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Maximally localized states and causality in noncommutative quantum theories
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We give simple representations for quantum theories in which the position commutators are nonvanishing
constants. A particular representation reproduces results found using the Moyal star product. The notion of
exact localization being meaningless in these theories, we adapt the notion of “maximally localized states”
developed in another context. We find that Gaussian functions play this role it &)f@imensional model in
which the noncommutation relations concern positions only. An interpretation of the wave function in this
noncommutative geometry is suggested. We also analyze higher dimensional cases. A possible incidence on the
causality issue for a quantum field theory with a nhoncommutating time is sketched.
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[. INTRODUCTION We will show that the results summarized in Sec. Il are re-
covered. In Sec. IV, we first work in a-21 dimensional

Theories of noncommutative quantum mechanics have renodel where the spatial coordinates do not commute. We
ceived wide attention once it was realized that they could bgive all the details leading to Gaussian functions as being
obtained as low energy limits of string theory in the presencénaximally localized states. Considering & 2 dimensional
of aB field [1,2]. However, the status of these theories is stilltheory, we use the preceding construction to construct the
plagued by conceptual challenges. In most of them, Lorent@PPropriate states in the new context.
invariance is explicitly broken. Actually, noncommutative ~ Rather than projecting on localized states, we now have to
guantum mechanics is not the only arena in which LorentProJect on maximally localized states to gain viable informa-
symmetry is only approximate. For example, it has been sugt-'o,n on positions. The_ Ias.t section is devoted to. a brief re-
gested recently that the standard model itself may fit into thi inder of the. causality issue .Of a quantum field theory
category[3,4]. The preferred frame was postulated to be theIQFP pgsstefsmg a nolr;cortr;mutlnglj t'r.ne.' Thke ;Nﬁyénammally
rest frame of the cosmic microwave background radiation.0C2!1#€¢ Stales may alter In€ analysis 1S sketched.
There is one major problem quantum noncommutative theo-
ries are believed to face when time and position do not com- [I. QUANTUM MECHANICS USING THE MOYAL
mute: the lack of causality and unitarifs]. The analysis PRODUCT
which led to this result relies on the Weyl-Moyal correspon-  tpe noncommutative quantum theories we are interested
den_ce Whlc_h tells us ho_w to handle theorles ywth NONCOM1{y ohey the following relations:
muting positions. One simply works with functions of com-
muting variables but replaces any pointwise product by the A A~ A A A
Moyal star product which is nonlocal. [ xi]=16,  [PP]=0,  [Xop]=ih6q. (1)

One of the main problems faced by this approach is that
the meaning of the wave function is not clarified y67]. ~ The constant matrix has dimension.? and breaks explic-
When two positions do not commute, they cannot be diagoitly the Lorentz invariance. The Weyl-Moyal correspondence
nalized simultaneously. The uncertainty relation prevents thés a map between the functiods of the operators, and the
wave functiong(x) appearing in noncommutative theories functions¢ of the commuting variables; :

from being the probability for a particle to be localizedxat

There is a model in which exact localization is also for- Sy PRy :J X8
bidden: the Kempf-Mangano-ManiiKMM ) theory [8]. In- () fe ¢la)da,  ¢(x) e Te(B)dB.
spired by what was done in this case anfiih we will adapt 2
the notion of “maximally localized state” to noncommuta-
tive quantum mechanics. This notion will be useful in theThe usual product of twa valued functions is sent to the

discussion of the causality issue. _star product of the associated functions defined on commut-
The plan of the paper is as follows. In Sec. Il we will ing variables:

briefly point out some characteristics of noncommutative
guantum mechanics which have been obtained in specific
cases using the Weyl-Moyal correspondefib@, 11]. In Sec.

