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Measurability of Wilson loop operators
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We show that the nondemolition measurement of a spacelike Wilson loop op@fé@ris impossible in a
relativistic non-Abelian gauge theory. In particular, if two spacelike-separated magnetic flux tubes both link
with the loopC, then a nondemolition measurementW{C) would cause electric charge to be transferred
from one flux tube to the other, a violation of relativistic causality. A destructive measurem&utQy is
possible in a non-Abelian gauge theory with suitable matter content. In an Abelian gauge theory, many
cooperating parties distributed along the Iddpan perform a nondemolition measurement of the Wilson loop
operator if they are equipped with a shared entangled ancilla that has been prepared in advance. We also note
that Abelian electric chargébut not non-Abelian chargecan be transported superluminally, without any
accompanying transmission of information.
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I. INTRODUCTION AND SUMMARY each party performs a local operation on her local field vari-

What measurements are possible in a gauge field theorygbles and her part of the entangled ancilla. Third, classical or
Since the interactions of the elementary constituents of maguantum information extracted by the parties in the second
ter are described by gauge theory, hardly any question coulstep is shipped to a central location where the readout of the
be more fundamental. Yet definitive answers are elusive. result is completed.

The Wilson loop operators associated with closed space- Although the outcome of the measurement is not known
like paths provide a complete characterization of a gaugeuntil the third step is completed, the coherence of a superpo-
field configuration in terms of gauge-invariant quantitiessition of eigenstates of the observable with distinct eigenval-
[1,2]. Therefore, in formulations of gauge theories, Wilsonues is already destroyed in the second step, which is carried
loops are often taken to be the basic observables. But we wiffut on the time slice where the operator is defined. At that
show that nondemolition measurements of spacelike Wilsotime, the density operatgs encoding the quantum state of
loops are impossible in a non-Abelian gauge theory that rethe field theory is transformed according to
spects relativistic causality. We reach this conclusion by ar-
guing that any procedure for nondemolition measurement of _

a spacelike non-Abelian Wilson loop would allow informa- p—>5(p)—§ FapEa. @)
tion to be transmitted outside the forward light cone.

Causality places no such restriction on the measurabilityvhere {E,} is the set of orthogonal projectors onto the
of an Abelian Wilson loop(one evaluated in a one- eigenspaces of the observable. The term “nondemolition”
dimensional irreducible representation of the gauge group means that if the state prior to the measurement is an eigen-
and indeed we find that nondemolition measurement of astate of the observable, then the state will be unaffected by
Abelian Wilson loop is possible. We also find that, in gaugethe measurement.
theories with suitable matter contertestructivemeasure- Any permissible way in which a quantum state can
ments of non-Abelian Wilson loops are possible. By destrucehange is described by guantum operationa completely
tive measurements we mean ones that, in contrast to nomositive trace-nonincreasing linear map of density operators
demolition measurements, inflict damage on Wilson loopto density operatorg3,4]. The orthogonal measuremehin
eigenstates. Eqg. (1), summed over its possible outcomes, is a special type

In a quantum field theory in flat spacetime, described inof quantum operation. It is natural to ask, what are the quan-
the Schradinger picture, what do we mean by a nondemoli-tum operations that can really be executed on a time slice in
tion “measurement” of an observable defined on a timea relativistic quantum theory? The general answer is not
slice? Typically, such a measurement requires the cooper&nown, but itis known that many operations are unphysical
tion of many parties who are distributed over the slice, and idecause they run afoul of relativistic causali~11]. Con-

a three-step process. In the first st@ghich might not be sider, as in Fig. 1, two parties Alice and Bob who perform
necessary a suitable entangled quantum stdthe “an-  spacelike-separated actions. Just prior to the implementation
cilla”) is prepared and distributed to the parties. Secondof &, Alice performs a local operation on the fields in her
vicinity, and just after the implementation 6f Bob performs
a local measurement of the fields in his vicinity. If Bob is

*Email address: beckman@caltech.edu able to acquire any information about what local operation
"Email address: gottesma@eecs.berkeley.edu Alice chose to apply, then Alice has successfully sent a su-
*Email address: kitaev@igi.caltech.edu perluminal signal to Bob. If an operation allows such super-
$Email address: preskill@theory.caltech.edu luminal signaling, we say that the operationaisausaj oth-
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tor W(C) [more precisely decoherence in the basis of eigenstates of
FIG. 1. Causality criterion for quantum operations. First Alice \x(c)] allows Alice to signal Bob. Alice and Bob, with gauge-

applies a local operator in her vicinity, then the quantum operationnyariant probes, can prepare magnetic flux tubes that carry trivial
is executed, and finally Bob makes a local measurement that igjectric charge. Ifa), Bob’s tube links with the looi€ but Alice’s
spacelike separated from Alice’s action. If Bob’s measurement reggeg not: wheW(C) is measured, neither tube is affected.(im,
sult allows him to acquire information about what local operator pjice moves her tube into position so that it too links w@hwhen
Alice applied, then the quantum operation is atsaland hence W(C) is measured, thetfwith nonvanishing probability Bob’s
not physically implementable. tube and Alice’s acquire nontrivial and opposite electric charges. By

. . . . ) measuring the charge of his tube, Bob can tell how Alice positioned
erwise, it is causal. Physically realizable operations must bge, loop and so receive a message from Alice.

causal. We will apply this causality criterion to non-Abelian

gauge theories, and will argue that nondemolition measurgypes created by Alice and Bob have trivial electric charge.
ment of a Wilson loop operator is an acausal operation. If either Bob’s tube or Alice’s tube links with the 100p,

In discussing the locality properties of a field theory, it is jy;t hot both, then the configuration is an eigenstaté/(c)
convenient to use the concept of a “reduced” density operagr ¢jose to an eigenstate in the weakly-coupled casel
tor that encodes the observations that are accessible 10 §fy pe unaffected(or little affected by the measurement of

agent acting in a bounded spatial region. This density operay ¢y gut if both tubes link withC, the configuration is not
tor is obtained from a density operator for the full system by, eigenstate, and will be altered by the measurement. We

“tracing out” the degrees of freedom in the unobserved re~y;| see that, with nonvanishing probability, the measure-
gion. In a gauge theory, performing a partial trace involveShent will generate equal and opposite nonzero electric
potential subtleties arising from the Gauss law constraint Sa%harges on Alice’s tube and Bob's. Then, by measuring the

isfied by physi_cal ;tates. For cpnceptua} clarity, we will Side'charge on his tube, Bob can infawith a success probability
step these difficulties by founding our discussion on the conpetter than a random guesshether Alice’s tube linked with

cept of charge super-selection sec{dr8]. Strictly speaking, ¢ or not, and so receive a superluminal signal.

our analysis applies to the “free-charge” phase of a weakly |, 3 non-Abelian gauge theory, a magnetic flux tube can
coupled gauge theory with non-Abelian gauge gréiithe 51y 4 peculiar kind of electric charge that has no localized
local symmetry is unbroken an@ charges are unconfined. gqrce. which has been called Cheshire chgtgeld. (The

The same argument, though, shows that Wilson 100p megsrgnerty that thecharge of an excitation in a non-Abelian
surement would allow superluminal signaling in a confining auge theory need not be the integral of a local density is
gauge theory, where the separation between the communic halogous to the property that tlemergy of an object in

ing Iparties is small compared to the confinement distanCgenera| relativity need not be the integral of a local density.
scale.

The protocol by which Alice can exploit measurement of
the spacelike Wilson loop operat@f(C) to send a signal to /
Bob is illustrated in Fig. 2. First Alice and Bob, acting on the
weakly-coupled ground state with gauge-invariant local
probes, both creatmagnetic flux tubeBob’s flux tube links
with the loopC; Alice encodes one bit of classical informa- /
tion by placing her tube in one of two possible positions,
either linking with C or not. In the framework of lattice
gauge theory, we may imagine that Bob has control of a
single lattice linkl g contained in the loo, and he creates
his “flux tube” by manipulating his link—exciting the lattice /
plaquettes that contalm to a particular nontrivial conjugacy
class ofG, as illustrated in Fig. 3. Similarly, Alice controls a  F|G. 3. A small “magnetic flux tube” in lattice gauge theory. By
single link I, and she encodes a bit by either exciting hermanipulating her link, Alice excites the plaguettes that contain the
link or not. Of course, since Alice and Bob act locally andlink, creating a magnetic flux tube. The links dual to these
the theory respects a charge superselection rule, the fludaquettes form a closed loop on the dual lattice.

i
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Our protocol for superluminal signaling is based on the ob- )
servation that Wilson loop measurement causes Cheshire a(C,xg) =P ex 'JC Al. v
charge to be transferred from Alice’s flux tube to Bob’s. o

