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Effect of dynamical SU(2) gluons to the gap equation of the NambuJona-Lasinio model
in a constant background non-Abelian magnetic field
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In order to estimate the effect of dynamical gluons on chiral condensates, the gap equatiois bf 2he
gauged Nambu—Jona-Lasinio model, under a constant background non-Abelian magnetic field, is investigated
up to the two-loop order in 21 and 3+ 1 dimensions. We set up a general formulation allowing both cases
of electric as well as magnetic background fields. We employ the proper time method which gives a gauge-
invariant fermionic functional determinant. In+3L dimensions chiral symmetry breaking$B) is enhanced
by gluons even in a zero background magnetic field and becomes more striking as the background field grows
larger. In 2+ 1 dimensions gluons also enhanggB but the dependence on the background field is not simple;
dynamical mass is not a monotone function of a background field for a fixed four-Fermi coupling.
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[. INTRODUCTION external magnetic fieldgl2]. The phenomenon is now un-
derstood provided universal interactions are short rahde
The Nambu—Jona-LasinidNJL) model[1], the model of Inclusion of dynamical gauge fields is made for QED, in

four fermion interactions, has been discussed as a possiblerms of the Schwinger-Dyson equatid®] or renormaliza-
realistic mechanism of chiral symmetry breakingSB)  tion group(RG) [16]. The results show that the dynamical
[2,3]. Although the interaction is nonrenormalizable in more Symmetry breaking always occurs with the aid of an external
than 1+1 spacetime dimensions, it is regarded as a low/nagnetic field.

energy effective theory of elementary fermions after integra- 1€ motive for this paper is traced to that of Gusynin,

tions of Higgs and/or gauge fields, and has been used astipng, and Sh_ov.koijl.?], Wh‘?fe 2+1-dimensionalSU_(2)
Sauge theory is investigated in a constant non-Abelian mag-

netic field by using a constant gauge potential with transla-

cays, and scatteringt]. (While these properties of hadrons . . ) ! ) .
should be derived from quantum chromodynamics, analyticatlIOnaI invariancq 19), to fmd_ that magnetic C"%ta'ys's QSB
does not occur. The study intd dimensions is made in the

methods on hqnd are so limited that the dynamics in th(?eference[ls], whereSU(N) gauged NJL model is handled
low-energy region could not be easily exploned.

o . ... in the case of weak as well as constant non-Abelian magnetic
In order to grasp the qualitative behavior of a system, it i

s , Stield: they incorporate the dynamical effect of gluons in RG
sometimes useful to examine the response to the externgy reach the conclusion that existence of the external field

fields or sources. Many such attempts have been made So f@fyes not change the condition g&B. Each result indicates,

for example, theO(3) gauge-Higgs model in a magnetic- contrary to our expectation that gluons always trigg&B

field source[5], fermionic models minimally coupled to (since they do in the low-energy regiothat dynamical glu-

strong electromagnetic field§], the NJL model minimally  ons in the external non-Abelian magnetic field do not play a

coupled to a constant magnetic field and curved spacetim@ajor role to ySB. This curious situation is our starting

[7] and its extension to the supersymmetric NJL md@l  point. There needs to be a more detailed analysis.

the instanton motivated four-point interaction model of fer-  |n this article we studySB under a constant background

mion at finite density 9], and so forth. non-Abelian magnetic field in 8U(2) gauged NJL model,
Among these, an interesting outcome is found in the studyaying attention tdi) the direct effect of dynamical gluons

of the NJL model minimally coupled to constant externalto the gap equation, not in terms of R&7,18, and(ii) the

magnetic field§10-12, where mass generation occurs eveneffect of the gauge choice to the results, since in the non-

at the weakest attractive interaction between fermions impelian case the situatioB®=B(constant0),others=0,

terms of the so-called “dimensional reducti¢ébR)" [13].  the choice17]

The case is also investigated by the present authors to find

that the origin of DR is the infrared divergencies followed 1_p2_

from the fermion loop integral under the influence of the A=AY= VB, others=0 @

cannot connect witl18]
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since the remnant gauge transformation, which Ied&%s S — _
invariant, that is, any gauge transformations with respect to  £= = 752 FusFu, = ¥17u(d,— 1A
the third axis, cannot bring the gau@® to the gauge&?2) or

vice versa. To work with the Green’s function in momentum g2 [(pp)2+ (i ysp)?], D=4,
space it is convenient to adopt E(f), but this is not a +7 — L, — . — )

solution of the non-Abelian Maxwell equation in the [(P)°+ (i yah) >+ (Piys)?], D=3,
vacuum: (5)

o - ca . aborbec where A,=A%T, with T,’s (a=1,2,3) being theSU(2)
(DuF ) =0,F,,+ AR, =0. 3 generators given by,=0o,/2, whereo,’s are the Pauli ma-
trices. For the (2 1)-dimensional case, a spinorial represen-
tation of the Lorentz group is given by two-component

pinors, so that corresponding gamma matrices axe.2
here is no chiral symmetry. In order to be able to discuss
chiral symmetry, we introduce an additional flavor such that

In what follows we rely upon the WKB semiclassical ap-
proximation where the classical solution plays a fundament
role. Therefore we should work with the choice of ER)
satisfying Eq.(3). Moreover the choicé2) satisfies a cova-

riantly constant condition "
w=( wz)' v=9"ys= (Y1, — )= (103, ~ Y303),
(D,F,.,)3=0,F3,+ePAFS =0, €) (6)
with the 4X4 gamma matrices
enabling us to use the Fock-Schwinger proper time method
[20] that was originally developed to handle Abelian back- o, 0 | 01
ground fields and gives us a gauge independent result. YTl o —& mw=1~3, y4= 1 ol
The model is nonrenormalizable so that we must intro-

o

duce an ultraviolet cutofA which defines the theory with a 0o i1
given bare four-Fermi coupling. However, it should be 75:71y27374:( ) (7)
gauge invariant when fermions are coupled to gauge fields. '

In this sense, we utilize a proper time cutoff; in the two-loop _ _

order of the effective potential, it respects gauge invariancé-hiral symmetry is realized as

of the vacuum polarization tensor. There we need an addi- _ _

tional regularization, since gluons in the non-Abelian mag- Y—e iy, h—elfrsy, (8)

netic background suffer from a famous instabili1], due o o

to a tachyonic singularity in the propagator. To avoid it, weYielding a globalu (2) symmetry which is broken by a mass

introduce a gluon masi¥l ; whose magnitude is assumed to t€m intoU(1)xU(1). _

be larger than that of the background magnetic field. That is, The partition function of the model is read as

we assume that the magnitude of the background magnetic

field is very small, which is different from the assumption of _ - D

Gusyninet al [17]. Z_f D[gauge}D[zp]D[w]ex;{f d™x L
The article is organized as follows: in Sec. Il a general

formulation _is presented, where we assume g_eneric back- :f D[gaugéD[ ¢ ]D[ «]D[ ¢]D[ ¢]

grounds satisfying the covariantly constant condition @gy.

