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Effect of dynamical SU„2… gluons to the gap equation of the Nambu–Jona-Lasinio model
in a constant background non-Abelian magnetic field
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Fuji Research Institute Corporation, Chiyodaku, Tokyo, 101-8443, Japan
~Received 30 August 2001; published 5 March 2002!

In order to estimate the effect of dynamical gluons on chiral condensates, the gap equation of theSU(2)
gauged Nambu–Jona-Lasinio model, under a constant background non-Abelian magnetic field, is investigated
up to the two-loop order in 211 and 311 dimensions. We set up a general formulation allowing both cases
of electric as well as magnetic background fields. We employ the proper time method which gives a gauge-
invariant fermionic functional determinant. In 311 dimensions chiral symmetry breaking (xSB) is enhanced
by gluons even in a zero background magnetic field and becomes more striking as the background field grows
larger. In 211 dimensions gluons also enhancexSB but the dependence on the background field is not simple;
dynamical mass is not a monotone function of a background field for a fixed four-Fermi coupling.
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I. INTRODUCTION

The Nambu–Jona-Lasinio~NJL! model@1#, the model of
four fermion interactions, has been discussed as a pos
realistic mechanism of chiral symmetry breaking (xSB)
@2,3#. Although the interaction is nonrenormalizable in mo
than 111 spacetime dimensions, it is regarded as a lo
energy effective theory of elementary fermions after integ
tions of Higgs and/or gauge fields, and has been used
phenomenological model to describe hadronic spectra,
cays, and scattering@4#. ~While these properties of hadron
should be derived from quantum chromodynamics, analyt
methods on hand are so limited that the dynamics in
low-energy region could not be easily explored.!

In order to grasp the qualitative behavior of a system, i
sometimes useful to examine the response to the exte
fields or sources. Many such attempts have been made s
for example, theO(3) gauge-Higgs model in a magneti
field source @5#, fermionic models minimally coupled to
strong electromagnetic fields@6#, the NJL model minimally
coupled to a constant magnetic field and curved space
@7# and its extension to the supersymmetric NJL model@8#,
the instanton motivated four-point interaction model of fe
mion at finite density@9#, and so forth.

Among these, an interesting outcome is found in the st
of the NJL model minimally coupled to constant extern
magnetic fields@10–12#, where mass generation occurs ev
at the weakest attractive interaction between fermions
terms of the so-called ‘‘dimensional reduction~DR!’’ @13#.
The case is also investigated by the present authors to
that the origin of DR is the infrared divergencies followe
from the fermion loop integral under the influence of t
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external magnetic fields@12#. The phenomenon is now un
derstood provided universal interactions are short range@14#.

Inclusion of dynamical gauge fields is made for QED,
terms of the Schwinger-Dyson equation@15# or renormaliza-
tion group ~RG! @16#. The results show that the dynamic
symmetry breaking always occurs with the aid of an exter
magnetic field.

The motive for this paper is traced to that of Gusyn
Hong, and Shovkovy@17#, where 211-dimensionalSU(2)
gauge theory is investigated in a constant non-Abelian m
netic field by using a constant gauge potential with trans
tional invariance@19#, to find that magnetic catalysis ofxSB
does not occur. The study in 311 dimensions is made in th
reference@18#, whereSU(N) gauged NJL model is handle
in the case of weak as well as constant non-Abelian magn
field; they incorporate the dynamical effect of gluons in R
to reach the conclusion that existence of the external fi
does not change the condition ofxSB. Each result indicates
contrary to our expectation that gluons always triggerxSB
~since they do in the low-energy region!, that dynamical glu-
ons in the external non-Abelian magnetic field do not pla
major role to xSB. This curious situation is our startin
point. There needs to be a more detailed analysis.

In this article we studyxSB under a constant backgroun
non-Abelian magnetic field in aSU(2) gauged NJL model,
paying attention to~i! the direct effect of dynamical gluon
to the gap equation, not in terms of RG@17,18#, and~ii ! the
effect of the gauge choice to the results, since in the n
Abelian case the situationBz

35B(constant>0),others50,
the choice@17#

Ax
15Ay

25AB, others50 ~1!

cannot connect with@18#

Ax
352

B

2
y, Ay

35
B

2
x, others50 ~2!
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since the remnant gauge transformation, which leavesBz
3

invariant, that is, any gauge transformations with respec
the third axis, cannot bring the gauge~1! to the gauge~2! or
vice versa. To work with the Green’s function in momentu
space it is convenient to adopt Eq.~1!, but this is not a
solution of the non-Abelian Maxwell equation in th
vacuum:

~DmFmn!a[]mFmn
a 1eabcAm

b Fmn
c 50. ~3!

In what follows we rely upon the WKB semiclassical a
proximation where the classical solution plays a fundame
role. Therefore we should work with the choice of Eq.~2!
satisfying Eq.~3!. Moreover the choice~2! satisfies a cova-
riantly constant condition

~DrFmn!a[]rFmn
a 1eabcAr

bFmn
c 50, ~4!

enabling us to use the Fock-Schwinger proper time met
@20# that was originally developed to handle Abelian bac
ground fields and gives us a gauge independent result.

