
PHYSICAL REVIEW D, VOLUME 65, 066005
Nonlocal field theories and their gravity duals
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The gravity duals of nonlocal field theories in the large-N limit exhibit a novel behavior near the boundary.
To explore this, we present and study the duals of dipole theories, a particular class of nonlocal theories with
fundamental dipole fields. The nonlocal interactions are manifest in the metric of the gravity dual, and type-0
string theories make a surprising appearance. We compare the situation to that in noncommutative super-Yang-
Mills theory.
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I. INTRODUCTION

At the boundary, the metric of AdSd11 , ds25(a8/u2)
3(dt22dx1

22¯2dxd21
2 2du2), becomes infinite. This way th

boundary is described by classical geometry, and quan
gravity on AdSd11 can correspond to a local field theory o
a classical space@1–4#.

The AdS conformal field theory~CFT! correspondence
can be extended to field theories on a noncommutative s
@5–7#. The gravity dual for the large-N limit of N54 super-
Yang-Mills theory on a noncommutativeR4 ~NCSYM! with
the noncommutativity in the 2,3 directions has the me
@5,6#

ds25
a8

u2 @dt22dx1
22h~dx2

21dx3
2!2du2#,

whereh5u4/(u41u2) with u5u23 the typical length scale
in the theory. Here the boundary,u→0, is no longer classi-
cal. Indeed some components of the metric tend to zero
the boundary.

Our motivation for this paper is to understand how no
locality in the field theory affects the metric of its gravi
dual near the boundary. Unfortunately, field theories on n
commutative spaces can be quite complicated; they exh
uv-ir mixing and nonlocal behavior on varying scales. uv
mixing, which means that high momentum is associated w
large-scale nonlocality and arbitrarily small momentum
troduces a new short-distance scale, can even obstruc
renormalization procedure@8,9#. Although N54 NCSYM
theory is a finite theory and renormalizability is not an iss
noncommutative geometry does not appear to be the sim
way to introduce nonlocality. There is a simpler way.

We will study a class of nonlocal gauge field theories
which some of the fields correspond to dipoles of a cons
length. Such theories were discussed in@10# in the context of
T duality in noncommutative geometry. They were realiz
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in string theory in a different setting in@11#. Also see@12–
14# for previous appearances of such a theory.

At low energies these ‘‘dipole theories’’ can be describ
as a deformation ofN54 SYM theory by a vector operato
of conformal dimension 5. This can be compared to the
formation by a tensor operator of conformal dimension 6 t
describes NCSYM theory at low energy@15–17#. If the con-
formal dimension and the size of the Lorentz representa
is an indication of simplicity, then it is reasonable to expe
that dipole theories might be simpler than NCSYM theor

The more interesting questions, however, hover in the
region of the theory. At distances shorter than the scale of
nonlocality, we expect to find new phenomena.

Our ultimate goal is to answer the followin
questions: How is the nonlocality of the dipole theo
manifested in the boundary metric? How does this manif
tation of nonlocality compare to that of noncommutative g
ometry? Are these features generic to the gravity duals
nonlocal field theories?

In Sec. VII, we answer the first question for a particula
simple dipole theory. In the discussion, we show that t
effect is analogous to a feature of the supergravity dua
noncommutative geometry. We also make some comm
about the nature of the supergravity dual for generic nonlo
theories.

The particular dipole theory that we study breaks sup
symmetry entirely. We chose to work with it because t
supergravity equations are simplified. The fermionic degr
of freedom, however, require extra care. As we will argu
type-0 string theory with a strong RR field strength has to
used in order to correctly describe the gravity dual.

The paper is organized as follows. In Sec. II, we revie
the construction of dipole theories. In Sec. III, we describ
simple string theory realization of these theories and th
calculate their gravity dual in Sec. IV. In Sec. V, we compa
the gravity dual and the field theory in the infrared. In Se
VI, we study the geometry of the gravity dual. In Sec. V
we demonstrate the nonlocality of the boundary. In Sec. V
we discuss a puzzle related to the nonlocal behavior of
fermions and argue that type-0 string theory has to be
voked to resolve it. In Sec. IX, we compute some correlat
functions and show how they exhibit some generic featu
of nonlocality. Finally, in Sec. X, we discuss how the fe
©2002 The American Physical Society05-1
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tures we have found here might be generic to the superg
ity duals of all nonlocal field theories.

II. DIPOLE THEORIES

Dipole theories are nonlocal field theories that also br
Lorentz invariance. They were obtained in@10# by studying
the T duals of twisted fields in noncommutative gau
theory. Below, we will describe how to make a dipole theo
out of an ordinary field theory.

A. Definition

We start with a local and Lorentz invariant field theory
d dimensions. In order to turn it into a nonlocal theory, w
assign to every fieldFa a vectorLa

m (m51,...,d). We will
call this the ‘‘dipole vector’’ of the field.

The fieldsFa can be scalars, fermions, or have high
spin. Next, we define a noncommutative product

~F1!̃F2!x[F1~x2 1
2 L2!F2~x1 1

2 L1!. ~1!

It is easy to check that this defines an associative prod
provided that the vector assignment is additive, that
F1!̃F2 is assigned the dipole vectorL11L2 . ForCPTsym-
metry, we will require that ifF has dipole vectorL, then the
charge conjugate field,F†, is assigned the dipole vecto
2L. We will also require that gauge fields have zero dip
length.

In order to construct the Lagrangian of the dipole theo
we need to replace the ordinary product of fields with
noncommutative!̃ product ~1!. In general, there might be
some ordering ambiguity, but the theories we will consid
below are SU(N) gauge theories and have a natural order
induced from the noncommutative products ofN3N matri-
ces.

We have seen that the requirement of associativity tra
lates into a requirement of additivity for the dipole vecto
One way to ensure this is to have a global conserved ch
in the theory such that a fieldFa has chargeQa . We then
pick a constant vectorLm and assign to every fieldFa ~a
51,...,n, wheren is the number of fields in the theory! the
dipole vectorQaLm. More generally, we can havem global
charges such that a fieldFa has the chargesQja ( j
51,...,m). We can then pick a constantd3m matrix Qm j

(m51,...,d and j 51,...,m! and assign the fieldFa a dipole
vector( j 51

m Qm jQja .
Extending this definition by allowingQa to be the mo-

mentum, we see that noncommutative Yang-Mills theory c
also be thought of as a dipole theory. The matrixQm j then
becomesQmn (n51,...,d) and is required to be antisymme
ric. The dipole lengths are then both proportional and tra
verse to the momentum@18–20#.

B. A Dipole deformation ofNÄ4 SYM theory

The dipole theories that we study in the rest of this pa
can be obtained from ordinary SU(N) N54 SYM theory in
311D by turning the scalars and fermions into dipole field
N54 SYM theory has six real scalars in the representatio
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of the R-symmetry group SU~4! and four Weyl fermions in
the representation 4 of SU~4!. We will use the global
R-symmetry charges to determine the dipole vectors of
various fields as follows. Pick three constant commuting
ementsVmPsu~4! ~m51,...,3 and we will not consider time
like dipole vectors in this paper!, where su~4! is the Lie
algebra of SU~4!. Take Vm to have dimensions of length
Denote the matrix elements ofVm in the representation 4 a

Û
jk̄

m
( j ,k̄51,...,4). HereÛm is a traceless Hermitian 434

matrix. Denote the matrix elements ofVm in the representa-
tion 6 asMab

m (a,b51,...,6). Mm is a real antisymmetric 6
36 matrix.