In the next sections, Sec. Il and Sec. 1V, the gap equations in 1 1

2+1 and 3+ 1 dimensions are shown. Section V is devoted Xexy:{ - f d®x{ —F2 F2 + —(o%+ )

to discussion. In Appendix A calculations of the kernel are 4e” HV KV 992

presented and in Appendix B the gluon propagator is repre-

sented by means of the proper time method. Then in Appen-

dix C we give an explicit proof that our classical solution

satisfies the covariantly constant condition. And finally in

Appendix D, in order to ensure the gauge independence Gfhere the auxiliary fieldsy and s, have been introduced to

our calculations, that is, their correctness, we study therase the four-Fermi interactions,

Ward-Takahashi relation of the vacuum polarization tensor.

: (€)

+${'yﬂ(o"’u—iAM)+(a'+iﬂ'~ F)}l/f]

TYs for D=4,
- I'= (10
Il. FORMULATION m1ystmyys for D=3,

In this section, we derive the effective potential of theand a measure of gauge field3| gaugé, is specified after
SU(2) gauged NJL model. The Lagrangian of the system irthe following procedures(i) first, integrate with respect to
the Euclidean formulation is given as fermions to give
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1 G (0)=(D,Q,)*=3,Q5+ €™ A2Q5. (17
z:J D[gaug@D[a]D[n]exr{—jde‘4—ezenyw a "“ e o
The gauge transformation now reads

1 .
+2—gz(02+ 772)] +Indefy,(d,—iA,) Qi—Q5+(D,6)% (18

with D3°= 6%, + €%(AS+QS), so that the Faddeev-

_ Popov determinant is given by
+(o+im-I)]|. (11
. . 6G® ab
(Here and hereafter In, det, and tr designate the functional det5—05=de(DﬂDM) . (19

logarithm, determinant, and trace, respectiyelly) Second,
set up an ansatz(x) =m(:constant)s= 0, under which the

. ) (In what follows, however, it is not necessary to worry about
equation of gauge fields reads

the F-P terms, since they are irrelevant to the gap equation.
The partition function is given up t®(Q?), by

1
bc 4 b
;((9#}"%%— €? C.AM}";,,)

m2
Z[A]=ex;{—j dP g2t def y,(d,—iAST3) +m]
1
= a
= 2(DuF)

e byt 13 r3
xex;{—fd XE}'M}'W

=—tr{[y,(d,—iA,)+m] =iy, T}

12 1 _
(12 xf D[QZ]eX[{—Ej dPx dDsz[AW}-i-eﬂ_IW
If we take 7, =F>,=0F =const, then
+e(F— Pterm)]abQE}, (20)
) 1
i . 3__ —r3
Au=0, (1=1.2, AL==5Fu%, (13 \hereA 1 is the inverse of the gluon propagator

Eq. (12) is fulfilled. (It is easy to prove that the left-hand side
vanishes but the proof of the right-hand side is rather
lengthy, so it is relegated to Appendix )CTherefore, our
classical solutiorvtz (13) obeys the non-Abelian Maxwell
equation(12). We do not take the higher powers && and

o,

(A™H2=—5,,(D?)+2e25F3 (21)
under the gaugdl3). In Eq. (21), the symmetric matrix
eab3]-'iv has negative eigenvalues after the diagonalization
[21], thus there are tachyonic singularities. This is due to a
large magnetic moment of spin-1 particl&ecall that we
are in the Euclidean world so that all gauge fields are con-
a(X)=m+ da(X), m(X)=0+ Sm(X) (14)  sidered as magnetic ondn view of Eq.(21), these tachy-
onic singularities become harmless if we introduce a gluon
but remain with the lowest part. In this section we do notmassMy that should obey
restrict ourselves in the pure magnetic case but in generic
cases where both electric and magnetic backgrounds coexist.

2 3
(iii ) Third, we expand the gauge fields arou,rd.q (M) >|f’” ' (22

The situation would be guaranteed inside a hadronic phase,
A%= A2 4 Q2 (15) that is, a confining phase, where it is expected that gluons
w oo behave as massive particlgzt]. The term in Eq(20)

with Qi being designated as quantum fields. Here, with the

aid of the Faddeev-Popov trick, the measure is defined as . 52 . _
e =————=Indef{y,(9,—i4,T3—iQ,)+m]
5Q;,6Q; -0
5G? 1
D[gaugd=D[Q;]| det 5 exp[ ~ 52 f d°X[G*(x) 2|, 52 ,
=—————trin[y,(d,—iA3T3—i1Q,)+m] ,
16 a b 1A Y m I
(16) 8Q58Q; 0-0
with (23
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is the vacuum polarization tensor. We omit the isospin index 1

3 of A% as well asF3, from now on.(In the above sense v{P=— vt NLyu(9, =14, Ta) +m]

our model is not a gauge theory any more even though the

proper time regularization enables us to bring a gauge-

invariant result for a vacuum polarization tensor; the proof is - m_tr In

found in Appendix D)