The model is nonrenormalizable so that we must int
duce an ultraviolet cutoffL which defines the theory with a
given bare four-Fermi couplingg. However, it should be
gauge invariant when fermions are coupled to gauge fie
In this sense, we utilize a proper time cutoff; in the two-lo
order of the effective potential, it respects gauge invaria
of the vacuum polarization tensor. There we need an a
tional regularization, since gluons in the non-Abelian ma
netic background suffer from a famous instability@21#, due
to a tachyonic singularity in the propagator. To avoid it, w
introduce a gluon massMg whose magnitude is assumed
be larger than that of the background magnetic field. Tha
we assume that the magnitude of the background magn
field is very small, which is different from the assumption
Gusyninet al @17#.

The article is organized as follows: in Sec. II a gene
formulation is presented, where we assume generic b
grounds satisfying the covariantly constant condition Eq.~4!.
In the next sections, Sec. III and Sec. IV, the gap equation
211 and 311 dimensions are shown. Section V is devot
to discussion. In Appendix A calculations of the kernel a
presented and in Appendix B the gluon propagator is rep
sented by means of the proper time method. Then in App
dix C we give an explicit proof that our classical solutio
satisfies the covariantly constant condition. And finally
Appendix D, in order to ensure the gauge independenc
our calculations, that is, their correctness, we study
Ward-Takahashi relation of the vacuum polarization tens

II. FORMULATION

In this section, we derive the effective potential of t
SU(2) gauged NJL model. The Lagrangian of the system
the Euclidean formulation is given as
06502
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L52
1

4e2 Fmn
a Fmn

a 2c̄$gm~]m2 iAm!%c

1
g2

2 H @~ c̄c!21~ c̄ ig5c!2#, D54,

@~ c̄c!21~ c̄ ig4c!21~ c̄ ig5c!2#, D53,

~5!

where Am[Am
a Ta with Ta’s (a51,2,3) being theSU(2)

generators given byTa[sa /2, wheresa’s are the Pauli ma-
trices. For the (211)-dimensional case, a spinorial represe
tation of the Lorentz group is given by two-compone
spinors, so that corresponding gamma matrices are 232.
There is no chiral symmetry. In order to be able to discu
chiral symmetry, we introduce an additional flavor such th

c5S c1

c2
D , c̄[c†g3[~c̄1 ,2c̄2![~c1

†s3 ,2c2
†s3!,

~6!

with the 434 gamma matrices

gm5S sm 0

0 2sm
D ;m51;3, g45S 0 1

1 0D ,

g55g1g2g3g45S 0 i1

2 i1 0 D . ~7!

Chiral symmetry is realized as

c→eiag4c, c→eibg5c, ~8!

yielding a globalU(2) symmetry which is broken by a mas
term intoU(1)3U(1).

The partition function of the model is read as

Z[E D@gauge#D@c#D@c̄#expF E dDx LG
5E D@gauge#D@s#D@p#D@c#D@c̄#

3expF2E dDxH 1

4e2 Fmn
a Fmn

a 1
1

2g2
~s21p2!

1c̄$gm~]m2 iAm!1~s1 i p•G!%cJ G , ~9!

where the auxiliary fields,s andp, have been introduced to
erase the four-Fermi interactions,

p•G5H pg5 for D54,

p1g41p2g5 for D53,
~10!

and a measure of gauge fields,D@gauge#, is specified after
the following procedures:~i! first, integrate with respect to
fermions to give
5-2
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Z5E D@gauge#D@s#D@p#expF2E dDxH 1

4e2 Fmn
a Fmn

a

1
1

2g2
~s21p2!J 1 ln det@gm~]m2 iAm!

1~s1 i p•G!#G . ~11!

~Here and hereafter ln, det, and tr designate the functio
logarithm, determinant, and trace, respectively.! ~ii ! Second,
set up an ansatzs(x)5m(:constant),p50, under which the
equation of gauge fields reads

1

e2 ~]mF mn
a 1eabcA m

b F mn
c !

[
1

e2 ~DmFmn!a

52tr$@gm~]m2 iAm!1m#21~2 ignTa!%.

~12!

If we takeF mn
1 5F mn

2 50,F mn
3 5const , then

A m
i 50, ~ i 51,2!, A m

3 52
1

2
F mn

3 xn , ~13!

Eq. ~12! is fulfilled. ~It is easy to prove that the left-hand sid
vanishes but the proof of the right-hand side is rat
lengthy, so it is relegated to Appendix C.! Therefore, our
classical solutionA m

a ~13! obeys the non-Abelian Maxwel
equation~12!. We do not take the higher powers ofds and
dp,

s~x!5m1ds~x!, p~x!501dp~x! ~14!

but remain with the lowest part. In this section we do n
restrict ourselves in the pure magnetic case but in gen
cases where both electric and magnetic backgrounds coe
~iii ! Third, we expand the gauge fields aroundA m

a

Am
a 5A m

a 1Qm
a , ~15!

with Qm
a being designated as quantum fields. Here, with

aid of the Faddeev-Popov trick, the measure is defined a

D@gauge#[D@Qm
a #Udet

dGa

dubUexpF2
1

2e2E dDx@Ga~x!#2G ,
~16!

with
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Ga~x![~DmQm!a5]mQm
a 1eabcA m

b Qm
c . ~17!

The gauge transformation now reads

Qm
a °Qm

a 1~Dmu!a, ~18!

with Dm
ab[dab]m1eacb(A m

c 1Qm
c ), so that the Faddeev

Popov determinant is given by

det
dGa

dub 5det~DmDm!ab. ~19!

