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The gravity duals of nonlocal field theories in the lafgéimit exhibit a novel behavior near the boundary.
To explore this, we present and study the duals of dipole theories, a particular class of nonlocal theories with
fundamental dipole fields. The nonlocal interactions are manifest in the metric of the gravity dual, and type-0
string theories make a surprising appearance. We compare the situation to that in noncommutative super-Yang-

Mills theory.
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I. INTRODUCTION in string theory in a different setting iflL1]. Also see[12—
14] for previous appearances of such a theory.
At the boundary, the metric of A¢S;, ds’=(a'/u?) At low energies these “dipole theories” can be described

X (d—dx§—- --—dx§_, —duP), becomes infinite. This way the as a deformation a\'=4 SYM theory by a vector operator
boundary is described by classical geometry, and quanturf conformal dimension 5. This can be compared to the de-
gravity on AdS.; can correspond to a local field theory on formation by a tensor operator of conformal dimension 6 that
a classical spacil—4]. describes NCSYM theory at low enerfy5—-17. If the con-
The AdS conformal field theoryCFT) correspondence formal dimension and the size of the Lorentz representation
can be extended to field theories on a noncommutative spagg an indication of simplicity, then it is reasonable to expect
[5-7]. The gravity dual for the largdtlimit of N'=4 super-  that dipole theories might be simpler than NCSYM theory.

Yang-Mills theory on a noncommutatiié* (NCSYM) with ~ The more interesting questions, however, hover in the uv
the noncommutativity in the 2,3 directions has the metriciggion of the theory. At distances shorter than the scale of the
[5.6] nonlocality, we expect to find new phenomena.
o Our ultimate goal is to answer the following
d52=F[dt2—dx§—h(dx§+dx§)—du2], questions: How is the nonlocality of the dipole theory

manifested in the boundary metric? How does this manifes-
tation of nonlocality compare to that of noncommutative ge-

whereh=u?(u*+ #%) with 6= 6,5 the typical length scale ; .
( ) 23 P g ometry? Are these features generic to the gravity duals of

in the theory. Here the boundany;—0, is no longer classi-

cal. Indeed some components of the metric tend to zero oRoniocal field theories? _ _ _
the boundary. In Sec. VII, we answer the first question for a particularly

Our motivation for this paper is to understand how nOn_simple_ dipole theory. In the discussion, we shovy that this
locality in the field theory affects the metric of its gravity effect is analogous to a feature of the supergravity dual of
dual near the boundary. Unfortunately, field theories on nontoncommutative geometry. We also make some comments
commutative spaces can be quite complicated; they exhibabout the nature of the supergravity dual for generic nonlocal
uv-ir mixing and nonlocal behavior on varying scales. uv-irtheories.
mixing, which means that high momentum is associated with The particular dipole theory that we study breaks super-
large-scale nonlocality and arbitrarily small momentum in-symmetry entirely. We chose to work with it because the
troduces a new short-distance scale, can even obstruct tlsepergravity equations are simplified. The fermionic degrees
renormalization procedurg8,9]. Although N=4 NCSYM  of freedom, however, require extra care. As we will argue,
theory is a finite theory and renormalizability is not an issue type-0 string theory with a strong RR field strength has to be
noncommutative geometry does not appear to be the simplegsed in order to correctly describe the gravity dual.
way to introduce nonlocality. There is a simpler way. The paper is organized as follows. In Sec. Il, we review

We will study a class of nonlocal gauge field theories inthe construction of dipole theories. In Sec. Ill, we describe a
which some of the fields correspond to dipoles of a constargimple string theory realization of these theories and then
length. Such theories were discusseflif] in the context of  calculate their gravity dual in Sec. IV. In Sec. V, we compare
T duality in noncommutative geometry. They were realizedthe gravity dual and the field theory in the infrared. In Sec.

VI, we study the geometry of the gravity dual. In Sec. VII,
we demonstrate the nonlocality of the boundary. In Sec. VIII,

*Email address: abergman@princeton.edu we discuss a puzzle related to the nonlocal behavior of the
SEmail address: joannak@princeton.edu fermions and argue that type-O string theory has to be in-
TEmail address: keshav@sns.ias.edu voked to resolve it. In Sec. IX, we compute some correlation
*Email address: origa@Uviper.princeton.edu functions and show how they exhibit some generic features
IEmail address: rajesh@sns.ias.edu of nonlocality. Finally, in Sec. X, we discuss how the fea-
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tures we have found here might be generic to the supergrawf the R-symmetry group Sy} and four Weyl fermions in

ity duals of all nonlocal field theories. the representation 4 of 4. We will use the global
R-symmetry charges to determine the dipole vectors of the
Il. DIPOLE THEORIES various fields as follows. Pick three constant commuting el-

ementsV* e su4) (u=1,...,3 and we will not consider time-
Dipole theories are nonlocal field theories that also brealike dipole vectors in this papgrwhere s@) is the Lie
Lorentz invariance. They were obtained[it0] by studying algebra of SW4). Take V# to have dimensions of length.
the T duals of twisted fields in noncommutative gaugeDenote the matrix elements ® in the representation 4 as
theory. Below, we will describe how to make a dipole theoryoﬁ G ,?:1,_._’4)_ HereU* is a traceless Hermitian 44

out of an ordinary field theory. matrix. Denote the matrix elements gf* in the representa-

tion 6 asM4, (a,b=1,...,6). M* is a real antisymmetric 6
X6 matrix.

We start with a local and Lorentz invariant field theory in | ot ug) (a,l=1,...,6) be an eigenvector M* with (real)
d dimensions. In order to turn it into a nonlocal theory, we
assign to every fieldb, a vectorLy (u=1,...d). We will

A. Definition

eigenvaluel{* so that=,M%u’=Tful’. ul) does not
call this the “dipole vector” of the field. depend ory. becaus¢ M*,M”]=0. Let ¢, (a=1,...6) be
The fields®, can be scalars, fermions, or have higherth® Six real scalar fields af=4 SY'Y' theory. Then the
spin. Next, we define a noncommutative product complex-valued scalar field$")==,u{’ ¢, are assigned a
dipole vector with components 72 {* (u=1,...d). Simi-
larly, the fermionic fields are assigned dipole vectors that are

