-dimensional charging symmetry s
group. The ‘‘missing’’ transformations must be remov
from the procedure of symmetry generation of the asympt
cally flat solutions.

Equations~3.26! and ~3.29! show how the operatorsP1
andP2 realize a relation between the symmetry algebra
alizations in theZ andM representations. LetT(ga) denote
the infinitesimal transformation in the arbitrary represen
tion which corresponds to the generatorga . Then, as is easy
to check, the commutation relations read

@T~g18!,T~g19!#5T~@g18 ,g19# !,

@T~g28!,T~g29!#5T~@g28 ,g29# !, @T~g1!,T~g2!#50,

@T~g1!,T~g3!#5T~g38!, @T~g2!,T~g3!#5T~g39!,

where g3852g1g3 , g3952g3g2 ,

@T~g38!,T~g39!#5T~g1!1T~g2!, where

g15~g39Jg
3

8 T
2g38Jg

3

9 T
!S,

g25J~g
3

8 T
Sg392g

3

9 T
Sg38!. ~3.32!

These relations will play an important role in the study of t
infinite-dimensional symmetry group of heterotic strin
theory; this group arises after the subsequent reductio
two spatial dimensions. In this case the heterotic str
theory becomes a completely integrable two-dimensio
symmetric space model coupled to gravity@15#.

IV. EXTREMAL SOLUTIONS

The new approach developed in the previous section g
all the necessary tools for generation of asymptotically
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solutions of the heterotic string theory~2.1! compactified to
three dimensions on a torus. This generation procedure
cludes the following steps:~1! One must take some speci
asymptotically flat solution~or some consistent heteroti
string theory subsystem! and represent it in terms of the po
tentialZ and three-metrichmn ; ~2! after that one must apply
Eq. ~3.20! with the matricesC1 andC2 which are the genera
solutions of the charging symmetry group relations~3.21!;
~3! one must calculate the charging symmetry transform
values of the doublets (Ma ,VW a), and after that one mus
obtain the full set of multidimensional field components a
cording to the scheme developed in the two previous s
tions.

Note that this simple program realizes the most gene
technique for generation of the asymptotically flat solutio
in the theory under consideration; this program leads to g
eration of charging symmetry complete classes of solutio
However, theZ formalism can also be effectively used fo
the straightforward construction of the charging symme
invariant and asymptotically flat solution families. In th
paper we illustrate this statement by exploring one rema
able property of the three-dimensional heterotic str
theory; namely, there is a close formal analogy between
theory and the classical stationary Einstein-Maxwell syste
Let us clarify this question and give the corresponding
ample of application of the developed formalism. So let
consider the special subsystem withd51 andn52. Let us
separate the 234 matrix potentialZ into the two 232
blocksZa @a51,2; see Eq.~3.4!#, and define the subsystem
under consideration by taking the ansatz

Za5S za8 za9

2za9 za8
D . ~4.1!

It is easy to prove that the motion equations~3.6! reduce to
the system

¹2z12
¹zs3z1

12zs3z1
¹z50,

R3 mn52
z,m~s32z1z!21z,n

1

12zs3z1
,

~4.2!

where s3 is one of the Pauli matrices,z5(z1 z2), and za

5za81 iza9 . Let us construct some special solution class
this system. This solution class arises in the framework
the ansatz

z5l q, ~4.3!

where l is the dynamical complex function andq is the
complex constant 132 row. We state that the choice ofl,q,
andhmn such that

¹2z50, qs3q150, hmn5dmn ~4.4!

gives a solution of the equations~4.2!. In fact it is the well-
known Israel-Wilson-Perjes class of solutions@26#, and our
6-6
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subsystem is the conventional stationary Einstein-Maxw
theory. To prove this fact, let us introduce the potentials

E5
12z1

11z1
, F5

A2z2

11z1
, ~4.5!

and take the rowq in the form of

q5~1 eid!, ~4.6!

whered is real without loss of any generality (l is under-
stood as the arbitrary complex harmonic function!. Then for
this solution one has

E5
12l

11l
, F5

eid

A2
~12E!, ~4.7!

i.e., the formulas defining the general stationary extrem
solution class of the Einstein-Maxwell theory. Also the thre
dimensional matter Lagrangian takes the following form
terms of the new potentialsE andF:

L35LEM5
1

2 f 2
u¹E2F̄¹Fu22

1

f
u¹Fu2, ~4.8!

