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Generalized quantum field theory: Perturbative computation and perspectives
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We analyze some consequences of two possible interpretations of the action of the ladder operators emerging
from generalized Heisenberg algebras in the framework of the second quantized formalism. Within the first
interpretation we construct a quantum field theory that creates at any space-time point particles described by a
q-deformed Heisenberg algebra and we compute the propagator and a specific first order scattering process.
Concerning the second one, we draw attention to the possibility of constructing a theory in which each state of
a generalized Heisenberg algebra is interpreted as a particle with different mass.
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I. INTRODUCTION

A class of algebras that is a generalization of the Heis
berg algebra has recently been constructed@1,2#. These alge-
bras are characterized by functionals depending on on
their generators that are called the characteristic function
the algebra. When this functional is linear with a slopeu the
algebra turns into aq-oscillator algebra@3#, u being related
to the deformation parameter asq25tanu. It is worth notic-
ing that when this functional is a general polynomial w
obtain the so-called multiparametric deformed Heisenb
algebra.

Concerning their physical interpretation, these generali
algebras describe the Heisenberg-type algebras of
dimensional quantum systems having arbitrary succes
energy levels given byen115 f (en) where f (x) is the char-
acteristic function of the algebra@4#. As examples we men
tion the nonrelativistic@4# and relativistic@5# square-well
potentials in one dimension and the harmonic oscillator o
circle @6#. It is also interesting to mention that the represe
tations of the algebra for a general characteristic funct
were constructed by studying the stability of the fixed poi
of this function and of their composing functions@2#.

Heisenberg algebra is an essential tool in the second q
tization formalism because its generators create and an
late particle states. In the generalized Heisenberg alge
the generators of the algebra are also ladder operators
structing all different energy levels of a one-dimension
quantum system from a given energy level. In the gene
ized case the energy difference of any two successive le
is not equal and two possible interpretations of the action
the ladder operators result. In the first case we have an in
pretation similar to that in the harmonic oscillator case,
with the difference that the total energy ofn particles is not
equal ton times the energy of each particle, while in th
second interpretation we associate particles of differ
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masses with different energy levels.
It then seems natural to investigate the possibility of e

tending these interpretations of the ladder operators of g
eralized Heisenberg algebras in the framework of the sec
quantized formalism. In this paper we start the analysis
the harmonic-oscillator-like interpretation. We construct
quantum field theory~QFT! having fields that produce at an
space-time point particles satisfying aq-deformed Heisen-
berg algebra and we start the analysis of the perturba
theory for this case. The interest in this QFT comes from
fact that creation and annihilation operators of correlated
mion pairs, in simple many body systems, satisfy a deform
Heisenberg algebra that can be approximated byq oscillators
@7#.

In Sec. II, we summarize the generalized Heisenberg
gebras; in Sec. III we implement a physical realization o
one-parameter deformed Heisenberg algebra. In Sec. I
quantum field model following the harmonic-oscillator-lik
interpretation is presented. The propagator and a specific
order scattering process are computed. In Sec. V, we dis
the possibility of constructing a QFT where each state of
Hilbert space, which is created by the ladder operators of
associated generalized Heisenberg algebra, is interpreted
particle with different mass. We end this section with som
conclusions.

II. GENERALIZED HEISENBERG ALGEBRAS

Let us consider an algebra generated byJ0 , A, andA† and
described by the relations@2#

J0A†5A†f ~J0!, ~1!

AJ05 f ~J0!A, ~2!

@A,A†#5 f ~J0!2J0 , ~3!

where † represents the Hermitian conjugate and, by hyp
esis,J0

†5J0 and f (J0) is a general analytic function ofJ0. It
is simple to show that the generators of the algebra trivia
satisfy the Jacobi identity@6#. Using the algebraic relation
in Eqs.~1!–~3! we see that the operator
©2002 The American Physical Society20-1
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BEZERRA, CURADO, AND REGO-MONTEIRO PHYSICAL REVIEW D65 065020
C5A†A2J05AA†2 f ~J0! ~4!

satisfies

@C,J0#5@C,A#5@C,A†#50, ~5!

thus being a Casimir operator of the algebra.
We now analyze the representation theory of the alge

when the functionf (J0) is a general analytic function ofJ0.
We assume we have ann-dimensional irreducible represen
tation of the algebra given in Eqs.~1!–~3!. We also assume
that there is a stateu0& with the lowest eigenvalue of th
Hermitian operatorJ0:

J0u0&5a0u0&. ~6!

