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Measurability of Wilson loop operators
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We show that the nondemolition measurement of a spacelike Wilson loop operatorW(C) is impossible in a
relativistic non-Abelian gauge theory. In particular, if two spacelike-separated magnetic flux tubes both link
with the loopC, then a nondemolition measurement ofW(C) would cause electric charge to be transferred
from one flux tube to the other, a violation of relativistic causality. A destructive measurement ofW(C) is
possible in a non-Abelian gauge theory with suitable matter content. In an Abelian gauge theory, many
cooperating parties distributed along the loopC can perform a nondemolition measurement of the Wilson loop
operator if they are equipped with a shared entangled ancilla that has been prepared in advance. We also note
that Abelian electric charge~but not non-Abelian charge! can be transported superluminally, without any
accompanying transmission of information.

DOI: 10.1103/PhysRevD.65.065022 PACS number~s!: 11.15.2q
or
a

ou

c
g
es
on
w
so
re
a
t
a-

ili
-
up

a
ge

uc
no
o

i
li
e

e
d

n

ri-
l or

ond
the

wn
rpo-
al-
ried
hat
f

e
n’’

gen-
by

an

tors

ype
an-
e in
not
al

m
tion
er

is
ion
su-
er-
I. INTRODUCTION AND SUMMARY

What measurements are possible in a gauge field the
Since the interactions of the elementary constituents of m
ter are described by gauge theory, hardly any question c
be more fundamental. Yet definitive answers are elusive.

The Wilson loop operators associated with closed spa
like paths provide a complete characterization of a gau
field configuration in terms of gauge-invariant quantiti
@1,2#. Therefore, in formulations of gauge theories, Wils
loops are often taken to be the basic observables. But we
show that nondemolition measurements of spacelike Wil
loops are impossible in a non-Abelian gauge theory that
spects relativistic causality. We reach this conclusion by
guing that any procedure for nondemolition measuremen
a spacelike non-Abelian Wilson loop would allow inform
tion to be transmitted outside the forward light cone.

Causality places no such restriction on the measurab
of an Abelian Wilson loop ~one evaluated in a one
dimensional irreducible representation of the gauge gro!,
and indeed we find that nondemolition measurement of
Abelian Wilson loop is possible. We also find that, in gau
theories with suitable matter content,destructivemeasure-
ments of non-Abelian Wilson loops are possible. By destr
tive measurements we mean ones that, in contrast to
demolition measurements, inflict damage on Wilson lo
eigenstates.

In a quantum field theory in flat spacetime, described
the Schro¨dinger picture, what do we mean by a nondemo
tion ‘‘measurement’’ of an observable defined on a tim
slice? Typically, such a measurement requires the coop
tion of many parties who are distributed over the slice, an
a three-step process. In the first step~which might not be
necessary!, a suitable entangled quantum state~the ‘‘an-
cilla’’ ! is prepared and distributed to the parties. Seco
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each party performs a local operation on her local field va
ables and her part of the entangled ancilla. Third, classica
quantum information extracted by the parties in the sec
step is shipped to a central location where the readout of
result is completed.

Although the outcome of the measurement is not kno
until the third step is completed, the coherence of a supe
sition of eigenstates of the observable with distinct eigenv
ues is already destroyed in the second step, which is car
out on the time slice where the operator is defined. At t
time, the density operatorr encoding the quantum state o
the field theory is transformed according to

r→E~r![(
a

EarEa , ~1!

where $Ea% is the set of orthogonal projectors onto th
eigenspaces of the observable. The term ‘‘nondemolitio
means that if the state prior to the measurement is an ei
state of the observable, then the state will be unaffected
the measurement.

Any permissible way in which a quantum state c
change is described by aquantum operation, a completely
positive trace-nonincreasing linear map of density opera
to density operators@3,4#. The orthogonal measurementE in
Eq. ~1!, summed over its possible outcomes, is a special t
of quantum operation. It is natural to ask, what are the qu
tum operations that can really be executed on a time slic
a relativistic quantum theory? The general answer is
known, but it is known that many operations are unphysic
because they run afoul of relativistic causality@5–11#. Con-
sider, as in Fig. 1, two parties Alice and Bob who perfor
spacelike-separated actions. Just prior to the implementa
of E, Alice performs a local operation on the fields in h
vicinity, and just after the implementation ofE, Bob performs
a local measurement of the fields in his vicinity. If Bob
able to acquire any information about what local operat
Alice chose to apply, then Alice has successfully sent a
perluminal signal to Bob. If an operation allows such sup
luminal signaling, we say that the operation isacausal; oth-
©2002 The American Physical Society22-1
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erwise, it is causal. Physically realizable operations mus
causal. We will apply this causality criterion to non-Abelia
gauge theories, and will argue that nondemolition meas
ment of a Wilson loop operator is an acausal operation.

In discussing the locality properties of a field theory, it
convenient to use the concept of a ‘‘reduced’’ density ope
tor that encodes the observations that are accessible t
agent acting in a bounded spatial region. This density op
tor is obtained from a density operator for the full system
‘‘tracing out’’ the degrees of freedom in the unobserved
gion. In a gauge theory, performing a partial trace involv
potential subtleties arising from the Gauss law constraint
isfied by physical states. For conceptual clarity, we will sid
step these difficulties by founding our discussion on the c
cept of charge super-selection sectors@12#. Strictly speaking,
our analysis applies to the ‘‘free-charge’’ phase of a wea
coupled gauge theory with non-Abelian gauge groupG; the
local symmetry is unbroken andG charges are unconfined
The same argument, though, shows that Wilson loop m
surement would allow superluminal signaling in a confini
gauge theory, where the separation between the commun
ing parties is small compared to the confinement dista
scale.

The protocol by which Alice can exploit measurement
the spacelike Wilson loop operatorW(C) to send a signal to
Bob is illustrated in Fig. 2. First Alice and Bob, acting on th
weakly-coupled ground state with gauge-invariant lo
probes, both createmagnetic flux tubes. Bob’s flux tube links
with the loopC; Alice encodes one bit of classical informa
tion by placing her tube in one of two possible position
either linking with C or not. In the framework of lattice
gauge theory, we may imagine that Bob has control o
single lattice linkl B contained in the loopC, and he creates
his ‘‘flux tube’’ by manipulating his link—exciting the lattice
plaquettes that containl B to a particular nontrivial conjugacy
class ofG, as illustrated in Fig. 3. Similarly, Alice controls
single link l A and she encodes a bit by either exciting h
link or not. Of course, since Alice and Bob act locally a
the theory respects a charge superselection rule, the

FIG. 1. Causality criterion for quantum operations. First Ali
applies a local operator in her vicinity, then the quantum opera
is executed, and finally Bob makes a local measurement tha
spacelike separated from Alice’s action. If Bob’s measurement
sult allows him to acquire information about what local opera
Alice applied, then the quantum operation is notcausaland hence
not physically implementable.
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tubes created by Alice and Bob have trivial electric charg
If either Bob’s tube or Alice’s tube links with the loopC,

but not both, then the configuration is an eigenstate ofW(C)
~or close to an eigenstate in the weakly-coupled case! and
will be unaffected~or little affected! by the measurement o
W(C). But if both tubes link withC, the configuration is not
an eigenstate, and will be altered by the measurement.
will see that, with nonvanishing probability, the measu
ment will generate equal and opposite nonzero elec
charges on Alice’s tube and Bob’s. Then, by measuring
charge on his tube, Bob can infer~with a success probability
better than a random guess! whether Alice’s tube linked with
C or not, and so receive a superluminal signal.

In a non-Abelian gauge theory, a magnetic flux tube c
carry a peculiar kind of electric charge that has no localiz
source, which has been called Cheshire charge@13,14#. ~The
property that thecharge of an excitation in a non-Abelian
gauge theory need not be the integral of a local densit
analogous to the property that theenergyof an object in
general relativity need not be the integral of a local densi!

n
is
-

r

FIG. 2. Nondemolition measurement of the Wilson loop ope
tor W(C) @more precisely decoherence in the basis of eigenstate
W(C)# allows Alice to signal Bob. Alice and Bob, with gauge
invariant probes, can prepare magnetic flux tubes that carry tri
electric charge. In~a!, Bob’s tube links with the loopC but Alice’s
does not; whenW(C) is measured, neither tube is affected. In~b!,
Alice moves her tube into position so that it too links withC; when
W(C) is measured, then~with nonvanishing probability!, Bob’s
tube and Alice’s acquire nontrivial and opposite electric charges.
measuring the charge of his tube, Bob can tell how Alice position
her loop and so receive a message from Alice.

FIG. 3. A small ‘‘magnetic flux tube’’ in lattice gauge theory. B
manipulating her link, Alice excites the plaquettes that contain
link, creating a magnetic flux tube. The links dual to the
plaquettes form a closed loop on the dual lattice.
2-2
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MEASURABILITY OF WILSON LOOP OPERATORS PHYSICAL REVIEW D65 065022
Our protocol for superluminal signaling is based on the
servation that Wilson loop measurement causes Ches
charge to be transferred from Alice’s flux tube to Bob
Cheshire charge, while conceptually elusive, is physica
genuine and readily detected in principle.

