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Kink interactions in SU(N)XZ,

Levon Pogosian
Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom
(Received 22 November 2001; published 5 March 2002

There areN—1 classes of kink solutions iBU(N) X Z,. We show how interactions between various kinks
depend on the classes of individual kinks as well as on their orientations with respect to each other in the
internal space. In particular, we find that the attractive or repulsive nature of the interaction depends on the
trace of the product of charges of the two kinks. We calculate the interaction potential for all combinations of
kinks and antikinks inSU(5)xZ, and study their collisions. The outcome of kink-antikink collisions, as
expected from previous studies, is sensitive to their initial relative velocity. We find that heavier kinks tend to
break up into lighter ones, while interactions between the lightest kinks and antikinks in this model can be
repulsive as well as attractive.
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I. INTRODUCTION higher velocities they scatter. However, the dependence of
the outcome on the incident velocity is rather non-linear, as
Topological defects are observed in condensed matter sywas found in[5-10 and investigated in detail if12].
tems and may have been formed during phase transitains Namely, it was found that, over a relatively small range of
early stages in the history of the universd. If observed, initial velocities, intervals of initial velocity for which kink
they would provide invaluable information about the uni-and antikink capture each other alternate with regions for
verse when it was a tiny fraction of a second old. If notwhich the interaction concludes with escape to infinite sepa-
observed, topological defects still play an important role byrations. In[12], this alternation phenomenon was attributed
placing constraints on particle physics models and cosmolto a nonlinear resonance between the orbital frequency of the
ogy. The formation and scaling of a network of defectsbound kink-antikink pair and the frequency of characteristic
strongly depends on how they interact among themselvesmall oscillations of the field localized at the moving kink
This, in turn, will affect the type and the strength of restric- and antikink centers.
tions that observation&r the lack theregfcan impose on In this work, when discussing interactions between kinks,
the underlying model. Another context, in which interactionswe will aim to concentrate on issues that are unique to
between defects are important, is the possible connection b&U(N) X Z, and will refer to earlier work when a problem
tween elementary particles and solitonic solutions of classican be reduced to that of kinks in tgé model. In particular,
cal field equation$2]. we will show that inSU(N) X Z, kinks can repel as well as
In addition to the more general reasons given above, unattract.
derstanding how th8 U(N) X Z, domain walls interact could This paper is organized as follows. In Sec. Il we give a
be important in the light of the correspondence, found bybrief overview of kink solutions irSU(N) X Z,. In Sec. IlI
Vachaspati 3], between the spectrum &U(5) monopoles we develop a framework in whicBU(N) X Z, kink interac-
and the spectrum of one family of fermions in the standardions can be discussed and show a simple way of determin-
model. Interactions betweedlU(N) X Z, kinks may also be ing whether a given pair of kinks will attract or repel. In
relevant to the solution of the monopole over-abundancéecs. IV and V we study the kink-antikink interactions in
problem based on sweeping monopoles with domain walls aSU(5) X Z,. Results are summarized in Sec. VI.
proposed if4].
Previous work on interactions between kinks has mainly
concentrated on the sine-Gordon and #ifenodels in(1+1)

dimensiong5-12]. Even a relatively simple system of¢f Consider a1+1)-dimensional model of a scalar fiel
kink interacting with an antikink can have rather nontrivial transforming in the adjoint representation®&(N), with N

dynamics, which is one of the reasons why so many retaken to be odd and with the additiona, symmetry that
searchers have worked on this problem in the past. The forggikes® to —®. The Lagrangian is

between kinks and antikinks of thé* model is always at-
tractive. The outcome of their collision can be one of the
three types: they can annihilate, they can scatter off each
other or they can form an intermediate bound state before
ultimately separating or annihilating. The general tendency isvhereV(®) is such thatb has an expectation valge,, that
that at low collision velocities kinks tend to annihilate and atcan be chosen to be

Il. KINKS IN  SU(N)XZ,

L=Tr(d,P)?—V(P), @

1 N . . 2 nl, .4 0
Here, the term “phase transition” includes continuous transitions Oy=9p\/ 77— ; (2)
called crossovers. N(N-=1)\ 0 —(n+1)1,
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wherel, is thep X p identity matrix, N=2n+1 and# is an 1

energy scale determined by the minima of the potential jt=—et"9,®, (13)
Such an expectation value spontaneously breaks the symme- g

try down to where u,»=0,1, ande*” is the antisymmetric tensor. The

definition (10) of Q can be used for nontopological kinks as

H=[SUN+1)xSUM)XUW)[Zy:1XZsl. - ) eyl as topological ones.