where f 5 1
2 (E1Ē2uFu2). Thus, E and F are actually the

conventional complex Ernst potentials@23#.
In @32# one can find information about the charging sy

metry invariant generation procedure for heterotic str
theory with arbitrary values ofd and n starting from this
effective Einstein-Maxwell system. Below we use the ma
rial presented above as the pattern for straightforward c
struction of the general extremal solution class of Isra
Wilson-Perjes type in heterotic string theory. Actually, let
use the explicit similarity between the systems~3.6! and
~4.2! and consider the heterotic string theory ansatz

Z5LQ, ~4.9!

whereL is the dynamical (d11)3K real matrix andQ is
the constant realK3(d111n) matrix. It is easy to prove
that the relations

¹2Z50, QJQ T50, hmn5dmn ~4.10!

lead to solution of the motion equations~3.6!. This solution
is charging symmetry complete: an application of the tra
formation ~3.20! is equivalent to the reparametrizationL
→C1L,Q→QC2. This reparametrization is not importan
because there is no algebraic restriction onL and the restric-
tion on Q is invariant with respect to this reparametrizati
@of course, we take the general matrixQ satisfying Eq.
~4.10!#.

Let us now obtain the heterotic string theory analogy
Eq. ~4.6!. In particular, we would like to clarify the questio
about the possible concrete values of the parameterK. First
of all, from Eq.~4.9! it follows that theQ rows can be taken
as algebraically independent. Actually, if, for example, t
Kth row is a linear combination of the others, i.e., ifQK
5( l 51

K21b lQl (b l are the coefficients!, then the removal of
06600
ll

al
-

-
g

-
n-
l-

-

f

QK from Q together with the replacement of thel th column
L l of L by the columnL l1b lLK effectively transforms Eq.
~4.9! into the same ansatz but with the shiftK→K21. Thus,
we can actually takeQ with independent rows without los
of generality. Then from this it follows thatK,d111n
@because the numbers of algebraically independent rows
columns coincide for any matrix, and in the case ofK5d
111n one has from Eq.~4.10! that detQ50, i.e., a contra-
diction with the proposed matrixQ row independence#. As a
result parametrization ofQ exists of the following form:

Q5~Q1 Q2!, ~4.11!

whereQ1 andQ2 are theK3K andK3(d111n2K) ma-
trices respectively. The matrix,Q1 must be nondegenerat
(Q has independent rows!, so one can representQ as Q
5Q1(1 N), where N5Q 1

21Q2. It is easy to see that the
matrix Q1 can be absorbed by the reparametrizationLQ1
→L without loss of generality, so the pair (L, N) defines
our solution completely. Then, it is not difficult to establis
that the algebraicQ restriction in Eq.~4.10!, being written in
terms of the established new form of the matrixQ

Q5~1 N!, ~4.12!

is compatible only ifK51,2. In the case ofK51 the matrix
L5L (1) is the (d11)31 column, whereasN5N (1) is the
13(d1n) row. This row satisfies the following algebrai
restriction:

N̄(1)N̄(1) T511~Ñ(1)!2, ~4.13!

where the parametrizationN (1)5(Ñ(1)N̄(1)) is performed
@hereÑ(1) is the number andN̄(1) is the 13(d211n) row#.
In the case ofK52,L5L (2) is the (d11)32 matrix,
whereasN5N (2) consists of two 13(d211n) mutually
orthogonal rowsN 1

(2) ,N 2
(2) of the unit norm:

N (2)5S N 1
(2)

N 2
(2)D ,

N 1
(2)N 1

(2) T5N 2
(2)N 2

(2) T51, N 1
(2)N 2

(2) T50.
~4.14!

The case ofK51 exists for values of (d,n) such thatd1n
>2 @this follows from Eq.~4.13!#, whereas the case ofK
52 is consistent ifd1n>3. Thus, the first case is the onl
possible one for theories withd5n51 ~the four-dimensional
Einstein-Maxwell dilaton-axion theory@33#! and with d
52,n50 ~the five-dimensional dilaton-Kalb-Ramond gra
ity or its analogous on-shell equivalent@34#!. The special
classes of extremal solutions of these theories can be fo
in @35#. In fact, only in these two special cases does
extremal solution withK51 exists as the original solution
we state that for all other situations, i.e. when the condit
of the solution withK52 is satisfied, theK51 solution
branch is a special case of the branch withK52. Actually,
the submersion of the former branch into the latter has
extremely simple form
6-7
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L1
(2)5L (1), L2

(2)5Ñ(1)L (1), N 1
(2)1Ñ(1)N 2

(2)5N̄(1).
~4.15!