Our conclusion that Wilson loop measurement is
acausal operation does not hold in the case of an Abe
gauge theory. Indeed, we will show that a nondemolit
measurement ofW(C) is possible in an Abelian gaug
theory that includes charged matter. In our analysis of
case, we adopt the convenient idealization that the pa
who perform the measurement are equipped with gau
invariant ancilla variables that are not themselves descr
by the gauge theory. We will also see that adestructivemea-
surement of a non-Abelian Wilson loop~a measurement tha
determines the value of the Wilson loop but in doing
damages Wilson loop eigenstates! is possible in a gauge
theory that includes suitable charged matter. In particula
the matter transforms faithfully under the gauge group, th
the Wilson loop can be measured destructively in any rep
sentation of the gauge group.

The conclusion that nondemolition measurement
spacelike Wilson loops is impossible in a non-Abelian gau
theory seems surprising and somewhat troubling, as it lea
us without a fully satisfactory way to characterize the co
figurations of a quantized relativistic gauge theory in ter
of measurable quantities. Related difficulties arise in qu
tum theories of gravity. That nondemolition measuremen
a Wilson loop operator would allow superluminal signali
has been anticipated by Sorkin@8#.

We formulate the properties of magnetic flux tubes in S
II, and analyze a protocol for superluminal signaling enab
by Wilson loop measurement in Sec. III. In Sec. IV, we d
fend the legitimacy of the magnetic flux tubes that are u
in our signaling protocol, through explicit construction
within the formalism of lattice gauge theory. In Sec. V, w
explore the consequences of including charged matter fi
in the gauge theory, and show that destructive measurem
of a spacelike Wilson loop is possible. The Abelian case
discussed in Sec. VI, and we show that in an Abelian ga
theory with charged matter, nondemolition measurement
Wilson loop is possible. The pure Abelian gauge theo
~without matter! is considered in Sec. VII; in that case no
demolition measurement of homologically trivial Wilso
loops is possible, but homologically nontrivial Wilson loop
are unmeasurable and there is an associated supersele
rule. We take up the related question of whether elec
charges can travel faster than light in Sec. VIII, conclud
that superluminal transport of Abelian charge, but not n
Abelian charge, is possible. Section IX contains some c
cluding comments.

II. WILSON LOOPS, MAGNETIC FLUX, AND ELECTRIC
CHARGE

In a theory with gauge groupG, the effect of parallel
transport of a charged object around a closed pathC that
begins and ends at the pointx0 can be encoded in a grou
elementa(C,x0)PG given by
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a~C,x0!5P expS i E
C,x0

AD . ~2!

Here A is the gauge potential andP denotes path ordering
the stateuq& of a charged object carried alongC is modified
according to

uq&→D (R)
„a~C,x0!…uq&, ~3!

if uq& transforms as the unitary irreducible representat
D (R) of G. The elementa(C,x0)PG depends on a ‘‘gauge
choice’’ at the pointx0; that is, on how a basis is chosen
the representationD (R). A basis-independent characterizatio
of the gauge holonomy is obtained if we evaluate the trac
the representationD (R), obtaining the Wilson loop operato
associated withC given by

W(R)~C!5x (R)
„a~C,x0!…, ~4!

wherex (R) denotes the character of the representationD (R).
The Wilson loop operator does not depend on how the p
x0 on the loopC is chosen. In much of what follows, we wil
assume for notational simplicity that the unbroken gau
groupG is finite; however, our arguments can be easily e
tended to the case of compact Lie groups.

By acting with a gauge-invariant source on the weak
coupled ground state of the gauge theory, Alice~or Bob! can
create a ‘‘color magnetic flux tube’’ or ‘‘cosmic string’’ tha
carries trivial ‘‘color electric’’ charge. This tube is an eigen
state of the Wilson loop operatorW(R8)(CA), whereCA is a
loop that links once with the tube, for any irreducible repr
sentation (R8) of the gauge group G; hence the tube can
labeled by a conjugacy classa of G.

When we say that the tube has trivial gauge charge,
mean that it transforms as the trivial representation ofG
under global gauge transformations. To understand this p
erty it is helpful to specify a basepointx0,A on the loopCA
and to fix the gauge at this point. Then the effect of para
transport around the loopCA , beginning and ending atx0,A ,
can be encoded~in this particular gauge! in a group element
a(CA ,x0,A)[a. If the tube is associated with a particula
group elementa, we call its quantum state a ‘‘flux eigen
state,’’ denotedua&. But under a gauge transformationg
PG at x0,A , this flux eigenstate is transformed as

a→gag21. ~5!

Thus a flux eigenstate is not a gauge singlet in general,G
is non-Abelian. A gauge-singlet quantum state of the fl
tube is a coherent superposition of the flux eigenstates
longing to conjugacy classa,

ua,0&5
1

Auau S (
aPa

ua& D , ~6!

whereuau denotes the number of members of the class.
Other possible states of the flux tube can carry nontriv

electric charge. For example, the state
2-3
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BECKMAN, GOTTESMAN, KITAEV, AND PRESKILL PHYSICAL REVIEW D65 065022
ua,R&5Na,RS (
gPG

x (R)~g!* ugag21& D ~7!

~whereNa,R is a normalization factor andaPa) transforms
as the nontrivial irreducible representation~R! under global
gauge transformations. To verify this, first construct the
erator

E(R)5
nR

uGu (
gPG

x (R)~g!U~g!, ~8!

whereuGu denotes the order of the group,nR is the dimen-
sion of the irreducible representation (R), and U(g) is the
global gauge transformation that conjugates the flux byg,

U~g!:ua&→ugag21&. ~9!

Using the group orthogonality relations

nR

uGu (
gPG

x (R)~g!* x (R8)~gh!5dRR8x (R)~h!, ~10!

we find thatE(R) is the orthogonal projection onto the spa
transforming as (R), which satisfies

E(R)E(R8)5dRR8E(R). ~11!

Applying the orthogonality relations once more, we see t

E(R)ua,R&5ua,R&; ~12!

thusua,R& transforms as (R). The ‘‘Cheshire charge’’ carried
by the flux tube in this state can be detected through,
example, the Aharonov-Bohm interactions of the tube w
other, distant, flux tubes@13,14#.

Suppose that Alice and Bob, acting locally, each cre
flux tubes with zero electric charge, where the flux of Alice
tube belongs to conjugacy classa and the flux of Bob’s
belongs to conjugacy classb. ~The process of preparing th
flux tubes will be discussed in more detail in Sec. IV.! To
describe the quantum state of this configuration, we m
choose loopsCA andCB that link with the tubes, and fix the
gauge at basepointsx0,A and x0,B as illustrated in Fig. 4~a!.
Up to a normalization factor, the quantum state of the t
tubes can be expressed as

FIG. 4. Loops linked with flux tubes. The flux tube configur
tion created locally by Alice and by Bob is an eigenstate of
Wilson loop operators associated with the pathsCA andCB , shown
in ~a!, but not an eigenstate of the Wilson loop operatorC that links
with both tubes, shown in~b!.
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uhah21&AD ^ S (
gPG

ugbg21&BD , ~13!

whereaPa andbPb. This configuration is a direct produc
of the state of Alice’s tube with the state of Bob’s tube,
simultaneous eigenstate of the commuting Wilson loop
eratorsW(CA) andW(CB).

But because multiplication of conjugacy classes is
defined, this state is not an eigenstate ofW(C), whereC is
the loop shown in Fig. 4~b! that links with both tubes.
Rather, if Alice’s tube is an eigenstate ofW(CA) and Bob’s
tube is an eigenstate ofW(CB), then an eigenstate ofW(C)
is not a product state but an entangled state of the form~up to
normalization!

(
gPG

ugag21&A^ ugbg21&B . ~14!

This state has zero total charge, as it is invariant unde
global gauge transformation applied to both tubes. But i
not invariant under a gauge transformation that acts on
one of the tubes; it can be expanded in a basis in wh
Alice’s tube and Bob’s have definite and opposite charg
Using the group orthogonality relations in the form

(
R

nR

uGu
x (R)~g!5dg,e ~15!

~wheree is the identity element!, we may rewrite the state a
a sum over irreducible representations

(
R

nR

uGu S (
h,gPG

x (R)~gh21!* uhah21&A^ ugbg21&BD .

~16!

The expression in parentheses transforms as~R! under gauge
transformations acting on Bob’s tube and as the conjug
representation (R* ) under gauge transformations acting o
Alice’s tube, as we can verify by applyingI ^ E(R) and
E(R* )

^ I .
Thus, when two flux tubes are prepared in a quantum s

that is an eigenstate of the Wilson loop operatorW(C),
whereC links with both flux tubes, then the flux tubes car
correlated nontrivial electric charges. This property is t
basis of our claim that Wilson loop measurement is acau
as we elaborate in the next section.