[l we will exhibit a representation of the positions and the
momenta by operators acting on a usual space of function¥/ith

D (X)W (X)—(* ¥)(x), )

(¢* ) (x) =[P (x4 &) th(X+ 1) ] e po- (4)
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The theories with noncommuting positions are obtained E):—iﬁ& . (10)
from the usual actions in which all products become star ' &

products. For example, the action of a self-interacting scalafhe introduction of the noncommutativity scale leads to the
field reads possibleAnsdze

1 A Y = 1/ 1/2
S:f d4x(§g“”&M¢*&V¢—m2¢* ¢_m * p* ¢) Xi=§&+460 ZGi(0 ﬂgk). (12
(5)  The functionsG; are taken analytic. Such amsaz clearly

_ fulfills the [X,p] commutation relations. Thigs,x] commu-
It has been suggested that quantum mechanics could be dgtors can then be used to constrain the coefficients of the
rived in this context by a similar replacemgfid,11. Inthe  Taylor expansions of the functior; .

usual situation, the Schdinger equation can be inferred  “ag an illustration, let us consider at2l dimensional sys-
from the action tem, with spatial noncommutativity:

he
S= f dt dzxa[i&t———V(x)

2m

w (6) [Xl 1X2]:i 0! (12)

with 6 positive. It is straightforward that one can take

in a 2+ 1 dimensional system. Introducing star products andinear and write simply

using the relation A .
g X1:§1+|0(a3§1+(1+c)a§2),

V(X)*t//(X)=V(X— g) P(X) (7 §<2=§2+i0(c&§l+da§2). (13)

~i_ i L . , , At this stage, the constangsc andd are arbitrary. The mo-
(wherep'= 6" p;) which is obtained via a Fourier transform ~ A
[10,11, one finds that the Weyl-Moyal correspondence re-Mentap; and the positions, act as operators on the space of
duces to the replacement functions of the variablesg ,&,). If we take the scalar prod-
uct to be given by the usual formula

1.

x—x=3 ®) (G- [ dede, o @ eue ) 09

in the potential. Considering a central potential, the substltu,Ehe % operators are symmetric provided that andd are

tion real.
02 02 Let us consider a harmonic oscillator in this theory:
VOCHY?) = V| gt Ry txiy?—oL, | (9) N S
A= S (p3+p)) +5K(E+Y?). (15

shows that the theory “looks like” one describing a particle

of changed mass, with a nontrivial coupling to the angularusing the representation given above, one obtains
momentum[10]. In the case of an asymmetric oscillator
V(x,y)=31ky?, the theory contains a term which looks like
an interaction between a particle of chameith a constant
magnetic fieldB such thatgB= 2/ [11]. At this point it is
crucial to realize that although the Moyal product is written
in terms of commuting variables these variables are simply

a notation. There is no evidence that they represent physical 1
coordinates, except in the undeformed cédse0. No argu- T

ment has been presented which shows that the wave function T ki0(2a610¢, + 20820, +2(14 ) Eady,

¢ gives a probability[6]. Moreover, the probability for a 1

particle to be Ipcallzed at a given positior(X,) is not a +2C£,0,, +a+d)+ _k(ﬁJr 55). (16)
safe concept since these coordinates do not commute. 1 2

h +1k¢92
2m 2

I

2
&gl_

o1
__ T 020 a2 A2
(2m+2k0(a +c9)

X ((1+¢)*+d?) | 7F,—ko*(@(1+c)+cd)dg e,

Let us forget for a moment the origin of this operator and
lll. A REPRESENTATION OF THE COMMUTATION treat it like in the usual, commutative theory. Can we repro-
RELATIONS duce the features shown in the last section, which come from
The only modification to the usual theory introduced by@n analysis based on the Moyal product? The answer is posi-
Eq. (1) concerns the positions. It is therefore quite reasonabléVe. The appearance of the “angular momentum operator”
to look for a realization in which the momenta remain un-Of the usual theoryi(£,9;,— &,d,)), is guaranteed by the
changed: choicec=—1/2. The crossed derivatiwégla§2 vanishes if
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([X1.%2])

(;(l_<xl>+2(A—X2)2(;(2_<X2>) |¢> =0. (20

the relationa=d holds and the termé, d;, and 20, disap-
pear if we also imposa=0. The final Hamiltonian reads

h +1k02
2m 8

ﬁZ

+1k02
2m 8

The vector whose norm is considered in the preceding for-
mula vanishes for the statég) which minimize the product
of uncertainties. Using our expressions of the position opera-
N 1k(§2+§2) 17 tors, this is converted into a partial differential equation for
2 e ek the maximally localized states. We introduce the complex
coordinates (,,u,) by
This has been obtained [r10] and summarized in the pre-

