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Thermal and quantum fluctuations around domain walls

Carlos A. A. de Carvalho*
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro, RJ 21945-970, Brazil

~Received 8 October 2001; published 4 March 2002!

We compute thermal and quantum fluctuations in the background of a domain wall in a scalar field theory
at finite temperature using theexactscalar propagator in the subspace orthogonal to the wall’s translational
mode. The propagator makes it possible to calculate terms of any order in the semiclassical expansion of the
partition function of the system. The leading term in the expansion corresponds to the fluctuation determinant,
which we compute forarbitrary temperature in space dimensions 1, 2, and 3. Our results may be applied to
the description of thermal scalar propagation in the presence of soliton defects~in polymers, magnetic mate-
rials, etc.! and interfaces which are characterized by kinklike profiles. They lead to predictions as to how
classical free energy differences, surface tensions, and interface profiles are modified by fluctuations, allowing
for comparison with both numerical and experimental data. They can also be used to estimate transition
temperatures. Furthermore, the simple analytic form of the propagator may simplify existing calculations, and
allow for more direct comparisons with data from scattering experiments.

DOI: 10.1103/PhysRevD.65.065021 PACS number~s!: 11.10.Wx, 11.10.Kk, 11.27.1d
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I. INTRODUCTION

There are many problems in physics which require qu
tization around classical backgrounds, such as Schwing
QED calculation of vacuum polarization around const
electromagnetic fields@1#, the semiclassical quantization o
field theories@2#, and the semiclassical analysis of theclas-
sical limit @3,4# of quantum mechanics. In fact, the latter tw
characterize the semiclassical analysis as a two-way r
towards quantization, for the field theorists; towards the c
sical limit, for learning how classical physics descends fr
the quantum world.

Taking the field theory lane of that two-way road, we ha
recently studied the problem of quantizing the simplest
field theories, one-dimensional quantum mechanics, wh
~scalar! ‘‘field’’ lives in zero spatial dimension@5–8#. Work-
ing in imaginary time, i.e., at finite temperature, and wit
smooth potentials, we were able to show that a full semic
sical series could be constructed from the knowledge
semiclassical propagators in the classical backgrounds o
solutions of the equations of motion, and gave a gen
prescription for deriving them from those backgrounds. O
construction was similar to the one proposed long ago
DeWitt-Morette@9# in real time, i.e., at zero temperature:
generalized to quantum statistical mechanics, where
number of classical solutions is drastically reduced, the
sults for ordinary quantum mechanics.

This article applies some of our techniques to semicla
cal quantization around a very specific background in a v
specific scalar field theory, at finite temperature, in one, t
and three spatial dimensions. In that respect, it bears gre
similarity to the Schwinger problem than to the semiclass
quantization of field theories. The latter would require fin
ing all classical solutions that satisfy the finite temperat
boundary conditions, and a general procedure for constr
ing semiclassical propagators in their backgrounds. As
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have already stated, in quantum mechanics the general
cedure does exist, and it is often possible to find all class
solutions@5–8#. In field theories, however, finding all clas
sical solutions is already a difficult problem, and even if w
find them all, no general procedure to obtain semiclass
propagators in their backgrounds is known. The techn
reason for that is the presence of spatial dimensions, wh
transform the fluctuation problem, given by an ordinary d
ferential equation~ODE! in zero spatial dimension, into a
partial differential equation~PDE! problem, whose solutions
cannot be obtained from the mere knowledge of the ba
ground. Even finding the backgrounds involves, in genera
PDE, instead of the ODE of quantum mechanics.

We have thus examined a specific potential of t
w4-type, and confined our analysis to a~Euclidean! time-
independent solution of the classical equations of motion
pending on only one spatial coordinate, a domain wall wh
classical profile and dynamics of fluctuations could beex-
actly solved from ODE’s. We were then able to construc
semiclassical propagator in the presence of that backgro
from which, in principle, we can generate any term of t
semiclassical series around the domain wall. We note
even in one spatial dimension, where the domain wall
finite Euclidean action, and therefore contributes to the se
classical approximation, we abdicate the idea of ‘‘solvin
the theory semiclassically, because there are many othe
lutions whose semiclassical propagators cannot be obta
from a general recipe. In particular, solutions which on
depend on Euclidean time do contribute: they are given
elliptic functions, similar to the ones in quantum mechan
@5–8#, but whose fluctuation problems are much harder
solve.

Our motivation for pursuing this problem, besides t
technical appeal of obtaining thermal and quantum fluct
tions at any temperature from anexact expression for the
semiclassical propagator, was dictated by its potential ph
cal applications. Indeed, for spatial dimensiond51, our for-
malism can be adapted to describe fluctuations around
fects that occur in one-dimensional systems, such as
©2002 The American Physical Society21-1
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solitonsfound in polymers~like polyacetylene! @10#; and for
d52,3, to describe fluctuations aroundinterfacesthat sepa-
rate two distinct phases@11#, a description that allows one t
calculate how the surface tension, as well as the interf
profile are modified by those fluctuations. It can also be u
to approximately estimate transition temperatures@12#.
Adopting this view, we are able to extract physically releva
results from the study ofd.1, where the action of the do
main wall diverges with the size of the system.

Since the problem is treated at finite temperatureT, fluc-
tuations incorporate thermal and quantum effects, which
tifies the term thermal and quantum fluctuations emplo
thus far. The background we use, however, does not dep
on T, as it is a ‘‘static’’ classical solution of the equations
motion, independent of the Euclidean time. That indep
dence guarantees that it remains aclassicalsolution atany
temperatureT, which is all we require to compute a sem
classical expansion order by order. As we incorporate th
mal effects through fluctuations, our classical solution w
no longer be a minimum of the~now T-dependent! Gibbs
free energy~the effective action!. Nevertheless, the new
minimum may be obtained by extremizing the free ene
with an ansatz that adds corrections to the original kink p
file. The procedure will be outlined in Sec. V, and will pro
from the nice properties of that original profile. Physically,
order for the procedure to be justified, we must be dea
with situations where we start with a rather ‘‘massive’’ bac
ground, but whose fluctuations are ‘‘light,’’ when both a
compared to the temperatureT. Thus, only the fluctuations
would be influenced by the interaction with the heat bath
in our calculations. This is very much what would be e
pected in the context of the so-called ‘‘adiabatic’’ appro
mations, where one can distinguish ‘‘heavier’’ and ‘‘lighte
degrees of freedom, as in the physics of polymers. Clea
we have to assume that boundary conditons at spatial infi
of the domain wall type are externally fixed, which forces
to go to the kink sector.