~In what follows, however, it is not necessary to worry abo
theF-P terms, since they are irrelevant to the gap equatio!

The partition function is given up toO(Q2), by

Z@A#5expF2E dDx
m2

2g21 ln det@gm~]m2 iA m
3 T3!1m#G

3expF2E dDx
1

4e2F mn
3 F mn

3 G
3E D@Qm

a #expF2
1

2e2E dDx dDyQm
a @Dmn

211e2Pmn

1e2~F2Pterm!#abQn
bG , ~20!

whereD21 is the inverse of the gluon propagator

~D21!mn
ab[2dmn~D 2!ab12eab3F mn

3 , ~21!

under the gauge~13!. In Eq. ~21!, the symmetric matrix
eab3F mn

3 has negative eigenvalues after the diagonalizat
@21#, thus there are tachyonic singularities. This is due t
large magnetic moment of spin-1 particle.~Recall that we
are in the Euclidean world so that all gauge fields are c
sidered as magnetic one.! In view of Eq. ~21!, these tachy-
onic singularities become harmless if we introduce a glu
massMg that should obey

~Mg!2.uF mn
3 u. ~22!

The situation would be guaranteed inside a hadronic ph
that is, a confining phase, where it is expected that glu
behave as massive particles@24#. The term in Eq.~20!

Pmn
ab[2

d2

dQm
a dQn

b
ln det@gm~]m2 iA m

3 T32 iQm!1m#U
Q50

52
d2

dQm
a dQn

b
tr ln@gm~]m2 iA m

3 T32 iQm!1m#U
Q50

,

~23!
5-3
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is the vacuum polarization tensor. We omit the isospin ind
3 of A m

3 as well asF mn
3 from now on.~In the above sense

our model is not a gauge theory any more even though
proper time regularization enables us to bring a gau
invariant result for a vacuum polarization tensor; the proo
found in Appendix D.!

Integrating with respect to the quantum fieldQm , we ob-
tain

Z5exp@2VTv (D)#3~m2 independent terms!, ~24!

where

v (D)[
m2

2g2 1v1
(D)1v2

(D) , ~25!

with

v1
(D)[2

1

VT
tr ln@gm~]m2 iAmT3!1m#, ~26!

v2
(D)[

1

VT

e2

2
tr~PD!

5
1

VT

e2

2 E dDx dDyPmn
ab~x,y!Dnm

ba~y,x!, ~27!

being the one-loop and the two-loop effective potential,
spectively. HereV is the (D21)-dimensional volume of the
system, andT is the Euclidean time interval. The stationa
condition for the effective potential

]v (D)

]m
50, ~28!

gives a gap equation,

2
~4p!D/2

4g2LD22
5 f 1

(D)~x!1 f 2
(D)~x!, x[

m2

L2
~0<x<1!,

~29!

whereL is the ultraviolet cutoff, and

f i
(D)~x![

~4p!D/2

2LD22

]v i
(D)

]m2
, i 51,2. ~30!

The remaining task is, therefore, the calculation of
effective potential Eqs.~26! and ~27!. Let us start with the
one-loop part. We utilize the proper time method@20#:
06502
x
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v1
(D)52

1

VT
tr ln@gm~]m2 iAmT3!1m#

52
1

2VT
tr lnF2~]m2 iAmT3!22

1

2
smnFmnT31m2G

5
1

2VTE1/L2

`

dtt21e2tm2
trE dDx^xue2tH0ux&,

~31!

where the ultraviolet cutoffL has been introduced, tr i
taken only for the spinor and the isospin indices, and

H0[Pm
2 2

1

2
smnFmnT3 , ~32!

with

Pm[ p̂m2Am~ x̂!T3 , ~33!

@ x̂m ,p̂n#5 idmn . Write the kernel as

K~x,y;t![^xue2tH0uy&, ~34!

to find

K~x,y;t!5
1

~4pt!D/2FdetS sintF/2

tF/2 D
mn

G21/2

@K0~t!I

1K3~t!T3#exp@ iT3C#

3expF2
1

4
~x2y!mS F

2
cot

tF
2 D

mn

~x2y!nG ,

~35!

whose derivation is given in Appendix A. In Eq.~35!, quan-
tities are defined such that

C[2
1

2
Fmnxmyn , ~36!

K0~t![cosh
tF1

2
cosh

tF2

2

2g5sinh
tF1

2
sinh

tF2

2
, ~37!

K3~t![smnS Nmn
1 sinh

tF1

2
cosh

tF2

2

1Nmn
2 cosh

tF1

2
sinh

tF2

2 D , ~38!
5-4
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where

F1[AB21E2,
F250,

B[F12, E[~F13,F23! ~39!

for D53,

F1[
$~ uB1Eu1uB2Eu%

2
, E[~F14,F24,F34!

~40!

F2[
$uB1Eu2uB2Eu%

2
, B[~F23,F31,F12!,

for D54,

and

Nmn
1 [

Fmn

F1
[Nmn , Nmn

2 50, for D53, ~41!

Nmn
1 [

FmnF12F̃mnF2

F1
2 2F2

2
,

Nmn
2 [

F̃mnF12FmnF2

F1
2 2F2

2
, for D54, ~42!

with F̃mn[emnlrFlr/2 being the dual ofFmn .
Therefore,

v1
(D)5

1

2VTE1/L2

`

dtt21e2tm2
trE dDxK~x,x;t!