Let ua
( l ) (a,l 51,...,6) be an eigenvector ofMm with ~real!

eigenvalueL̃ l
m so that (bMab

m ub
( l )5L̃ l

mua
( l ) . ua

( l ) does not
depend onm because@Mm,M n#50. Let fa (a51,...,6) be
the six real scalar fields ofN54 SYM theory. Then the
complex-valued scalar fieldsf ( l )[(aua

( l )fa are assigned a

dipole vector with components 2pL̃ l
m (m51,...,d). Simi-

larly, the fermionic fields are assigned dipole vectors that
determined by the eigenvalues of the matricesÛm.

C. Supersymmetry

The dipole theories obtained fromN54 SYM theory in
the previous subsection are parametrized byd constant trace-
less Hermitian 434 matricesÛm. For simplicity, we will set
Û15Û250 andÛ[Û3. Thus, the dipole vectors are all i
the third direction. The matrixÛ has dimensions of length
and its eigenvalues determine the dipole vectors of the v
ous fields. Let the eigenvalues bea1 ,a2 ,a3 ,2(a11a2
1a3). Then, the dipole vectors of the various scalar fie
are given by6(a i1a j ) (1< i , j <3).

The number of supersymmetries that are preserved by
dipole theory is determined by the rankr of Û: If r 54, then
the theory is not supersymmetric at all; ifr 53, there is one
zero eigenvalue that we take by convention to bea350, and
the theory hasN51 supersymmetry; ifr 52, there are two
zero eigenvalues that we take to bea25a350. The theory
then hasN52 supersymmetry. The vector multiplet ofN
54 SYM theory decomposes as a vector multiplet and
hypermultiplet ofN52 SYM theory. All the fields in the
N52 vector multiplet have dipole vector 0, and the fields
the hypermultiplet have dipole vectors6a1 .

Because we can realize dipole theories without supers
metry, one might ask if poles similar to those discovered
@8,9# might arise in the perturbative expansion of the theo
In fact, they do not. This can be seen by examining
expression of@8,9# for the effective cutoff

Leff→
1

AL~22!1~up!2
.

We recognizeup as the length of the dipoles in noncomm
tative geometry. Thus, the analogous expression in
theory is
5-2
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Leff→
1

AL~22!1L2
,

which, as it is independent of the momenta, gives rise to
new poles.

III. STRING THEORY REALIZATION OF DIPOLE
THEORIES

In order to find the gravity dual of the large-N limit of a
particular dipole theory, we need to find a simple stri
theory realization for it. We now do this for a large class
dipole theories.

In @11#, a realization of dipole theories withN52 super-
symmetry was suggested using D8 branes that probe the
ter of a modified Taub-NUT~Newmann-Unti-Tamburino! ge-
ometry. While this realization is convenient for
Bogomol’nyi-Prasad-Sommerfield~BPS! analysis, it is hard
to extract the gravity dual from it, and it is not obvious ho
to generalize it to dipole theories that breakN52 supersym-
metry.

Fortunately, the Taub-NUT space that was used in@11# is
not an essential ingredient. We can find an alternative set
that has the same behavior near the brane probes. This
ting, which we will describe below, has the disadvantage t
the geometry is not asymptotically Euclidean at infini
Nevertheless, it has been constructed in string theory@21#
and is good for extracting the gravity duals that we se
Other worldsheet CFTs that break Lorentz invariance h
been studied in@22#.

The backgrounds that we consider are twisted version
type-II string theory. They are related to the Melvin soluti
@23# and are in fact identical to the backgrounds discusse
@24# and more recently in@25,26#. As was shown in@24#, the
twisted backgrounds are unstable, and the instability is s
lar to that discussed in@27#. This instability is exponentially
suppressed asgs→0 and is likely to be completely absen
when some supersymmetry is preserved. For the time be
we will ignore the instability. We will return to this point in
the Discussion.

A. The T dual of a twist

We will first describe a type-II background without bran
and then later we will add the brane probes. Consider ty
IIA string theory on a space that isR @9,1# modded out by the
isometry

U:~x0 ,x1 ,x2 ,x3 ,$x31a%a51
6 !°S x0 ,x1 ,x2 ,x3

12pR3 ,H (
b51

6

Obax31aJ
a51

6 D .

Here OPSO~6! is an orthogonal matrix. The twisted com
pactification is parametrized byR3 and, because we need
define the action on fermions, an element of spin~6!>SU~4!.
This background is, in general, modified by quantum corr
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tions, butO andR3 are defined by their asymptotic values
infinity. We will denote this background byX(O,R3). Note
that if R3.0, the isometryU has no fixed points and there
fore O is not necessarily of finite order.

Now consider probingX(O,R3) with D2 branes in direc-
tions (x0 ,x1 ,x2) and then taking the limitR3→0 together
with O5e2p iR3M /a, whereM is a finite matrix of the Lie
algebra so(6)>su(4) with dimensions of length anda8/2p
is the inverse string tension.

When M50, we can perform T duality to transform th
D2 branes into D3 branes. WhenMÞ0, we will now show
that the low-energy description of the probe is a dipo
theory.

B. Branes probing dual twists

We wish to find the low-energy Lagrangian describing D
branes that probe the twisted geometry of Sec. III A. T
light degrees of freedom come from the strings with tw
Dirichlet boundary conditions, i.e., fundamental strings w
ends on the D2 branes. BecauseR3→0, we have to set the
string oscillators to their ground states, but the winding nu
ber can be arbitrary.

To obtain the Lagrangian, we can adopt a procedure s
lar to the one described in@28–30# for noncommutative
gauge theories. Also, the construction that we present he
reminiscent of the construction in@31#. In momentum space
the action of the dipole theory is obtained from the action
N54 SYM theory by inserting certain phases. L
F1(p1),...,Fn(pn) be fields in the adjoint representation
U(N) and suppose thatN54 SYM theory has a term of the
form

tr$F1~p1!¯Fn~pn!%, ~2!

in the Lagrangian~of coursen<4!. The variablespi are the
momenta. Let the dipole vectors of the fields beL1 ,...,Ln .
We have

(
i 51

n

Li50, (
i 51

n

pi50.

The dipole theory is obtained from the ordinaryN54 SYM
theory by inserting the phases

eiS1< i , j <npiL j ~3!

in front of terms like Eq.~2!.
Now let us consider branes probingX(O,R3). For sim-

plicity, let us assume that the twistO acts only onZ[X8

1 iX9 asZ→eiaZ. We will refer to the angular momentum
corresponding to rotation in theZ plane as theZ charge.

In the case thata50, we know that the theory on the D
brane probe isN54 SYM theory. The states with momen
tum along the third direction, in the SYM theory, correspo
to winding states along the third direction in the string theo
setting.