It is easy to check that this defines an associative produdletermined by the eigenvalues of the matritks
provided that the vector assignment is additive, that is,
® %D, is assigned the dipole vectby +L,. For CPTsym- C. Supersymmetry

metry, we will require tha,E it has dipole vectot, then the The dipole theories obtained frod’=4 SYM theory in
charge conjugate fieldb', is assigned the dipole vector o hrevious subsection are parametrizediimpnstant trace-
—L. We will also require that gauge fields have zero dipole . e S .
length. Ifzss I:|erm|t|an 4<A4 rrjatncesU . For simplicity, we will set
1 2 —113 H H
In order to construct the Lagrangian of the dipole theory,U =U“=0 andU=U". Thus, the dipole vectors are all in
we need to replace the ordinary product of fields with thethe third direction. The matriXJ has dimensions of length,
noncommutativex product(1). In general, there might be and its eigenvalues determine the dipole vectors of the vari-
some ordering ambiguity, but the theories we will considerous fields. Let the eigenvalues e, a;, a3, — (a1t ap
below are SUN) gauge theories and have a natural ordering+ a3). Then, the dipole vectors of the various scalar fields
induced from the noncommutative productshok N matri-  are given by+ («;+ «;) (1si<j<3).
ces. The number of supersymmetries that are preserved by the
We have seen that the requirement of associativity transdipole theory is determined by the ranlof U: If r=4, then
lates into a requirement of additivity for the dipole vectors.the theory is not supersymmetric at allrif 3, there is one
One way to ensure this is to have a global conserved charggero eigenvalue that we take by convention tanhe- 0, and
in the theory such that a field®, has chargeQ,. We then  the theory hasV=1 supersymmetry; if =2, there are two
pick a constant vectoL” and assign to every fiel®, (@  zero eigenvalues that we take to be=a3=0. The theory
=1,..n, wheren is the number of fields in the thedrshe  then has\'=2 supersymmetry. The vector multiplet of
dipole vectorQ,L*. More generally, we can hava global =4 SYM theory decomposes as a vector multiplet and a
charges such that a fiel®, has the chargefQ;, (]  hypermultiplet of V=2 SYM theory. All the fields in the
=1,..m). We can then pick a constadtxm matrix ) A/=2 vector multiplet have dipole vector 0, and the fields in
(r=1,..d andj=1,..m) and assign the field, a dipole  the hypermultiplet have dipole vectorsa; .
vector=L;04Qj; . Because we can realize dipole theories without supersym-
Extending this definition by allowin@, to be the mo- metry, one might ask if poles similar to those discovered in
mentum, we see that noncommutative Yang-Mills theory carj8,9] might arise in the perturbative expansion of the theory.
also be thought of as a dipole theory. The matix' then In fact, they do not. This can be seen by examining the
become®#” (v=1,...d) and is required to be antisymmet- expression of8,9] for the effective cutoff
ric. The dipole lengths are then both proportional and trans-
verse to the momentui8-24. 1

Aeff‘) —.—A(72)+(0p)2

(D% D,) =Dy (Xx— 3L Py(x+3Ly). (1)

B. A Dipole deformation of N'=4 SYM theory

The dipole theories that we study in the rest of this paper
can be obtained from ordinary SNf A'=4 SYM theory in  We recognizefp as the length of the dipoles in noncommu-
3+ 1D by turning the scalars and fermions into dipole fields.tative geometry. Thus, the analogous expression in our
N=4 SYM theory has six real scalars in the representation éheory is
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tions, butO andR; are defined by their asymptotic values at
infinity. We will denote this background b¥(O,R3). Note
that if R3>0, the isometry/ has no fixed points and there-
fore O is not necessarily of finite order.

which, as it is independent of the momenta, gives rise to N0 Now consider probing((O,R,) with D2 branes in direc-

new poles.

lll. STRING THEORY REALIZATION OF DIPOLE
THEORIES

In order to find the gravity dual of the lardédimit of a

particular dipole theory, we need to find a simple string
theory realization for it. We now do this for a large class of

dipole theories.
In [11], a realization of dipole theories with=2 super-

symmetry was suggested using D8 branes that probe the cen-

ter of a modified Taub-NUTNewmann-Unti-Tamburinoge-
ometry. While this realization is convenient for
Bogomol'nyi-Prasad-SommerfielBPS analysis, it is hard

tions (Xg,X1,X,) and then taking the limiR;— 0 together
with O=e?™RsM/e \whereM is a finite matrix of the Lie
algebra so(63=su(4) with dimensions of length and /27

is the inverse string tension.

WhenM =0, we can perform T duality to transform the
D2 branes into D3 branes. Wh&m+#0, we will now show
that the low-energy description of the probe is a dipole
theory.

B. Branes probing dual twists

We wish to find the low-energy Lagrangian describing D2

a branes that probe the twisted geometry of Sec. IllA. The

light degrees of freedom come from the strings with two

to extract the gravity dual from it, and it is not obvious how Dirichlet boundary conditions, i.e., fundamental strings with

to generalize it to dipole theories that brelk=2 supersym-
metry.
Fortunately, the Taub-NUT space that was useflLl is

ends on the D2 branes. BecalRg—0, we have to set the
string oscillators to their ground states, but the winding num-
ber can be arbitrary.

not an essential ingredient. We can find an alternative setting To obtain the Lagrangian, we can adopt a procedure simi-
that has the same behavior near the brane probes. This s&r to the one described il28—30 for noncommutative
ting, which we will describe below, has the disadvantage thagauge theories. Also, the construction that we present here is
the geometry is not asymptotically Euclidean at infinity. reminiscent of the construction [81]. In momentum space,

Nevertheless, it has been constructed in string théaiy

and is good for extracting the gravity duals that we seekN=4 SYM theory by inserting certain phases.

the action of the dipole theory is obtained from the action of
Let

Other worldsheet CFTs that break Lorentz invariance have(p,),...,.®,(p,) be fields in the adjoint representation of

been studied in22].

U(N) and suppose that’=4 SYM theory has a term of the

The backgrounds that we consider are twisted versions dbrm

type-Il string theory. They are related to the Melvin solution
[23] and are in fact identical to the backgrounds discussed in

[24] and more recently if25,26. As was shown if24], the

twisted backgrounds are unstable, and the instability is sim

lar to that discussed if27]. This instability is exponentially
suppressed ags—0 and is likely to be completely absent

when some supersymmetry is preserved. For the time being,

we will ignore the instability. We will return to this point in
the Discussion.

A. The T dual of a twist

We will first describe a type-1l background without branes
and then later we will add the brane probes. Consider type-

[IA string theory on a space thatis[9,1] modded out by the
isometry

' 6
u-(XOaXl!XZaXSy{XSJra}a:l)H( X0,X1:X2,X3

+277R3,[

6 6
2 Obax3+aJ ) .
b=1

a=1
Here O e SO6) is an orthogonal matrix. The twisted com-

pactification is parametrized Hy; and, because we need to
define the action on fermions, an element of §pisSU(4).

t{®1(p1) - Pn(pPn)}, @

in the Lagrangiar{of coursen<4). The variable; are the
momenta. Let the dipole vectors of the fieldslbg... L, .
We have

n n
E Li:O, E pi:O'
i=1 i=1

The dipole theory is obtained from the ordina¥{=4 SYM
theory by inserting the phases
eizlsi<jsnpi|—j (3)

in front of terms like Eq.(2).

Now let us consider branes probing(O,R3). For sim-
plicity, let us assume that the twi€ acts only onZ=X8
+iX® asZ—e'*Z. We will refer to the angular momentum
corresponding to rotation in th# plane as th& charge.

In the case thatx=0, we know that the theory on the D2
brane probe isV=4 SYM theory. The states with momen-
tum along the third direction, in the SYM theory, correspond
to winding states along the third direction in the string theory
setting.

Now let us turn on the twiste. Consider a string disk
amplitude that calculates the interaction mfopen string

This background is, in general, modified by quantum correcstates with winding numbens,,...,w,, and withZ charges
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Upper Holf Plane the dipole vectors of the fields in the theory are oriented in
y//“‘" the same direction. This was direction 3 above. In the Ap-
////////////////////// pendix we present the generalization for generic dipole vec-
/ ’ tors. We now turn to the details.