For each value ofa0 we have a different vacuum; thus
better notation could beu0&a0

but, for simplicity, we shall

omit the subscripta0.
Let um& be a normalized eigenstate ofJ0,

J0um&5amum&. ~7!

Applying Eq. ~1! to um& we have

J0~A†um&)5A†f ~J0!um&5 f ~am!~A†um&). ~8!

Thus, we see thatA†um& is aJ0 eigenvector with eigenvalue
f (am). Starting fromu0& and applyingA† successively to
u0&, we create different states with theJ0 eigenvalue given
by

J0„~A†!mu0&…5 f m~a0!„~A†!mu0&…, ~9!

where f m(a0) denotes themth iterate off. Since the appli-
cation ofA† creates a new vector, theJ0 eigenvalue of which
has its iterations ofa0 throughf augmented by one unit, it is
convenient to define the new vectors (A†)mu0& as propor-
tional toum& and we then callA† a raising operator. Note tha

am5 f m~a0!5 f ~am21!, ~10!

wherem denotes the number of iterations ofa0 throughf.
Following the same procedure forA, applying Eq.~2! to

um11&, we have

AJ0um11&5 f ~J0!~Aum11&)5am11~Aum11&),
~11!

showing thatAum11& is also aJ0 eigenvector with eigen-
valueam . Then,Aum11& is proportional toum&, A being a
lowering operator.

Since we considera0 the lowestJ0 eigenvalue, we re-
quire that

Au0&50. ~12!

As shown in@1#, depending on the functionf and its initial
value a0, the J0 eigenvalue of stateum11& may be lower
than that of stateum&. Then, as shown in@2#, given an arbi-
trary analytical functionf @and its associated algebra in Eq
~1!–~3!# in order to satisfy Eq.~12!, the allowed values ofa0
06502
ra
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are chosen in such a way that the iterationsf m(a0)(m>1)
are always bigger thana0; in other words, Eq.~12! must be
checked for every functionf, giving consistent vacua for spe
cific values ofa0.

As proven in@2#, under the hypothesis stated previousl1

for a general functionf we obtain

J0um&5 f m~a0!um&, m50,1,2, . . . , ~13!

A†um21&5Nm21um&, ~14!

Aum&5Nm21um21&, ~15!

whereNm21
2 5 f m(a0)2a0. Note that for each functionf (x)

the representations are constructed by the analysis of
above equations as was done in@2# for linear and quadratic
f (x).

As shown in@2#, where the representation theory was co
structed in detail for the linear and quadratic functionsf (x),
the essential tool in order to construct representations of
algebra in Eqs.~1!–~3! for a general analytic functionf (x) is
the analysis of the stability of the fixed points off (x) and
their composed functions.

We showed in@4# that there is a class of one-dimension
quantum systems described by these generalized Heisen
algebras. This class is characterized by those quantum
tems having energy eigenvalues written as

en115 f ~en!, ~16!

whereen11 anden are successive energy levels andf (x) is a
different function for each physical system. This functio
f (x) is exactly the same function that appears in the c
struction of the algebra in Eqs.~1!–~3!. In the algebraic de-
scription of this class of quantum systems,J0 is the Hamil-
tonian operator of the system, andA† andA are the creation
and annihilation operators. This Hamiltonian and the lad
operators are related by Eq.~4! whereC is the Casimir op-
erator of the representation associated with the quantum
tem under consideration.

III. DEFORMED HEISENBERG ALGEBRA
AND ITS PHYSICAL REALIZATION

In this section we are going to discuss the algebra defi
by the relations given in Eqs.~1!–~3! for the linear case, i.e.
f (J0)5rJ01s, s.0 @2#. Furthermore, we shall also propos
a realization, as in the case of the standard harmonic o
lator, of the ladder operators in terms of the physical ope
tors of the system.

The algebraic relations for the linear case can be rew
ten, after the rescalingJ0→sJ0 , A→A/As, and A†

→A†/As, as

@J0 ,A†# r5A†, ~17!

