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Thermal and quantum fluctuations around domain walls
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We compute thermal and quantum fluctuations in the background of a domain wall in a scalar field theory
at finite temperature using thexactscalar propagator in the subspace orthogonal to the wall’s translational
mode. The propagator makes it possible to calculate terms of any order in the semiclassical expansion of the
partition function of the system. The leading term in the expansion corresponds to the fluctuation determinant,
which we compute foarbitrary temperature in space dimensions 1, 2, and 3. Our results may be applied to
the description of thermal scalar propagation in the presence of soliton défepslymers, magnetic mate-
rials, etc) and interfaces which are characterized by kinklike profiles. They lead to predictions as to how
classical free energy differences, surface tensions, and interface profiles are modified by fluctuations, allowing
for comparison with both numerical and experimental data. They can also be used to estimate transition
temperatures. Furthermore, the simple analytic form of the propagator may simplify existing calculations, and
allow for more direct comparisons with data from scattering experiments.
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I. INTRODUCTION have already stated, in quantum mechanics the general pro-
cedure does exist, and it is often possible to find all classical
There are many problems in physics which require quansolutions[5—8]. In field theories, however, finding all clas-
tization around classical backgrounds, such as Schwingersical solutions is already a difficult problem, and even if we
QED calculation of vacuum polarization around constantfind them all, no general procedure to obtain semiclassical
electromagnetic fieldfl], the semiclassical quantization of propagators in their backgrounds is known. The technical
field theorieq 2], and the semiclassical analysis of ttlas-  reason for that is the presence of spatial dimensions, which
sical limit [3,4] of quantum mechanics. In fact, the latter two transform the fluctuation problem, given by an ordinary dif-
characterize the semiclassical analysis as a two-way roaderential equationlODE) in zero spatial dimension, into a
towards quantization, for the field theorists; towards the claspartial differential equatiolPDE) problem, whose solutions
sical limit, for learning how classical physics descends fromcannot be obtained from the mere knowledge of the back-
the quantum world. ground. Even finding the backgrounds involves, in general, a
Taking the field theory lane of that two-way road, we havePDE, instead of the ODE of quantum mechanics.
recently studied the problem of quantizing the simplest of We have thus examined a specific potential of the
field theories, one-dimensional quantum mechanics, whose*-type, and confined our analysis to(Buclidean time-
(scalay “field” lives in zero spatial dimensio5—8]. Work-  independent solution of the classical equations of motion de-
ing in imaginary time i.e., at finite temperature, and with pending on only one spatial coordinate, a domain wall whose
smooth potentials, we were able to show that a full semiclaselassical profile and dynamics of fluctuations could ebe
sical series could be constructed from the knowledge ofctly solved from ODE’s. We were then able to construct a
semiclassical propagators in the classical backgrounds of treemiclassical propagator in the presence of that background,
solutions of the equations of motion, and gave a generadrom which, in principle, we can generate any term of the
prescription for deriving them from those backgrounds. Oursemiclassical series around the domain wall. We note that
construction was similar to the one proposed long ago byven in one spatial dimension, where the domain wall has
DeWitt-Morette[9] in real timg i.e., at zero temperature: it finite Euclidean action, and therefore contributes to the semi-
generalized to quantum statistical mechanics, where thelassical approximation, we abdicate the idea of “solving”
number of classical solutions is drastically reduced, the rethe theory semiclassically, because there are many other so-
sults for ordinary quantum mechanics. lutions whose semiclassical propagators cannot be obtained
This article applies some of our techniques to semiclassifrom a general recipe. In particular, solutions which only
cal quantization around a very specific background in a verglepend on Euclidean time do contribute: they are given by
specific scalar field theory, at finite temperature, in one, twoelliptic functions, similar to the ones in quantum mechanics
and three spatial dimensions. In that respect, it bears greatgs—8|, but whose fluctuation problems are much harder to
similarity to the Schwinger problem than to the semiclassicakolve.
quantization of field theories. The latter would require find- Our motivation for pursuing this problem, besides the
ing all classical solutions that satisfy the finite temperaturgechnical appeal of obtaining thermal and quantum fluctua-
boundary conditions, and a general procedure for constructions at any temperature from axactexpression for the
ing semiclassical propagators in their backgrounds. As weemiclassical propagator, was dictated by its potential physi-
cal applications. Indeed, for spatial dimensibna 1, our for-
malism can be adapted to describe fluctuations around de-
*Electronic address: aragao@if.ufrj.br fects that occur in one-dimensional systems, such as the
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solitonsfound in polymerglike polyacetyleng[10]; and for  bath atT couples to its quantum fluctuations. In the polymer
d=2,3, to describe fluctuations arouiderfacesthat sepa- context, atd=1, that amounts to deriving how thermal
rate two distinct phasdg41], a description that allows one to phonons modify a soliton defect. Fdr>1, that can tell us
calculate how the surface tension, as well as the interfacBow thermal neutral bosons affect an interface separating
profile are modified by those fluctuations. It can also be use#€gions in different Bose-condensed phases.
to approximately estimate transition temperaturfd<]. ~We should point out that a number of works have dealt
Adopting this view, we are able to extract physically relevantWith similar questions: the finite temperature deterr_nlnant has
results from the study ofi>1, where the action of the do- been computed long ada2,14, as a product over eigenval-
main wall diverges with the size of the system. ues; Parnachev and Yaffe5] have carefully studied the
Since the problem is treated at finite temperafliréuc- ~ Same problem af =0, paying special attention to the deter-
tuations incorporate thermal and quantum effects, which jusfinant calculation using a different method. Grahetral.
tifies the term thermal and quantum fluctuations employed16] have investigated similar problems involving interfaces,
thus far. The background we use, however, does not deperf§S0rting to the relation with phase shifts, rather than with
onT, as it is a “static” classical solution of the equations of the semiclassical propagator. In all cases, it seems possible to
motion, independent of the Euclidean time. That indepen&Stablish a precise relation to the approach we adopt. It
dence guarantees that it remainslassicalsolution atany ~ Should be noted that our approach includes a finite tempera-
temperatureT, which is all we require to compute a semi- tureT, and derives thexactsemiclassical propagator which,
classical expansion order by order. As we incorporate thertogether with a careful treament of collective coordinates,
mal effects through fluctuations, our classical solution willShould allow for the computation of correlation functions
no longer be a minimum of thénow T-dependentGibbs ~ beyond leading order. o
free energy(the effective action Nevertheless, the new  The structure of the article is as follows. In Sec. Il, we
minimum may be obtained by extremizing the free energyPriefly review how one derives the semiclassical expansion;
with an ansatz that adds corrections to the original kink proS€c. Il A obtains arexactanalytic expression for the semi-
file. The procedure will be outlined in Sec. V, and will profit classical propagator, while Sec. I1B uses it to compute fluc-
from the nice properties of that original profile. Physically, in tuation determinants; in Sec. Ill, we describe the renormal-
order for the procedure to be justified, we must be dealindZation procedure, first by regularizing the calculation in Sec.
with situations where we start with a rather “massive” back- Il A, and then by removing its divergences in Sec. Il B; in
ground, but whose fluctuations are “light,” when both are Sec. IV, we discuss the collective coordinates associated with
compared to the temperatufe Thus, only the fluctuations the translational invariance of the solution; in Sec. V, we
would be influenced by the interaction with the heat bath, a§how how surface tensions and interface profiles are modi-