750 e 7 742 7

A. The type-lIB D3 brane

First, we illustrate the conventions. We work in the,
o o % 'S —,...,—) metric. Greek indices ar@, v=0,...,2. The time
) ) ] direction ist=Xy. The direction that we T dualize is the
_FIG. 1. Anr-point amplitude with vertex operators that cary inyirg. The remaining directions, perpendicular to the brane,
winding numbers. It requires cuts on the worldsheet. are labeled by roman indicesb=4,...,9. All metrics will be

in the string frame.
G1---Gn- The_worldsheet theory has a_globadll)szmme- We start with the metric for a D3 brariaeote that all the
try corresponding to th& charge. The string vertex operators x's have dimensions of length

that correspond to the external states are charged under this
U(1) symmetry. The disk worldsheet has cuts that emanate dggtr: H‘1’2(dt2—dx§—dx§—dx§)— HY2(5,,dx2dxP),
from the external vertex operators on the boundary. Along

thejth cut, the worldsheet field jumps by a phase'*%i. We

can redefine the field to be continuous, but then there will Where

be additional phases coming from the vertex operators on the

boundary. It is easy to see that this phase is 4

R 4 12 2 b
. H=1+—7F, R*=4mgiNa's, r°=5,,2%",
e'a21<i<jsnwiqj_ r

This is illustrated in Fig. 1. It agrees with E(B) because and we have the following backgrounds for the Ramond-

Ramond(RR) 4-form potential and the dilaton, respectively:

L:a’ﬁq- pi=a’' IRaw;.
i R, Pi i

c@ — _H-1 @a2¢—=g2¢%0
0123 , .

In 3+1D, the photon of the )CU(N) center of the
gauge group is likely to become massive via a dynamical
mechanism similar to the one described[82] for quiver Next, we compactify along® with radius Ry=R. The
theories, so that the gauge group is actually justiJout ~ metric is now
we will ignore this for the time being.
ds?’=H YA dt?- 5, dx*dx’— R?d5§) — HYZ 8,,dx?dx?).
IV. SUPERGRAVITY SOLUTION FOR A TWISTED BRANE

We now turn to the task of describing the supergravityyqie ghat X3 is now dimensionless and periodig~ X3
duals of these dipole theories. We will use the string theory, ,

realization of dipole theories as described in the previous
section.

We will find the exactclassicalsupergravity solutions in B. A smeared D2 brane with a twist
four steps.

(i) We start with the D3 brane solution of type-1IB classi-
cal supergravity and compactify one of the directions paralle
to the D3 branes. We will call it the third direction. a'

(i) We perform T duality on the third direction to obtain a CR=8H"1, ¥ %)= =2 H/2
solution that describes D2 branes in type-llA. The solution,
however, will be translationally invariant along the third di-

We now T-dualize arounck;. Following [33-35, we
pave

_rection, and, as such, it describes smeared rather than local- dsz=H‘1’2(dt2—dx§—dX§)
ized D2 branes.

(i) We now insert a transverse 8) twist into the ge- o a'? 0 ) B
ometry by hand. This is accomplished by simply changing —H™ Rz dXgtdxgt--tdxg ).

the boundary conditions for the six transverse coordinates as
we complete a circle around the third direction. Locally, the

metric is unchanged. This is a smeared D2 brane. We can now add a twist to the
(iv) Finally, we use T duality to turn the smeared D2 transverse directions,,... Xg as we travel around the circle
branes back to D3 branes. Xs. In particular, we take an element of the Lie algebrd&so

In this paper, we will restrict ourselves to cases where all),;,, and change the metric to
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12

— 7 —_ ~ a ~
ds?=H 1’2(dt2—dx§—dx§)—H1’2[a 2R™2d%3 d32=(r/7z)2(dt2—dx§—dx§— a,ZR,ZHZﬁTQTQﬁdxg
2 RZ
+> [dxg— > Qabxbdi(g) ] —ngrz—Rz
a b
. . 1
We can expand this out, givin AT — aTO T ™2
p giving X | dh'dh a’z(rR)‘2+ﬁTQTQﬁ(n Q'dn) )

— 12 2__ 2 2\ _ 1q1/2 12p—2
ds’=H(dt*—dxg—dp) —HY(a"*R Finally, we make the substitutiom=R?/r,

+X7QTOX)d%E+dXTdX—2dXTQK d%s}, 2 2

R 2 2 2 u <2
h L. h f d b _4 9 dSzZUz- dt —Xm—dXZ— 2 dX3
wherex is the vector formed by, (a=4,...,9). (ﬁ A2ATOTOR
C. Back to the D3 brane du?
Once again, we apply the T-duality formuléagcall that _Rz_uz —R?
X3 is dimensionless, while all the other coordinates have di- ,
mension of lengt A
gth x [ didh- (ATQTdM)2 |,
12 2aTOTO A
a = +
dsZ:H—”Z(dtZ—dxi—dxg— a,zR_zﬂzTQTQXdkg) (R A QR
/ (dXTQR)2 where \2=R* a'?=4mg,N. The dilaton and the NSNS
12 AT ) .
HYq dX'dX a’zR‘2+>ZTQTQ>?)' 2-form field are
A2
We also have > B3, dit=— ——————dA’0Af,
a 2aTOTOR
- = +NN'QQn
Cor=H ™™, R
T 1
dx'Qx 2= do) = 5 _
E Béadxa:_ 2p-2.310T0v’ R 2aTATA A
5 a’* R “+X'Q'QOX 1+l?-)\nQQn
Q2 o) — 1 Now we take the limitR—o keepingRQ=M fixed. We
1+a' ?R*XTQTOX’ also redefin&;=x5/R. Note thatx;, u, andM have dimen-
sions of length. We find
which we will address later on. 22 5
Defining Xx=rA so that|f||=1, our metric becomes u
9 ” ” dsz=F(dt2—dx§—dx§—du2—mdxg)
12
o
ds2=H1’2(dt2—d - dX— =7 Ad*) AT \? ATV T
X1 %2 a'’R2+r2ATQT0N %3 —-R? dann—m(nTMTdn)z .4
—H™ Y4 dr’+r?dn'dn The NSNS 2-form field and the dilaton are
r4 A2 T
_ AT TR 2 Mm—_ " 4aTMA
a’zR’2+r2ﬁTQTQﬁ(n Q7dm ) ; Bsadh u2+)\2ﬁTMTMﬁdn M7,
(6 o) u?
D. The near-horizon limit 200=b0) =
€ W2+ \2ATMTMA’ ©

In these coordinates, the horizon israt0, and so the
near-horizon limit isr small. We can therefore approximate Given this form of the metric, it is not obvious that the
2 regionR/r>1 indeed decouples from the bulk, as we have
E) assumed. In principle, one can calculate scattering ampli-
tudes for gravitons as if86,37. In some cases one can see
from the scattering amplitudes that the bulk does not de-

Substituting this into the metric, we obtain couple(see, for instancd38]).

