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Kink interactions in SU„N…ÃZ2
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There areN21 classes of kink solutions inSU(N)3Z2. We show how interactions between various kinks
depend on the classes of individual kinks as well as on their orientations with respect to each other in the
internal space. In particular, we find that the attractive or repulsive nature of the interaction depends on the
trace of the product of charges of the two kinks. We calculate the interaction potential for all combinations of
kinks and antikinks inSU(5)3Z2 and study their collisions. The outcome of kink-antikink collisions, as
expected from previous studies, is sensitive to their initial relative velocity. We find that heavier kinks tend to
break up into lighter ones, while interactions between the lightest kinks and antikinks in this model can be
repulsive as well as attractive.
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I. INTRODUCTION

Topological defects are observed in condensed matter
tems and may have been formed during phase transition1 at
early stages in the history of the universe@1#. If observed,
they would provide invaluable information about the un
verse when it was a tiny fraction of a second old. If n
observed, topological defects still play an important role
placing constraints on particle physics models and cosm
ogy. The formation and scaling of a network of defec
strongly depends on how they interact among themsel
This, in turn, will affect the type and the strength of restr
tions that observations~or the lack thereof! can impose on
the underlying model. Another context, in which interactio
between defects are important, is the possible connection
tween elementary particles and solitonic solutions of cla
cal field equations@2#.

In addition to the more general reasons given above,
derstanding how theSU(N)3Z2 domain walls interact could
be important in the light of the correspondence, found
Vachaspati@3#, between the spectrum ofSU(5) monopoles
and the spectrum of one family of fermions in the stand
model. Interactions betweenSU(N)3Z2 kinks may also be
relevant to the solution of the monopole over-abunda
problem based on sweeping monopoles with domain wall
proposed in@4#.

Previous work on interactions between kinks has mai
concentrated on the sine-Gordon and thef4 models in~111!
dimensions@5–12#. Even a relatively simple system of af4

kink interacting with an antikink can have rather nontriv
dynamics, which is one of the reasons why so many
searchers have worked on this problem in the past. The f
between kinks and antikinks of thef4 model is always at-
tractive. The outcome of their collision can be one of t
three types: they can annihilate, they can scatter off e
other or they can form an intermediate bound state be
ultimately separating or annihilating. The general tendenc
that at low collision velocities kinks tend to annihilate and

1Here, the term ‘‘phase transition’’ includes continuous transitio
called crossovers.
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higher velocities they scatter. However, the dependence
the outcome on the incident velocity is rather non-linear,
was found in @5–10# and investigated in detail in@12#.
Namely, it was found that, over a relatively small range
initial velocities, intervals of initial velocity for which kink
and antikink capture each other alternate with regions
which the interaction concludes with escape to infinite se
rations. In@12#, this alternation phenomenon was attribut
to a nonlinear resonance between the orbital frequency of
bound kink-antikink pair and the frequency of characteris
small oscillations of the field localized at the moving kin
and antikink centers.

In this work, when discussing interactions between kin
we will aim to concentrate on issues that are unique
SU(N)3Z2 and will refer to earlier work when a problem
can be reduced to that of kinks in thef4 model. In particular,
we will show that inSU(N)3Z2 kinks can repel as well as
attract.

This paper is organized as follows. In Sec. II we give
brief overview of kink solutions inSU(N)3Z2. In Sec. III
we develop a framework in whichSU(N)3Z2 kink interac-
tions can be discussed and show a simple way of determ
ing whether a given pair of kinks will attract or repel. I
Secs. IV and V we study the kink-antikink interactions
SU(5)3Z2. Results are summarized in Sec. VI.

II. KINKS IN SU„N…ÃZ2

Consider a~111!-dimensional model of a scalar fieldF
transforming in the adjoint representation ofSU(N), with N
taken to be odd and with the additionalZ2 symmetry that
takesF to 2F. The Lagrangian is

L5Tr~]mF!22V~F!, ~1!

whereV(F) is such thatF has an expectation valueFV that
can be chosen to be

FV5hA 2

N~N221!S n1n11 0

0 2~n11!1n
D , ~2!s
©2002 The American Physical Society23-1
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where1p is thep3p identity matrix,N[2n11 andh is an
energy scale determined by the minima of the potentiaV.
Such an expectation value spontaneously breaks the sym
try down to

H5@SU~n11!3SU~n!3U~1!#/@Zn113Zn#. ~3!

Various types of kink solutions in this model are defin
by choices of the boundary conditions atx52` and x5
1`, wherex is the space coordinate. It was proved in@13#
that for a kink solution to exist one must necessarily ha
@F(2`),F(1`)#50. This allows one to list all the pos
sible boundary conditions~up to gauge rotations! that can
lead to kink solutions. We can fixFL[F(2`)5FV given
in Eq. ~2!. Then we can have

FR[F~1`!5eThA 2

N~N221!
diag~n1n112q ,

2~n11!1q ,n1q ,2~n11!1n2q!, ~4!

where we have introduced a parametereT561 and another
q50, . . . ,n. The labeleT is 11 when the boundary condi
tions are topologically trivial and is21 when they are topo
logically nontrivial.q tells us how many diagonal entries o
FL have been permuted inFR . The caseq50 is when
FR5eTFL . As was suggested in@13#, the lowest energy
stable topological (eT521) kink solution corresponds toq
5n. Topological q5n kinks were studied in detail in
@15,16#.