Various types of kink solutions in this model are defined
by choices of the boundary conditions »at — and x= 1. KINK INTERACTIONS IN  SU(N)XZ,
+o0, wherex is the space coordinate. It was proved 18]
that for a kink solution to exist one must necessarily have[a
[®(—),P(+00)]=0. This allows one to list all the pos-
sible boundary conditionsup to gauge rotationsthat can
lead to kink solutions. We can figp, =& (—»)=®,, given
in Eq. (2). Then we can have

Consider two kinksK® and K(?), separated by a dis-
nce which is larger than their core sizes. The classes to
which the two kinks belong, as well as the global topology of
the two-kink configuration, are determined by the choices of
the three vacua:

d_ atx=—o0,

2 ®g in between the two kinks,
Or=0(+x)=€rn \/mdiagnlnﬂ,q, d, atx=+oo .
( ) Let indices €{V),q") describe the kink betweeh _ and
—(n+1)1g,n1q, — (n+1)1,_), 4) o, whereq denotes the kink class as defined in Sec. II,

and e(Tl) is —1 for topological and+1 for nontopological

where we have introduced a parameter= =1 and another  kinks. Similarly, let €{*,q/®) denote the kink bounded by
q=0,...n. The labeler is +1 when the boundary condi- &, and®, . BoundariesP_ and®, of the two-kink sys-
tions are topologically trivial and is-1 when they are topo- tem can also be described using indiceg)(,q(”) defined
logically nontrivial. g tells us how many diagonal entries of ;; 5 similar way. Topology requires thaé(T3):E(T1)E(T2)_
@, have been permuted ifr. The caseq=0 is when 1h,s  the two-kink system can be described by
s;table topological <T_:_1_) kink solution corresponds @ 45ha| gauge rotations, since it contains only information
—n. Topological q=n kinks were studied in detail in 51,4,t how many diagonal entries were permuted in each of
[15,16. _ ) he vacua®d _, ®,, and® , with respect to each other.

The most general ansatz for the kink solution was found .. given values off™ andq®®, not all values ofg®

in [13] and can be written as will generally be allowed. To determine the selection proce-

_ dure, let us start withib,, in which g diagonal entries of
P=FL M AF-0OM-+g()M, © ®_ were permuted. We want to know how many diagonal
where entries of® _ can be permuted i, (i.e., the value ofy®)
given thatq‘® diagonal entries o, were permuted i , .
Or+D, Or— D, There aren+ 1 entries with absolute values equahto @ _
T =T o (6) [see Eq(2)], which we can denote hyl’'s, andn entries with
absolute values equal to¢1), which we will denote by
and, forq#0 andqg#n, B's. We will refer to thoseA’'s and B's of &, that were
permuted to formd, out of & _, as “changed,” and the
M= pdiagq(n—a)ln:1-q,—(N—q)(nN+1-0q)ly, ones that were left untouched as “unchanged.” Then, when
permuting A’'s and B's of ®, to form &, (q® permuta-
—(n=q)(n+1-q)ly,q(n+1-q)L,_q) (7)  tions), one has the following options:

(1) Permute a changed with a changeds. This opera-

tion will decrease the value af® by 1, since it will restore
pw= n[2q(n—q)(n+1—q){2n(n+1—q)—q}]‘1/2. th((za) original order of the given pair ofl andB_m d_. Let

(8) g;”’ denote the number of possible ways it can be done.

o Since there are onlg*) changedA'’s, g{¥<min(q™,q®).

Forg=0 or forg=n, the matrixM is zero. The boundary Also, if there is a deficit of unchanged's, one is forced to
conditions forF.. andg(x) are permute at leastq(®—n+q"—1) changedA’s, which

B B B means thag{?=max(0g®—n+q®-1).
F (f»)==1, F,(xx*)=1, g(x«*)=0. (9 (2) Permute a changed with an unchanged. This op-

One can define the charge of the kinks[2k eration does not affect the value @). The number of pos-
sible ways in which this can be done, denoteddy’, is

with

1 limited by the number of available changefls and un-
= ;(q)k( o)~ CDk( —®)), (10) Changed@'s: q(zz)g min(q(l)_ qg_z),n_ q(l)).
(3) Permute an unchanged with a changeds3. This op-
which corresponds to a current eration also does not change the valugdi. It can be done
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in g2 ways, limited by the number of available unchangedand

A’s and change®'s: g@’<min(n—q®+ 10— q{?).
(4) Permute an unchanged with an unchanged. This
operation will increase the value of® by 1, and can be

performed ing$?) ways, limited by the number of available

unchanged A’s and unchangedB's: q{®<min(n—q®
Za 10— o).

In summary, independent ef") ande{®), giveng™® and
q®), the set of possible values gf®) can be found using

q@=q-qP+q?, (12

where we have defined integer$’(i =1,2,3,4) that can take

FO~tanfo(x+a)], F@~tanfjo(x—a)], (18)

wherea>o ! ando ! is the “width” of the wall.
The field energy-momentum tensor can be derived using
the action principle and is given by

THY=2 T{ D '] — ' T "D 3, D] — 7*"V(D).