Ches'hire charge,'while CO”C‘?th‘?‘”V. elusive, is phySiCa”yHereA is the gauge potential arfd denotes path ordering;
genuine and regdlly detectt_ad in principle. : the statgq) of a charged object carried aloi@jis modified
Our conclusion that Wilson loop measurement is anaccording to
acausal operation does not hold in the case of an Abelian
gauge theory. Indeed, we will show that a nondemolition |q>_)D(R)(a(C %0)|q) 3

measurement oW(C) is possible in an Abelian gauge

theory that includes charged matter. In our analysis of thig; |4y transforms as the unitary irreducible representation
case, we adopt the convenient idealization that the partie§ (R of G. The elemen&(C,x,) € G depends on a “gauge

who perform the measurement are equipped with gaug&sgicer ot the pointxy; that is, on how a basis is chosen in

invariant ancilla variables that are not themselves describeﬁ]e representatiob®. A basis-independent characterization

by the ga}[ugfe theor;z\k:/vle_: W'"V\;'J_‘Ilso slee thadea;trucnvemte;]- ‘ of the gauge holonomy is obtained if we evaluate the trace in
Zu;eme_n 0 t?] non-l € I?rlh |\s/\(;|n ooi? meabsutrgm(ejn_ A the representatio®(?), obtaining the Wilson loop operator
etermines the value of the Wilson loop but in doing S0, . irted witlc given by

damages Wilson loop eigenstatas possible in a gauge
theory that includes suitable charged matter. In particular, if WR(C)= P (a(C 4
the matter transforms faithfully under the gauge group, then (©)=x"@(Cx0)), @

the Wilson loop can be measured destructively in any repre\?\/hereX(R) denotes the character of the representabéR.

sentation of the gauge group. . The Wilson loop operator does not depend on how the point
The conclusion that nondemolition measurement of

. . i oo ; Xo on the loopC is chosen. In much of what follows, we will
spacelike Wilson Ioc_)ps is impossible in anon—Abellan_ 9aU9&ssume for notational simplicity that the unbroken gauge

hout a full lisfact  ch terize th E‘&roqu is finite; however, our arguments can be easily ex-
us without a fully satisfactory way to characterize the con-ed to the case of compact Lie groups.

figurations of a quantized relativistic gauge theory in terms By acting with a gauge-invariant source on the weakly-

;)f mtehasu.rablefquan.tt|t|e_?h Rtelatedd d|ff||.c£‘_ult|es arise in qutan—Oupled ground state of the gauge theory, AligeBob) can
um theories of gravity. That nondemolition measurement ot .o+ 2 “color magnetic flux tube” or “cosmic string” that

a Wilson loop operator would allow superluminal signaling ¢, ries trivial “color electric” charge. This tube is an eigen-

has been anticipated by SorKial. : (R") .
We formulate the properties of magnetic flux tubes in SecState Of the Wilson loop operatt™™ ’(Ca), whereC is a

Il, and analyze a protocol for superluminal signaling enabled?0P that links once with the tube, for any irreducible repre-
by Wilson loop measurement in Sec. 11l In Sec. IV, we de-S€ntation R’) of the gauge group G; hence the tube can be

fend the legitimacy of the magnetic flux tubes that are usedfPeled by a conjugacy classof G.
in our signaling protocol, through explicit constructions When we say that the tube has trivial gauge charge, we
within the formalism of lattice gauge theory. In Sec. V, we M€an that it transforms as the trivial representationGof

explore the consequences of including charged matter fieldd"der global gauge transformations. To understand this prop-
in the gauge theory, and show that destructive measuremeffY it iS helpful to specify a basepoimp, on the loopCp

of a spacelike Wilson loop is possible. The Abelian case i€nd 1o fix the gauge at this point. Then the effect of parallel
discussed in Sec. VI, and we show that in an Abelian gaugf@nsport around the loop, , beginning and ending &b,
theory with charged matter, nondemolition measurement of §20 be encodedn this particular gaugein a group element
Wilson loop is possible. The pure Abelian gauge theory?(Ca.Xoa)=2a. If the tube is associated with a particular
(without mattey is considered in Sec. VII; in that case non- 9roup element, we call its quantum state a “flux eigen-
demolition measurement of homologically trivial Wilson State,” denoted/a). But under a gauge transformatian
loops is possible, but homologically nontrivial Wilson loops € G @t X, this flux eigenstate is transformed as

are unmeasurable and there is an associated superselection 1

rule. We take up the related question of whether electric a—gag -. ©)
charges can travel faster than light in Sec. VIII, concluding , , ) ) .
that superluminal transport of Abelian charge, but not non- hus @ flux eigenstate is not a gauge singlet in generd, if

Abelian charge, is possible. Section IX contains some conlS Non-Abelian. A gauge-singlet quantum state of the flux
cluding comments. tube is a coherent superposition of the flux eigenstates be-

longing to conjugacy class,

Il. WILSON LOOPS, MAGNETIC FLUX, AND ELECTRIC 1
CHARGE |a,0)= —m(
o

> |a>), )

aea

In a theory with gauge groufs, the effect of parallel
transport of a charged object around a closed fgatthat  where|a| denotes the number of members of the class.
begins and ends at the poixg can be encoded in a group  Other possible states of the flux tube can carry nontrivial
elementa(C,Xq) € G given by electric charge. For example, the state
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a) (hge lhah™), |® ' (13

> lgbg Hg
geG

whereae « andb e 8. This configuration is a direct product
of the state of Alice’s tube with the state of Bob'’s tube, a

—_— simultaneous eigenstate of the commuting Wilson loop op-
b) L—»—) eratorsW(C,) andW(Cp).
Alice X C  Bop But because multiplication of conjugacy classes is ill-

defined, this state is not an eigenstaté\ffC), whereC is
tion created locally by Alice and by Bob is an eigenstate of thepather. if Alice’s tube is an eigenstate Wf(C,) and Bob’s
Wilson loop operators associated with the pathsandCg, shown tube is an eigenstate (Cg), then an eigenstate &¥(C)

in (a), but not an eigenstate of the Wilson loop oper&dhat links isn r n entanal fth
with both tubes, shown ifb). r?orr%taelli fagg;ct state but an entangled state of the faprio

la,R)=N, r QEG x®(g)*|lgag™) (7 EG lgag Ha®|gbg Hg. (14)
S ge

(whereN,, r is a normalization factor ande @) transforms  This state has zero total charge, as it is invariant under a
as the nontrivial |rredu0|ble represgnta_tldh) under global  global gauge transformation applied to both tubes. But it is
gauge transformations. To verify this, first construct the opnot invariant under a gauge transformation that acts on just

erator one of the tubes; it can be expanded in a basis in which
Alice’s tube and Bob’s have definite and opposite charges.
E(R):%l 2 YR(g)U(g), 8) Using the group orthogonality relations in the form
geG
Ng
. . —~ (Rg)=
where|G| denotes the order of the groupy is the dimen- ; 1G] X (9)=dge (19

sion of the irreducible representatioR), andU(g) is the
global gauge transformation that conjugates the flugby  (whereeis the identity elementwe may rewrite the state as
a sum over irreducible representations

U(g):la)—lgag™™). 9)
. . . Ng _ _ _
Using the group orthogonality relations > Gl > x®(gh H*|hah Y @|ghg Hg].
R h,ge G
nR ’ ’ (16)
o 2 XP@* x®gh =" x®(h), (10
Gl ¢<6 The expression in parentheses transform@asinder gauge

transformations acting on Bob’s tube and as the conjugate
representationR*) under gauge transformations acting on
Alice’s tube, as we can verify by applying2 E(R and
ERER) - SRRER). (11) ERIeI.
Thus, when two flux tubes are prepared in a quantum state
Applying the orthogonality relations once more, we see thathat is an eigenstate of the Wilson loop operat(C),
whereC links with both flux tubes, then the flux tubes carry
E®|a,R)=|a,R); (120  correlated nontrivial electric charges. This property is the

) ) basis of our claim that Wilson loop measurement is acausal,
thus|e,R) transforms asR). The “Cheshire charge” carried a5 we elaborate in the next section.

by the flux tube in this state can be detected through, for
example, the Aharonov-Bohm interactions of the tube with
other, distant, flux tubell3,14).