The most general ansatz for the kink solution was fou
in @13# and can be written as

Fk5F1~x!M11F2~x!M21g~x!M , ~5!

where

M15
FR1FL

2
, M25

FR2FL

2
. ~6!

and, forq5” 0 andq5” n,

M5m diag~q~n2q!1n112q ,2~n2q!~n112q!1q ,

2~n2q!~n112q!1q ,q~n112q!1n2q) ~7!

with

m5h@2q~n2q!~n112q!$2n~n112q!2q%#21/2.
~8!

For q50 or for q5n, the matrixM is zero. The boundary
conditions forF6 andg(x) are

F2~6`!561, F1~6`!51, g~6`!50. ~9!

One can define the charge of the kinks as@2#

Q[
1

h
~Fk~1`!2Fk~2`!!, ~10!

which corresponds to a current
06502
e-

e

d

j m[
1

h
«mn]nF, ~11!

wherem,n50,1, and«mn is the antisymmetric tensor. Th
definition ~10! of Q can be used for nontopological kinks a
well as topological ones.

III. KINK INTERACTIONS IN SU„N…ÃZ2

Consider two kinks,K (1) and K (2), separated by a dis
tance which is larger than their core sizes. The classe
which the two kinks belong, as well as the global topology
the two-kink configuration, are determined by the choices
the three vacua:

F2 at x52`,
F0 in between the two kinks,
F1 at x51` .
Let indices (eT

(1) ,q(1)) describe the kink betweenF2 and
F0, whereq(1) denotes the kink class as defined in Sec.
and eT

(1) is 21 for topological and11 for nontopological
kinks. Similarly, let (eT

(2) ,q(2)) denote the kink bounded b
F0 and F1 . BoundariesF2 and F1 of the two-kink sys-
tem can also be described using indices (eT

(3) ,q(3)) defined
in a similar way. Topology requires thateT

(3)5eT
(1)eT

(2) .
Thus, the two-kink system can be described
(q(1),q(2),q(3),eT

(1) ,eT
(2)). This notation is invariant unde

global gauge rotations, since it contains only informati
about how many diagonal entries were permuted in eac
the vacuaF2 , F0, andF1 with respect to each other.

For given values ofq(1) and q(2), not all values ofq(3)

will generally be allowed. To determine the selection proc
dure, let us start withF0, in which q(1) diagonal entries of
F2 were permuted. We want to know how many diagon
entries ofF2 can be permuted inF1 ~i.e., the value ofq(3))
given thatq(2) diagonal entries ofF0 were permuted inF1 .
There aren11 entries with absolute values equal ton in F2

@see Eq.~2!#, which we can denote byA’s, andn entries with
absolute values equal to (n11), which we will denote by
B’s. We will refer to thoseA’s and B’s of F0, that were
permuted to formF0 out of F2 , as ‘‘changed,’’ and the
ones that were left untouched as ‘‘unchanged.’’ Then, wh
permutingA’s and B’s of F0 to form F1 (q(2) permuta-
tions!, one has the following options:

~1! Permute a changedA with a changedB. This opera-
tion will decrease the value ofq(3) by 1, since it will restore
the original order of the given pair ofA andB in F2 . Let
q1

(2) denote the number of possible ways it can be do
Since there are onlyq(1) changedA’s, q1

(2)<min(q(1),q(2)).
Also, if there is a deficit of unchangedA’s, one is forced to
permute at least (q(2)2n1q(1)21) changedA8s, which
means thatq1

(2)>max(0,q(2)2n1q(1)21).
~2! Permute a changedA with an unchangedB. This op-

eration does not affect the value ofq(3). The number of pos-
sible ways in which this can be done, denoted byq2

(2) , is
limited by the number of available changedA’s and un-
changedB’s: q2

(2)<min(q(1)2q1
(2) ,n2q(1)).