5
4

~4p!D/2E1/L2

`

dt t2D/221e2tm2
GD~tF !, ~43!

where

GD~tF ![H tF1

2
cothS tF1

2 D for D53,

t2F1F2

4
cothS tF1

2 D cothS tF2

2 D for D54.

~44!

In order to calculate the two-loop contribution@Eq. ~27!#
first we express the gluon propagator@Eq. ~21!# in terms of
the proper time as

Dmn
ab~x,y!5E

0

`

dte2tMg
2
@~e22i tF!mn^xue2tPm

2
uy&#ab,

a,b51,2,3, ~45!
06502
whereMg is the gluon mass@Eq. ~22!#. The results whose
derivation is relegated to Appendix B are

Dmn
i j ~x,y!5$~cosC1e sinC!@Dmn

1 ~x2y!

1e Dmn
2 ~x2y!#% i j ,

i , j 51,2, ~46!

Dmn
33 ~x2y![Dmn

3 ~x2y!5dmnE
0

`

dt
e2tMg

2

~4pt!D/2

3expF2
1

4t
~x2y!2G , ~47!

and others50. ~If we work with an Abelian gauge theory
only the Dmn

3 term survives. In this sense, we call Eq.~47!
the Abelian part.! HereC has been given in Eq.~36!, e is a
232 antisymmetric matrix (e1252e2151),

Dmn
1 ~x2y!

5E
0

`

dt
e2tMg

2

~4pt!D/2
~cos 2tF!mnFdetS sint

F
tFD

m n
G21/2

,

3expF2
1

4
~x2y!•~F cottF!•~x2y!G , ~48!

Dmn
2 ~x2y!

52E
0

`

dt
e2tMg

2

~4pt!D/2
~sin 2tF!mnFdetS sintF

tF D
mn

G21/2

3expF2
1

4
~x2y!•~FcottF!•~x2y!G . ~49!

Second we need the vacuum polarization tensor@Eq. ~23!#
for the two-loop effective potential@Eq. ~27!#, whose proper
time expression is found as follows:

tr ln@gm~]m2 iAmT32 iQm!1m#

5
1

2
tr ln@gmgn~Pm2Qm!~Pn2Qn!1m2#

52
1

2E1/L2

`

du u21e2um2
Tr~e2u(H01H11H2)!, ~50!

whereH0 has been given in Eq.~32!, and

H1[22QmPm2@Pm ,Qm#1 ismn@Pn ,Qm#, ~51!
5-5
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H2[Qm
2 1

i

2
smn@Qm ,Qn#, Qm[Qm

a Ta . ~52!

Expand the final expression of Eq.~50! with respect to the
quantum fieldQm up to the second order to find

tr~e2u(H01H11H2)!5tr~e2uH0!1I 11I 2 , ~53!

with

I 1[2u tr~H2e2uH0!52u trE dDx^xuH2e2uH0ux&

52u trE dDxH2~x!K~x,x;u!, ~54!

H2~x![Qm
2 ~x!2

1

2
smneab3Qm

a ~x!Qn
b~x!T3 , ~55!

and

I 2[
u

2E0

u

du1tr~H1e2(u2u1)H0H1e2u1H0!

5
u2

2
trE

0

1

dv~H1e2(12v)uH0/2H1e2(11v)uH0/2!

5
u2

2 E
0

1

dv trE dDx dDy^xuH1e2(12v)uH0/2uy&

3^yuH1e2(11v)uH0/2ux&

5
u2

2 E
0

1

dv trE dDx dDyH1S x,y;
12v

2
uD

3KS x,y;
12v

2
uDH1S y,x;

11v
2

uD
3KS y,x;

11v
2

uD , ~56!

H1~x,y;t![2 iQm~x!S F
2

cot
tF
2 D

mn

~x2y!n

2Qm~x!Fmn~x2y!nT31 iD m
abQm

b ~x!Ta

1smnD n
abQm

b ~x!Ta , ~57!

where we have utilized theux& representation such that
06502
^xuPme2tH0uy&5S 2 i ]m
x 1

1

2
Fmn xnT3DK~x,y;t!

5F i

2 S F
2

cot
tF
2 D

mn

~x2y!nI

1
1

2
Fmn~x2y!nT3GK~x,y;t!, ~58!

with the aid of Eq.~35!, and made a change of variable fro
u1 to v, u15(11v)u/2, in the first line of Eq.~56!. In terms
of I 1 ,I 2, the vacuum polarization tensor@Eq. ~23!# reads

Pmn
ab5

1

2

d2

dQm
a dQn

bE1/L2

`

du u21e2um2
@ I 11I 2#. ~59!

If we write

Pmn
i j ~x,y!5$~cosC1e sinC!@Pmn

1 ~x2y!

1ePmn
2 ~x2y!#% i j , for i , j 51,2, ~60!

Pmn
33 ~x2y!5Pmn

3 ~x2y!, ~Abelian part!, ~61!

in order to meet the expression of the gluon propagators E
~46! and ~47!, the two-loop contribution, Eq.~27!, is ex-
pressed as

v2
(D)5

1

VT

e2

2 E dDx dDyPmn
ab~x,y!Dnm

ba~y,x!