III. NONDEMOLITION MEASUREMENT
OF NON-ABELIAN WILSON LOOPS IS ACAUSAL

For a static gauge field configuration, it is possible i
principle to measureW(R)(C) @and hence the conjugacy clas
of the group elementa(C,x0)# by performing interference
experiments with projectiles that transform asD (R) @15#. But
what if the loopC lies in a time slice and the gauge field
dynamical? In a relativistic field theory, no projectile ca
follow a spacelike world line, so that a direct measurem
of the effect of parallel transport alongC is not feasible.

However, it seems conceivable that a less direct meas

e

2-4



ur
ic
ow
ea
g

d
t

ul
th

l
e
ar
a

an
w

n
e

on

e-
o
-

rd

o

e-
o
if
f
t
q

a

nd
rg
-
e-
th
to
e
e

-

to
n

of
that
ero
ple,
tum
it

ble

on
is

an
nel
inal
l to

tail,

l

ce

ith

al

the

of
on

MEASURABILITY OF WILSON LOOP OPERATORS PHYSICAL REVIEW D65 065022
ment strategy might succeed. When we speak of a ‘‘meas
ment’’ of an operator whose support is on a spacelike sl
we need not require that the result be instantaneously kn
by anyone. We might imagine instead that, in order to m
sure W(R)(C) at time t50, many parties distributed alon
the loopC perform local operations att50. Later, the data
collected by the parties can be assembled and processe
central laboratory, where the outcome of the measuremen
W(R)(C) can be determined. In such a protocol, we sho
allow the parties to share any entangled quantum state
they might have prepared prior tot50, and we should allow
them to ship quantum information~rather than just classica
data! to the central laboratory after they have performed th
local operations. Of course, the quantum or classical v
ables that are sent to the central laboratory for analysis
not the variables of the underlying field theory; they are
cilla variables that are assumed to be available to assist
the measurement.

Just prior to the measurement at timet50, the quantum
state of the gauge theory isr, a density operator that acts o
the physical gauge-invariant subspace. Even though the m
surement result may not be known until later, the operati
performed att50 modify the stater immediately. If the
local operations performed att50 are to achieve a measur
ment of W(R)(C), then the coherence of a superposition
eigenstates ofr with different eigenvalues must be de
stroyed. Att50, then, the quantum state is modified acco
ing to

r→EW(C)~r![(
w

EwrEw , ~17!

whereEw is the orthogonal projector onto the subspace
states with

W(R)~C!5w. ~18!

This operation describes a projective measurement
W(R)(C) with an unknown outcome.

The operationEW(C) is actually weaker than a measur
ment of W(R)(C); conceivably decoherence in the basis
eigenstates of an observable can be accomplished even
measurement outcome isneverrecorded. But if any record o
the value ofW(R)(C) is written att50 ~even one that canno
be read until later!, then decoherence as described by E
~17! must occur.

We will show thatEW(C) can be used to send superlumin
signals, and so establish thatEW(C) cannot be implemented in
a gauge theory that respects relativistic causality.

To devise a superluminal signaling protocol, Alice a
Bob use local gauge-invariant probes to prepare uncha
flux tubes belonging to classesa andb respectively, as de
scribed in Sec. II. Bob moves his flux tube, which will r
ceive the message, into position so that it links once with
loop C; Alice encodes one bit of information by choosing
place her flux tube in one of two possible positions, eith
linking with C or not. If Alice chooses to place her tub
where it does not link withC, then the configuration is an
eigenstate ofW(R)(C) and will be unaffected when the Wil
06502
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son loop is measured. But if Alice moves her flux tube in
position to link withC, then the configuration is no longer a
eigenstate ofW(R)(C), and it is affected by the operation
EW(C) . In fact, after the operation, though the total charge
the system remains zero, there is a nonzero probability
Alice’s tube and Bob’s tube carry equal and opposite nonz
charges. This charge can be detected by Bob. For exam
he can determine whether his tube has vacuum quan
numbers by allowing it to shrink and observing whether
will annihilate and disappear—if the tube is charged, a sta
charged particle will be left behind.

Thus, if there were a way to implement the operati
EW(C) at t50, then by observing whether his flux tube
charged aftert50, Bob would be able to infer~with a prob-
ability of success better than a random guess! whether Alice
moved her tube into position or not. Therefore Alice c
transmit classical information to Bob over a noisy chan
with nonzero capacity; she is able to send a superlum
signal to Bob. By the same method, Bob can send a signa
Alice.

To understand this charge transfer process in more de
let us consider a specific example. Suppose thatG is the
quaternionic groupof order eight, whose two-dimensiona
faithful unitary irreducible representation is

$6I ,6 is1 ,6 is2 ,6 is3%, ~19!

wheres1 ,s2 ,s3 are the Pauli matrices. Suppose that Ali
and Bob both have tubes carrying flux in the classa5b
5$6 is1%. For tubes in this class, the quantum state w
trivial charge is

u1&5
1

A2
~ u is1&1u2 is1&), ~20!

and there is also a state of nontrivial charge

u2&5
1

A2
~ u is1&2u2 is1&). ~21!

The stateu2& transforms as the nontrivial one-dimension
representation ofG in which 6I , 6 is1 are represented by 1
and6 is2 , 6 is3 are represented by21.

If Alice and Bob each have a charge-zero flux tube,
quantum state of their two tubes is a product state

uc& init5u1&A^ u1&B . ~22!

But if the loopC links once with each tube, then the value
W(R)(C) in the two-dimensional irreducible representati
~R! can be either 2 or22. If the initial stateuc& init is pro-
jected onto the state withW(R)(C)52, Alice’s tube becomes
entangled with Bob’s; the resulting state is

uc&fin,25
1

A2
~ u is1&A^ u2 is1&B1u2 is1&A^ u is1&B).

~23!
2-5
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Bob’s final density operator, obtained by tracing over t
state of Alice’s tube, is

rB,fin,25
1

2
~ u is1&^ is1u1u2 is1&^2 is1u!, ~24!

an incoherent mixtureof the two flux eigenstates. Similarly
if uc& init is projected onto the state withW(R)(C)522, the
resulting state is

uc&fin,225
1

A2
~ u is1&A^ u is1&B1u2 is1&A^ u2 is1&B),

~25!

and again Bob’s final density operator is

rB,fin,225rB,fin,2. ~26!

Each of the two flux eigenstates is an equally weighted
herent superposition of the charge eigenstatesu1&B and
u2&B . Thus if Bob were to measure the charge of his tu
after the operationEW(C) acts at t50, he would find the
charge to be (2) with probability 1/2 if Alice’s tube linked
with the loopC, while he would never find the charge to b
(2) if Alice’s tube did not link with C. Alice has sent a
superluminal signal to Bob.

We can easily generalize this construction to an arbitr
finite gauge groupG. If Alice’s tube initially carries flux in
the conjugacy classa and has trivial charge, while Bob’
carries flux in the classb and has trivial charge, then th
initial state of their tubes is a product state

uc& init5
1

Auau•ubu
(
aPa

(
bPb

ua&A^ ub&B . ~27!

This state can be expanded in terms of eigenstates of

W(R)~C!5x (R)~ab!. ~28!

Suppose that for fixedaPa there areni distinct elements
bi ,m

(a)Pb, m51,2, . . . ,ni , such thatx (R)(ab)5wi . ~This
numberni is independent of how the class representativea is
chosen.! Then the component ofuc& init with W(R)(C)5wi is
the ~unnormalized! entangled state

uc&wi
5

1

Auau•ubu
(
aPa

ua&A^ (
m51

ni

ubi ,m
(a)&B . ~29!

This state is invariant under a global gauge transforma
acting as

a→gag21, b→gbg21, ~30!

so that its total charge is trivial. We see that ifW(R)(C) is
measured, the outcomewi occurs with probability

Prob~wi !5 wi
^cuc&wi

5ni /ubu; ~31!

it is obvious from the definition ofni that these probabilities
sum to unity. Furthermore, if the stateuc&wi

is prepared by
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the measurement of the Wilson loop, and Bob subseque
measures the charge of his tube, he will find the charge to
trivial with probability

Prob~0uwi !5
wi

^cu~ I A^ ub,0&^b,0u!uc&wi

wi
^cuc&wi

5ni /ubu5Prob~wi !. ~32!

~Hereub,0& denotes the charge-0 state of a string whose fl
is in conjugacy classb.! Therefore, if Alice’s and Bob’s
tubes both link once with the loopC when the operation
EW(C) is applied, then afterwards Bob will find his tube ca
ries trivial charge with probability

Prob~0!5(
i

Prob~0uwi !•Prob~wi !

5(
i

„Prob~wi !…
25(

i
~ni /ubu!2. ~33!

We see that, unless the initial configuration is an eigens
of W(R)(C), we have Prob(0),1. We conclude that Bob’s
tube is charged with nonzero probability if Alice’s tub
linked with C, and it is guaranteed to be uncharged if Alice
tube did not link withC. Alice can send a superluminal sig
nal to Bob. ~Of course, since Alice’s tube has an electr
charge equal and opposite to that of Bob’s tube, Bob can
send a superluminal signal to Alice, with the same proba
ity of success.!