~3! Permute an unchangedA with a changedB. This op-
eration also does not change the value ofq(3). It can be done
3-2



ed

e

c

of
i

as

ng
ed

ing

-

the

tain

KINK INTERACTIONS IN SU(N)3Z2 PHYSICAL REVIEW D 65 065023
in q3
(2) ways, limited by the number of available unchang

A’s and changedB’s: q3
(2)<min(n2q(1)11,q(1)2q1

(2)).
~4! Permute an unchangedA with an unchangedB. This

operation will increase the value ofq(3) by 1, and can be
performed inq4

(2) ways, limited by the number of availabl
unchanged A’s and unchangedB’s: q4

(2)<min(n2q(1)

2q3
(2)11,n2q(1)2q2

(2)).
In summary, independent ofeT

(1) andeT
(2) , givenq(1) and

q(2), the set of possible values ofq(3) can be found using

q(3)5q(1)2q1
(2)1q4

(2) , ~12!

where we have defined integersqi
(2)( i 51,2,3,4) that can take

on all non-negative values allowed by the following sele
tion rules:

q1
(2)1q2

(2)1q3
(2)1q3

(2)5q(2),

max~0,q(2)2n1q(1)21!<q1
(2)<min~q(1),q(2)!,

0<q2
(2)<min~q(1)2q1

(2) ,n2q(1)!,

0<q3
(2)<min~n2q(1)11,q(1)2q1

(2)!,

0<q4
(2)<min~n2q(1)2q3

(2)11,n2q(1)2q2
(2)!. ~13!

Next we would like to determine whether a given pair
kinks will attract or repel. We can use a procedure which
analogous to one used by Manton@14# in the case of thef4.
At large separations, the two-kink ansatz can be written

F~x!5Fk
(1)~x1a!1Fk

(2)~x2a!2F0 , ~14!

where Fk
(1)(x) is the first kink solution withFk

(1)(2`)
5F2 , Fk

(2)(x) is the second kink solution withFk
(2)

(1`)5F1 , F0[Fk
(1)(1`)5Fk

(2)(2`) is the vacuum
in the region separating the kinks anda.0 is the distance
from the origin to the centers of the kinks. Using Eqs.~5!
and ~10!, we can write

F~x!5F1
(1)M 1

(1)1
h

2
F2

(1)Q(1)1g(1)M (1)1F1
(2)M 1

(2)

1
h

2
F2

(2)Q(2)1g(2)M (2)2F0 . ~15!

In @13# it was shown that functionsF1
(1,2) and g(1,2) can be

treated as approximately constant for a relatively wide ra
of parameters of a general quartic potential. A simplifi
~and, therefore, only approximate! version of the two-kink
ansatz is given by

F~x!'M 1
(1)1

h

2
F2

(1)Q(1)1M 1
(2)1

h

2
F2

(2)Q(2)2F0 ,

~16!

where

M 1
(1)[

F21F0

2
, M 1

(2)[
F01F1

2
, ~17!
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F2
(1)'tanh@s~x1a!#, F2

(2)'tanh@s~x2a!#, ~18!

wherea@s21 ands21 is the ‘‘width’’ of the wall.
The field energy-momentum tensor can be derived us

the action principle and is given by

Tmn52 Tr@]mF]nF#2hmn Tr@]sF]sF#2hmnV~F!.
~19!

Therefore, the momentum density in~111! dimensions is

P[T0
1522 Tr@ḞF8#, ~20!

whereḞ[] tF and F8[]xF. One can define the momen
tum of a field configuration on the intervalx1,x,x2 as

P52E
x1

x2
2 Tr@ḞF8#dx. ~21!

To calculate the force between the kinks, let us consider
initial rate of change of momentum of a~initially ! static field
configuration given by the two-kink ansatz:

dP

dt
52E

x1

x2
2~Tr@F̈F8#1Tr@ḞḞ8# !dx. ~22!

One can use field equations of motion and integrate to ob

dP

dt
5†2Tr@Ḟ2#2Tr@~F8!2#1V~F!‡x1

x2. ~23!

Let us choosex1!2a and 2a!x2!a ~e.g.,x250). That
is, we want to estimate the force on the first kink~the one at
x52a), due to the second kink. Let us define

f [tanh@s~x1a!# and x[tanh@s~x2a!#11.
~24!

The two-kink ansatz given by Eq.~15! can then be re-written
as

F~x!'
F21F1

2
1

h

2
Q(1)f 1

h

2
Q(2)~211x!. ~25!

Initially, Ḟ50. Also, within the rangex1,x,x2 , x(x)
!1 and we can perform an expansion inx. To the leading
order inx we find

dP

dt
'F2

h2

4
Tr@~Q(1)!2#~ f 8!22

h2

2
Tr@Q(1)Q(2)# f 8x8

1@V#x501(
a

F ]V

]FaG
x50

xaG
x1

x2

, ~26!

where functionsxa are defined by

xa[
h

2
@Q(2)#ax ~27!
3-3
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and coefficients@Q(2)#a are defined by

Q(2)5(
a

@Q(2)#aTa, ~28!

where Ta are the SU(N) generators normalized so th
Tr@TaTb#5dab/2. Using the equations of motion gives

dP

dt
'F2

h2

2
Tr@Q(1)Q(2)# f 8x81(

a
@Fa9#x50xaG

x1

x2

5
h2

2
Tr@Q(1)Q(2)#@2 f 8x81 f 9x#x1

x2. ~29!