R4
HY2=\/1+ —~
r
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In our case, the geometry is strongly coupled wieis 1 1 a?  a?
small, as will be discussed in more detail in Sec. VII A, and il &2 1=+ g+
evaluating the scattering amplitudes is difficult. Neverthe-
less, there is no reason to expect that the bulk will not des
couple. The dipole theories describe well-defined renormal-
izable theories that do not require additional degrees o
freedom in the uv.

Thus, we obtain deformations that are multiplied by a higher
ower of the dipole length. We will work through some of
he O(L?) terms.

For the deformation of the spheré&, Sve have

V. COMPARISON TO THE FIELD THEORY RZN2M , ACM , 4
IN THE INFRARED Niapy=— 5 [1+0O(L?)]—trace.

For M=0, the metric(4) describes AdSxS® with a
boundary au=0. The ir region corresponds to largeFor = We immediately see from the above that this must transform
large u, the deviation from the standard A¢$S® metric  in some component of the5® o1 5= 84 20@ 156 1. With
describes a deformation df’=4 SYM theory by irrelevant a little work, one can see that the correct component is the
operators. 84. In terms of spherical harmonics, this corresponds to the
In [10], the first-order correction to the SYM Lagrangian k=1, M?=12 field in[39]. We can read off the weights from
was determined as the dipole length times the dimension-ghe Young tableaux, giving?, 0, 2. Following the table of

u

operator [40], we can see that this corresponds to the operator
_ 826°0,. This is a scalar operator of dimension 6.
i 2 ;
0= tr FV@[|DV¢J]+E (Dluq)K)q)[K(DIq)J _Also, ato(L?), theAr$ arTe aAnumbe_r .of other deformgnons
gvm K arising from the termi'M 'Mf. Specifically, there aréy,

the dilaton, and the 33 component of the metric on AdS

MM is a symmetric &6 matrix, we can see that these
transform in the20s 1. For the dilaton, we can identify the
mass of the20 asM?=12. Thus, this is also a dimension-6
operator. Again, reading frof%0] identifies the operator as

gsome combination o8* and &* acting onO,. For the trace

of the metric, we are presented with a problem. The metric
has a term in its equation of motion arising from the product
of two Neveu-Schwarz—Neveu-SchwdNSNS fluxes, giv-

ing a term also of orde®©(L?). Thus, it can no longer be

+fermions.

Herel, J=1,...,6 areR-symmetry indicesp'(1=1,...,6) are
the scalarsD,=d,—i[A,,-] is the covariant derivative,
F .. is the field strength, and] means complete antisymme-
trization. Oif is a vector operator that transforms in the 15 o
the R-symmetry group S(4).

We should be able to find the dual of this in the super-

gravity. The only vector field on AdS that we have obtained.

's the 2 form treated as a linear perturbation on the AdS background. The
A2 fact that we got the correct answer for the traceless part of

> Bgdi=— ——— g dATMA. the metric perturbation is due to the fact that the product of

a u*+A"n'MMA the NSNS fluxes does not have any component that trans-
, forms in the 84, and so it can be treated as a linear perturba-

In particular, atO(L), we have tion.
)\2
Bsa=— 7z M »pR°. VI. THE GEOMETRY OF THE SUPERGRAVITY

We now investigate some of the geometrical features of
When acted upon b e SO(6), Bs, transforms as the metric(4). The key things to note are the behavior of the
X3 coordinate and the®3&s a function ofu. We first discuss
R ~1od the generic behavior and then give a detailed analysis of a
O(B)3a= u? 0o abM bco : useful special case that will occupy us for the remainder of
the paper. General deformations of thev@re also studied
BecauseM is in the Lie algebra, €6), we recognize this as in a slightly different context if41].
the adjoint representation 15 or, in terms of spherical har-
monics, thek=1, M?=8 representation ifi39]. This corre- A. The boundary
sponds to a dimension-5 operator. Referring to the table of

[40], this is a linear comblnatlon(|053|503 "’llr;d 8°603, of M. For maximal rank, the quadratic functiédM "M f is

where Oy, is the chiral primary §®T1d 2 - ®lp'}—traces.  gyays positive-definite. It has 12 local extrema GnEhese

Here, 50(50) represents either the commutator or anticom-consist of pairs of antipodal points; each pair corresponds to

mutator, as appropriate, of O with the supersymmetry genan eigenvector oM ™™ with the two(+) sign options. The

eratorQ (Q) We also note from the table that this is a vectormetric (4) is asymptotically Ad$xS'xS°, where the 3is

operator, as expected. deformed, and both the!@nd S are small compared to the
For largeu, we can make the following expansion: AdS.

2

The behavior near the boundary is governed by the rank
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If the rank ofM is less than maximal, the quadratic form The advantage of this choice d¥l is that the factor
ATMTMA has a locus of zeros. This locus iéig, wherer ﬁTMTM ﬁ:]:z is independent off. According to the defini-
=2,4 are the possible nonzero values for the rank. Localltion of M in Sec. IIB, the bosons have dipole lengths
on the zero locus, the metric is indistinguishable from ordi-izwt three of the fermions have dipole lengthsrL, and
nary AdSxS°. This should be related to the fact that some L . ~
scalar fields do not have a dipole length. We do not claim t(}he remamlngpomple& ferT“'O“ has length- 3L .

We now write the metric on the deformed 8xplicitly.

understand the exact connection. ; " . . 3 "
The metric on 8becomes degenerate as-0. ForM of Let a unit vectorf which parametrizes®3n C3 be given by
maximal rank, the metric on®%atu=0 is i . :
e'” e'a e'’B
2/ aTh A T 2 = , ,
4= R2dATdn— e AN VI+[al+ 1B 1+ [al?+ B V1+[al+]B]
ATM MR

with « and 8 complex. Thus, the Sis given as a circle
Let fi, a unit vector inR®, parametrize a poinpe S°. Then  fipration parametrized by over CP? parametrized byr and
M defines a direction in the tangent spaEgS®, since  g. This is the famed Hopf fibration. The advantage of these
ATMA=0. Itis easy to see that the metric is degenerate alongoordinates is that the vectdf points along the direction
this direction. ThusMn defines a vector field on°%long  of the fiber forM given as in Eq(6).
which the metric is degenerate. This is the vector field in- |t can be shown that the metric on a reguldrits these
duced by the infinitesimal S®) action on S given by  coordinates is
M es0(6). To analyze the degenerate farther, we need to

know more about the eigenvaluesdf Let the eigenvalues |dea|?+|dB|? |Eda,+§dlg|2
be+ia;, Tia,, *ias. If @;=a,=ag, then the flow lines dhTdh= T a2+ 182 (15 a2+ 182

of the vector fieldV i are closed circles.’%an be described |al*+[B1% (1+[al*+[B])

as a circle bundle ovetP?, and the vector field is along the Im(Eda+EdB) 2

circle. At u=0, the S then shrinks toCP?. This particular +| dy+ (7

2 2 '
case will be discussed more extensively in the next section. L+[al*+[8]