5e2E dDp

~2p!DFPmn
1 ~p!Dnm

1 ~p!

2Pmn
2 ~p!Dnm

2 ~p!1
1

2
Pmn

3 ~p!Dnm
3 ~p!G . ~62!

Again the third term designates the Abelian contribution.
The explicit forms ofPmn

1 ;Pmn
3 are found, after perform-

ing the Fourier transformation, as follows: in 211 dimen-
sions, put

f (3)[p•S cosuvF/22cosuF/2

uF sinuF/2 D •p, ~63!

amn
6 [S cosuF/26cosuvF/2

sinuF/2 D
mn

,

bmn[S sinuvF/2

sinuF/2 D
mn

, ~64!

and utilizeNmn given in Eq.~41! with obvious abbreviations
such that

Nmn
2 [NmrNrn , Nmn

3 [NmrNrsNsn ,

~Np!m[Nmnpn , etc. ~65!

to obtain
5-6
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Pmn
1 ~p!5

F1

2~4p!3/2E1/L2

`

duE
0

1

dv u1/2e2u(m21f(3))
1

sinhuF1/2F2
F1

sinhuF1/2
dmn1

F1
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~These expressions are so lengthy that we ensure the co
ness by checking the gauge invariance of those, that is,
Ward-Takahashi relation in Appendix D.!

Armed with these general results, in the following w
consider the magnetic background only and proceed to
culate the gap equation in 211 and then 311 dimensions.

III. THE GAP EQUATION IN 2 ¿1 DIMENSIONS

When the background is purely magnetic,E50, in view
of Eq. ~39!, F1⇒B. A dimensionless quantity,

B[
B

L2 , ~75!

is introduced in addition tox[m2/L2 in Eq. ~29!. ~Since the
coupling constante has been included to gauge fields t
dimension of gauge fields is always one.! The one-loop con-
tribution to the gap equation Eq.~29!,
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wheret has been scaled toL2t. We plot f 1
(3)(x) in Fig. 1. It

is seen that for a fixed four-Fermi couplingg, that is, with
respect to a~supposed! horizontal line, mass is a monoton
increasing function of magnetic-field strength. It is al

FIG. 1. One-loop contribution to the gap equation in 211 di-
mensions. The solid line representsB50, the dash-dotted line
Mg

2/3, and the dotted lines 2Mg
2/3, respectively. Inx.0.01, recog-

nized from the small graph, all curves become degenerate. In o
to fix the magnitude of the background field, the~dimensionless!
gluon massy5Mg

2/L2 is set to be 0.01.
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noted that the critical couplinggc , defined byf 1
(3)(x50) in

Eq. ~76! for a fixed magnetic field, goes to zero whenB
Þ0. This phenomenon is the so-called ‘‘dimensional red
tion @13#’’ and is due to the infrared divergence of the effe
tive potential under the background magnetic field@12#.

The two-loop contribution is found as
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The q1 ,q2, and q3 terms come from the first two terms i
Eq. ~62!, that is, from the non-Abelian contribution. Mean
while q4 represents the Abelian contribution.

We plot the two-loop part in Fig. 2.~Our choice of the
gauge couplinge2/(4pL)50.01 does guarantee the a
proximation, sincef 2

(3)/ f 1
(3);0.1 by comparing the vertica

scale between Figs. 1 and 2.! From the small graph, we ca
convince that gluons enhancexSB as is expected because
curves remain negative for a whole region, 0<x<1. Note
that there is a crossover aroundx;0.001; in the region large
than the crossover,x, on some horizontal line~a line with a
fixed four-Fermi coupling! is a monotone decreasing fun
tion of the magnitude of the background field. In the regi
smaller than that,x is, however, a increasing function of i
similar to the one-loop case. To see the situation more c
fully, we plot the Abelian contribution to the gap equatio
that is, theq4 term in Eq.~78!.

FIG. 2. Two-loop contribution to the gap equation in 211 di-
mensions. As in Fig. 1, the same line pattern is used. From
smaller graph, we see that all curves become degenerate but re
negative in the whole region 1>x>0. The graph is drawn by put
ting e2/(4pL)50.01 andy50.01.
06502
e-

From Fig. 3,x, on some horizontal line, is a monoton
decreasing function of the background field everywhere fo
fixed g. Therefore, the increasing tendency of Fig. 2 inx
,0.001 comes from the non-Abelian parts in Eq.~78!.

IV. THE GAP EQUATION IN 3 ¿1 DIMENSIONS

In 311 dimensions, whenE50

F1⇒B, F2⇒0. ~85!

Again employing the dimensionless quantityB5B/L2, we
have the gap equation of one-loop contribution,

2
4~p!2

g2L2
5 f 1

(4)~x!, ~86!

with
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(4)~x!5

~4p!2
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]v1
(4)
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`

dt t21e2txcoth
tB
2

,

~87!

which is plotted in Fig. 4. All curves become degenera
again wherex is large. For a fixed four-Fermi couplingg,
mass is a monotone increasing function of magnetic-fi
strength. Moreover the critical coupling goes to zero ev
under infinitesimal magnetic fields@13,12#.