It can be shown that@2 f 8x81 f 9x#x1

x2,0 for all x1 and x2

satisfying the constraints. Thus, the sign ofdP/dt, and the
attractive or repulsive nature of the force, is determined
the sign of Tr@Q(1)Q(2)#.

Next we would like to express Tr@Q(1)Q(2)# in terms of
parameters (q(1),q(2),q(3),eT

(1) ,eT
(2)) which define the two-

kink configuration. We write

Tr@Q(1)Q(2)#5
1

h2 ~Tr@F2F0#1Tr@F0F1#2Tr@F2F1#

2Tr@F0F0# !. ~30!

Applying definitions ~2! and ~4! to boundary conditions
specified by (FL ,FR) we find

1

h2 Tr@FLFR#5
2eT

N~N221!
@~n112q!n222q(1)~n11!n

1~n2q!~n11!2#

5
eT

2 F12q
~2n11!

n~n11!G . ~31!

Using the above expression and the fact that Tr@F0F0#
5h2/2 we find

Tr@Q(1)Q(2)#5
1

2
~eT

(1)1eT
(2)2eT

(1)eT
(2)21!2~eT

(1)q(1)

1eT
(2)q(2)2eT

(1)eT
(2)q(3)!

~2n11!

2n~n11!
. ~32!

One can see, for example, that in the case of a topolog
kink interacting with a topological antikink (eT

(1)521 and
eT

(2)521) both, attraction and repulsion, are possible
pending on the choices ofq(1), q(2), andq(3). This is a novel
feature, when compared to the classicalf4 case@2#, where
the force between a kink and an antikink is always attract
An analogous situation is found in the case of interactio
between globalO(3) monopoles@17#. There, attraction or
repulsion between a monopole and an antimonopole is de
mined not by their topological charges but by the relat
phase of their field configurations.
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Our derivation of the fact that the sign of Tr@Q(1)Q(2)#
determines whether kinks will attract or repel was indep
dent of a particular form ofV(F). We did, however, rely on
certain approximations in the derivation that may not
valid for some extreme choices ofV(F). Our numerical in-
vestigation of kink interactions inSU(5)3Z2 with a general
quartic potential has always yielded an agreement betw
the sign of Tr@Q(1)Q(2)# and the overall sign of the interac
tion potential.

In the next section we consider theN55 case and study
interactions between kinks and antikinks in more detail.

IV. KINK INTERACTIONS IN SU„5…ÃZ2

Let us consider the~111!-dimensional model of a scala
field F transforming in the adjoint representation ofSU(5)
3Z2. We will take the potential to be

V~F!52m2 Tr@F2#1h~Tr@F2# !21l Tr@F4#1V0 ,
~33!

with parameters such that the vacuum expectation va
~VEV! of F breaks the symmetry spontaneously
@SU(3)3SU(2)3U(1)#/@Z33Z2#. This happens in the pa
rameter range

h

l
.2

7

30
, l.0. ~34!

The VEV can be chosen to beFV5h diag(2,2,2,23,
23)/(2A15), where

h[
m

Al8
~35!

and

l8[h1
7

30
l. ~36!

The constantV05m2h2/4 in Eq. ~33! ensures thatV(FV)
50.

We will study interactions between topological kinks a
antikinks (eT

(1)521, eT
(2)521) with all possible choices

for indicesq(1), q(2), andq(3), as defined in Sec. II. We will
not consider interactions between nontopological kinks
interactions of non-topological kinks with topological one
Our initial configuration will be that of two well-separate
solitons moving towards each other. From here on, we w
label such configurations with three indices, (q(1), q(2),
q(3)), and it will be assumed thateT

(1)5eT
(2)521.

In this model, only theq52 topological kink solution is
stable. It also has the smallest energy of all kinks. Howev
we will not restrict the analysis toq52 kinks, as interactions
between all types of kinks antikinks could be potentially i
teresting.

We start by evaluating Tr@Q(1)Q(2)# for all possible
choices of the configuration of a kink and an antikink usi
Eq. ~32!. As we have shown in Sec. III, this should tell u
3-4
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whether the two kinks will attract or repel. The results a
given in Table I and show that there are two possible co
binations in which there is a repulsive force between
solitons.

We would like to evaluate the interaction energy betwe
different classes of kinks and antikinks inSU(5)3Z2. The
cases when analytical kink solutions are known are thq
50 kink and, for the special valueh/l523/20, theq52
kink @15,16#. Theq50 kink solution is the same as in thef4

model, since in this case the only nonzero component ofF is
the one alongFV , that isF5f(x)FV /h, and the potential
takes the same form as in thef4 theory:

V5
l8

4
~f22h2!2. ~37!

Therefore, the interaction potential betweenq50 kinks and
antikinks will be identical to the one found in thef4 model
@10#.