pected in the context of the so-called “adiabatic” approxi_ COI’I’eCtiOH can be Computed. We aISO mention hOW transition

mations, where one can distinguish “heavier” and “lighter” temperatures can be estimated from our results. We present

degrees of freedom, as in the physics of polymers. Clearly@ur conclusions in Sec. VI.

we have to assume that boundary conditons at spatial infinity

of the domain wall type are externally fixed, which forces us Il. THE SEMICLASSICAL EXPANSION

to go to the kink sector. . _ ) ) i
We should stress that the problem of computing fluctua- The _partltlon funpuon for a self-lntergctmg scalar field

tions around domain wall solutions has played an importanth€0ry in contact with a thermal reservoir at temperatlire

role in the physics of interfaces in binary mixturgl]. In ~ €an be written asg=1/T)

that case, however, temperature was introduced in a phenom-

enological way, through the “coarse-grained” Ginzburg- Z(8)= % [Dele S, (1)

Landau free energy, whose mass parameter was assumed

temperature dependent. In order to avoid confusion, we will

call that temperaturd ,,. Our problem will reduce to that B

one if we also assume that the mass parameter of our La-  L¢1= JO de dxLLe], 2

grangian depends Ofy;,, in @ manner determined phenom-

enologically, and, furthermore, that our fluctuations are 1 1 1

coupled to a heat bath aErotempera}ture,Tzo. Then, our - Lle]= E(aT(p)2+ §(V¢)2+E(¢2_¢3)2' 3

methods can be used in the calculations that compute critical :

exponents to two-loop orddrl3], which obtain excellent . ) )

agreement with both numerical and real experiments. Thos&N€ integralf is to be performed over alp’s that satisfy the

calculations make use of the semiclassical propagator in theoundary conditionsp(0.x)=¢(,x). The fields are res-

form of a series over eigenmodes. Our closed expressiof@led so that the coupling constantappears as an overall

should simplify them, and should allow for an independentfactor. A

check. We, however, treat a different physical situation: one We shall be interested in domain walhsaze ¢(x) which

in which a microscopic field theory is forced to have two only depend on one spatial coordinate x*, which will be

regions at distinct vacua. For that case, we compute how thealled longitudinal. As is well knowri2], the equation of

interface separating those regions is affected when a heatotion from Eq.(3) is satisfied by a kinklike profile:
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A. The quadratic propagator

~ — 4 ()DU(X_;)
P(X)==* ¢, tan W ' (4) The quadratic propagator of our semiclassical expansion
must satisfy{5-7]

wherex denotes the position of the domain wall separating
two spatial regions of dimensiod. The remainingd—1 (—af—Ver M2—
transverse spatial coordinates»ofiefine a vector. The =

refers to kink and antikink, respectively. The classical action =8(r—7")8%x—x"), (12)
of the wall is proportional to the volume of the

(d—1)-dimensional subspace orthogonal to tleaxis, as well as the boundary conditions

which we will denote by y_1 (Vo=1):

gMzseci"r(g)HG(r,x; 7' x')

G(Ox 7 ,x")=G(B,x;7",x")=0, (13
- 2 . : .
Sel=——=B¢3Vy_;. (5)  since the fluctuations vanish at=0, 5.
33 -t The spectrum of the differential operator in E42) is

] ) ] that of a Pschl-Teller potential, which is known exactly
We expand the action around the domain wall configuraj17]. Many applications involving kinklike profileg11—
tion ¢ in order to derive the semiclassical series in that back14,18 have made use of that explicit knowledge of the spec-

ground: trum. Indeed, in some of them the quadratic propagator was
expressed as a sum over the various eigenmodes of the op-
o(7,X) = @(7,X) + N\ 2p(7,%), (6) erator, with the respective eigenvalues in the denominator.
That, however, leads to very lengthy calculatidd4,13,
7(0Xx)=n(B,x)=0. (7) especially if one goes beyond one-lod8]. Therefore, it is

useful to derive alosed exacexpression for the propagator

As usual, the fluctuationy has to vanish at=0 and7=8  which is actually the result of that sum. We can do it by
becausep already satisfies the boundary condition. The ex-ealizing that, in transverse momentum space, the problem
pression for the partition function becomes can be reduced to finding the propagator for an ordinary
differential equation.