Now let us turn on the twist,a. Consider a string disk
amplitude that calculates the interaction ofn open string
states with winding numbersw1 ,...,wn and with Z charges
5-3
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q1 ,...,qn . The worldsheet theory has a global U~1! symme-
try corresponding to theZ charge. The string vertex operato
that correspond to the external states are charged unde
U~1! symmetry. The disk worldsheet has cuts that eman
from the external vertex operators on the boundary. Alo
the j th cut, the worldsheet fieldZ jumps by a phaseeiaqj . We
can redefine the fieldZ to be continuous, but then there wi
be additional phases coming from the vertex operators on
boundary. It is easy to see that this phase is

eiaS1< i , j <nwiqj .

This is illustrated in Fig. 1. It agrees with Eq.~3! because

L j5a8
a

R3
qj , pj5a821R3wj .

In 311 D, the photon of the U~1!,U(N) center of the
gauge group is likely to become massive via a dynam
mechanism similar to the one described in@32# for quiver
theories, so that the gauge group is actually just SU(N), but
we will ignore this for the time being.

IV. SUPERGRAVITY SOLUTION FOR A TWISTED BRANE

We now turn to the task of describing the supergrav
duals of these dipole theories. We will use the string the
realization of dipole theories as described in the previ
section.

We will find the exactclassicalsupergravity solutions in
four steps.

~i! We start with the D3 brane solution of type-IIB class
cal supergravity and compactify one of the directions para
to the D3 branes. We will call it the third direction.

~ii ! We perform T duality on the third direction to obtain
solution that describes D2 branes in type-IIA. The soluti
however, will be translationally invariant along the third d
rection, and, as such, it describes smeared rather than l
ized D2 branes.

~iii ! We now insert a transverse SO~6! twist into the ge-
ometry by hand. This is accomplished by simply chang
the boundary conditions for the six transverse coordinate
we complete a circle around the third direction. Locally, t
metric is unchanged.

~iv! Finally, we use T duality to turn the smeared D
branes back to D3 branes.

In this paper, we will restrict ourselves to cases where

FIG. 1. An r-point amplitude with vertex operators that car
winding numbers. It requiresr cuts on the worldsheet.
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the dipole vectors of the fields in the theory are oriented
the same direction. This was direction 3 above. In the A
pendix we present the generalization for generic dipole v
tors. We now turn to the details.

A. The type-IIB D3 brane

First, we illustrate the conventions. We work in the~1,
2,...,2! metric. Greek indices arem, n50,...,2. The time
direction is t5x0 . The direction that we T dualize is th
third. The remaining directions, perpendicular to the bra
are labeled by roman indicesa, b54,...,9. All metrics will be
in the string frame.

We start with the metric for a D3 brane~note that all the
x’s have dimensions of length!,

dsstr
2 5H21/2~dt22dx1

22dx2
22dx3

2!2H1/2~dabdxadxb!,

where

H511
R4

r 4 , R454pgsNa82, r 25daba
axb,

and we have the following backgrounds for the Ramon
Ramond~RR! 4-form potential and the dilaton, respectivel

C0123
~4! 52H21, e2f5e2f0.

Next, we compactify alongx3 with radius R3[R. The
metric is now

ds25H21/2~dt22dmndxmdxn2R2dx̂3
2!2H1/2~dabdxadxb!.

Note that x̂3 is now dimensionless and periodicx̂3; x̂3
12p.

B. A smeared D2 brane with a twist

We now T-dualize aroundx3 . Following @33–35#, we
have

C012
~3!5 8

3 H21, e2~f2f0!5
a8

R2 H1/2

ds25H21/2~dt22dx1
22dx2

2!

2H1/2S a82

R2 dx̂3
21dx4

21¯1dx9
2D .

This is a smeared D2 brane. We can now add a twist to
transverse directionsx4 ,...,x9 as we travel around the circl
x3 . In particular, we take an element of the Lie algebra so~6!,
Vab , and change the metric to
5-4
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ds25H21/2~dt22dx1
22dx2

2!2H1/2H a82R22dx̂3
2

1(
a

S dxa2(
b

Vabxbdx̂3D 2J .

We can expand this out, giving

ds25H21/2~dt22dx1
22dx2

2!2H1/2$~a82R22

1xWTVTVxW !dx̂3
21dxWTdxW22dxWTVxW dx̂3%,

wherexW is the vector formed byxa (a54,...,9).

C. Back to the D3 brane

Once again, we apply the T-duality formulas~recall that
x̂3 is dimensionless, while all the other coordinates have
mension of length!

ds25H21/2S dt22dx1
22dx2

22
a82

a82R221xWTVTVxW
dx̂3

2D
2H1/2S dxWTdxW2

~dxWTVxW !2

a82R221xWTVTVxW D .

We also have

C3012
~4! 5H21,

(
a

B3̂adxa52
dxWTVxW

a82R221xWTVTVxW
,

e2~f2f0!5
1

11a822R2xWTVTVxW
,

which we will address later on.
Defining xW5rn̂ so thati n̂i51, our metric becomes

ds25H21/2S dt22dx1
22dx2

22
a82

a82R221r 2n̂TVTVn̂
dx̂3

2D
2H21/2S dr21r 2dn̂Tdn̂

2
r 4

a82R221r 2n̂TVTVn̂
~ n̂TVTdn̂!2D .

D. The near-horizon limit

In these coordinates, the horizon is atr 50, and so the
near-horizon limit isr small. We can therefore approximat

H1/25A11
R4

r 4 ;S R
r D 2

.

Substituting this into the metric, we obtain
06600
i-

ds25~r /R!2S dt22dx1
22dx2

22
a82

a82R221r 2n̂TVTVn̂
dx̂3

2D
2

R2

r 2 dr22R2

3S dn̂Tdn̂2
1

a82~rR!221n̂TVTVn̂
~ n̂TVTdn̂!2D .

Finally, we make the substitutionu5R2/r ,

ds25
R2

u2 S dt22dx1
22dx2

22
u2

S u

RD 2

1l2n̂TVTVn̂

dx̂3
2D

2R2
du2

u2 2R2

3S dn̂Tdn̂2
l2

S u

RD 2

1l2n̂TVTVn̂

~ n̂TVTdn̂!2D ,

wherel2[R4/a8254pgYM
2 N. The dilaton and the NSNS

2-form field are

(
a

B3̂adn̂a52
l2

u2

R2 1l2n̂TVTVn̂

dn̂TVn̂,

e2~f2f0!5
1

11
R2

u2 l2n̂TVTVn̂

.

Now we take the limitR→` keepingRV5M fixed. We
also redefinex̂35x3 /R. Note thatx3 , u, andM have dimen-
sions of length. We find

ds25
R2

u2 S dt22dx1
22dx2

22du22
u2

u21l2n̂TMTMn̂
dx3

2D
2R2S dn̂Tdn̂2

l2

u21l2n̂TMTMn̂
~ n̂TMTdn̂!2D . ~4!

The NSNS 2-form field and the dilaton are

(
a

B3adn̂a52
l2

u21l2n̂TMTMn̂
dn̂TMn̂,

e2~f2f0!5
u2

u21l2n̂TMTMn̂
. ~5!

