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Three-dimensional heterotic string theory: New approach and extremal solutions
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We develop a new formalism for the bosonic sector of low-energy heterotic string theory toroidally com-
pactified to three dimensions. This formalism is based on the use of a single nonquadratic real matrix potential
which transforms linearly under the action of a subgroup of the three-dimensional charging symmetries. We
formulate a new charging symmetry invariant approach for the symmetry generation and straightforward
construction of asymptotically flat solutions. Finally, using the developed approach and the established formal
analogy between the heterotic and Einstein-Maxwell theories, we construct a general class of heterotic string
theory extremal solutions of the Israel-Wilson-Perjes type. This class is asymptotically flat and charging
symmetry complete; it includes the extremal solutions constructed before and possesses the nontrivial bosonic
string theory limit.
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I. INTRODUCTION Einstein-Maxwell theory{23] to the heterotic string theory
case. In fact this generalization includes the Einstein-
Field theory limits of superstring theory include some Maxwell theory as a special cagsee[22] and this work
concrete modifications of classical general relativiy].  below), and gives a convenient and simple method for the
These effective field theories describe the dynamics of somsymmetry analysis of the theory. [22] we classified the
set of the superstring excitation modes restricted by the cotthree-dimensional group of hidden symmetries in the matrix-
responding limit conditions. In the low-energy limit of het- valued Einstein-Maxwell form; namely, we separated it into
erotic string theory one deals with the zero-mass modes, ithe shift, electric-magnetic rotation, and Ehlers and Harrison
which the bosonic sector includes the dilaton, Kalb-Ramondtype parts of the transformatiotsompare with the ones in
Abelian gauge, and metric fields. These fields live in the[18,24]; see alsd25]). The full subgroup of charging sym-
multidimensional space-time and interact in a supergravitynetries was also constructed, i.e., the total set of the symme-
controlled form(see[2] and references thergin try transformations that preserve the asymptotic flatness
A solution space of the low-energy limit of heterotic property of the solutiongsee references ifi25] for the
string theory has been extensively studied during the lasEinstein-Maxwell theory analogigsA representation of the
several year3—9]; its investigation actively continues at the theory was established that is linear with respect to the action
present time. The main part of the physically and mathematief whole set of charging symmetry transformations.
cally interesting solutions was found for the theory toroidally  In this article we continue and conclude this line of inves-
compactified to three and lower dimensiofsge, however, tigation of three-dimensional heterotic string theory. We de-
some higher-dimensional examples [ib0] and works re- velop in detail the above mentioned representation and for-
ferred to therg The reason for such activity generation is mulate a new approach to the theory, which is based on the
closely related to the fact of hidden symmetry enhancemenise of a new single nonquadratic matrix potential. This po-
in the process of toroidal compactificatiphl,12. A quali-  tential has the lowest possible matrix dimensionality compat-
tatively important new situation takes place in the case ofble with the structure of the symmetric space model of the
toroidal compactification to three dimensions, when the hettheory and gives a powerful and most compact tool for the
erotic string theory becomes the three-dimensional symmetheory investigation. We introduce three doublets of matrix
ric space model coupled to gravifg3]. Such a theory be- potentials defined in terms of this underlying one. Any dou-
longs to a class described[ib4] and possesses the complete blet consists of one scalar and one vector matrix potential;
integrability property after the subsequent reduction to twaboth these potentials undergo linear transformations when
dimensiong15,16. In this sense the heterotic string theory the charging symmetry subgroup acts. We formulate a new
is also of the same type as the Einstein, Kaluza-Klein, angnethod for the symmetry generation and straightforward
Einstein-Maxwell theorie$17-20. construction of the solutions which guarantees the charging
In our approach we consider the three-dimensional hetsymmetry completeness property of the result. Our approach
erotic string theory in a remarkable explicit Einstein-is especially useful for work with asymptotically flat solu-
Maxwell form. In[21] a new form of the null-curvature ma- tions, which attract the main interest in the physical applica-
trix representation of the theory was established. This form isions of string theory(see[8] for string theory based black
based on the use of the Ernst matrix potent{&8]. The hole physick We also establish a relation between our new
Ernst matrix potential formulation is a straightforward matrix representation and the null-curvature matrix one. This gives
generalization of the conventional formulation of stationarysome new simplifications and promising possibilities in con-
struction of the two-dimensional solutions using the inverse
scattering transform method. We hope to illustrate this state-
*Email address: kechkin@depni.npi.msu.su ment in the near future. In this article we apply the new
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formalism _for s_traightforward construption of the charging hW:e—M[ded”_Gmkvl muV1 kol
symmetry invariant class of asymptotically flat extremal so-
lutions of the Israel-Wilson-Perjes type. We “rediscover” the
well-known corresponding Einstein-Maxwell theory solution
class[26], and give its straightforward generalization to the
heterotic string theory case. Our class of solutions is closely
related to those known in the literatuf@,27,2g, and also 1

