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Generalized quantum field theory: Perturbative computation and perspectives
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We analyze some consequences of two possible interpretations of the action of the ladder operators emerging
from generalized Heisenberg algebras in the framework of the second quantized formalism. Within the first
interpretation we construct a quantum field theory that creates at any space-time point particles described by a
g-deformed Heisenberg algebra and we compute the propagator and a specific first order scattering process.
Concerning the second one, we draw attention to the possibility of constructing a theory in which each state of
a generalized Heisenberg algebra is interpreted as a particle with different mass.
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[. INTRODUCTION masses with different energy levels.
It then seems natural to investigate the possibility of ex-

A class of algebras that is a generalization of the Heisentending these interpretations of the ladder operators of gen-
berg algebra has recently been constru¢fies]. These alge- eralized Heisenberg algebras in the framework of the second
bras are characterized by functionals depending on one @¢fuantized formalism. In this paper we start the analysis of
their generators that are called the characteristic functions ¢ghe harmonic-oscillator-like interpretation. We construct a
the algebra. When this functional is linear with a slapthe ~ quantum field theoryQFT) having fields that produce at any
algebra turns into @-oscillator algebrd3], ¢ being related space-time point particles satisfyingopdeformed Heisen-
to the deformation parameter gé=tan#. It is worth notic-  berg algebra and we start the analysis of the perturbation
ing that when this functional is a general polynomial wetheory for this case. The interest in this QFT comes from the
obtain the so-called multiparametric deformed Heisenberdact that creation and annihilation operators of correlated fer-
algebra. mion pairs, in simple many body systems, satisfy a deformed

Concerning their physical interpretation, these generalizedileisenberg algebra that can be approximated bgcillators
algebras describe the Heisenberg-type algebras of onéZl-
dimensional quantum systems having arbitrary successive In Sec. I, we summarize the generalized Heisenberg al-
energy levels given by, ;=f(e,) wheref(x) is the char- gebras; in Sec. lll we implement a physical realization of a
acteristic function of the algebi@]. As examples we men- One-parameter deformed Heisenberg algebra. In Sec. IV, a
tion the nonrelativistic4] and relativistic[5] square-well —quantum field model following the harmonic-oscillator-like
potentials in one dimension and the harmonic oscillator on dhterpretation is presented. The propagator and a specific first
circle [6]. It is also interesting to mention that the represen-order scattering process are computed. In Sec. V, we discuss
tations of the algebra for a general characteristic functiorthe possibility of constructing a QFT where each state of its
were constructed by studying the stability of the fixed pointsHilbert space, which is created by the ladder operators of the
of this function and of their composing functiof). associated generalized Heisenberg algebra, is interpreted as a

Heisenberg a|geb|'a is an essential tool in the second quaﬁartide Wlth different mass. We end this section with some
tization formalism because its generators create and annihfonclusions.
late particle states. In the generalized Heisenberg algebras
the generators of the algebra are also ladder operators con-  |l. GENERALIZED HEISENBERG ALGEBRAS
structing all different energy levels of a one-dimensional
guantum system from a given energy level. In the general
ized case the energy difference of any two successive leve

_ Let us consider an algebra generatedpyA, andAT and
gescribed by the relatiori]

is not equal and two possible interpretations of the action of JAT=AT(J,), (1)
the ladder operators result. In the first case we have an inter-

pretation similar to that in the harmonic oscillator case, but AJy=1(Jp)A, )
with the difference that the total energy wfparticles is not

equal ton times the energy of each particle, while in the [AAT]=1(J9)—Jo, 3

second interpretation we associate particles of different
where t represents the Hermitian conjugate and, by hypoth-
esis,J(T):JO andf(Jp) is a general analytic function gf,. It

*Email address: valdir@fisica.ufpb.br is simple to show that the generators of the algebra trivially
"Email address: eme@cbpf.br satisfy the Jacobi identit{6]. Using the algebraic relations
*Email address: regomont@chbpf.br in Egs.(1)—(3) we see that the operator
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C=ATA-J,=AAT—f(Jp) (4)

satisfies
[C,Jo]:[C,A]:[C,AT]:O, (5)

thus being a Casimir operator of the algebra.