2 1k
&‘524— E oL

I

2
&gl_

vious section. Up=(a1+iBy) &t (y1+i61) &,
So, for a particular choice of the free parameters appear- B . .
ing in the realization we chose for the noncommutative quan- Up=(aztiB2) €1t (y2+162)€2, 21

tum theory, we can reproduce exactly some results deriveghare the following constants have been introduced to sim-
using the Weyl-Moyal correspondence. The simplicity of thep“fy future formulas:

algebra will prove useful when tackling the interpretation of

the wave function in this framework. In fact, even if the c a d 1+c
Hamiltonian written in Eq.(17) looks quite ordinary, one a=5. A= MmTp AT
should keep in mind that once the wave equation is solved,

the position operator along the first spatial coordinate is not d 14¢ c a
simply the product by¢;. The energy eigenvalues have the =" g ﬂzzT, Y=g Op=— D

same meaning as in the ordinary theory but the analysis con-
cerning Iocal!zatlon is much more involved. A similar situa- D=—1-a2—2¢c—2c2—d2. 22)
tion occurs in another theory and has been exploited to

handle the trans-Planckian problem of the black hole physicgne finds that the general solution to the partial differential

[12,13. _ _ _ equation is
From the formula given in Eq1), one infers the uncer-

tainty relation | 1 o
U (€10 62) = F(up)expl 5o (2c+ 1-ia+id)u]

0
Ax AXp= 5. (18) 1 , 1 .
_E(d+a+|)U2U1+ 5()\1+|)\2)U1

This means that any state which is localized without any (23)

uncertainty in any of the two directions is unphysical.
with f an arbitrary function. At this level an important con-
IV. MAXIMALLY LOCALIZED STATES straint comes from the fact that d@s-0, we should reobtain

usual quantum mechanics. The maximally localized states
must in this limit coincide with position eigenstates which

The uncertainty relation given in E@18) puts a lower are delta functions. In formula, one should have
bound on localization. We shall look for states which saturate ml
this bound. We will restrict ourselves to those displaying I,y (61,62) = 6(E1—N1) 8(€,— o) (24)
equal values of the uncertainties in the two directions:

A. The derivation

when #—0. In distribution theory one knows that the Dirac
0 delta can be expressed as the limit of some appropriate func-
Axp=AX= /5. (19  tions, for example

2 .
This is motivated by the opinion that a state displaying a 1 exp{ _X_) ﬁ sz(X/‘/E) i \/‘_9 )
very small uncertainty in one direction and a large one in the 210 o) x? N
remaining direction is undesirable; we adopt here a demo- (25

cratic treatment of the two coordinates. o ) ) ) i

We will say that a state is maximally localized(at, |\ ,) Any combination of these fgnc_Uon_s with approprlate. coeffi-
if it satisfies the equality of Eq. (19) and(i;)=\; . cients tend_s to the de_lta distribution. It can be conjecture_d

These states are quite close to the coherent states in tif2at @ maximally localized s?ate may just be such a combi-
usual quantum mechanics which veriyxAp=7#/2. As it ~ nation. Our expression fopy , (£1.€>) given in Eq.(23)
stands, Eq(19) is hardly tractable. The procedure we shall involves exponentials; this makes it more reasonable to focus
use is directly inspired by8] and replaces these integral on the first element of the previous list. Our aim is to see if
equations by a differential one. The uncertainty relation ofthe functionf(u,) can be chosen so that the maximally lo-
Eqg. (18) is obtained as a consequence of the inequality calized state is proportional to
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(E1-N1)?  (£&,—Np)? The expressions of the constamfsandR;; in terms of the
EXF{ T Zs o2 | (26)  quantitiesé,, oy ,A; ,B; are given in the Appendix. The pre-
! 2 ceding formula can be identified with E6) only if we can
The answer is that this can be done only when the conmake all thel, vanish as well aR;,. The constant8,; and
stants appearing in E¢L3) satisfy the relationa=d=0.To B, are easily fixed by the requirement that
obtain an expression which looks like Eg6), one needs the

function f(u,) to be quadratic. As the expression of

4/12"1"”(51,52) given in Eq.(23) involves complex quantities, Boas,+B1Bs  Bihit+ails
we choose 10~ Jo + 0 =0, (29
1 _ , 1 _
f(u2)=Nexp{5(A1+|A2)u2+ ﬁ(BlﬂLle)uz , and
(27)
ihe real 'and the. imaginary, part in the expression of the BoyatBudy Ohatyiha_ o o

maximally localized state: 20 Vo 6

P (€1 E2) =N expli (1 10T+ 1 2085+ 11pf1 £+ 1 1061
In a similar way, the vanishing df;; andl,, fix A; andA,.