1J0 is Hermitian and a vacuum state exists.
0-2
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GENERALIZED QUANTUM FIELD THEORY: . . . PHYSICAL REVIEW D65 065020
@J0 ,A# r 2152
1

r
A, ~18!

@A†,A#5~12r !J021, ~19!

where @a,b# r[ab2rba is the r-deformed commutation o
two operatorsa andb.

It is very simple to realize that forr 51 the above algebra
is the Heisenberg algebra. In this case the Casimir oper
given in Eq.~4! is null. Then, for generalr the algebra de-
fined in Eqs.~17!–~19! is a one-parameter deformed Heise
berg algebra and generally speaking the algebra given in
~1!–~3! is a generalization of the Heisenberg algebra.

It is easy to see for the general linear case that

f m~a0!5r ma01r m211r m221•••11

5r ma01
r m21

r 21
; ~20!

thus,

Nm21
2 5 f m~a0!2a05@m# rN0

2 ~21!

where@m# r[(r m21)/(r 21) is the Gauss number ofm and
N0

25a0(r 21)11.
For infinite-dimensional solutions we must solve the f

lowing set of equations:

Nm
2 .0, ;m, m50,1,2, . . . . ~22!

Apart from the Heisenberg algebra given byr 51, the solu-
tions are@2#

type I ~unstable fixed point!: r .1 and a0.
1

12r
or

type II ~stable fixed point!: 21,r ,1 and a0

,
1

12r
, ~23!

with matrix representations

J05S a0 0 0 0 . . .

0 a1 0 0 . . .

0 0 a2 0 . . .

0 0 0 a3 . . .

A A A A �

D ,

A†5S 0 0 0 0 . . .

N0 0 0 0 . . .

0 N1 0 0 . . .

0 0 N2 0 . . .

A A A A �

D , A5~A†!†.

~24!
06502
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Note that for type I solutions the eigenvalues ofJ0 , as can
easily be computed from Eqs.~13! and~10!, go to infinity as
we consider eigenvectorsum& with increasing values ofm.
Instead, for type II solutions the eigenvalues go to the va
1/(12r ), the fixed point off, as the statesum& increase.

It is easy to see that there is a direct relation between
linear Heisenberg algebra given in Eqs.~17!–~19! and the
standardq oscillators. In fact, defining@2#

J05q2Na01@N#q2, ~25!

A†

N0
5a†qN/2, ~26!

A

N0
5qN/2a, ~27!

we see thata, a†, andN satisfy the usualq-oscillator rela-
tions @3#

aa†2qa†a5q2N, aa†2q21a†a5qN,

@N,a#52a, @N,a†#5a†. ~28!

Note that Heisenberg algebra is obtained from Eqs.~25!–
~27! for q→1 anda050.

The next step we have to take is to realize the operatorA,
A†, andJ0 in terms of physical operators as in the case of
one-dimensional harmonic oscillator, and as was done in@4#
and @5# for the square-well potential. To do this, we briefl
review the formalism of noncommutative differential and i
tegral calculus on a one-dimensional lattice developed in@8#
and @9#. Let us consider a one-dimensional lattice in a m
mentum space where the momenta are allowed to take
discrete values, say,p0 , p01a, p012a, p013a, etc., with
a.0.

The noncommutative differential calculus is based on
expression@8,9#

@p,dp#5dpa, ~29!

implying that

f ~p!dg~p!5dg~p! f ~p1a! ~30!

for all functionsf andg. We introduce partial derivatives a

d f~p!5dp~]pf !~p!5~ ]̄pf !~p!dp, ~31!

where the left and right discrete derivatives are given by

~]pf !~p!5
1

a
@ f ~p1a!2 f ~p!#, ~32!

~ ]̄pf !~p!5
1

a
@ f ~p!2 f ~p2a!#, ~33!

the two possible definitions of derivatives on a lattice. T
Leibniz rule for the left discrete derivative can be written
0-3
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BEZERRA, CURADO, AND REGO-MONTEIRO PHYSICAL REVIEW D65 065020
~]pf g!~p!5~]pf !~p!g~p!1 f ~p1a!~]pg!~p!, ~34!

with a similar formula for the right derivative@8#.
Let us now introduce the momentum shift operators

T511a]p , ~35!