Suppose that Alice and Bob, acting locally, each create
flux tubes with zero electric charge, where the flux of Alice’s  For a static gauge field configuration, it is possible in
tube belongs to conjugacy class and the flux of Bob’s principle to measur&/(®?(C) [and hence the conjugacy class
belongs to conjugacy claga (The process of preparing the of the group elemen&a(C,x,)] by performing interference
flux tubes will be discussed in more detail in Sec.)IVo  experiments with projectiles that transform@s® [15]. But
describe the quantum state of this configuration, we mayvhat if the loopC lies in a time slice and the gauge field is
choose loop£, andCp that link with the tubes, and fix the dynamicaP In a relativistic field theory, no projectile can
gauge at basepointg , andxqg as illustrated in Fig. 4).  follow a spacelike world line, so that a direct measurement
Up to a normalization factor, the quantum state of the twoof the effect of parallel transport alor@is not feasible.
tubes can be expressed as However, it seems conceivable that a less direct measure-

we find thatE(® is the orthogonal projection onto the space
transforming as ), which satisfies

IIl. NONDEMOLITION MEASUREMENT
OF NON-ABELIAN WILSON LOOPS IS ACAUSAL
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ment strategy might succeed. When we speak of a “measureon loop is measured. But if Alice moves her flux tube into
ment” of an operator whose support is on a spacelike sliceposition to link withC, then the configuration is no longer an
we need not require that the result be instantaneously knoweigenstate ofV(R(C), and itis affected by the operation
by anyone. We might imagine instead that, in order to meag,y.c, . In fact, after the operation, though the total charge of
sureW(R(C) at timet=0, many parties distributed along the system remains zero, there is a nonzero probability that
the loopC perform local operations dt=0. Later, the data Alice’s tube and Bob’s tube carry equal and opposite nonzero
collected by the parties can be assembled and processed attzarges. This charge can be detected by Bob. For example,
central laboratory, where the outcome of the measurement ¢fe can determine whether his tube has vacuum quantum
W®)(C) can be determined. In such a protocol, we shouldhumbers by allowing it to shrink and observing whether it
allow the parties to share any entangled quantum state thatill annihilate and disappear—if the tube is charged, a stable
they might have prepared prior te-0, and we should allow charged particle will be left behind.
them to ship quantum informatiamather than just classical Thus, if there were a way to implement the operation
datg to the central laboratory after they have performed thei€,yc) at t=0, then by observing whether his flux tube is
local operations. Of course, the quantum or classical varieharged aftet=0, Bob would be able to infefwith a prob-
ables that are sent to the central laboratory for analysis arability of success better than a random guegsether Alice
not the variables of the underlying field theory; they are animoved her tube into position or not. Therefore Alice can
cilla variables that are assumed to be available to assist wittransmit classical information to Bob over a noisy channel
the measurement. with nonzero capacity; she is able to send a superluminal
Just prior to the measurement at timne0, the quantum signal to Bob. By the same method, Bob can send a signal to
state of the gauge theory s a density operator that acts on Alice.
the physical gauge-invariant subspace. Even though the mea- To understand this charge transfer process in more detail,
surement result may not be known until later, the operationget us consider a specific example. Suppose &t the
performed att=0 modify the statep immediately. If the quaternionic groupof order eight, whose two-dimensional
local operations performed &0 are to achieve a measure- faithful unitary irreducible representation is
ment of W(R(C), then the coherence of a superposition of

eigenstates ofp with different eigenvalues must be de- {xl, oy, xioy, Tiog}, (19
stroyed. Att=0, then, the quantum state is modified accord-
ing to whereo;,0,,03 are the Pauli matrices. Suppose that Alice

and Bob both have tubes carrying flux in the class 8
={=*io4}. For tubes in this class, the quantum state with

pﬁgW(C)(p)E% EwpEuw, A9 trivial charge is
whereE,, is the orthogonal projector onto the subspace of 1 )
states with |+>:E(|'01>+|—'01>), (20)
WR(C)=w. (18)

and there is also a state of nontrivial charge

This operation describes a projective measurement of

W®R(C) with an unknown outcome. o 21
The operationfyc) is actually weaker than a measure- =)= E(l"rl) [=iow). @D

ment of W(R(C); conceivably decoherence in the basis of

eigenstates of an observable can be accomplished even if thg,q state|— ) transforms as the nontrivial one-dimensional

measurement outcomengverrecorded. But if any record of representation o6 in which =1, =io are represented by 1

the value oW(C) is written att=0 (even one that cannot 44+ | oy, *ics are represen’ted by 1.

be read until later then decoherence as described by EQ. |t aAlice and Bob each have a charge-zero flux tube, the

(17) must occur. __quantum state of their two tubes is a product state
We will show thatéyyc) can be used to send superluminal
signals, and so establish th&fc, cannot be implemented in |y =|+)a®|+)g. (22)

a gauge theory that respects relativistic causality.

To devise a superluminal signaling protocol, Alice andp, it the loopC links once with each tube, then the value of
Bob use local gauge-invariant probes to prepare unchargag(r)c) in the two-dimensional irreducible representation
flux tubes belonging to classesand B respectively, as de- (R) can be either 2 oF 2. If the initial state|i);; is pro-

sc_ribedhin Sec. Il. Bob moves his ﬂlﬁx m?_e’kWhiCh will hre% jected onto the state with/(®(C)=2, Alice’s tube becomes
ceive the message, into position so that it links once with thyancied with Bob's: the resulting state is

loop C; Alice encodes one bit of information by choosing to
place her flux tube in one of two possible positions, either 1
linking with C or not. If Alice chooses to place her tube e T (lio)a® | =0 et =i a® i 01 )R).
where it does not link withC, then the configuration is an V)i \/§(| 1a®| Vet 1a®lio1)e)
eigenstate ofV(P(C) and will be unaffected when the Wil- (23
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Bob's final density operator, obtained by tracing over thethe measurement of the Wilson loop, and Bob subsequently
state of Alice’s tube, is measures the charge of his tube, he will find the charge to be
trivial with probability

1 . . .
panz= ([lo)(ion +]=Ton)(=ionl), (24 w1142 B.O(B.O) ¥
Prok(O|w;) = )
anincoherent mixtureof the two flux eigenstates. Similarly, Wi Wi

if |¢)ini IS projected onto the state with®(C)=—2, the =n;/|B|=Prolw;). (32)
resulting state is ' '

(Here|B,0) denotes the charge-0 state of a string whose flux
1 . . . is in conjugacy class3.) Therefore, if Alice’s and Bob's
|"/j>ﬁ”"2_ﬁ(|ml>’*®|'01>B+|_'Ul>A®|_'01>B)’ tubes both link once with the loo@ when the operation
2 Ewc) is applied, then afterwards Bob will find his tube car-
(25) (©)
ries trivial charge with probability
and again Bob’s final density operator is

PB fin,—2= PBfin,2- (26) Prod0)=2i Prol(0|w;) - Prot{w;)

Each of the two flux eigenstates is an equally weighted co-

herent superposition of the charge eigenstate$g and =Z (Prot(wi))2=2 (ni/1B8))2. (33
|—)g. Thus if Bob were to measure the charge of his tube ' !

after the operatiorfyy, acts att=0, he would find the
charge to be {) with probability 1/2 if Alice’s tube linked
with the loopC, while he would never find the charge to be
(=) if Alice’s tube did not link with C. Alice has sent a

We see that, unless the initial configuration is an eigenstate
of WR(C), we have Prob(031. We conclude that Bob'’s
tube is charged with nonzero probability if Alice’s tube
linked with C, and it is guaranteed to be uncharged if Alice’s
tube did not link withC. Alice can send a superluminal sig-
Yal to Bob. (Of course, since Alice’s tube has an electric
charge equal and opposite to that of Bob’s tube, Bob can also
send a superluminal signal to Alice, with the same probabil-
ity of success.

The argument also applies to compact Lie groups. For
example if the gauge group is

finite gauge grougs. If Alice’s tube initially carries flux in
the conjugacy class and has trivial charge, while Bob'’s
carries flux in the clas® and has trivial charge, then the
initial state of their tubes is a product state

1
init=—"——— aya®|b)g. 2 - -
W T Ta 2, 2 [2nslble @0 G=SU(2)={g(n,6)=ex —i(8/2)n- o],
This state can be expanded in terms of eigenstates of neS?,  60e[0,2m]}, (34)
WR(C)=xP(ab). (28 then conjugacy classes are labeled thyif a flux tube has

Suppose that for fixeé e « there aren; distinct elements trivial charge, its quantum state can be expressed as

b®eB, m=1.2,...n;, such thaty®(ab)=w;. (This o
numbem; is independent of how the class representagiie |0,f>:f dﬁf(a)J dnlg(n,)), (39
chosen. Then the component d),; with W(R(C)=w; is
the (unnormalizedl entangled state wheref is any square integrable class function. If the l&@p
o links with Alice’s tube and Bob’s, then the product state
1 I
- - (a)
|¢>wi_ |a||ﬂ| aga |a>A®MZl |bi,p,>B- (29) |1ﬂ>init=|0,f1>A®|0,f2>B (36)
. o __is in general not an eigenstate of the operatdf®(C);
;2;51 st:;e is invariant under a global gauge transformanonp]ence measurement 8¥()(C) would induce a detectable
9 transfer of charge from Alice’s tube to Bob's.
a—gagl, bogbgl (30) The argument also applies in any spatial dimensibn

=2. Ind=2 dimensions, the flux tubes may be replaced by
so that its total charge is trivial. We see thatbf®(C) is pairs of pointlike vortices; ind>3 dimensions, the tubes

measured, the outconwvg occurs with probability become membranes of codimension 2.
In our discussion, we have ignored the effects of magnetic
Prob(w;) = w (4] ¢h)w,=ni /| Bl; (3D  and electric quantum fluctuations—in particular we have not

considered whether gauge charges might be confined or
it is obvious from the definition ofi; that these probabilities screened by the Higgs mechanism. We have implicitly as-
sum to unity. Furthermore, if the stajtqy)wi is prepared by sumed that theG gauge symmetry is unbroken, afidi G
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electric charges are confinethat the separation between obstacles to generalizing the discussion to the case of Lie
Alice and Bob is small compared to the characteristic dis-groups. Residing on the lattice links are variables that take
tance scale of electric confinement. values in theG group algebra, a Hilbert space of dimension