We should stress that the problem of computing fluct
tions around domain wall solutions has played an import
role in the physics of interfaces in binary mixtures@11#. In
that case, however, temperature was introduced in a phen
enological way, through the ‘‘coarse-grained’’ Ginzbur
Landau free energy, whose mass parameter was assu
temperature dependent. In order to avoid confusion, we
call that temperatureTph. Our problem will reduce to tha
one if we also assume that the mass parameter of our
grangian depends onTph, in a manner determined phenom
enologically, and, furthermore, that our fluctuations a
coupled to a heat bath atzero temperature,T50. Then, our
methods can be used in the calculations that compute cri
exponents to two-loop order@13#, which obtain excellent
agreement with both numerical and real experiments. Th
calculations make use of the semiclassical propagator in
form of a series over eigenmodes. Our closed expres
should simplify them, and should allow for an independe
check. We, however, treat a different physical situation: o
in which a microscopic field theory is forced to have tw
regions at distinct vacua. For that case, we compute how
interface separating those regions is affected when a
06502
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bath atT couples to its quantum fluctuations. In the polym
context, at d51, that amounts to deriving how therma
phonons modify a soliton defect. Ford.1, that can tell us
how thermal neutral bosons affect an interface separa
regions in different Bose-condensed phases.

We should point out that a number of works have de
with similar questions: the finite temperature determinant
been computed long ago@12,14#, as a product over eigenva
ues; Parnachev and Yaffe@15# have carefully studied the
same problem atT50, paying special attention to the dete
minant calculation using a different method. Grahamet al.
@16# have investigated similar problems involving interface
resorting to the relation with phase shifts, rather than w
the semiclassical propagator. In all cases, it seems possib
establish a precise relation to the approach we adop
should be noted that our approach includes a finite temp
tureT, and derives theexactsemiclassical propagator which
together with a careful treament of collective coordinat
should allow for the computation of correlation function
beyond leading order.

The structure of the article is as follows. In Sec. II, w
briefly review how one derives the semiclassical expans
Sec. II A obtains anexactanalytic expression for the sem
classical propagator, while Sec. II B uses it to compute fl
tuation determinants; in Sec. III, we describe the renorm
ization procedure, first by regularizing the calculation in S
III A, and then by removing its divergences in Sec. III B;
Sec. IV, we discuss the collective coordinates associated
the translational invariance of the solution; in Sec. V, w
show how surface tensions and interface profiles are m
fied by fluctuations, and outline how the first higher ord
correction can be computed. We also mention how transi
temperatures can be estimated from our results. We pre
our conclusions in Sec. VI.

II. THE SEMICLASSICAL EXPANSION

The partition function for a self-interacting scalar fie
theory in contact with a thermal reservoir at temperatureT
can be written as (b51/T)

Z~b!5 R @Dw#e2S[w]/l, ~1!

S@w#5E
0

b

dtE ddxL@w#, ~2!

L@w#5
1

2
~]tw!21

1

2
~“w!21

1

4!
~w22wv

2!2. ~3!

The integralr is to be performed over allw ’s that satisfy the
boundary conditionsw(0,x)5w(b,x). The fields are res-
caled so that the coupling constantl appears as an overa
factor.

We shall be interested in domain wallAnsätzeŵ(x) which
only depend on one spatial coordinatex[x1, which will be
called longitudinal. As is well known@2#, the equation of
motion from Eq.~3! is satisfied by a kinklike profile:
1-2
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THERMAL AND QUANTUM FLUCTUATIONS AROUND . . . PHYSICAL REVIEW D65 065021
ŵ~x!56wv tanhFwv~x2 x̄!

2A3
G , ~4!

where x̄ denotes the position of the domain wall separat
two spatial regions of dimensiond. The remainingd21
transverse spatial coordinates ofx define a vectorr . The 6
refers to kink and antikink, respectively. The classical act
of the wall is proportional to the volume of th
(d21)-dimensional subspace orthogonal to thex-axis,
which we will denote byVd21 (V0[1):

S@ŵ#5
2

3A3
bwv

3Vd21 . ~5!

We expand the action around the domain wall configu
tion ŵ in order to derive the semiclassical series in that ba
ground:

w~t,x!5ŵ~t,x!1l1/2h~t,x!, ~6!

h~0,x!5h~b,x!50. ~7!

As usual, the fluctuationh has to vanish att50 andt5b

becauseŵ already satisfies the boundary condition. The e
pression for the partition function becomes

Z~b!5e2S[ ŵ]/l R @Dh#e2(S21dS), ~8!

where bothS2 anddS depend functionally onŵ and onh:

S2@ŵ,h#5E
0

b

dtE ddxH 1

2
~]th!21

1

2
~“h!2

1
1

12
~3ŵ22wv

2! h2J , ~9!

dS@ŵ,h#5E
0

b

dtE ddxH l1/2

3!
ŵh31

l

4!
h4J . ~10!

If we defineM2[wv
2/3, and use the explicit form ofŵ, the

quadratic Lagrangian in Eq.~9! can be written

L25
1

2 H ~]th!21~“h!21FM22
3

2
M2 sech2~j!Gh2J ,

~11!

with j[@wv(x2 x̄)/2A3# a dimensionless variable.
We may generate a semiclassical series by expanding

e2dS term, and using the quadratic propagator in the k
background to Wick-contract the various products ofh fields
that will appear. Note that, when compared with perturbat
theory, this expansion will involve different vertices, as w
as a different propagator. The latter is already an infinite s
of one-loop perturbative diagrams@6,7#. We now proceed to
construct the propagator, a crucial step to obtain the ser
06502
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A. The quadratic propagator

The quadratic propagator of our semiclassical expans
must satisfy@5–7#

H 2]t
22“

21FM22
3

2
M2 sech2~j!G J G~t,x;t8,x8!

5d~t2t8!dd~x2x8!, ~12!

as well as the boundary conditions

G~0,x;t8,x8!5G~b,x;t8,x8!50, ~13!

since the fluctuations vanish att50, b.
The spectrum of the differential operator in Eq.~12! is

that of a Po¨schl-Teller potential, which is known exactl
@17#. Many applications involving kinklike profiles@11–
14,18# have made use of that explicit knowledge of the sp
trum. Indeed, in some of them the quadratic propagator
expressed as a sum over the various eigenmodes of the
erator, with the respective eigenvalues in the denomina
That, however, leads to very lengthy calculations@11,13#,
especially if one goes beyond one-loop@13#. Therefore, it is
useful to derive aclosed exactexpression for the propagato
which is actually the result of that sum. We can do it
realizing that, in transverse momentum space, the prob
can be reduced to finding the propagator for an ordin
differential equation.