The argument also applies to compact Lie groups.
example if the gauge group is

G5SU~2!5$g~ n̂,u!5exp@2 i ~u/2!n̂•sW #,

n̂PS2, uP@0,2p#%, ~34!

then conjugacy classes are labeled byu. If a flux tube has
trivial charge, its quantum state can be expressed as

u0,f &5E du f ~u!E dn̂ug~ n̂,u!&, ~35!

wheref is any square integrable class function. If the loopC
links with Alice’s tube and Bob’s, then the product state

uc& init5u0,f 1&A^ u0,f 2&B ~36!

is in general not an eigenstate of the operatorW(R)(C);
hence measurement ofW(R)(C) would induce a detectable
transfer of charge from Alice’s tube to Bob’s.

The argument also applies in any spatial dimensiond
>2. In d52 dimensions, the flux tubes may be replaced
pairs of pointlike vortices; ind.3 dimensions, the tube
become membranes of codimension 2.

In our discussion, we have ignored the effects of magn
and electric quantum fluctuations—in particular we have
considered whether gauge charges might be confined
screened by the Higgs mechanism. We have implicitly
sumed that theG gauge symmetry is unbroken, and~if G
2-6
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MEASURABILITY OF WILSON LOOP OPERATORS PHYSICAL REVIEW D65 065022
electric charges are confined! that the separation betwee
Alice and Bob is small compared to the characteristic d
tance scale of electric confinement.

We should note that in the case of a continuous ga
group, an ultraviolet regulator is implicitly invoked to defin
the Wilson loop. The Wilson loop detects the magnetic fl
that links withC. If we think of C as a wire of infinitesimal
thickness, thenW(C) will be dominated by very-short
wavelength fluctuations of the gauge field near the wire.
suppress these fluctuations, we allow the wire to have a n
zero thicknessa, removing the contributions of fluctuation
with wavelength belowa. In 311 spacetime dimensions, th
fluctuations near the wire are unimportant provided that

e2 log~L/a!!1, ~37!

where e2 is the gauge coupling constant~renormalized at
distance scalea) andL is the characteristic size of the loo
C.

IV. FLUX TUBES ON THE LATTICE

Our argument that Wilson loop measurement would all
Alice to send a superluminal signal to Bob had two cruc
elements: that Alice and Bob are capable of creating
charged magnetic flux tubes, and that Bob can detect
charge on his tube. Let us examine more deeply whether
preparation of the flux tube is really possible in principle.

In considering whether flux tubes are legitimate objects
is helpful to think about a scenario in which an underlyi
continuous gauge symmetry is spontaneously broken
finite non-Abelian subgroup. To be specific, a gene
vacuum expectation value of a Higgs field in the fiv
dimensional irreducible representation ofSU(2) breaks the
gauge symmetry to the quaternionic group considered in S
III. In this Higgs phase, there are locally stable cosm
strings that carry nontrivial magnetic flux; these serve as
flux tubes needed for the signaling protocol. Alice and B
both require closed loops of string that have vacuum qu
tum numbers; in principle, these could be created in,
example, a hard collision between particles.

Wilson loop measurement can change the transforma
properties of a string loop under global gau
transformations—it transfers charge to the loop. This cha
like any charge in a discrete gauge theory, can be dete
through the Aharonov-Bohm interactions of the string lo
with other string loops@13,14#.

In a confining gauge theory like quantum chromodyna
ics, a flux tube is not locally stable, but it is still possible
engineer one, at least if it is small compared to the confi
ment distance scale. To be as concrete as possible, we
describe how a flux tube can be created in a gauge th
defined on a spatial lattice~but with continuous time!. In this
framework, Bob~or Alice! can prepare a flux tube with zer
charge by acting on a single link variable with a gaug
invariant local operator, as indicated in Fig. 3.

In our description of the construction of this operator, w
will again find it convenient to suppose that the gauge gro
G is a finite group of orderuGu, though there are no seriou
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obstacles to generalizing the discussion to the case of
groups. Residing on the lattice links are variables that t
values in theG group algebra, a Hilbert space of dimensio
uGu for which an orthonormal basis can be chosen
$ug&,gPG%. A local gauge transformation associates a gro
element with each lattice site. Each link has an orientati
and if a link connecting sitesx and y is oriented so that it
points from y to x, then gauge transformationsUx(h) and
Uy(k) at sitex andy act on the link variable according to

Ux~h!:ug&xy→uhg&xy ,

Uy~k!:ug&xy→ugk21&xy . ~38!

Physical statesare invariant under all local gauge transfo
mations. Physical observables preserve the space of phy
states, and hence must commute with the local gauge tr
formations.

Now consider an operatorHl(a) that acts on a particula
link l as

Hl~a!:ug& l→uag& l . ~39!

Note thatHl(a) is not a gauge transformation, since it ac
only on a single link, rather than all of the links that meet
a site. This operator does not commute with local gau
transformations; rather ifl is oriented so that it points towar
the sitex, we have

Ux~h!Hl~a!Ux~h!21:ug& l→uhah21
•g& l , ~40!

or

Ux~h!Hl~a!Ux~h!215Hl~hah21!. ~41!

But if we define an operator by summingHl(a) over a con-
jugacy class ofG,

Hl~a!5
1

uauS (
aPa

Hl~a! D , ~42!

then Hl(a) doescommute withUx(h) and is therefore a
gauge-invariant operator. This is the operator that Alice
plies to her link to create a local flux tube excitation@16,17#.
Of course, by acting on several adjacent links, Alice c
create a larger flux tube if she wishes.

If Alice applies this operator to her link and Bob applies
to his link, then the state they prepare~acting on the weak-
coupling vacuum! is not an eigenstate of the Wilson loo
operatorW(C), where C contains both links. Thereis an
eigenstate ofW(C) in which Alice’s link is excited to con-
jugacy classa and Bob’s to classb, and of course this state
can be created by a gauge-invariant operator acting on
perturbative vacuum. But the operator cannot be local, si
it creates charges on Alice’s link and Bob’s. It is instructi
to construct the nonlocal gauge-invariant operator that c
ates this state.

For this purpose, it is convenient to choose a basep
lattice sitex0, and to choose oriented lattice pathsPA andPB
that connect Alice’s linkA and Bob’s linkB to the basepoint,
2-7
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as shown in Fig. 5. LetgP denote the path-ordered product
link variables associated with the pathP,

gP5)
l PP

gl , ~43!

with later links along the path appearing further to the le
Then we may define a generalization of the operatorHl that
depends on the path and the basepoint. Acting on Alice’s
l A we have

Hl A
~a,PA ,x0!:ug& l A

→ug•gPA
agPA

21& l A
, ~44!

and acting on Bob’s linkl B we have

Hl B
~b,PB ,x0!:ug& l B

→ugPB

21bgPB
•g& l B

. ~45!

HenceHl B
(b,PB ,x0), like Hl B

(b), excites the plaquettes tha

contain Bob’s link. But whileHl B
(b) left-multiplies the link

variable byb, Hl B
(b,PB ,x0) left-multiplies by the conjugate

group elementgPB

21bgPB
. In a fixed gauge, the operato

Hl B
(b,PB ,x0) creates an excitation such that the effect

gauge parallel transport about a closed path that begins
ends atx0 and passes through linkl B is encoded in the group
elementb. Hl A

(a,PA ,x0) is defined similarly, but acts by
right multiplication because of the way we have chosen
orientation of the linkl A .

The operatorHl A
(a,PA ,x0) commutes with local gauge

transformations acting in the vicinity of Alice’s linkl A , and
Hl B

(b,PB ,x0) commutes with gauge transformations acti

in the vicinity of Bob’s link l B . But they do not commute
with gauge transformations acting at the basepointx0; rather
we have

Ux0
~g!Hl A

~a,PA ,x0!Ux0
~g!215Hl A

~gag21,PA ,x0!,

Ux0
~g!Hl B

~b,PB ,x0!Ux0
~g!215Hl B

~gbg21,PB ,x0!.
~46!

Again, we can obtain a gauge-invariant operator by summ
a or b over a conjugacy class, e.g.,

FIG. 5. A nonlocal operator that creates correlated excitation
distantly separated links of a lattice gauge theory. An arbitrary ba
point x0 is chosen, together with arbitrary pathsPA and PB that
connect Alice’s link and Bob’s link to the basepoint. By acting
the links, the operator excites the lattice plaquettes~shaded! that
contain the links. The nonlocality is necessary because Alice’s
citation and Bob’s excitation carry nontrivial and opposite elec
charges.
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Hl B
~b,PB ,x0!5

1

ubu S (
bPb

Hl B
~b,PB ,x0! D . ~47!

In fact, it is clear from the definitions thatHl B
(b,PB ,x0)

5Hl B
(b); it is really a local operator in disguise.

But we can also construct a gauge-invariant operator
acts simultaneously on Alice’s link and Bob’s, and that rea
is nonlocal@16,17#:

1

uGu S (
gPG

Hl A
~gag21,PA ,x0!•Hl B

~gbg21,PB ,x0! D .