We should note that in the case of a continuous gaugéG| for which an orthonormal basis can be chosen as
group, an ultraviolet regulator is implicitly invoked to define {|g),g e G}. A local gauge transformation associates a group
the Wilson loop. The Wilson loop detects the magnetic fluxelement with each lattice site. Each link has an orientation,
that links withC. If we think of C as a wire of infinitesimal and if a link connecting siteg andy is oriented so that it
thickness, thenW(C) will be dominated by very-short- points fromy to x, then gauge transformation$,(h) and
wavelength fluctuations of the gauge field near the wire. TdJ,(k) at sitex andy act on the link variable according to
suppress these fluctuations, we allow the wire to have a non-

zero thickness, removing the contributions of fluctuations Ux(h):|g>xy_’|hg>xya
with wavelength belova. In 3+ 1 spacetime dimensions, the L
fluctuations near the wire are unimportant provided that Uy(K):|@)xy— gk Hxy- (39
e?log(L/a)<1, (37) Phy_sical statesare invariant under all local gauge transfor-_
mations. Physical observables preserve the space of physical
where €2 is the gauge coupling constatrienormalized at ?;?rtr?;t’i:nnsd hence must commute with the local gauge trans-
distance scala) andL is the characteristic size of the loop - .
C Now consider an operatdi,(a) that acts on a particular
’ link | as
IV. FLUX TUBES ON THE LATTICE Hi(a):|g)—[ag) . (39

‘Our argument that Wilson loop measurement would allowNote thatH,(a) is not a gauge transformation, since it acts
Alice to send a superluminal signal to Bob had two crucialonly on a single link, rather than all of the links that meet at
elements: that Alice and Bob are capable of creating uny sjte. This operator does not commute with local gauge

charged magnetic flux tubes, and that Bob can detect thgansformations; rather Ifis oriented so that it points toward
charge on his tube. Let us examine more deeply whether th@e sjtex, we have

preparation of the flux tube is really possible in principle.

In considering whether flux tubes are legitimate objects, it U,(h)H(a)U,(h)~*:|g),—|hah~t-g),, (40
is helpful to think about a scenario in which an underlying
continuous gauge symmetry is spontaneously broken to ar
finite non-Abelian subgroup. To be specific, a generic
vacuum expectation value of a Higgs field in the five- U, (h)H (a)Uy(h)"*=H,(hah™1). (41
dimensional irreducible representation ®U(2) breaks the . . )
gauge symmetry to the quaternionic group considered in Se8ut if we define an operator by summity(a) over a con-
lll. In this Higgs phase, there are locally stable cosmiciugacy class ofG,
strings that carry nontrivial magnetic flux; these serve as the
flux tubes needed for the signaling protocol. Alice and Bob _ i

. . Hi() =1 2 Hi(a)
both require closed loops of string that have vacuum quan- |
tum numbers; in principle, these could be created in, for
example, a hard collision between particles. then H,(«) doescommute withU,(h) and is therefore a

Wilson loop measurement can change the transformatiogauge-invariant operator. This is the operator that Alice ap-
properties of a string loop wunder global gaugeplies to her link to create a local flux tube excitatidr,17.
transformations—it transfers charge to the loop. This chargeQf course, by acting on several adjacent links, Alice can
like any charge in a discrete gauge theory, can be detectetteate a larger flux tube if she wishes.
through the Aharonov-Bohm interactions of the string loop If Alice applies this operator to her link and Bob applies it
with other string loop$13,14). to his link, then the state they prepageting on the weak-

In a confining gauge theory like quantum chromodynam-coupling vacuum is not an eigenstate of the Wilson loop
ics, a flux tube is not locally stable, but it is still possible to operatorW(C), where C contains both links. Therés an
engineer one, at least if it is small compared to the confineeigenstate ofNV(C) in which Alice’s link is excited to con-
ment distance scale. To be as concrete as possible, we wjligacy classx and Bob’s to clas, and of course this state
describe how a flux tube can be created in a gauge theoman be created by a gauge-invariant operator acting on the
defined on a spatial lattiggut with continuous time In this  perturbative vacuum. But the operator cannot be local, since
framework, Bob(or Alice) can prepare a flux tube with zero it creates charges on Alice’s link and Bob’s. It is instructive
charge by acting on a single link variable with a gauge-to construct the nonlocal gauge-invariant operator that cre-
invariant local operator, as indicated in Fig. 3. ates this state.

In our description of the construction of this operator, we For this purpose, it is convenient to choose a basepoint
will again find it convenient to suppose that the gauge groupattice sitexy, and to choose oriented lattice pathg andPg
G is a finite group of orde|G|, though there are no serious that connect Alice’s linkA and Bob’s linkB to the basepoint,

: (42

aea
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Py X _ Pg 1
— Hi,(B,Pg.X0)=zr| 2 Hi(b,Pg.Xo)|.  (47)
B |:8| bep B
In fact, it is clear from the definitions thaHi,B(,B,PB,xO)
Alice Bob =H,(B); itis really a local operator in disguise.

FIG. 5. A nonlocal operator that creates correlated excitations at But we can also construct a gauge-invariant operator that
distantly separated links of a lattice gauge theory. An arbitrary baseacts simultaneously on Alice’s link and Bob’s, and that really
point X, is chosen, together with arbitrary patRs, and Pg that  is nonlocal[16,17]:
connect Alice’s link and Bob’s link to the basepoint. By acting on 1
the links, the operator excites the lattice plaquetstaded that 1 1
contain the links. The nonlocality is necessary because Alice’s ex- |G| g;G Hi,(989 ", Pa.X0) - Hi(9bg " Pg Xo) |
citation and Bob’s excitation carry nontrivial and opposite electric (48)
charges.

This operator, acting on the weak-coupling vacuum, creates a
as shown in Fig. 5. Legp denote the path-ordered product of state in which Alice’s link and Bob's are correlated, as in Eq.
link variables associated with the pefh (14). This gauge-invariant operator does not depend on how

the basepoink, is chosen; we are free to slide the basepoint

along the path connecting Alice’s link and Bob’s however we
QPZIHP 9 (43 please.
- The communication protocol explained in Sec. Ill can be
with later links along the path appearing further to the Ieft.descnbed this way: Alice and Bob apply the local operators

Then we may define a generalization of the operbtothat  H1a(®) @ndH (/) to create link excitations that are uncor-
depends on the path and the basepoint. Acting on Alice’s linkelated with one another. Then the Wilson loop measurement

|, we have operationéyc) is applied, where the loof contains the
links |, andlg. This operation establishes a correlation be-
HIA(aaPA’X0)3|9>IA—>|9'QPAaQEAl)lAy (44)  tween the links. It transforms a state that can be created by

local operators to a state that can be created only by a non-
local operator like that in Eq(48). Such a transformation
cannot occur on a time slice in a theory that respects relativ-
—1 istic causality. We conclude that the nondemolition measure-
Hi5(b,Pe X%0):19)1,—19p b p, O (49 ment of the non-Abelian Wilson loop operator is not physi-
cally realizable.
HenceH|B(b,PB ,Xo), like H,B(b), excites the plaquettes that  Now, the operatoH,(«) is a gauge-invariant local opera-

contain Bob’s link. But whileH; (b) left-multiplies the link tor, but it is not unitary, so we should clarify what it means to

iabl H p left-multioli h ; say }hat Alice or Bob applies this operator to a state. In fact,
variable byb, 'Bgtl)’ B Xo) left mu tiplies by the conjugate if Ais any bounded operator that does not annihilate the state
group eIementgPBbng. In a fixed gauge, the operator |4y, we can apply the operation

H,B(b,PB,xO) creates an excitation such that the effect of

and acting on Bob’s linkg we have

gauge parallel transport about a closed path that begins and ) Aly) (49)
ends atx, and passes through link is encoded in the group 14 /< 1/1|ATA| )

elementb. H|A(a,PA,x0) is defined similarly, but acts by

right multiplication because of the way we have chosen thavith a nonzero probability of success by making a suitable

orientation of the link 4 . measurement. First note that we may assume without loss of
The operaton—hA(a, PA.Xo) commutes with local gauge generality that the eigenvalues QFA are no .Iarger than

transformations acting in the vicinity of Alice’s link,, and ~ ©N€—if not, we merely rescal without modifying the op-

H, (b,Pg,Xg) commutes with gauge transformations actingerat_Ion equatlor(4_9). Th?” Iet{|0),|_1>} be an orthonormgl

. B N L basis for a two-dimensional “ancilla” space, and consider

in the vicinity of Bob’s link |z. But they do not commute

: . . ) the transformation
with gauge transformations acting at the basepgjntather
we have U:l0)e ) —~[0)eAlp)+|1)eBly), (50