Fourier transforming the transverse coordinates, as we
the Euclidean time, we obtain the ordinary differential equ
tion

H 2]x
21vn

21k21FM22
3

2
M2 sech2~j!G J G̃~kn ;x,x8!

5d~x2x8!, ~14!

wherevn52pn/b, and we have defined the dimensionle
vector kn[(2/M )(vn ,k). As we will see,G̃ only depends
on kn5uknu5(2/M )Avn

21k2. The propagatorG is given by

G~t,x;t8,x8!5
1

b (
n52`

` E dd21k

~2p!d21

3G̃~kn ;x,x8!eivn(t2t8)eik•(r2r8).

~15!

In terms of the dimensionless propagatorG̃[(M /2)G̃, and
of the variablej, defined in Eq.~11!, the equation reads

$2]j
2141kn

226 sech2~j!%G̃~kn ;j,j8!5d~j2j8!.

~16!

We can solve it by finding two linearly independent sol
tions,f1(j) andf2(j), of the homogeneous equation@5–7#

$2]j
2141kn

226 sech2~j!%f i~j!50. ~17!

The solutions are obtained in Appendix A:
1-3



b

e

d

-
ge

u

sid

th
b

ro
-
e

be
a

all

ing
g
t

y
As

a
f

l

do-

CARLOS A. A. de CARVALHO PHYSICAL REVIEW D65 065021
f1~u!5S u

12uD bn/2F12
6

bn11
u1

12

~bn11!~bn12!
u2G ,

~18!

f2~u!5S 12u

u D bn/2F11
6

bn21
u1

12

~bn21!~bn22!
u2G ,

~19!

whereu5(12tanhj)/2 andbn5A41kn
2. Expressions~18!

and ~19! are well-defined forkn5” 0, i.e., bn.2. We will
return to this point later on. The propagator can now
constructed~see Appendix A!, yielding

G̃~kn ;u,u8!5
1

2bn
$f1~u!f2~u8!Q~u82u!

1f1~u8!f2~u!Q~u2u8!%, ~20!

where Q(x) is the Heaviside step function. Note that th
factors outside the brackets in Eqs.~18! and~19! will cancel
in Eq. ~20! wheneveru5u8.

The propagator we have just constructed can only be
fined for kn.0, or bn.2. As is well known@2,17#, for k0
50 the fluctuation kernel in Eq.~16! admits a zero eigen
mode associated to translational symmetry, i.e., a zero ei
value solution of Eq.~17! that vanishes atj→6`. Explic-
itly:

h̃0~u!5
A3

2
sech2@j~u!#52A3u~12u!. ~21!

Consequently, we can only define a propagator in the s
space orthogonal to that spanned by Eq.~21!. Thus, we sub-
tract the contribution of that mode to obtain

G̃8~kn ;u,u8!G̃~kn ;u,u8!2
h̃0~u!h̃0~u8!

kn
2

. ~22!

The divergent part of the limit askn→0 of G̃(kn ;u,u8) is
exactly cancelled by the second term on the right-hand
of Eq. ~22!, so that G̃8(kn ;u,u8) is well defined and or-
thogonal to the zero mode subspace in the limitkn→0:

lim
kn→0

G̃8~kn ;u,u8!5
3

4
u~12u!u8~12u8!. ~23!

B. Determinants

The leading term of the semiclassical expansion of
partition function around a domain wall background is o
tained by settingdS50 in expression~8!. The quadratic
path-integral requires collective coordinates for the ze
mode subspace@19,20#. As we will see in Sec. IV, the re
maining integration, in the subspace orthogonal to that eig
mode, leads to a fluctuation determinant which will
computed from the quadratic semiclassical propagator for
bitrary temperatureT andd51,2,3.
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We again Fourier transform the fluctuation fields in
coordinates but the longitudinal one:

h~t,x!5
1

b (
n52`

` E dd21k

~2p!d21
h̃~kn ;x!eivnt1 ik•r. ~24!

The quadratic part of the action may be written as

S25
1

b (
n52`

` E dd21k

~2p!d21
S̃2~kn!, ~25!

S̃2~kn!5
1

2E2`

`

dxh̃~kn ;x!K~kn!h̃~kn ;x!. ~26!

We denote byK(kn) the differential operator in Eq.~14!, and
formally define its determinant as

Dkn

21/25@detK~kn!#21/25NE @Dh̃#e2S̃2(kn), ~27!

where the path integral sums over all fluctuations satisfy
h̃(kn ;6`)50, andN is a normalization constant. Denotin
by uh̃ j& the eigenmodes~Pöschl-Teller modes, which do no
depend onkn), and byg j kn

2 the eigenvalues ofK(kn), re-

spectively, we have

K21~kn!5X
j

uh̃ j&^h̃ j u

g j kn

2
, ~28!

g j kn

2 5
1

4
M2kn

21g j
2 , ~29!

where j denotes both discrete and continuum Po¨schl-Teller
eigenstates, andg j5g j 0 are their respective eigenvalues. B
convention,j 50 denotes the lowest of the eigenstates.
we have already remarked,g00

2 50, which impliesD050.
Therefore, when in thek050 subspace, we must use
primed determinantD08 which, by definition, is the product o
all but the lowest eigenvalue.