Therefore, the momentum density (fb+1) dimensions is

P=Ti=-2T{dd'], (20)

on all non-negative values allowed by the following selec-

tion rules:
a+af+af)+af=q,
max0,4®)—n+qH-1)<qP=min(q®,q®),
0=qgP=min(qM g ,n—qM),
0=qg{)<=min(n—q™+1g"-qf),

0<gP<min(n—q¥V-qP+1n—-qM-q®). (13

Next we would like to determine whether a given pair of

wheredDEatdb and®’'=4,d. One can define the momen-
tum of a field configuration on the interval <x<x, as

X2 .
Pz—f 2 T D dx.

X1

21

To calculate the force between the kinks, let us consider the
initial rate of change of momentum of(mitially ) static field
configuration given by the two-kink ansatz:

(22

dpP X2 . ..
—=—j 2(Tr[ PO ]+ TrH{ DD '])dx.
dt X1

kinks will attract or repel. We can use a procedure which isppe can use field equations of motion and integrate to obtain

analogous to one used by Mantd#] in the case of the*.

At large separations, the two-kink ansatz can be written as

O (x)=dM(x+a)+DdP(x—a)— D, (14)

where ®(M(x) is the first kink solution withd{M(— o)
=®_, ®P(x) is the second kink solution withb{®
(+0)=D,, De=PV(+x)=d(P(—x) is the vacuum
in the region separating the kinks aad-0 is the distance
from the origin to the centers of the kinks. Using E¢®).
and(10), we can write

®(x)=FOMD+ gFﬁl)Q(l)Jr gOM@+F@M @)
+ gF‘f)Q(Z”g(Z)M(Z)—@o- (15)

In [13] it was shown that functions*? and g*? can be

dP . «
a=[—Tr[q)z]—Tr[(CD’)z]+V(<I>)]Xj (23
Let us choose;<—a and —a<x,<a (e.g.,x,=0). That
is, we want to estimate the force on the first kiftke one at
x=—a), due to the second kink. Let us define

f=tanjo(x+a)] and y=tanjo(x—a)]+1.

(24)

The two-kink ansatz given by E¢L5) can then be re-written
as

d_+P n 7
t EQ(l)H_EQ(z)(—l—I-X). (25

d(x)~ 5

Initially, ®=0. Also, within the range;<x<Xx,, x(X)
<1 and we can perform an expansionynTo the leading

treated as approximately constant for a relatively wide rangerder in y we find

of parameters of a general quartic potential. A simplified

(and, therefore, only approximateersion of the two-kink
ansatz is given by

B(x)~M P+ ZFOQUWL MP + ZFRIQP -y,
(16)

where

17

2

dp 7 7
ol (12 n2_ " M) (2)1¢7 4,7
G0~ | 7 QM) - - THQUQ®@]f x
oV X2
V-0t 2 [5} Xl (26
a —
x=0 Xq
where functionsy? are defined by
a_ 7 (2)7a
X'=51QPTex (27)
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and coefficient§ Q]2 are defined by Our derivation of the fact that the sign of[QMQ(?)]
determines whether kinks will attract or repel was indepen-
dent of a particular form o¥/(®). We did, however, rely on
(2) = (2)7aTa . ) . . - M-
Q ; [Q™T, (28) certain approximations in the derivation that may not be
valid for some extreme choices ¥i{®). Our numerical in-

where T2 are the SU(N) generators normalized so that Vestigation of kink interactions iBU(5) X Z, with a general

T T2T"]= 5,,/2. Using the equations of motion gives quartic potential has always yielded an agreement between
the sign of TFQ®Q(?] and the overall sign of the interac-
7? D@ 1er r N tion potential.
Gi | T 7 TR Y +§a: [P ]y=0X In the next section we consider tih\e=5 case and study
Xy interactions between kinks and antikinks in more detail.
2
= %Tr[Q(l)Q(z)][_err+f~X]§i_ (29) IV. KINK INTERACTIONS IN  SU(5)XZ,

Let us consider th¢l+1)-dimensional model of a scalar
It can be shown tha[t—f’x’+f”x];(2<0 for all x, andx, field ® transforming in the adjoint representation®¥(5)
1

satisfying the constraints. Thus, the signd®/dt, and the xZ,. We will take the potential to be

attractive or repulsive nature of the force, is determined b 2 2 27y2 4

the sign of T[Q%)Q(Z)]. Y V(@)= —m2 T ®2]+h(Tr[ ®2])2+\ T D]+ V,,
Next we would like to express T@MQ®?)] in terms of

parameters dV),q®,q®), iV, €?) which define the two- with parameters such that the vacuum expectation value

kink configuration. We write (VEV) of @ breaks the symmetry spontaneously to

[SU(3)XSU(2)xXU(1)]/[Z3X Z5]. This happens in the pa-

rameter range

(33

1
TQWQ®@ = 7 (T®_ D]+ T PP, ]-TrHD_P, ]
h 7

—Tr[ D). (30 N T30 MO (34
Applyi'ng definitions (2) a.nd (4) to boundary conditions The VEV can be chosen to bé,= 7ndiag(2,2,2; 3,
specified by ¢ ,dg) we find —3)/(2y/15), where
L o i 1- 2qW(n+1 m
7 M Prl= W[(”Jr q)n’~2q*M(n+1)n E\/—_ (39
+(n—a)(n+1)?]
(2n+1) and
€ n
=1-q . (31)
2 n(n+1)
N=h+ %)\ (36)
Using the above expression and the fact thgt®pd,]
= 5?2 we find The constanV,=m?7?%/4 in Eq. (33) ensures thaV/(®d,)
=0.