The two-loop contribution is given by
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~88!

whereK, M, andN are the same as Eq.~80! and

e
ain

FIG. 3. Abelian part of the two-loop contribution to the ga
equation in 211 dimensions. The graph is drawn by puttin
e2/(4pL)50.01 andy50.01.
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The graph is shown in Fig. 5.~The choice of the gauge
coupling e2/4p50.01 again guarantees our approximatio

FIG. 4. One-loop contribution to the gap equation in 311 di-
mensions. The solid line, dash-dotted line, and dotted line desig
B50,Mg

2/3, and 2Mg
2/3, respectively. The smaller graph shows t

whole structure, 1>x>0. We again setMg
2/L250.01.
06502
,

since f 2
(4)/ f 1

(4);0.05. It should be noted that our result ofB
50 is consistent with that of Kondoet al. @22#.! All curves,
shown in the smaller graph, remain negative and beco
degenerate forx>0.001.

Therefore, gluons enhancexSB everywhere even in no
backgroundB50, which fits our expectation. Contrary to th
case in 211 dimensions, mass is a monotone increas
function of magnetic-field strength everywhere for a fix
four-Fermi couplingg.

V. DISCUSSION

In this paper we discuss the effect of dynamicalSU(2)
gluons to the gap equation of the NJL model under the
fluence of the constant background non-Abelian magn
field. The two-loop calculations make expressions consid
ably complicated but correctness of the results is guaran
by checking the Ward-Takahashi relation in Appendix D.
311 dimensions, as is seen from Figs. 4 and 5, gluons p
the same role as fermions in the one-loop, that is, they
hance xSB. Moreover, the dependence of gluons on
background field is also the same as a fermion in the
loop; dynamical mass grows larger as the background m
netic field becomes stronger. The result is consistent with
expectation but different from@18# where RG with the one-
loop calculation was employed. In 211 dimensions, the
situation is unchanged that gluons enhancexSB even under
the influence of the background field, contrary to the work
@17#. The dependence of gluons on the background magn
field, however, is not so simple as in 311 dimensions; as is
seen from Fig. 2 when dynamical mass is tiny the ba
ground field increases it, but in a well-broken region, that
in a region where dynamical mass is large, the backgro
field resists a mass to grow. The difference between 211
and 311 dimensions is due to that of theu dependence in
Eqs.~78! and ~88!; by making the scale transformation tou
andt such that

te

FIG. 5. Two-loop contribution to the gap equation in 311 di-
mensions. In the smaller graph the whole structure, 0<x<1, is
shown. The same line pattern is used for different curves by put
e2/4p50.01 andMg

2/L250.01.
5-11
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u°
u

B , t°
t

B , ~93!

quantities,K,M,N @Eq. ~80!#, scale as

K°BK, M°M, N°N, ~94!

so that qi and pi , (i 51 –4), Eq. ~81!–Eq. ~84! and Eq.
~89!–Eq. ~92! transform

qi°Bqi , pi°Bpi . ~95!

Therefore,

f 1
(3)°ABf 1

(3) ,

f 1
(4)°Bf 1

(4) ,

f 2
(4)°Bf 2

(4) , ~96!

which shows a monotone character with respect toB, con-
vincing us of the results of Figs. 1 , 4, and 5,qualitatively
~because there is stillB dependence inf 1

(3) , f 1
(4) , and f 2

(4)).
But

f 2
(3)° f 2

(3) , ~97!

which implies that dependence onB is due only to the de-
tailed structure of integrand of expression~78!, that is, we
cannot extract a simple monotone behavior in this case.

The second point we wish to discuss is on the instabi
of the gluon functional determinant; we have avoided this
introducing gluon massMg , which is always assumed big
ger than the magnitude of the background magnetic fieldB,
Mg

2.B. Physically, it is interpreted that the energy of no
Abelian particles could become lower and lower as the ba
ground magnetic field grows larger and larger. There is
lower limit in the system. The situation is exactly the same
the constant electric-field case, where the vacuum beco
unstable due to successive pair productions. We have tre
this pathological instability by considering only an extern
electric field whose magnitudeE is less than that of the dy
namical mass squared;m2.E @12#. The point is that the
setup itself—‘‘field theories under constant backgrou
field’’—is pathological. The system is not closed; energy
continuously supplied from the outer environment. Howev
even in these pathological environments, we could still th
about those background effects if we suppose that gluons
massive in a confining phase and that the magnitude of b
ground fields is smaller than the gluon mass squared.

The final point to discuss is beyond the tree approxim
tion of the auxiliary fieldss andp; in most cases of the NJL
study, fermions are assumed to haveN components withN
being supposed infinite finally. However, in the actual situ
tion, N is finite so thatO(1/N) corrections should be take
into account. A study in a simpler model@23# says that the
approximation becomes more and more accurate if we in
porate higher-order terms. Thus going beyond the one l
of the auxiliary fields is captivating and the work in th
direction is in progress.
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APPENDIX A: CALCULATION OF KERNEL BY THE
PROPER TIME

In this appendix we derive the expression of the ker
~34!

K~x,y,t!5^xue2tH0uy&5etsmnFmnT3/2^xue2tPm
2
uy&.

~A1!