We may now relate ratios of primed determinants~i.e.,
with the lowest eigenvalue excluded! to the semiclassica
propagator of the previous section:

ln
Dkn

8

D08
5E

0

kn
2

dsTr G̃8~As!, ~30!

where the trace is*2`
` djG̃8(As;j,j). We are ultimately in-

terested in ratios of determinants in the presence of the
main wall to free ones: fork050, this is just given by the
corresponding ratio for the Po¨schl-Teller potential in one-
dimensional quantum mechanics, ln(D08/D0

F), which excludes
the zero mode; forkn5” 0, we may write

ln
Dkn

Dkn

F
5 ln kn

21 ln
Dkn

8

D08
2 ln

Dkn

F

D0
F

1 ln
D08

D0
F

. ~31!
1-4
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The first term in Eq.~31! simply restores the lowest eigen
value for kn5” 0, whereas the second and the third can
calculated from the knowledge of propagators: the one in
domain wall background, and the free one. From the ca
lation outlined in Appendix B, we obtain

ln
Dkn

8

D08
2 ln

Dkn

F

D0
F

5 lnS bn21

bn11D22 ln~bn12!1 ln 48. ~32!

We may follow @19# to derive the result fork050:

ln
D08

D0
F

52 ln 48. ~33!

If we insert Eqs.~32! and ~33! into Eq. ~31!, which is valid
for kn5” 0, we obtain

ln
Dkn

Dkn

F
5 lnS bn21

bn11D1 lnS bn22

bn12D . ~34!

The above result includes then50 subspace of eigenmode
but requireskn5” 0, as thek050 contribution has been ex
plicitly summed to cancel the ln 48 term of Eq.~32!.

Formally, the logarithm of the complete~primed! deter-
minant is the sum over all possiblekn’s (kn.0) of Eq.~34!:

ln
D8

DF
5Vd21E dd21k

~2p!d21 (
n52`

`

ln
Dkn

Dkn

F
. ~35!

Expression~35!, as it stands, is meaningless: the sum o
n diverges logarithmically, and, ford.1, the integral overk
introduces extra divergences as well. One must underta
renormalization process in order to arrive at well-defined
sults. In the next section, we shall regularize, and then re
malize the calculation to obtain a final answer for anyT and
for d51,2,3, where the theory is renormalizable.

III. THE RENORMALIZATION PROCEDURE

A. Regularization

We shall concentrate our attention on Eq.~35!. We begin
by examining the behavior of the sumS over Matsubara
frequencies defined as

S[ (
n52N

N

ln
Dkn

Dkn

F
, ~36!

whereN is a cutoff. If we introduce a dimensionless functio
ck[(b/2p)AM21k2, the sum becomes

S5 (
n52N

N S ln
An21ck

22 1
2 c0

An21ck
21 1

2 c0

1 ln
An21ck

22c0

An21ck
21c0

D . ~37!

S may be rewritten in a convenient way by resorting to e
pression~C5! of Appendix C, obtained from Plana’s formul
06502
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@21#, which is commonly used in the description of the C
simir effect @22#. For kn5” 0, it is given as the difference o
two terms:S5Sa2Sb , where

Sa5(
j 51

2

(
s50

1

2eispF E
0

N

dx lnSAx21ck
22

1

2
jeispc0D G ,

~38!

Sb5(
j 51

2 E
ck

` 8dy

e2py21
Fp2arctanS 2Ay22ck

2

jc0
D G . ~39!

The integralI in the brackets of Eq.~38! can be done exactly
@see Eq.~D3! in Appendix D#. For N large, if we neglect
terms of order 1/N, replaceN with bL/2p, and restore di-
mensional quantities, expression~37! can be split into a zero
temperature partS0,

S05
2bk

p
arcsinS c0

ck
D1

2b

p
Ak21

3

4
M2 arcsinS c0

2ck
D

2
3

p
bM F lnS bL

pck
D11G , ~40!

and a temperature dependent partST ,

ST5E
ck

` 8pdy

e2py21
FarctanSAy22ck

2

c0
D 1arctanS 2Ay22ck

2

c0
D G

14 ln~12e22pck!. ~41!

In both expressions, the first two terms represent the con
bution of the~Pöschl-Teller! bound states in the longitudina
direction, while the last ones correspond to the continuu
For d51, k50, so that the first term of Eq.~40! vanishes.

B. Renormalization

The continuum contribution~last term! to the zero tem-
perature partS0 contains the expected logarithmic dive
gence. Indeed, at zero temperature we should replace
sum ~36! by an integral:

S5 (
n52N

N
ln

Dkn

Dkn

F
——→

T→0

I5bE
2L

L
dv
2p

ln
Dk

Dk
F

, ~42!

where v is a continuous variable that replacesvn , and k
[(2/M )(v,k). Furthermore, we may write

ln
Dk

Dk
F
5Tr ln@12G̃F~k!U#, ~43!

where1 is the identity operator,G̃F(k;j,j8) is given by Eq.
~B1!, with bn replaced byb[A41k2, U(j)[26 sech2(j)
is the interaction term in Eq.~16!, and the trace is defined in
Eq. ~30!. If we expand the logarithm in Eq.~43!, we shall
have a series of one-loop terms:
1-5
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ln
Dk

Dk
F
52 (

n51

`
1

n
Tr@G̃F~k!U#n. ~44!

Inserting Eq.~44! into Eq. ~42!, the n51 term I1 can be
readily computed~change the integration variable fromj to
u) and identified with the divergent term of Eq.~40!:

I152bE
2L

L dv

2pE2`

`

djG̃F~k;j,j!U~j!

52
3

p
bM lnS bL

pck
D . ~45!

In order to renormalize the theory, we add a counterterm
the Lagrangian which will absorb that divergent term, a
impose renormalization conditions to fix the finite remaind
For simplicity, we will adopt renormalization conditions
zero momentumk. In the present case, it suffices to add
mass-type counterterm:

L@w#→L@w#2
1

2
C1~w22wv

2!, ~46!

and to require that the two-point one-particle irreducib
~1PI! Green function at zero momentaGR

(2) be given by

G̃R
(2)~0,0!5M2. ~47!

In order to satisfy Eq.~47!, we must subtract the tadpol
graph in the kink background, which is also given by E
~45! because the free propagator at coincident points ca
factored out of thej integration. We then obtain the reno
malized expression

SR5
2bk

p
arcsinS c0

ck
D1

2b

p
Ak21

3

4
M2arcsinS c0

2ck
D

2
3

p
bM1ST . ~48!