Given this form of the metric, it is not obvious that th
regionR/r @1 indeed decouples from the bulk, as we ha
assumed. In principle, one can calculate scattering am
tudes for gravitons as in@36,37#. In some cases one can se
from the scattering amplitudes that the bulk does not
couple~see, for instance,@38#!.
5-5
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In our case, the geometry is strongly coupled whenu is
small, as will be discussed in more detail in Sec. VII A, a
evaluating the scattering amplitudes is difficult. Neverth
less, there is no reason to expect that the bulk will not
couple. The dipole theories describe well-defined renorm
izable theories that do not require additional degrees
freedom in the uv.

V. COMPARISON TO THE FIELD THEORY
IN THE INFRARED

For M50, the metric ~4! describes AdS53S5 with a
boundary atu50. The ir region corresponds to largeu. For
large u, the deviation from the standard AdS53S5 metric
describes a deformation ofN54 SYM theory by irrelevant
operators.

In @10#, the first-order correction to the SYM Lagrangia
was determined as the dipole length times the dimensio
operator

Om
IJ5

i

gYM
2 trH Fm

n F [ IDnFJ]1(
K

~DmFK!F@KF IFJJ
1fermions.

Here I, J51,...,6 areR-symmetry indices,F I(I 51,...,6) are
the scalars,Dm5]m2 i @Am ,•# is the covariant derivative
Fmn is the field strength, and@ # means complete antisymme
trization.Om

IJ is a vector operator that transforms in the 15
the R-symmetry group SU~4!.

We should be able to find the dual of this in the sup
gravity. The only vector field on AdS that we have obtain
is the 2 form

(
a

B3adn̂a52
l2

u21l2n̂TMTMn̂
dn̂TMn̂.

In particular, atO(L), we have

B3a52
l2

u2 Mabn̂
b.

When acted upon byÔPSO~6!, B3a transforms as

Ô~B!3a52
l2

u2 ÔabMbcÔcd
21n̂d.

BecauseM is in the Lie algebra, so~6!, we recognize this as
the adjoint representation 15 or, in terms of spherical h
monics, thek51, M258 representation in@39#. This corre-
sponds to a dimension-5 operator. Referring to the table
@40#, this is a linear combination ofd3d̄O3 and d̄3dO3 ,
whereOp is the chiral primary tr$F (I 1F I 2

¯F I p)%2traces.
Here,dO( d̄O) represents either the commutator or antico
mutator, as appropriate, of O with the supersymmetry g
eratorQ (Q̄). We also note from the table that this is a vec
operator, as expected.

For largeu, we can make the following expansion:
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1

u21a2 5
1

u2 S 12
a2

u2 1
a2

u4 1¯ D .

Thus, we obtain deformations that are multiplied by a high
power of the dipole length. We will work through some
the O(L2) terms.

For the deformation of the sphere S5, we have

h~ab!52
R2l2Macn̂

cMbdn̂
d

u2 @11O~L2!#2trace.

We immediately see from the above that this must transfo
in some component of the15^ sym15584% 20% 15% 1. With
a little work, one can see that the correct component is
84. In terms of spherical harmonics, this corresponds to
k51, M2512 field in@39#. We can read off the weights from
the Young tableaux, giving~2, 0, 2!. Following the table of
@40#, we can see that this corresponds to the opera
d2d̄2O4 . This is a scalar operator of dimension 6.

Also, atO(L2), there are a number of other deformatio
arising from the termn̂TMTMn̂. Specifically, there areha

a ,
the dilaton, and the 33 component of the metric on AdS5. As
MTM is a symmetric 636 matrix, we can see that thes
transform in the20% 1. For the dilaton, we can identify the
mass of the20 asM2512. Thus, this is also a dimension-
operator. Again, reading from@40# identifies the operator a
some combination ofd4 and d̄4 acting onO4 . For the trace
of the metric, we are presented with a problem. The me
has a term in its equation of motion arising from the prod
of two Neveu-Schwarz–Neveu-Schwarz~NSNS! fluxes, giv-
ing a term also of orderO(L2). Thus, it can no longer be
treated as a linear perturbation on the AdS background.
fact that we got the correct answer for the traceless par
the metric perturbation is due to the fact that the produc
the NSNS fluxes does not have any component that tra
forms in the 84, and so it can be treated as a linear pertu
tion.

VI. THE GEOMETRY OF THE SUPERGRAVITY

We now investigate some of the geometrical features
the metric~4!. The key things to note are the behavior of t
x3 coordinate and the S5 as a function ofu. We first discuss
the generic behavior and then give a detailed analysis
useful special case that will occupy us for the remainder
the paper. General deformations of the S5 were also studied
in a slightly different context in@41#.

A. The boundary

The behavior near the boundary is governed by the r
of M. For maximal rank, the quadratic functionn̂TMTMn̂ is
always positive-definite. It has 12 local extrema on S5. These
consist of pairs of antipodal points; each pair correspond
an eigenvector ofMTM with the two ~6! sign options. The
metric ~4! is asymptotically AdS43S13S5, where the S5 is
deformed, and both the S1 and S5 are small compared to th
AdS.
5-6
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If the rank ofM is less than maximal, the quadratic for
n̂TMTMn̂ has a locus of zeros. This locus is Sr 21, wherer
52,4 are the possible nonzero values for the rank. Loc
on the zero locus, the metric is indistinguishable from or
nary AdS53S5. This should be related to the fact that som
scalar fields do not have a dipole length. We do not claim
understand the exact connection.

The metric on S5 becomes degenerate asu→0. ForM of
maximal rank, the metric on S5 at u50 is

ds25R2dn̂Tdn̂2
R2~ n̂TMTdn̂!2

n̂TMTMn̂
.

Let n̂, a unit vector inR6, parametrize a pointpPS5. Then
Mn̂ defines a direction in the tangent spaceTpS5, since
n̂TMn̂50. It is easy to see that the metric is degenerate al
this direction. Thus,Mn̂ defines a vector field on S5 along
which the metric is degenerate. This is the vector field
duced by the infinitesimal SO~6! action on S5 given by
MPso~6!. To analyze the degenerate S5 further, we need to
know more about the eigenvalues ofM. Let the eigenvalues
be6 ia1 , 6 ia2 , 6 ia3 . If a15a25a3 , then the flow lines
of the vector fieldMn̂ are closed circles. S5 can be described
as a circle bundle overCP2, and the vector field is along th
circle. At u50, the S5 then shrinks toCP2. This particular
case will be discussed more extensively in the next sect
For the general case, we can identifyR6 with C3 and intro-
duce the following coordinates:

~z1 ,z2 ,z3!5S eiar cosu

A11r 2
,
eibr sinu

A11r 2
,

eig

A11r 2D .

In these coordinates, the deformation of the sphere only
fects the three coordinatesa, b, and g. The vectorMn̂ is
solely along this torus and, for generic ratios between th
angles, the flow is dense in this torus. However, this is no
true fibration, and to avoid such complications we will on
work with the simpler case.

B. The Hopf fibration

The case when all three eigenvalues ofM are equal is the
one in which all of the scalar fields have the same dip
length. The analysis of the uv behavior of the theory w
significantly simplify in this situation.

We set1
2 L̃[a15a25a3 and

M5S 0 2L̃ 0 0 0 0

L̃ 0 0 0 0 0

0 0 0 2L̃ 0 0

0 0 L̃ 0 0 0

0 0 0 0 0 2L̃

0 0 0 0 L̃ 0

D . ~6!