These relations mean the following:L (1), Ñ(1), andN̄(1) are
arbitrary parameters~they parametrize the branch withK
51), whereasL1

(2) , L2
(2) , N 1

(2) , andN 2
(2) must be taken to

satisfy Eq.~4.15!. Note that the last relation in Eq.~4.15! can
always be realized; for the proof one can use some sim
geometrical reasons. Namely,N̄(1) is the vector in the~at
least! two-dimensional Euclidean space (d211n>2) with

the normA11(Ñ(1))2. It is clear that one can always tak
the two-dimensional plane in this space and two unit mu
ally orthogonal vectorsN 1

(2) and N 2
(2) in it in such a way

that the vectorN̄(1) has unit projection onN 1
(2) and projec-

tion on N 2
(2) equal toÑ(1). This choice exactly correspond

to the third relation in Eq.~4.15!. Both the critical heterotic
and bosonic string theories are consistent representative
our extremal solution class withK52.

Let us now briefly discuss the solution decoding pro
dure in this case, i.e., the translation of the extremal solu
found from theZ form to the language of multidimensiona
string theory fields. In this procedure the single qualitat
step is related to calculation of the matricesMa andVW a ; all
the remaining work is algebra that is simple in principle b
technically tedious. The calculation gives

M15S, M25SLQ, M35Q TLTSLQ,
~4.16!

VW 150, VW 25SQW 1Q, VW 35Q TQW 2Q,

where the vector fieldsQW 1 and QW 2 are defined by the rela
tions

¹3QW 15¹L, ¹3QW 25¹LTSL2LTS¹L.
~4.17!

For the solutions withK51 the termQW 2 vanishes; for the
solutions withK52 this term is the 232 antisymmetric ma-
trix; its ‘‘12’’ component is defined by the relation

¹3QW 2,125¹L1
(2) TSL2

(2)2¹L2
(2) TSL1

(2) . ~4.18!

We will not continue the calculation of the heterotic strin
theory field components in this paper. Let us only note t
the constructed solution class is asymptotically flat if t
harmonic matrix functionL vanishes at spatial infinity. In
the case whenL has Coulomb asymptotic behavior the ve
tor matrix VW 1 generates Dirac string peculiarities, where
VW 2 leads to the dipole moments of the fields. However, t
simple picture is not complete; there are some nuances
lesser effects. In a forthcoming publication we hope to c
tinue the analysis of the above established Israel-Wils
Perjes type solution of heterotic string theory and also g
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some new analytic material related to its supersymme
properties.

V. CONCLUSION

In this paper we have developed a new formalism
low-energy heterotic string theory compactified to three
mensions on a torus. This formalism is extremely comp
and based on the use of a single matrix potentialZ. The
formalism includes three pairs ofZ related quantities

(Ma ,VW a); they play an important role in the translation
the Z expressed solution to the language of heterotic str
theory field components. Using our formalism, one can g
erate asymptotically flat solutions of the theory that poss
the charging symmetry completeness property. The posi
feature of the new approach is related to the fact that
charging symmetry subgroup of transformations of t
theory acts as a linear homogeneous map on the matrix
tentialZ. Thus the straightforward construction of new sol
tions seems at least really promising in this approach.
have illustrated this statement by the straightforward c
struction of a general extremal solution of Israel-Wilso
Perjes type for heterotic string theory with arbitrary numb
d andn of toroidally compactified dimensions and the orig
nal multidimensional Abelian gauge fields. For the case
d5n51 our class is defined by two arbitrary harmonic fun
tions and one constant parameter; ford52,n50 we have
three harmonic and one constant parametric degrees of
dom. For the remaining heterotic string theory cases one
2(d11) basic arbitrary harmonic functions and 2(d1n)
25 independent constant parameters. We state that for
special subset ofd51 andn>2 theories our solution exactly
coincides with the solution obtained in@7#, if one removes all
the spatial field asymptotics from the latter solution.
course, we can also generate them in our solution usin
shift transformation~with the generatorg3 in Z representa-
tion!.

Concerning the nearest perspectives of activity ba
on the use of the new formalism, we hope to apply
in combination with the inverse scattering transform meth
for construction of the general two-dimensional solit
solution of the theory. Three-dimensional generati
using the total subgroup of the charging symme
transformations according to the plan formulated in t
previous section is also in our plans. Also, it is necessary
perform the supersymmetric analysis of the Israel-Wilso
Perjes type solution constructed in this article. It seems
there is a compact supersymmetric generalization of theZ
based formalism, but the corresponding work is now j
beginning.
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