Fourier transforming the transverse coordinates, as well as
the Euclidean time, we obtain the ordinary differential equa-
tion

Z(B)=e Sl fﬁ [Dyle” (52199, (8)

where bothS, and S depend functionally o and on7:

[—a§+wﬁ+ k2+| M2 —Mzsecﬁ(g)Hé(Kn X, X")

N B 1 1
Siel- [ ar| ddx[5<am>2+§<vﬂ>2

=8(x—x"), (14
+ i(ggpz_ 2) 772} (9) wherew,=27n/B, and we have defined~the dimensionless
vector «,=(2/M)(w,,k). As we will see,G only depends

oNn k= | K| :(2/M)\/w2n+ k2. The propagato6 is given by

B g 1/2 N
- — 2.3, 4
69 ¢, 7] fodrfdx 3r¢7 +4!77]. (10 491k

G(7,x;7",X )— 3 J 1
If we defineMZEz,oﬁ/S, and use the explicit form ap, the " 2m)
guadratic Lagrangian in Eq9) can be written Xé(Kn;X,X/)eiwn(r—r’)eik~(r—r')_

(15

1 3
5225[((9777)2+(V77)2+ M2—§M28ecﬁ(§)}n2], - _
In terms of the dimensionless propagatte=(M/2)G, and

(11 of the variable¢, defined in Eq(11), the equation reads

with €=[ ¢,(x—x)/2y/3] a dimensionless variable. {— 9%+ 4+k3—6 secR(&)}T (kg £,E)=8(6—¢).
We may generate a semiclassical series by expanding the (16)
e °S term, and using the quadratic propagator in the kink
background to Wick-contract the various productsydfelds  we can solve it by finding two linearly independent solu-

that will appear. Note that, when Compared with perturbatior‘tionS, ¢1(§) and ¢2(§), of the homogeneous equauﬁh_?]
theory, this expansion will involve different vertices, as well

as a different propagator. '!'he latter is already an infinite sum {- a§+ 4+ k2—6 sech(&) ¢ (£)=0. (17)
of one-loop perturbative diagrani§,7]. We now proceed to
construct the propagator, a crucial step to obtain the seriesThe solutions are obtained in Appendix A:
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u \bn2 6 12 ] We again Fourier transform the fluctuation fields in all
¢1(U)=(1Tu) 1- bn+1U+ b+ 1)(b,+2) Uz_, coordinates but the longitudinal one:
(18) 1 < di 1k - —
(T =7 2 J ——— kg xR (24)
1—u\ b2 6 12 n=—= J (27)
uy=|—— 1+ u+ u?|, , , _
$2(u) ( u ) 1”7 bp—=1" (by—1)(b,—2) " | The quadratic part of the action may be written as
19 @
- — 3 f LE YO (25
whereu= (1—tanh&)/2 andb,=\4+ k2. Expressiong18) Sz_,B NS (277)(’*182('(“ ’
and (19) are well-defined forx,#0, i.e., b,>2. We will
return to this point later on. The propagator can now be ~ 1(= - ~
constructedsee Appendix A yielding Sakn) =75 7och77(Kn XK (k) 7( K %) (26)
f(K ‘u,u’)= i{(ﬁl(u)qﬁz(U’)@(u’ —u) We denote b¥K(«,,) the differential operator in Eq14), and
e 2by, formally define its determinant as

+ ¢1(Uu") Po(u)B(u—u')}, (20)

where ®(x) is the Heaviside step function. Note that the

factors outside the brackets in E4$8) and(19) will cancel  \yhere the path integral sums over all fluctuations satisfying
in Eq. (20) wheneveru=u’.

The propagator we have just constructed can only be de’J(KE'ioo):p’ andis a"normahzatlon Constant_. Denoting
fined for x,>0, orb,>2. As is well known[2,17], for by |7;j> the eigenmodeé&Paschl-Teller modes, which do not
=0 the fluctuation kernel in E(16) admits a zero eigen- depend orw,), and by}, the eigenvalues oK(«), re-
mode associated to translational symmetry, i.e., a zero eigespectively, we have
value solution of Eq(17) that vanishes af— * . Explic-

itly: K’l(Kn)=$ |7]j>2< 77j|, 28

~ 3 ] yiKn
no<u>=gsecﬁ[aun:z@u(l—u). (21)

A;n”"‘:[detK(Kn)]*“Z:Nf [Dple %), (27)

1
) ) 7j2;< =—M2k2+ yjz, (29
Consequently, we can only define a propagator in the sub- n 4
space orthogonal to that spanned by &1). Thus, we sub- i i i .
tract the contribution of that mode to obtain wherej denotes both discrete and continuumsétd-Teller
eigenstates, angl; = y;o are their respective eigenvalues. By
b AT convention,j =0 denotes the lowest of the eigenstates. As
=~ = 70(U) 7o(U")
I'(kp;u,u )N (kpju,u’)— (22 we have already remarked?2,=0, which impliesA,=0.
2 00 0
Kn Therefore, when in thecg=0 subspace, we must use a

) o ~ ) primed determinam ; which, by definition, is the product of
The divergent part of the limit ag,—0 of I'(x,;u,u’) is 4| put the lowest eigenvalue.

exactly cancelled by the second term on the right-hand side e may now relate ratios of primed determinafits.
of Eq. (22), so thatl’(x,;u,u’) is well defined and or- with the lowest eigenvalue excludetb the semiclassical

thogonal to the zero mode subspace in the likjit-0: propagator of the previous section:
lim f"(fc u u’)=§u(1—u)u’(1—u’). (23 A;n P ~
oo MR g InA—=f "dsTrI (Vs), (30
n ! 0