T̄512a]̄p , ~36!

that shift the momentum value bya,

~T f !~p!5 f ~p1a!, ~37!

~ T̄f !~p!5 f ~p2a!, ~38!

and satisfy

TT̄5T̄T51̂, ~39!

where 1̂means the identity on the algebra of functions ofp.
Introducing the momentum operatorP @8#,

~P f !~p!5p f~p!, ~40!

we have

TP5~P1a!T, ~41!

T̄P5~P2a!T̄. ~42!

Integrals can also be defined in this formalism. It is sho
in Ref. @8# that the property of an indefinite integral

E d f5 f 1periodic function in a ~43!

suffices to calculate the indefinite integral of an arbitra
one-form. It can be shown that@8#, for an arbitrary function
f,

E dp̄f ~ p̄!55
a (

k51

[ p/a]

f ~p2ka! if p>a,

0 if 0<p,a,

2a (
k50

2[ p/a] 21

f ~p1ka! if p,0,

~44!

where@p/a# is by definition the highest integer<p/a.
All equalities involving indefinite integrals are understo

modulo the addition of an arbitrary function periodic ina.
The corresponding definite integral is well defined when
length of the interval is a multiple ofa. Consider the integra
of a function f from pd to pu (pu5pd1Ma, whereM is a
positive integer! as

E
pd

pu
dp f~p!5a(

k50

M

f ~pd1ka!. ~45!

Using Eq.~45!, the inner product of two~complex! functions
f andg can be defined as
06502
n

e

^ f ,g&5E
pd

pu
dp f~p!* g~p!, ~46!

where the asterisk indicates complex conjugation of
function f. The norm^ f , f &>0 is zero only whenf is identi-
cally null. The set of equivalence classes2 of normalizable
functionsf (^ f , f & is finite! is a Hilbert space. It can be show
that @8#

^ f ,Tg&5^T̄f ,g&, ~47!

so that

T̄5T†, ~48!

where T† is the adjoint operator ofT. Equations~39! and
~48! show thatT is a unitary operator. Moreover, it is easy
see thatP defined in Eq.~40! is a Hermitian operator and
from Eq. ~48! one has

~ i ]p!†5 i ]̄p . ~49!

Now, we go back to the realization of the deforme
Heisenberg algebra Eqs.~17!–~19! in terms of physical op-
erators. We can associate with the one-parameter defor
Heisenberg algebra in Eqs.~17!–~19! the one-dimensiona
lattice we have just presented.

Observe that we can writeJ0 in this case as

J05q2P/aa01@P/a#q2, ~50!

whereP is given in Eq.~40! and its application to the vecto
statesum& appearing in Eqs.~13!–~15! gives @4#

Pum&5maum&, m50,1, . . . , ~51!

where we can writeN5P/a with Num&5mum&. Moreover,

T̄um&5um11&, m50,1, . . . , ~52!

whereT̄ andT5T̄† are defined in Eqs.~35!–~39!.
With the definition ofJ0 given in Eq.~50! we see thatan

given in Eq. ~10! is the J0 eigenvalue of stateun& as we
wanted. Let us now define

A†5S~P!T̄, ~53!

A5TS~P!, ~54!

where

S~P!25J02a0 , ~55!

where a0, defined in Eq.~6!, is the lowestJ0 eigenvalue.
Yet, note that Eqs.~41!, ~42! can also be rewritten as

TN5~N11!T, ~56!

2Two functions are in the same equivalence class if their val
coincide on all lattice sites.
0-4
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GENERALIZED QUANTUM FIELD THEORY: . . . PHYSICAL REVIEW D65 065020
T̄N5~N21!T̄. ~57!

It is easy to realize thatA, A†, andJ0 defined in Eqs.~50!,
~53!–~55! satisfy the one-parameter deformed algebra gi
in Eqs.~17!–~19!. Consider first the relation betweenJ0 and
A†:

J0A†5aNS~P!T̄5A†aN11 , ~58!

whereaN is am5 f m(a0) in Eq. ~20! with the operatorN in
place of the variablem. In Eq. ~58! we have used the rea
izations in the first equality of the above equation and in
second one we have used Eq.~57!. But, from Eq. ~10!
aN115 f (aN)5 f (J0); thus we obtain

J0A†5A†f ~J0!, ~59!

that is, Eq.~1! for f (x) linear. Equation~2! is the Hermitian
conjugate of Eq.~1!, thus its proof using Eqs.~54! and ~50!
is similar to the previous one. Now, using

A†A5S~P!25J02a0 , ~60!

