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Maximally localized states and causality in noncommutative quantum theories
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We give simple representations for quantum theories in which the position commutators are nonvanishing
constants. A particular representation reproduces results found using the Moyal star product. The notion of
exact localization being meaningless in these theories, we adapt the notion of ‘‘maximally localized states’’
developed in another context. We find that Gaussian functions play this role in a (211)-dimensional model in
which the noncommutation relations concern positions only. An interpretation of the wave function in this
noncommutative geometry is suggested. We also analyze higher dimensional cases. A possible incidence on the
causality issue for a quantum field theory with a noncommutating time is sketched.
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I. INTRODUCTION

Theories of noncommutative quantum mechanics have
ceived wide attention once it was realized that they could
obtained as low energy limits of string theory in the prese
of a B field @1,2#. However, the status of these theories is s
plagued by conceptual challenges. In most of them, Lore
invariance is explicitly broken. Actually, noncommutativ
quantum mechanics is not the only arena in which Lore
symmetry is only approximate. For example, it has been s
gested recently that the standard model itself may fit into
category@3,4#. The preferred frame was postulated to be
rest frame of the cosmic microwave background radiati
There is one major problem quantum noncommutative th
ries are believed to face when time and position do not co
mute: the lack of causality and unitarity@5#. The analysis
which led to this result relies on the Weyl-Moyal correspo
dence which tells us how to handle theories with nonco
muting positions. One simply works with functions of com
muting variables but replaces any pointwise product by
Moyal star product which is nonlocal.

One of the main problems faced by this approach is t
the meaning of the wave function is not clarified yet@6,7#.
When two positions do not commute, they cannot be dia
nalized simultaneously. The uncertainty relation prevents
wave functionf(xW ) appearing in noncommutative theorie
from being the probability for a particle to be localized atxW .

There is a model in which exact localization is also fo
bidden: the Kempf-Mangano-Mann~KMM ! theory @8#. In-
spired by what was done in this case and in@9#, we will adapt
the notion of ‘‘maximally localized state’’ to noncommuta
tive quantum mechanics. This notion will be useful in t
discussion of the causality issue.

The plan of the paper is as follows. In Sec. II we w
briefly point out some characteristics of noncommutat
quantum mechanics which have been obtained in spe
cases using the Weyl-Moyal correspondence@10,11#. In Sec.
III we will exhibit a representation of the positions and t
momenta by operators acting on a usual space of functi
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We will show that the results summarized in Sec. II are
covered. In Sec. IV, we first work in a 211 dimensional
model where the spatial coordinates do not commute.
give all the details leading to Gaussian functions as be
maximally localized states. Considering a 311 dimensional
theory, we use the preceding construction to construct
appropriate states in the new context.

Rather than projecting on localized states, we now hav
project on maximally localized states to gain viable inform
tion on positions. The last section is devoted to a brief
minder of the causality issue of a quantum field theo
~QFT! possessing a noncommuting time. The way maxima
localized states may alter the analysis is sketched.

II. QUANTUM MECHANICS USING THE MOYAL
PRODUCT

The noncommutative quantum theories we are interes
in obey the following relations:

@ x̂k ,x̂l #5 iukl, @ p̂k ,p̂l #50, @ x̂k ,p̂l #5 i\dkl . ~1!

The constant matrixu has dimensionL2 and breaks explic-
itly the Lorentz invariance. The Weyl-Moyal corresponden
is a map between the functionsF of the operatorsx̂k and the
functionsf of the commuting variablesxi :

F~ x̂!5E eia• x̂f̃~a!da, f~x!5E e2 ixbf̃~b!db.

~2!

The usual product of twox̂ valued functions is sent to th
star product of the associated functions defined on comm
ing variables:

F~ x̂!C~ x̂!→~f* c!~x!, ~3!

with

~f* c!~x!5@e( i /2)umn]jm]hnf~x1j!c~x1h!#j5h50 .
~4!
©2002 The American Physical Society03-1
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MUSONGELA LUBO PHYSICAL REVIEW D 65 066003
The theories with noncommuting positions are obtain
from the usual actions in which all products become s
products. For example, the action of a self-interacting sc
field reads

S5E d4xS 1

2
gmn]mf* ]nf2m2f* f2

l

4!
f* f* f* f D .