Integrating with respect to the quantum fie€,, we ob-

tain 1 (=

- 2VT )2

2
FuyTztm

~ (0, =AY S0,

drrle” Tmztrf dPx(x|e”™o|x),

D - (31
Z=exf —VTvP]x (m—independent terms (24)
where the ultraviolet cutoffA has been introduced, tr is

where taken only for the spinor and the isospin indices, and
m’ Ho=T12— = FuT 32
U(D)Eﬁ_}_ng)_i_v(zD), (25) 00— 2 O pv 3 ( )
) with
with
. M,=p,— A, (XT3, (33
D)= _ —i PO
1 VTtrln[ Yl =1 A, Te) +m], (26 [X,,P,]=16,,. Write the kernel as
1 e K(x,y;m)=(x|e”"ly), (34)
D)= — ~
vz =y A to find

1 €e?
=V—T5f dPx dPyIT3%(x,y) A%3(y,x), (27)

K N 1 q sinrF/2 —12 |
(X’y’T)_ (47TT)D/2 € TFI2 [ (T)
being the one-loop and the two-loop effective potential, re-

spectively. Here/ is the (D —1)-dimensional volume of the +K3(7)TslexdiTsC]
system, andr is the Euclidean time interval. The stationary
" . . F 1F
condition for the effective potential X ex (x Y, cot7 x=y),|,
v
o0® (35
=0, (28 S . .
om whose derivation is given in Appendix A. In E(B5), quan-
tities are defined such that
gives a gap equation,
C=—SFuXuYy (36)
(47T)D/2 ©) ©) m2
_W:fl (X)+f2 (X), XEP (0$X$1),
F_
(29 Ko(7)= COSh—COShT—
whereA is the ultraviolet cutoff, and F
TF _
— yssmh—smh— (37)
(47T)D/2 (9U(D) .
£P)(x ——, =12 30
(0= 2AP~2 om? (30 N TF_
Ks(r)=0,,| N, smh—cosh—

The remaining task is, therefore, the calculation of the . .
effective potential Eqs(26) and (27). Let us start with the ENC IT v THE
one-loop part. We utilize the proper time metH@®d: N,.,C0S sin (38)
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where
F.=\B%+E?
E =0 B=Fi,, E=(F13.79) (39
for D=3,
_{(|B+E[+[B—-E[} _
F.= E=(F14,F24,F34)

> ,
(40)

_{IB+E[-[B-E[}
F_= B=(F23,731,712),

— 2 1
for D=4,
and
N+=F’”=N N, =0, for D=3 41
A7 F+_ 7l pv or 9 ( )
N =]~'WF+—]-‘WF_
- Fi-F2
FuFi—Fu,F_
_ pv' + ya% _
N,,= Fi—Fz_ for D=4, (42
with 7:qu €. pFrpl2 being the dual ofF,, .
Therefore,
v(D)=—1 ) drfle”mztrf dPxK(x,x;7)
1 2VT 1/A2 o
= (" drrorle e (oR), (49
(47T)D/2 UA2 D !
where
TF TF
for D=3,
e
F —_
A I e F_
7 cot 5 cot > for D=4.
(44

In order to calculate the two-loop contributipEqg. (27)]
first we express the gluon propagaté&q. (21)] in terms of
the proper time as

*® 2 ) 2
AZD(x,y) = fo dre” ™[ (e7?'77) ., (x|e” Muly)]?®,

a,b=1,2,3, (45)

PHYSICAL REVIEW D 65 065025

where My is the gluon mas$Eq. (22)]. The results whose
derivation is relegated to Appendix B are

sz(xvy) :{(COSC+ GSinC)[A}“}(X_y)
+eAZ, (x=y)]}Y,

i,j=1,2, (46)
33 — A3 _ - e_TMS
Aw(x—y)=AW(x—y)—5,wJ'0 dT(47T—7')D/2
1 ) 4
xexp — 7~ (x=y)7, (47)

and others=0. (If we work with an Abelian gauge theory,
only the Af’w term survives. In this sense, we call E¢7)
the Abelian par). HereC has been given in Eq36), € is a

2X 2 antisymmetric matrix 2= — €?'=1),
1
A,w(x_)’)
w e~ ™™g ( ) —1/2
= | dr————=(cos27F),,| det sinT— ,
fo (47TT)D/2( P T}—;w
1
X ex —Z(x—y)-(]—'cotr]-‘)-(x—y) , (48)
2
AL (X=Y)
fwd e ™g (sin2+7).| d (sinﬂ-‘) —12
=-— T———(sin27F),,| det ——
0o (4mr)PP? . TF v
1
X ex —Z(x—y)-(]-'cotrf)-(x—y). (49

Second we need the vacuum polarization teri&ay. (23)]
for the two-loop effective potentidEq. (27)], whose proper
time expression is found as follows:

trinfy,(d,—1A4,T3—iQ,)+m]
1
=5trinl Y v(I1,—Q,)(I1,—Q,) +m?]
1(~ 5
=— —f duu te UM Tr(e U(HotHitH2) = (50)
2 Jun2

whereH, has been given in E432), and

HlE_ZQ,uH,u,_[H,uYQlL]+i(T/.LV[HV'Q,lL]| (51)
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M= Q2+ 50,,[Q,. Q) Q=QiTa. (52

Expand the final expression of EO) with respect to the
quantum fieldQ,, up to the second order to find

tr(e”UHotHitH2)) —tr(e UHo) 41 +1,, (53)

with

l,=—utr(Hye UHoy=—yu trf dPx(x|H,e™“Ho|x)

=—utrf dPxHy(x)K(x,x;u), (54

1
Ha()=Q}(X) ~ 50, QL) Q)(X) Ts, (55)

and
u u
| 2= EJ;) dultr(Hlei(U7u1)H0H 167 ulHO)

2
u 1
— > trjo dv(H1e7(lfv)uH0/2H1ef(l+v)uH0/2)

2
u 1
z—zf dv trf dPx dPy(x|H e~ (1~ v)uHo2 v
0

X <y| Hlef(1+v)uH0/2|X>

u’ (1 1-v
=—f dv trf dPx dPyH, | x,y; ——u
2 J, 2

1-v 1+v

XK x,y;Tu)Hl(y,x;Tu

1+v

Yy, X;——u

X
K 2

: (56)

) F F
Hi(y: 1)=~1Q,,(X) Ecotﬂ (x=¥),
y3%

— QLX) F,(x=Y),Ta+iDIQY(X) T,
+0,,D3PQ0(X)T,, (57)

where we have utilized thix) representation such that

PHYSICAL REVIEW D 65 065025

1
(x|l'[#e‘ THo|y>= ( —i (924— E]-'WXVT3) K(x,y;7)

i(F 1F
= §<500t7) (x=y),l
nv
(58)