AA†5TS~P!2T̄5 f ~J0!2a0 , ~61!

for linear f (x), which has the property given in Eq.~10!, we
get Eq.~3! for f (x) linear, and the proof is complete.

Note that the realization we have found, as shown in E
~53!, ~54!, and ~50!, is qualitatively different from the real
ization of the standard harmonic oscillator. This shows t
the realization of the ladder operators for the harmonic
cillator means that the deformation parameterr 51 is a spe-
cial case.

IV. DEFORMED QUANTUM FIELD THEORY

We are going to discuss in this section a QFT having
excitations objects described by the one-parameter defor
algebra given in Eqs.~17!–~19!. In this QFT the mass spec
trum consists of only one particle with massm. In this case
the energy ofn particles is not equal ton times the energy of
one particle and therefore the energy does not obey the
ditivity rule. This nonadditivity comes from the fact thatq
oscillators approximately describe correlated fermion pa
in many body systems@7#. The advantage of this construc
tion is that, being a deformation, we can make contact w
the well-known nondeformed model in all steps of the co
putation by taking the deformation parameter going to 1.

In the momentum space appropriate to the realization
the deformed Heisenberg algebra we discussed, as we
the operatorP defined in Eq.~40!, one can define two self
adjoint operators as

x[2 i @S~P!~12a]̄p!2~11a]p!S~P!#52 i ~A2A†!,
~62!

Q[S~P!~12a]̄p!1~11a]p!S~P!5A1A†, ~63!

where ]p and ]̄p are the left and right discrete derivative
defined in Eqs.~32!,~33!.
06502
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It can be checked that the operatorsP, x, andQ generate
the following algebra on the momentum lattice:

@x,P#5 iaQ, ~64!

@P,Q#5 iax, ~65!

@x,Q#52iS~P!@S~P1a!2S~P2a!#. ~66!

To construct a QFT based on these operators let us
introduce a three-dimensional discretekW space,

ki5
2p l i

L i
,i 51,2,3, ~67!

with l i50,61,62, . . . andLi being the lengths of the thre
sides of a rectangular boxV. We introduce for each point o
this kW space the independentr-deformed harmonic oscillato
constructed in the last two previous sections so that the
formed operators commute for different three-dimensio
lattice points. We also introduce an independent copy of
one-dimensional momentum lattice defined in the previo
section for each point of thiskW lattice so thatPkW

†
5PkW andTkW ,

T̄kW , andSkW are defined by means of the previous definition
Eqs.~35!, ~36!, and~55!, through the substitutionP→PkW .

It is not difficult to realize that

AkW
†
5SkWT̄kW , ~68!

AkW5TkWSkW , ~69!

J0~kW !5q2PkW /aa01@PkW /a#q2, ~70!

satisfy the algebra in Eqs.~17!–~19! for each point of thiskW

lattice and the operatorsAkW
† , AkW , andJ0(kW ) commute among

them for different points of thiskW lattice.
Now, we define operatorsx and Q for each point of the

three-dimensional lattice as

xkW[2 i ~T2kWS2kW2SkWT̄kW !52 i ~A2kW2AkW
†
!, ~71!

QkW[TkWSkW1S2kWT̄2kW5AkW1A
2kW
† , ~72!

such thatxkW
†
5x2kW andQkW

†
5Q2kW , exactly as happens in th

construction of a spin-0 field for the spin-0 quantum fie
theory @10#. By means ofxkW and QkW we define two fields
f(rW,t) andP(rW,t) as

f~rW,t !5(
kW

1

A2Vv~kW !
~AkW

†
e2 ikW•rW1AkWe

ikW•rW!, ~73!

P~rW,t !5(
kW

iv~kW !

A2Vv~kW !
~AkW

†
e2 ikW•rW2AkWe

ikW•rW!, ~74!
0-5
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wherev(kW )5AkW21m2, m is a real parameter, andV is the
volume of a rectangular box. Another momentum-type fi
`(rW,t) can be defined as

`~rW,t !5(
kW
Av~kW !