~5!

It has been suggested that quantum mechanics could b
rived in this context by a similar replacement@10,11#. In the
usual situation, the Schro¨dinger equation can be inferre
from the action

S5E dt d2x c̄F i ] t2
pW 2

2m
2V~x!Gc ~6!

in a 211 dimensional system. Introducing star products a
using the relation

V~x!* c~x!5VS x2
p̃

2
Dc~x! ~7!

~wherep̃i5u i j pj ) which is obtained via a Fourier transform
@10,11#, one finds that the Weyl-Moyal correspondence
duces to the replacement

x→x2
1

2
p̃ ~8!

in the potential. Considering a central potential, the subst
tion

V~x21y2!→VS u2

4
px

21
u2

4
py

21x21y22uLzD ~9!

shows that the theory ‘‘looks like’’ one describing a partic
of changed mass, with a nontrivial coupling to the angu
momentum@10#. In the case of an asymmetric oscillat
V(x,y)5 1

2 ky2, the theory contains a term which looks lik
an interaction between a particle of chargeq with a constant
magnetic fieldB such thatqB5 2/u @11#. At this point it is
crucial to realize that although the Moyal product is writt
in terms of commuting variablesx, these variables are simpl
a notation. There is no evidence that they represent phys
coordinates, except in the undeformed caseu50. No argu-
ment has been presented which shows that the wave fun
f gives a probability@6#. Moreover, the probability for a
particle to be localized at a given position (x1 ,x2) is not a
safe concept since these coordinates do not commute.

III. A REPRESENTATION OF THE COMMUTATION
RELATIONS

The only modification to the usual theory introduced
Eq. ~1! concerns the positions. It is therefore quite reasona
to look for a realization in which the momenta remain u
changed:
06600
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p̂i52 i\]j i
. ~10!

The introduction of the noncommutativity scale leads to
possibleAnsätze

x̂i5j i1u1/2Gi~u1/2]jk!. ~11!

The functionsGi are taken analytic. Such anensätz clearly
fulfills the @ x̂,p̂# commutation relations. The@ x̂,x̂# commu-
tators can then be used to constrain the coefficients of
Taylor expansions of the functionsGk .

As an illustration, let us consider a 211 dimensional sys-
tem, with spatial noncommutativity:

@ x̂1 ,x̂2#5 iu, ~12!

with u positive. It is straightforward that one can takeG
linear and write simply

x̂15j11 iu„a]j1
1~11c!]j2

…,

x̂25j21 iu~c]j1
1d]j2

!. ~13!

At this stage, the constantsa,c andd are arbitrary. The mo-
mentap̂i and the positionsx̂k act as operators on the space
functions of the variables (j1 ,j2). If we take the scalar prod
uct to be given by the usual formula

^fuc&5E dj1 dj2 f* ~j1 ,j2!c~j1 ,j2!, ~14!

the x̂i operators are symmetric provided thata,c and d are
real.

Let us consider a harmonic oscillator in this theory:

Ĥ5
1

2m
~ p̂x

21 p̂y
2!1

1

2
k~ x̂21 ŷ2!. ~15!

Using the representation given above, one obtains

Ĥ52S \2

2m
1

1

2
ku2~a21c2! D ]j1

2 2S \2

2m
1

1

2
ku2

3„~11c!21d2
…D ]j2

2 2ku2
„a~11c!1cd…]j1

]j2

1
1

2
kiu„2aj1]j1

12dj2]j2
12~11c!j1]j2

12cj2]j1
1a1d…1

1

2
k~j1

21j2
2!. ~16!