0

B. Determinants where the trace i§”, d&l’ (V/s;&,£). We are ultimately in-
The leading term of the semiclassical expansion of thd€rested in ratios of determinants in the presence of the do-
partition function around a domain wall background is ob-main wall to free ones: fok,=0, this is just given by the
tained by settingdS=0 in expression(8). The quadratic corresponding ratio for the Bohl-Teller potential in one-
path-integral requires collective coordinates for the zerodimensional quantum mechanics,A§(A), which excludes
mode subspacfl9,20. As we will see in Sec. IV, the re- the zero mode; fok,#0, we may write
maining integration, in the subspace orthogonal to that eigen-

mode, leads to a fluctuation determinant which will be A, , A Ain A}
computed from the quadratic semiclassical propagator for ar- InA_F: In kp+ |ny— In—+ InF. (32)
bitrary temperaturd andd=1,2,3. Kn 0 0 0
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The first term in Eq(31) simply restores the lowest eigen- [21], which is commonly used in the description of the Ca-
value for k,# 0, whereas the second and the third can besimir effect[22]. For x,#0, it is given as the difference of
calculated from the knowledge of propagators: the one in théwo terms:S=S,—S,,, where

domain wall background, and the free one. From the calcu-
lation outlined in Appendix B, we obtain

Sa= 2

2

1

) N 1 .
> 2elom J den( Vx+c2— Eje"”’co)
= 0

A, AF j 1 0=0
Kn Kn n— .
In (,)—InAg =In bn+1) 2In(b,+2)+In48. (32 (39
. 2 o 8d 2 2__ 2
We may follow[19] to derive the result foky=0: S = f y w—arctaf( y Ck) (39
= PO jco '
Ag
InF =—In48. 33 The integrall in the brackets of Eq:38) can be done exactly

0 [see Eq.(D3) in Appendix D|. For N large, if we neglect

If we insert Eqs.(32) and(33) into Eq. (31), which is valid  terms of order I, replaceN with BA/2m, and restore di-
for k,#0, we obtain mensional quantities, expressi(8v) can be split into a zero

temperature parsy,
b —
+In( . 28 [, 3 . ¢
+—1\/k°+ -M*“arcsin =—
Ck T 4 2Ck

2
. 34 2Bk c
b,+2 34 Soziarcsir( 0
v
A
|n<ﬁ_)+1
TCk

A

Kn_

S, [by—1
AL

In bt 1

The above result includes tlme=0 subspace of eigenmodes, 3
but requiresk,# 0, as thexy=0 contribution has been ex- - ;BM
plicitly summed to cancel the In 48 term of EQ2).
Formally, the logarithm of the complet@rimed deter-  and a temperature dependent pSyt
minant is the sum over all possibig’s («x,>0) of Eq.(34):
arcta
C

0

: (40

1 A s » 8wdy
A’ dd- ” K T= >
In—=Vq4_ J— In—. 35 o e—1
AF O (2w)d*1n:2-x AF 39 _2
n +41In(1—e 2™%), (41
Expressiorn(35), as it stands, is meaningless: the sum ove

==

+ arctaf(

r . ' .
. S ; In both expressions, the first two terms represent the contri-
n diverges logarithmically, and, fat>1, the integral ovek hution of the(Paoschl-Telle) bound states in the longitudinal

introduces extra divergences as well. One must undertakedellrection while the last ones corresnond to the continuum
renormalization process in order to arrive at well-defined re- ' P '

sults. In the next section, we shall regularize, and then ren0|Eor d=1,k=0, so that the first term of Eq40) vanishes.
malize the calculation to obtain a final answer for dngnd

for d=1,2,3, where the theory is renormalizable. B. Renormalization
The continuum contributiorflast term) to the zero tem-
lll. THE RENORMALIZATION PROCEDURE perature partS, contains the expected logarithmic diver-

gence. Indeed, at zero temperature we should replace the

A. Regularization sum(36) by an integral:

We shall concentrate our attention on E85). We begin

by examining the behavior of the suf over Matsubara i I A, T0 fA do, A
i i = n—" ——7= = In—=, 42
frequencies defined as o an Bl \ 2m AF (42)
N A
S= 2 In "n1 (36) where o is a continuous variable that replaces, and «
n=oN F =(2/M)(w,k). Furthermore, we may write

n

whereN is a cutoff. If we introduce a dimensionless function A, ~
c,=(B/2m) YM?+K?, the sum becomes I”F:Tr In[1=Te(<)U], (43

K
N I Vn?+ci—3co  yn?+ci—cq @7

S= E n +In wherel is the identity operatod ¢(«;&,£’) is given by Eq.
nSoN | Yn2ecl+ ieg WnP+c2tc (B1), with b,, replaced byb= 4+ «?, U(&)=—6 sech(¢&)

is the interaction term in Eq16), and the trace is defined in
S may be rewritten in a convenient way by resorting to ex-Eq. (30). If we expand the logarithm in Eq43), we shall
pression(C5) of Appendix C, obtained from Plana’s formula have a series of one-loop terms:
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A 21 . note that Eqs(32) and (33) had already made use of that
In—gz — > ST Te(k)UI (44)  coincidence for the cas#=0.

A n=1n Ford=2, andd=3, we still have to integrate ové&r This
last integral will generate additional divergenceslin3 di-

Inserting Eq.(44) into Eq. (42), then=1 term7; can be  yangjons, which are contained in the:2 term of Eq.(44):
readily computedchange the integration variable froénto

u) and identified with the divergent term of E@0): dd-1k A do
A do[*  ~ 2 dilf (2m)9-1 J'7A27T‘72’ D
Il=—ﬁf 2—f déTr(r£,6)U(8)
—A T) - 1 " -
3 (,BA) jZE_EJ dflJ déol'r(k;€1,62)U(E2)
=——pBMIn|—]. (45 o *“’
an ’7TCk ~
XTe(K;€2,E1)U(€). (52
In order to renormalize the theory, we add a counterterm to
the Lagrangian which will absorb that divergent term, andThe calculation of Appendix E leads to
impose renormalization conditions to fix the finite remainder.
For simplicity, we will adopt renormalization conditions at 1 1 5
zero momentume. In the present case, it suffices to add a Jp=—36 2h2 2t 3 +O[1(b+1)"] .
) (b+1)° 6(b+1)
mass-type counterterm:
(53
1
£[¢]_’£[¢]_§C1(902_ @0, (40)  sinceb= 4+ «2 the second term in Eq53) dominates in

the ultraviolet.
and to require that the two-point one-particle irreducible We now analyze expressidbl) for each dimensioni)