. . ~3 . _
For the general case, we can identify with C* and intro where the first two terms describe the Fubini-Study metric on

duce the following coordinates: P2
( ) dior cosd efrsing e For our deformed sphere, the metric is
21,25,23)= , , .
1:42:43 \/1+r2 \/1+r2 \/1+r2 ; )\z(ﬁTMTdﬁ)z
dh'dh— —————
In these coordinates, the deformation of the sphere only af- u?+A2ATMTMA
fects the three coordinates B, and y. The vectorMf is 5 ) o — )
solely along this torus and, for generic ratios between these _ |de|“+|dB] B |ada+ Bdg| u
angles, the flow is dense in this torus. However, this is not a B 1+|a2+[812 (1+]|al?+|8|2)2 2+ )\F2
true fibration, and to avoid such complications we will only
work with the simpler case. — — 2
P ( . Im(ozdoz—i—,Bd,B))
B. The Hopf fibration 1+]el?+1B7 |

The case when all three eigenvalueshbfare equal is the The 5x5 determinant of the above metric can be calcu-
one in which all of the scalar fields have the same dipolg ;o to pe
u? 1
(8

length. The analysis of the uv behavior of the theory will
significantly simplify in this situation.
We setil == a,=as and detg= — .
uZ+ 22/ (1+]al?+]B[%)°

o

— 0
0 Thus, the salient features of our deformetia®e as fol-
lows.
It has the structure of an'SHopf) fibration over a base
(6)  CP% An SU3) subgroup of S@) acts freely onCP?.
Invariance of the metric of the deformed® Sinder
Ty U(3)CSQ(6) implies that the metric on the baé®” is inde-
pendent of the position, and the metric on the fibérisS
similarly homogeneous due to thg1) isometry, which ro-
5 tates the fibers.
For L#0, this choice ofM breaks all of the supersymmetry  The radius of the fiber is independent of th€® coordi-
but it preserves a (3)CSQ(6) subgroup of theR symmetry. nate and is given by

o O o

-L

O O o o m
O O o o o
o o
o ©O o o o
o O o o

0
0
0

[t
o
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u is a subtlety that complicates matters, but for the time being
p(U)=R ——. (9)  we will naively apply the standard T-duality formulas.
\ /u2+)\212 Again using the equations §83—35, we obtain type-IIA
with the metric

The volume ofCP? is constant and given by ) )

R R ~
2 d?=— (dt?—dxf—dx3—du?) — — (dxg+Ldy)?
vol(CP?) = ?R“. u u

— a—’2d e tCP? 10

Finally, in these coordinates, the NSNS 2-form is given by RZ Y (constCP). (10

AL We also have
B=— ﬁngDlﬂ
u+A“L " 624’0_ gg
Here ¢ is the global angular 1-form of the Hopf fibration. In =N T VaaN
the notation of Eq(7), it is given by
= ANLu  Im(ada+ Bd
V=Yt e a z (W+\2T2)2 1+]a|?+]B|
The 3-form field strength is given by whereH is the 3-form NSNS field strength. In addition, there
is a nontrivial RR 4-form field strength which we will not
2L MLu write down. Note that the type-lIA dilaton becomes a con-
H=dB=— ———dxgUdyy+ ———————dulldxzUy.  stant. Despite the ominous factet?/R?<1 in Eq.(10), we
U2+ }\ZLZ (u2+ )\ZLZ)Z . . . .
see that type-IIA supergravity is a good approximation. No

. . two points that are closer than' '/
Here dy is the closed harmonic 2-form that generates, | tpf' tion i
HZ(CPZ Z) ldentfication Is

are identified. The only

(...,X3,’}/)""(...,X3,’)/+2’7T)
VII. NONLOCALITY IN THE SUPERGRAVITY DUAL

and the distance between those two points is large when
We now come to the heart of the paper. In this section, we- Q.
will show how the nonlocality of the field theory is mani-
fested in the geometry of the boundary of the supergravity.
We will continue to work with the special case described
above in Sec. VIB. In this situation, as described in that The metric in Eq.(10) is a striking manifestation of the
section, the fiber shrinks to zero size on the boundary, and, d&¥nlocality of the field theory in the boundary metric. It de-
such, should be T-dualized to obtain a classical descriptiorcribes thexs direction fibered over a small circle of radius
This will make the dipole nature of the nonlocality evident. «'/R parametrized byy. The proper distance between the
point with coordinatesxs, y) and the point with coordinates
A. T duality of the fiber (Xz+27L,y)~(X3,y—2m) is 2mwa'lR, which is of a
stringy scale. On the other hand, the proper distance between

As we approach the boundary of our solutien;» 0, the ; .
volume of the bas€:P? remains a constant. However, the _(X3’7) and (s+4,y) is of orderk/u—cc whena is not an

circle fibered along it shrinks to zero size. Note that thelnt€ger multiple of 2rL andu—0. In the field theory, this is

B. Nonlocality on the boundary

dilaton also approaches zero since translated into nonlocal interactions between fields at points
that are separated by a distanceLef 27L. If we think of
2 b o) u? the matter content of the dual SYM theory as constituting
e —P0) =

momentum modes along the’,Shen, after T duality, the

nonlocality should be reflected in the winding number

around the T-dual circle. This is exactly what we see here.
The metric(10) also shows that the 4D superconformal

. group is restored since the new coordinag&[y can be
ever, whenp (”,)l,EecomeS of the order of magnitude of the 5 cheq to the Adart of the metric to form Ad$ This is
string lengtha’ ™, we cannot trust the supergravity approXxi- 14 pe expected because the nonlocal interactions have a mini-
mation anymore. This happens whem~a’*?R™\L  mal distanceL. At short distances, the vicinity of each point
=\, should look like a 4D CFT and the interactions with field at

Since the circle shrinks to zero, we have to performdistancel seem like interactions with extra degrees of free-
T-duality on that direction. As we shall see in Sec. VIII, theredom outside the small neighborhood of the point.

u2+ 22

It is easy to see that the curvature of the deformed Still
of the order of magnitude of B?, even wheru<\L. How-
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C. A note on momentum conservation dipole vector of the scalars of our field theory. But what
about the fermions? Their dipole vectors, as mentioned be-

It is interesting to note that, becausgi§contractible, the
low Eq. (6), are=L/2 or =3L/2.

winding number along the'Siber is not conserved. This is ” .
equivalent to the fact that the fibration has a nontrivial first  ©ON€ Might try to argue that we should only consider fer-

Chern class. In order to contract the circle, however, ondnion bilinear operators, but this does not appear to be the
needs to pull it around a nontrivial 2-cycle of the bas@ case. Obviously, there are fermionic operators in the theory.