Let us forget for a moment the origin of this operator a
treat it like in the usual, commutative theory. Can we rep
duce the features shown in the last section, which come f
an analysis based on the Moyal product? The answer is p
tive. The appearance of the ‘‘angular momentum operat
of the usual theoryi (j1]j2

2j2]j1
), is guaranteed by the

choice c521/2. The crossed derivative]j1
]j2

vanishes if
3-2
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MAXIMALLY LOCALIZED STATES AND CAUSALITY IN . . . PHYSICAL REVIEW D 65 066003
the relationa5d holds and the termsj1]j1
andj2]j2

disap-

pear if we also imposea50. The final Hamiltonian reads

Ĥ52S \2

2m
1

1

8
ku2D ]j1

2 2S \2

2m
1

1

8
ku2D ]j2

2 1
1

2
kuL

1
1

2
k~j1

21j2
2!. ~17!

This has been obtained in@10# and summarized in the pre
vious section.

So, for a particular choice of the free parameters app
ing in the realization we chose for the noncommutative qu
tum theory, we can reproduce exactly some results der
using the Weyl-Moyal correspondence. The simplicity of t
algebra will prove useful when tackling the interpretation
the wave function in this framework. In fact, even if th
Hamiltonian written in Eq.~17! looks quite ordinary, one
should keep in mind that once the wave equation is solv
the position operator along the first spatial coordinate is
simply the product byj1. The energy eigenvalues have th
same meaning as in the ordinary theory but the analysis
cerning localization is much more involved. A similar situ
tion occurs in another theory and has been exploited
handle the trans-Planckian problem of the black hole phy
@12,13#.

From the formula given in Eq.~1!, one infers the uncer
tainty relation

Dx1Dx2>
u

2
. ~18!

This means that any state which is localized without a
uncertainty in any of the two directions is unphysical.

IV. MAXIMALLY LOCALIZED STATES

A. The derivation

The uncertainty relation given in Eq.~18! puts a lower
bound on localization. We shall look for states which satur
this bound. We will restrict ourselves to those displayi
equal values of the uncertainties in the two directions:

Dx15Dx25Au

2
. ~19!

This is motivated by the opinion that a state displaying
very small uncertainty in one direction and a large one in
remaining direction is undesirable; we adopt here a de
cratic treatment of the two coordinates.

We will say that a state is maximally localized at(l1 ,l2)
if it satisfies the equality of Eq. (19) and if^xi&5l i .

These states are quite close to the coherent states in
usual quantum mechanics which verifyDxDp5\/2. As it
stands, Eq.~19! is hardly tractable. The procedure we sh
use is directly inspired by@8# and replaces these integr
equations by a differential one. The uncertainty relation
Eq. ~18! is obtained as a consequence of the inequality
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UUS x̂12^x1&1
^@ x̂1 ,x̂2#&
2~Dx2!2 ~ x̂22^x2&! D uf&UU>0. ~20!

The vector whose norm is considered in the preceding
mula vanishes for the statesuf& which minimize the product
of uncertainties. Using our expressions of the position ope
tors, this is converted into a partial differential equation f
the maximally localized states. We introduce the comp
coordinates (u1 ,u2) by

u15~a11 ib1!j11~g11 id1!j2 ,

u25~a21 ib2!j11~g21 id2!j2 , ~21!

where the following constants have been introduced to s
plify future formulas:

a15
c

D
, b15

a

D
, g15

d

D
, d15

11c

D
,

a252
d

D
, b25

11c

D
, g25

c

D
, d252

a

D
,

D5212a222c22c22d2. ~22!

One finds that the general solution to the partial differen
equation is

cl1 ,l2

ml ~j1 ,j2!5 f ~u2!expH 1

2u
~2c112 ia1 id !u1

2

2
1

u
~d1a1 i !u2u11

1

u
~l11 il2!u1J

~23!

with f an arbitrary function. At this level an important con
straint comes from the fact that asu→0, we should reobtain
usual quantum mechanics. The maximally localized sta
must in this limit coincide with position eigenstates whic
are delta functions. In formula, one should have

cl1 ,l2

ml ~j1 ,j2!→d~j12l1!d~j22l2! ~24!

whenu→0. In distribution theory one knows that the Dira
delta can be expressed as the limit of some appropriate f
tions, for example

1

A2pu
expS 2

x2

u D ,
Au

p

sin2~x/Au!

x2
,

1

p

Au

x21u
.