We now analyze the representation theory of the algebra

when the functiorf(Jy) is a general analytic function &,
We assume we have amdimensional irreducible represen-
tation of the algebra given in Eqél)—(3). We also assume
that there is a statf)) with the lowest eigenvalue of the
Hermitian operatody:

(6)

For each value ofx, we have a different vacuum; thus a
better notation could b{aO)ao but, for simplicity, we shall

omit the subscripty.
Let [m) be a normalized eigenstate &f,

J0/0) = ao[0).

J0|m>= am| m). (7)
Applying Eq. (1) to |[m) we have
Jo(ATIm)) =AT(Jo)|m)=f () (AT|m)). 8

Thus, we see thak'|m) is aJ, eigenvector with eigenvalue
f(anm). Starting from|0) and applyingA' successively to
|0), we create different states with tildg eigenvalue given
by

Jo((AH™0))=F"(ag) (AHMO)), 9)
wheref™(ap) denotes themth iterate off. Since the appli-
cation of A creates a new vector, thg eigenvalue of which
has its iterations ofq throughf augmented by one unit, it is
convenient to define the new vector&'§™|0) as propor-
tional to|m) and we then calh" a raising operator. Note that
am=f"(ag)=f(am-1), (10)

wherem denotes the number of iterations @f throughf.

Following the same procedure féy; applying Eq.(2) to
|m+1), we have

AJo|m+1)=1(Jo)(Alm+1)) = a4 1(Alm+1)),
(11

showing thatA|m+1) is also aJ, eigenvector with eigen-
value a,,. Then,A|m+ 1) is proportional toym), A being a
lowering operator.

Since we consider, the lowestJ, eigenvalue, we re-
quire that

A|0)=0. (12

As shown in[1], depending on the functiohand its initial
value «q, the Jy eigenvalue of statém+1) may be lower
than that of statém). Then, as shown ifi2], given an arbi-
trary analytical functiorf [and its associated algebra in Egs.
(1)—(3)] in order to satisfy Eq(12), the allowed values ak,

PHYSICAL REVIEW [®5 065020

are chosen in such a way that the iteratiédf$aq)(m=1)
are always bigger thaay; in other words, Eq(12) must be
checked for every functiofy giving consistent vacua for spe-
cific values ofa.

As proven in[2], under the hypothesis stated previously,
for a general functiorf we obtain

Jolm)=f"(ag)|m), m=0,1,2..., (13
ATm—1)=Np_,|m), (14)
Alm)=Np_4|m—1), (19

WhereN%_1= f™(ap) — ag. Note that for each functiof(x)

the representations are constructed by the analysis of the
above equations as was done[#]j for linear and quadratic
f(x).

As shown in[2], where the representation theory was con-
structed in detail for the linear and quadratic functid(s),
the essential tool in order to construct representations of the
algebra in Egs(1)—(3) for a general analytic functiof(x) is
the analysis of the stability of the fixed points fffx) and
their composed functions.

We showed if4] that there is a class of one-dimensional
quantum systems described by these generalized Heisenberg
algebras. This class is characterized by those quantum sys-
tems having energy eigenvalues written as

en+1=fe€n), (16)
wheree,, ; ande, are successive energy levels diid) is a
different function for each physical system. This function
f(x) is exactly the same function that appears in the con-
struction of the algebra in Eq§l)—(3). In the algebraic de-
scription of this class of quantum systends,is the Hamil-
tonian operator of the system, aAd andA are the creation
and annihilation operators. This Hamiltonian and the ladder
operators are related by E@l) whereC is the Casimir op-
erator of the representation associated with the quantum sys-
tem under consideration.

IIl. DEFORMED HEISENBERG ALGEBRA
AND ITS PHYSICAL REALIZATION

In this section we are going to discuss the algebra defined
by the relations given in Eq$l)—(3) for the linear case, i.e.,
f(Jg)=rJg+s, s>0 [2]. Furthermore, we shall also propose
a realization, as in the case of the standard harmonic oscil-
lator, of the ladder operators in terms of the physical opera-
tors of the system.

The algebraic relations for the linear case can be rewrit-
ten, after the rescalinglo—sJ,, A—A/\s, and A'
—A'/s, as

[JO!AT]I’:ATI (17)

13, is Hermitian and a vacuum state exists.