For L̃Þ0, this choice ofM breaks all of the supersymmetr
but it preserves a U~3!,SO~6! subgroup of theR symmetry.
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The advantage of this choice ofM is that the factor
n̂TMTMn̂5L̃2 is independent ofn̂. According to the defini-
tion of M in Sec. II B, the bosons have dipole lengt
62pL̃, three of the fermions have dipole lengths6pL̃, and
the remaining~complex! fermion has length63pL̃.

We now write the metric on the deformed S5 explicitly.
Let a unit vectorn̂ which parametrizes S5 in C3 be given by

n̂5S eig

A11uau21ubu2
,

eiga

A11uau21ubu2
,

eigb

A11uau21ubu2D
with a and b complex. Thus, the S5 is given as a circle
fibration parametrized byg overCP2 parametrized bya and
b. This is the famed Hopf fibration. The advantage of the
coordinates is that the vectorMn̂ points along the direction
of the fiber forM given as in Eq.~6!.

It can be shown that the metric on a regular S5 in these
coordinates is

dn̂Tdn̂5
udau21udbu2

11uau21ubu2
2

uāda1b̄ dbu2

~11uau21ubu2!2

1S dg1
Im~ āda1b̄ db!

11uau21ubu2 D 2

, ~7!

where the first two terms describe the Fubini-Study metric
CP2.

For our deformed sphere, the metric is

dn̂Tdn̂2
l2~ n̂TMTdn̂!2

u21l2n̂TMTMn̂

5
udau21udbu2

11uau21ubu2
2

uāda1b̄dbu2

~11uau21ubu2!2
1

u2

u21l2L̃2

3S dg1
Im~ āda1b̄db!

11uau21ubu2 D 2

.

The 535 determinant of the above metric can be calc
lated to be

detg5S u2

u21l2L̃2D 1

~11uau21ubu2!6
. ~8!

Thus, the salient features of our deformed S5 are as fol-
lows.

It has the structure of an S1 ~Hopf! fibration over a base
CP2. An SU~3! subgroup of SO~6! acts freely onCP2.

Invariance of the metric of the deformed S5 under
U~3!,SO~6! implies that the metric on the baseCP2 is inde-
pendent of the position, and the metric on the fiber S1 is
similarly homogeneous due to the U~1! isometry, which ro-
tates the fibers.

The radius of the fiber is independent of theCP2 coordi-
nate and is given by
5-7
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r~u!5R
u

Au21l2L̃2

. ~9!

The volume ofCP2 is constant and given by

vol~CP2!5
p2

2
R4.

Finally, in these coordinates, the NSNS 2-form is given

B52
l2L̃

u21l2L̃2
dx3∧c.

Herec is the global angular 1-form of the Hopf fibration. I
the notation of Eq.~7!, it is given by

c5dg1
Im~ āda1b̄db!

11uau21ubu2
.

The 3-form field strength is given by

H5dB52
l2L̃

u21l2L̃2
dx3∧dc1

l2L̃u

~u21l2L̃2!2
du∧dx3∧c.

Here dc is the closed harmonic 2-form that genera
H2(CP2,Z).

VII. NONLOCALITY IN THE SUPERGRAVITY DUAL

We now come to the heart of the paper. In this section,
will show how the nonlocality of the field theory is man
fested in the geometry of the boundary of the supergrav
We will continue to work with the special case describ
above in Sec. VI B. In this situation, as described in th
section, the fiber shrinks to zero size on the boundary, and
such, should be T-dualized to obtain a classical descript
This will make the dipole nature of the nonlocality eviden

A. T duality of the fiber

As we approach the boundary of our solution,u→0, the
volume of the baseCP2 remains a constant. However, th
circle fibered along it shrinks to zero size. Note that t
dilaton also approaches zero since

e2~f2f0!5
u2

u21l2L̃2
.

It is easy to see that the curvature of the deformed S5 is still
of the order of magnitude of 1/R2, even whenu!lL̃. How-
ever, whenr(u) becomes of the order of magnitude of th
string length,a81/2, we cannot trust the supergravity approx
mation anymore. This happens whenu;a81/2R21lL̃

5l1/2L̃.
Since the circle shrinks to zero, we have to perfo

T-duality on that direction. As we shall see in Sec. VIII, the
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is a subtlety that complicates matters, but for the time be
we will naively apply the standard T-duality formulas.

Again using the equations of@33–35#, we obtain type-IIA
with the metric

ds25
R2

u2 ~dt22dx1
22dx2

22du2!2
R2

u2 ~dx31L̃dg!2

2
a82

R2 dg22~constCP2!. ~10!

We also have

e2f5
e2f0

l
5A gs

3

4pN
,

(
b

Hu3bdxb52
l2L̃u

~u21l2L̃2!2

Im~ āda1b̄db!

11uau21ubu2
,

whereH is the 3-form NSNS field strength. In addition, the
is a nontrivial RR 4-form field strength which we will no
write down. Note that the type-IIA dilaton becomes a co
stant. Despite the ominous factora82/R2!1 in Eq.~10!, we
see that type-IIA supergravity is a good approximation.
two points that are closer thana81/2 are identified. The only
identification is

~ ...,x3 ,g!;~ ...,x3 ,g12p!

and the distance between those two points is large wheu
→0.

B. Nonlocality on the boundary

The metric in Eq.~10! is a striking manifestation of the
nonlocality of the field theory in the boundary metric. It d
scribes thex3 direction fibered over a small circle of radiu
a8/R parametrized byg. The proper distance between th
point with coordinates (x3 ,g) and the point with coordinate
(x312pL̃,g);(x3 ,g22p) is 2pa8/R, which is of a
stringy scale. On the other hand, the proper distance betw
(x3 ,g) and (x31D,g) is of orderR/u→` whenD is not an
integer multiple of 2pL̃ andu→0. In the field theory, this is
translated into nonlocal interactions between fields at po
that are separated by a distance ofL52pL̃. If we think of
the matter content of the dual SYM theory as constitut
momentum modes along the S5, then, after T duality, the
nonlocality should be reflected in the winding numb
around the T-dual circle. This is exactly what we see her

The metric~10! also shows that the 4D superconform
group is restored since the new coordinatex31L̃g can be
attached to the AdS4 part of the metric to form AdS5. This is
to be expected because the nonlocal interactions have a m
mal distanceL. At short distances, the vicinity of each poin
should look like a 4D CFT and the interactions with field
distanceL seem like interactions with extra degrees of fre
dom outside the small neighborhood of the point.
5-8
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C. A note on momentum conservation

It is interesting to note that, because S5 is contractible, the
winding number along the S1 fiber is not conserved. This i
equivalent to the fact that the fibration has a nontrivial fi
Chern class. In order to contract the circle, however, o
needs to pull it around a nontrivial 2-cycle of the baseCP2.
So, a concrete process that violates winding number con
vation is to start with a small string onCP2 and then to
gradually increase its size until it extends around the equ
of a topologically nontrivialCP1>S2 inside CP2. Then we
contract the string along the other hemisphere of theCP1. At
the end of the process, the string is wound around the fi
S1. This process requires energy scales of the order of
circumference of the equator of theCP1, i.e., E;R/a8.