~25!

Any combination of these functions with appropriate coe
cients tends to the delta distribution. It can be conjectu
that a maximally localized state may just be such a com
nation. Our expression forcl1 ,l2

ml (j1 ,j2) given in Eq.~23!

involves exponentials; this makes it more reasonable to fo
on the first element of the previous list. Our aim is to see
the function f (u2) can be chosen so that the maximally l
calized state is proportional to
3-3
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expH 2
~j12l1!2

s1
2u

2
~j22l2!2

s2
2u J . ~26!

The answer is that this can be done only when the c
stants appearing in Eq.~13! satisfy the relationsa5d50. To
obtain an expression which looks like Eq.~26!, one needs the
function f (u2) to be quadratic. As the expression
cl1 ,l2

ml (j1 ,j2) given in Eq.~23! involves complex quantities

we choose

f ~u2!5N expH 1

u
~A11 iA2!u2

21
1

Au
~B11 iB2!u2J ,

~27!

the Ai ,Bi being dimensionless real constants. We sepa
the real and the imaginary parts in the expression of
maximally localized state:

cl1 ,l2

ml ~j1 ,j2!5N exp$ i ~ I 11j1
21I 22j2

21I 12j1j21I 10j1

1I 20j2!1~R11j1
21R22j2

21R12j1j2

1R10j11R20j2!%. ~28!
i
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The expressions of the constantsI i j andRi j in terms of the
quantitiesjk ,sk ,Ai ,Bi are given in the Appendix. The pre
ceding formula can be identified with Eq.~26! only if we can
make all theI kl vanish as well asR12. The constantsB1 and
B2 are easily fixed by the requirement that

I 105
B2a21B1b2

Au
1

b1l11a1l2

u
50, ~29!

and

I 205
B2g21B1d2

Au
1

d1l11g1l2

u
50. ~30!

In a similar way, the vanishing ofI 11 and I 22 fix A1 andA2.
Simplifying, the remaining coefficients assume the followi
expressions:
I 125
a1d

2~a1ac1cd!

1

u
, ~31!

R115
2a22ac2ac21d2c2d1ad21d3

4~2ac22ac22ac31a2d1a2cd2c2d2c3d1acd2!

1

u
, ~32!

R225
2a312ac1ac22a2d1c2d

4~2ac22ac22ac31a2d1a2cd2c2d2c3d1acd2!

1

u
, ~33!

R125
a2d

2~2c2c21ad!

1

u
, ~34!

R105
2~11c!l12dl2

c~11c!2ad

1

u
, ~35!

R205
2~al11cl2!

~2c~11c!1d!

1

u
. ~36!
s
l-
The remaining term in the imaginary part vanishes only
d52a as is manifest in Eq.~31!. The Rkl coefficients then
simplify further:

R115
a~11c!

2a~2a22c2c2!

1

u
, R125

a

2a22c~11c!

1

u
,

~37!

R225
ac

2a~2a22c2c2!

1

u
. ~38!
fOne sees that whenR1250,R11 andR22 are only defined by
their limits asa→0:

R1152
1

2c

1

u
, R2252

1

2~11c!

1

u
, ~39!

R105
l1

cu
, R205

l2

~11c!u
. ~40!

In summary, whend52a50, the choice of the constant
A1 ,A2 ,B1 ,B2 explained earlier leads to a maximally loca
ized state which takes the form
3-4
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cl1 ,l2

ml ~j1 ,j2!5N expH j1
2

2cu
2

j2
2

2~11c!u
2

l1j1

cu

1
l2j2

~11c!uJ . ~41!