065020-2



GENERALIZED QUANTUM FIELD THEORY: ... PHYSICAL REVIEW D65 065020

1 Note that for type | solutions the eigenvaluesJgf, as can
[Jo.Alr-2=— A, (18 easily be computed from Eqel3) and(10), go to infinity as
we consider eigenvectotsn) with increasing values ofin.
AT AT=(1-1)Jo—1, 19 Instead, for type Il solutions the eigenvalues go to the value
[ 1=( Mo (19 1/(1—r), the fixed point off, as the statepm) increase.
where[a,b],=ab—rba is ther-deformed commutation of It is easy to see that there is a direct relation between the
two operatorsa andb. linear Heisenberg algebra given in Eq$7)—(19) and the
It is very simple to realize that far=1 the above algebra Standardy oscillators. In fact, defining2]
is the Heisenberg algebra. In this case the Casimir operator _oN
given in Eq.(4) is null. Then, for general the algebra de- Jo=0q ao+[N]qz, (25)
fined in Eqs(17)—(19) is a one-parameter deformed Heisen- +
berg algebra and generally speaking the algebra given in Egs. A_: N2
4 e g a'q™', (26)
(1)—(3) is a generalization of the Heisenberg algebra. Ng
It is easy to see for the general linear case that
A
fM(ag)=rMag+r™ 1+rm24... 41 N—qulea, (27)
- rm_l, (20) we see thag, a', andN satisfy the usuatj-oscillator rela-
" -1 tions[3]
thus, aa'—qa'a=q N, aa'—q ta'a=qV,

Nz 1= "(ag) — ag=[m];N (2D [N.a]=-a, [N,af]=a 28)
where[m],=(r™—1)/(r—1) is the Gauss number afand  Note that Heisenberg algebra is obtained from HG§)—
NZ=ag(r—1)+1. (27) for g—1 anday=0.

For infinite-dimensional solutions we must solve the fol-  The next step we have to take is to realize the operators
lowing set of equations: A", andJ, in terms of physical operators as in the case of the
one-dimensional harmonic oscillator, and as was dorid]in
N3>0, Vm, m=012.... (22)  and[5] for the square-well potential. To do this, we briefly

review the formalism of noncommutative differential and in-
Apart from the Heisenberg algebra given by 1, the solu-  tegral calculus on a one-dimensional lattice developg@jin
tions are{2] and[9]. Let us consider a one-dimensional lattice in a mo-

mentum space where the momenta are allowed to take only

1 . .
type | (unstable fixed point r>1 and ag> or discrete values, sapg, pot+a, pot2a, po+3a, etc., with

1-r a>0.
The noncommutative differential calculus is based on the
type Il (stable fixed point —1<r<1 and ag expressior{8,9]
1 =
< 23 [p.dp]=dpa, (29
implying that
with matrix representations
f(p)dg(p)=dg(p)f(p+a) (30)

ag 0 0 O _ _ _ o
for all functionsf andg. We introduce partial derivatives as

0 a, 0 O
Jo={ 0 0 @ 0 ..., df(p)=dp(dpf)(p)=(dpf)(p)dp, (31)
0 0 0 s where the left and right discrete derivatives are given by
1
0 0 0 O (gpf)(p)=Z[f(p+a)—f(p)], (32)
N 0 0 O
— 1
Al=| 0 N, 00 L A=(AD. (@0(p)=Z[f(p)~T(P-a)], 33)
0

0 0 N,
: : : the two possible definitions of derivatives on a lattice. The
(29 Leibniz rule for the left discrete derivative can be written as
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(9ptg)(P)=(dpf)(P)g(p) + f(p+a)(dpg)(p), (34)

with a similar formula for the right derivativgs].
Let us now introduce the momentum shift operators

<f,g>=f:“dpf<p>*g<p>, (46)

where the asterisk indicates complex conjugation of the
T=1+ad,, (35) functionf. The norm(f,f)%O is zero only wherf is identi-
cally null. The set of equivalence clasSes¥ normalizable

To1- agp, (36) functionsf ((f,f) is finite) is a Hilbert space. It can be shown

that[8]
that shift the momentum value tgy _
(f.T9)=(Tf.9). 47)
(TH(p)=f(p+a), (37)
B so that
(TH(p)=f(p—a), (38) TT 48

and satisfy
where T' is the adjoint operator of. Equations(39) and

TT=TT=1, (39)  (48) show thatT is a unitary operator. Moreover, it is easy to
see thatP defined in Eq.(40) is a Hermitian operator and
where 1means the identity on the algebra of functiongof ~ from Eq. (48) one has
Introducing the momentum operatBr{8],