includes the nontrivial subclass of extremal bosonic string _E[Vl VY2 my ™V mVa ml- (2.4
theory solutions, i.e., solutions without multidimensional

Abelian gauge fields.

B,,=Ba+pdrr— BmV1muVike

Let us now perform the toroidal compactification of the

Il. THREE-DIMENSIONAL HETEROTIC STRING first d dimensions. In fact, this procedure is equivalent to

THEORY consideration of the special situation when all the field com-
doonents areY™ independent. Thus, below all the quantities
are considered as functions of the coordinatésThe use of
the motion equations allows one to introduce the pseudo-
scalar fieldsu, v, ands (they are thedx 1, dx1, andn
X 1 columng and accordingly, the relations

The action for the bosonic sector of low-energy heteroti
string theory readfl]

SD: f dDX|deGMN|1lze_q) RD+q)'M(I)’M

1 1
—TZHMNKHMNK—ZFLANF'MN), (2.0
VXV;=e?*G ! Vu+

1
B+ EAAT)anLAVs
where Hynk=duBnk— 3AuFNk+ cyclic{M,N,K} and
Fln=mAN— Ay - Here XM is theMth (M=1,... D)
coordinate of the physical space-time of signature, (
+,...,4),Gun is the metric, and®,Byy, and Ay, (I ) 1
=1,...n) are the dilaton, Kalb-Ramond, and Abelian VXV2=92¢GVU—(B+ EAAT
gauge fields.

As declared in the Introduction, in this paper we consider
the theory(2.1) toroidally compactified to three dimensions.
Let us briefly describe this compactificatifitl—13. First of
all, let us putD=d+3 and denoterM=X™ (m=1, ... d)
andx*=X9"# 4, =1,2,3. Second, let us separate all the field
components into scalar, vector, and two-rank tensor quanti- ) ) )
ties with respect to transformations of the coordinatesAs ~ Where all the vector operations are defined, respectively, by
a result one has three scalar matriGsB, andA of dimen-  the three-metrich,,,. Thus the tensor field,, is nondy-
sionsdxd, dxd, anddxn constructed from the compo- hamical; following[13] we putb,,,=0 in our analysis. This

nents G By, and Amle:n’ respectively, and also the restr_iction doe.s. not put any new ones on the remaining dy-
scalar function namical quantities. The resulting effective three-dimensional

system coincides with a symmetric space model coupled to

gravity [13]. To express it in terms convenient for our con-
¢=> —In|detG|*2 (2.2 sideration, let us introduce the following matricgs3, and

A [21]:

VXV, +AVXVj.

VXVz=e24(Vs+ATVo)+ATV XV, (2.5

Then there are three column vector matrix colurﬁﬁs\72,
andV; of dimensionsdx 1, dx 1, andnx 1. They read

V1 mu=GmkGh dt g=

1
VZ mp = Bm d+u Bmkvl kM+§A:nV3 [J7R]
(2.6

V3i,= = A ut ALV - 2.3

Finally, there are two tensor fields; they consist of the nonwherew=u+Buv+ 3As. Then, let us define thg2(d+1)
matrix quantities +n]X[2(d+1)+n] matrix M as
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Gt G HB+T) G A
M=| (=B+DG™ 1 (G-B+T)G YG+B+T) (G-B+DG *A|, 2.7
ATG1 ATGHG+B+T) 1+ATG 1A
|
where7=3 AAT. This matrix satisfies the restrictions We state that these scalar and vector potentials can be effec-
T tively explored for the construction of all the multidimen-
MI=M, MLM=M, (2.8)  sjonal fields of the heterotic string theog.1). That is, for
the D= (d+ 3)-dimensional line element one has
where
01 0 dsg, 3= (dY+Vy,dx*) TS H(dY+V,dx) +Sds3,
2.1
£=({1 0 0], (2.9 @19
0 0 —1 whereY is the d-dimensional coordinate column with com-