This state is normalizable only if the quadratic terms
negative and this is realized provided that the constanc
assumes values in the interval ]21,0@ . One finally obtains
that the wave function

cl1 ,l2

ml ~j1 ,j2!5
1

pu

1

A22c

1

A2~c11!
expH 1

2cu
~j12l1!2

2
1

2~11c!u
~j22l2!2J ~42!

represents a maximally localized state in the representa
of the noncommutative quantum mechanics given by

x̂15j11 iu~11c!]j2
,

x̂25j21 iuc]j1
. ~43!

It is straightforward to verify, by the computation of integra
implying Gaussians multiplied by polynomials that in th
state

^xi&5l i , Dxi5Au

2
. ~44!

This ensures that the state fulfills the condition not only
the limiting casea→0, but also in the casea50 itself. The
norm of this state is perfectly finite:

^cuc&52
1

c~11c!

p

8u
. ~45!

However, it goes to infinity asu goes to zero. This agree
with the fact that the square of the Dirac distribution is no
mathematically well defined object. Like in the KMM theor
@8#, one finds that the mean momentum vanishes in this s

^pi&50. ~46!

The uncertainty in momentum reads

Dpi5S 2
\2

2cu D 1/2

, ~47!

and, along any direction, one has

DxiDpi5
1

2

\

~2c!1/2. ~48!

We cannot reach the lowest values allowed by the Heis
berg uncertainty relations since this corresponds to the v
c521 which blows up the maximally localized state@see
Eq. ~42!#.
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It is quite surprising that the conditiona5d50 which
was needed to recapture some behaviors found using
Weyl-Moyal correspondence in the last section is also
one leading to Gaussians for the maximally localized sta
The conditionc521/2 leads to a symmetric form of th
maximally localized states in the variablesj1 ,j2. This
strongly suggests a way for the recovering of information
position from the Moyal-Weyl wave function.

B. The quasi-position representation

One can construct a new representation by projecting
the maximally localized states@8#:

ã~j1 ,j2!5E dl1 dl2 cl1 ,l2

ml ~j1 ,j2!a~l1 ,l2!. ~49!

For simplicity, we restrict ourselves to the casec521/2.
The action of the position operators is given by

x̂15l11
u

2
~]l1

1 i ]l2
!, x̂25l21

u

2
~]l2

2 i ]l1
!,

~50!

while the scalar product reads

^ãub̃&5
1

8puE dl1 dl2 dm1 dm2 ã* ~l1 ,l2!b̃~m1 ,m2!

3expS 2
1

2u
~l12m1!22

1

2u
~l22m2!2D . ~51!

As u→0, the Gaussian function tends to the delta distrib
tion. This enables one to rewrite the preceding integral
based on two coordinates rather than four, recovering
well known situation of the position representation. The o
erators given in Eq.~50! also reduce to the common form i
the same limit.

This representation is physically interesting becau
within it we know the interpretation of the wave function
Since it is obtained by the projection of maximally localize
states, the square of the wave functionf̃(j1 ,j2) gives the
probability for a particle to be localized in the intervals@j1

2 1
2 Au/2,j11 1

2 Au/2# on the first axis and a similar one cen
tered aroundj2 for the second axis.

The quasiposition representation obtained here is sim
to the one found in the KMM theory in the sense that t
scalar product involves functions defined at different poi
@8#. It differs from it by the fact that the operators are n
given here by an infinite series in the deformation parame

C. The momentum representation

We worked in a representation which reduces to the p
tion one in the undeformed limit. It is possible to carry sim
lar calculations in the momentum representation. The par
etrization

x̂15 i ]p1
2

u

2
p2 , x̂25 i ]p2

1
u

2
p1 ~52!
3-5
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MUSONGELA LUBO PHYSICAL REVIEW D 65 066003
satisfies the commutation relations. One can construct m
mally localized states which tend to exp(ipx) which is the
Fourier transform of the Dirac delta.

D. Higher dimensions

The construction presented needs some modificat
when addressing higher dimensions. Let us consider for
ample a 311 dimensional model whose nonvanishing co
mutation relations are

@ x̂1 ,x̂2#5@ x̂2 ,x̂3#5@ x̂3 ,x̂1#5 iu. ~53!