2V
SkWe

ikW•rW. ~75!

By a straightforward calculation, we can show that t
Hamiltonian

H5E d3r @P~rW,t !21uu`~rW,t !u2

1f~rW,t !~2¹W 21m2!f~rW,t !#, ~76!

whereu is an arbitrary number, can be written as

H5
1

2 (
kW

v~kW !@AkW
†
AkW1AkWAkW

†
1uSkW~N!2#

5
1

2 (
kW

v~kW !@SkW~N11!21~11u!SkW~N!2#,

~77!

where

SkW~N!25q2NkWa01@NkW#q22a0 . ~78!

In order that the energy of the vacuum state becomes zer
replaceH in Eq. ~77! by

H5
1

2 (
kW

v~kW !@SkW~N11!21~11u!SkW~N!2

2~q221!a021#. ~79!

Note that in the limitq→1 (a0→0), the above Hamiltonian
is proportional to the number operator. Furthermore, as
be seen from Eqs.~78! and~79! the energy of this system i
nonadditive. The nonadditivity of a free system is not new
field theory; for instance the energy of nontopological so
tons has this property~see@10#, Chap. 7!. In the present case
this nonadditivity of the energy comes from the fact thaq
oscillators approximately describe correlated fermion pa
in many body systems@7#.

The eigenvectors ofH form a complete set and span th
Hilbert space of this system; they are

u0&, AkW
†u0&, AkW

†
AkW8

† u0& for kWÞkW8, ~AkW
†
!2u0&, . . . ,

~80!

where the stateu0& satisfies as usualAkWu0&50 @see Eq.~12!#

for all kW and AkW ,AkW
† for each kW satisfy the q-deformed

Heisenberg algebra Eqs.~17!–~19!.
The time evolution of the fields can be studied by mea

of Heisenberg’s equation forAkW
† , AkW , andSkW . Define

E~NkW ![J0~kW !5q2NkWa01@NkW#q2 ~81!
06502
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h~NkW ![
1

2
~11u1r !~E~NkW11!2E~NkW !#. ~82!

Thus, using Eqs.~77! or ~79! and ~17!–~19! we obtain

@H,AkW
†
#5v~kW !AkW

†
h~NkW !. ~83!

We can solve Heisenberg’s equation for theq-deformed case,
obtaining

AkW
†
~ t !5AkW

†
~0!eiv(kW )h(NkW)t. ~84!

Note that forq→1 andu50 we haveh(NkW)→1 and Eq.
~84! gives the correct result for this undeformed case. It
not difficult to realize, using Eqs.~17!–~19!, that for this
linear case we have@ f (J0)2J0#A5q22A@ f (J0)2J0#. Tak-
ing the Hermitian conjugate of Eq.~84! and using the resul
just mentioned we have

AkW~ t !5AkW~0!e2 iq22v(kW )h(NkW)t, ~85!

also giving the correct undeformed limit. Furthermore, w
easily see that the operatorsPkW andSkW are time independent
We emphasize that the extra termh(NkW) in the exponentials
depends on the number operator, this being the main dif
ence from the undeformed case. The Fourier transforma
Eq. ~73! can then be written as

f~rW,t !5a~rW,t !1a~rW,t !†, ~86!

where

a~rW,t !5(
kW

1

A2Vv~kW !
AkWe

ikW•rW2 iq
22

v(kW )h(NkW)t, ~87!

AkW in Eq. ~87! is time independent, anda(rW,t)† is the Her-
mitian conjugate ofa(rW,t).