We will study interactions between topological kinks and
antikinks (€"'=—-1, €»=-1) with all possible choices
for |nd|cesq(1) q®, andq®, as defined in Sec. II. We will

+6(T2)q(2) (1) (2)q(3)) (2n+1) (32) _not con.S|der interactions between nontopological kinks nor
2n(n+1)° interactions of non-topological kinks with topological ones.
Our initial configuration will be that of two well-separated
One can see, for example, that in the case of a topologicalolitons moving towards each other. From here on, we will
kink interacting with a topological antikinke(’=—1 and label such configurations with three indiceg¥(, q(z)
€?)=—1) both, attraction and repulsion, are possible de-q‘®), and it will be assumed tha{!={?=—1.
pending on the choices of?, q®, andq®. This is a novel In this model, only theg=2 topological kink solution is
feature, when compared to the classi¢él case[2], where stable. It also has the smallest energy of all kinks. However,
the force between a kink and an antikink is always attractivewe will not restrict the analysis tq=2 kinks, as interactions
An analogous situation is found in the case of interactiondetween all types of kinks antikinks could be potentially in-
between globalO(3) monopoleq17]. There, attraction or teresting.
repulsion between a monopole and an antimonopole is deter- We start by evaluating TQWQ®)] for all possible
mined not by their topological charges but by the relativechoices of the configuration of a kink and an antikink using
phase of their field configurations. Eqg. (32). As we have shown in Sec. Ill, this should tell us

1
THQUWQ®]= 2 (e ef?)— elDe®— 1) - (g™
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TABLE . Tr[Q™MQ(?)] evaluated for different choices of the
topological kink—topological antikink configuration BU(5). (A)
denotes attractiongR) repulsion, andX means that the arrange-
ment is impossible.

TQWQ®] for q@=0 q@=1 q@=2
q(l):(), q(2):0 -2 (A) X X
q=0, q@=1 % _; (A) x
q¥=0, q®@=2 X X —%(A)
=1, g®=1 LA 2 3@
qW=1, q¥=2 x5 4R
W=z, qP=2 () R X

whether the two kinks will attract or repel. The results are

PHYSICAL REVIEW D 65 065023

1-F 1+F 1-Fg
D)= ZK]q)f [ ZK] ! ZK](DO
g, g, (40
where O_=Dyr(—»), Pe=Pyk(0), P,=Dyx
(+),
Fx=tanj oy(x+a)], (42
Fx=tanjoy(x—a)], (42

and y=1/\/1—v? is the Lorentz factor.

The total energy of the ansai0) is a sum of the gradient
and the potential energies obtained by integrating corre-
sponding energy densities along the space direction

given in Table | and show that there are two possible com-
binations in which there is a repulsive force between thavhere

solitons.

We would like to evaluate the interaction energy between

different classes of kinks and antikinks 8UU(5)x Z,. The
cases when analytical kink solutions are known are ghe
=0 kink and, for the special value/\ = —3/20, theq=2
kink [15,16. Theq=0 kink solution is the same as in tig¢
model, since in this case the only nonzero componedt &f
the one alongb,,, that is® = ¢(x) Py /5, and the potential
takes the same form as in ti¢ theory:

(37

Therefore, the interaction potential betwesgs O kinks and
antikinks will be identical to the one found in th* model
[10].

Let us next considen=2 kinks and antikinks. Consider a

kink at x=—a and an antikink ak=a, with a>0, each
moving with a velocityv directed towards the origin. For

values ofa larger than the core sizes of two kinks the fol-

lowing ansatz is valid:

D k(X)=Dy(x+a)+Pr(x—a)— Py, (39

where®y=®(+x)=>®(—=) is the field in between the
two kinks. Forh=—3\/20 andq=2 the kink solution is
known[15,16:

[1—-tanKoXx)] [1+tanH oX)]
2 -t 2

Cquz(X) =

+

(39

where o=m/+/2. The ansatz for the kink and antikink can

then be written as

E=G+P, (43)
+
G=f dx Tr(3, D gic)?, (44)
+
p:f dx(—szr(CIDKE)2+h(Tr(<DKE)2)2
m2 2
A THD )+ 4’7]. (45)

At first let us consider &j=2 kink and aq=2 antikink
such that ®y(—o)=dy(+=) (the qV=2, q®@
=2, q®=0 case in Table)! A possible set of boundary
conditions corresponding to this case is