It is realized by the following operators:

x̂15j11 iu„a1]j1
1~11b1!]j2

1a3]j3
…,

x̂25j21 iu„b1]j1
1b2]j2

1~11c2!]j3
…,

x̂35j31 iu„~11a3!]j1
1c2]j2

1c3]j3
….

~54!

The ai ,bi ,ci are arbitrary but real constants. We wantx2

1y21z2 to be quadratic in the ‘‘momenta’’ and linear in th
‘‘angular momenta’’ like in Eq.~9! which is true for all di-
mensions. One needs the relationsa15b25c350 to cancel
terms of the formjk]jk

and we imposeb15a35c252 1
2 to

ensure the appearance of the ‘‘angular momenta.’’ We end
with the following expressions for the position operators:

x̂15j11 i
u

2
~]j2

2]j3
!, x̂25j21 i

u

2
~]j3

2]j1
!,

x̂35j31 i
u

2
~]j1

2]j2
!. ~55!

Inspired by what we have done in the previous subsect
we now look for the coefficientss1 which allow the function

cl1 ,l2 ,l3

ml ~j1 ,j2 ,j3!5S 1

2pu D 3/2 1

s1s2s3
expH 2

~j12l1!2

s1
2u

2
~j22l2!2

s2
2u

2
~j32l3!2

s2
2u J ~56!

to satisfy the definition of the maximally localized sta
given in the fourth section. Using the representation speci
in Eq. ~55! and the three dimensional version of the sca
product given in Eq.~14! the conditions on the mean value
of the positions are automatically satisfied. The ones c
cerning the uncertainties lead to the following conditions s
isfied:

Dx1Dx25
u

2
⇒s1

2

4
1

1

4s2
2

1
1

4s3
2

50, ~57!
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Dx1Dx35
u

2
⇒ 1

4s1
2

1
s2

2

4
1

1

4s3
2

50, ~58!

Dx2Dx35
u

2
⇒ 1

4s1
2

1
1

4s2
2

1
1s3

2

4
50. ~59!

We can use Eqs.~57!,~58! to expresss1 ands3 in terms of
s2:

s1
2522

1

s2
2

2
4s2

4

11s2
422s2

22A124s2
216s2

414s2
61s2

8
,

~60!

s3
25

1

4
1

1

4s2
4

2
1

2s2
2

2
A124s2

216s2
414s2

61s2
8

4s2
4

.

~61!

Replacing, in the second part of Eq.~59!, the variabless1
and s3 by the expressions obtained in the two preced
formulas, one obtains an equation in the parameters2. Un-
fortunately, this equation does not admit a real solution, a
numerical treatment shows. One may think that a differ
choice of the parametersai ,bi ,ci may solve the problem
this is not the case.

The simplest way to understand this feature is the follo
ing. As shown in Eq.~20!, the equality given in Eq.~19! for
the directionsx1 ,x2 is satisfied only by the eigenstates of th
operator

Ø125x1̂1 ix 2̂. ~62!

So, a simultaneous solution of Eq.~19! for all couples of
directions must be an eigenstate of the operators Ø12, Ø13
and Ø23. The commutators of these operators are nonvan
ing:

@Ø12,Ø13#52u. ~63!

As we just pointed out, a state which saturates the th
bounds is an eigenstate of the three operators; we deno
eigenvalues byl12, l13 andl23. Using this, we infer from
Eq. ~63! the equation

@Ø12,Ø13#uc&52uuc&5~l12l132l13l12!uc&50 ~64!

so that the only state which saturates all the three bound
the null vector of the Hilbert spacecomposed of the appro
priate functions. This means that we cannot saturate the th
bounds by stateswhich are functionsfor the geometry dis-
played in Eq.~53!. Solving Eq.~57!, one saturates the boun
Dx1Dx2; the noncommutation of the operators forbids one
simultaneously satisfy the same relation forDx2Dx3. This is
the explanation of the failure to implement simultaneou
the set of equations displayed in Eqs.~57!,~58!,~59!.