For d51, k50, ck5c0, and there are no additional integra
In that case, we may verify that the temperature independ
part of Eq.~48! coincides with the result quoted in Eq.~3.29!
of the first reference in@19#. Indeed, from our calculation we
may easily obtain the difference between the energy of
kink and that of the vacuum, i.e., the kink mass:

Mkink5
1

b
S S@ŵ#

l
1

1

2
SRD , ~49!

which at zero temperature yields

Mkink5
2M3

l
1

M

A2
S 1

2A6
2

3

pA2
D . ~50!

The replacementsM5A2mra j , andl56l ra j , needed to ac-
count for different definitions of mass and coupling, sho
that our results coincide with Rajaraman’s@19# for d51. We
06502
to
d
r.

.
be

nt

e

note that Eqs.~32! and ~33! had already made use of tha
coincidence for the cased50.

Ford52, andd53, we still have to integrate overk. This
last integral will generate additional divergences ind53 di-
mensions, which are contained in then52 term of Eq.~44!:

I25Vd21E dd21k

~2p!d21
bE

2L

L dv

2p
J2 , ~51!

J2[2
1

2E2`

`

dj1E
2`

`

dj2G̃F~k;j1 ,j2!U~j2!

3G̃F~k;j2 ,j1!U~j1!. ~52!

The calculation of Appendix E leads to

J25236H 1

2b2~b11!2
1

1

6~b11!3
1O@1/~b11!5#J .

~53!

Sinceb5A41k2, the second term in Eq.~53! dominates in
the ultraviolet.

We now analyze expression~51! for each dimension:~i!
in d51, the integral overv goes like *v23dv;L22,
which vanishes asL→`; ~ii ! in d52, the integrals overv
and k lead toI 2;L21, which also vanishes in that limit
~iii ! in d53, however, the integrals overv and k lead to
I2; ln L, which diverges in that limit. Thus, ind53 an
additional subtraction is required. The leading ultraviolet b
havior of Eq.~51! comes from the second term in Eq.~53!:

I 2
(as)5V2E d2k

~2p!2
bE

2L

L dv

2p

26~M /2!3

@Av21k21M21~M /2!#3
.

~54!

We integrate the momentak over a sphere of radiusL to
obtain @23#

I 2
(as)52

3

16p2
V2bM3@ ln~L2/M2!1O~1!#. ~55!

This is to be compared with the result of integrating the fin
terms of Eq.~40! over momentak ~the divergent term was
already cancelled by the first counterterm!. Integration by
parts leads to elementary integrals; expanding the result
largeL, and neglecting terms of order 1/L2, we obtain

V2E d2k

~2p!2
S052

3

16p2
V2bM3 ln~L2/M2!2

A3

48p
V2bM3

1O~1/L2!. ~56!

As expected, the leading ultraviolet behavior is the sam
which shows that then52 term of Eq.~44! is indeed respon-
sible for the new divergence. The renormalization proced
requires that we include an additional counterterm in
1-6
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Lagrangian, and use an additional renormalization condi
to fix finite parts ind53 ~see Appendix F!. The Lagrangian
becomes

L@w#→L@w#2
1

2
C1~w22wv

2!2
1

4
C2~w22wv

2!2. ~57!

C1 and C2 are counterterms that we fix by imposing E
~47!, as well as

G̃R
(4)~0,0,0,0!511

9l

32p2
. ~58!

The contribution of the additional counterterm to the effe
tive action in the kink sector is given by

F2
1

2E
L d3k

~2p!3E2L

L dv

2p

1

~v21k21M2!2G
3F1

4E0

b

dtE
2`

`

d3x~ ŵ22wv
2!2G , ~59!

where the first bracket is identified as the one-loop gra
with two external legs at zero momenta~integrated overw in
the interval@2L,L#, and overk in the two-sphere of radius
L, as before!, while the second is easily related to the cla
sical kink action. A simple calculation yields

2
3

16p2
V2bM3 ln~L2/M2!1

3

16p2
~12 ln 2!V2bM3.

~60!

If we subtract the result of Eq.~60! from Eq. ~56!, and take
the limit L→`, we finally arrive at

lnS D8

DFD
R

52
3

16p2 F12 ln 21
p

3A3
GV2bM3

1V2E d2k

~2p!2
ST . ~61!

We should point out that expressions for the finite te
perature determinant were previously obtained from the
plicit knowlegde of the Po¨schl-Teller eigenvalues, either b
summing over Matsubara frequencies, and then over th
eigenvalues@12#, or by integrating over transverse momen
in arbitrary dimension first, making use of dimensional reg
larization, and then summing over Matsubara frequenc
@14#.

IV. COLLECTIVE COORDINATES

The domain wall solution breaks translational symme
along the longitudinalx-axis, as it depends on a parametex̄
that characterizes its position. In order to restore that s
metry of the theory, we resort to the method of collecti
coordinates@19# to sum over all possible values ofx̄. In d
51, there is nothing else to restore. Ind.1, where the wall
06502
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also breaks rotational invariance by singling out a norm
direction, consistently with our previous assumptions,
longitudinal direction is externally fixed by the forces th
implement the wall boundary conditions at spatial infini
Therefore, here as well, longitudinal translations are the o
degrees of freedom to consider.

The existence of longitudinal translation zero eigenmo
of the fluctuation operator is a clear signal that the symme
has to be restored. Physically, it means that it costs no en
to go from one solution to a longitudinally translated on
Thus, in the usual manner, in a region of longitudinal leng
L, we introduce in the partition function the identity

E dx̄

L
dS 1

Ll1/2E0

b

dtE ddxh0~x2 x̄!@w~t,x,r !

2ŵ~x2 x̄!# D J@w#51, ~62!

where the Jacobian is given by

J@w#5l21/2E
0

b

dtE ddxw~t,x,r !
]

] x̄
h0~x2 x̄!

5l21/2E
0

b

dtE ddxh0~x2 x̄!
]w

]x
. ~63!