+ + 24 24
'2062) + (Ruadi+ Roaz+ Ruaka &7 Simplifying, the remaining coefficients assume the following
+R1pé1+ Rapéa) - (28)  expressions:

a+d

1
127 3(a+ac+cd) 6’ (31)

B —a—2ac—ac’+d—c?d+ad’+d3 1 2
1 4(—ac—2ac’—ac’*+a?d+a’cd—c’d—cid+acd?) ¢’ (32)
. —a®+2ac+ac?—a’d+c?d 1 a3
227 g(—ac—2ac?—acP+a?d+a’cd—c2d—c3d+acd) 6’ (33
R a—d 1 a4
127 2(—=c—c?+ad) 6’ (34
—(1+cng—dh, 1
Rao= c(l+c)—ad 6’ (35
R oo d) 0 %0

The remaining term in the imaginary part vanishes only ifOne sees that wheR;,=0,R;; andR,, are only defined by
d=—a as is manifest in Eq(31). The R, coefficients then their limits asa—0:
simplify further:

R ! R ! ! (39
11— 7 5~ ¢ 22— o
__alto 1 a 1 2 2(1+c) 6
N 2a(—a’—c—c? 6 ** —a’?-c(l+c) 6’ R N\ . Ao 20
(37) 107 g 2071+ 0)6° (40)
In summary, wherd=—a=0, the choice of the constants
Ro— ac 1 38 AuAzB1B explained earlier leads to a maximally local-
227 2a(—a’-c—c?) 6’ ized state which takes the form
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gi gg A&y It is quite surprising that the conditioa=d=0 which
g | (£1,6)=Nexp 5— — - was needed to recapture some behaviors found using the
172 2c6d 2(1+c)d cé . A
Weyl-Moyal correspondence in the last section is also the
Noéy one leading to Gaussians for the maximally localized states.
+(1+c)0 : (41)  The conditionc=—1/2 leads to a symmetric form of the

maximally localized states in the variableg,&,. This
This state is normalizable only if the quadratic terms areStrongly suggests a way for the recovering of information on
negative and this is realized provided that the constant Position from the Moyal-Weyl wave function.

assumes values in the intervat-1,J. One finally obtains

that the wave function B. The quasi-position representation

One can construct a new representation by projecting on

1 the maximally localized statd$]:

mi _i 1 i _ 2
‘ﬂxl,xz(fl,fz)—ﬂ_e \/_—20 \/mexr{zce(gl )\1)
1 a(§11§2):f drgpdi, lﬁTll,)\z(foz)a()\lJ\z)- (49
- m(fz_hz)zl (42
For simplicity, we restrict ourselves to the case —1/2.

represents a maximally localized state in the representatiohhe action of the position operators is given by
of the noncommutative quantum mechanics given by

R 0 i ~ 0 .
Xl:)\l-‘r E(ﬁ)\l-i-l(?)\z), X2:)\2+_((9)\2_|(9)\1),

X1=&1+160(1+C)dy,, 2
(50)
Xp=&27T10C0g,. (43 while the scalar product reads
It is straightforward to verify, by the computation of integrals 1

implying Gaussians multiplied by polynomials that in this (Z|73>=%J’ A\ dNhpdig Ay (N, N0) Beq, o)
state

0 Xex _i(hl_ﬂl)z—io\z_ﬂz)z- (51
<Xi>:)\i , AXi: E (44) 20 20

As 6—0, the Gaussian function tends to the delta distribu-
tion. This enables one to rewrite the preceding integral as
based on two coordinates rather than four, recovering the
well known situation of the position representation. The op-
erators given in Eq(50) also reduce to the common form in
(45  the same limit.

This representation is physically interesting because
within it we know the interpretation of the wave function.