1
+ Ef,u,v(x_y)vTS K(va;T);

with the aid of Eq.(35), and made a change of variable from
u; tov, uy=(1+v)u/2, in the first line of Eq(56). In terms
of I4,l,, the vacuum polarization tensfq. (23)] reads

uute U, H1,]. (59

abzf‘s_zf“ 4
w2 6QZ§QE 1/A2
If we write
I, (x,y) ={(cosC+ esinC)[ I}, (x—y)
+ell? (x=y)]}1, for i,j=1,2, (60)
(Abelian pari,

3 (x—y) =113 (x—y), (61)

in order to meet the expression of the gluon propagators Egs.
(46) and (47), the two-loop contribution, Eq(27), is ex-
pressed as

1 €?
(D)= i Dy 4D b b
U2 _VT ZJd xd YHZV(XyY)AVz(an)

d°p
:ezf 2m)P

1
— 17, (P)AL(P)+ 5115, (P)AS,(P) |.

I, (p)AL,(P)

(62

Again the third term designates the Abelian contribution.
The explicit forms oflI,,~ 11", are found, after perform-
ing the Fourier transformation, as follows: i+2 dimen-

sions, put

(63)

cosuv F/2—cosuF/2
uFsinurz P

COSUF/2+ cosuv FI2
sinuF/2 ’

* _
a,,=

3%

sinuv FI2
= , (64)
M

| sinuF2

and utilizeN,,,, given in Eq.(41) with obvious abbreviations
such that

2 3 _
N2,=N,,N,,, N3 =N,N,N

up' NpoNovs

(Np),=N,,p,, etc. (65

to obtain
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F_+f f do ul2e—u(m®+¢) 1 _
2(4)%?) a2 sinhuF_./2

= UF, uvF |2

+—+cosh%(N ot - cosh—— —cosh
2 2 @ w2 sinhuF, 2\ 0 2 "2

F. 5 JrF+ uFJrJr uvF, Na-
sinhuF 72 2wt 7| cosy—Fcosh—Z—= (N a7),,

I, ,(p) =

ufF,
2

uF
+F+sinhT+](N2)M— i (cos

UUF+ 3 ) qu+ 2 UUF+ UF+ ) UUF+
—coshz— (N*a™),,+ F+sth(N ,B)M+coshz—(ﬂp)ﬂ(ﬁp)y—cothTsth5M,,p-(,[>’p)

coshuF, /2+coshuvF /2 ) B B B B
+ 2 {5,(va _pupv+5,uv(a p)(a p)_(a p)p,(a p)v}

coshuF_/2—coshuvF /2 ) 5 ) )
+ 5 {04(Np)- (NP) = (N?) ,,p+p,(N*p),+(N*p),.p,~ 3(NP) .(Np),

+3,,(Na"p)-(Na~p)—(N?) (@ p)-(a p)+(a p)(N>a"p),+(N2a p),(a p),

—3(Na p),(Na"p) }+Slnh—{(ﬁp) (Na™p),+(Na"p),(Bp) }+smh—{ 26,,p-(Na"p)
+pM(Nap)v+(Nap)Mpy—(Np)u(ap)y—(ap)M(Np)y}}; (66)

1
12— u(m?+ ¢(3)
2(4) 3/2f1/A2 jdvu © sinhuF 718

uvk 3 UFL coshuF, /2+coshuvF /2 B
_COShZ_ (N )MV_F+SInhT(N a )/.w+ 2 {(a p),upv_pp,(a p)v}

4

ufF,

coshz—

12 ,(p)=

F
s ( cosh— +3 cosh—)

coshuF, /2—coshuvF /2 5 , ) 3 B )
+ 5 {Pu(N*a”p),~(N*a"p),p,+(N°p)(a”"p),~(a"p).(N"p),

Fy
—4N,W(Np)~(a*p)—(Np)M(Na*p)ﬁ(Na*p)M(Np)y}+sinhuvT{(ﬁpn(Np)y—(Np)“(ﬁp)y
Fy
+N,,P- (ﬁp)}—sinhuT{N,wp2+ Nuu(a™p)-(a”p)+pu(Np),—(NP),p,+(a”p)u(Na™p),
—(Na‘p)ﬂ(a‘p)y}} (67)

F. 1 coshuF . /2+ coshuvF /2

3 _ 1/2,— u(m?+ ¢3)) 2_
1.(p) 2(4W)3/2fmz fd”“ il sinhuF, /2 2 (OuP™= PuPy)

coshuF./2—coshuvF./2 ,

Fy
+sinhuT{(Np),i(oflo)ﬁ(oz*|0),L(N|0)V}+

F.
- p,u,(sz)V_ (sz),u.pv+ 3(N p),U.(N p)v}+ COSth_{(Bp),u,(ﬁp)V_ Bp,vp' (:Bp) +(aip),u,(a7 p)v} : (68)

Similarly in 3+1 dimensions, we introduce

coshuF . /2—coshuvF /2 coshuF_/2—coshuvF_/2

(4)= )L (1t N
? uFsnhur.z 0 PR e Gz (PP

(69

where
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P e P P e s P s (f)fw[ AF L —F )] 70
o F4-F* Lo F4—F* T

which can be regarded as projection operators, obeying

+ - _ N2 | +42 TN —NE ) I — N+ —
I/LV—’_I,LLV_(S,U.V’ (I ),uv_llu,v__(N )'uVl (I N ),u,v_N ’ (I I ),u,v_(l N )/J,V_O' (71)