The Feynman propagatorDF
N(x1 ,x2) defined, as usual, a

the Dyson-Wick contraction between3 f(x1) andf(x2), can
be computed using Eqs.~17!–~19! and ~86!,~87!:

DF
N~x1 ,x2!5(

kW

eikW•DrW12

2Vv~kW !
@SkW~N11!2e7 iv(kW )h(NkW)Dt12

2SkW~N!2e7 iv(kW )h(NkW21)Dt12#, ~88!

where Dt125t12t2 , DrW125rW12rW2, the minus sign in the
exponent holds whent1.t2, and the positive sign whent2
.t1. Note that whenq→1, h(NkW)→1, and SkW(N11)2

2SkW(N)2→1, the standard result for the propagator is reco
ered. It is also simple to obtain the following integral repr
sentation for the Feynman propagator:

3xi[(r i
W ,t i).
0-6
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DF
N~x!5

2 i

~2p!4E SkW~N11!2eikW•rW2 ik0h(NkW)td4k

k21m2

2~N→N21!, ~89!

where in the second part of the right hand side of the ab
equation we have the first part withN→N21. Again, note
that theq→1 limit of the integral representation of the abo
Feynman propagator gives the usual propagator. We p
out that this propagator is not a simplec number since it
depends on the number operatorN.

We shall now discuss the first order scattering proces
12→18128 where the initial state is

u1,2&[Ap1

† Ap2

† u0& ~90!

and the final state is

u18,28&[Ap
18

†
Ap

28
† u0&, ~91!

where Api
and Api

† satisfy the algebraic relations in Eq

~17!–~19!. These particles are supposed to be described
the Hamiltonian given in Eq.~76! with an interaction given
by l* :f(rW,t)4:d3r . To the lowest order ofl, we have

^18,28uSu1,2&52 ilE d4x^18,28u:f4~x!:u1,2&. ~92!

We use Eq.~86! in Eq. ~92! and put it in normal order. Since
the exponentials now have number operators we must
the exponentials it outside the matrix elements, obtaining

^18,28uSu1,2&

5
26il

4V2 E d4x (
kW1•••kW4

1

AvkW1
•••vkW4

3^0uApW
18
ApW

28
AkW1

†
AkW2

†
AkW3

AkW4
ApW 1

†
ApW 2

† u0&

3e2 i (kW11kW22kW32kW4)•rW1 iW(kW1 ,kW2 ,kW3 ,kW4)t, ~93!

where

W~kW1 ,kW2 ,kW3 ,kW4!5v~kW1!h1~kW1 ,kW2 ,kW3 ,kW4!

1v~kW2!h2~kW1 ,kW2 ,kW3 ,kW4!

2v~kW3!h3~kW1 ,kW2 ,kW3 ,kW4!

2v~kW3!h3~kW1 ,kW2 ,kW3 ,kW4! ~94!

and

h1~kW1 ,kW2 ,kW3 ,kW4!5h~dkW1 ,kW2

3
2dkW1 ,kW3

3
2dkW1 ,kW4

3
1dkW1 ,pW 1

3

1dkW1 ,pW 2

3
!,

h2~kW1 ,kW2 ,kW3 ,kW4!5h~2dkW2 ,kW3

3
2dkW2 ,kW4

3
1dkW2 ,pW 1

3
1dkW2 ,pW 2

3
!,
06502
e

int

1

by

ke

h3~kW1 ,kW2 ,kW3 ,kW4!5h~212dkW3 ,kW4

3
1dkW3 ,pW 1

3
1dkW3 ,pW 2

3
!,

h4~kW1 ,kW2 ,kW3 ,kW4!5h~211dkW4 ,pW 1

3
1dkW4 ,pW 2

3
!. ~95!

The matrix elements in Eq.~93! can be handled using th
algebraic relations in Eqs.~17!–~19!. At this point the inte-
gral in Eq.~93! can be computed, giving

^18,28uSu1,2&

5
224~2p!4ih~0!2l

V2~11u1q2!4AvpW 1
vpW 2

vp8W 1
vp8W 2

3@h~0!2d4~P1,a1P2,a2P1,a8 2P2,a8 !

1h~0!h~dpW
18 ,pW

28
3

!d4~P1,b1P2,b2P1,b8 2P2,b8 !

1h~0!h~dpW 1 ,pW 2

3
!d4~P1,c1P2,c2P1,c8 2P2,c8 !