Uy (9)H),(8,Pa,%0) Uy (9) 1=H) (gag™*,Pa,Xo), where

- - ATA+B'B=1I. (51)
Uxo(g)HlB(b1 PB vXO)UXO(g) 1= HIB(gbg 11PB 1XO)'
(46)  This transformation is norm-preserving and so has a unitary
extension. Hence we apply the unitadyto |0)®|) and
Again, we can obtain a gauge-invariant operator by summinghen measure the ancilla by projecting onto the basis
a or b over a conjugacy class, e.g., {|0),|1)}. The outcome|0) is obtained with probability
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(y|ATA|¢), in which case Eq49) is applied. If the outcome In addition to the gauge symmetry, the matter field at site
|1) is found, then Alice may discard the state and makealso transforms under global symmetry transformation
another attempt. As long a&|#)# 0, Alice can repeat the V,(h), acting ong from the right, that commutes with gauge

procedure until she gets the desired outcome. transformations:
Clearly, the gauge-invariant bounded operator analogous 1
to H,(a) can also be constructed in the case wigis a Lie Vy(h):|g)x—|ph™ ). (56)

group. For example if the gauge groupd$)(2), then asso- The interpretation of this global symmetry is that our matter

ciated with the group elemegf(n, §) =exp(-i(62)n-0) IS fie|ds have both “color” and “flavor” degrees of freedom.
the transformation The regular representation 6f decomposes into irreducible
representations, with the dimensiop-representatiofR) oc-
H,(g(n,6)):|hy,—|g(n,6)h),, (520  curring ng times. Gauge transformations mix thg states
that span(R) (the colorg, while global transformation mix
whereh e SU(2). This transformation can be expressed as theNr copies of(R) (the flavors. _ _ _
Let xy denote a link connecting the neighboring sites
- CiohE andy on the lattice, with orientation pointing frognto x, and
Hi(g(n,0))=e g (53 et U,yeG be the gauge-field variable associated with this
oriented link. We may also assign to this link the gauge-
where the electric field, is the angular momentum conju- invariant variable
gate to theSU(2) rotor h at link I. The bounded operator

Uyy= by Uxysby, (57)
— S aion-E the “covariant derivative” of the matter field. Without
Hi(h) j daf(e)f dne (54) changing the physical content of the theory, we can replace

the link variablegU,} by the new gauge-invariant variables
(wheref is any integrable functionis gauge-invariant. In- {u;}. But after this replacement, the physical Hilbert con-

deed, it is a function of the gauge-invariant observafﬁe straint can be trivially constructed: at each sit¢he state of
that a’lcts on the link the matter field is required to be the gauge-invariant uniform

As we have also explained in Sec. Ill, the common-sens§UPerposition state
reason that the state created by the nonlocal operator in Eq.
(48) cannot be created with local operators is that Alice’s L 2 |$) (58)
link and Bob’s carry(correlatedl nonzero electric charges. In \/@ $eG X
guantum chromodynamics, as in a discrete gauge theory,
Wilson loop measurement can cause color charge to be tranSince the matter fields are completely constrained by gauge
ferred to a flux tube. This color charge is surely detectableinvariance, they have no role in dynamics and they too can
like any color charge, it acts as a source for a measurablee eliminated, leaving only the gauge-invariant local vari-
color electric field. ables{u}.
Although the new variables are gauge invariant, they

V. MATTER FIELDS AND THE DESTRUCTIVE transform nontrivially under the global transformations, ac-

MEASUREMENT OF WILSON LOOPS cording to
We have shown that the nondemolition measurement of a Vi(h):|u)yy— )y, (59)
non-Abelian Wilson loop conflicts with relativistic causality. _ _
But there are further questions that we wish to address. Can Vy(k)-|u>xy—>|Uk )xy- (60)

the Wilson loop be measuratkstructivel? What about the
Abelian case? To formulate our answers, we will continue t
use the formalism of lattice gauge theory. Furthermore, to
ensure that the agents who are to perform measurements Elh
as well equipped as possible, we will include in the theory
matter fields that couple to the gauge fields.
Our matter fields reside on the sites of the lattice, and Iikgo\ctmg on the weakly coupled vacuum, this operator pro-
the link variables, take values in the group algebra. The basig,ces a flux tube excitation at the link. The flux tubexgt
for the Hilbert space at a site will be denoted{|$)..¢  has Cheshire charge that is exactly compensated by charge
€ G}. Under the local gauge transformatioiy(g) acting at  |ocalized at the sitec. An operatorH, (a) that creates an
the sitex, the matter variable transforms as the regular repgycitation with trivial Cheshire charge can be constructed
resentation ofG (which contains all irreducible representa- 5 applied as described in Sec. IV.
tions of G), Since the variablefu,} are local and preserve the physi-
cal Hilbert space, it is reasonable to postulate that they are
Uu(9):| d)x— g ). (65  observable. Physically, the measurementgfhas a simple

c)Thus physical states can carry glolialcharges.
A gauge-invariant unitary operator acting on the Ik
be defined as

ny(a):|u>xyﬂ|au>xy- (61)
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interpretation in terms of the effect of parallel transport of acourse, we may not be able to measure more than one of the
colored object from sitey to the neighboring sitex. Of ~ W(R)(C,) if the C; are on different time slices, since a mea-
course, we are free to adopt arbitrary color conventions asurement on an earlier slice may interfere with a measure-
each site, and the way we describe the effect of parallenent on a later slice.
transport depends on these conventions. However, if we have We have assumed that the matter fields transform as the
multiple flavors at our disposal, we can use the flavors taegular representation E¢5) of the gauge grougs. What
record our conventions, so that in effdgauge-dependent about more general choices for the representation content of
statements about color transport can be translated intthe matter? Provided that the matter transforms as a faithful
(gauge-invariantstatements about flavors. representation of the gauge group, one can show that the
To be concrete, suppose thd) is a three-dimensional destructive measurement @(®(C) is still possible in any
irreducible representation; our “quarks” come in three colorsrepresentationR).
(red, yellow, blug and three flavorgup, down, strange At We reach this conclusion by noting that matter in the
each site, we adopt conventions for color and flavor, and weegular representation can kmulatedusing matter that
prepare standard quarks in three mutually orthogonal colorgansforms faithfully, augmented by ancilla degrees of free-
and three mutually orthogonal flavors that lock these convendom. We will give only a brief sketch of the argument. First
tions together: the up quark is red, the down quark is yellowwe recall that if R,,) is a faithful representation, an®) is
the strange quark is blue. Then standard quarks prepared aty irreducible representation, theiR) is contained in
sitey are covariantly transported to sitgand compared to (R,,)®" for somen. Therefore, if our fundamental matter
the standard quarks that have been prepared at that site. Thigglds transform asR,,), then we can build composite ob-
the effect of the transport can be equivalently described afgcts that transform a@) from n fundamental constituents.
either a rotation in the color spacél{) or in the flavor Next we observe that if the theory contains only a single
space (). Performing this experiment for each irreducible matter field that transforms af), we can use ancilla vari-
transformation ofG assigns a unique group elemeant, to  ables to attach an effective flavor index to the field. To un-
the link xy, for these particular conventions. A modification derstand the point heuristically, consider the case of
of the conventions can be interpreted as a rotation in théquarks” that come in three colors but only one flavor.
flavor space, under which the variahlg, transforms. Rather than using “natural” flavors to keep track of our color
Now consider a large loof on the spatial lattice, and conventions, we can use “artificial” flavors instead, labeling
suppose that many parties distributed along the loop are tred, yellow, and blue quarks with the three mutually orthogo-

measure the Wilson loop nal stategup, down, strangeof the ancilla. When quarks are
transported from one site to a neighboring site, the attached
(R)( )= (R) G value of the ancilla is transported along with the color; hence
WHC) =X (,IJC U') X (.EIC u|> (62) artificial flavors, just like natural flavors, allow us to describe

local gauge transport in terms of gauge-invariant quantities.
in representationR). Since all the matter fields cancel out, Since we can construct composite matter fields in any repre-
the Wilson loop can be expressed in terms of the gaugesentation(R) of G, and we can use ancillas to ensure that
invariant variable{u,}. Each party has access to a single matter transforming agR) comes inng flavors, our simu-
link along the loop, and usingg flavors of quarks in repre- lated matter transforms as the regular representation; thus we
sentation R), determines the value of thezxng matrix ~ can measure destructively a Wilson loop in any representa-
D((u) at that link, for a particular choice of flavor conven- tion.
tions. Each party then reports her value®f(u) to the What about the case of a pure gauge theorye contain-
central authority for post-processing, the matrices are multiing no charged matter at g The gauge variables them-
plied together, and the trace is evaluated. The result, whicRelves can simulate matter that transforms according to the
does not depend on the local flavor conventions, is the valuadjoint representation
of the Wilson loop.