However, it goes to infinity a9 goes to zero. This agrees Since it is obtained by the projection of maximally localized
with the fact that the square of the Dirac distribution is not a y Proj y

mathematically well defined object. Like in the KMM theory States, the square of the wave functigté,,&;) gives the

[8], one finds that the mean momentum vanishes in this stat@robability for a particle to be localized in the intervals
—2612,6,+ 3/6/2] on the first axis and a similar one cen-

This ensures that the state fulfills the condition not only in
the limiting casea— 0, but also in the casa=0 itself. The
norm of this state is perfectly finite:

o

1
<¢|¢>=_ c(1+c) ﬁ

(pi)=0. (46)  tered around, for the second axis.
o The quasiposition representation obtained here is similar
The uncertainty in momentum reads to the one found in the KMM theory in the sense that the
2\ 12 scalar product involves functions defined at different points
APF( _ ﬁ_ , (47) [8]. It differs from it by the fact that the operators are not
2co given here by an infinite series in the deformation parameter.

and, along any direction, one has )
g any C. The momentum representation

1 h We worked in a representation which reduces to the posi-
AXiApi_E (—c)72 48 tion one in the undeformed limit. It is possible to carry simi-

lar calculations in the momentum representation. The param-
We cannot reach the lowest values allowed by the Heisenretrization
berg uncertainty relations since this corresponds to the value

— . . K R ] 2] R ) 0
Eq (412)}Nh|ch blows up the maximally localized stdtsee Xy =idp, 5Pz, Xo=idy + 5P (52)
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satisfies the commutation relations. One can construct maxi- 0 1 Ug 1
mally localized states which tend to ekp{) which is the Axle3:§:>—2 +T +—=0, (58
Fourier transform of the Dirac delta. 4oy 403
2
D. Higher dimensions AXZAX3=g=>i +i +ﬂ ~0 (59
2 2 '
The construction presented needs some modifications 2 4ot 405 4

when addressing higher dimensions. Let us consider for ex- .
ample a 3+ 1 dimensional model whose nonvanishing com- /€ can use Eqg57),(58) to expressr, and o in terms of

mutation relations are T3.
NN A A NS , 4
[X1,X2]=[X2,X3]=[X3,X1]=16. (53 02=2—i— 405
. . . ' 0'% 1+ 03—20'5— \/1—40'g+60"21+40'g+ O'g,
It is realized by the following operators: (60)
;(1:§1+i6(a1(9§1+(1+bl)a§2+a3’9§3)’ , 1 1 1 \/1_40'§+60"21+40'g+ 0'2
T3T 4 1d 52 10 :
) g3 ]

;(2:§2+|0(b1(9§l+ b2&§2+(1+C2)&§3), (61)

Replacing, in the second part of E(9), the variableso;

and o3 by the expressions obtained in the two preceding
(54 formulas, one obtains an equation in the parameterun-

fortunately, this equation does not admit a real solution, as a
The a;,b;,c; are arbitrary but real constants. We watft  numerical treatment shows. One may think that a different
+y?+ 72 to be quadratic in the “momenta” and linear in the choice of the parameter; ,b; ,c; may solve the problem;
“angular momenta” like in Eq.9) which is true for all di-  this is not the case.
mensions. One needs the relatians=b,=c3=0 to cancel The simplest way to understand this feature is the follow-
terms of the form¢,d,, and we imposé,=az=c,=—3 t0  ing. As shown in Eq(20), the equality given in Eq(19) for
ensure the appearance of the “angular momenta.” We end ufhe direction, ,X, is satisfied only by the eigenstates of the
with the following expressions for the position operators: operator

;(3:§3+i0((1+a3)(9§1+ C25§2+ 03&53).

~ .0 ~ 0 Q12:X1+iX2. (62)
X1:§1+|§((9§2_07§3), X2:§2+|§((9§3_07§1),

So, a simultaneous solution of EQL9) for all couples of
directions must be an eigenstate of the operators @5

;(3: Eoti f(a —a,). (55) _and @s. The commutators of these operators are nonvanish-
278 6 ing:

Inspired by what we have done in the previous subsection, [D12,D13]=26. (63

we now look for the coefficients; which allow the function ) . .
As we just pointed out, a state which saturates the three

1 \32 1 (£1—Ny)2 bounds is an eigenstate of the three operators; we denote its
lpg“l"}\z’)\s(gl,gz,é): (2—0) p[ - —1% eigenvalues by 45, A3 andi,3. Using this, we infer from
m 010203 016 Eq. (63) the equation