Y
& = diag2,2,2-3,-3),
215
Dy=— 1 diag33—2—2—2)
O: | 19y Ly Ly ]
2\/15
7o
@, =——diag2,2,23,~ 3). (46)

2./15

Using these boundary conditions in E40) and substituting
the latter into Eqs(44) and (45) gives

+ oo

G= dX (xFx— dxFi0)?,

miy

Jax

+ o0 m3

PZJ dX——[(Fx—Fp)*—4(Fx—F)?®
N

+4(F—F)?l, (47)
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S B B A B their potential energy densities. The shape of the found in-
- 1 teraction potential was similar to the one given by E§),

not only forh/\ = —3/20, but for all considered values of the

parameter:— 7/30<h/A <100. The interaction potential for

walls with different values ofy>1 was also qualitatively the

same.

Next, let us consider the interaction ofja= 2 kink and a
g=2 antikink but with ®(—)#di(+>). This would
correspond to the =2, q®=2, q®=1) case in
Table I. Keepingb _ and®, the same as in E¢46) we can
choosed , to be

U(R)

7
215

This choice of boundary conditions leads to

D, =

diag 2,2—3,—3,2). (50)

+ o0 mg’y 2
—= 2\

4 I BN R [ B

0 1 2 3 4 5
" + o m3
FIG. 1. Interaction potentialdy, given by Eq.(49) (solid line), P= f dX————[8(Fx—F)*+8(Fx—Fx)®
andU, given by Eq.(52) (dotted ling, for y=m=x=1. - 8\/5)\7
_ _E2_ _E(1— —
whereX=ymx//2 and we have takeh/\ = —3/20. Evalu- 13(Fi = Fid™ = 30(Fi ~ Fid (1= F«Fid)
ating integrals in Eq(47) and usingR= y2yma yields +40F (Fir(F2+ F2—2) + 10F ¢ Fr(1—F«Fi)
. 4\2m3y EJF sinhR— R coshR +35(1-F2F2)]. (51)
A 3 sink’R ’ : , , ;
Performing the integration and subtractiB@~) gives the
4 \/Emg 1 1 3 interaction potential between the two walls:
_ - -3R[ © -R| _
P= [3+sinh°>R[e (2+Re (2R [amty L
U;(R)= ———| RcoshR—sinhR+ W[e-3R(3+ 7R)
LR ER—l 49 X sinf*R Y
2 2 '
—e R(11+13R)+eR(8—4R)]|. (52)

As expected, aR= the total energy is equal to the sum of
the two kink massef2x 4.2m%/(3\)] [15] divided by the . — . . .
Lorentz factor. SubtractingE(=) from E(R)=G(R) We find that in this case, the interaction potential is purely

: : . repulsive. The dependencedf(R) onRfor y=1 is shown
*+P(R) leaves only the interaction part of the total energy: aspa dashed line ﬁ’] Fig. 1. Thié e3<act nume);ical evaluation of

the interaction energy of this kink-antikink system, using the

a2m’y( 11 -ar[3 method outlined above, did not show qualitative deviations
Uog(R)= ————| sihhR—RcoshR+ —|e 3R = +R , q
\ sinFPR Y 2 from U,(R) for all considered values df/A andy.
The two configurations: V=2, q®=2, q®=0)
AN ER_l) ) 4g and @W=2, qP=2, q¥=1), as well as the well-
2 2 2 studied ¢*-equivalent caseq®=0, q@=0, q®=0),

are the only ones for which analytical kink solutions are
The dependence &f(R) onRfor y=1 is shown as a solid known. Other configurations from Table | were treated only
line in Fig. 1. It clearly indicates an attraction between thenumerically. For all considered choices of parameters and
kink and the antikink. velocities, we did not see any deviation from the predictions

The validity of the ansat38) cannot be justified for for the attraction or repulsion given in Table I.

small values ofR. To test the analytical result, we have
evaluated the interaction energy numerically by explicitly in-
tegrating the full set of equations of motion and evaluating
the spatial integral over the gradient and potential energy In this section we will study kink-antikink collisions.
densities at each time step. The separafiohetween the Even in the “simple” case of ap* kink colliding with an
kinks was defined as the distance between the maxima antikink the variety of possible outcomes is surprisingly rich

V. SU(5)XZ, KINK-ANTIKINK COLLISIONS
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Py N B B 1 1 1 1
05 1
0.04 7
2
@ -
[} el
> S of 8
= s
- <]
or d ; - .
| (- | R | | R | L | | |
-100 -50 0 50 100 -100 -50 0 50 100
X X
FIG. 2. Kink-antikink collision in the ¢¥=0, gq® FIG. 3. Functionsa(x,t) (dotted ling, b(x,t) (short dash ling