Let us next considerq52 kinks and antikinks. Consider
kink at x52a and an antikink atx5a, with a.0, each
moving with a velocityv directed towards the origin. Fo
values ofa larger than the core sizes of two kinks the fo
lowing ansatz is valid:

FKK̄~x!5FK~x1a!1F K̄~x2a!2F0 , ~38!

whereF05FK(1`)5F K̄(2`) is the field in between the
two kinks. Forh523l/20 andq52 the kink solution is
known @15,16#:

Fq52~x!5
@12tanh~sx!#

2
F21

@11tanh~sx!#

2
F1 ,

~39!

wheres5m/A2. The ansatz for the kink and antikink ca
then be written as

TABLE I. Tr@Q(1)Q(2)# evaluated for different choices of th
topological kink—topological antikink configuration inSU(5). ~A!
denotes attractions,~R! repulsion, and3 means that the arrange
ment is impossible.

Tr@Q(1)Q(2)# for q(3)50 q(3)51 q(3)52

q(1)50, q(2)50 22 (A) 3 3

q(1)50, q(2)51 3 2
7
6

(A) 3

q(1)50, q(2)52 3 3 2
1
3

(A)

q(1)51, q(2)51 2
7
6

(A) 2
3
4

(A) 2
1
3

(A)

q(1)51, q(2)52 3 2
1
3

(A) 1
1
12

(R)

q(1)52, q(2)52 2
1
3

(A) 1
1
12

(R) 3
06502
-
e
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FKK̄~x!5
@12FK#

2
F21

@11FK#

2
F01

@12FK̄#

2
F0

1
@11FK̄#

2
F12F0 , ~40!

where F25FKK̄(2`), F05FKK̄(0), F15FKK̄
(1`),

FK5tanh@sg~x1a!#, ~41!

FK̄5tanh@sg~x2a!#, ~42!

andg51/A12v2 is the Lorentz factor.
The total energy of the ansatz~40! is a sum of the gradien

and the potential energies obtained by integrating co
sponding energy densities along the space directionx:

E5G1P, ~43!

where

G5E
2`

1`

dx Tr~]xFKK̄!2, ~44!

P5E
2`

1`

dxH 2m2 Tr~FKK̄!21h„Tr~FKK̄!2
…

2

1l Tr~FKK̄!41
m2h2

4 J . ~45!

At first let us consider aq52 kink and aq52 antikink
such that FK(2`)5F K̄(1`) ~the q(1)52, q(2)

52, q(3)50 case in Table I!. A possible set of boundary
conditions corresponding to this case is

F25
h

2A15
diag~2,2,2,23,23!,

F05
h

2A15
diag~3,3,22,22,22!,

F15
h

2A15
diag~2,2,2,23,23!. ~46!

Using these boundary conditions in Eq.~40! and substituting
the latter into Eqs.~44! and ~45! gives

G5E
2`

1`

dX
m3g

A2l
~]XFK2]XFK̄!2,

P5E
2`

1`

dX
m3

A2lg
@~FK2FK̄!424~FK2FK̄!3

14~FK2FK̄!2#, ~47!
3-5
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whereX5gmx/A2 and we have takenh/l523/20. Evalu-
ating integrals in Eq.~47! and usingR5A2gma yields

G5
4A2m3g

l F1

3
1

sinhR2R coshR

sinh3R
G ,

P5
4A2m3

lg F1

3
1

1

sinh3R H e23RS 3

2
1RDe2RS 7

2
R

2
1

2D1eRS 1

2
R21D J G . ~48!

As expected, atR5` the total energy is equal to the sum
the two kink masses@234A2m3/(3l)# @15# divided by the
Lorentz factor. SubtractingE(`) from E(R)5G(R)
1P(R) leaves only the interaction part of the total energ

U0~R!5
4A2m3g

l sinh3R
S sinhR2R coshR1

1

g2 Fe23RS 3

2
1RD

1e2RS 7

2
R2

1

2D1eRS 1

2
R21D G D . ~49!

The dependence ofU0(R) on R for g51 is shown as a solid
line in Fig. 1. It clearly indicates an attraction between t
kink and the antikink.

The validity of the ansatz~38! cannot be justified for
small values ofR. To test the analytical result, we hav
evaluated the interaction energy numerically by explicitly
tegrating the full set of equations of motion and evaluat
the spatial integral over the gradient and potential ene
densities at each time step. The separationR between the
kinks was defined as the distance between the maxim

FIG. 1. Interaction potentialsU0, given by Eq.~49! ~solid line!,
andU1, given by Eq.~52! ~dotted line!, for g5m5l51.
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their potential energy densities. The shape of the found
teraction potential was similar to the one given by Eq.~49!,
not only forh/l523/20, but for all considered values of th
parameter:27/30,h/l,100. The interaction potential fo
walls with different values ofg.1 was also qualitatively the
same.

Next, let us consider the interaction of aq52 kink and a
q52 antikink but with FK(2`)5” F K̄(1`). This would
correspond to the (q(1)52, q(2)52, q(3)51) case in
Table I. KeepingF2 andF0 the same as in Eq.~46! we can
chooseF1 to be

F15
h

2A15
diag~2,2,23,23,2!. ~50!