_ 2 _ 2
_(Eha (& }S)] 56 (@10, Bia]| 4= 264y = N1k s~ hah 1) | ) =0 (64)
050 050

so that the only state which saturates all the three bounds is
to satisfy the definition of the maximally localized state the null vector of the Hilbert spaceomposed of the appro-
given in the fourth section. Using the representation specifie@riate functionsThis means that we cannot saturate the three
in Eg. (55) and the three dimensional version of the scalarbounds by states/hich are functiondor the geometry dis-
product given in Eq(14) the conditions on the mean values played in Eq(53). Solving Eq.(57), one saturates the bound
of the positions are automatically satisfied. The ones conAx;AX,; the noncommutation of the operators forbids one to
cerning the uncertainties lead to the following conditions satsimultaneously satisfy the same relation fox,Ax3. This is

isfied: the explanation of the failure to implement simultaneously
the set of equations displayed in E¢57),(58),(59).
P U% 1 1 The construction of the preceding subsections can how-
Axle2=§:>Z +—+—=0, (57)  ever prove useful. Let us consider the situation in which
4oy 4oj nonlocality is confined to the plang ,x,:
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xS 1=i X1 X 1=TX0 Xal= d
[X:L’XZ] 0. [Xl,X3] [Xz,Xg] 0. (65) |¢>out:‘fﬁ¢out(p)|pa_p>! (70)

As the third direction does commute with the others, there is

no Heisenberg uncertainty relation which prevents us fron‘t%m(p) is related tog,.(p) by theSmatrix] it is found that

taking Ax;=0. The situation in the noncommuting plane is for the usualg? theory, the outgoing wave function simpl
exactly the one studied in the previous section. Taking a Y: going Py

L . isplays a small time delay. The corresponding honcommu-
representation in which the supplementary operators artgative theory(i.e. with the interaction termy¢* ¢* ¢* ¢ us-

given byxs=¢&3, ps=—ifid,,, @ maximally localized state j g the Moyal produdtbehaves very differently. The wave
can then be obtained as the prodata function and a delta packet, written in the “position” space, displays three peaks.
distribution The last peak leaves the collision poit0 before the in-
coming wave packets given in E9) arrive there and this
mi 11 1 1 2 is interpreted as a violation of causality. The interested reader
Db = g e e Pl 206 S M) will find all the details in[5)]
As we emphasized at the end of the second section and in
) the third one, the,t variables appearing in the Moyal prod-
- m(fz—?\z) 5(&3—Ng).  (66) uct are mere notations; they coincide with the physical posi-
tion and time only wher®=0. To obtain viable information
on positions, one has to project on maximally localized
V. CAUSALITY OF A QFT WITH A NONCOMMUTING states.In these theories, a phenomenon cannot occur at a
TIME perfectly known time and a perfectly known positiémy
The analysis of5] which led to the conclusion that quan- instant, any position is surrounded by a zone of fuzziness.
tum field theories with a noncommuting time were acausall Nen, @ more careful formulation should lead to a situation in
relies on the interpretation of the wave function as giving thevhich the collision between the ingoing packets is described
probability amplitude. This is valid in the ordinang€0)  as taking place during the time intervgkio—360/2,\q
theory, but when noncommutativity sets in, one cannot si--3\6/2] in the position interval [Ni;—3V6/2,\j;
multaneously diagonalize the coordinates. The Heisenbergir%\/m]. The third outgoing packet will leave the region of
like uncertainty forbids one to speak of an event happeningollision at a time lying in an interval \¢o— 3 V6/2,\ 1o
at a time and a place known with infinite precision. What can+ 1 ./6/2].
we do to gain information on time and position in this con-  If these two time intervals are not disjoints, one cannot
text? The useful procedure was developed by K¥8lin a  speak of an acausal process because of the fuzziness con-
different model: it is the projection on maximally localized cerning time. The critical point concerns the calculation of
states. the instants\j; and \ ¢ which we do not have for the time
To give an idea of how our analysis may alter the causalbeing. One has to be especially careful since the status of the
ity issue, let us summarize the analysis[6f. The theory position operators in QFT is not exactly the one present in
under study is two dimensional and invariant under the Lorquantum mechanics. In the commutative case, this is embod-

entz group: ied in the fact that the appropriate Newton-Wigner position
o operators are not simply the derivatives of the fields in the
[X,.X,]=i0€,,. (670  momentum representatidt5]. So, one needs more to draw
a definite conclusion.
In [5], the “time” coordinate is writtent and the “space” The promising point in this picture is that the motion of
coordinatex. One considers an incoming state of correlatecthe two incoming “particles” is not symbolized by two lines
pairs of particles with opposite momenta in the time-position plane but by two ribbons.