whereN~* have been defined by E¢2). Then

1 F_ coshuvF_/2 F_coshuF,/2
hp= [ du aw ue et s® . e i,
4(477) 1A2 sinhuF, /2 sinhuF_/2 sinhuF,/2 sinhuF_/2
N r‘UvF+ r‘UUF, k‘F uF_ uv [+ |+ [+ -
cosh 5 cosh 5 —coth 5 \,oth—2 smh—2 smh— {17 p)-(1"p) wr— (17P) u( p).}
coshuF . /2(coshuF_/2—coshuvF _/2) -
+2 : (I"p)-(Ipt,
sinffuF_/2
coshuvF _/2(coshuF, /2—coshuvF, /2) uvF_
-2 (- p) (1 “p),+ smh—smh—
sinffuF., /2
(1—coshuF,/2coshuvF . /2)(1—coshuF_/2coshuvF _/2) NF N-D) 4+ (4 79
SinhuF, /2sinhuf_/2 (NTP)u(N"p),+(F =) (72)
H,Zw(p)I F.F_ foo dufldv ue*“(mz“”w) _ 1_ F,.smhuF+/2 +V
4(4)2) a2 0 sinhuF_,/2sinhuF_/2| sinhuF_/2 ~#
sinhuF_/2(coshuF/2—coshuvF /2
2 ( . + Ur 4 )(|+p)(|+p)N;y
sinffuF_./2
uF_  uvF, _ uvF_ B B
+ coth——sinh——sinh——{(1"p) - (1 "p)N,,, + (1 7p) .(N"p),~(N"p) (1" p),}
coshuvF_/2(1—coshuF_/2coshuvF . /2) B . N B . .
+ ShhuF 72 X{(17P)u(N*P), = (N*P) (1 7p), = (1"P)(Np),
+(N+p),¢(l*p)v}+(+<—>—)1, (73
F.F_ [~ 1 1 uvkF_
3 __t —u(m?+ ¢(4)
I,,(p) 4(47T)2L/A2dufo dv ue SinhuF. /2 SrOE 3% (cosh—cosh—

uF+n uF_ uvF, = uvF_ _ - . _
—coth 5 \,oth sinh 5 sinh 5 {7 p)-( p)l,,—07p)(17p)}

N 2 coshuF _/2(coshuF, /2—coshuvF, /2)

{17 p)-(1" P ,,—(17p) (1 7p),}

sinfPufF,./2
y (1—coshuF_/2 coshuvF . /2)(1—coshuF_/2coshuv F_/2) r‘UUF+ ) r\UUF,
SinhuF , /2 sinhuF_/2 —sinh——=sinh—3

X(NTP),(NTP),+(+—) | (74)
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£F. =) 0005 noted that the critical coupling,, defined byf{*)(x=0) in

0 : 001 x Eq. (76) for a fixed magnetic field, goes to zero whén
#0. This phenomenon is the so-called “dimensional reduc-
tion [13]” and is due to the infrared divergence of the effec-
tive potential under the background magnetic figld].

The two-loop contribution is found as

B%?* (= (1. (=
f(;')(x):——f duf duf dru’?
2(4m)%2A )1 o Jo
K

7

X @ ux— Ty

i! i sinhu3/2

i .

h -4 M(qg,cosh 2rB+ q,sinh 2rB+

', X{ (Ch op) 7B+ d3) YA

! coshrB

| (78)

FIG. 1. One-loop contribution to the gap equation it 2 di-
mensions. The solid line represers=0, the dash-dotted line \whereu and 7 have been scaled th%u and A2, y, defined
M3/3, and the dotted linesNZ/3, respectively. Ik>0.01, recog-  as
nized from the small graph, all curves become degenerate. In order
to fix the magnitude of the background field, ttdimensionless

— 2 2 M2
gluon masy=Mg/A< is set to be 0.01. y= —9 (79
A2
(These expressions are so lengthy that we ensure the correct-
ness by checking the gauge invariance of those, that is, th . .
Ward-Takahashi relation in Appendix D. s a dimensionless gluon mass,
Armed with these general results, in the following we
consider the magnetic background only and proceed to cal—,CE 1
culate the gap equation in21 and then 3-1 dimensions. u(l—v?)/4+ 7’
Ill. THE GAP EQUATION IN 2 +1 DIMENSIONS e sinhuB/2
When the background is purely magnetic=0, in view coshuB/2— coshuv B/2+ tanh7B sinhu5/2’
of Eq. (39), F,=B. A dimensionless quantity,
B N sinhuBB/2 30
B= e (75) ~ coshuB/2— coshuv B/2+ B sinhuB/2’ (80)
is introduced in addition ta=m?/A? in Eq. (29). (Since the and
coupling constane has been included to gauge fields the 5 5 5
dimension of gauge fields is always on€he one-loop con- _~ ub ub . uv
tribution to the gap equation E¢R9), 01= 7 | coshy-—u cothzsinh—
2(m)3? (@) ey hl£3 uv B coshuB/2— coshuv B/2
- = , 76 cosh-cosh—— -
@A 0 (79 2 2 sinffuB/2
reads, with the aid of Eq$30), (43), and(44) as (1—coshuB/2 coshuv B/2)
+ . , (81)
o o (3) sinhuB/2
4 dv ® B
f3(x)= ( 72 12 = —Bf dr Y%~ cothe,
2A om 1 2 K[ B B
(77 0= 5| sinh>-—v smh—2
wherer has been scaled th?7. We .plotf(ls')(x) in Fig. 1. It coshuw B/2 uB uv B uv B
is seen that for a fixed four-Fermi couplirg that is, with + Bl M———5-| coshz —cosh——| —cosh——|,
. . : sinhuB/2 2 2 2
respect to gsupposefhorizontal line, mass is a monotone
increasing function of magnetic-field strength. It is also (82

065025-9
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£ §3)(F+=B) 0 0.001 0.003 0.005 <
0 0.001 0.003 0.005 X

025 -0.1
-03 /
————— B=2Mg%3
~0.35 -0.15

FIG. 3. Abelian part of the two-loop contribution to the gap
FIG. 2. Two-loop contribution to the gap equation ir2 di- equation in 2+1 dimensions. The graph is drawn by putting
mensions. As in Fig. 1, the same line pattern is used. From the?/(47A)=0.01 andy=0.01.
smaller graph, we see that all curves become degenerate but remain
negative in the whole region=tx=0. The graph is drawn by put- From Fig. 3,x, on some horizontal line, is a monotone
ting €°/(47A)=0.01 andy=0.01. decreasing function of the background field everywhere for a
fixed g. Therefore, the increasing tendency of Fig. 2xin