This choice of boundary conditions leads to

G5E
2`

1`

dX
m3g

A2l
~2]XFK

2 1]xFK]XFK̄12]xFK̄
2
!,

P5E
2`

1`

dX
m3

8A2lg
@8~FK2FK̄!418~FK2FK̄!3

213~FK2FK̄!2230~FK2FK̄!~12FKFK̄!

140FKFK̄~FK
2 1FK̄

2
22!110FKFK̄~12FKFK̄!

135~12FK
2 FK̄

2
!#. ~51!

Performing the integration and subtractingE(`) gives the
interaction potential between the two walls:

U1~R!5
A2m3g

l sinh3R
S R coshR2sinhR1

1

8g2 @e23R~317R!

2e2R~11113R!1eR~824R!# D . ~52!

We find that in this case, the interaction potential is pur
repulsive. The dependence ofU1(R) on R for g51 is shown
as a dashed line in Fig. 1. The exact numerical evaluation
the interaction energy of this kink-antikink system, using t
method outlined above, did not show qualitative deviatio
from U1(R) for all considered values ofh/l andg.

The two configurations: (q(1)52, q(2)52, q(3)50)
and (q(1)52, q(2)52, q(3)51), as well as the well-
studied f4-equivalent case (q(1)50, q(2)50, q(3)50),
are the only ones for which analytical kink solutions a
known. Other configurations from Table I were treated on
numerically. For all considered choices of parameters
velocities, we did not see any deviation from the predictio
for the attraction or repulsion given in Table I.

V. SU„5…ÃZ2 KINK-ANTIKINK COLLISIONS

In this section we will study kink-antikink collisions
Even in the ‘‘simple’’ case of af4 kink colliding with an
antikink the variety of possible outcomes is surprisingly ri
3-6
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@5–10,12#. Depending on the incident velocity, the two kink
can annihilate, or they can bounce off each other and ne
meet again, or they can form an intermediate bound st
namely, they can bounce off each other several times be
ultimately separating or annihilating. The dependence on
incident velocity is rather nontrivial, as was found in@5–10#
and investigated in detail in@12#. Namely, it was found that
over a relatively small range of initial velocities, intervals
initial velocity for which kink and antikink capture eac
other alternate with regions for which the interaction co
cludes with escape to infinite separations. In@12#, this alter-
nation phenomenon was attributed to a nonlinear resona
between the orbital frequency of the bound kink-antiki
pair and the frequency of characteristic small oscillations
the field localized at the moving kink and antikink center

We will not attempt a study of exact dependence of o
comes of kink-antikink collisions on initial velocities. Th
reason is that inSU(5)3Z2 there are too many possibl
combinations and there is an additional parameter,h/l,
which can possibly affect the stability of kink solutions a
the outcome of kink-antikink collisions. Instead, we will d
scribe the outcomes for each of the combinations listed
Table I and illustrate the most interesting ones.2

In order to study the collisions, we need to integrate

2Several animated kink collisions can be viewed at http
theory.ic.ac.uk/;LEP/su5kinks.html

FIG. 2. Kink-antikink collision in the (q(1)50, q(2)

50, q(3)50) case, in the parameter range whenq50 kink is
unstable. The solid line shows the initial energy density profile a
the dotted line shows the final. The right movingq50 kink col-
lapsed into aq52 kink going to the left and the remainderq51
non-topological (eT51) kink moving to the right. The originally
left moving q50 antikink splits into a right movingq52 antikink
and a left movingq51 non-topological kink. The arrows show
directions and approximate relative magnitudes of kink velocitie
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field equations of motion forward in time. Without loss o
generality, we can choose the initial kink-antikink configur
tion to be diagonal@13#. Since equations of motion preserv
the diagonal form, one only needs to consider the evolut
of four functions:a(x,t), b(x,t), c(x,t), andd(x,t), defined
as

F~x,t !5a~x,t !l31b~x,t !l81c~x,t !t31d~x,t !Y,
~53!

where l3 , l8 , t3, and Y are the diagonal generators o
SU~5!:

l35
1

2
diag~1,21,0,0,0!,

l85
1

2A3
diag~1,1,22,0,0!,

t35
1

2
diag~0,0,0,1,21!,

Y5
1

2A15
diag~2,2,2,23,23!. ~54!

As mentioned in Sec. III, theq50 wall is identical to the
kink of the simplestf4-model. Theq50 solution, however,
is known to be locally unstable against perturbations alo
diagonal components ofF in the parameter rangeh/l.
23/20 @4#. The outcome of theq50 kink-antikink collision
will, therefore, depend onh/l as well as onv init ial . In Fig.
2 and Fig. 3 we illustrate the collision forv init ial 50.05 and
h/l50. Just before the collision, both the kink and the a

/

d

.