) ) ] ponentsy™ anddéz h,,dx“dx". Then, for the matter fields
so it parametrizes the symmetric spa&(d+1d+1 one has the following expressions:
+n)/O(d+1)XO(d+1+n). The resulting three-

dimensional theory can be expressed in terms of the three- e =|S, detS,| 2
metrich,,,, and the matrix\1; the corresponding action reads '

1
S [ @i —Ry+ L), 210 Bk 5 (St S~ SIS D

where 1
Bmav=|Vart 5(81 'S~ §38, V1, — 81 'SV,

m

L =}Tr(VMM’1)2 (2.1

1
previosuly the representati@@.10),(2.11) was considered in By, q+,= E[VLL(SIlSZ— $S1 YV, +V1, Vo,
[13] with another form of the null-curvature matri¥1. In
[29] a symplectic matrix representation was found for the -VIV,,]
. . . 1vV2ul
special symmetric space model with=n=1. In [30] one

can find the unitary null-curvature matrix for the system with Al — (51
dzl’nzz m_(S]_ S?))mh
Now let us use the motion equations and Eg8) and | S
introduce on shell the vector matriX according to the rela- Ad+u=(=Va,+S38; Va,),. (218
tion

Equations(2.13—(2.16) allow one to translate any solution
VXQ=VMLM: (2.12 of the three-dimensional proble(®.10),(2.11) into the form
of the physical fields of the heterotic string thea3.1).
then from Eq.(2.8) it follows that Q"= —(. Then, from They are especially useful in the framework of the solution
Egs.(2.6), (2.7, and(2.12) one concludes that the matrices approaches based on the use of the null-curvature médrix
M and G have equivalent natural block matrix structure: This situation arises when one uses the Kramer-Neugebauer
they are 55 block matrices. Using straightforward calcula- gepdesm methofRS] of the Belmsky-.Zakharov Inverse scat-
tions one can check that tering transform techniquel7]. Equationg2.13—(2.16) also
play an important role in our new approach to three-
7 —07 5 6T 7 _ 3T dimensional heterotic string theory, which is developed in
VizQpp, Vo=Qaa Vs=lhs, 213 e next section.
where the indices enumerate the corresponding matrix
blocks. Let us also define the following set of scalar quanti- 1. NEW APPROACH

ties:
For the following analysis it is necessary to introduce a

So=—Mi1, S;=Moyp— MMMy, pair of Ernst matrix potentialg22]. These are the matrices
and A, where

S;= Mos= M IllM IZMM,
1
S3=Mos= MM Mis. 214 X=gr B AL @3
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and A is the potential introduced in the previous section. In. (f=DI M, D;+ DI M,D,+ DIM D+ DIMD,— L,
terms of these potentials the three-dimensional Lagrangian (3.7
L ; takes the following form:

where

1
Lz=Tr Z(VX—VAAT)Q_J'(VXT—.AV.AT)Q_l Mi=H Y, My=H 12, Mys=2"H 12, (3.9

1 and
+§g—1VAVAT}; (3.2
H=3—-ZEZ". (3.9
here G=3(X+XT— AAT). The simplest solution of this
three-dimensional theory, which corresponds to empt))n
Minkowskian space-time, is given by the matric&gs=2,
=diag (—1,-1;1,...,1),4,=0, and by the three- D,=(310), Dz=(
dimensional metrid,,= 5, [see Eqs(2.6),(3.1)]. Follow-
ing the conventional terminology of general relativ[®5]
we call the solutions “asymptotically flat” itv—3,4—0  Note that the block components &, are the (+1)x(d
when the three-point with the coordinatestends to spatial +1), (d+1)X(d+1) and @+1)xn matrices. The first
infinity (note that time is taken as one of the compactifiedrow blocks of D, have the same dimensionality; for the sec-
dimensions Let us now introduce the following pair of ma- ond row one hasix(d+1), nx(d+1), andnxn blocks.
trix potentials: Now let us calculate the vector matrit according to Eq.
(2.12. In this calculation it is convenient to use the follow-
Z=2(X+3)"t=3, Z,=\2(x+3)"'A (3.3  ing multiplication relations, which can be easily established
for the matricesD; and D;:

Eq. (3.7) the constant matrice®; and D, read

1 -2 0
0 0o \/5) (3.10

The map &,.A)— (2, 2,) coincides with the inverse one; a
similar substitution is familiar in stationary Einstein- Dl,CDI=22, :/)1,/;7);:0, DZLD-ZI—Z —2=.
Maxwell theory[31]. Our new approach is based on the use (3.1
of the single @+ 1)X (d+ 1+ n) matrix potentialZ, where
The result reads

_ _ o _ o O=D]0,D;—D1O,D,+DIAID,+DJ0D,,
This matrix potential is quadratic for bosonic string and non- (3.12
quadratic for heterotic string theories. Using tedious but
straightforward calculations and Eqg&8.2)—(3.4), one can  where
prove that in terms of the potenti& the three-dimensional
matter Lagrangian reads Vx0,=J, VXQ,=H Vz-JZ,

L3:Tr[VZ(:_ZTEZ)_1VZT(E_ZEZT)_l], Vxﬁ:;:VZTH_lz_ZTH_1VZ+ZTjZ,

(3.5 (3.13
where E=diag(-1,—-1;1,...,1) is the d+1+n)x(d -
+1+n) matrix. Equations(2.10 and (3.5 define the and the vector currerit reads
Z-based formalism completely. The corresponding motion

equations are J=H XzEVZT-VzZEZT)H 1 (3.14
V2z24+2VZEZT(S—-2E2T) v z=0, Equations(3.7)—(3.10 and (3.12—(3.14) give a translation
of the solution expressed in terms of tBerelated quantities
R, =TI Z (#(: —szz)—lzTy)(z —-zEz0H) 1. (Ma,ﬁa), a=1,2,3, to the M,ﬁ) form. The inverse rela-

(3.6)  tions can easily be obtained using the operators

Our plan is to develop th€ formalism in detail; namely, we 1 .
would like to obtain its explicit relation to the null-curvature [,=5LD1%,  lp=—5LD,E. 319
matrix representation, th&-based scheme of calculation of

the ml_JItidimensionaI field components, a_md also the reprerpq M, Q) —(M,,3,) map reads

sentation of all the hidden symmetries in terms &f To

realize this program, let us express the maikik from Eq. 1 _ R

(2.7 in terms of the Ernst matrix potential® and .4, and M1=HIMH1+ 52’ Ql=HIQH1,

after that, using Eqs(3.3),(3.4), let us translate the result

into the Z language. After some nontrivial algebraic work T - T
one obtains that Mo=11,MIl,, Q,=-11;0Il,,
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_ . s The last problem in our program is ti#&based descrip-
g, Q:=ILOIL. (3.16 tion of the hidden symmetries. First of all, from E&.5) it
follows that the transformation

Ma=TI;MII,—

N| =

In proof of Eq.(3.17 one can use the following projective

properties of(I; andIl,: Z2—C12C, (3.20

Dll_[l:l, D]_HZ:O, 'D2H1=O, DQHZZ 1, is & Symmetry if

1 1 CIEC]_ZZ, C;ECZZE, (321)
ML, ==%, TMLI,=0, TI,LI,=--E. o _
2 2 i.e. ifC;e0(2d—1) andC,e O(2d—1+n). It is easy to
(3.1 show that the realization of this symmetry transformation on
In Eq. (3.16) the scalar and vector matrices are combined inthe set ofZ-related quantities{1,,(},) reads
three doublet “generations.” The constituents of any doublet _ _ _
g Y M;—Cy ! T/\/11(:1 1’ My—Cy lT-/\/lzczy

have the equivalent matrix dimensionalities and, moreover,
the same natural block structure. This block structure is in-

duced by Eqs(2.6), (3.1, (3.3, (3.4, (3.8, (3.9), (3.13, Mz—CIM;3C,,  0,—C1 M T0,Cr T
and(3.14). One obtains that the constituents of the doublets R R R R (3.22
(M1,91),(M5,Q,), and (M3,03) are the 2, 2x3, 0,—C11T0,C,,  03—CJ0;5C,.