4= g(vzcos uz;B_v cothl?sin UI;B) <0.001 comes from the non-Abelian parts in E6g).
IV. THE GAP EQUATION IN 3 +1 DIMENSIONS
coshuB/2— coshuv B/2 _ _ N
+ =
SnPuBl2 In 3+ 1 dimensions, whef=0
1 uvB uB F,=B, F_=0. (85
+ —| cosh———=———5+=1, (83
u 2 2sinhuB/2 Again employing the dimensionless quantifi=B/A2, we
have the gap equation of one-loop contribution,
K uvBB thlE uvB
Q=7 cosh—2 —v coth smh—2 A2
- — 5=, (86)
N[ coshuB/2— coshuv B/2 g°A
2 sinffuf/2 with
coshuv B/2— v cothuB/2sinhuv B/Z) 2 5 (4)
+ : (84) @)y AT 017 F P
2 fi(x)= =-B| d e~ coth—-,
1 (%) 2A% om? i 2
The q1,9,, andg; terms come from the first two terms in (87)

Eq. (62), that is, from the non-Abelian contribution. Mean-
while q, represents the Abelian contribution.
We plot the two-loop part in Fig. 20ur choice of the

which is plotted in Fig. 4. All curves become degenerate
again wherex is large. For a fixed four-Fermi coupling,

linae/ (4mA) =001 d h mass is a monotone increasing function of magnetic-field
gauge couplinge/(47A)=0.01 does guarantee the ap- gyengh Moreover the critical coupling goes to zero even

proximation, sincef$>/{*¥~0.1 by comparing the vertical |nqer infinitesimal magnetic fieldd 3,12,
scale between Figs. 1 and Zrom the small graph, we can The two-loop contribution is given by
convince that gluons enhang&B as is expected because all

curves remain negative for a whole regions®<1. Note B2e2 [ 1 - KC
that there is a crossover aroure 0.001; in the region larger f{(x)=— f duf dvf drue v ___~
than the crossovek, on some horizontal linéa line with a 2(4m)?)a o Jo sinhuB/2

fixed four-Fermi couplingis a monotone decreasing func-
X[

tion of the magnitude of the background field. In the region M(pycosh 2B+ p,Sinh 275+ ps) +
smaller than thatx is, however, a increasing function of it, coshrB

similar to the one-loop case. To see the situation more care- (89)
fully, we plot the Abelian contribution to the gap equation,

that is, theq, term in Eq.(78). whereC, M, and N are the same as E(B0) and

Np4 )

065025-10
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@
f1 (F+=B, F-=0)
0.001 0.003

-1.95

FIG. 4. One-loop contribution to the gap equation it B di-
mensions. The solid line, dash-dotted line, and dotted line designa
B=0M/3, and M/3, respectively. The smaller graph shows the

whole structure, £x=0. We again seMS/A2=0.01.

) uB uv BB uB
pi=K(1-v )cosh2—+BM coshz——v coth7

_uvB coshuB/2—coshuvB/2\ 2 uB
X sinh - - ——| cosh—
2 sinffuB/2 u 2
uB 89
~ 2 sinhuBi2)’ (89
(11— 2)si hLE-i-B coshu3/2 coshuv B/2—1
Po=K(1-v%)sin 2 sinhuB/2
) r\UUB 2 sinhuB/2 90
—v sinh 5|~ u , (90)
uvBB uB _ uwB 1-v?2  wB
ps=K coshz——v coth75|nh7— 5 cosh2—

coshuBB/2—coshuv B2 2 ( uv BB
- + —| cosh—
sintfuB/2 u 2
—UB 91
2 sinhuB/2]’ 6D
K uv B (uB B 1-v? B
p“_E cosh—2 v cot 2smh—2 + 5 cos >
N uvB uB  uvB
+B§ coshz——v coth75|nh7

coshuB/2— coshuv 3/2
(92

sintfuB3/2

PHYSICAL REVIEW D 65 065025

)
f2 (F+=B, F.=0)
0 0.0005 0.001

-0.099

-0.0995 4 -0.05

-0.1

FIG. 5. Two-loop contribution to the gap equation ir-3 di-
mensions. In the smaller graph the whole structurex&1, is

Ehown. The same line pattern is used for different curves by putting

e%/4=0.01 andM3/A?=0.01.

sincef$M/£(Y~0.05. It should be noted that our result®f

=0 is consistent with that of Kondet al.[22].) All curves,
shown in the smaller graph, remain negative and become
degenerate fox=0.001.

Therefore, gluons enhancggSB everywhere even in no
background =0, which fits our expectation. Contrary to the
case in 2+1 dimensions, mass is a monotone increasing
function of magnetic-field strength everywhere for a fixed
four-Fermi couplingg.

V. DISCUSSION

In this paper we discuss the effect of dynami&all(2)
gluons to the gap equation of the NJL model under the in-
fluence of the constant background non-Abelian magnetic
field. The two-loop calculations make expressions consider-
ably complicated but correctness of the results is guaranteed
by checking the Ward-Takahashi relation in Appendix D. In
3+1 dimensions, as is seen from Figs. 4 and 5, gluons play
the same role as fermions in the one-loop, that is, they en-
hance ySB. Moreover, the dependence of gluons on the
background field is also the same as a fermion in the one
loop; dynamical mass grows larger as the background mag-
netic field becomes stronger. The result is consistent with our
expectation but different frofil8] where RG with the one-
loop calculation was employed. In+21 dimensions, the
situation is unchanged that gluons enhag&B even under
the influence of the background field, contrary to the work of
[17]. The dependence of gluons on the background magnetic
field, however, is not so simple as int3 dimensions; as is
seen from Fig. 2 when dynamical mass is tiny the back-
ground field increases it, but in a well-broken region, that is,
in a region where dynamical mass is large, the background
field resists a mass to grow. The difference betweenl?2
and 3+1 dimensions is due to that of thedependence in

The graph is shown in Fig. 5The choice of the gauge Eqgs.(78) and(88); by making the scale transformation to
coupling €?/47=0.01 again guarantees our approximation,and r such that

065025-11
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u T APPENDIX A: CALCULATION OF KERNEL BY THE
U——, 7>, (93 PROPER TIME
B B
. In this appendix we derive the expression of the kernel
quantities X, M, N [Eq. (80)], scale as (34)
K—BK, M—M, N-N, (94)

K(x,y,7)=(x|e” Holyy=euruTs2(x|eIL,y).

so thatqg; and p;, (i=1-4), Eq.(81)-Eq. (84 and Eq.