(1PI1) Green function at zero momenf%f) be given by in d=1, the integral overw goes like fw 3dw~A "2,
5 which vanishes ad —; (ii) in d=2, the integrals ovew
r'#(0,00=M?2, (47)  andk lead toZ,~A "1, which also vanishes in that limit;

(iif) in d=3, however, the integrals oves and k lead to
In order to satisfy Eq(47), we must subtract the tadpole Z,~ In A, which diverges in that limit. Thus, i=3 an
graph in the kink background, which is also given by Eq.additional subtraction is required. The leading ultraviolet be-
(45) because the free propagator at coincident points can bieavior of Eq.(51) comes from the second term in E&23):
factored out of thet integration. We then obtain the renor-

malized expression (as)_ zJ’ d2k JA dw —6(M/2)3

§ Bl = .
s 2Bk [co . 28 /szr 3|v|2 [ co (2m)2" J-A 27 [ 02+ K2+ M2+ (M/2)]3
R__77 arcsi C_k 7 Z arcsi 2_Ck (54)
3 We integrate the momenta over a sphere of radiua to
— —BM+Sr. 48 obtain[23]
Ford=1, k=0, c,=cq, and there are no additional integrals. 3 5 -
In that case, we may verify that the temperature independent TE)=— 6 5 V2BMIIN(ASIM?)+0O(1)]. (59
part of Eq.(48) coincides with the result quoted in E@.29 m

of the first reference if19]. Indeed, from our calculation we This is to be compared with the result of integrating the finite

ferms of Eq.(40) over moment& (the divergent term was

kink and that of the vacuum, i.e., the kink mass: already cancelled by the first countertgrnmtegration by

1(96] 1 parts leads to elementary integrals; expanding the result for
kmk:E Tg0+ ESR , (49) large A, and neglecting terms of orderAl?, we obtain
. . d?k 3 V3
_ 3 2/N12) _ 3
which at zero temperature yields sz (277)250_ 16772V2ﬂM IN(A2/M?) 4877V2’8M
2M3® M [ 1 3 )
M ink= X + E 2\/6_ \/E) (50) +O(1/A%). (56)
T

As expected, the leading ultraviolet behavior is the same,
The replacements] = \/Emraj , andA =6\ ,;, needed to ac- which shows that the=2 term of Eq.(44) is indeed respon-
count for different definitions of mass and coupling, showsible for the new divergence. The renormalization procedure
that our results coincide with Rajaramapl®] ford=1. We  requires that we include an additional counterterm in the
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Lagrangian, and use an additional renormalization conditioralso breaks rotational invariance by singling out a normal
to fix finite parts ind=3 (see Appendix F The Lagrangian direction, consistently with our previous assumptions, the
becomes longitudinal direction is externally fixed by the forces that
implement the wall boundary conditions at spatial infinity.
Therefore, here as well, longitudinal translations are the only
degrees of freedom to consider.

The existence of longitudinal translation zero eigenmodes
of the fluctuation operator is a clear signal that the symmetry
has to be restored. Physically, it means that it costs no energy
to go from one solution to a longitudinally translated one.
Thus, in the usual manner, in a region of longitudinal length
L, we introduce in the partition function the identity

J

1 1
E[¢]—>£[<P]—§Cl(so2—@3)—1(32(402—@5)2- (57)

C; and C, are counterterms that we fix by imposing Eq.
(47), as well as

I'¥(0,0,0,0)=1+ N
3272

(58)

The contribution of the additional counterterm to the effec-
tive action in the kink sector is given by

1
L)\1/2

dx

2

f “dr f A mo(x— X[ @(7.,1)
0

1 fA d3k fA do 1
2) (2m)3) A 27 (02 + K2+ M?)? —¢(X—X)])J[<p]=1, (62)
1(8 30,2 2,2 .
X2 . dr | dx(¢"=¢,)"|, (59 where the Jacobian is given by
where the first bracket is identified as the one-loop graph T L d J —
with two external legs at zero momeritategrated ovew in Jel=r o dr ) d x<,o(r,x,r)&—;770(x—x)
the intervall — A,A], and overk in the two-sphere of radius
A, as beforg while the second is easily related to the clas- Y q —Jdo
sical kink action. A simple calculation yields =A o dr| d X7(X=X)—. (63)

Equation(62) imposes orthogonality to the normalized zero
moden,, and integrates over longitudinal positions. The sec-
ond equality in Eq(63) comes from an integration by parts.
We note that the zero mode is already orthogonal to the

domain wall profile sincepyxde/dx, which implies

3
V,BM3IN(A%/IM?)+ ——(1—In2)V,BM3.
167
(60)

1672

If we subtract the result of Eq60) from Eg. (56), and take
the limit A —oo, we finally arrive at

In A_’) __ 1-In2+——|v,pMm? fﬁwdxﬁo(x_;);o(x_y)“[;oz]fm:0- (64)
AF) . 167° 33
d2k Therefore, we may omit thé term in Eq.(62). We insert the
+V2f —28T' (61) identity in the expression for the partition functi¢t), and
(2m) change the order of integration to obtain

We should point out that expressions for the finite tem-

perature determinant were previously obtained from the ex- Z(B)= j d_x é [Dple Sl s 1 fﬁdr

plicit knowlegde of the Pschl-Teller eigenvalues, either by L LaY2Jo

summing over Matsubara frequencies, and then over those

eigenvalue$12], or by integrating over transverse momenta d —

in arbitrary dimension first, making use of dimensional regu- X | d%%mo(x=X)@(7,%,1) | I e]. (65)

larization, and then summing over Matsubara frequencies

[14]. We perform the semiclassical expansion around the domain
wall according to Eq(6). Since the action can be written as