The construction of the preceding subsections can h
ever prove useful. Let us consider the situation in wh
nonlocality is confined to the planex1 ,x2:
3-6
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@ x̂1 ,x̂2#5 iu, @ x̂1 ,x̂3#5@ x̂2 ,x̂3#50. ~65!

As the third direction does commute with the others, ther
no Heisenberg uncertainty relation which prevents us fr
taking Dx350. The situation in the noncommuting plane
exactly the one studied in the previous section. Taking
representation in which the supplementary operators
given by x̂35j3 , p̂352 i\]j3

, a maximally localized state
can then be obtained as the productof a function and a delta
distribution:

cl1 ,l2

ml ~j1 ,j2!5
1

pu

1

A22c

1

A2~c11!
expH 1

2cu
~j12l1!2

2
1

2~11c!u
~j22l2!2J d~j32l3!. ~66!

V. CAUSALITY OF A QFT WITH A NONCOMMUTING
TIME

The analysis of@5# which led to the conclusion that quan
tum field theories with a noncommuting time were acau
relies on the interpretation of the wave function as giving
probability amplitude. This is valid in the ordinary (u50)
theory, but when noncommutativity sets in, one cannot
multaneously diagonalize the coordinates. The Heisenb
like uncertainty forbids one to speak of an event happen
at a time and a place known with infinite precision. What c
we do to gain information on time and position in this co
text? The useful procedure was developed by KMM@8# in a
different model: it is the projection on maximally localize
states.

To give an idea of how our analysis may alter the caus
ity issue, let us summarize the analysis of@5#. The theory
under study is two dimensional and invariant under the L
entz group:

@ x̂m ,x̂n#5 iuemn . ~67!

In @5#, the ‘‘time’’ coordinate is writtent and the ‘‘space’’
coordinatex. One considers an incoming state of correla
pairs of particles with opposite momenta

uf& in5E dk

~2p!2Ek
f in~k!uk,2k&, ~68!

centered at two momentapo and2po:

f in~p!5EpFexpS 2
~p2po!2

l D1expS 2
~p1po!2

l D G ,
~69!

with Ep5Ap21m2. One has that at ‘‘times’’t,0, the two
packets are well separated. Att50, the wave function is
concentrated at the ‘‘position’’x5x12x250 (xi is the mean
‘‘position’’ of the i th wave packet!. Then a collision takes
place, due to the interaction. Considering a final state of
form
06600
is

a
re

l
e

i-
g-
g
n

l-

r-

d

e

uf&out5E dp

~2p!2Ep
fout~p!up,2p&, ~70!

@fout(p) is related tof in(p) by theSmatrix# it is found that
for the usualf4 theory, the outgoing wave function simpl
displays a small time delay. The corresponding noncomm
tative theory~i.e. with the interaction termgf* f* f* f us-
ing the Moyal product! behaves very differently. The wav
packet, written in the ‘‘position’’ space, displays three pea
The last peak leaves the collision pointx50 before the in-
coming wave packets given in Eq.~69! arrive there and this
is interpreted as a violation of causality. The interested rea
will find all the details in@5#.

As we emphasized at the end of the second section an
the third one, thex,t variables appearing in the Moyal prod
uct are mere notations; they coincide with the physical po
tion and time only whenu50. To obtain viable information
on positions, one has to project on maximally localiz
states.In these theories, a phenomenon cannot occur a
perfectly known time and a perfectly known position. Any
instant, any position is surrounded by a zone of fuzzine
Then, a more careful formulation should lead to a situation
which the collision between the ingoing packets is describ
as taking place during the time interval@l i02 1

2 Au/2,l i0

1 1
2 Au/2# in the position interval @l i12 1

2 Au/2,l i1

1 1
2 Au/2#. The third outgoing packet will leave the region o

collision at a time lying in an interval@l f 02 1
2 Au/2,l f 0

1 1
2 Au/2#.
If these two time intervals are not disjoints, one cann

speak of an acausal process because of the fuzziness
cerning time. The critical point concerns the calculation
the instantsl i0 andl f 0 which we do not have for the time
being. One has to be especially careful since the status o
position operators in QFT is not exactly the one presen
quantum mechanics. In the commutative case, this is emb
ied in the fact that the appropriate Newton-Wigner positi
operators are not simply the derivatives of the fields in
momentum representation@15#. So, one needs more to dra
a definite conclusion.