and 3x 3 block matrices, respectively, with the first row of o ) ] )
the following structure: (X1,1xd),(1x1,1xd, 1xn), Also it is possible to establish the action of the symmetry

and (1x 1, 1xd, 1xn) (the structure of the remaining rows (3-20 on the null-curvature matrix\t; namely, using Eg.
is completely defined by the given informatjoithis means, (3-7 and the projective relation$.17), one concludes that

for example, that the “13” block component of1, (we

T

denote it advl, 19 is the IX n matrix. Performing the appro- M=CMC, (3.23

priate segmentation of the matric&, and D, (then D; whereC=,C, and

becomes X5, whereasD, is the 35 block matriy and

applying Egs(3.7) and(3.12, one obtains the explicit rela- Ci=1+T1,(C;*~1)D;, Co,=1+TI1,(C,—1)D,.

tions between thet,Q) and (M,,{),) block components. (3.24

The scalar part of the relations necessary in view of Eq.

(2.14) reads From Eq.(3.17) it follows that the matrice€; andC,, which

represent theZ transformations given b€, andC, in terms

M= My 11— 2Mj 15+ M3, of M, commute, and also that both these matrices satisfy the

restriction for the grou@D(d+1,d+1+n):
Mip=— My 1Go— M 15t (Mp) 'Got Mg 1,
crLe=L. (3.29
Myg= My 15~ M1 Go+ (Mzz)" = M3 150,
Equation (3.25 contains all hidden symmetries for the

Mys= \/E(M2,13+ M3 19, theory under considerationl3]. Of course, the general
O(d+1,d+1+n) symmetry transformation does not coin-
Moo= Go M 2 Go+ G My o0+ (MZYZZ)TGO+ M3 22, cide with the one derived above. In fact we have detected the
subgroupO(2,d—1)x0(2,d—1+n) of the complete group
Moy=GoMy 20~ GoMy pfGo+ (Mo 0 — M3 2050~ 1, of symmetry transformations. There is some “missing” sym-
metry from O(d+1,d+1+n) whose action onM and Z
Mis=2(Go My 5+ M3 29); (3.18  must be established. For our purposes it will be sufficient to

construct it in the infinitesimal form.

To do this, let us denote the generator£gfandC, asy,
and y,, i.e. let us putC,=1+1v,,C,=1+7v, when
C,,C,—1. For the corresponding generators in fhtrep-
resentation from Eq.3.24) one has

whereas for the vector componefsee Eq.(2.13] one ob-
tains

Qa=-— ﬁ1,1260"‘ ﬁ2,12+ (ﬁz,zl)TGO+ ﬁ3,12:

614:_ﬁl,lzGo_62,1260+(ﬁz,21)T_ﬁ3,1zGo, I'y=—M;yD;, TI'y=Il,y,D,. (3.20

Q5= 2(Qp 15+ O3 19, (3.19  These generators satisfy the algebra relation which follows

. ) , ) from Eg. (3.25:
whereGy=diag(—1;1, .. .,1) is thed X d matrix that gives

the trivial value of the metric components corresponding to I'"=—/,I'L. (3.27
the compactified dimensions. Equatio(&13—(2.16) and

(3.18,(3.19 allow one to transform the result obtained in It is easy to prove that the general solution of E227) can
terms of Z to the form of the physical field components.  be written in the form of
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I=T+T,+I3, (3.28 solutions of the heterotic string theo(g.1) compactified to
three dimensions on a torus. This generation procedure in-
where cludes the following stepg1) One must take some special
Tt i asymptotically flat solution(or some consistent heterotic
I'3=2(I1,= y3l1; — 11, y5=115) L. (329  string theory subsystenand represent it in terms of the po-

_ ) tential Z and three-metrid,,,; (2) after that one must apply
Here ys IS an irb'tzir_y constant parameter, wheregs- Eq. (3.20 with the matricesC; andC, which are the general
—2y13,y,=—Ev,= inview of Eq.(3.21). The generators  solutions of the charging symmetry group relatiq8s22);
I', define transformations of the null-curvature matfix of (3) one must calculate the charging symmetry transformed

the form[see Eq(3.24] values of the doublets¥l,,(},), and after that one must
_7T obtain the full set of multidimensional field components ac-
OaM=Ta M+ MIs. (3.39 cording to the scheme developed in the two previous sec-
tions.
Note that this simple program realizes the most general
technique for generation of the asymptotically flat solutions