S[&;]:j:dff ddx(%)z,

IV. COLLECTIVE COORDINATES

The domain wall solution breaks translational symmetry

N . : (66)
along the longitudinak-axis, as it depends on a parameter
that characterizes its position. In order to restore that sym-
metry of the theory, we resort to the method of collectivethe normalized zero eigenmode is simplyzn,

coordinated19] to sum over all possible values &f Ind
=1, there is nothing else to restore.di-1, where the wall

=9 o] Y4 d¢l/dx). Using that, and its orthogonality tp,
the expansion yields
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dx - 18 tunneling between the previously degenerate states can be
Z(B)= J Te—sm/x % [Dn]e325<rf dq-J’ ddxnon) computed using domain wal[25,26. This calculation was
0 performed 27] using a dilute gas of kinks and antikink23],
and yields

X J[ ¢ ]§ i(—58)“ (67)
®. 7 i=o n! ! N r1-1/2
AE=2e"Slel

Al (72

S[(;)] 1/2

with the functional integral being performed over fluctua-
tions that vanish at= 0,8, and the expanded Jacobian given

by an expression that comes from the exponentiation of Eq.

(69), which results from summing over kinks and antikinks.
. ] V2 g 970 Our results incorporate finite temperature effects into the ex-
Jo,n]= B —f drf ddxa—n pressions obtained in Ref27]. Again, we stress that our
0 X starting point is a field theory that has no phenomenological
A\ 12 temperature dependence in its Lagrangian, unlike treatments
:(E) _S[(;]—UZJBde dxV'[ ¢]7. that start from a phenomenological Ginzburg-Landau coarse
A 0 grained free energyl1,13. Clearly, ford=1, a case that can
(69) be applied to the study of soliton backgrounds in one-
dimensional polymers, we would be comparing the free en-
The leading term in Eq67) corresponds to the quadratic ergy difference with and without the soliton background
approximatiorZ, to the partition function in the domain wall (Vo=1), and finding how it is affected by thermal phonons.
background, whose ratio to the free one is given by The result obtained for the surface tension also provides
. e us with an indirect determination of the temperature of the
Zy(B) [ dx IRSESIN A’ S ] second order transition that will restore the> — ¢ symme-
Zr f fe A_F oan] (69 try. Strictly speaking, it determines the so-called “percola-
R tion temperature,” the temperature at which the surface ten-
It involves the primed determinant calculated previously,Sion vanishes, which coincides with the critical temperature
since the delta function restricts us to the subspace orthogd? d=3, although it is smaller ird=2 [29]. In fact, the
nal to the zero eigenmode, has a factﬁf&]/)\)l’z coming st_atlst|cal mechanlcs I|.terature just compares free energies
from the Jacobian, and a factor of €2~ 2 from the func- with and without domain wall boundary conditions, and es-
tional measure which is not cancelled by the correspondin%@b“Shes that the signal for the symmetry restoring transition

value for the free determinant in the zero mode subspace. given when these two are equal. That means that_ the sys-
tem will prefer to form walls separating regions at different

sic CATIONS G o s vacua, whose condensation leads to a vanishing order para-
V. PHYSICAL APPLICATIONS AND HIGHER ORDER menter. Our calculation is just the semiclassical version of

The result obtained in the preceding section has an immeghat. That estimate has already been made long[agh
diate physical application in the calculation of the interfaceusing a d|fferent_ me_thod, as already explained.
tension ind=2 andd=3. If our system is confined to a Another physical information we can extract from our cal-
longitudinal lengthL, and a transverse cross sectigy_;,  culations is how the solitond=1), or interface ¢=2,3)

the free energy difference per unit cross section between throfiles are modified by thermal and quantum fluctuations. In
situation with and without the domain wall defines the inter-lowest order, we may use the one-loop expression for the

-1/2

face (surface tension[11] effective action,
i im nl = _Se)] 1
UE_vdI,Irln—m BV4-1 Llinw |n<z_|:)' (70 Al(e)]= N In(A[{@)]), (73

whereZ denotes the partition function in the presence of the?here{e(x)) is the expectation value of the field, antlis
wall, andZ the free partition function, without the domain the Legendre transform of the free energy. We should look
wall. The lowest order resul69), with the integral ovex for extrema of Eq(73), so we f unct|ona|]y d|ﬁgrgnt|ate with
taken from—L/2 to L/2 gives ' respept to(go(x)_). The resqltlng equation will just be thg

classical equation of motion plus a one-loop correction
6] 1 /A which involves the propagator in thigp(x)) background.
el In(—) } , (7  Neglecting the one-loop part, we know that the domain wall
A/ profile is a solution. Thus, the ansatz

o= lim =
Vd*l"w Bvdl{ A 2

where we have left out terms vanishing as/jn,/Vy_4 or <¢(x)>=<}>(x)+)\1’25(go(x)>, (74)
faster. Another way of deriving the interface tension is

through its relationship with the energy splitting betweenleads to an equation for the correction term that involves the
ground and first excited state of the field theory, when itspropagator in the domain wall background, for which we
vacuum degeneracy is broken by the finite voli24]. The  have an explicit expression. As a result, we will see how the
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thermal and quantum fluctuations change the profile, an@tnowledge, exact or approximate, of two linearly indepen-
should be able to compare that prediction with scatteringlent solutions of the fluctuation ODE at zero eigenvalue,
data from radiatiorfof appropriate wavelengttscattered off  from which we construct the semiclassical propagator. Theo-
the domain wall. ries with solitonic(kinks, vortices, monopoles, ecor in-

We close this section with comments about higher ordestantonic backgrounds often have such a property.
corrections. In our construction, these are generated by ex- We hope, in the very near future, to present detailed nu-
panding thee™ %S term in Eq.(8), and using the quadratic merical calculations of the various quantities mentioned in
propagator in the domain wall background to Wick-contractSec. V. From them, we expect to establish how realistic our
the various products af fields that will appear. There is also description is, by confronting it with available experimental
an additional vertex that comes from the second term of thelata.