Thus, distributed parties, each acting locally, can measure . -1

the Wilson loop operator. But in doing so, they collect much D(g):[h)—Ighg™, €3
additional information aside from the value of the Wilson
loop. In particular, an eigenstate W{?(C) need not have a which is a faithful representation @/Z(G), whereZ(G)
definite value of eacB(®(u,) along the loop. Therefore, the denotes the center @. Thus, by building composite fields
localized measurement procedure typically disturbs thend manipulating ancillas, we can simulate matter that trans-
guantum state of the field, even if the initial state before thorms as the regular representation @fZ(G). Therefore,
measurement is a Wilson loop eigenstate. Rather than a I®W(®(C) can be measured destructively for any representa-
calizednondemolitiormeasuremeniwhich we have already tion (R) of G/Z(G), or equivalently for any representation of
seen is impossibjét is a localizeddestructivemeasurement. G that represents the center @ftrivially.
Note also that distributed parties can measure destructively We have seen that the nondemolition measurement of a
each of several Wilson loop operatorsV(R)(C,)),i non-Abelian Wilson loop is an example of an acausal mea-
=1,2,3...,n, all on the same time slice, and hence thesurement that can be made causaild in fact localizableif
product I;W(RD(C,). In this respect, the destructive mea- additional information is collected simultaneously. Other ex-
surement is compatible with the Wilson loop algebra. Ofamples were noted ifiL1].
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VI. NONDEMOLITION MEASUREMENT OF ABELIAN Now each party can measure the value oftyerand broad-
WILSON LOOPS IS LOCALIZABLE cast the result to the central authority. The measurement out-

The causality problem arose for the nondemolition meafOmMes are random, so that each individual measurement re-
surement of non-Abelian Wilson loops because multiplica-Veals no information about the state of the lattice variables.
tion of conjugacy classes is ill-defined. Since this problemVhen the results are accumulated, the valu@/(€) can be
does not arise iG is Abelian, one might expect that a space- inferred by evaluatindl,u, , but no further information about
like Wilson loop operator should be measurable in an Abethe field configuration is acquiredThis type of local mea-
lian gauge theoryor more generally, if the Wilson loop is surement making use of a shared entangled ancilla was de-
evaluated in a one-dimensional irreducible representation dfcribed in[7], and was shown to be the basis of a separation

the gauge group We will see that this is the case. between classical and quantum multiparty communication
To be concrete, consider a lattice theofyontaining —complexity in[18].)
charged mattgrwith gauge groupG=U(1). Gauge vari- Of course, the transformation equati¢®6) that couples

ablesU, e U(1) reside at each linkof the lattice, and matter the ancilla to the field variables can also be described in a
variables¢, e U(1) reside at each site As we have seen, conjugate basis, which may clarify its meaning. We may
the gauge and matter variables can be eliminated in favor ofrrite u=e~'?, U=e"'?, and define the angular momentum
gauge-invariant variables,,= ¢;1UXy¢y, and the Wilson Q conjugate tod by

loop operator is

e %9y =[9+3). (69)
W(C)EIIJC U|=|1;[C uj . (64  Then Eq.(66) becomes
10.Q)—(e"1)%6,Q). (69)

To perform a destructive measuremenMéfC), parties dis-
tributed along the loo could each measure the local value Thus we may regar® as a fictitious electric charge, whose

?f u;.thetnhthe Tesunfstrclar:/\?le muIItlplled together later o deyangport properties are governed by the conneatierthe
ermine fe vaiue o q € l!son 0op. h parties implement Eq69) by “parallel transporting” their
To perform a nondemolition measurementW(C), the 53 charges by one lattice spacing in the effective gauge

prpcedure must be modifie(_j SO thét on_Iy the value of the?ield defined byu. The (unnormalizablg initial state of the
Wilson loop, and no further information, is collected. Imag- 4\ qilia can be written

ine, then, than parties have been distributed along the loop

C, each with access to one of the links@fAnd suppose the o 5
party who resides at link can manipulate not only the |initial>anc=~2 1Q,Q,Q, ... .Q), (70
gauge-invariant field variable,, but also a gauge-invariant Q=-

ancilla variableﬁ, e U(1) that will be used to assist with the \ynich is transformed to

measurement. Some time ago, the parties prepared an en-

tangled state of their ancilla variables, * - 5

linitial)anc=_2 [W(C)?Q,QQ,....Q). (71
Q:—oc

Since the charges held by the parties are perfectly correlated,
(65) only the global information about transport around the entire
loop C becomes imprinted on the ancilla state. This informa-

This state is a coherent superposition of all possible states faion, encoded in relative phases in tBebasis, can be read

the ancilla variables, Eubject only to one global constraint oyt via measurements in the conjugatbasis. Note that it is
the product of all theu,’s. Now each party applies a local important that the ancilla variables carry fictitious rather than
unitary transformation to her lattice field variable and hergenuine electric charges—otherwise states with different val-
part of the ancilla: ues of the total charge would reside in distinct superselection
sectors and the relative phases in Efl) would be unob-
luy o) —Jup,upy), (66)  servable. We also note that while to measure the Wilson loop
perfectly we must prepare the ancilla in the unnormalizable
a rotation of the ancilla rotor controlled by the value of the(an_d he_nce “”PhYS'Q?‘State Eq.(70), a measurement W'th_
lattice rotor. This is achieved by turning on a Hamiltonian @'Pitrarily good precision can be achieved using a normaliz-
~ able approximation to this state.
that couplesu,.andu, : . . The key to this procedure for measuring the Wilson loop
. The qperat|on Eq(66) modifies the constraint on the an- is that theW(C) can be expressed in terms of the local
cilla variables, which becomes gauge-invariant variablegy,} as in Eq.(64). This property
has a clear physical interpretation. The matter field repre-
H U =W(C). (67) sents a me_dium laid out alon_g the lo@pthat becomes su-
[ perconducting on the time slice where the measurement of

|initial)anc=J IT (dulu,,u,, ... ,Dn>5(]'[ D|—|)
=1 I=1
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W(C) is to be carried out¢p=e"'? is a superconducting

order parameter with phaseé Though the phase and the W(C)EIHC U|:2HS Us, (74)
gauge fieldA,, are not locally observable, the covariant de- ° °
rivative

whereUy is the value of the Wilson operat®v(4%) for the

boundarys2. of the cell>. Therefore, a destructive measure-
D,0=0d,0+A, (72 ment of W(C) can be carried out by a collection of parties

occupying the surfaces. Each party measures the local
is observable—it is proportional to the local current density.“magnetic field” Us and reports her result to the central
By coupling the local current to our entangled ancilla, weauthority. The results can then be accumulated to determine

have modified the state of the ancilla in a manner that ishe value ofW(C).
sensitive to the value of the quantity This destructive measurement differs from a nondemoli-
tion measurement oV(C) in that too much information is
) collected—not just the total flux through the surface, but also
exp{| ﬁjD,ﬂdx/‘ =W(C); (73 the local distribution of magnetic flux is determined by the
measurement. In a nondemolition measurementVf€), a
o . Zig superposition of two different magnetic field configurations
;?ﬁg?g%g:ﬁiéﬂgﬁggﬁd from the property that-e ™" is a with the same value dN((_:) would not _decohere, but if the
Even without the éntangled ancilla, parties distributedlocz.iI field is measurgd th|§ superposition d_o_es decohere. Yet
along the loop could determine the vaIL,JeW(C) by mea- as in our previous d|sgu35|on_, a nondemolition measurement
suring the local value dD , 4, and broadcasting their results can be achlevedilf apcﬂ_la variables are prepgred N an appro-
. w ) C0 " priate state that is distributed to the parties in advance. Sup-
In that case, not JusW(_C) but also_ the covariant derivative ose that each of thl parties can access both the gauge-
of 9 wou_ld be determined by 'ghelr measurement Ogtcome%variant local magnetic field variablels e U(1) and an
By invoking the entangled ancilla, we have emphasized that o~ ) )
it is possible to measurgV(C) without learning anything ancilla vana_bl_e_Uze U(1). Theancilla has been prepared in
else about the state of the lattice system, that is, to perform {€ Shared initial state
nondemolition measurement @¥(C). N N
It is clear that the technique we have described could bey; .: _ R ™ &
applied in principle to perform a nondemolition measure- [INit)ane le_:ll (dU)Us. Uz, - 'UN>5( 21—:11 s~
ment of the Wilson loop operator in any one-dimensional (75
representation of the gauge group. But as we have shown
must be so, it fails in the non-Abelian case. We can introduc& coherent superposition of all possible states for the ancilla
matter fields such that,, = ¢>X_1ny¢y is a gauge-invariant variables, squect only to one global constraint on the prod-
quantity, but since the’'s do not commute with the'’s, the ~ Uct of all theUs’s. To perform the nondemolition measure-
transformation equatiori66) will not in that case simply —Ment, each party applies a local unitary transformation to her
modify the constraint on the ancilla variables as in ). ~ Magnetic flux variable and her part of the ancilla:

Us,Us)—|Usy ,UsUy), 76
VII. WILSON LOOPS IN THE PURE ABELIAN GAUGE |Ux Us)—|Us, UsUs) (76)

THEORY a rotation of the ancilla rotor controlled by the value of the
Our procedure for the nondemolition measurement of andttice rotor. This operation modifies the constraint on the

Abelian Wilson loop uses charged matter coupled to théncilla variables, which has become

gauge fields. Let us now consider whether the nondemolition

measurement is possible in the pure Abelian gauge theory. IT Os=11 us=w(c). (77)

When there is no charged matter, we cannot replace the 3 3

gauge variables on links by gauge-invariant variables that are 5

locally measurable. Now each party can measure the value of kbr, and

broadcast the result to the central authority. The measure-

ment outcomes are random, so that each individual measure-

ment reveals no information about the state of the lattice
Consider first the case of a homologically trivial Io@)  variables. When the results are accumulated, the value of

the boundary of a two-dimensional surfa@en the Abelian W(C) can be inferred by evaluatinﬁzﬁz, but no further

gauge the%ry, the Wilson loop operaté(C) can be inter- tormation about the gauge field configuration is acquired.
preted ae'® where® is the magnetic flux linking the loop.