The promising point in this picture is that the motion
the two incoming ‘‘particles’’ is not symbolized by two line
in the time-position plane but by two ribbons.

Nevertheless, some technical and conceptual probl
must be addressed before a more elaborate treatment.
has to understand the Hamiltonian structure of the theo
with noncommuting time better: the conjugate of the field
an infinite series, the energy momentum tensor and the
rent are not conserved, etc.

VI. CONCLUSION

In this work, we have shown how some results obtain
using the Moyal product can be recovered by the choice
particular representation of the position and momentum
erators. We have shown that the maximally localized sta
associated with these representations can be chosen t
Gaussian functions which tend to the delta distribution as
parameter of noncommutativity is sent to zero. We have a
3-7
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suggested how these states may alter the analysis of the
sality issue of a theory in which space and time do not co
mute.

One may ask if the representation we chose reprodu
the results which can be obtained using the Moyal prod
for any physical system. We do not know the answer yet

The method we used here to study noncommutative qu
tum mechanics is closer to@8# than to@14# in the sense tha
we did not introduce a differential calculus compatible w
the commutation relations between the coordinates. T
structure is usually used to construct an invariant act
which leads to the field equations. Our procedure may no
applicable to curved spaces, contrary to the method use
@14#.

It should be noted that the noncommutation of the po
tions raises a supplementary ordering problem. We did
address this because we studied central potentials only.
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APPENDIX: COEFFICIENTS

We give the explicit form of the coefficients appearing
Eq. ~28!:

I 115
1

u S 2
aa1

2

2
1

da1
2

2
2a1a21A2a2

21a1b112ca1b1

2aa2b12da2b11
ab1

2

2
2

db1
2

2
2aa1b22da1b2

12A1a2b21b1b22A2b2
2D , ~A1!

I 225
1

u S 2
ag1

2

2
1

dg1
2

2
2g1g21A2g2

21g1d112cg1d1

2ag2d12dg2d11
ad1

2

2
2

dd1
2

2
2ag1d12dg1d2

12A1g2d21d1d22A2d2
2D , ~A2!
rg

ar

06600
au-
-

es
ct

n-

is
n
e
in

i-
ot

y
r
.

I 125
1

u
~2aa1g11da1g12a2g11b1g112cb1g1

2ab2g12db2g12a1g212A2a2g22ab1g2

2db1g212A1b2g21a1d112ca1d12aa2d1

2da2d11ab1d12db1d11b2d12aa1d22da1d2

12A1a2d21b1d222A2b2d2!, ~A3!

R115
1

u S a1
2

2
1ca1

22aa1a22da1a21A1a2
21aa1b1

2da1b11a2b22
b1

2

2
2cb1

21a1b222A2a2b2

1ab1b21db1b22A1b2
2D , ~A4!

R225
1

u S g1
2

2
1cg1

22ag1g22dg1g21A1g2
21ag1d1

2dg1d11g2d12
d1

2

2
2cd1

21g1d222A2g2d2

1ad1d21dd1d22A1d2
2D , ~A5!

R125
1

u
~2aa1g112ca1g12aa2g11ab1g12db1g1

1b2g12aa1g22da1g212A1a2g21b1g2

22A2b2g21aa1d12da1g11a2d12b1d1

22cb1d11ab2d11db2d11a1d222A2a2d2

1ab1d21db1d222A1b2d2!, ~A6!

R105
B1a22B2b2

Au
1

a1l12b1l2

u
, ~A7!

R205
B1g22B2d2

Au
1

g1l12d1l2

u
. ~A8!
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