So, a concrete process that violates winding number Conse#}/_loreover, let us consider gauge-invariant operators in the
vation is to start with a small string ofiP? and then to ield theory that also carrir-symmetry charge. Specifically,

gradually increase its size until it extends around the equatdft US consider the (). center of the WB)Cspin(6); that
of a topologically nontrivialCP=<? inside CP2. Then we keeps the dipole matri6) invariant. This U1), acts on the
contract the string along the other hemisphere of(fk At S°, and it is easy to see that it is represented by rotations of

. . . . . 1
the end of the process, the string is wound around the fibef'€ fiber S. The dipole vector of any fiel® is given byzL
St This process requires energy scales of the order of thBMes its Ul). charge. To make a gauge-invariant operator,

circumference of the equator of th&?, i.e., E~R/a' we need to include an open Wilson line, for example

Because of this, after T duality, momentum along the
direction also must not be conserved. After T duality, the
circle is fibered trivially over theCP?. Instead, we have a _ )
3-form NSNS field strengttt ., along the circle and two WhereC is an open path whose end points arexat (L/2)
directions inside the:P2 It is easy to see that ., is pro- andxs+(L/2). _ _ .
portional tod yw, wherew is the harmonic 2-form ofiP?. In the supergravity dual, closed Wilson lines corre_spond

The process that violates momentum conservation alonfp closed paths on the boundd®2]. The operato will
the y direction is the same as before. We start with a point-2IS0 correspond to a closed path. It is the path that starts
like string insideC P? and deform it to go around a nontrivial allong C on the boundary and then winds around the T-dual
2-cycle insideCP? and then shrink it back to a point. Let S 0 make the shortcut frorixs—(L/2)] to [xz+(L/2)].
X(o,7) be the closed path of the string as a function of timeNOte that after T duality, the Q). (l:harge is mapped to a
7 and string coordinate @o<2m. Note that when botl ~ Winding number along the T-dual*SSee alsq57] for a

and 7 vary, the functionX(,7) spans a surface that is ho- "elated discussion.

mologically equivalent to the nontrivial 2-cycle inside?. Now suppose tha® is a fermion dipole field of length
The violation of momentum conservation is due to the'—/z- There is no way to close the Wilson line in the super-

“magnetic” forces on a moving string in the presence of angravity dual.
H=dB field strength. The totaj-momentum transfer is

W=tr{®(x)el/cAud (12)

B. A missing (—)"

f Fy(r)dT:f Hyabagxaafxbda d7'=j w=1. The problem with the T-duality argument of Sec. VII A is
revealed by a careful analysis of the boundary conditions of
The right-hand side is the integral of the 2-fornalong the ~ the fermions around the fiber 8f the Hopf fibration of &
nontrivial 2-cycle. As we will now argue, the fermions have antiperiodic bound-
ary conditions around the'Sand one should include—)"
in the boundary conditions, whefeis the fermion number.
Our setting is reminiscent of the geometry[#8].

In the previous section, we saw that T duality on tde S An observer living on our deformed®Svho cannot ven-
fiber of the deformed Sleads to a simple picture of nonlo- ture out over distances of the order &f sees only a small
cality on the boundary. The nonlocality scale=2sL, of neighborhood/{ .Of “(*“PZ.' In this ne|ghborhood,.fleldls vary
the field theory matched nicely with the nonlocality scale onSIOWly and the f|berlS|s noncontractible. The fibration has
the boundary. In general, the proper distance between an?e structure ot/x'S', and, if our local observers wish to
two distinct points along th&; axis becomes infinite on the .escrlbe ferm!ons n their ngghborhood_, thgy _have the op-
boundary because of the large rescaling factof.1¥f the x3 tion _OT choosing either periodic or antiperiodic _boundary
coordinates of the two points differ by an integer multiple of conditions around S The geometric holonomy around,S
L. then, as we saw in Sec. VII B, one can make a «shortcyt”c@lculated from the Levi-Civita connection, is the identity in

through an extra dimension that came from the T-dual of theoO(2)- However, as it turns out, the smalf 8ber is con-

st and go from one point to the other via a path Whosetractible inside the whole deformed,Sut in order to shrink

proper length is shorter than the string scale. it to a point, one must first deform the circle to a path of

However, the logic behind this picture is incomplete. Tolength at least &R_' This fact allows one to calculate _the
understand the problem, we will begin with a puzzle. holonomy fqr _fermlons .around the fibet,Sand, as we will
see below, it is—1espin5). Thus a local observer would
have to choose the antiperiodic boundary conditions and in-
sert (—)F in every calculation.

The supergravity metric presents a nonlocal behavior that In more mathematical terms, let*¥ be the tangent
connects two points ad; distance oL, and this is indeed the bundle over & To define spinors on°Swe need the spin

VIIl. THE FERMIONS

A. What about the fermions?
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bundleS over S. The structure group af is spin5), which  cancels the € ), and therefore the winding state is quite
is a double cover of S@B). Now pick a fiber $ over a point  likely to remain massive. The disappearance of the tachyonic
p of the baseCP?. Take a neighborhootfe CP? of the point  instability is also supported by the argumentds6]. There
p. The restriction of the Sfibration toi/ is a manifold thatis it was argued that a background RR flux provides a positive
of the formu/x St Overi/x S, there are two possible spin shift to the(mass? of the tachyon. If that is indeed the case,
structures. In the first oneS, , the spinors have periodic it is plausible that the uv region is described by type-OA
boundary conditions around thé,Sand in the secondS_, string theory with the general features of the weakly curved
the spinors have antiperiodic boundary conditions. The apmetric described in Sec. VIIA. Note that the magnitude of
propriate spin structure can be calculated from the (§pin the 4-form RR field strength in type-0A M ¢/gs=g2*M?.
holonomy around Sin S. It turns our that the holonomy is This means that whegs is small, this field strength is large
—1espin5). To see this, one can continuously deform therelative to the string scale but small relative to the Planck
fiber S' to a point inside Band trace the holonomy around scale. Thus it appears that our dipole theory describes an RG
the closed loop as it changes frone $pin(5) when the loop ~ flow from type-IIB string theory to type-OA string theaty.
is a point to— 1 e spin(5) when the loop becomes the fiber. However, quantizing strings in strong RR backgrounds re-
To actually calculate the holonomy, note that the fibkisx ~ mains an open problem, and type-OA is also likely to have a
circle of radiusR inside S. Pick an $CS° that contains §  large cosmological constant, so this conjecture is hard to
as its equator. OversS reduces to the spin bundle of S Vverify.
times a trivial bundle. So the holonomy is the same as the
holonomy of a spinor on%around the equator, which is1. D. Resolution of the puzzle

It may seem at first sight that because of the){ we are
actually describing strings at high temperature dgt# (and
see alsg45,46 for recent discussionsThe closed string
spectrum would then develop a tachyon when thel8inks
to a size smaller than the string scale, and our discussi
would be rendered invalid. However, the samel on a circle of radius R by theZ, action (—)*P, whereP is

€ spin(5) holonomy s there even for the supersymmetricy,q 1 aju75-Klein momentum. The T-dual is therefore an or-
AdS;x S since the geometry of the’$ the same except for bifold of type-IIA on a circle of radius 1R by (—)F*W

the size of the fiber. This means that the rBust support where W is the winding number. Now we see that in the

covariantly constant spinors, and something else should Calnwisted sector of the T-dual background, strings that are
cel the —1espin5) phase. Indeed, the Dirac equation of

A ) - ) spacetime bosons must have even winding number, and
motion for a fermiony on AdS;XS” contains an extra term,  gyrings that are spacetime fermions must have odd winding
in addition to the spin connection. This term is proportionaly mper. Thus, the resolution of the puzzle is that the dual
10 (Fs)uugl 4754, whereFs is the 5-form RR field ey is not type-1IA on a circle of radius R/but rather
strength(see, for exampldA7]). When integrated around the type-0A on a circle of radius 1R

fiber S, this extra term gives an additional phase(efl) so

Assuming that T duality to a weakly coupled type-0A
theory is possible, the puzzle about spinor operators with
half-integral dipole length is resolved as follows. The type-
[IB compactification on $of radiusR with the extra )F