=0, q®=0) case, in the parameter range wher0 kink is c(x,t) (long dash lingandd(x,t) (solid line), defined in Eq(53) at
unstable. The solid line shows the initial energy density profile andhe same final snapshot as in Fig. 2.
the dotted line shows the final. The right movigg0 kink col-
lapsed into ay=2 kink going to the left and the remaindgr=1  field equations of motion forward in time. Without loss of
non-topological ér=1) kink moving to the right. The originally generality, we can choose the initial kink-antikink configura-
left moving g=0 antikink splits into a right moving=2 antikink  tion to be diagonal13]. Since equations of motion preserve
and a left movingg=1 non-topological kink. The arrows show the diagonal form, one only needs to consider the evolution
directions and approximate relative magnitudes of kink velocities. of four functions:a(x,t), b(x,t), c(x,t), andd(x,t), defined

as

[5-10,13. Depending on the incident velocity, the two kinks
can annihilate, or they can bounce off each other and never
meet again, or they can form an intermediate bound state,
namely, they can pounce Off (_aagh other several times befor\?vhere N3, Ag, 73, and Y are the diagonal generators of
ultimately separating or annihilating. The dependence on th%U(S):
incident velocity is rather nontrivial, as was found[B-10]
and investigated in detail ifiL2]. Namely, it was found that, 1
over a relatively small range of initial velocities, intervals of 3= Ediag( 1,-1,0,0,0,
initial velocity for which kink and antikink capture each
other alternate with regions for which the interaction con-
cludes with escape to infinite separations[18], this alter- N
nation phenomenon was attributed to a nonlinear resonance 8
between the orbital frequency of the bound kink-antikink
pair and the frequency of characteristic small oscillations of 1
the field localized at the moving kink and antikink centers. 73= 5diag0,0,0,1;-1),
We will not attempt a study of exact dependence of out-
comes of kink-antikink collisions on initial velocities. The
reason is that ifSU(5)XZ, there are too many possible Y:Ldiagﬁ 2,2-3,-3). (54)
combinations and there is an additional paramebeh, 2415 T
which can possibly affect the stability of kink solutions and
the outcome of kink-antikink collisions. Instead, we will de- As mentioned in Sec. lll, thg=0 wall is identical to the
scribe the outcomes for each of the combinations listed irkink of the simplestp*-model. Theq=0 solution, however,
Table | and illustrate the most interesting oRes. is known to be locally unstable against perturbations along
In order to study the collisions, we need to integrate thediagonal components oP in the parameter rangk/\>
—3/20[4]. The outcome of theg=0 kink-antikink collision
will, therefore, depend oh/\ as well as orv;yitia - In Fig.
2Several animated kink collisions can be viewed at http://2 and Fig. 3 we illustrate the collision faf,;;;, =0.05 and
theory.ic.ac.uk* LEP/su5kinks.html h/\N=0. Just before the collision, both the kink and the an-

d(x,t)=a(x,t)Azg+b(X,t)\g+c(X,t) 73+ d(Xx,t)Y,
(53

1
=——diag'1,1,-2,0,0),

2\3
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FIG. 5. Kink-antikink collision in the V=0, q®=2, q®
=2) case. Resulting configuratidotted ling is that of a non-
FIG. 4. Kink-antikink collision in the V=1, =0, q®  topologicalq=1 kink moving to the left, while thej=2 kink has
=1) case. The solid line shows the initial energy density profile anctaptured its “mirror image”(the q=2 antikink originally con-
the dotted line shows the final. After the collision, there are fourtained in the incidentj=1 wall.
=2 kinks arranged so that the left most and the right most pairs of
kinks form (q®=2, q®=2, q®=1) combinations and the two the g=2 kink with these parameters would be
inner kinks form a =2, q®=2, q®=0) combination. The ~ § 033__aimost one fifth the mass of the=1 kink. We find
rest of the original energy is being radiated away. The arrows Sho"i’hat, during the collision, thg=0 kink collapses into a
directions and approximate relative magnitudes of kink velocities. =2 kink traveling to the right and @=1 nontopological

kink traveling to the left. At the same time, the origiral
=1 kink collapses into threg=2 kinks, with outer kinks
moving away from each other. The final configuration is that
of four q=2 kinks arranged so that the two leftmost kinks
and the two rightmost kinks formgf?=2, q®=2, q®
=1) combinations, while the two inner kinks form g¢
=2,q@®=2, q®=0) combination. The rest of the original
energy is radiated away.