In the lattice formulation of the theory, the surfagés the
union of elementary cells that tessellate the surface. Suppose

A. Homologically trivial loops

B. Homologically nontrivial loops

there areN such cells, labeled by an index taking values Now consider the case of a homologically nontrivial loop
>=1,2,3...,N. Then the Wilson loop operator can be ex- C, which is not the boundary of any surface. For example,
pressed as suppose that the theory lives om-aimensional spatial torus
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(a rectangular box with opposite sides identifieand that c
the loopC is a nontrivial cycle that winds around the torus.
The gauge-invariant local operators of the theory are the
magnetic flux operator8ly acting on the elementary lattice
cells, and the “electric field” operators that act on elemen-
tary links. The electric field, at the linkl is the “angular .
momentum” conjugate to the link rotor variablg ; it gen- stttttpttpttgt
erates rotations af,

exp(—i6E)):|U)—|e "U),. (79

Each party residing on the lattice is empowered to apply or
measure the local operators in her vicinity.

But the homologically nontrivial Wilson loop operator is  FIG. 6. The nonlocal electric field operator dual to a homologi-
not included in the algebra generated by these local operaally nontrivial Wilson loop operatow/(C), in an Abelian lattice
tions. HenceW(C), whereC is a nontrivial cycle, is com- gauge theory in two spatial dimensions. Here a two-torus is repre-
pletely inaccessible to the local residents of the lattice. Thegented as a square with opposite sides identif2i a nontrivial
cannot measure this operator, either destructively nor nondéviented cycle that winds around the torus, &idis the set of
structively, nor can they apply it to a state. The homologi-oriented links dual to a closed “surface” that crosseence. Any
cally nontrivial Wilson loop is not an observable of the pure homologically trivial closed loop(like C’) crossesS* as many
gauge theory. times with a+ orientation as with a orientation. Thus the elgc_tric

Although the inhabitants of this world are unable to mea-field operator onS* commutes withW(C’), but has a nontrivial
sureW(C), they are able to change its value. The link rota-commutation relation witt(c).
tion e '’E has a nontrivial commutation relation withi((C)
if | eC: It is obvious that similar conclusions apply to any Abelian

pure gauge theory. If the theory is defined on a manifold with
e EIW(C)=e TW(C)e 1B, (790  hontrivial homology, then the algebra of observables has a
different structure in the theory with charged matter than in
the pure gauge theory without matter. In the pure gauge
theory, the homologically nontrivial Wilson loops are not
observables at all, and consequently, the theory divides into
sectors with different values of the nonlocal electric field.

(Here the orientation of the link used to defineg, is as-
sumed to be aligned with the orientation®ft link I.) Thus
any party with access to a lirlkkof C can rotate the value of
W(C), whether or noW(C) is the boundary of a surface.
Like Wilson loop operators, electric field operators are of

two types W|t.h.d|ffer|ng locality properties. I is a fun'da-' VIIl. SUPERLUMINAL CHARGE TRANSPORT
mental nontrivial cycle, we can construct an electric field
operatorEc that rotatesW(C) but has no effect on homo- The main conclusion of this paper is that the observables

logically trivial Wilson loops. Associated with the cyd®of  of Abelian and non-Abelian gauge theories have fundamen-
the torus is a closed orientable hypersurf&tbat crosse€  tally different properties—in particular, the nondemolition
exactly once; dual to this surface is a set of oriented latticeneasurement of a Wilson loop is acausal in the non-Abelian
links S*, as illustrated in Fig. 6. The electric field conjugate case and localizable in the Abelian case. We can further ap-
to W(C) is preciate the distinction between Abelian and non-Abelian
gauge theories by thinking about not what operators can be
measuredbut rather what operators can agpliedto a state
Ec= > E. (80) by a group of parties each of whom acts locally.
les* To dramatize the question, imagine two parties Alice and
i i Bob, many light years apart, who share a “superluminal
This nonlocal operator generates a rotation of the homologl(-:harge transport linetSCTL). Alice places a single electri-
cally nontrivial Wilson loopW(C), but since any homologi-  c4jly charged particle, an electron, at her end of the SCTL
cally trivial closed loop crosseS as many times with & (the pointy); then her charge mysteriously disappears, and
orientation as with a— orientation, homologically trivial j, an instant reappears at Bob’s end of the SGifie point
Wilson loop operators commute witfc . X). The electron has been transmitted through the SCTL far
The “nonlocal electric field"Ec can be measured—all more rapidly than Alice could send a light signal to Bob. Is
parties residing at links contained " can measure the gsych a device physically possible?
local electric field and the results can be summed. But while yes \We can understand how the SCTL works by charac-
the inhabitants of the lattice are able to meadte they are  terizing it with a gauge-invariant unitary operator that it ap-
unable to change its value. The Hilbert space of the theoryjies to a state. In our lattice formulation of an Abelian lat-
divides into superselection sectors, each labeled by the vajice gauge theory with matter, consider a connected path of
ues ofEc, € Z, where theCy’s are the cycles that generate the jinks P that begins ay and ends ak. Associated with this
homology group of the spatial manifold. path is the gauge-invariant operator
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e Bob electron, initially in Alice’'s hands, has been delivered to
1 @ Bob. The closer the parties are to one another, the faster the
procedure can be completed.
a) Even though the charge transfer is virtually instantaneous,
/WVVVW the Gauss law is satisfied at all times. If we draw surfaces
o around Alice and Bob, then while the SCTL is operating one
‘ unit of charge leaves Alice’s surface and one unit enters
Bob's. Furthermore, even though the charge moves superlu
> space minally, the process does not violate causality, since no in-
formation is transmitted from Alice to Bob. Indeed, if Felic-
time Bob ity, a party in the middle of the SCTL, were to disobey orders
1t ﬁ and fail to create an electron-positron pair, then Felicity
) . e o would “intercept” the charge sent by Alice, and Felicity’s
b) neighbor on the right would share a distantly separated
electron-positron pair with Bob. When Bob receives the elec-
tron, all he learns is that his left neighbor has performed as
‘ expected, but he learns nothing about the activities of Alice.
= While an Abelian charge really carries no information,
> space non-Abelian charge is much more interesting—its orientation
in a representation space can encode a message. Thus it is
of an electron from Alice to Bob, assisted by many interveningeasy to_see that a _non-AbeIIan S_CTTL' were one to exist,
parties. Each partyexcept Alice and Bobproduces an electron- yvould violate causality. To be explicit, con_3|de_r the foII_ow-
positron pair and keeps the positron, and e@trept Bob passes  INg Protocol that enables Bob to send classical information to
an electron to the party on her right. Then all pairs annihilate. Thu\ice (based on ideas similar to those used to show that
a charged particle sent by Alice is received by Bob almost instanVVilson loop measurement is acays&lirst, Alice produces a
taneously, even though Bob is many light years awlyThe pro-  particle-antiparticle pair, where the particle transforms as
tocol fails to achieve superluminal transport of non-Abelian chargerepresentatiotiR) of G and the antiparticle as representation
All intervening parties produce color-singlet pairs of charges, bu{R*). The total charge of the pair is trivial. If|e;),i
when each party unites her antiparticle with the particle created by=1,2,3 .. .ng} denotes a basis for the representati®), (
her neighbor, the pairs fail to annihilate completely. Though theand{|ei* )} denotes the conjugate basis fd®R*(), then the

procedure conserves color, the color of the charge received by Bobinglet state prepared by Alice is
is uncorrelated with the color of the particle that had been in Alice’s

FIG. 7. (a) “Sawtooth protocol” for superluminal transmission

possession. In both the Abelian and non-Abelian cases, no informa- 1 %

088 . ; = : — > leyoler). (82
tion is transmitted from Alice to Bob, so that causality is not vio- /nR i ! I

lated.