Oflvist can be described as the orbifold of a compactification

that altogether a covariantly constant spinor is possible for an IX. CORRELATION FUNCTIONS
SQ(6)-symmetric S.
It is important to point out that the—{)" phase coming In a local field theory, correlation functions of operators,

from the geometric holonomy is a global effect. If we return (O(x)O(y)), have short distance singularities when-y.
to our local observer on°Sthe (—)F rule will seem to them In dipole theories, we expect a singularity to appear also
as an arbitrary rule of nature. On the other hand, th¢"(  whenx—y=L;, whereL,; is one of the characteristic vectors

phase coming fronFs can be calculated locally. This has Of nonlocality as in Sec. Il. In the special case we study in

important implications to the application of T duality. this paper, thti length of the characteristic vectors of the sca-
lars is L=2xL. For operatorsO(x) that have no dipole
C. T duality with (—)F length of their own(for example t{Ffw}), we therefore ex-

The antiperiodic boundary conditions for the fermionspeCt

around the fiber Simply that we cannot just perform T c

duality and get a type-lIA background with a largé. - (O(X)O(Y)) =y yitl T35

stead we get a type-0A theory. Such theories were discussed T Ix—y—L

in [48—-56. Their spectrum contains no fermions, and their . )
bosonic massless spectrum is the same as that of type-IiaNd then in momentum space we expect to find a term that
string theory but with two copies of every field in the RR behaves like

sector. The main complication is that they also contain a KL

tachyon. However, in our case the tachyon could very well (O(K)tO(K))—

be absent. 1144], the tachyon came from a string winding kool d=28-

state in the RR sector. There, because of the extry (

there was a negative zero point energy for the worldsheet—

oscillators. In our case, as we have seen abovel-theerm We are grateful to Igor Klebanov for pointing this out.
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For operatorsO(x) that do have a length, we expect the If we expand this, we obtain

behavior of the correlation function to be more complicated 5

since the operators contain nonlocal Wilson lines as in Eq. , , 5 (AkgL)?

(12). It is likely that the correlation functions exhibit an ex- u¢ + ko= T ¢=0.

ponential behavior-e(®©STT analogous to that of non-

commutative geometr{57,58.% For the rest of this discus- We recognize this as the equation for a massive field in or-

sion, we will restrict ourselves to operatd¢x) with dipole  ginary AdS space witmR=\ksL. Thus, we can copy the

length zero. final result from equatiort44) of [2],

We can use the AdS/CFT correspondence to compute
these correlation functions in the largelimit. We will re- (0(k)O(q))y=—(2m)*s* k+q)
strict ourselves to the special case where Rgymmetry is 5 -
broken from spif6) down to U3), as in Sec. VIB. Because XN_ I'(1-v) (k_R> R4
the AdS/CFT correspondence directly probes the nonpertur- 8m° TI'(v) 2 '

bative nature of the field theory, it is perhaps a bit too much

to expect to see the exact form above, but, in the limit ofyherev= \/4+(k31)2.

high momentum along the dipole direction, a sign of nonlo- et us now take the limit thak;—c. In this limit, we
cality would be a rapid oscillation in the correlation function have

in momentum space.

It is, in general, a difficult problem to decouple the fields 1 ((kR/Z)”) 2

on a nontrivial background such as any of the examples in (O(K)O(—k))~ —

this paper. Following[57], we will simply postulate that sin(mv) |\ I'(v)

there exists a massless scalar living on our spacetimne. -

particular, it should satisfy the field equation K E( |k|<-2'72>2“<3L
3 ~

d,(e”2%\/detg g*"9,®(X,u))=0, kg— o0 : 2)\k3L~

sin(mAksl)

wherex=(t,X;,X5,X3).

This is still quite a difficult problem to solve, but we will It exhibits an oscillatory behavior but not quite what we have
soon see how it can be simplified. In particular, we recall theanticipated. We expected the wavelength of the nonlocal be-
determinant of the metric of the sphere, E8), in the Hopf havior to be an integer multiple of the dipole length. This is
fibration coordinates. Including the AdS portion of the met-not what we observe here. This is a puzzling phenomenon,

ric, we have but it is consistent with the observation from the supergravity
) dual that the scale of the nonlocality is actuall{. rather
detg—R? u’ 10 1 than justL. SinceAL>L, there is no immediate contradic-
W+ T2 (1+|al2+|82)® tion. It could be that in the largk-limit the dominant con-

tribution to the nonlocal behavior of the correlation function

We immediately see that this factors into a contribution thacomes from the nonlocality on scdlaJL (where[A] is the
depends on the sphere and one that depends on the Ad8teger that is closest th). It is important to realize, how-
Thus, because our metric is block-diagonal, we can choos@Vver, that the supergravity approximation ceases to be valid
our scalar field to be constant on the sphere, and all contrivhenu<a'"?R™*, as we explained in Sec. VII A. This sug-
butions from the sphere will cancel out of our equations.gests that the above calculation may not be entirely valid.
Another happy fact is that the contribution from the dilaton This is worthy of further investigation.

exactly cancels the?/(u?+\2L?) term reducing this to al-
most the standard massless field equation on AdS space. X. DISCUSSION
As usual, the most interesting part of the equation comes

from theu coordinate, so we write In this paper, we have shown how the nonlocality of di-

pole theories is manifested in the supergravity dual. We dis-
covered that the metric becomes degenerate at the boundary

SN iK%
d(X,u)=g(u)e™ ™ of the spacetime and that this could be used to explicitly
- . . demonstrate the nonlocality. Although this feature of the
Then ¢ satisfies the following equation: metric was shown using the naive T duality to type-11A and,

as we argued in Sec. VIII, one actually gets type-OA with a
strong RR field strength, we believe that the metric still has
this general structure. This should be a generic feature of the
supergravity duals of nonlocal field theories. It is not a sur-
prising result. Nonlocality, when realized in some limit of
2We are grateful to M. Rozali for a discussion on this point. string theory, cannot be a purely supergravity effect. The
SWe are grateful to I. R. Klebanov for explaining the relevant nonlocality must be a result of the inclusion of some stringy
issues to us. degrees of freedom on the boundary. The degeneracy of the

(Nksl)?

U3(9u +| K?— T) o(u)=0.

1
?(%QD(U)
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metric in string frame means that we cannot treat the bound- (iv) After T duality, the NSNS 2-form field induces off-

ary as classical, and this is the source of the nonlocality. diagonal terms in the metric that can be interpreted as a
It is worthwhile to compare this situation to that in non- fibration over a string scale circle.

commutative geometry to see if we can distill some more (v) The nonlocality of the field theory is manifested by the

general features of the supergravity dual. The discussion thatift in the new coordinate as we go around the string scale

follows has some features in common wjBt,59—62.* circle.
Recall that the metric of the supergravity dual of NCSYM  While these features may not be generic for all nonlocal
theory is[5,6] (ignoring dimensionless constants theories, it is not unreasonable to assume that they may be

generic for the generalized dipole theories mentioned at the
end of Sec. Il A, of which both the dipoles discussed here

and those of noncommutative geometry are a special case. In
[10], a generalization of dipoles to the case of 20

The other fields are theory was proposed where, instead of constant length di-
poles, there are constant area “discpoles.” This should have

1 ut
o|sZ=F dt?—dxi— m(dx§+ dx3)—du?|.