~48!

This operator, acting on the weak-coupling vacuum, creat
state in which Alice’s link and Bob’s are correlated, as in E
~14!. This gauge-invariant operator does not depend on h
the basepointx0 is chosen; we are free to slide the basepo
along the path connecting Alice’s link and Bob’s however w
please.

The communication protocol explained in Sec. III can
described this way: Alice and Bob apply the local operat
Hl A

(a) andHl B
(b) to create link excitations that are unco

related with one another. Then the Wilson loop measurem
operationEW(C) is applied, where the loopC contains the
links l A and l B . This operation establishes a correlation b
tween the links. It transforms a state that can be created
local operators to a state that can be created only by a n
local operator like that in Eq.~48!. Such a transformation
cannot occur on a time slice in a theory that respects rela
istic causality. We conclude that the nondemolition measu
ment of the non-Abelian Wilson loop operator is not phy
cally realizable.

Now, the operatorHl(a) is a gauge-invariant local opera
tor, but it is not unitary, so we should clarify what it means
say that Alice or Bob applies this operator to a state. In fa
if A is any bounded operator that does not annihilate the s
uc&, we can apply the operation

uc&→
Auc&

A^cuA†Auc&
~49!

with a nonzero probability of success by making a suita
measurement. First note that we may assume without los
generality that the eigenvalues ofA†A are no larger than
one—if not, we merely rescaleA without modifying the op-
eration equation~49!. Then let$u0&,u1&% be an orthonormal
basis for a two-dimensional ‘‘ancilla’’ space, and consid
the transformation

U:u0& ^ uc&→u0& ^ Auc&1u1& ^ Buc&, ~50!

where

A†A1B†B5I . ~51!

This transformation is norm-preserving and so has a uni
extension. Hence we apply the unitaryU to u0& ^ uc& and
then measure the ancilla by projecting onto the ba
$u0&,u1&%. The outcomeu0& is obtained with probability

at
e-

x-
2-8
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MEASURABILITY OF WILSON LOOP OPERATORS PHYSICAL REVIEW D65 065022
^cuA†Auc&, in which case Eq.~49! is applied. If the outcome
u1& is found, then Alice may discard the state and ma
another attempt. As long asAuc&Þ0, Alice can repeat the
procedure until she gets the desired outcome.

Clearly, the gauge-invariant bounded operator analog
to Hl(a) can also be constructed in the case whereG is a Lie
group. For example if the gauge group isSU(2), then asso-
ciated with the group elementg(n̂,u)5exp(2i(u/2)n̂•sW ) is
the transformation

Hl„g~ n̂,u!…:uh& l→ug~ n̂,u!h& l , ~52!

wherehPSU(2). This transformation can be expressed a

Hl„g~ n̂,u!…5e2 iun̂•EW l, ~53!

where the electric fieldEW l is the angular momentum conju
gate to theSU(2) rotor h at link l. The bounded operator

Hl~ f !5E du f ~u!E dn̂eiun̂•EW l ~54!

~where f is any integrable function! is gauge-invariant. In-
deed, it is a function of the gauge-invariant observableEW l

2

that acts on the linkl.
As we have also explained in Sec. III, the common-se

reason that the state created by the nonlocal operator in
~48! cannot be created with local operators is that Alic
link and Bob’s carry~correlated! nonzero electric charges. I
quantum chromodynamics, as in a discrete gauge the
Wilson loop measurement can cause color charge to be tr
ferred to a flux tube. This color charge is surely detectab
like any color charge, it acts as a source for a measur
color electric field.

V. MATTER FIELDS AND THE DESTRUCTIVE
MEASUREMENT OF WILSON LOOPS

We have shown that the nondemolition measurement
non-Abelian Wilson loop conflicts with relativistic causalit
But there are further questions that we wish to address.
the Wilson loop be measureddestructively? What about the
Abelian case? To formulate our answers, we will continue
use the formalism of lattice gauge theory. Furthermore
ensure that the agents who are to perform measurement
as well equipped as possible, we will include in the theo
matter fields that couple to the gauge fields.

Our matter fields reside on the sites of the lattice, and
the link variables, take values in the group algebra. The b
for the Hilbert space at a sitex will be denoted$uf&x ,f
PG%. Under the local gauge transformationUx(g) acting at
the sitex, the matter variable transforms as the regular r
resentation ofG ~which contains all irreducible represent
tions of G),

Ux~g!:uf&x→ugf&x . ~55!
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In addition to the gauge symmetry, the matter field at sitx
also transforms under aglobal symmetry transformation
Vx(h), acting onf from the right, that commutes with gaug
transformations:

Vx~h!:uf&x→ufh21&x . ~56!

The interpretation of this global symmetry is that our mat
fields have both ‘‘color’’ and ‘‘flavor’’ degrees of freedom
The regular representation ofG decomposes into irreducibl
representations, with the dimension-nR representation~R! oc-
curring nR times. Gauge transformations mix thenR states
that span~R! ~the colors!, while global transformation mix
the nR copies of~R! ~the flavors!.

Let xy denote a link connecting the neighboring sitesx
andy on the lattice, with orientation pointing fromy to x, and
let UxyPG be the gauge-field variable associated with t
oriented link. We may also assign to this link the gaug
invariant variable

uxy5fx
21Uxyfy , ~57!

the ‘‘covariant derivative’’ of the matter field. Withou
changing the physical content of the theory, we can repl
the link variables$Ul% by the new gauge-invariant variable
$ul%. But after this replacement, the physical Hilbert co
straint can be trivially constructed: at each sitex, the state of
the matter field is required to be the gauge-invariant unifo
superposition state

1

AuGu
(

fPG
uf&x . ~58!

Since the matter fields are completely constrained by ga
invariance, they have no role in dynamics and they too
be eliminated, leaving only the gauge-invariant local va
ables$ul%.

Although the new variables are gauge invariant, th
transform nontrivially under the global transformations, a
cording to

Vx~h!:uu&xy→uhu&xy , ~59!

Vy~k!:uu&xy→uuk21&xy . ~60!

Thus physical states can carry globalG charges.
A gauge-invariant unitary operator acting on the linkxy

can be defined as

Hxy~a!:uu&xy→uau&xy . ~61!

Acting on the weakly coupled vacuum, this operator p
duces a flux tube excitation at the link. The flux tube atxy
has Cheshire charge that is exactly compensated by ch
localized at the sitex. An operatorHxy(a) that creates an
excitation with trivial Cheshire charge can be construc
and applied as described in Sec. IV.

Since the variables$ul% are local and preserve the phys
cal Hilbert space, it is reasonable to postulate that they
observable. Physically, the measurement ofuxy has a simple
2-9
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BECKMAN, GOTTESMAN, KITAEV, AND PRESKILL PHYSICAL REVIEW D65 065022
interpretation in terms of the effect of parallel transport o
colored object from sitey to the neighboring sitex. Of
course, we are free to adopt arbitrary color conventions
each site, and the way we describe the effect of para
transport depends on these conventions. However, if we h
multiple flavors at our disposal, we can use the flavors
record our conventions, so that in effect~gauge-dependent!
statements about color transport can be translated
~gauge-invariant! statements about flavors.

To be concrete, suppose that~R! is a three-dimensiona
irreducible representation; our ‘‘quarks’’ come in three colo
~red, yellow, blue! and three flavors~up, down, strange!. At
each site, we adopt conventions for color and flavor, and
prepare standard quarks in three mutually orthogonal co
and three mutually orthogonal flavors that lock these conv
tions together: the up quark is red, the down quark is yell
the strange quark is blue. Then standard quarks prepare
site y are covariantly transported to sitex, and compared to
the standard quarks that have been prepared at that site.
the effect of the transport can be equivalently described
either a rotation in the color space (Uxy) or in the flavor
space (uxy). Performing this experiment for each irreducib
transformation ofG assigns a unique group elementuxy to
the link xy, for these particular conventions. A modificatio
of the conventions can be interpreted as a rotation in
flavor space, under which the variableuxy transforms.

Now consider a large loopC on the spatial lattice, and
suppose that many parties distributed along the loop ar
measure the Wilson loop

W(R)~C![x (R)S )
l PC

Ul D 5x (R)S )
l PC

ul D ~62!

in representation (R). Since all the matter fields cancel ou
the Wilson loop can be expressed in terms of the gau
invariant variables$ul%. Each party has access to a sing
link along the loop, and usingnR flavors of quarks in repre
sentation (R), determines the value of thenR3nR matrix
D (R)(u) at that link, for a particular choice of flavor conven
tions. Each party then reports her value ofD (R)(u) to the
central authority for post-processing, the matrices are mu
plied together, and the trace is evaluated. The result, wh
does not depend on the local flavor conventions, is the va
of the Wilson loop.