Then, using theM 4« M correspondences.16), it is easy to
prove that the infinitesimag transformations read

S1Z= 12, 8,2=Zy,, in the theory under consideration; this program leads to gen-
eration of charging symmetry complete classes of solutions.
532=y3— 25 3,;2 z (3.31) However, theZ formalism can also be effectively used for

the straightforward construction of the charging symmetry

Thus, the “missing” part of the hidden symmetries movesinvariant and asymptotically flat solution families. In this
the trivial Z value, i.e., it does not preserve the trivial spatialpaper we illustrate this statement by exploring one remark-
asymptotics of the fields. From this it follows that £§.20 able property of the three-dimensional heterotic string
gives the general three-dimensional charging symmetry suliheory; namely, there is a close formal analogy between this
group. The “missing” transformations must be removedtheory and the classical stationary Einstein-Maxwell system.
from the procedure of symmetry generation of the asymptotitet us clarify this question and give the corresponding ex-
cally flat solutions. ample of application of the developed formalism. So let us

Equations(3.26) and (3.29 show how the operatord;  consider the special subsystem with-1 andn=2. Let us
andlI, realize a relation between the symmetry algebra reseparate the 24 matrix potential Z into the two 2x<2
alizations in theZ and M representations. L&t(y,) denote  blocks Z, [@=1,2; see Eq(3.4)], and define the subsystem
the infinitesimal transformation in the arbitrary representa-under consideration by taking the ansatz
tion which corresponds to the generatqr. Then, as is easy

to check, the commutation relations read z, z,
2=\ _ (4.2)
[TCyD), T(yDI=T([y1, %D, @ T
) , S It is easy to prove that the motion equatidi3s6) reduce to
[T(y2), T(v2)1=T(Ly2,v2D),  [T(y1),T(y2)]=0, the system
[T(y) T(ya)1=T(v3), [T(72),T(y3)1=T(v3), , Vzosz*
V2z+2—————Vz=0,
where y3=—vy1y3, ¥3=— ¥3Y2, 1-zo3z
[T(¥5), T(¥5)]1=T(y1)+T(y2), where m. L iu0s=2'2) 'z,
3 ,LLV_ ’

+
T "T 1_20-32

71=(¥sE7, —7:E7,)3, 4.2
. . where o3 is one of the Pauli matricez=(z, z,), and z,
J— - . .
Y.=E(7, S yl— Y, Syh). (332 =Z,tiz,. Let us construct some §pe0|§1l solution class for
this system. This solution class arises in the framework of

These relations will play an important role in the study of thetn® ansatz

infinite-dimensional symmetry group of heterotic string
theory; this group arises after the subsequent reduction to
two spatial dimensions. In this case the heterotic stringyhere \ is the dynamical complex function amglis the

theory becomes a completely integrable two-dimensionatomplex constant 2 row. We state that the choice ®fq,
symmetric space model coupled to gravifyp). andh,, such that

Z=\q, (4.3

IV. EXTREMAL SOLUTIONS V?z=0, qo3q"=0, h,,=3,, (4.9

The new approach developed in the previous section givegives a solution of the equatiori4.2). In fact it is the well-
all the necessary tools for generation of asymptotically flaknown Israel-Wilson-Perjes class of solutidi&6], and our

066006-6



THREE-DIMENSIONAL HETEROTIC STRING THEORY. . . PHYSICAL REVIEW D 65 066006

subsystem is the conventional stationary Einstein-Maxwell,. from Q together with the replacement of thiéa column
theory. To prove this fact, let us introduce the potentials A, of A by the columnA,+ B, A« effectively transforms Eq.

(4.9 into the same ansatz but with the shift=/C— 1. Thus,
— ! - V22, (45 ~Wecan actually tak& with independent rows without loss
1+zy° 1+2z,’ ' of generality. Then from this it follows that<d+1+n

[because the numbers of algebraically independent rows and
columns coincide for any matrix, and in the casekofd
q=(1e'% (4.6) +1+n one has from Eq4.10 that det9=0, i.e., a contra-
' diction with the proposed matri® row independendeAs a
where § is real without loss of any generality\ (is under- ~ result parametrization of exists of the following form:

stood as the arbitrary complex harmonic funcjiofhen for _
this solution one has Q=(27,9), (4.11

and take the rovg in the form of

1o Qid whereQ,; and Q, are the X K and/ X (d+1+n—K) ma-
E=——, F=-——(1-E), (4.7)  trices respectively. The matrixQ; must be nondegenerate
1+) V2 (Q has independent rowsso one can represer@® as Q