FIG. 3. Functionsa(x,t) ~dotted line!, b(x,t) ~short dash line!,
c(x,t) ~long dash line! andd(x,t) ~solid line!, defined in Eq.~53! at
the same final snapshot as in Fig. 2.
3-7
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2tikink collapse. More detailed analysis of functionsa, b, c,
andd in Fig. 3 reveals that theq50 kink, initially moving to
the right, has collapsed into aq52 kink, moving to the left,
and the remainderq51 nontopological (eT51) kink, mov-
ing to the right. The originally left movingq50 antikink has
split into a right movingq52 antikink and a left movingq
51 nontopological kink. Theq52 kinks will separate to
infinities, while the fate ofq51 nontopological kinks need
more explanation. As was found in@13#, the q51 nontopo-
logical kink is unstable against a collapse into a pair oq
52 kinks. Therefore, depending on the values ofv init ial and
h/l, the nontopologicalq51 kinks ~in the center of Fig. 2!
can either immediately decay into radiation, or they can s
into pairs ofq52 kinks moving away from each other. W
found that the latter was the case for the choice of parame
corresponding to Fig. 2 and Fig. 3. For23/20,h/l,
23/70, whenq50 kinks are locally stable, outcomes o
their collisions are the same as in the case of kinks
antikinks in f4 model, the case studied extensively
@5–12#.

Figure 4 illustrates a collision of aq51 kink ~initially on
the left! with a q50 antikink ~initially on the right!. The
parameters arev init ial 50.2, h51, l50.5, andh/l520.1.
Theq50 kink is unstable for these parameters. The mas
the q50 kink is 2A2m3/l8 @2# and, for our choice of pa-
rameters, is equal to 0.243. Theq51 kink mass can only be
found numerically and is 0.150. For comparison, the mas

FIG. 4. Kink-antikink collision in the (q(1)51, q(2)50, q(3)

51) case. The solid line shows the initial energy density profile a
the dotted line shows the final. After the collision, there are fo
q52 kinks arranged so that the left most and the right most pair
kinks form (q(1)52, q(2)52, q(3)51) combinations and the two
inner kinks form a (q(1)52, q(2)52, q(3)50) combination. The
rest of the original energy is being radiated away. The arrows s
directions and approximate relative magnitudes of kink velocitie
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the q52 kink with these parameters would b
0.033—almost one fifth the mass of theq51 kink. We find
that, during the collision, theq50 kink collapses into aq
52 kink traveling to the right and aq51 nontopological
kink traveling to the left. At the same time, the originalq
51 kink collapses into threeq52 kinks, with outer kinks
moving away from each other. The final configuration is th
of four q52 kinks arranged so that the two leftmost kin
and the two rightmost kinks form (q(1)52, q(2)52, q(3)

51) combinations, while the two inner kinks form a (q(1)

52, q(2)52, q(3)50) combination. The rest of the origina
energy is radiated away.

In Fig. 5 the initial configuration is (q(1)50, q(2)52,
q(3)52). In this case, theq50 antikink ~initially on the
right! splits into aq52 topological antikink, which starts
interacting with theq52 kink, and aq51 nontopological
kink, which keeps propagating to the left unperturbed. A
other way to describe this interaction is that theq52 wall
has met itsq52 ‘‘reflection’’ in the q50 wall and formed a
complex with it, while the remainder wall is radiated awa

The (q(1)51, q(2)51, q(3)50) case has essentially th
same set of possible outcomes as the (q(1)50, q(2)50, q(3)

50) and will not be considered here.
Figure 6 illustrates the outcome of the kink-antikink co

lision with the initial (q(1)51, q(2)51, q(3)51) configura-
tion. The parameters were chosen to beh/l520.1 and
v init ial 50.2. The final configuration is that of twoq52
kinks, arranged in a (q(1)52, q(2)52, q(3)51) combination,
moving away from each other.

The outcome of a (q(1)51, q(2)51, q(3)52) collision
with h/l520.1 and v init ial 50.2 is shown in Fig. 7.
The final configuration is that of two (q(1)52, q(2)52,

d
r
of

w
.

FIG. 5. Kink-antikink collision in the (q(1)50, q(2)52, q(3)

52) case. Resulting configuration~dotted line! is that of a non-
topologicalq51 kink moving to the left, while theq52 kink has
captured its ‘‘mirror image’’~the q52 antikink! originally con-
tained in the incidentq51 wall.
3-8
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q(3)51) combinations moving away from each othe
The (q(1)51, q(2)52, q(3)51) case withh/l520.1 and

v init ial 50.1 is illustrated in Fig. 8. Just before the collisio
the q51 kink ~originally on the left! collapses into three
q52 kinks, with two outer kinks having large kinetic ene
gies. Thus, an intermediate configuration is that of fo
q52 kinks, including the initial one~originally on the right!.
The two rightmostq52 kinks are in a (q(1)52, q(2)52,

FIG. 6. The (q(1)51, q(2)51, q(3)51) case withh/l520.1
andv init ial 50.2. The final configuration is that of twoq52 kinks,
arranged in a (q(1)52, q(2)52, q(3)51) combination, moving
away from each other.