Jacobian in Eq(68), which is linear iny, and proportional to Note added in proofAfter completing this work, we
A2 The first correction to the lowest order result for thelearned that Baacke and co-workers have published a series
partition functions involves graphs which were computed inof articles on related problems. Two recent onesai¢ and

the second article of Ref13], and represent a two-loop cor- [32]. Also, a recent paper by Grahd®8] deals with a modi-
rection. Those same graphs can now be calculated with odied version of this problem, using phase shifts to compute
propagator either at=0 or at finite temparaturer(integrals  determinants.

going from O toB). In order to check and extend those

results, one has to use the same renormalization scheme, ACKNOWLEDGMENTS
conveniently chosen to facilitate comparisons with Monte
Carlo data[13]. The author acknowledges support from CNPq, CAPES,

Numerical calculations will be required in app|y|ng even and FUJB/UFRJ. This work was initiated during an extended

our lowest order results, as well as to allow for comparisong/isit to the Physics Department at UCLA, and finished dur-
with experimental or Monte Carlo data. The two-loop calcu-iNg & short visit to the ICTP, in Trieste. It is a pleasure to

lation just mentioned will also require a numerical effort. We thank both institutions for their support and hospitality.
p|an to undertake such efforts in the near future. Thanks are also due to R. M. Cavalcanti for a careful readlng
of the manuscript.

VI. CONCLUSIONS APPENDIX A

We have shown how one can systematically compute In this a di te th luti i 7
guantum fluctuations around a domain wall background ppendix, we compute the solutions to E7),
which is temperature independent, but whose fluctuations ine—md use 'them to conitrtic;tgthe Qrk?pagdtm). The itandard
teract with a heat bath at temperatdreThe fluctuation de- substitution[17] $(£)=e" cosh n(g)!:(g), with a=0 and
terminant, the leading term in our semiclassical expansiorPn= V4+ &y, and the change of variable=(1—tanh¢)/2
already makes the effective actidrdependent, and one can '€ad to a hypergeometric equation fer
obtain an extremum for it that corresponds to a dressed
T-dependent version of the original domain wall. As higher
orders are included, that dependence will obviously change.
The determinant also leads to the calculation of the surface
tension, which again will depend ohthrough the fluctua-
tions. In both cases, one can follow the computations re- X@“L[B_bn(bﬁl)]':zo' (A1)
viewed in Ref.[11], omitting their T,, dependence in the
paramenters of the Lagrangian, and replacing the determihe general solution is the linear combination
nants with ourT-dependent ones. Also, the temperattrat

d’F
u(l—u)—+[(b,+1)—2(b,+1)u]
du?

which the surface tension vanishes can be used to estimate F(u)=c, ,F;(b,—2b,+3;1+b,;u)
the phase transition to the unbroken phgkd. L
As we have already mentioned, results tb+1 can be +cu ",F(3,—2;1—byu), (A2)

applied to describe how thermal phonons affect soliton back-
grounds in polymer physicéexamples involving magnetic where ,F,(A,B;C;u) is the hypergeometric function. Using
materials are also potential applicatipnghile those ford  the identity[23]
=2,3 are applicable to Bose systems which are forced to
condense in different phases in two different regions sepa- ,F,(A,B;C;u)=(1-u)®* B,F,(C—A,C-B;C;u),
rated by a domain wall. The simple analytic form of the
propagator in the domain wall background is quite useful in (A3)
calculations, and should lead to the determination of physical )
quantities measured in scattering experiments. we obtain

In principle, the methods we use could be applied to other b
theories, as long as the background solutions are sufficiently F(uy=cy(1-u) M,F1(3,—2;1+by;u)
symmetric so as to depend on only one spatial varigble b
radial one, for instangeThe basic ingredient required is the teu " Fi(3,-2;1-bysu). (A4)
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Both series terminate, and we are led to the solutions in Egs. Plana’s formula can be derived from Cauchy’s theorem
(18) and(19). The propagator can now be constructed fromapplied to two contours in the complex plaf#l]: one that
the functions runs counterclockwise in the upper half-plane, frormy(
=(ny,n;+iw) to the real axis along a perpendicular, then
O(&£,E)=d1(8) da(&) — P1(&') da(€), (A5)  along the real axis, and finally perpendicularly away from it
, ) to (n,,n,+io0), avoiding the integers on the real segment
W(E)=1(£) $3(&) — $1(&) da(§). (A6)  (n,,n,) (semicircling therm, as well as the corners(,0)
and (n,,0) (with 7/2 arcg; the other is its mirror reflection

Itis given by[5-7] on the real axis. For a functiog#(z) analytic and bounded

f(K e Q(0,6)Q(E- ,— ) ) for n;<Re(z)<n,, we have
TR WO0(mee) ) & $(ny)
. : . 5t 2 b+
where - =min(max)§,&'). In terms of the variabley, n=n;
noting thaté> ¢ <u<u’, é—»=u—0, andé— —x=u
—1, we obtain :f”zdx(ﬁ(x)+_}fwdy<1>(nz,y)—<l>(n1,y)
Br(U) bolu) 5 i T
= ., $1lUc)PolUs
) , where ®(n,y)=d¢(n+iy)—@(n—iy). Defining ¢(2)
The propagator does vanish wheu’=0,1. Also,W(u) isa  _, . 52,2 giow i
constant, easy to computewst0; we findW(u)=2b,. We In(vz"+ 1"+ e7s), we may rewrite EQ(C1) as
can then write expressioi20). . N . .
S(r,ems)=2>, In(vnZ+rZ+€'77s)—In(r +€'’7s),
APPENDIX B n=0