Equation~62! imposes orthogonality to the normalized ze
modeh0, and integrates over longitudinal positions. The s
ond equality in Eq.~63! comes from an integration by parts
We note that the zero mode is already orthogonal to
domain wall profile sinceh0}]ŵ/]x, which implies

E
2`

`

dxh0~x2 x̄!ŵ~x2 x̄!}@ŵ2#2`
` 50. ~64!

Therefore, we may omit theŵ term in Eq.~62!. We insert the
identity in the expression for the partition function~1!, and
change the order of integration to obtain

Z~b!5E dx̄

L R @Dw#e2S[w]/ldS 1

Ll1/2E0

b

dt

3E ddxh0~x2 x̄!w~t,x,r !D J@w#. ~65!

We perform the semiclassical expansion around the dom
wall according to Eq.~6!. Since the action can be written a

S@ŵ#5E
0

b

dtE ddxS ]ŵ

]x
D 2

, ~66!

the normalized zero eigenmode is simplyh0

5S@ŵ#21/2(]ŵ/]x). Using that, and its orthogonality toŵ,
the expansion yields
1-7
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Z~b!5E dx̄

L
e2S[ ŵ]/l R @Dh#e2S2dS 1

LE0

b

dtE ddxh0h D
3J@ŵ,h# (

n50

`
1

n!
~2dS!n, ~67!

with the functional integral being performed over fluctu
tions that vanish att50,b, and the expanded Jacobian giv
by

J@ŵ,h#5S S@ŵ#

l
D 1/2

2E
0

b

dtE ddx
]h0

]x
h

5S S@ŵ#

l
D 1/2

2S@ŵ#21/2E
0

b

dtE ddxV8@ŵ#h.

~68!

The leading term in Eq.~67! corresponds to the quadrat
approximationZ2 to the partition function in the domain wa
background, whose ratio to the free one is given by

Z2~b!

ZF
5E dx̄

L
e2S[ ŵ]/lF D8

DF
G

R

21/2S S@ŵ#

2pl
D 1/2

. ~69!

It involves the primed determinant calculated previous
since the delta function restricts us to the subspace orth
nal to the zero eigenmode, has a factor (S@ŵ#/l)1/2 coming
from the Jacobian, and a factor of (2p)21/2 from the func-
tional measure which is not cancelled by the correspond
value for the free determinant in the zero mode subspac

V. PHYSICAL APPLICATIONS AND HIGHER ORDERS

The result obtained in the preceding section has an im
diate physical application in the calculation of the interfa
tension ind52 and d53. If our system is confined to a
longitudinal lengthL, and a transverse cross sectionVd21,
the free energy difference per unit cross section between
situation with and without the domain wall defines the int
face ~surface! tension@11#

s[2 lim
Vd21→`

1

bVd21
lim

L→`

lnS Z

ZF
D , ~70!

whereZ denotes the partition function in the presence of
wall, andZF the free partition function, without the domai
wall. The lowest order result~69!, with the integral overx̄
taken from2L/2 to L/2 gives

s5 lim
Vd21→`

1

bVd21
H S@ŵ#

l
1

1

2
lnS D8

DF
D

R
J , ~71!

where we have left out terms vanishing as lnVd21 /Vd21 or
faster. Another way of deriving the interface tension
through its relationship with the energy splitting betwe
ground and first excited state of the field theory, when
vacuum degeneracy is broken by the finite volume@24#. The
06502
,
o-

g

e-

he
-

e

s

tunneling between the previously degenerate states ca
computed using domain walls@25,26#. This calculation was
performed@27# using a dilute gas of kinks and antikinks@28#,
and yields

DE52e2S[ ŵ]/lF D8

DF
G

R

21/2S S@ŵ#

2pl
D 1/2

, ~72!

an expression that comes from the exponentiation of
~69!, which results from summing over kinks and antikink
Our results incorporate finite temperature effects into the
pressions obtained in Ref.@27#. Again, we stress that ou
starting point is a field theory that has no phenomenolog
temperature dependence in its Lagrangian, unlike treatm
that start from a phenomenological Ginzburg-Landau coa
grained free energy@11,13#. Clearly, ford51, a case that can
be applied to the study of soliton backgrounds in on
dimensional polymers, we would be comparing the free
ergy difference with and without the soliton backgrou
(V051), and finding how it is affected by thermal phonon

The result obtained for the surface tension also provi
us with an indirect determination of the temperature of
second order transition that will restore thew→2w symme-
try. Strictly speaking, it determines the so-called ‘‘perco
tion temperature,’’ the temperature at which the surface t
sion vanishes, which coincides with the critical temperat
in d53, although it is smaller ind52 @29#. In fact, the
statistical mechanics literature just compares free ener
with and without domain wall boundary conditions, and e
tablishes that the signal for the symmetry restoring transit
is given when these two are equal. That means that the
tem will prefer to form walls separating regions at differe
vacua, whose condensation leads to a vanishing order p
menter. Our calculation is just the semiclassical version
that. That estimate has already been made long ago@12#,
using a different method, as already explained.

Another physical information we can extract from our ca
culations is how the soliton (d51), or interface (d52,3)
profiles are modified by thermal and quantum fluctuations
lowest order, we may use the one-loop expression for
effective action,

A@^w&#5
S@^w&#

l
1

1

2
ln~D@^w&#!, ~73!

where^w(x)& is the expectation value of the field, andA is
the Legendre transform of the free energy. We should lo
for extrema of Eq.~73!, so we functionally differentiate with
respect to^w(x)&. The resulting equation will just be th
classical equation of motion plus a one-loop correct
which involves the propagator in thêw(x)& background.
Neglecting the one-loop part, we know that the domain w
profile is a solution. Thus, the ansatz

^w~x!&5ŵ~x!1l1/2d^w~x!&, ~74!

leads to an equation for the correction term that involves
propagator in the domain wall background, for which w
have an explicit expression. As a result, we will see how
1-8
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thermal and quantum fluctuations change the profile,
should be able to compare that prediction with scatter
data from radiation~of appropriate wavelength! scattered off
the domain wall.