Because of the covariantly constant condition~4!, the matrix

element̂ xue2tPm
2
uy& can be calculated exactly the same w

as the Abelian case@20#

^xue2tPm
2
uy&5

1

~4pt!D/2
exp@ iT3C#FdetS sintF/2

tF/2 D
mn

G21/2

3expF2
1

4
~x2y!mS F

2
cot

tF
2 D

mn

~x2y!nG ,

~A2!

with

C[2
1

2
Fmnxmyn . ~A3!

The remaining task is therefore the calculation
exp@(t/2)smnFmnT3#; in 211 dimensions, the gamma matr
ces are given as

gm5S sm 0

0 2sm
D ,

smn

2
[

1

4i
@gm ,gn#5

emnr

2 S sr 0

0 sr
D

[emnrJr , m,n,r51,2,3, ~A4!

whereJm’s satisfy

@Jm ,Jn#5 i emnrJr , $Jm ,Jn%5
dmn

2
I . ~A5!

In terms ofJm’s

1

2
smnFmn5E2J12E1J21BJ3 , B[F12;E[~F13,F23!.

~A6!

From Eqs.~A5! and ~A6!, we obtain

S 1

2
smnFmnT3D 2

5SAB21E2

2 D 2

I[S F1

2 D 2

I . ~A7!

Meanwhile,

1

2
smnFmnT35smn

Fmn

F1

F1

2
T3[smnNmnT3

F1

2
,

Nmn[
Fmn

F1
. ~A8!

Therefore in 211 dimensions
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expF t

2
smnFmnT3G5cosh
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~A9!

In 311 dimensions, first write

H F1[
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2
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and introduce the antisymmetric tensors,Nmn
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2
Flr , ~A11!
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where the second relation can be verified by using E
~A10! and
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2 1F2

2 !, FmnF̃mn54F1F2 .
~A14!

With the aid ofNmn
6 , Fmn is expressed as

Fmn5F1Nmn
1 1F2Nmn

2 , ~A15!

giving

1

2
smnFmn5

1

2
~F1smnNmn

1 1F2smnNmn
2 !,

smn[
@gm ,gn#

2i
. ~A16!

By noting

@smn ,slr#52i ~dmlsnr2dmrsnl2dnlsmr1dnrsml!,
~A17!

and Eq.~A12!, we find

@smnNmn
1 ,slrNlr

2 #50. ~A18!

Therefore,
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expF1

2
smnFmnT3G

5expFF1

2
smnNmn

1 T3GexpFF2

2
smnNmn

2 T3G . ~A19!

Also by noting

$smn ,slr%52~dmldnr2dmrdnl2emnlrg5!, ~A20!

and Eq.~A13!,

~smnNmn
6 !254. ~A21!

Hence

S F6

2
smnNmn

6 T3D 2

5S F6

2 D 2

I , ~A22!

yielding

expFF6

2
smnNmn

6 T3G5cosh
F6

2
I1smnNmn

6 sinh
F6

2
T3 .

~A23!

Finally utilizing

smnNmn
1 srlNrl

2 524g5 , ~A24!

we obtain

expF t

2
smnFmnT3G5S cosh

tF1

2
cosh

tF2

2

2g5sinh
tF1

2
sinh

tF2

2 D I

1smnS Nmn
1 sinh

tF1

2
cosh

tF2

2

1Nmn
2 cosh

tF1

2
sinh

tF2

2 DT3

~A25!

5K0~t!I1K3~t!T3 , ~A26!

K0~t![cosh
tF1

2
cosh

tF2

2

2g5sinh
tF1

2
sinh

tF2

2
, ~A27!

K3~t![smnS Nmn
1 sinh

tF1

2
cosh

tF2

2

1Nmn
2 cosh

tF1

2
sinh

tF2

2 D . ~A28!
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APPENDIX B: GLUON PROPAGATOR IN TERMS OF THE
PROPER TIME

In this appendix we show the proper time representa
of the gluon propagator~21!

~D21!mn
ab52dmn~D 2!ab12iFmn@ad~T3!#ab, ~B1!

where we have introduced a slightly different notation fro
Eq. ~21!

D m
ab5dab]m2 iAm@ad~T3!#ab, @ad~T3!#

[S 0 2 i 0

i 0 0

0 0 0
D . ~B2!

The proper time representation is obtained as usual.

Dmn
ab~x,y!5E

0

`

dte2tMg
2
@^xue2tP2

uy&#ac~e22i tF[ad(T3)] !mn
cb ,

~B3!

where

P2[~Pm
ab!2, Pm

ab[dabp̂m2Am~ x̂!@ad~T3!#ab,
~B4!

and we have introduced the gluon massMg to avoid the
tachyonic singularity. Fora5b53, it reads

Dmn
33 [Dmn

3 5~2dmn]2!21, ~B5!

which is the free propagator. Therefore we obtain Eq.~47!:

Dmn
3 ~x2y!5dmnE

0

`

dt
e2tMg

2

~4pt!D/2
expF2

1

4t
~x2y!2G .

~B6!