Because of this, after T duality, momentum along theg
direction also must not be conserved. After T duality, theg
circle is fibered trivially over theCP2. Instead, we have a
3-form NSNS field strength,Hgab , along the circle and two
directions inside theC P2. It is easy to see thatHgab is pro-
portional todg∧v, wherev is the harmonic 2-form onCP2.

The process that violates momentum conservation al
the g direction is the same as before. We start with a po
like string insideC P2 and deform it to go around a nontrivia
2-cycle insideC P2 and then shrink it back to a point. Le
X(s,t) be the closed path of the string as a function of tim
t and string coordinate 0<s<2p. Note that when boths
and t vary, the functionX(s,t) spans a surface that is ho
mologically equivalent to the nontrivial 2-cycle insideC P2.
The violation of momentum conservation is due to t
‘‘magnetic’’ forces on a moving string in the presence of
H5dB field strength. The totalg-momentum transfer is

E Fg~t!dt5E Hgab]sXa]tX
bds dt5E v51.

The right-hand side is the integral of the 2-formv along the
nontrivial 2-cycle.

VIII. THE FERMIONS

In the previous section, we saw that T duality on the1

fiber of the deformed S5 leads to a simple picture of nonlo
cality on the boundary. The nonlocality scale,L52pL̃, of
the field theory matched nicely with the nonlocality scale
the boundary. In general, the proper distance between
two distinct points along thex3 axis becomes infinite on th
boundary because of the large rescaling factor 1/u2. If the x3
coordinates of the two points differ by an integer multiple
L, then, as we saw in Sec. VII B, one can make a ‘‘shortc
through an extra dimension that came from the T-dual of
S1 and go from one point to the other via a path who
proper length is shorter than the string scale.

However, the logic behind this picture is incomplete.
understand the problem, we will begin with a puzzle.

A. What about the fermions?

The supergravity metric presents a nonlocal behavior
connects two points atx3 distance ofL, and this is indeed the
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dipole vector of the scalars of our field theory. But wh
about the fermions? Their dipole vectors, as mentioned
low Eq. ~6!, are6L/2 or 63L/2.

One might try to argue that we should only consider f
mion bilinear operators, but this does not appear to be
case. Obviously, there are fermionic operators in the the
Moreover, let us consider gauge-invariant operators in
field theory that also carryR-symmetry charge. Specifically
let us consider the U~1!c center of the U~3!,spin(6)R that
keeps the dipole matrix~6! invariant. This U~1!c acts on the
S5, and it is easy to see that it is represented by rotation
the fiber S1. The dipole vector of any fieldF is given by 1

2 L
times its U~1!c charge. To make a gauge-invariant operat
we need to include an open Wilson line, for example

W5tr$F~x!ei *CAmdxm
%, ~11!

whereC is an open path whose end points are atx32(L/2)
andx31(L/2).

In the supergravity dual, closed Wilson lines correspo
to closed paths on the boundary@42#. The operatorW will
also correspond to a closed path. It is the path that st
alongC on the boundary and then winds around the T-d
S1 to make the shortcut from@x32(L/2)# to @x31(L/2)#.
Note that after T duality, the U~1!c charge is mapped to a
winding number along the T-dual S1. See also@57# for a
related discussion.

Now suppose thatF is a fermion dipole field of length
L/2. There is no way to close the Wilson line in the sup
gravity dual.

B. A missing „À…

F

The problem with the T-duality argument of Sec. VII A
revealed by a careful analysis of the boundary conditions
the fermions around the fiber S1 of the Hopf fibration of S5.
As we will now argue, the fermions have antiperiodic boun
ary conditions around the S1, and one should include (2)F

in the boundary conditions, whereF is the fermion number.
Our setting is reminiscent of the geometry in@43#.

An observer living on our deformed S5 who cannot ven-
ture out over distances of the order ofR sees only a smal
neighborhoodU of CP2. In this neighborhood, fields vary
slowly and the fiber S1 is noncontractible. The fibration ha
the structure ofU3S1, and, if our local observers wish t
describe fermions in their neighborhood, they have the
tion of choosing either periodic or antiperiodic bounda
conditions around S1. The geometric holonomy around S1,
calculated from the Levi-Civita connection, is the identity
SO~5!. However, as it turns out, the small S1 fiber is con-
tractible inside the whole deformed S5, but in order to shrink
it to a point, one must first deform the circle to a path
length at least 2pR. This fact allows one to calculate th
holonomy for fermions around the fiber S1, and, as we will
see below, it is21Pspin~5!. Thus a local observer would
have to choose the antiperiodic boundary conditions and
sert (2)F in every calculation.

In more mathematical terms, let T* S5 be the tangent
bundle over S5. To define spinors on S5 we need the spin
5-9
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bundleS over S5. The structure group ofS is spin~5!, which
is a double cover of SO~5!. Now pick a fiber S1 over a point
p of the baseCP2. Take a neighborhoodUPCP2 of the point
p. The restriction of the S1 fibration toU is a manifold that is
of the formU3S1. OverU3S1, there are two possible spi
structures. In the first one,S1 , the spinors have periodi
boundary conditions around the S1, and in the second,S2 ,
the spinors have antiperiodic boundary conditions. The
propriate spin structure can be calculated from the spin~5!
holonomy around S1 in S. It turns our that the holonomy is
21Pspin~5!. To see this, one can continuously deform t
fiber S1 to a point inside S5 and trace the holonomy aroun
the closed loop as it changes from 1Pspin~5! when the loop
is a point to21Pspin~5! when the loop becomes the fibe
To actually calculate the holonomy, note that the fiber S1 is a
circle of radiusR inside S5. Pick an S2,S5 that contains S1

as its equator. Over S2, S reduces to the spin bundle of S2

times a trivial bundle. So the holonomy is the same as
holonomy of a spinor on S2 around the equator, which is21.

It may seem at first sight that because of the (2)F we are
actually describing strings at high temperature as in@44# ~and
see also@45,46# for recent discussions!. The closed string
spectrum would then develop a tachyon when the S1 shrinks
to a size smaller than the string scale, and our discus
would be rendered invalid. However, the same21
Pspin~5! holonomy is there even for the supersymmet
AdS53S5 since the geometry of the S5 is the same except fo
the size of the fiber. This means that the S5 must support
covariantly constant spinors, and something else should
cel the 21Pspin~5! phase. Indeed, the Dirac equation
motion for a fermionc on AdS53S5 contains an extra term
in addition to the spin connection. This term is proportion
to (F5)m1¯m5

Gm1¯m5c, where F5 is the 5-form RR field
strength~see, for example,@47#!. When integrated around th
fiber S1, this extra term gives an additional phase of~21! so
that altogether a covariantly constant spinor is possible fo
SO~6!-symmetric S5.

It is important to point out that the (2)F phase coming
from the geometric holonomy is a global effect. If we retu
to our local observer on S5, the (2)F rule will seem to them
as an arbitrary rule of nature. On the other hand, the (2)F

phase coming fromF5 can be calculated locally. This ha
important implications to the application of T duality.