Thus, distributed parties, each acting locally, can meas
the Wilson loop operator. But in doing so, they collect mu
additional information aside from the value of the Wilso
loop. In particular, an eigenstate ofW(R)(C) need not have a
definite value of eachD (R)(ul) along the loop. Therefore, th
localized measurement procedure typically disturbs
quantum state of the field, even if the initial state before
measurement is a Wilson loop eigenstate. Rather than a
calizednondemolitionmeasurement~which we have already
seen is impossible! it is a localizeddestructivemeasurement
Note also that distributed parties can measure destructi
each of several Wilson loop operatorsW(Ri )(Ci),i
51,2,3, . . . ,n, all on the same time slice, and hence t
product ) iW

(Ri )(Ci). In this respect, the destructive me
surement is compatible with the Wilson loop algebra.
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course, we may not be able to measure more than one o
W(Ri )(Ci) if the Ci are on different time slices, since a me
surement on an earlier slice may interfere with a measu
ment on a later slice.

We have assumed that the matter fields transform as
regular representation Eq.~55! of the gauge groupG. What
about more general choices for the representation conten
the matter? Provided that the matter transforms as a fait
representation of the gauge group, one can show that
destructive measurement ofW(R)(C) is still possible in any
representation (R).

We reach this conclusion by noting that matter in t
regular representation can besimulatedusing matter that
transforms faithfully, augmented by ancilla degrees of fre
dom. We will give only a brief sketch of the argument. Fir
we recall that if (Rm) is a faithful representation, and~R! is
any irreducible representation, then~R! is contained in
(Rm) ^ n for some n. Therefore, if our fundamental matte
fields transform as (Rm), then we can build composite ob
jects that transform as~R! from n fundamental constituents

Next we observe that if the theory contains only a sin
matter field that transforms as (R), we can use ancilla vari-
ables to attach an effective flavor index to the field. To u
derstand the point heuristically, consider the case
‘‘quarks’’ that come in three colors but only one flavo
Rather than using ‘‘natural’’ flavors to keep track of our col
conventions, we can use ‘‘artificial’’ flavors instead, labelin
red, yellow, and blue quarks with the three mutually orthog
nal states~up, down, strange! of the ancilla. When quarks ar
transported from one site to a neighboring site, the attac
value of the ancilla is transported along with the color; hen
artificial flavors, just like natural flavors, allow us to descri
local gauge transport in terms of gauge-invariant quantit
Since we can construct composite matter fields in any re
sentation~R! of G, and we can use ancillas to ensure th
matter transforming as~R! comes innR flavors, our simu-
lated matter transforms as the regular representation; thu
can measure destructively a Wilson loop in any represe
tion.

What about the case of a pure gauge theory~one contain-
ing no charged matter at all!? The gauge variables them
selves can simulate matter that transforms according to
adjoint representation

D~g!:uh&→ughg21&, ~63!

which is a faithful representation ofG/Z(G), whereZ(G)
denotes the center ofG. Thus, by building composite field
and manipulating ancillas, we can simulate matter that tra
forms as the regular representation ofG/Z(G). Therefore,
W(R)(C) can be measured destructively for any represen
tion ~R! of G/Z(G), or equivalently for any representation o
G that represents the center ofG trivially.

We have seen that the nondemolition measurement
non-Abelian Wilson loop is an example of an acausal m
surement that can be made causal~and in fact localizable! if
additional information is collected simultaneously. Other e
amples were noted in@11#.
2-10
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VI. NONDEMOLITION MEASUREMENT OF ABELIAN
WILSON LOOPS IS LOCALIZABLE

The causality problem arose for the nondemolition m
surement of non-Abelian Wilson loops because multipli
tion of conjugacy classes is ill-defined. Since this probl
does not arise ifG is Abelian, one might expect that a spac
like Wilson loop operator should be measurable in an A
lian gauge theory~or more generally, if the Wilson loop is
evaluated in a one-dimensional irreducible representatio
the gauge group!. We will see that this is the case.

To be concrete, consider a lattice theory~containing
charged matter! with gauge groupG5U(1). Gauge vari-
ablesUlPU(1) reside at each linkl of the lattice, and matte
variablesfxPU(1) reside at each sitex. As we have seen
the gauge and matter variables can be eliminated in favo
gauge-invariant variablesuxy5fx

21Uxyfy , and the Wilson
loop operator is

W~C![)
l PC

Ul5)
l PC

ul . ~64!

To perform a destructive measurement ofW(C), parties dis-
tributed along the loopC could each measure the local valu
of u; then the results can be multiplied together later to
termine the value of the Wilson loop.

To perform a nondemolition measurement ofW(C), the
procedure must be modified so that only the value of
Wilson loop, and no further information, is collected. Ima
ine, then, thatn parties have been distributed along the lo
C, each with access to one of the links ofC. And suppose the
party who resides at linkl can manipulate not only the
gauge-invariant field variableul , but also a gauge-invarian
ancilla variableũlPU(1) that will be used to assist with th
measurement. Some time ago, the parties prepared an
tangled state of their ancilla variables,

u initial&anc5E )
l 51

n

~dũl !uũ1 ,ũ2 , . . . ,ũn&dS )
l 51

n

ũl2I D .

~65!

This state is a coherent superposition of all possible state
the ancilla variables, subject only to one global constraint
the product of all theũl ’s. Now each party applies a loca
unitary transformation to her lattice field variable and h
part of the ancilla:

uul ,ũl&→uul ,ul ũl&, ~66!

a rotation of the ancilla rotor controlled by the value of t
lattice rotor. This is achieved by turning on a Hamiltoni
that couplesul and ũl .

The operation Eq.~66! modifies the constraint on the an
cilla variables, which becomes

)
l

ũl5W~C!. ~67!
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Now each party can measure the value of herũl , and broad-
cast the result to the central authority. The measurement
comes are random, so that each individual measuremen
veals no information about the state of the lattice variab
When the results are accumulated, the value ofW(C) can be
inferred by evaluating) l ũl , but no further information abou
the field configuration is acquired.~This type of local mea-
surement making use of a shared entangled ancilla was
scribed in@7#, and was shown to be the basis of a separat
between classical and quantum multiparty communicat
complexity in @18#.!

Of course, the transformation equation~66! that couples
the ancilla to the field variables can also be described i
conjugate basis, which may clarify its meaning. We m
write u5e2 iu, ũ5e2 i ũ, and define the angular momentu
Q̃ conjugate toũ by

e2 iQ̃ j̃uũ&5uũ1 j̃&. ~68!

Then Eq.~66! becomes

uu,Q̃&→~e2 iu!Q̃uu,Q̃&. ~69!

Thus we may regardQ̃ as a fictitious electric charge, whos
transport properties are governed by the connectionu—the
parties implement Eq.~69! by ‘‘parallel transporting’’ their
ancilla charges by one lattice spacing in the effective ga
field defined byu. The ~unnormalizable! initial state of the
ancilla can be written

u initial&anc5 (
Q̃52`

`

uQ̃,Q̃,Q̃, . . . ,Q̃&, ~70!

which is transformed to

u initial&anc5 (
Q̃52`

`

@W~C!#Q̃uQ̃,Q̃,Q̃, . . . ,Q̃&. ~71!

Since the charges held by the parties are perfectly correla
only the global information about transport around the en
loop C becomes imprinted on the ancilla state. This inform
tion, encoded in relative phases in theQ̃-basis, can be read
out via measurements in the conjugateũ-basis. Note that it is
important that the ancilla variables carry fictitious rather th
genuine electric charges—otherwise states with different
ues of the total charge would reside in distinct superselec
sectors and the relative phases in Eq.~71! would be unob-
servable. We also note that while to measure the Wilson l
perfectly we must prepare the ancilla in the unnormaliza
~and hence unphysical! state Eq.~70!, a measurement with
arbitrarily good precision can be achieved using a norma
able approximation to this state.

The key to this procedure for measuring the Wilson lo
is that theW(C) can be expressed in terms of the loc
gauge-invariant variables$ul% as in Eq.~64!. This property
has a clear physical interpretation. The matter field rep
sents a medium laid out along the loopC that becomes su
perconducting on the time slice where the measuremen
2-11



e
e

ity
e

t

e

s.
e
e

th

m

b
re
na
ow
uc
t

a
th
tio
o
t
a

.

po

x-

e-
s

al
al
ine

oli-

lso
he

ns

Yet
ent

pro-
up-
e-

n

cilla
od-
-

her

he
he

ure-
ure-
ice

of

d.

p
le,

BECKMAN, GOTTESMAN, KITAEV, AND PRESKILL PHYSICAL REVIEW D65 065022
W(C) is to be carried out:f5e2 iu is a superconducting
order parameter with phaseu. Though the phase and th
gauge fieldAm are not locally observable, the covariant d
rivative

Dmu5]mu1Am ~72!

is observable—it is proportional to the local current dens
By coupling the local current to our entangled ancilla, w
have modified the state of the ancilla in a manner tha
sensitive to the value of the quantity

expF i R
C
DmudxmG5W~C!; ~73!

the equality is obtained from the property thatf5e2 iu is a
single-valued function.