(Pf)(p)=pf(p), (40) o
Now, we go back to the realization of the deformed

we have Heisenberg algebra Eq&l7)—(19) in terms of physical op-

erators. We can associate with the one-parameter deformed

(idp)"=1d,. (49)

TP=(P+a)T, (41) Heisenberg algebra in Eq§17)—(19) the one-dimensional
_ — lattice we have just presented.
TP=(P-a)T. (42) Observe that we can writ&, in this case as

Integrals can also be defined in this formalism. It is shown Jo= qu’aao+[P/a]qz, (50)

in Ref.[8] that the property of an indefinite integral
whereP is given in Eq.(40) and its application to the vector
f df=f+ periodic function ina (43  statesim) appearing in Eqs(13)—(15) gives[4]
, o _ Plmy=mam), m=0,1,..., (51)
suffices to calculate the indefinite integral of an arbitrary

one-form. It can be shown thg8], for an arbitrary function  where we can writdN=P/a with N|m)=m|m). Moreover,
f!

~ [plal Tmy=|m+1), m=0,1,..., (52
agl f(p—ka) It p=a, whereT andT=T" are defined in Eqg35)—(39).
—~=_J 0 it 0<p< With the definition ofJ, given in Eq.(50) we see thaty,
dpf(p)= T U=p=a, given in Eq.(10) is the J, eigenvalue of statgn) as we
~lpral-1 _ wanted. Let us now define
—a >, f(p+ka) if p<o,
\ k=0 T T
(44) A'=S(P)T, (53
where[p/a] is by definition the highest integet p/a. A=TYP), (54

All equalities involving indefinite integrals are understood
modulo the addition of an arbitrary function periodican ~ Where
The corresponding definite integral is well defined when the S(P)2=Jy— a
length of the interval is a multiple af. Consider the integral o o

of a functionf from pq to p, (pu=pa+Ma, whereM is @  \here oy, defined in Eq.(6), is the lowest], eigenvalue.
positive integer as Yet, note that Eqs(41), (42) can also be rewritten as

Pu M
f dpf(p)=ak20 f(pg+ka). (45)

Pd

(59

TN=(N+1)T, (56)

Using Eq.(45), the inner product of twgcomplex functions 2Two functions are in the same equivalence class if their values
f andg can be defined as coincide on all lattice sites.
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TN= (N— T, (57) It can pe checked that the operat®sy, an.dQ generate
the following algebra on the momentum lattice:

It is easy to realize thak, AT, andJ, defined in Eqs(50),

(53)—(55) satisfy the one-parameter deformed algebra given [x,P]=iaQ, (64)

in Egs.(17)—(19). Consider first the relation betwedp and .

A" [P.Q]=iay, (65)
JoAT= a S(P)T=ATay, 1, (58) [x,Q]=2iS(P)[S(P+a)—-S(P—a)]. (66)

whereay is aym=f"(ap) in Eq. (20) with the operatoN in To construct a QFT based on these operators let us now

place of the variablen. In Eq. (58) we have used the real- introduce a three-dimensional dlscrdxtespace

izations in the first equality of the above equation and in the

second one we have used E@&7). But, from Eg. (10) K= 2l; ~123, 5

an+1=f(ay) =f(Jo); thus we obtain i__L, 1= (67)

JoAT=AT(Jp), (59 with1,=0,=1,+2, ... andL; being the lengths of the three

sides of a rectangular bdX. We introduce for each point of

this k space the independentieformed harmonic oscillator
constructed in the last two previous sections so that the de-
formed operators commute for different three-dimensional

that is, Eq.(1) for f(x) linear. Equation(2) is the Hermitian
conjugate of Eq(1), thus its proof using Eqg54) and (50)
is similar to the previous one. Now, using

ATA=S(P)%=Jy— ay, (60) lattice points. We also introduce an independent copy of the
one-dimensional momentum lattice defined in the previous
AAT=TS(P)2T=f(Jy) — e, (61)  section for each point of this lattice so thaPEz PgandTy,

. . . . ﬂ, and$S; are defined by means of the previous definitions,
for linear f(x), which has the property given in E(L0), we Egs. (35), (36), and(55), through the substitutioR— Pg.

get Eq.(3) for f(x) linear, and the proof is complete. It is not difficult to realize that
Note that the realization we have found, as shown in Egs.