4

020 — u a supergravity dual of the form Ad8S*. It would be inter-
U+ 6% esting to investigate the effects of nonlocality on the super-
gravity in this situation.
0 Before concluding, let us return to a loose end from the
Bag=— W2 beginning of Sec. lll. We mentioned that the twisted string

theory backgrounds are unstable if supersymmetry is broken.

We see that both the second and third directions go to zerdhis instability was discussed {24—-26 and is related to
|ength on the boundary, indicating some sort of Stringy ef.the instability of Kaluza-Klein Compactifications without su-
fect. Note that here, the degeneracy is in the AdS part of theersymmetrj27]. In Sec. VI B, we used a nonsupersymmet-
metric indicating that the nonlocality is part of the space thafic twisted theory, and we therefore expect it to be unstable.
the field theory lives on. This is in contrast to our dipole However, the probability for decay per unit time and volume
theories, where the degeneracy is on tReirlicating that IS exponentially suppressed gs—0. In the largeN limit
the nonlocality is part of the field content of the theory. ~ (keepinggsN fixed), we can therefore assume that the back-

F0||owing the same procedure as in Sec. VII B, we Com_ground is stable. It is interesting to ask whether the dlpole
pactify these directions and T-dualize a|0ng one of them, saﬁE'd theory on the probe is also unstable. We will not address
the second. As before, the presence of the B field gives risilis question here. One possibility suggested by Aharony is

to cross terms in the metric. Specifically, after T duality, wethat a potential is generated on the Coulomb branch of the
have, isolating the 2 and 3 directions, dipole field theory that makes the origin unstable. This is

currently under investigation.

dx3 dxdxg  u?+ 6%u~2
ds?=(u*+ 6% — +26 - dx3.
u? u’ ut+es T3 ACKNOWLEDGMENTS
If we take theu—0 limit, we can rewrite this as We are grateful to O. Aharony, J. Gomis, R. Gopakumar,

A. Hashimoto, C. P. Herzog, N. Itzhaki, I. R. Klebanov, J.

1 ) Maldacena, D. Minic, S. Minwalla, B. Morariu, A. Poly-
dSZZJZ(adXZ“Ld)%) : chronakos, N. Seiberg, S. Shatashvili, S. Shenker, A.

Strominger, H. Verlinde, E. Witten, and Z. Yin for helpful
This has almost the same form as the metric we obtaineféliscussions and comments. K.D. would also like to thank the

in Sec. VIIA. When we traverse the 2-circle, the above co-String theory group at Harvard University, where part of this
ordinate gets shifted bg. As T duality interchanges momen- work was done, for stimulating discussions. The research of
tum with winding, we interpret this as a dipole in the 3 O.J.G. is supported by NSF Grant No. PHY-9802484; the
direction with length equal té times the momentum. This is research of J.L.K. is in part supported by the Natural Sci-

exactly the situation in NCSYM theory. ences and Engineering Research Council of Canada; the re-
What are the general features of the supergravity duals ¢fearch of K.D. is supported by Department of Energy Grant
nonlocal field theories that we can infer from this? No. DE-FG02-90ER40542 and the research of G.R. is sup-

(i) The metric becomes degenerate on the boundary drorted by NSF Grant No. PHY-0070928.
AdS.

(i) The NSNS 2-form field has a component along the AppeNpIX: GENERIC ORIENTATION OF THE DIPOLE

deg_gnerate direction. o ' VECTORS
(i) We can (perhaps after compactificatipi-dualize
along this direction. In Sec. IV, we promised to describe the supergravity so-

lution for generic dipole theories where the various dipole
vectors are not all along the same direction. In order to avoid

“We are grateful to A. Hashimoto for pointing out some of theseclutter, we will seta’ =1 in this appendix.
references and for discussing this with us. We start with a D3-brane extended in the 0123 directions,

066005-12



NONLOCAL FIELD THEORIES AND THEIR GRAVITY DUALS PHYSICAL REVIEW D65 066005

compactified on ar® with radii (R;,R,,R3). The relevant L 4
nonzero fields are Co=—q (A2)
1
ds’= —=[dt*— (Rydx")?*— (Rpdx?)*— (Redx®)?] H3/2
VH e2(d—e0) = .
RIRSRS
= VH(dx?,
1 Now, we introduce the three twists, by replacing
Cor2s= — g (A1)
= o, dx@—dx®— >, (Q4x°)dx~,
o
where
R4 where Q#)T=— Q* are commuting elements of $). The
H=1+-7, r2=(x%>2 metric with the twist is
The roman indices, b,... run from 4 to 9, and we use greek 1\ 2 2\ 2 3\ 2
L - e . 1 dx dx dx
indices to indicate the compactified directions 1,2,3. Starting dt=—dt?— JH|| —| +|—=—]| +|—=—
from the solution(Al), we perform the T-duality transforma- \/ﬁ Ry Ro Rs
tion three times, in the three compactified directions using —\/ﬁ[dxa—(ngxb)dx“]z. (A3)

the formulas of33—-35. The answer, which is ®0 brane
smeared over the T-dual tor@s: (R; 1R, 1,R; 1), is

) Now, we T-dualize three times to get back the metric for a

dgzidﬁ_\/ﬁ d_xl 2+ d_x2 2+ d_x3 D3 brane with a dipole theory living on it. DefinAMTf
JH R, R, Rs =R,Q# (no contraction ovew) and x*=rf?, wheref'n
=1. With some work, the metric turns out to Bleere and
—VH(dx®)?, below there is no contraction in terms lilg,dx”)
|
1 1 €,5,€00,[ 0%+ 12(mY)Tm ][ 844+ r2(mP)Tm+
d52=\/—ﬁdt2—\/ﬁdr2—\/—ﬁ €l ( )2D 1 () ](R./dXV)(RVdX)V— JH(r2dn"dn)

[5°+r2(m*) Tm ][ 6+ r?(m®) 'm“]{[(m?) "dn][(m")"dn]}

4
r Ea’ EK Vi
+ \/ﬁ BySkp 55

where we have defined
D= €apy€rpil 8+ r2(m*(m*) Tm*][ 8P4+ r2(mP)Tm#][ 67"+ r3(m?)"m"]

and

The other nonzero fields are

1
(4) _
Coi23 H

rm#dn
B! Ldx“0dh?= — VHj,,,dx"0

v

e, [ 5 +r2(m*) Tm [ 6%+ r?(mf) Tm*]{R,dx”) D[ (m”) "dA]}
- 2D

1
2(¢—¢g) —
e D (A4)
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For M'=M2=0 this reduces to the answers for a single twist. It is interesting to ask what happens when thétists,
do not commute. In this situation, the Ricci scalar of the twisted mé&®) has a field strength term, and thus the metric is

no longer a solution to the supergravity equations.
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