(89)-Eq. (92) transform Because of the covariantly constant conditidn the matrix

12

qi—Bagi, pi—DBp;. (95  elementx|e” "x|y) can be calculated exactly the same way
as the Abelian casg0]
Therefore,
1 sintF2\ |72
(3) (3) R LAY P >
(s B, (x|e” ™ uly) (4777-)D’28XF[|T30] de( 72 )Mj
4 4
ot cof L, Zeo) oy
exg — = (x—y) .l 5co X=Y),|s
£ BED), (96) 4 f\2mr2g,
: . (A2)
which shows a monotone character with respecBtaon-
vincing us of the results of Figd , 4, and 5qualitatively  with
(because there is stilf dependence ifi{®,f{*), andf{").
But 1
C=— Efwx#yy. (A3)

(19, @7
The remaining task is therefore the calculation of

which implies that dependence ¢his due only to the de- exfl(172)0,,,F,,T3l; in 2+ 1 dimensions, the gamma matri-
tailed structure of integrand of expressiof8), that is, we  ceg are given as

cannot extract a simple monotone behavior in this case.

The second point we wish to discuss is on the instability o, O o, 1 €urn[Tp O
of the gluon functional determinant; we have avoided this by 7#=< ) 5 = 5[7“’7”]: 2 p( 0 )
. . . . . g
introducing gluon mas#y, which is always assumed big-
ger than the magnitude of the background magnetic fild =€), Mv,p=123, (A4)
MS> B. Physically, it is interpreted that the energy of non-

Abelian particles could become lower and lower as the backwhereJ,’s satisfy

ground magnetic field grows larger and larger. There is no

lower limit in the system. The situation is exactly the same in

the constant electric-field case, where the vacuum becomes

unstable due to successive pair productions. We have treated

this pathological instability by considering only an externalln terms ofJ,’s

electric field whose maggitudé is less than that of the dy- 1

namical mass squaredn >E [12]. The point is that the -+ _ _ e e

setup itself—“field theories under constant background 2 Tulu=Bd1mBrlot B, B=F15E= (18,729

field"—is pathological. The system is not closed; energy is (AB)

continuously supplied from the outer environment. However, .

even in these pathological environments, we could still think oM Egs.(A5) and (A6), we obtain

about those background effects if we suppose that gluons are

massive in a confining phase and that the magnitude of back- (} FT )2:< VB?+E?
. . (O y13

ground fields is smaller than the gluon mass squared. 2 Hrm 2

The final point to discuss is beyond the tree approxima- )
tion of the auxiliary fieldsr and; in most cases of the NJL Meanwhile,
study, fermions are assumed to haleomponents withiN
being supposed infinite finally. However, in the actual situa-
tion, N is finite so thatO(1/N) corrections should be taken
into account. A study in a simpler modg23] says that the
approximation becomes more and more accurate if we incor- Fuv

0 -o, o

S,
5l (A5)

[J,.d,]=i€,,,Jd 13,0, =

nvpYpo

2 F+ 2
| (7) I. (A7)

]:,LLVFJr

+
f;LVT3= O-,uvﬁ 71—35 UMVNMVT37 ’

27w

porate higher-order terms. Thus going beyond the one loop Nuvzﬁ' (A8)
of the auxiliary fields is captivating and the work in this
direction is in progress. Therefore in 21 dimensions

065025-12
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TF . R 1
2 #V]: T3 :COSh2_|+O-[.LVN;LVSInhTT3' 2 ,U«V‘7: T3
A9
- —exd o NT T P NCT A19
In 3+1 dimensions, first write XD S TNy 13| 8XR 57 0Ny s - (A19)
{|B+E|+|B—E[} Also by notin
F.= 2 , E=(F14,F24,F34), Y g
_{|B+E|_|B_E|} B=(f e FZ) { ,uvio-)\p} 2(6 §;Lp5v)\_fpv)\p75)i (A20)
- 2 ’ 2shd and Eq.(A13),
(A10)
. . . . (0N, %= (A21)
and introduce the antisymmetric tensdxs,, = — w, such
that Hence
FuFe—F,F_ FuFi—F,F_ F. 2 (F,\2
e R I L A
Fi—F< Fi—F< 2 # 2
= €ump yielding
Fu= > Frp s (A11)
Fi + Fi + . Fi
which satisfy ex TO-MVNMVT:; :COSh2—| +0‘MVN#VSIﬂh7T3.
(A23)
+ x =+ x € VA + . T
(N*N¥),, =N, Ny, =0, ”2 Ny, =N,, (A12)  Finally utilizing
N _
(N* =2 (A13) TN, TN\ = —47s, (A24)
mv !
. . ) we obtain
where the second relation can be verified by using Egs.
(A10) and o
B B r{ 5 O uF T3 = (cosh—cosh—
(Fu)?=(F,)?=2(F2+F?), F,F,=4F F_.
(Al14) G TF_)I
— yssinh——sinh——
. 2 2
With the aid ofN;w, F ., is expressed as
TF_
Fpu=F N +F N, (A15) AN S'nh—COSh—
ivin TF TF _
gving +chosh2—+sinh7> T3
1 _
anfwzz(meN;ﬁ F_o,N,,), (A25)
[7 y] :K0(7)|+K3(T)T3, (A26)
= Hrv
Tpr=""0r (A16) .
Ko(m)= cosh—cosh—
By noting
7F
[0y Onpl=21(8,00 = 8T\ = On Tyt 5VPO-,ME\'A)\’17) - y5S|nh—Slnh— (A27)
1 TF_
and Eq.(A12), we find Ko(r)=0, N* sm * cos
[O’MVNMV,O'M)N)\p] 0. (A18)
N hTF—+ i hTF—’ A28
Therefore, prCOSh—=sinh—— . (A28)
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APPENDIX B: GLUON PROPAGATOR IN TERMS OF THE APPENDIX C: PROOF THAT OUR CLASSICAL
PROPER TIME SOLUTION SATISFIES THE COVARIANTLY CONSTANT
CONDITION