In a,b51,2 usei , j 51,2 and utilize the result in Appendix A
@Eq. ~A2!# and @ad(T3)# i j 52 i e i j to find

@^xue2tP2
uy&# i j

5
1

~4pt!D/2
~d i j cosC1e i j sinC!FdetS sintF

tF D
mn

G21/2

3expF2
1

4
~x2y!m~F cottF!mn~x2y!nG , ~B7!

whereC is given in Eq.~A3!. Finally by noting that

~e22i tF[ad(T3)] !mn
i j 5d i j ~cos 2tF!mn2e i j ~sin 2tF!mn ,

~B8!

the relations~46!–~49! are obtained.
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APPENDIX C: PROOF THAT OUR CLASSICAL
SOLUTION SATISFIES THE COVARIANTLY CONSTANT

CONDITION

In this appendix we show that the right-hand side of E
~12! vanishes:

tr@~gm~]m2 iAmT3!1m!21~2 ignTa!#

5tr@SA~x,x!~2 ignTa!#50, ~C1!

where SA(x,y) is the fermion propagator under the bac
ground fields;

@gm~]m2 iAmT3!1m#SA~x,y!5dD~x2y!. ~C2!

SA(x,y) can be expressed, by using the proper time meth
as

SA~x,y!5^xu~ igmPm1m!21uy&

5^xu~2 igmPm1m!

3S Pr
22

1

2
srlFrlT31m2D 21

uy&

5E
0

`

dte2tm2
^xu~2 igmPm1m!e2tH0uy&

5E
0

`

dte2tm2F1

2
gmS F

2
cot

tF
2 D

mn

~x2y!nI

2
i

2
gmFmn~x2y!nT31mGK~x,y;t!, ~C3!

whereK(x,y;t) is the kernel of Eq.~A1!. Therefore

tr@SA~x,x!~2 ignTa!#

522imE
0

`

dte2tm2 1

~4pt!D/2

3FdetS sintF/2

tF/2 D
mn

G21/2

tr@et/2smnFmnT3gnTa#50,

~C4!

since the trace for the gamma matrices vanishes becaus
total number of those is odd.

APPENDIX D: THE WARD-TAKAHASHI RELATION
OF VACUUM POLARIZATION

In this appendix it is shown that the vacuum polarizati
function satisfies the Ward-Takahashi relation
5-14
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~D m
x !abPmn

bc ~x,y!50, ~D1!

where

D m
ab5dab]m2eab3Am ,

with Am being a background field

Am52
1

2
Fmnxn . ~D2!

The Ward-Takahashi relation~D1! is separated into

]mPmn
3 ~x,y!50, ~D3!

and

@d i j ]m
x 2e i j 3Am~x!#Pmn

jk ~x,y!50, for i , j ,k51,2.
~D4!

The first relation~D3! can easily be checked by noting E
~68! and Eq.~74! so that the second relation~D4! must be
examined. In view of the fact thatPmn

i j (x,y) can be written
as

Pmn
i j ~x,y!5$~cosC1e sinC!@Pmn

1 ~x2y!1ePmn
2 ~x2y!#% i j ,

~D5!

the matrix relation reduces to

]m
x Pmn

1 ~x2y!1Am~x2y!Pmn
2 ~x2y!50, ~D6!

]m
x Pmn

2 ~x2y!2Am~x2y!Pmn
1 ~x2y!50. ~D7!

Utilizing the series expansion with respect to the backgro
gauge field, we show, up toO(F), that these relations indee
hold: first note thatPmn

1 and Pmn
2 are polynomials of even

and odd powers ofF, respectively. Thus inO(1) Eq. ~D6!
reads

]mPmn
1 uF5050, ~D8!

which is fulfilled, since from Eq.~66! and Eq.~72!, Pmn
1 has

been given by

Pmn
1 ~p!uF505

1

~4p!D/2E1/L2

`

duE
0

1

dv
12v2

uD/221

3expF2uS m21
12v2

4
p2D G$p2dmn2pmpn%.

~D9!

Next in O(F),

]mPmn
2 uO(F)2Am~x2y!Pmn

1 ~x,y!uF5050, ~D10!
06502
d

which becomes in the momentum space

pmPmn
2 ~p!UO(F)1

1

2
Fmr

]

]pr
Pmn

1 ~p!U
F50

50, ~D11!

wherePmn
2 (p)uO(F) can be found from expression~67! in 2

11 dimensions

Pmn
2 ~p!uO(F)

5
1

~4p!3/2E1/L2

`

duE
0

1

dv u21/2

3expF2uS m21
12v2

4
p2D G

3FFmn2
u~12v2!

4
@pm~Fp!n2~Fp!mpn

12p2Fmn#G , ~D12!

and from Eq.~73! in 311 dimensions

Pmn
2 ~p!uO(F)

5
1

~4p!2E
1/L2

`

duE
0

1

dv expF2uS m21
12v2

4
p2D G

3FF1H 1

u
Nmn

1 2
~12v2!

2
~ I 2p!•~ I 2p!Nmn

1

2
11v2

4
@~ I 2p!m~N1p!n2~N1p!m~ I 2p!n

2~ I 1p!m~N1p!n1~N1p!m~ I 1p!n#

1
v2

2
@~ I 1p!•~ I 1p!Nmn

1 1~ I 2p!m~N1p!n

2~N1p!m~ I 2p!n#J 1~1↔2 !G , ~D13!

respectively. With the use of Eq.~71!, the left-hand side of
Eq. ~D11! is shown to vanish,

LHS5
1

2~4p!D/2E1/L2

`

duE
0

1

dv
e2um2

uD/221
~Fp!n

3
d

dv Fv~12v2!expS 2
u~12v2!

4
p2D G

50. ~D14!

Therefore we can convince ourselves that the Wa
Takahashi relation is satisfied in each order of the ba
ground field@24#.
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