=0;(1N), where N=07%0,. It is easy to see that the
1

i.e., the formulas defining the general stationary eXtrem%atrix 0, can be absorbed by the reparametrizatio@);
solution class of the Einstein-Maxwell theory. Also the three—_)A without loss of generality, so the pain(\) defines

dimensional matter Lagrangian takes the following form "Mour solution completely. Then, it is not difficult to establish

terms of the new potentials and F- that the algebrai@ restriction in Eq(4.10, being written in
terms of the established new form of the matéx

1 _ 1
L3=LEM=F|VE—FVF|2—?|VF|2, (4.9

Q=(1N), (4.12
where f= %(E+E—|F|2). Thus, E and F are actually the is compatible only iflC=1,2. In the case of=1 the matrix
conventional complex Ernst potentid3]. A=AW is the d+1)x1 column, wheread/=ND is the

In [32] one can find information about the charging sym-lX(FH_ n) row. This row satisfies the following algebraic
metry invariant generation procedure for heterotic string'eStriction:
theory with arbitrary values ofl and n starting from this — o — ~
effective Einstein-Maxwell system. Below we use the mate- NONDT=1+(MD)?, (4.13
rial presented above as the pattern for straightforward con- ) TALTRIN
struction of the general extremal solution class of IsraglWhere the parametrization™ =(MUAMY) is performed
Wilson-Perjes type in heterotic string theory. Actually, let us[here AV is the number and/'¥) is the 1x (d— 1+ n) row].
use the explicit similarity between the systert®6) and In the case ofK=2A=A® is the @d+1)X2 matrix,
(4.2 and consider the heterotic string theory ansatz whereasN=N"? consists of two X (d—1+n) mutually

orthogonal rows\V{? , A$?) of the unit norm:

Z=AQ, 4.9

(2)
where A is the dynamical ¢+ 1) X K real matrix andQ is N(Z):( (12)),
the constant realCxX (d+1+n) matrix. It is easy to prove N3

that the relations
N(lz)N(lz)T=N(22)N(22)T= 1, N(12)N(22)T:0_
V?Z=0, QEQ'=0, h,,=35,, (4.10 (4.14

lead to solution of the motion equatiof3.6). This solution  The case ofC=1 exists for values ofd,n) such thatd+n
is charging symmetry complete: an application of the trans=2 [this follows from Eg.(4.13], whereas the case &
formation (3.20 is equivalent to the reparametrization =2 is consistent itl+ n=3. Thus, the first case is the only
—C1A,0— QC,. This reparametrization is not important possible one for theories with=n=1 (the four-dimensional
because there is no algebraic restriction'oand the restric-  Einstein-Maxwell dilaton-axion theory33]) and with d
tion on Q is invariant with respect to this reparametrization =2n=0 (the five-dimensional dilaton-Kalb-Ramond grav-
[of course, we take the general matid satisfying Eq. ity or its analogous on-shell equivale[4]). The special
(4.10]. classes of extremal solutions of these theories can be found

Let us now obtain the heterotic string theory analogy ofin [35]. In fact, only in these two special cases does the
Eq. (4.6). In particular, we would like to clarify the question extremal solution withiC=1 exists as the original solution:
about the possible concrete values of the paraniétdtirst  we state that for all other situations, i.e. when the condition
of all, from Eq.(4.9) it follows that theQ rows can be taken of the solution withX=2 is satisfied, theC=1 solution
as algebraically independent. Actually, if, for example, thebranch is a special case of the branch with 2. Actually,
KCth row is a linear combination of the others, i.e., &  the submersion of the former branch into the latter has the
=38,9, (B, are the coefficiens then the removal of extremely simple form
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A(12)=A(1), A(ZZ)Z'K/(l)A(l)’ /\/(12)+7\/(1)N(22)=/T/(1). some new analytic material related to its supersymmetric
(4.15 properties.