(C3

In this appendix, we evaluate E(2) from the propaga-

tors. The free one, which can also be obtained from th@nd use Eq(C2) with n;=0" (in order to avoid the square-
methods described previously, is given by root cut at Ref)=0) andn,=N. The contribution to the
second integral of Eq(C2) involving ®(N,y) can be ex-

- 1 X . panded for largeN, and shown to behave asNL/The one
Pe(knié6)=5 - €= ¢l (B1)  involving ®(0",y) has to be split into two piecesy|>r
. and|y|<r. The latter piece yields zero, whereas the former
Changing variables th=\4+s and u=(1—tanh¢)/2, the US€sS
second term in Eq(31) becomes

1
$(0" =iy)= 5 In[y>~ (r2=5%)]

2 2

AI’(n by 1 du ~ \/_2_
In =j dbb I''(yb“—=4;u,u
Al 2 OU(l—U)[ ( ) -

0 *i

(C4

om+em arctar{

—Te(yb2=4:u,u)]. (B2)
Neglecting terms that vanish &— o, we finally arrive at

The expression inside the brackets is easily computed from
the propagators, yieldin . N .
propag y g S(r,e"”’s)=2f dxIn({x?+r?+e'e7s)

0
6u(l—u) 12(b?+2b+3)u?(1—u)?

- (B3)

b(b?—1) b(b+2)(b?~1) +In(YNZ+r +ei”3)—4fw dy
re?™—1

Doing the integrals in EqB2), we arrive at Eq(32).

X

|-

iocm
APPENDIX C omt+e arctar(

In this appendix, we shall makg use of Plana’s formmawherer>s>0, ando=0,1. It is easy to verify that EC5)
[21,30 to compute the surB7), which can be decomposed o rectly reproduces the results f8¢r,0) and for the sum

into sums of the form 2},=08(r,ei”s), which can be obtained straightforwardly.
N

S(r,e’ms)= > In(ynZ+r2+€e?7s),  (Cl) APPENDIX D
n=-N
In this appendix, we calculate the integtathat appears
with r>s>0, ando=0,1. inside the brackets of E¢38):
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) N )
I(r,e'”s)=j dxIn(yx?+r?+e'77s). (D1)
0

Changing variable tay(x)=x>+r?+e'“"s, we integrate
by parts to obtain

I=[V(a—€7"s)7=r2In )%}

aiN)dg
—f —(q—€"77s)2—r2. (D2)
a0) g
The last integral can be found [23]. Finally
. . JNZ+ 124N
I=NIn(yN°+r°+e'“"s)—N+e'?7s| In —
r24+eomsNZ+r2 | o
—\r*—s% arcsi —— ——=t. (D3
r(YN2+r2+¢e77s)| 2

APPENDIX E

We now compute the integral,, defined in Eq.(52).
Again resorting to the change of variablés-u,

—_36j1d Uy bJ'uld U
J2= b? Jo t 1-u; 0 2 1-u;

which is equal td 23]

b
e

—36 1
=—— | duyu(1—uy®F b,b+1:b+2;u,).
Tz b2(b+1)Jo LUz (1—uy) %, Fy )
(E2)

This last integral can also be dof8], and we finally obtain

PHYSICAL REVIEW D65 065021
1 = d 4(b+1
= —36 +f y (b+ly [
2b%(b+1)*> Jo e™—1[y*+(b+1)%)?
(E6)

If we expand the last fraction in E¢E6) in a power series in
y, use the definition of the Bernouilli numbers,

Ban =dy y*"
s [T €7

4n 0o e2™—1"'
and the fact thaB,=1/6, we finally obtain Eq(53).

APPENDIX F

We compute the effective potential at zero temperature for
d=3, in order to illustrate the workings of the renormaliza-
tion procedure. The calculation can be viewed as a special
case of the one performed in the text, with the kink being
traded for a constant backgrougd . In that case, determi-
nants are simple to compute, and we formally obtain

d*k

| 02—’
@2m)

2(k?+M?)
(FD

1 A
Veff(@c)za(ﬁog_QDi)zﬂLEJ

The subtraction of counterterms leads to

1 1
Veri( @)= Veri(¢0) =5 Caec— ¢7) — 7 Cal 95— )%,
(F2)
which will yield the renormalized expression if we use a

cutoff A to regularize Eq(F2), and fix renormalization con-
ditions. Since we may write the renormalized effective po-

—-36 tential Vi as
Jo= Fo(b,b+1,2b+2b+3;1).
s )Abr2) 2 ) © gL
(E3) Valgo)= 2 STRAO, . O(ec—0,)  (FY
After some rearrangement, we derive . o »
it is easy to show that the renormalization conditiq4g)
11 and(58) determineC; andC,:
52:—35[5(2,b+1)+ﬁ—51, (E4) . _)\jA 4k 1 -
o | o U emt keemy
involving Riemann’s zeta functiory(z,q)=24(n+q) ~
Flana'g }‘g_rmula of Appendix C may be used in the zeta func- . A fA d%k 1 5
ion, yieldin - _
y g 2 2 (277)4 (k2+M2)2
1
{(2b+1)= Clearly, both expressions correspond to one-loop graphs at

“2b+1)2 (b1

+f°0 dy 4(b+1)y
0 e?™—1[y*+(b+1)%]*

(E9

so that the result fo7, is

zero external momenta. The renormalization procedure
adopted in the text also uses zero-momentum subtractions in
expansions in <§2—<p5)/2, but in the kink sector. In that
case, the effective action in the kink sector replaces the ef-
fective potential, while the expansidf®3) becomes a func-
tional one
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- “ 1 ( d*p; d*p,, ~ with ¢(p) standing for the Fourier transform of the kink
AR[‘P]:;lH 2 )4"'j(2 )4Fg')(p1, -+ Pn) background. To set the record straight, we note that the
T 77 renormalization condition foF'§? which appears ifi12] is
X[ @(p)—¢,]- - - [@(Pn) — @, 1, (F6) mistaken. It should be corrected to E§8) multiplied by \.
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