In Fig. 5 the initial configuration is ("=0, q®=2,
q®=2). In this case, they=0 antikink (initially on the
right) splits into aq=2 topological antikink, which starts

2tikink collapse. More detailed analysis of functioasb, c,
andd in Fig. 3 reveals that thg= 0 kink, initially moving to
the right, has collapsed intog= 2 kink, moving to the left,
and the remaindeg=1 nontopological é=1) kink, mov-
ing to the right. The originally left moving=0 antikink has
split into a right movingg=2 antikink and a left moving
=1 nontopological kink. Theg=2 kinks will separate to
infinities, while the fate ofj=1 nontopological kinks needs
more explanation. As was found ji3], theg=1 nontopo-
logical kink is unstable against a collapse into a paimof
=2 kinks. Therefore, depending on the values @f;i, and  interacting with theq=2 kink, and ag=1 nontopological
h/\, the nontopologicatj=1 kinks (in the center of Fig. 2 kink, which keeps propagating to the left unperturbed. An-
can either immediately decay into radiation, or they can splibther way to describe this interaction is that tpe 2 wall
into pairs ofq=2 kinks moving away from each other. We has met itqj=2 “reflection” in the g=0 wall and formed a
found that the latter was the case for the choice of parametetomplex with it, while the remainder wall is radiated away.
corresponding to Fig. 2 and Fig. 3. For3/20<h/A< The @V=1, q®@=1, q®=0) case has essentially the
—3/70, wheng=0 kinks are locally stable, outcomes of same set of possible outcomes as the)&0, g@=0, q®
their collisions are the same as in the case of kinks an@=0) and will not be considered here.

antikinks in ¢* model, the case studied extensively in
[5-12.

Figure 4 illustrates a collision of @=1 kink (initially on
the lef) with a q=0 antikink (initially on the righy. The
parameters are;ii;ia;=0.2, =1, A=0.5, andh/\=—0.1.

Figure 6 illustrates the outcome of the kink-antikink col-
lision with the initial (V=1, q®=1, q®=1) configura-
tion. The parameters were chosen to foe=-0.1 and
Uinitial =0.2. The final configuration is that of twgq=2
kinks, arranged in aqY=2, q®=2, q®=1) combination,

Theg=0 kink is unstable for these parameters. The mass ofoving away from each other.

the q=0 kink is 2y2m3\’ [2] and, for our choice of pa-

The outcome of aq®=1, q®@=1, q®=2) collision

rameters, is equal to 0.243. Thge=1 kink mass can only be with h/A=—-0.1 and vjsj;ja=0.2 is shown in Fig. 7.
found numerically and is 0.150. For comparison, the mass ofhe final configuration is that of twoqg{?=2, q®®=2,

065023-8
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FIG. 6. The gV=1, q®@=1, q®®=1) case withh/A=-0.1
andvj,itia = 0.2. The final configuration is that of twgp=2 kinks,
arranged in a V=2, q®@=2, q®=1) combination, moving
away from each other.

q®=1) combinations moving away from each other.
The @®=1,q®=2,q®®=1) case witth/A=—0.1 and
Vinitia) = 0.1 is illustrated in Fig. 8. Just before the collision,
the q=1 kink (originally on the lefi collapses into three
g=2 kinks, with two outer kinks having large kinetic ener-
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FIG. 8. The g®M=1, q®?=2, q®=1) case withh/A=-0.1
andvinitia) =0.1. There are foug=2 kinks left as a result of the
collision.

q®=0) combination and, depending on the initial velocity,
may annihilate or chase each other forever. The two leftmost
walls are in a V=2, q@=2, q®=1) arrangement.

A gqM=1 kink and aq®=2 antikink arranged in a
(qW=1, q®=2, q®®=2) combination repel. Forh/\
0.1 andv,itia; = 0.15 they scatter elastically. The lighter

gies. Thus, an intermediate configuration is that of fourg=2 kink (initially on the righ) bounces off the heavier

g=2 kinks, including the initial onéoriginally on the right.
The two rightmostq=2 kinks are in a V=2, q®=2,

0.02

0.015

Il
o
=

Energy density

0.005

-100 -50 0

FIG. 7. The gV=1, q®@=1, q®=2) case withh/A=-0.1
and viniia =0.2. The final configuration is that of twag(®=2,
q®=2,q®=1) combinations moving away from each other.

g=1 kink and slows it dowr(see Fig. 9.
The remaining two combinations from Table | arg}
=2,q@=2,q®=0) and @"V'=2,q@=2,q®=1). Since
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FIG. 9. The elastic scattering in thg®=1, q®@=2, q®
=2) case withh/A=—0.1 andv;p;jay =0.1.
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these are the only two initial combinations that involve stableto interactions between attractive or repulsive pairgen
kinks and antikinks, they would be the most important oneskinks.

if one studied evolution of domain wall networks after the  We have not investigated the detailed dependence of the
formation. However, these two are also the most “uninter-dynamics of kink-antikink collisions on the initial velocities.
esting” combinations from the novelty point of veiw. In the Part of the reason is that the outcome strongly depends on
case of V=2, q@=2, q®=0), the dynamics and pos- the stability properties of each of the solitons and our nu-
sible outcomes are qualitatively identical to the case of kink-merical methods do not give us the possibility of properly
antikink collision in the simplep* model. Namely, we ob- accounting for all instabilities that can occur in the model.
serve a dependence on the incident velocity similar to thaEach kink, except for the fundamental one, is unstable in a
found in Refs[5-10,13. The difference is that in the case of different way, namely, along a different direction in the in-
SU(5) the value of the incident velocity leading to a given ternal space of S(8), and also depends on the particular
outcome depends on the paramdtbx of the potential given choice of the potential. It is possible that a more detailed
in Eq. (33). study would reveal a connection with earlier work @Qriballs