Alice keeps the antiparticle, and sends the particle through

4 the SCTL to Bob. Bob has a loop of magnetic flux that he
bx II;[P U d’y:Il;[P U - (81) has prepared in the charge-zero stated) associated with
conjugacy classy of G, as in Eq.(6). To convey a bit of

Acting on the weakly coupled ground state of the theory, thidnformation to Alice, Bob either does nothing to the charged
operator creates a pair of equal and opposite charges at t,p_@rtlcle he recelve_d from Alicésending 0) or lassoes it with
sitesx andy. Acting on a state with a charged particle at site NS flux tube(sending 1), and returns the charge through the
y, it annihilates the particle at while creating a particle of SCTL to Alice. Now if Bob did nothing, Alice recovers a
like charge ak, in effect transporting the particle froyrto x. smglet_ pair, but if Bob lassoed thg charge, then the state of
The applied operator factorizes as a product of gauget-he pair has become entangled with the state of Bob’s tube:

invariant unitary operatons,, each acting on a single lattice 1 1
link. Therefore, many parties acting simultaneously, each T > X leyelel)Dj(a)ela). (83
manipulating only the link in her own vicinity, are able to Ng Vla| aca 7]

operate the SCTL. Alice then unites the particles and observes whether the pair

More physically, we can envision the operation of the "~ . o -
SCTL as in Fig. 7. Many parties are distributed along theanmhllates. In the state E(B3), the probability of annihila-

SCTL. At a pre-arranged time, each party creates aﬁ'?” is determined by the overlap of the pair’s state with the

electron-positron pair. Retaining the positron, she passes thsénglet state, and is readily seen to ;)e

electron to her right, while receiving an electron from the (84)
party on her left. Then she brings electron and positron to- '
gether to annihilate. Claire, the party closest to Alice, re-
ceives an electron from Alice and annihilates it with Claire’swhere P («) is the character of class in representation
positron, while Diane, the party closest to Bob, hands hefR). As long as the representatiofR) is not one-
electron to Bob. After all pairs annihilate, the sole remainingdimensional, the class can be chosen so that this probabil-

1
Prob= ‘—X(R)(a)
Nr
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ity is less than one. Therefore, Alice observes annihilatiomassociated with regions that are spacelike separated. A local
with certainty if Bob sends 0 and observes annihilation withoperator is designated as a “local observable” if it preserves
probability less than unity if Bob sends 1—thus Bob canthe superselection sectors of the theory. One might be
signal Alice. tempted to postulate that a quantum operation is physically
The capacity of the SCTL is easily estimated. Supposossible in principle if and only if it can be expanded in
that Alice will signal Bob by transmitting\ particles(where  terms of these local observables.
N is even each transforming as the representafiBhor its We find this viewpoint untenable, because causality
conjugate representatiofRt). She can prepare and send aplaces more stringent constraints on the allowed operations
state ofN/2 particles andN/2 antiparticles, in any one @y [11]. The problem of characterizing which quantum opera-
distinct singlet states. These states are mutually orthogonéibns are compatible with causality is especially subtle, inter-
and in principle they can be readily distinguished by Bob.esting, and physically relevant in relativistic quantum field
Therefore, Alice is able to send Ig§y bits to Bob by using theories with local gauge symmetry.

the SCTLN times. But the number of singlets is One form of the question is: what operators can justifiably
be called “observables?” We have focused our attention on

(np)N the measurability of the Wilson loop because of its promi-
An= P(N)’ (85 nent place in the operator algebra of a gauge theory. The

answer we have found is rather elaborate. In a gauge theory

WhereP(N) grows no faster than a po|ynomia| with Thus, that includes Charged matter that transforms falthfullyi,ea
asymptotically Alice can send lggg bits of information per ~ Structivemeasurement of a spacelike Wilson [06§7(C) is
transmission. This rate is just what we would have guesseBhysically possible for any representatit®) of the gauge
naively, ignoring that observables must be gauge invariant.group. The term “destructive” means that many cooperating
Since the non-Abelian SCTL is acausal, it ought not to pararties acting together can ascertain the value of the Wilson
physically realizable. What goes wrong if we try the sameloop, but only by collecting additional information in the
procedure that succeeded in the Abelian case? The trouble f§ocess, and at the price of damaging Wilson loop eigen-
that if Claire produces a singlet pair, and Diane does thétates. In a pure gauge thedigne with no charged matter
same, then when Claire’s particle unites with Diane’s anti-the destructive measurement\W(®)(C) is possible for any
particle, the charges might be unable to annihilate. In fact, ifR) that represents the center of the gauge group trivially. A

Claire’s particle transforms as the representat®nand Di- nhondemolition measurement of the Wilson logme that
ane’s as R*), then the probability that the pair annihilates, leaves Wilson loop eigenstates inteist possible in an Abe-
determined by its overlap with the single state, is2l/Thus,  llan gauge theory but not in a non-Abelian gauge theory.

while in the Abelian case the outcome of the procedure is Nondemolition measurement of a non-Abelian Wilson
that only a single electron survives, which is in Bob's pOS_Ioop is impossible because it would conflict with relativistic
session, in the non-Abelian case many relic charges remaffusality. Two distantly separated partigdice and Bob
strewn along the path of the would-be SCTL. Though thet@n each produce excitations locallyagnetic flux tubes
procedure conserves charge, the orientation in the represeReparing a state that is not an eigenstate of the Wilson loop
tation space of the charge that Bob receives is actually urRPeratorW(C), whereC is a loop that passes through both
correlated with the orientation of the charge that Alice sent€Xcitations. Projecting onto a Wilson loop eigenstate, what-
and no information is transmitted. ever the outcome, entangles Alice’'s excitation with Bob's,
Finally, in the non-Abelian theory as in the Abelian Modifying the excitations in a manner that either party can
theory, the operator that propagates a charged particleyromd'scem locally. Such instantaneous preparation of quantum
to x can be factorized as in E@81) into local factors. So €ntanglement would enable spacelike-separated Alice and
why can't this operator be applied by many parties, eacH30b to communicate. _ _ _
acting locally? We must recall that the operators of the [N quantum field theory in general, and in gauge theories
theory are not the group elementse G themselves, but N part!cular, characterizing the physically allowed quantum
rather the matrix elemen®{{(u;) of representations of the OPerations seems to be an open problem. Further progress on
group. In the Abelian case, the character of a product thls guestion is bound to elucidate the physical content of

group elements can be written as a product of charactergt?lat'v'suc quantum theory.

where each character is a unitary operator. But in the non-
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matrices. The contraction of indices in this matrix product

cannot be achieved by many parties acting locally; rather it We thank Steve Giddings, Anton Kapustin, Michael

requires a nonlocal conspiracy. Nielsen, Edward Witten, and especially Mark Srednicki for
helpful discussions and comments. This work was supported
IX. CONCLUSIONS in part by the Department of Energy under Grant No. DE-

FG03-92-ER40701, by the National Science Foundation un-
In the standard formulation of algebraic relativistic quan-der Grant No. EIA-0086038, by the Caltech MURI Center
tum field theory[12], an algebra of “local” operators on for Quantum Networks under ARO Grant No. DAAD19-00-
Hilbert space is associated with each bounded open region 40374, by IBM, and by the Clay Mathematics Institute.
spacetime, such that two local operators commute if they ar8ome of this work was done at the Aspen Center for Physics.

065022-15



BECKMAN, GOTTESMAN, KITAEV, AND PRESKILL PHYSICAL REVIEW D65 065022

[1] R. Giles, Phys. Rev. 24, 2160(1981)). [9] S. Popescu and L. Vaidman, Phys. Rev% 4331(1994).
[2] R. Gambini and J. Pullin,.oops, Knots, Gauge Theories and [10] D. Beckman, Ph.D. thesis, Caltech, 2001.
Quantum Gravity(Cambridge University Press, Cambridge, [11] D. Beckman, D. Gottesman, M. Nielsen, and J. Preskill, Phys.

England, 1995 Rev. A64, 052309(2001).

[3] M. A. Nielsen and I. L. ChuangQuantum Computation and [12] R. Haag,Local Quantum Physics: Fields, Particles, Algebras
Quantum Information(Cambridge University Press, Cam- (Springer-Verlag, Berlin, 1992
bridge, England, 2000 [13] J. Preskill and L. Krauss, Nucl. PhyB341, 50 (1990.

[4] J. Preskill, Lecture Notes for Physics 229: Quantum Informa-[14] M. Alford, K. Benson, S. Coleman, J. March-Russell, and F.
tion and Computation, http://www.theory.caltech.edu/people/ Wilczek, Phys. Rev. Lett64, 1632(1990.

preskill/[ph229 [15] M. Alford, S. Coleman, and J. March-Russell, Nucl. Phys.
[5] Y. Aharonov and D. Z. Albert, Phys. Rev. P, 3316(1980. B351, 735(1991).
[6] Y. Aharonov and D. Z. Albert, Phys. Rev. P4, 359(1981). [16] M. G. Alford, K.-M. Lee, J. March-Russell, and J. Preskill,
[7] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev.33, Nucl. Phys.B384, 251(1992.

1805(1986. [17] A. Yu. Kitaev, “Fault-tolerant quantum computation by
[8] R. D. Sorkin, inDirections in General Relativity, Vol., 2dited anyons,” quant-ph/9707021.

by B. L. Hu and T. A. JacobsofCambridge University Press, [18] H. Buhrman, W. van Dam, P. Hoyer, and A. Tapp, Phys. Rev. A

Cambridge, England, 1993gr-qc/9302018. 60, 2737(1999.

065022-16