Even without the entangled ancilla, parties distribut
along the loop could determine the value ofW(C) by mea-
suring the local value ofDmu, and broadcasting their result
In that case, not justW(C) but also the covariant derivativ
of u would be determined by their measurement outcom
By invoking the entangled ancilla, we have emphasized
it is possible to measureW(C) without learning anything
else about the state of the lattice system, that is, to perfor
nondemolition measurement ofW(C).

It is clear that the technique we have described could
applied in principle to perform a nondemolition measu
ment of the Wilson loop operator in any one-dimensio
representation of the gauge group. But as we have sh
must be so, it fails in the non-Abelian case. We can introd
matter fields such thatuxy5fx

21Uxyfy is a gauge-invarian

quantity, but since theu’s do not commute with theũ’s, the
transformation equation~66! will not in that case simply
modify the constraint on the ancilla variables as in Eq.~67!.

VII. WILSON LOOPS IN THE PURE ABELIAN GAUGE
THEORY

Our procedure for the nondemolition measurement of
Abelian Wilson loop uses charged matter coupled to
gauge fields. Let us now consider whether the nondemoli
measurement is possible in the pure Abelian gauge the
When there is no charged matter, we cannot replace
gauge variables on links by gauge-invariant variables that
locally measurable.

A. Homologically trivial loops

Consider first the case of a homologically trivial loopC,
the boundary of a two-dimensional surfaceS. In the Abelian
gauge theory, the Wilson loop operatorW(C) can be inter-
preted aseiF whereF is the magnetic flux linking the loop
In the lattice formulation of the theory, the surfaceS is the
union of elementary cells that tessellate the surface. Sup
there areN such cells, labeled by an indexS taking values
S51,2,3, . . . ,N. Then the Wilson loop operator can be e
pressed as
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W~C![)
l PC

Ul5 )
SPS

US , ~74!

whereUS is the value of the Wilson operatorW(]S) for the
boundary]S of the cellS. Therefore, a destructive measur
ment of W(C) can be carried out by a collection of partie
occupying the surfaceS. Each party measures the loc
‘‘magnetic field’’ US and reports her result to the centr
authority. The results can then be accumulated to determ
the value ofW(C).

This destructive measurement differs from a nondem
tion measurement ofW(C) in that too much information is
collected—not just the total flux through the surface, but a
the local distribution of magnetic flux is determined by t
measurement. In a nondemolition measurement ofW(C), a
superposition of two different magnetic field configuratio
with the same value ofW(C) would not decohere, but if the
local field is measured this superposition does decohere.
as in our previous discussion, a nondemolition measurem
can be achieved if ancilla variables are prepared in an ap
priate state that is distributed to the parties in advance. S
pose that each of theN parties can access both the gaug
invariant local magnetic field variableUSPU(1) and an
ancilla variableŨSPU(1). Theancilla has been prepared i
the shared initial state

u init&anc5E )
S51

N

~dŨS!uŨ1 ,Ũ2 , . . . ,ŨN&dS )
S51

N

ŨS2I D ,

~75!

a coherent superposition of all possible states for the an
variables, subject only to one global constraint on the pr
uct of all theŨS’s. To perform the nondemolition measure
ment, each party applies a local unitary transformation to
magnetic flux variable and her part of the ancilla:

uUS ,ŨS&→uUS ,USŨS&, ~76!

a rotation of the ancilla rotor controlled by the value of t
lattice rotor. This operation modifies the constraint on t
ancilla variables, which has become

)
S

ŨS5)
S

US5W~C!. ~77!

Now each party can measure the value of herŨS , and
broadcast the result to the central authority. The meas
ment outcomes are random, so that each individual meas
ment reveals no information about the state of the latt
variables. When the results are accumulated, the value
W(C) can be inferred by evaluating)SŨS , but no further
information about the gauge field configuration is acquire

B. Homologically nontrivial loops

Now consider the case of a homologically nontrivial loo
C, which is not the boundary of any surface. For examp
suppose that the theory lives on ad-dimensional spatial torus
2-12
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MEASURABILITY OF WILSON LOOP OPERATORS PHYSICAL REVIEW D65 065022
~a rectangular box with opposite sides identified!, and that
the loopC is a nontrivial cycle that winds around the toru

The gauge-invariant local operators of the theory are
magnetic flux operatorsUS acting on the elementary lattic
cells, and the ‘‘electric field’’ operators that act on eleme
tary links. The electric fieldEl at the link l is the ‘‘angular
momentum’’ conjugate to the link rotor variableUl ; it gen-
erates rotations ofUl

exp~2 iuEl !:uU& l→ue2 iuU& l . ~78!

Each party residing on the lattice is empowered to apply
measure the local operators in her vicinity.

But the homologically nontrivial Wilson loop operator
not included in the algebra generated by these local op
tions. HenceW(C), whereC is a nontrivial cycle, is com-
pletely inaccessible to the local residents of the lattice. T
cannot measure this operator, either destructively nor non
structively, nor can they apply it to a state. The homolo
cally nontrivial Wilson loop is not an observable of the pu
gauge theory.

Although the inhabitants of this world are unable to me
sureW(C), they are able to change its value. The link ro
tion e2 iuEl has a nontrivial commutation relation withW(C)
if l PC:

e2 iuElW~C!5e2 iuW~C!e2 iuEl. ~79!

~Here the orientation of the linkl used to defineEl is as-
sumed to be aligned with the orientation ofC at link l.! Thus
any party with access to a linkl of C can rotate the value o
W(C), whether or notW(C) is the boundary of a surface.

Like Wilson loop operators, electric field operators are
two types with differing locality properties. IfC is a funda-
mental nontrivial cycle, we can construct an electric fie
operatorEC that rotatesW(C) but has no effect on homo
logically trivial Wilson loops. Associated with the cycleC of
the torus is a closed orientable hypersurfaceS that crossesC
exactly once; dual to this surface is a set of oriented lat
links S* , as illustrated in Fig. 6. The electric field conjuga
to W(C) is

EC5 (
l PS*

El . ~80!

This nonlocal operator generates a rotation of the homol
cally nontrivial Wilson loopW(C), but since any homologi-
cally trivial closed loop crossesS as many times with a1
orientation as with a2 orientation, homologically trivial
Wilson loop operators commute withEC .

The ‘‘nonlocal electric field’’EC can be measured—a
parties residing at links contained inS* can measure the
local electric field and the results can be summed. But w
the inhabitants of the lattice are able to measureEC , they are
unable to change its value. The Hilbert space of the the
divides into superselection sectors, each labeled by the
ues ofECi

PZ, where theCi ’s are the cycles that generate th
homology group of the spatial manifold.
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It is obvious that similar conclusions apply to any Abelia
pure gauge theory. If the theory is defined on a manifold w
nontrivial homology, then the algebra of observables ha
different structure in the theory with charged matter than
the pure gauge theory without matter. In the pure gau
theory, the homologically nontrivial Wilson loops are n
observables at all, and consequently, the theory divides
sectors with different values of the nonlocal electric field.

VIII. SUPERLUMINAL CHARGE TRANSPORT

The main conclusion of this paper is that the observab
of Abelian and non-Abelian gauge theories have fundam
tally different properties—in particular, the nondemolitio
measurement of a Wilson loop is acausal in the non-Abe
case and localizable in the Abelian case. We can further
preciate the distinction between Abelian and non-Abel
gauge theories by thinking about not what operators can
measured, but rather what operators can beappliedto a state
by a group of parties each of whom acts locally.

To dramatize the question, imagine two parties Alice a
Bob, many light years apart, who share a ‘‘superlumin
charge transport line’’~SCTL!. Alice places a single electri
cally charged particle, an electron, at her end of the SC
~the pointy); then her charge mysteriously disappears, a
in an instant reappears at Bob’s end of the SCTL~the point
x). The electron has been transmitted through the SCTL
more rapidly than Alice could send a light signal to Bob.
such a device physically possible?

Yes. We can understand how the SCTL works by char
terizing it with a gauge-invariant unitary operator that it a
plies to a state. In our lattice formulation of an Abelian la
tice gauge theory with matter, consider a connected pat
links P that begins aty and ends atx. Associated with this
path is the gauge-invariant operator

FIG. 6. The nonlocal electric field operator dual to a homolo
cally nontrivial Wilson loop operatorW(C), in an Abelian lattice
gauge theory in two spatial dimensions. Here a two-torus is re
sented as a square with opposite sides identified,C is a nontrivial
oriented cycle that winds around the torus, andS* is the set of
oriented links dual to a closed ‘‘surface’’ that crossesC once. Any
homologically trivial closed loop~like C8) crossesS* as many
times with a1 orientation as with a2 orientation. Thus the electric
field operator onS* commutes withW(C8), but has a nontrivial
commutation relation withW(C).
2-13
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fx
21S )

l PP
Ul Dfy5)

l PP
ul . ~81!

Acting on the weakly coupled ground state of the theory, t
operator creates a pair of equal and opposite charges a
sitesx andy. Acting on a state with a charged particle at s
y, it annihilates the particle aty while creating a particle of
like charge atx, in effect transporting the particle fromy to x.
The applied operator factorizes as a product of gau
invariant unitary operatorsul , each acting on a single lattic
link. Therefore, many parties acting simultaneously, ea
manipulating only the link in her own vicinity, are able t
operate the SCTL.