We close this section with comments about higher or
corrections. In our construction, these are generated by
panding thee2dS term in Eq. ~8!, and using the quadrati
propagator in the domain wall background to Wick-contr
the various products ofh fields that will appear. There is als
an additional vertex that comes from the second term of
Jacobian in Eq.~68!, which is linear inh, and proportional to
l1/2. The first correction to the lowest order result for t
partition functions involves graphs which were computed
the second article of Ref.@13#, and represent a two-loop co
rection. Those same graphs can now be calculated with
propagator either atT50 or at finite temparature (t integrals
going from 0 to b). In order to check and extend thos
results, one has to use the same renormalization sch
conveniently chosen to facilitate comparisons with Mon
Carlo data@13#.

Numerical calculations will be required in applying eve
our lowest order results, as well as to allow for compariso
with experimental or Monte Carlo data. The two-loop calc
lation just mentioned will also require a numerical effort. W
plan to undertake such efforts in the near future.

VI. CONCLUSIONS

We have shown how one can systematically comp
quantum fluctuations around a domain wall backgrou
which is temperature independent, but whose fluctuations
teract with a heat bath at temperatureT. The fluctuation de-
terminant, the leading term in our semiclassical expans
already makes the effective actionT dependent, and one ca
obtain an extremum for it that corresponds to a dres
T-dependent version of the original domain wall. As high
orders are included, that dependence will obviously chan
The determinant also leads to the calculation of the surf
tension, which again will depend onT through the fluctua-
tions. In both cases, one can follow the computations
viewed in Ref.@11#, omitting their Tph dependence in the
paramenters of the Lagrangian, and replacing the dete
nants with ourT-dependent ones. Also, the temperatureT at
which the surface tension vanishes can be used to esti
the phase transition to the unbroken phase@12#.

As we have already mentioned, results ford51 can be
applied to describe how thermal phonons affect soliton ba
grounds in polymer physics~examples involving magnetic
materials are also potential applications!, while those ford
52,3 are applicable to Bose systems which are forced
condense in different phases in two different regions se
rated by a domain wall. The simple analytic form of th
propagator in the domain wall background is quite usefu
calculations, and should lead to the determination of phys
quantities measured in scattering experiments.

In principle, the methods we use could be applied to ot
theories, as long as the background solutions are sufficie
symmetric so as to depend on only one spatial variable~a
radial one, for instance!. The basic ingredient required is th
06502
d
g

r
x-

t

e

ur

e,

s
-

e
d
n-

n,

d
r
e.
e

-

i-

ate

k-

to
a-

n
al

r
tly

knowledge, exact or approximate, of two linearly indepe
dent solutions of the fluctuation ODE at zero eigenval
from which we construct the semiclassical propagator. Th
ries with solitonic~kinks, vortices, monopoles, etc.! or in-
stantonic backgrounds often have such a property.

We hope, in the very near future, to present detailed
merical calculations of the various quantities mentioned
Sec. V. From them, we expect to establish how realistic
description is, by confronting it with available experiment
data.

Note added in proof. After completing this work, we
learned that Baacke and co-workers have published a s
of articles on related problems. Two recent ones are@31# and
@32#. Also, a recent paper by Graham@33# deals with a modi-
fied version of this problem, using phase shifts to comp
determinants.
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APPENDIX A

In this appendix, we compute the solutions to Eq.~17!,
and use them to construct the propagator~20!. The standard
substitution@17# f(j)5e2aj cosh2bn(j)F(j), with a50 and
bn5A41kn

2, and the change of variableu5(12tanhj)/2
lead to a hypergeometric equation forF:

u~12u!
d2F

du2
1@~bn11!22~bn11!u#

3
dF

du
1@62bn~bn11!#F50. ~A1!

The general solution is the linear combination

F~u!5c1 2F1~bn22,bn13;11bn ;u!

1c2u 2
2bn F1~3,22;12bn ;u!, ~A2!

where 2F1(A,B;C;u) is the hypergeometric function. Usin
the identity@23#

2F1~A,B;C;u!5~12u! 2
C2A2B F1~C2A,C2B;C;u!,

~A3!

we obtain

F~u!5c1~12u! 2
2bn F1~3,22;11bn ;u!

1c2u 2
2bn F1~3,22;12bn ;u!. ~A4!
1-9
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Both series terminate, and we are led to the solutions in E
~18! and ~19!. The propagator can now be constructed fro
the functions

V~j,j8![f1~j!f2~j8!2f1~j8!f2~j!, ~A5!

W~j![f1~j!f28~j!2f18~j!f2~j!. ~A6!

It is given by @5–7#

G̃~kn ;j,j8!5
V~`,j.!V~j, ,2`!

W~j!V~2`,`!
, ~A7!

wherej,(.)[min(max)(j,j8). In terms of the variableu,
noting thatj.j8⇔u,u8, j→`⇒u→0, andj→2`⇒u
→1, we obtain

G̃~kn ;u,u8!5
f1~u,!f2~u.!

W~u!
. ~A8!

The propagator does vanish whenu,u850,1. Also,W(u) is a
constant, easy to compute atu50; we findW(u)52bn . We
can then write expression~20!.

APPENDIX B

In this appendix, we evaluate Eq.~32! from the propaga-
tors. The free one, which can also be obtained from
methods described previously, is given by

G̃F~kn ;j,j8!5
1

2bn
e2bnuj2j8u. ~B1!

Changing variables tob5A41s and u5(12tanhj)/2, the
second term in Eq.~31! becomes

ln
Dkn

8

D08
5E

2

bn
dbbE

0

1 du

u~12u!
@G̃8~Ab224;u,u!

2G̃F~Ab224;u,u!#. ~B2!

The expression inside the brackets is easily computed f
the propagators, yielding

6u~12u!

b~b221!
2

12~b212b13!u2~12u!2

b~b12!~b221!
. ~B3!

Doing the integrals in Eq.~B2!, we arrive at Eq.~32!.

APPENDIX C

In this appendix, we shall make use of Plana’s form
@21,30# to compute the sum~37!, which can be decompose
into sums of the form

S~r ,eisps![ (
n52N

N

ln~An21r 21eisps!, ~C1!

with r .s.0, ands50,1.
06502
s.

e

m

a

Plana’s formula can be derived from Cauchy’s theor
applied to two contours in the complex plane@21#: one that
runs counterclockwise in the upper half-plane, from (x,y)
5(n1 ,n11 i`) to the real axis along a perpendicular, th
along the real axis, and finally perpendicularly away from
to (n2 ,n21 i`), avoiding the integers on the real segme
(n1 ,n2) ~semicircling them!, as well as the corners (n1,0)
and (n2,0) ~with p/2 arcs!; the other is its mirror reflection
on the real axis. For a functionf(z) analytic and bounded
for n1<Re(z)<n2, we have

f~n1!