In the @M=2,q®=2,q®=1) case, the kink and anti- [18] and globalJ(1) strings[19], where it was observed that
kink repel and simply bounce off each other elastically. at very high collision velocities fragmentation of solitons is

generally suppressed. Such a study could be a subject of
future work.
From the equations of motion it follows that if the Higgs

As we have illustrated in the previous sections, kink-field components along nondiagonal generatorsSaf(5)
antikink interactions irSU(N) X Z, can be of different types were zero at the initial time, they would remain zero at all
with many possible outcomes depending on the choice of thimes, which was the case in our simulations. However, ex-
parameter values. cept for theq=2 topological kinks, kink solutions can be

In order to see how a pair of kinks will interact, one unstable against perturbations along nondiagonal generators
generally needs to specify the potentigl®) and evaluate of SU(5) [13]. In a realistic domain wall formation scenario
the interaction energy between the two kinks. However, wene would have to allow for all components of the Higgs to
have shown that to a very good approximation the nature oe excited and only stable walls would survive. Depending
the interaction can be determined by evaluatingon the rate of the phase transition, temporary formation of
T QWQ®@1], whereQ™ andQ® are the charges of the two unstable kinks will or will not be relevant. Nevertheless,
kinks defined by Eq(10). In particular, we have shown that stable and unstable kinks are solutions of the classical field
kinks and antikinks may attract or repel depending on theiequations and their interactions may become important
relative orientation in the internal space. This is similar towhenever an exact or approxima®&J(N) X Z, symmetry is
interactions between glob&(3) monopoles, where the rela- present in a theory.
tive phase, not the topological charges, is what determines
the nature of the interactigri.7].

In our study of kink-antikink collisions i8U(5) X Z, we
have seen a general tendency for larger mass topological
kinks to split into fundamental kinks of the theory, such as | would like to thank Tanmay Vachaspati for several im-
the g=2 kink. This suggests that kink-antikink interactions portant insights and for commenting on the earlier draft of
in SU(N) X Z, can be described in terms of interactions be-the manuscript. | am grateful to N. Antunes, J. Kalkkinen
tween fundamentdi.e., globally stableq=(N—1)/2 kinks. and T. W. B. Kibble for useful discussions. Conversations
Namely, given the configuration of two kinks, one would with participants of the ESF COSLAB Program workshop at
look for the least energy configuration gf=n kinks that Imperial College and especially with F. A. Bais and L. Periv-
would have the same global topology as the original pair oblaropoulos are acknowledged. This work was supported by
kinks. The outcome of the interaction would then be reducedPARC.

VI. SUMMARY AND DISCUSSION

ACKNOWLEDGMENTS

[1] A. Vilenkin and E. P. S. ShellardCosmic Strings and Other [8] C. A. Wingate, Ph.D. thesis, University of lllinoi€l978;

Topological Defectslst. paperback edCambridge University SIAM (Soc. Ind. Appl. Math. J. Appl. Math. 43, 120
Press, Cambridge, England, 2000 (1983.
[2] R. RajaramanSolitons and InstantonéNorth-Holland, Am- [9] M. J. Ablowitz, M. D. Kruskal, and J. R. Ladik, SIAMSoc.
sterdam, 1987 Ind. Appl. Math) J. Appl. Math.36, 478 (1979.
[3] T. Vachaspati, Phys. Rev. Left6, 188 (1996. [10] M. Moshir, Nucl. PhysB185 318 (1981).
[4] G. Dvali, H. Liu, and T. Vachaspati, Phys. Rev. L&g, 2281 [11] T. Sugiyama, Prog. Theor. Phy&l, 1551(1979.
(1998. [12] D. Campbell, J. Schonfeld, and C. Wingate, Physic®,[1
[5] A. E. Kudryavtsev, JETP LetR2, 82 (1975. (1983.
[6] A. Aubry, J. Chem. Phys64, 3392(1976. [13] L. Pogosian and T. Vachaspati, Phys. Rev.6B, 105023
[7] V. G. Makhankov, Phys. Rep., Phys. Le36C, 1 (1978. (2001).

065023-10



KINK INTERACTIONS IN SU(N) X Z, PHYSICAL REVIEW D 65 065023

[14] N. S. Manton, Nucl. PhysB150, 397 (1979. [17] L. Perivolaropoulos, Nucl. Phy&375, 665 (1992.
[15] T. Vachaspati, Phys. Rev. B8, 105010(2001). [18] M. Axenides, S. Komineas, L. Perivolaropoulos, and M. Flo-
[16] L. Pogosian and T. Vachaspati, Phys. Rev.6R 123506 ratos, Phys. Rev. [B1, 085006(2000.

(2000. [19] E. P. S. Shellard, Nucl. PhyB283 624 (1987).

065023-11