More physically, we can envision the operation of t
SCTL as in Fig. 7. Many parties are distributed along
SCTL. At a pre-arranged time, each party creates
electron-positron pair. Retaining the positron, she passes
electron to her right, while receiving an electron from t
party on her left. Then she brings electron and positron
gether to annihilate. Claire, the party closest to Alice,
ceives an electron from Alice and annihilates it with Claire
positron, while Diane, the party closest to Bob, hands
electron to Bob. After all pairs annihilate, the sole remain

FIG. 7. ~a! ‘‘Sawtooth protocol’’ for superluminal transmissio
of an electron from Alice to Bob, assisted by many interven
parties. Each party~except Alice and Bob! produces an electron
positron pair and keeps the positron, and each~except Bob! passes
an electron to the party on her right. Then all pairs annihilate. T
a charged particle sent by Alice is received by Bob almost ins
taneously, even though Bob is many light years away.~b! The pro-
tocol fails to achieve superluminal transport of non-Abelian char
All intervening parties produce color-singlet pairs of charges,
when each party unites her antiparticle with the particle created
her neighbor, the pairs fail to annihilate completely. Though
procedure conserves color, the color of the charge received by
is uncorrelated with the color of the particle that had been in Alic
possession. In both the Abelian and non-Abelian cases, no info
tion is transmitted from Alice to Bob, so that causality is not vi
lated.
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electron, initially in Alice’s hands, has been delivered
Bob. The closer the parties are to one another, the faste
procedure can be completed.

Even though the charge transfer is virtually instantaneo
the Gauss law is satisfied at all times. If we draw surfa
around Alice and Bob, then while the SCTL is operating o
unit of charge leaves Alice’s surface and one unit ent
Bob’s. Furthermore, even though the charge moves supe
minally, the process does not violate causality, since no
formation is transmitted from Alice to Bob. Indeed, if Felic
ity, a party in the middle of the SCTL, were to disobey orde
and fail to create an electron-positron pair, then Felic
would ‘‘intercept’’ the charge sent by Alice, and Felicity’
neighbor on the right would share a distantly separa
electron-positron pair with Bob. When Bob receives the el
tron, all he learns is that his left neighbor has performed
expected, but he learns nothing about the activities of Ali

While an Abelian charge really carries no informatio
non-Abelian charge is much more interesting—its orientat
in a representation space can encode a message. Thus
easy to see that a non-Abelian SCTL, were one to ex
would violate causality. To be explicit, consider the follow
ing protocol that enables Bob to send classical information
Alice ~based on ideas similar to those used to show t
Wilson loop measurement is acausal!. First, Alice produces a
particle-antiparticle pair, where the particle transforms
representation~R! of G and the antiparticle as representati
(R* ). The total charge of the pair is trivial. If$uei&,i
51,2,3, . . .nR% denotes a basis for the representation (R),
and $uei* &% denotes the conjugate basis for (R* ), then the
singlet state prepared by Alice is

1

AnR
(

i
uei& ^ uei* &. ~82!

Alice keeps the antiparticle, and sends the particle thro
the SCTL to Bob. Bob has a loop of magnetic flux that
has prepared in the charge-zero stateua,0& associated with
conjugacy classa of G, as in Eq.~6!. To convey a bit of
information to Alice, Bob either does nothing to the charg
particle he received from Alice~sending 0) or lassoes it with
his flux tube~sending 1), and returns the charge through
SCTL to Alice. Now if Bob did nothing, Alice recovers
singlet pair, but if Bob lassoed the charge, then the state
the pair has become entangled with the state of Bob’s tu

1

AnR

1

Auau
(
aPa

(
i , j

uei& ^ uej* &Di j ~a! ^ ua&. ~83!

Alice then unites the particles and observes whether the
annihilates. In the state Eq.~83!, the probability of annihila-
tion is determined by the overlap of the pair’s state with t
singlet state, and is readily seen to be

Prob5U 1

nR
x (R)~a!U2

, ~84!

wherex (R)(a) is the character of classa in representation
(R). As long as the representation~R! is not one-
dimensional, the classa can be chosen so that this probab
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ity is less than one. Therefore, Alice observes annihilat
with certainty if Bob sends 0 and observes annihilation w
probability less than unity if Bob sends 1—thus Bob c
signal Alice.

The capacity of the SCTL is easily estimated. Supp
that Alice will signal Bob by transmittingN particles~where
N is even! each transforming as the representation~R! or its
conjugate representation (R* ). She can prepare and send
state ofN/2 particles andN/2 antiparticles, in any one ofAN
distinct singlet states. These states are mutually orthog
and in principle they can be readily distinguished by Bo
Therefore, Alice is able to send log2 AN bits to Bob by using
the SCTLN times. But the number of singlets is

AN5
~nR!N

P~N!
, ~85!

whereP(N) grows no faster than a polynomial withN. Thus,
asymptotically Alice can send log2 nR bits of information per
transmission. This rate is just what we would have gues
naively, ignoring that observables must be gauge invaria

Since the non-Abelian SCTL is acausal, it ought not to
physically realizable. What goes wrong if we try the sam
procedure that succeeded in the Abelian case? The troub
that if Claire produces a singlet pair, and Diane does
same, then when Claire’s particle unites with Diane’s an
particle, the charges might be unable to annihilate. In fac
Claire’s particle transforms as the representation~R! and Di-
ane’s as (R* ), then the probability that the pair annihilate
determined by its overlap with the single state, is 1/nR

2 . Thus,
while in the Abelian case the outcome of the procedure
that only a single electron survives, which is in Bob’s po
session, in the non-Abelian case many relic charges rem
strewn along the path of the would-be SCTL. Though
procedure conserves charge, the orientation in the repre
tation space of the charge that Bob receives is actually
correlated with the orientation of the charge that Alice se
and no information is transmitted.

Finally, in the non-Abelian theory as in the Abelia
theory, the operator that propagates a charged particle froy
to x can be factorized as in Eq.~81! into local factors. So
why can’t this operator be applied by many parties, ea
acting locally? We must recall that the operators of
theory are not the group elementsulPG themselves, but
rather the matrix elementsDi j

(R)(ul) of representations of the
group. In the Abelian case, the character of a product
group elements can be written as a product of charac
where each character is a unitary operator. But in the n
Abelian case, the ‘‘factorized’’ operator is really a product
matrices. The contraction of indices in this matrix produ
cannot be achieved by many parties acting locally; rathe
requires a nonlocal conspiracy.

IX. CONCLUSIONS

In the standard formulation of algebraic relativistic qua
tum field theory@12#, an algebra of ‘‘local’’ operators on
Hilbert space is associated with each bounded open regio
spacetime, such that two local operators commute if they
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associated with regions that are spacelike separated. A l
operator is designated as a ‘‘local observable’’ if it preserv
the superselection sectors of the theory. One might
tempted to postulate that a quantum operation is physic
possible in principle if and only if it can be expanded
terms of these local observables.

We find this viewpoint untenable, because causa
places more stringent constraints on the allowed operat
@11#. The problem of characterizing which quantum ope
tions are compatible with causality is especially subtle, int
esting, and physically relevant in relativistic quantum fie
theories with local gauge symmetry.

One form of the question is: what operators can justifia
be called ‘‘observables?’’ We have focused our attention
the measurability of the Wilson loop because of its prom
nent place in the operator algebra of a gauge theory.
answer we have found is rather elaborate. In a gauge th
that includes charged matter that transforms faithfully, ade-
structivemeasurement of a spacelike Wilson loopW(R)(C) is
physically possible for any representation~R! of the gauge
group. The term ‘‘destructive’’ means that many cooperat
parties acting together can ascertain the value of the Wil
loop, but only by collecting additional information in th
process, and at the price of damaging Wilson loop eig
states. In a pure gauge theory~one with no charged matter!,
the destructive measurement ofW(R)(C) is possible for any
~R! that represents the center of the gauge group trivially
nondemolition measurement of the Wilson loop~one that
leaves Wilson loop eigenstates intact! is possible in an Abe-
lian gauge theory but not in a non-Abelian gauge theory.

Nondemolition measurement of a non-Abelian Wils
loop is impossible because it would conflict with relativist
causality. Two distantly separated parties~Alice and Bob!
can each produce excitations locally~magnetic flux tubes!,
preparing a state that is not an eigenstate of the Wilson l
operatorW(C), whereC is a loop that passes through bo
excitations. Projecting onto a Wilson loop eigenstate, wh
ever the outcome, entangles Alice’s excitation with Bob
modifying the excitations in a manner that either party c
discern locally. Such instantaneous preparation of quan
entanglement would enable spacelike-separated Alice
Bob to communicate.

In quantum field theory in general, and in gauge theor
in particular, characterizing the physically allowed quantu
operations seems to be an open problem. Further progres
this question is bound to elucidate the physical content
relativistic quantum theory.
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