C. T duality with „À…

F

The antiperiodic boundary conditions for the fermio
around the fiber S1 imply that we cannot just perform T
duality and get a type-IIA background with a large S1. In-
stead we get a type-0A theory. Such theories were discu
in @48–56#. Their spectrum contains no fermions, and th
bosonic massless spectrum is the same as that of type
string theory but with two copies of every field in the R
sector. The main complication is that they also contain
tachyon. However, in our case the tachyon could very w
be absent. In@44#, the tachyon came from a string windin
state in the RR sector. There, because of the extra (2)F,
there was a negative zero point energy for the worldsh
oscillators. In our case, as we have seen above, theF5 term
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cancels the (2)F, and therefore the winding state is qui
likely to remain massive. The disappearance of the tachyo
instability is also supported by the arguments of@56#. There
it was argued that a background RR flux provides a posi
shift to the~mass!2 of the tachyon. If that is indeed the cas
it is plausible that the uv region is described by type-
string theory with the general features of the weakly curv
metric described in Sec. VII A. Note that the magnitude
the 4-form RR field strength in type-0A isMs

4/gs5gs
1/3M p

4.
This means that whengs is small, this field strength is large
relative to the string scale but small relative to the Plan
scale. Thus it appears that our dipole theory describes an
flow from type-IIB string theory to type-0A string theory.1

However, quantizing strings in strong RR backgrounds
mains an open problem, and type-0A is also likely to hav
large cosmological constant, so this conjecture is hard
verify.

D. Resolution of the puzzle

Assuming that T duality to a weakly coupled type-0
theory is possible, the puzzle about spinor operators w
half-integral dipole length is resolved as follows. The typ
IIB compactification on S1 of radiusR with the extra (2)F

twist can be described as the orbifold of a compactificat
on a circle of radius 2R by theZ2 action (2)F1P, whereP is
the Kaluza-Klein momentum. The T-dual is therefore an
bifold of type-IIA on a circle of radius 1/2R by (2)F1W,
where W is the winding number. Now we see that in th
untwisted sector of the T-dual background, strings that
spacetime bosons must have even winding number,
strings that are spacetime fermions must have odd wind
number. Thus, the resolution of the puzzle is that the d
theory is not type-IIA on a circle of radius 1/R but rather
type-0A on a circle of radius 1/2R.

IX. CORRELATION FUNCTIONS

In a local field theory, correlation functions of operato
^O(x)O(y)&, have short distance singularities whenx→y.
In dipole theories, we expect a singularity to appear a
whenx→y6Li , whereLi is one of the characteristic vector
of nonlocality as in Sec. II. In the special case we study
this paper, the length of the characteristic vectors of the s
lars is L52pL̃. For operatorsO(x) that have no dipole
length of their own~for example tr$Fmn

2 %), we therefore ex-
pect

^O~x!O~y!&→x→y1L

C

ux2y2Lu2D

and then in momentum space we expect to find a term
behaves like

^O~k!†O~k!&→k→`

CeikL

k422D .

1We are grateful to Igor Klebanov for pointing this out.
5-10
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For operatorsO(x) that do have a length, we expect th
behavior of the correlation function to be more complica
since the operators contain nonlocal Wilson lines as in
~11!. It is likely that the correlation functions exhibit an ex
ponential behavior;eA(const)uk3uL analogous to that of non
commutative geometry@57,58#.2 For the rest of this discus
sion, we will restrict ourselves to operatorsO(x) with dipole
length zero.

We can use the AdS/CFT correspondence to comp
these correlation functions in the large-N limit. We will re-
strict ourselves to the special case where theR symmetry is
broken from spin~6! down to U~3!, as in Sec. VI B. Because
the AdS/CFT correspondence directly probes the nonpe
bative nature of the field theory, it is perhaps a bit too mu
to expect to see the exact form above, but, in the limit
high momentum along the dipole direction, a sign of non
cality would be a rapid oscillation in the correlation functio
in momentum space.

It is, in general, a difficult problem to decouple the fiel
on a nontrivial background such as any of the example
this paper. Following@57#, we will simply postulate that
there exists a massless scalar living on our spacetime3 In
particular, it should satisfy the field equation

]m„e
22fAdetg gmn]nF~xW ,u!…50,

wherexW5(t,x1 ,x2 ,x3).
This is still quite a difficult problem to solve, but we wi

soon see how it can be simplified. In particular, we recall
determinant of the metric of the sphere, Eq.~8!, in the Hopf
fibration coordinates. Including the AdS portion of the m
ric, we have

detg5R20S u2

u21lL̃2D 2

u210
1

~11uau21ubu2!6
.

We immediately see that this factors into a contribution t
depends on the sphere and one that depends on the
Thus, because our metric is block-diagonal, we can cho
our scalar field to be constant on the sphere, and all co
butions from the sphere will cancel out of our equatio
Another happy fact is that the contribution from the dilat
exactly cancels theu2/(u21l2L̃2) term reducing this to al-
most the standard massless field equation on AdS space

As usual, the most interesting part of the equation com
from theu coordinate, so we write

F~xW ,u!5w~u!eikW•xW.

Thenw satisfies the following equation:

u3]uS 1

u3 ]uw~u! D1S k22
~lk3L̃ !2

u2 Dw~u!50.

2We are grateful to M. Rozali for a discussion on this point.
3We are grateful to I. R. Klebanov for explaining the releva

issues to us.
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If we expand this, we obtain

w92
3

u
w81S k22

~lk3L̃ !2

u2 Dw50.

We recognize this as the equation for a massive field in
dinary AdS space withmR5lk3L̃. Thus, we can copy the
final result from equation~44! of @2#,

^O~k!O~q!&52~2p!4d4~k1q!

3
N2

8p2

G~12n!

G~n! S kR
2 D 2n

R24,

wheren5A41(k3L̃)2.
Let us now take the limit thatk3→`. In this limit, we

have

^O~k!O~2k!&;
1

sin~pn!
S ~kR/2!n

G~n!
D 2

k3→`

lk3L̃S ukueR
2lk3L̃

D 2lk3L̃

sin~plk3L̃ !
.

It exhibits an oscillatory behavior but not quite what we ha
anticipated. We expected the wavelength of the nonlocal
havior to be an integer multiple of the dipole length. This
not what we observe here. This is a puzzling phenomen
but it is consistent with the observation from the supergrav
dual that the scale of the nonlocality is actuallylL̃ rather
than justL̃. SincelL̃@L̃, there is no immediate contradic
tion. It could be that in the large-l limit the dominant con-
tribution to the nonlocal behavior of the correlation functio
comes from the nonlocality on scale@l#L̃ ~where@l# is the
integer that is closest tol!. It is important to realize, how-
ever, that the supergravity approximation ceases to be v
whenu,a81/2R21, as we explained in Sec. VII A. This sug
gests that the above calculation may not be entirely va
This is worthy of further investigation.