Nevertheless, some technical and conceptual problems

|6, :f dk i (K)|K, — k) 68) must be addressed before a more elaborate treatment. One
n (2m)2E, ™" ' ' has to understand the Hamiltonian structure of the theories
with noncommuting time better: the conjugate of the field is
centered at two momenfao and — po: an infinite series, the energy momentum tensor and the cur-

rent are not conserved, etc.
din(p)= Ep

(69

(p—po)? (p+po)?
ex e +ex e
VI. CONCLUSION
In this work, we have shown how some results obtained

with E,= Jp?+m?. One has that at “timest<0, the two  using the Moyal product can be recovered by the choice of a
packets are well separated. &0, the wave function is particular representation of the position and momentum op-
concentrated at the “positiork=x;—X,=0 (X; is the mean erators. We have shown that the maximally localized states
“position” of the ith wave packet Then a collision takes associated with these representations can be chosen to be
place, due to the interaction. Considering a final state of th&aussian functions which tend to the delta distribution as the
form parameter of noncommutativity is sent to zero. We have also
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suggested how these states may alter the analysis of the cau-
sality issue of a theory in which space and time do not com-
mute.

One may ask if the representation we chose reproduces
the results which can be obtained using the Moyal product
for any physical system. We do not know the answer yet.

The method we used here to study noncommutative quan-
tum mechanics is closer {&] than to[14] in the sense that —day6,+aB16,—dB1 61+ Br61—aa6,—daq b,
we did not introduce a differential calculus compatible with
the commutation relations between the coordinates. This +2A1a30F 162 2A2320,), (A3)
structure is usually used to construct an invariant action 1/ a2
which leads to the field equations. Our procedure may notbe, _ —| 7% 2_ _ 2
applicable to curved spaces, contrary to the method used inRll 0\ 2 Teaimama—daayt Ajagtaa by

[14]. 2

It should be noted that the nhoncommutation of the posi- —d T _ ﬂ—c 2, —2A2
tions raises a supplementary ordering problem. We did not @1f1t azb 2 it aip 2Pz
address this because we studied central potentials only.

1
l1o= 5(_301171“‘ dajyi—azy1+ B1y1t+2CB171

—aByy1—AdBry1i— a1y, +2Azasy,—aB1y;
—dB1y,+2A1827,+ @161+ 2Ca 6, —aa, 6,

+aB1Br+dB1Br— A, (A4)
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51
APPENDIX: COEFFICIENTS —Ay101F ¥281 - 5 Coi+ y162—2A27,5;
We give the explicit form of the coefficients appearing in
Eq. (28): +a8.6,+d8,6,—A,65], (A5)

1{ aaf def

Illzg —T-i—T—a1a2+A2a§+a1B1+20a1B1 1
R12:5(_61“171"‘2C“171_aa271+a,3171_d,3171
api dpi
_aazﬂl_dazﬂﬁ'T‘T‘aalﬁz_dalﬁz +Bryi—aayy,—dayy,+ 2A1a,y,+ B1ys
—2A2B27,taa0,—dayy1+ ay61— B161
2
2R azBot BB A28 |, (A1) —2¢B161+aB201tdBa01+ 16— 2A020,
+aB,5,+dB,5,—2A5,5,), A6
| 1 _a_ﬁer_)’%_ Ao 5t B10,+dB16, 1B8265) (A6)
2= 2 2 Y172 Y2T Y101 Y101 Biay—ByBy ahi—Biks
Ri0= + , A7
a&i déf 10 \/5 0 ( )
_37251_(172514'7_7_33’151_(17152
B1y2— B8,  yihi— 1N,
+2A1 7285+ 81,0, — A2, (A2) Ve 0
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