FIG. 7. The (q(1)51, q(2)51, q(3)52) case withh/l520.1
and v init ial 50.2. The final configuration is that of two (q(1)52,
q(2)52, q(3)51) combinations moving away from each other.
06502
.

r

q(3)50) combination and, depending on the initial veloci
may annihilate or chase each other forever. The two leftm
walls are in a (q(1)52, q(2)52, q(3)51) arrangement.

A q(1)51 kink and a q(2)52 antikink arranged in a
(q(1)51, q(2)52, q(3)52) combination repel. Forh/l
520.1 andv init ial 50.15 they scatter elastically. The lighte
q52 kink ~initially on the right! bounces off the heavie
q51 kink and slows it down~see Fig. 9!.

The remaining two combinations from Table I are (q(1)

52, q(2)52, q(3)50) and (q(1)52, q(2)52, q(3)51). Since

FIG. 8. The (q(1)51, q(2)52, q(3)51) case withh/l520.1
and v init ial 50.1. There are fourq52 kinks left as a result of the
collision.

FIG. 9. The elastic scattering in the (q(1)51, q(2)52, q(3)

52) case withh/l520.1 andv init ial 50.1.
3-9
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LEVON POGOSIAN PHYSICAL REVIEW D 65 065023
these are the only two initial combinations that involve sta
kinks and antikinks, they would be the most important on
if one studied evolution of domain wall networks after t
formation. However, these two are also the most ‘‘unint
esting’’ combinations from the novelty point of veiw. In th
case of (q(1)52, q(2)52, q(3)50), the dynamics and pos
sible outcomes are qualitatively identical to the case of ki
antikink collision in the simplef4 model. Namely, we ob-
serve a dependence on the incident velocity similar to
found in Refs.@5–10,12#. The difference is that in the case o
SU(5) the value of the incident velocity leading to a give
outcome depends on the parameterh/l of the potential given
in Eq. ~33!.

In the (q(1)52, q(2)52, q(3)51) case, the kink and anti
kink repel and simply bounce off each other elastically.

VI. SUMMARY AND DISCUSSION

As we have illustrated in the previous sections, kin
antikink interactions inSU(N)3Z2 can be of different types
with many possible outcomes depending on the choice of
parameter values.

In order to see how a pair of kinks will interact, on
generally needs to specify the potentialV(F) and evaluate
the interaction energy between the two kinks. However,
have shown that to a very good approximation the nature
the interaction can be determined by evaluat
Tr@Q(1)Q(2)#, whereQ(1) andQ(2) are the charges of the tw
kinks defined by Eq.~10!. In particular, we have shown tha
kinks and antikinks may attract or repel depending on th
relative orientation in the internal space. This is similar
interactions between globalO(3) monopoles, where the rela
tive phase, not the topological charges, is what determ
the nature of the interaction@17#.

In our study of kink-antikink collisions inSU(5)3Z2 we
have seen a general tendency for larger mass topolog
kinks to split into fundamental kinks of the theory, such
the q52 kink. This suggests that kink-antikink interaction
in SU(N)3Z2 can be described in terms of interactions b
tween fundamental~i.e., globally stable! q5(N21)/2 kinks.
Namely, given the configuration of two kinks, one wou
look for the least energy configuration ofq5n kinks that
would have the same global topology as the original pair
kinks. The outcome of the interaction would then be redu
r
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to interactions between attractive or repulsive pairs ofq5n
kinks.

We have not investigated the detailed dependence of
dynamics of kink-antikink collisions on the initial velocities
Part of the reason is that the outcome strongly depends
the stability properties of each of the solitons and our n
merical methods do not give us the possibility of prope
accounting for all instabilities that can occur in the mod
Each kink, except for the fundamental one, is unstable i
different way, namely, along a different direction in the i
ternal space of SU~5!, and also depends on the particul
choice of the potential. It is possible that a more detai
study would reveal a connection with earlier work onQ balls
@18# and globalU(1) strings@19#, where it was observed tha
at very high collision velocities fragmentation of solitons
generally suppressed. Such a study could be a subjec
future work.

From the equations of motion it follows that if the Higg
field components along nondiagonal generators ofSU(5)
were zero at the initial time, they would remain zero at
times, which was the case in our simulations. However,
cept for theq52 topological kinks, kink solutions can b
unstable against perturbations along nondiagonal genera
of SU(5) @13#. In a realistic domain wall formation scenari
one would have to allow for all components of the Higgs
be excited and only stable walls would survive. Depend
on the rate of the phase transition, temporary formation
unstable kinks will or will not be relevant. Nevertheles
stable and unstable kinks are solutions of the classical fi
equations and their interactions may become import
whenever an exact or approximateSU(N)3Z2 symmetry is
present in a theory.
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