2
1 (

n5n1

n2

f~n!1
f~n1!

2

5E
n1

n2
dxf~x!1

1

i E0

`

dy
F~n2 ,y!2F~n1 ,y!

e2py21
,

~C2!

where F(n,y)[f(n1 iy)2f(n2 iy). Defining f(z)
5 ln(Az21r 21eisps), we may rewrite Eq.~C1! as

S~r ,eisps!52(
n50

N

ln~An21r 21eisps!2 ln~r 1eisps!,

~C3!

and use Eq.~C2! with n1501 ~in order to avoid the square
root cut at Re(z)50) and n25N. The contribution to the
second integral of Eq.~C2! involving F(N,y) can be ex-
panded for largeN, and shown to behave as 1/N. The one
involving F(01,y) has to be split into two pieces:uyu.r
and uyu,r . The latter piece yields zero, whereas the form
uses

f~016 iy !5
1

2
ln@y22~r 22s2!#

6 i Fsp1eisp arctanSAy22r 2

s D G . ~C4!

Neglecting terms that vanish asN→`, we finally arrive at

S~r ,eisps!52E
0

N

dx ln~Ax21r 21eisps!

1 ln~AN21r 21eisps!24E
r

` dy

e2py21

3Fsp1eisp arctanSAy22r 2

s D G , ~C5!

wherer .s.0, ands50,1. It is easy to verify that Eq.~C5!
correctly reproduces the results forS(r ,0) and for the sum
(s50

1 S(r ,eisps), which can be obtained straightforwardly.

APPENDIX D

In this appendix, we calculate the integralI that appears
inside the brackets of Eq.~38!:
1-10
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I ~r ,eisps!5E
0

N

dx ln~Ax21r 21eisps!. ~D1!

Changing variable toq(x)5Ax21r 21eisps, we integrate
by parts to obtain

I 5@A~q2eisps!22r 2 ln q#q(0)
q(N)

2E
q(0)

q(N)dq

q
A~q2eisps!22r 2. ~D2!

The last integral can be found in@23#. Finally

I 5N ln~AN21r 21eisps!2N1eispsF lnSAN21r 21N

r D G
2Ar 22s2H arcsinF r 21eispsAN21r 2

r ~AN21r 21eisps!
G2

p

2 J . ~D3!

APPENDIX E

We now compute the integralJ2, defined in Eq.~52!.
Again resorting to the change of variablesj→u,

J25
236

b2 E
0

1

du1S u1

12u1
D 2bE

0

u1
du2S u2

12u2
D b

, ~E1!

which is equal to@23#

J25
236

b2~b11!
E

0

1

du1u1~12u1! 2
b F1~b,b11;b12;u1!.

~E2!

This last integral can also be done@23#, and we finally obtain

J25
236

b2~b11!2~b12!
3F2~b,b11,2;b12,b13;1!.

~E3!

After some rearrangement, we derive

J25236F z~2,b11!1
1

2b2
2

1

bG , ~E4!

involving Riemann’s zeta functionz(z,q)[(0
`(n1q)2z.

Plana’s formula of Appendix C may be used in the zeta fu
tion, yielding

z~2,b11!5
1

2~b11!2
1

1

~b11!

1E
0

` dy

e2py21

4~b11!y

@y21~b11!2#2
, ~E5!

so that the result forJ2 is
06502
-

J25236H 1

2b2~b11!2
1E

0

` dy

e2py21

4~b11!y

@y21~b11!2#2J .

~E6!

If we expand the last fraction in Eq.~E6! in a power series in
y, use the definition of the Bernouilli numbers,

B2n

4n
[~21!n21E

0

`dy y2n21

e2py21
, ~E7!

and the fact thatB251/6, we finally obtain Eq.~53!.

APPENDIX F

We compute the effective potential at zero temperature
d53, in order to illustrate the workings of the renormaliz
tion procedure. The calculation can be viewed as a spe
case of the one performed in the text, with the kink bei
traded for a constant backgroundwc . In that case, determi
nants are simple to compute, and we formally obtain

Ve f f~wc!5
1

4!
~wc

22wv
2!21

l

2E d4k

~2p!4
lnF11

wc
22wv

2

2~k21M2!
G .

~F1!

The subtraction of counterterms leads to

Ve f f~wc!→Ve f f~wc!2
1

2
C1~wc

22wv
2!2

1

4
C2~wc

22wv
2!2,

~F2!

which will yield the renormalized expression if we use
cutoff L to regularize Eq.~F2!, and fix renormalization con-
ditions. Since we may write the renormalized effective p
tential VR as

VR~wc!5 (
n51

`
1

n!
G̃R

(n)~0, . . . ,0!~wc2wv!n, ~F3!

it is easy to show that the renormalization conditions~47!
and ~58! determineC1 andC2:

C15lEL d4k

~2p!4

1

~k21M2!
, ~F4!

C252
l

2E
L d4k

~2p!4

1

~k21M2!2
. ~F5!

Clearly, both expressions correspond to one-loop graph
zero external momenta. The renormalization proced
adopted in the text also uses zero-momentum subtraction
expansions in (w22wv

2)/2, but in the kink sector. In tha
case, the effective action in the kink sector replaces the
fective potential, while the expansion~F3! becomes a func-
tional one
1-11
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n51

`
1

n! E d4p1

~2p!4
•••E d4pn

~2p!4
G̃R

(n)~p1, . . . ,pn!

3@ŵ~p1!2wv#•••@ŵ~pn!2wv#, ~F6!
r

n-

-
tin

E

ı

E

E

rs

I

e

06502
with ŵ(p) standing for the Fourier transform of the kin
background. To set the record straight, we note that
renormalization condition forG̃R

(4) which appears in@12# is
mistaken. It should be corrected to Eq.~58! multiplied byl.
ev.

s

D

n-
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