(53), (54), and(50), is qualitatively different from the real- Atzs,f‘ 68)
ization of the standard harmonic oscillator. This shows that k ko
the realization of the ladder operators for the harmonic os-
cillator means that the deformation paramaterl is a spe- A= TiSc, (69)
cial case. .

Jo(K)=a?Pkan+[Pr/alge, (70)

IV. DEFORMED QUANTUM FIELD THEORY R
satisfy the algebra in Eq$17) (19) for each point of thik

We are going to discuss in this section a QFT having asfatnce and the operatoA*k Ag, andd(K) commute among

excitations objects described by the one-parameter deform
algebra given in Eq17)—(19). In this QFT the mass spec- them for different points of thi& lattice.

trum consists of only one particle with mass In this case Now, we define operatorg and Q for each point of the
the energy oh particles is not equal to times the energy of three-dimensional lattice as

one particle and therefore the energy does not obey the ad-

ditivity rule. This nonadditivity comes from the fact that Xi=—1(T_(S_— ST = —i(A—Q—AE), (71)
oscillators approximately describe correlated fermion pairs
in many body systemf7]. The advantage of this construc- Qi=TiSi+S (T ;=A+A" (72)

tion is that, being a deformation, we can make contact with
the well-known nondeformed model in all steps of the com-¢ | v thatT= - T_A - | h in th
putation by taking the deformation parameter going to 1. Suﬁ t: a':)i(kn Xf’k an(ian('; finakf’ fﬁdy ?r? Oapperr]ltsrl: ;[‘i eld

In the momentum space appropriate to the realization o ons lﬁo? Bo asp f € g € Spd fi qt:a L:c Id N
the deformed Heisenberg algebra we discussed, as well r%eory y means Ol an Qk we define two fields
the operatoP defined in Eq.(40), one can define two self- #(1,t) andII(r,t) as

adjoint operators as

x=—i[S(P)(1—ad,)—(1+ad,)S(P)]=—i(A—AM), B(1H)=2 ——(Ae ®+AERT), (73
P ’ 62) 200K
Q=S(P)(1—ady)+(1+ad,)S(P)=A+AT, (63) i w(k o o
" ’ (b=, R (Aje T —AEkn), (74

where d,, and?p are the left and right discrete derivatives K V2Qw(k)
defined in Egs(32),(33).
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wherew (k)= Vk?*+m?, mis a real parameter, ard is the

volume of a rectangular box. Another momentum-type field

¢(r,t) can be defined as

B, wk) -
= —q ke 75
P(L0=2 \ 5 See (79)

PHYSICAL REVIEW 5 065020
and
1
h(N,;)EE(l+u+r)(E(N,;+1)—E(Ng)]. (82
Thus, using Egs(77) or (79) and(17)—(19) we obtain

[H,A1=w(K)AIh(Np). (83)

By a straightforward calculation, we can show that the

Hamiltonian

H:J’ d3r[IL(r,t)%+ulp(r,t)[2

+ (1,0 (=V2+m?) $(r,1)], (76)
whereu is an arbitrary number, can be written as
H=35 2 o(KIAA+ AR+ US(N)?]
k
1 .
=5 2 o(K[S(N+ 1)+ (1+u)S(N)?],
k
(77)
where
Si(N)?=g?Meao+[Nglg2— ao- (78)

In order that the energy of the vacuum state becomes zero
replaceH in Eq. (77) by

; 2 o(R[S(N+1)%+(1+u)S(N)?
k
(0= Dao—1].

Note that in the limitg—1 (ay—0), the above Hamiltonian

(79

We can solve Heisenberg’s equation for thdeformed case,
obtaining
Alt)=Al(0)eitonmir, (84)
Note that forg—1 andu=0 we haveh(Ng)—1 and Eq.
(84) gives the correct result for this undeformed case. It is
not difficult to realize, using Eqs(17)—(19), that for this
linear case we havigf (Jg) —Jo]A=q 2A[f(Jo) — Jo]. Tak-
ing the Hermitian conjugate of E¢84) and using the result
just mentioned we have
Ai(t)=Ag(0)e'd NN (85)
also giving the correct undeformed limit. Furthermore, we
easily see that the operatdPg andS; are time independent.
We emphasize that the extra telr(Ny) in the exponentials
depends on the number operator, this being the main differ-
ence from the undeformed case. The Fourier transformation
wEeq' (73) can then be written as

d(rH)=a(r,H)+a(r,t) (86)

where

1 A SN
Alzelk-r—lq w(k)h(Nk)t,

a(F,t)ZE
V2Q (k)

k

87

is proportional to the number operator. Furthermore, as can R

be seen from Eq€78) and(79) the energy of this system is Ak in Eq. (87) is time independent, and(r,t)" is the Her-
nonadditive. The nonadditivity of a free system is not new inmitian conjugate ofx(r t).