In this appendix we show the proper time representation
of the gluon propagataf21) In this appendix we show that the right-hand side of Eq.
(12) vanishes:
(A Y50 =—08,DH)+2iF,,[ad T3]  (BL)

tr a,—iAT)+m) =iy, T
where we have introduced a slightly different notation from [u(u =14, T+ m) S (—y, Ta)]

Eq. (2D =t Sa(X,x)(—iy,Ta)]=0, (CY
Dibz ybaﬂ_iAﬂ[ade)]ab, [adT3)] where Sx(x,y) is the fermion propagator under the back-
ground fields;
0 -i O
=i 0 0} (B2) [7,(d,—14,Ty)+mISx(x,y)=8"(x—y). (C2)
0 0 O
Sa(X,y) can be expressed, by using the proper time method,
The proper time representation is obtained as usual. as
Azg(x,y):fo dTe*TMS[<X|e*rl’[2|y>]ac(e72iTf[ad(Tg)])Zt:}, Sa(X,y)=(X|(iy, I, +m) " y)
(B3) =(x|(—iy,Il,+m)
l -1
where X Hf, opnTFnTz+m?| |y)

P=(I157)%, T15°=56""p,— A,(x)[ad T3)]*",
(B4) “ 2 .

zf dre”™ <x|(—|yMH#+m)e*TH0|y>

and we have introduced the gluon madsg to avoid the 0

tachyonic singularity. Foa=b=3, it reads

TF
Sl ooty e,

33_A3 _ 2y—1 Tm2
AB=A3 =(-06,,0", (B5) fdfe

which is the free propagator. Therefore we obtain &q):

_E’y/.t MV(X_Y)VT3+m K(X,y;T), (CS)

o ™
3 (v e T w2
Au(x=y) 5”“”jo dT(4WT)D/ZeX% 4T(X y) } whereK(x,y;7) is the kernel of Eq(A1). Therefore
(B6)
Ina,b=1,2 usei,j=1,2 and utilize the result in Appendix A [ Sa(X,X)(—=iy,Ta)]
[Eq. (A2)] and[ad(T3)]"=—i€" to find B 1
=—2imf dTe_Tmz—/
0 (477)PP?

[(x|e”ly)]"

- v
1 y . sintF| |12 de( l Tﬂz) 1 Ztr[eT/Z"uvfuvT3y,,Ta] =0,
= (9 cosC+ elsinC)| def — TFI2 ],
(4777-) T wv
. (C4)
% ex;{ B Z(x—y)#(]-“cotr]-‘)w(x—y),,}, B since the trace for the gamma matrices vanishes because the

total number of those is odd.
where( is given in Eq.(A3). Finally by noting that

—2i rFad(T3)] ] ij o APPENDIX D: THE WARD-TAKAHASHI RELATION
(e~ #™12dMl)] =5 (cos 2rF) ,,— €1 (sin27F),,,, OF VACUUM POLARIZATION
(B8)
In this appendix it is shown that the vacuum polarization
the relationg46)—(49) are obtained. function satisfies the Ward-Takahashi relation
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bryb _
where
b__
D= 8229, — €S A,,
with A,, being a background field
1
A,=— E]-"ny. (D2)

The Ward-Takahashi relatiai1) is separated into

3,113 (x,y)=0, (D3)

and

[815%— €13A,(x) T, (x,y)=0, for i,j,k=1,2.
(D4)

The first relation(D3) can easily be checked by noting Eq.

(68) and Eq.(74) so that the second relatidid4) must be
examined. In view of the fact thdi'/iy(x,y) can be written
as

11, (x,y) ={(cosC+ esinO)[ 11}, (x—y) + €l12 (x—y) ]},

(DY)
the matrix relation reduces to
1 2 _
3L, (X=y)+ A, (x=y)IT7 (x—y)=0, (D6)
2 1 _

PHYSICAL REVIEW D 65 065025

which becomes in the momentum space

=0, (D11)

2 1.9
p,u.Hp,y( p) O(F)+ F, H/,LV( p)
F=0

27 KP app

Where_l'[iv(p)lo(,:) can be found from expressidf7) in 2
+1 dimensions

H;ZW(P)|0(F)

1 ® 1
=—f duf dou-12
(am¥2) 2" o

1-v?
_ 2 2
xex;{ ul m?+ 2P ”
u(l-v?
X| Fur= = LPu(FP),= (FP) Py
+2p2F,,11, (D12

and from Eq.(73) in 3+ 1 dimensions

Hiv(p)|O(F)
— 1 foo d fld 2 1_1)2 2
—(477)2 A2 u o v expg —ul m+ 4 P
1 e

1+02 _ . + _
7 L7 P)u(N"p),=(N"p),(17p),

Utilizing the series expansion with respect to the background

gauge field, we show, up ©(F), that these relations indeed

hold: first note thaﬂ'[ﬁlw and wa are polynomials of even
and odd powers oF, respectively. Thus ifD(1) Eq. (D6)
reads

,10},,lr=0=0, (D8)

which is fulfilled, since from Eq(66) and Eq.(72), Hflw has
been given by

1-v?
D/2—1

1 (= 1
T Ly
Xex;{—u

Next in O(F),

u
2

v
pZ) }{p25p,v_ p,u,pv}

(D9)

1
m2+

3,012 | oy = A (X=Y)ITL (X,Y)|f—0=0, (D10)

_(I+p)p,(N+p)v+(N+p),u(l+p)V]
U2
+ L) (PN, +(17p)(N"p),

—(N*p)ﬂ(lp)y]}+(+<ﬂ—)}, (D13

respectively. With the use of Eq471), the left-hand side of
Eqg. (D11) is shown to vanish,

e—um’

1 (= (1 e
PR C O iy
2(4m)P2Junz Jo qu’z’l( P)

d u(l—v?)
. _ .2 T A2
de v(l-v )ex;{ 1 p
=0. (D14)
Therefore we can convince ourselves that the Ward-
Takahashi relation is satisfied in each order of the back-

ground field[24].
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