These relations mean the following‘"), MV, and M) are

arbitrary parametergthey parametrize the branch witk

=1), whereas\?, AP, NP, andNV$?) must be taken to . .
satisfy Eq.(4.15. Note that the last relation in E¢4.15 can In this paper we have developed a new formalism for
always be realized; for the proof one can use some simpl®Ww-energy heterotic string theory compactified to three di-
geometrical reasons. Name@(l) is the vector in the(at ~ Mensions on a torus. This forr_nahsm is _extremely compact
leas) two-dimensional Euclidean spacd€1+n=2) with  and based on the use of a single matrix potenfialThe

the normv1+ (V®)2. It is clear that one can always take formaILsm includes thrge pairs of .related quant'ltles
the two-dimensional plane in this space and two unit mutu{"a,{a); they play an important role in the translation of

ally orthogonal_ vectorsV{? and N in it in such a way ';:e Z ef>.<p|:jessed solutiton ltJo lthe Ianguagellof heterotic string
that the vector'MY) has unit projection otV{?) and projec-  -'c0rY fi€ld components. Lising our formalism, one can gen-
. ) Z(1) T . erate asymptotically flat solutions of the theory that possess
tion on A'$?) equal toAV). This choice exactly corresponds

. o 2 .~ the charging symmetry completeness property. The positive
to the third relation in Eq(4.15. Both the critical heterotic feature of the new approach is related to the fact that the
and bosonic string theories are consistent representatives f8ﬁarging symmetry subgroup of transformations of the

our extremal solupon cl'ass withi=2. . . theory acts as a linear homogeneous map on the matrix po-
Let us now briefly discuss the solution decoding PrOCeS o htial Z. Thus the straightforward construction of new solu-
dure in this case, i.e., the translation of the extremal solutioﬁ. ) 9

found from theZ form to the language of multidimensional Eons §I:aems a(tj Ieha}St really promblsmhg n th_lshafpproa(éh. we
string theory fields. In this procedure the single qualitative ave lllustrated this statement by the straightforward con-

! . . < struction of a general extremal solution of Israel-Wilson-
step is related to calculation of the matricks, and(),; all : . . . .
- . L onran Perjes type for heterotic string theory with arbitrary numbers
the remaining work is algebra that is simple in principle but

technically tedious. The calculation gives d andn c_)f _toroidglly compa_lctified dime_nsions and the origi-
nal multidimensional Abelian gauge fields. For the case of
d=n=1 our class is defined by two arbitrary harmonic func-
Mi=3, M,=3AQ, M;3;=QTATSAQ, tions and one constant parameter; tb=2n=0 we have
(4.16  three harmonic and one constant parametric degrees of free-
R R R R R dom. For the remaining heterotic string theory cases one has
0,=0, 0,=30,0, 0;=070,9, 2(d+1) basic arbitrary harmonic functions andd2(n)

R R —5 independent constant parameters. We state that for the
where the vector field®), and ©, are defined by the rela- special subset af=1 andn=2 theories our solution exactly
tions coincides with the solution obtained[iri], if one removes all

the spatial field asymptotics from the latter solution. Of
- - T T course, we can also generate them in our solution using a
VX0,=VA, VX0,=VAZA-AXVA. shift transformationwith the generatory; in Z representa-
(4.17) tion).
. Concerning the nearest perspectives of activity based
For the solutions withC=1 the term®, vanishes; for the on the use of the new formalism, we hope to apply it
solutions with/C= 2 this term is the X 2 antisymmetric ma- in combination with the inverse scattering transform method
trix; its “12” component is defined by the relation for construction of the general two-dimensional soliton
solution of the theory. Three-dimensional generation
- using the total subgroup of the charging symmetr
VX021~ VAP TSAP-VAPTSAP. (418 transgformations accorging pto the plan fo?ml?lateﬁ in th)é
previous section is also in our plans. Also, it is necessary to
We will not continue the calculation of the heterotic string perform the supersymmetric analysis of the Israel-Wilson-
theory field components in this paper. Let us only note thaPerjes type solution constructed in this article. It seems that
the constructed solution class is asymptotically flat if thethere is a compact supersymmetric generalization ofZhe
harmonic matrix functionA vanishes at spatial infinity. In  based formalism, but the corresponding work is now just
the case wherk has Coulomb asymptotic behavior the vec- beginning.
tor matrix ﬁl generates Dirac string peculiarities, whereas

ﬁz leads to the dipole moments of the fields. However, this

simple picture is not complete; there are some nuances and ACKNOWLEDGMENTS
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