X. DISCUSSION

In this paper, we have shown how the nonlocality of d
pole theories is manifested in the supergravity dual. We d
covered that the metric becomes degenerate at the boun
of the spacetime and that this could be used to explic
demonstrate the nonlocality. Although this feature of t
metric was shown using the naive T duality to type-IIA an
as we argued in Sec. VIII, one actually gets type-0A with
strong RR field strength, we believe that the metric still h
this general structure. This should be a generic feature of
supergravity duals of nonlocal field theories. It is not a s
prising result. Nonlocality, when realized in some limit
string theory, cannot be a purely supergravity effect. T
nonlocality must be a result of the inclusion of some strin
degrees of freedom on the boundary. The degeneracy o

t
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metric in string frame means that we cannot treat the bou
ary as classical, and this is the source of the nonlocality.

It is worthwhile to compare this situation to that in no
commutative geometry to see if we can distill some m
general features of the supergravity dual. The discussion
follows has some features in common with@31,59–62#.4

Recall that the metric of the supergravity dual of NCSY
theory is@5,6# ~ignoring dimensionless constants!

ds25
1

u2 S dt22dx1
22

u4

u41u2 ~dx2
21dx3

2!2du2D .

The other fields are

e2f5
u4

u41u2 ,

B2352
u

u41u2 .

We see that both the second and third directions go to z
length on the boundary, indicating some sort of stringy
fect. Note that here, the degeneracy is in the AdS part of
metric indicating that the nonlocality is part of the space t
the field theory lives on. This is in contrast to our dipo
theories, where the degeneracy is on the S5 indicating that
the nonlocality is part of the field content of the theory.

Following the same procedure as in Sec. VII B, we co
pactify these directions and T-dualize along one of them,
the second. As before, the presence of the B field gives
to cross terms in the metric. Specifically, after T duality, w
have, isolating the 2 and 3 directions,

ds25~u41u2!
dx2

2

u2 12u
dx2dx3

u2 1
u21u2u22

u41u2 dx3
2.

If we take theu→0 limit, we can rewrite this as

ds25
1

u2 ~udx21dx3!2.

This has almost the same form as the metric we obtai
in Sec. VII A. When we traverse the 2-circle, the above c
ordinate gets shifted byu. As T duality interchanges momen
tum with winding, we interpret this as a dipole in the
direction with length equal tou times the momentum. This i
exactly the situation in NCSYM theory.

What are the general features of the supergravity dual
nonlocal field theories that we can infer from this?

~i! The metric becomes degenerate on the boundar
AdS.

~ii ! The NSNS 2-form field has a component along t
degenerate direction.

~iii ! We can ~perhaps after compactification! T-dualize
along this direction.

4We are grateful to A. Hashimoto for pointing out some of the
references and for discussing this with us.
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~iv! After T duality, the NSNS 2-form field induces off
diagonal terms in the metric that can be interpreted a
fibration over a string scale circle.

~v! The nonlocality of the field theory is manifested by th
shift in the new coordinate as we go around the string sc
circle.

While these features may not be generic for all nonlo
theories, it is not unreasonable to assume that they ma
generic for the generalized dipole theories mentioned at
end of Sec. II A, of which both the dipoles discussed h
and those of noncommutative geometry are a special cas
@10#, a generalization of dipoles to the case of the~2,0!
theory was proposed where, instead of constant length
poles, there are constant area ‘‘discpoles.’’ This should h
a supergravity dual of the form AdS73S4. It would be inter-
esting to investigate the effects of nonlocality on the sup
gravity in this situation.

Before concluding, let us return to a loose end from t
beginning of Sec. III. We mentioned that the twisted stri
theory backgrounds are unstable if supersymmetry is brok
This instability was discussed in@24–26# and is related to
the instability of Kaluza-Klein compactifications without su
persymmetry@27#. In Sec. VI B, we used a nonsupersymme
ric twisted theory, and we therefore expect it to be unsta
However, the probability for decay per unit time and volum
is exponentially suppressed asgs→0. In the large-N limit
~keepinggsN fixed!, we can therefore assume that the bac
ground is stable. It is interesting to ask whether the dip
field theory on the probe is also unstable. We will not addr
this question here. One possibility suggested by Aharon
that a potential is generated on the Coulomb branch of
dipole field theory that makes the origin unstable. This
currently under investigation.
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APPENDIX: GENERIC ORIENTATION OF THE DIPOLE
VECTORS

In Sec. IV, we promised to describe the supergravity
lution for generic dipole theories where the various dipo
vectors are not all along the same direction. In order to av
clutter, we will seta851 in this appendix.

We start with a D3-brane extended in the 0123 directio
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compactified on aT3 with radii (R1 ,R2 ,R3). The relevant
nonzero fields are

ds25
1

AH
@dt22~R1dx1!2/22~R2dx2!22~R3dx3!2#

2AH~dxa!2,

C012352
1

H
, ~A1!

w5w0 ,

where

H511
R4

r 4 , r 2[~xa!2.

The roman indicesa, b,... run from 4 to 9, and we use gree
indices to indicate the compactified directions 1,2,3. Start
from the solution~A1!, we perform the T-duality transforma
tion three times, in the three compactified directions us
the formulas of@33–35#. The answer, which is aD0 brane
smeared over the T-dual torusT3: (R1

21,R2
21,R3

21), is

ds25
1

AH
dt22AHF S dx1

R1
D 2

1S dx2

R2
D 2

1S dx3

R3
D 2G

2AH~dxa!2,
06600
g

g

C0
152

4

H
, ~A2!

e2~f2w0!5
H3/2

R1
2R2

2R3
2 .

Now, we introduce the three twists, by replacing

dxa→dxa2(
m

~Vab
m xb!dxm,

where (Vm)T52Vm are commuting elements of SO~6!. The
metric with the twist is

ds25
1

AH
dt22AHF S dx1

R1
D 2

1S dx2

R2
D 2

1S dx3

R3
D 2G

2AH@dxa2~Vab
m xb!dxm#2. ~A3!

Now, we T-dualize three times to get back the metric fo
D3 brane with a dipole theory living on it. DefineMm

[RmVm ~no contraction overm! and xa[rn̂a, where n̂Tn̂
51. With some work, the metric turns out to be~here and
below there is no contraction in terms likeRndxn!
ds25
1

AH
dt22AHdr22

1

AH

eabgekmn@dak1r 2~ma!Tmk#@dbm1r 2~mb!Tmm#

2D
~Rgdxg!(Rndx)n2AH~r 2dnTdn!

1AHS r 4eabgekmn@dak1r 2~ma!Tmk#@dbm1r 2~mb!Tmm#$@~mg!Tdn#@~mn!Tdn#%

2D D ,

where we have defined

D[ 1
6 eabgekmn@dak1r 2~ma~ma!Tmk#@dbm1r 2~mb!Tmm#@dgn1r 2~mg!Tmn#

and

ma[man̂.

The other nonzero fields are

C0123
~4! 5

1

H

Bma
~1!dxm∧dn̂a52AH j gndxg∧

rmmdn̂

Rn

5
r eabgekmn@dak1r 2~ma!Tmk#@dbm1r 2~mb!Tmm#$Rgdxg!∧@~mn!Tdn̂#%

2D

e2~w2w0!5
1

D
. ~A4!
5-13
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For M15M250 this reduces to the answers for a single twist. It is interesting to ask what happens when the twisMm,
do not commute. In this situation, the Ricci scalar of the twisted metric~A3! has a field strength term, and thus the metric
no longer a solution to the supergravity equations.
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