1h~dpW 1 ,pW 2

3
!h~d

p8W 1 ,p8W 2

3
!d4~P1,d1P2,d2P1,d8 2P2,d8 !#,

~96!

where

P1,a5„pW 1 ,vpW 1
h~0!…, P2,a5„pW 2 ,vpW 2

h~dpW 1 ,pW 2

3
!…,

P1,a8 5„pW 18 ,vpW
18
h~dpW

18 ,pW
28

3
!…, P2,a8 5„pW 28 ,vpW

28
h~0!…;

P1,b5„pW 1 ,vpW 1
h~0!…, P2,b5„pW 2 ,vpW 2

h~dpW 1 ,pW 2

3
!…,

P1,b8 5„pW 18 ,vpW
18
h~0!…, P2,b8 5„pW 28 ,vpW

28
h~dpW

18 ,pW
28

3
!…;

P1,c5„pW 1 ,vpW 1
h~dpW 1 ,pW 2

3
!…, P2,c5„pW 2 ,vpW 2

h~0!…,

P1,c8 5„pW 18 ,vpW
18
h~dpW

18 ,pW
28

3
!…, P2,c8 5„pW 28 ,vpW

28
h~0!…;

P1,d5„pW 1 ,vpW 1
h~dpW 1 ,pW 2

3
!…, P2,d5„pW 2 ,vpW 2

h~0!…,

P1,d8 5„pW 18 ,vpW
18
h~0!…, P2,d8 5„pW 28 ,vpW

28
h~dpW

18 ,pW
28

3
!…. ~97!

Note that whenq→1 we have h→1, Pi ,a5Pi ,b5Pi ,c

5Pi ,d , Pi ,a8 5Pi ,b8 5Pi ,c8 5Pi ,d8 ( i 51,2), u50, and Eq.~96!
becomes the standard undeformed result@10#.

In order to compute the matrix element ofS to second
order in l we must generalize Wick’s theorem since t
Feynman propagator in this case depends on the numbe
erator. We hope to report on this computation in the n
future.
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V. TOWARD A MULTIPARTICLE QUANTUM FIELD
THEORY

In the last section we constructed the propagator and
matrix element of theS matrix to first order of the coupling
constant of aq-deformed spin-0 QFT. We stress that we co
sidered aq-deformed Heisenberg algebra and the quant
mechanics was taken as being the standard one. The ad
tage of studying a deformed system is that we can m
contact with the nondeformed one at all steps of the com
tation.

In this section we are going to discuss the possibility
constructing a QFT by interpreting each state of a gene
ized Heisenberg algebra as a particle with a different m
We consider a Heisenberg algebra, the generators of w
are given as

A†5S~P!T̄, ~98!

A5TS~P!, ~99!

J05AV~P!1mq
2, ~100!

whereV(x) is a general function ofx, andT,P are defined in
Eqs. ~36!, ~40!, respectively, andS(P)25J02mq . In the
special case whereV(P)5P2 we have the relativistic
square-well algebra discussed in@5#.

Let us associate with each point of the discretekW space,
defined in the previous section, an independent copy of
one-dimensional momentum lattice defined in Sec. III
each point of thiskW lattice, so thatPkW

†
5PkW andTkW , T̄kW , and

SkW are defined by means of the previous definitions, E
~35!, ~36!, and ~55!, through the substitutionP→PkW . Then
we can define for each point of this lattice a Heisenb
algebra as
o

a
ze

06502
e

-

an-
e

u-

f
l-
s.
ch

e
r

s.

g

AkW
†
5S~PkW !TkW̄, ~101!

AkW5TkWS~PkW !, ~102!

J0~kW !5AkW21V~PkW !1mq
2, ~103!

whereS(PkW)
25J0(kW )2AkW21mq

2.
The Hilbert space of the associated QFT is spanned by

vectors

u0&, AkW
†u0&, AkW

†
AkW8

† u0& for kWÞkW8, ~AkW
†
!2u0&, . . . .

~104!

Notice that the state (AkW
†)nu0& has aJ0(kW ) eigenvalue given

by AkW21V(an)1mq
2, which can be interpreted as the ener

state of a particle with massAV(an)1mq
2. Thus, the associ-

ated interacting QFT would describe particles with ma
spectrumAV(an)1mq

2, with n51,2, . . . , unified by the
generalized Heisenberg algebra under consideration.
possibility of having a QFT unifying a spectrum of particle
of different masses is appealing, with potential applicatio
in hadronic phenomenology. There are some points to
understood before developing such a QFT, such as, for
stance, Lorentz invariance, which plays an important role
a theory describing relativistic particles. We hope to deve
this point and to report on such a QFT in the near future
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