field theory; for instance the energy of nontopological soli-  The Feynman propagat®F(x, ,x,) defined, as usual, as
tons has this propertisee[10], Chap. 7. In the present case, the Dyson-Wick contraction betwegg(x;) and ¢(x,), can

this nonadditivity of the energy comes from the fact that be computed using Eqé17)—(19) and(86),(87):
oscillators approximately describe correlated fermion pairs

in many body systemf7].
The eigenvectors ofl form a complete set and span the

elk-Arg,

DN(Xq,%) =, [SR(NJrl)zeiiw(lZ)h(ng)le

Hilbert space of this system; they are k 2Q0(k)
L _ a-(N)2aFio(K)h(Ng—1)At;,
0), Alo), AfALl0)y for k=K', (AhZ0), ..., S(N)%e =, (88)

(80) where At,=t;—t,, AF12=F1—F2, the minus sign in the

where the stat0) satisfies as usualz|0)=0 [see Eq(12)] exponent holds whety>t,, and the positive sign Whe'r%
¢ I K and A- AL f hK sati the a-def d >t,. Note that wheng—1, h(Ng)—1, and Sy(N+1)
or a and A, A for eac satisty the g-deforme —Si(N)?—1, the standard result for the propagator is recov-

Heisenberg algebra EqeL7)—(19). _ ered. It is also simple to obtain the following integral repre-
The time evolution of the fields can be studied by meanggntation for the Feynman propagator:

of Heisenberg’s equation fdkE, Ai, andS;. Define

E(NQ)=Jo(K)=qkag+[Ng]q2 @) a=(rt).
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where in the second part of the right hand side of the abov
equation we have the first part with—N—1. Again, note
that theg— 1 limit of the integral representation of the above
Feynman propagator gives the usual propagator. We poi
out that this propagator is not a simptenumber since it
depends on the number operabar

i . 24ik-1—ikgh(NQt {4 L L EN—h(_1_s3 .3 3
DN(x)— [ fSk(N—Fl) e on(Ntg4k ha(ky,ky,ks,ks)=h(—1 8k3'k4+5k3’p1 5k3’p2),
(2m)* k?+m?
c L C 3 3
—(N—=N-1), (89) h4(k11k2,k31k4):h(_1+5;24'51“‘5;24,52)- (95

e matrix elements in can be handled using the
Th ix el in Eq93) can be handled using th
algebraic relations in Eq$17)—(19). At this point the inte-
rﬁral in Eq.(93) can be computed, giving

(1,2'|19]1,2)

We shall now discuss the first order scattering process 1
+2—1'+2" where the initial state is —24(2)%h(0)%\

and

where Ap, and A;r,i satisfy the algebraic relations in Egs.

(17)—(19). These particles are supposed to be described by
the Hamiltonian given in Eq(76) with an interaction given

12=A Al |0) (90) Q*(1t+u+ o) wpwp0p 0,
2 D' _p!
the final state is X[N(0)*5"(P1at Poa=P1a=P3,)
3 ’ '
|1!,21>EA;’A;’|O>, (91) +h(0)h(5ﬁi’6é)5A(Pl,b+Pz,b_Pl,b_PZ,b)
1 2

+h(O)N(8] 5 )8*(PretPoc—Plo—Ppo)

3 ’ ’
+ h(tsgl'ﬁz)h( 5[71’572) 54( Pl,d+ P2,d_ Pl,d_ P2,d)]’

by NJ: (r,t)*:d3r. To the lowest order ok, we have (96)

<1’,2’|S|1,2>=—i)\fd4x<1’,2’|:¢4(x):|1,2). (92  where

We use Eq(86) in Eq. (92) and put it in normal order. Since P1,a=(51,w51h(0)), sza=(52,w52h(5§ 5 ),
the exponentials now have number operators we must take e

the exponentials it outside the matrix elements, obtaining

(1',2'19]1,2)

PLa= (B 0(55, 5)). Pha=(P},wpn(0));

—6i\ P1p=(P1,05,1(0), Pop=(P2,0p,0(5, 5)),

1
My L
40 Ky Kq Wi, ok,

A=Al AT AL A= AT AT
X <0|ApiApéAlzlAlzzAk'&AMAﬁlAf)z| 0>

Pio=(p1.05(0),  P3y=(p3,w5h(5, 5));

% efi(lz1+|22*|237|24)-F+iW(|21,|22,|Z3,|24)t, (93) Pyc= (5l’w51h( 521’52)), Poe= (52,w52h(0)),

where

and

o PLo BLL0s 5 ) Phem (B 050
W(k1 Kz K3, Ke) = (k)N (K1 K K3 Ka) B
F(Ko)Ny(Ky Ko s Ka) P1a=(PL.opN(3 5.)) P2a=(Pz,5,0(0)),
— w(Kg)ha(Ky Ky, Kg,Kg) o o 3
— w(Ka)ha(Ky Ko Ka Ky)  (99) P1a=(Pr.05(0),  Pog=(p3,ph(d, ;). (97)

Note that wheng—1 we haveh—1, P;,=P;,=P;,
=Pig, Pla=P{p=P/:=Pi4 (i=1,2),u=0, and Eq.(96)

hi(ky,ka,Ks,kg) = h(5§l,§2— 531,;;3— 521,g4+ 531,51 becomes the standard undeformed refsi0f.
In order to compute the matrix element 8fto second
+531,62)’ order in A we must generalize Wick’s theorem since the
Feynman propagator in this case depends on the number op-
3 3 3 3 erator. We hope to report on this computation in the near

hz(lz1'|227|23,124)=h(—5* - —0; - +6: -+ -),

kakg  Tkakg o Tkaipy o Tkaupa future.
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V. TOWARD A MULTIPARTICLE QUANTUM FIELD T e
In the last section we constructed the propagator and the
A=TiS(Pg), (102

matrix element of theéS matrix to first order of the coupling

constant of aj-deformed spin-0 QFT. We stress that we con-

sidered ag-deformed Heisenberg algebra and the quantum o\ \/ﬁ

mechanics was taken as being the standard one. The advan- Jo(k) K+ V(P +mg, (103

tage of studying a deformed system is that we can make

contact with the nondeformed one at all steps of the compuwhere S(Py)2=Jo(K) — VKk2+ mg_

tation. The Hilbert space of the associated QFT is spanned by the
In this section we are going to discuss the possibility ofyectors

constructing a QFT by interpreting each state of a general-

ized Heisenberg algebra as a particle with a different mass. + Fot . o oo

We consider a Heisenberg algebra, the generators of which0)- A|2|0>' AlZAIZf|0> for k#k', (A 0), ...

are given as (104
T_ p— .
A'=S(P)T, 98 Notice that the stateA(E)”|O> has aJy(k) eigenvalue given
A=TS(P), (99 by Vk2+V(an)+ mé, which can be interpreted as the energy
state of a particle with masgV(an) + qu. Thus, the associ-
Jo=+VV(P)+ mg, (100 ated interacting QFT would describe particles with mass

_ ) i _ spectrum \/V(an)+mq2, with n=1,2, ..., unified by the
whereV(x) is a general function af, angT,P are defined in - generalized Heisenberg algebra under consideration. The
Egs. (36), (40), respectively, 2andS(F’) =Jo—Mmq. In the  yossibility of having a QFT unifying a spectrum of particles
special case where/(P)=P“ we have the relativistic f gifferent masses is appealing, with potential applications
square-well algebra discussed]61. R in hadronic phenomenology. There are some points to be

Let us associate with each point of the discretspace, understood before developing such a QFT, such as, for in-
defined in the previous section, an independent copy of thetance, Lorentz invariance, which plays an important role in
one-dimensional momentum lattice defined in Sec. Ill fora theory describing relativistic particles. We hope to develop
each point of this lattice, so thaPE= P andTg, T¢, and  this point and to report on such a QFT in the near future.

S; are defined by means of the previous definitions, Egs.

(35), (36), and(55), through Fhe subsftitutio.lﬁ’—>P,;. Then ACKNOWLEDGMENTS
we can define for each point of this lattice a Heisenberg
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