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Nonequilibrium evolution in scalar O(N) models with spontaneous symmetry breaking
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We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for
a scalarO(N) model with spontaneously broken symmetry. In contrast with previous studies we do not
consider the largd limit, but the case of finiteN, includingN=1, i.e., plain)\qﬁ4 theory. The instabilities
encountered in the one-loop approximation are prevented, as in theNaliggt, by back reaction of the
fluctuations on themselves, or, equivalently, by including a resummation of bubble diagrams. For this resum-
mation and its renormalization we use formulations developed recently based on the effective action formalism
of Cornwall, Jackiw and Tomboulis. The formulation of renormalized equations for fiviiteerived here
represents a useful tool for simulations with realistic models. Here we concentrate on the phase structure of
such models. We observe the transition between the spontaneously broken and the symmetric phase at low and
high energy densities, respectively. This shows that the typical structures expected in thermal equilibrium are
encountered in nonequilibrium dynamics even at early times, i.e., before an efficient rescattering can lead to
thermalization.
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I. INTRODUCTION Having at our disposal a formalism for renormalized
finite-N nonequilibrium dynamics we can study the new fea-
The investigation of th©(N) vector model at larghl has  tures introduced by the back reaction between quantum fluc-
a long-standing history in quantum field thedds3]. The tuations in scalar quantum field theories with spontaneous
dynamical exploration of nonequilibrium properties of suchsymmetry breaking fofinite N A case of particular interest
models has been developed only receftly-9]. The non- is N=4; theO(4) sigma model is widely used as an effec-
equilibrium aspects of spontaneous symmetry breaking iitive theory for low energy meson interactions. Its nonpertur-
particular have been studied in the laf§eapproximation in  bative aspects may be an essential element for understanding
Refs.[10-14]. the phenomena observed at the BNL Relativistic Heavy lon
At finite N there have been several approaches to formuCollider (RHIC) [25]. Such aspects have been discussed pre-
lating a Hartree-type interaction between the quantunviously in[26-30. Larger values oN may be realized in
modes. These lead, in general, to problems with renormalizegrand unified theories, whose nonequilibrium evolution may
tion [15,16. On the other hand, without such a back reactionbe of importance in inflationary cosmolog®,31-37; we
the nonequilibrium systems with spontaneous symmetrjnave included simulations for a suggestive valre 10. It
breaking run into seemingly unphysical instabilitiésee, should be stressed that the present approximation just consti-
e.g., Fig. 9 in[14] for an illustration. For equilibrium quan- tutes a 1N correction and the application to low values bf
tum field theory at finite temperature this interaction betweershould be taken, therefore, with caution. Indeed, higher order
guantum modes is taken into account by resummation oforrections obtained when including the sunset diagram have
bubble diagrams, i.e., by including daisy and super-daisy diabeen found to be of importan¢24] in equilibrium quantum
grams. These are essential for studying the phase transitiofisld theory. In nonequilibrium quantum field theory the role
between the spontaneously broken phase and the phase withsuch higher corrections is being discussed at prd8&at
restored symmetry. Techniques of bubble resummation havé4].
been developefl1l7-19 based on the effective action for-  The out-of-equilibrium configuration that has mainly been
malism of Cornwall, Jackiw, and Tombouli€JT) [20]. Re-  studied is characterized by an initial state in which one of the
cently there have been some new resummation schgties components has a spatially homogenous classical expecta-
24] which can be consistently renormalized. While Refl]  tion value ¢(t). For brevity, and referring to th©(4) case
is restricted to the lowest order two-loop graphs in the actionused as a model of low energy pion interactions, we call this
leading to bubble diagram resummation, the formalism carcomponent sigmad,a=1), the remainingN—1 compo-
be extended to include higher order grapBg—-24. These nents pions f,a=2...N). In the initial stateo has a clas-
approaches can be taken over to a formulation of nonequsical value¢(0), thequantum vacuum is characterized by a
librium equations of motion. Here we restrict ourselves toBogoliubov transformation of the Fock space vacuum state, a
including two-loop graphs of leading order i and 1N Bogoliubov transformation characterized by initial masses
only; within the CJT formalism this is denoted as HartreeM4(0) and M,(0). These masses are determined self-
approximation[20]. consistently, as are their values at finite times.
The evolution of the system is governed by the classical
equation of motion for the field(t) and by the mode equa-
*Electronic address: baacke@physik.uni-dortmund.de tions for the quantum fieldg,(x,t). The expectation values
"Electronic address: stefan.michalski@udo.edu (ma(X,t) ma(x,t)),a=1...N, appear in both equations of
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motion, this constitutes the quantum back reaction. In theur application the classical field has just one nonvanishing
largeN limit one omits the quantum fluctuations of the component),; then the inverse propagator has only diagonal
sigma modea=1 and just considers the Goldstone modes.elements and these read

Here we are able to study the behavior of théluctuations
as well; we will find that this is a rather important aspect in

" . d3k
the critical region. G (X, X! =f—ex K- (X—xDF (Kt )F* (K.t
The plan of this paper is as follows: in Sec. Il we intro- i(X7) (27)32wy, Pk Mkt (ko)
duce the model and the potential obtained by bubble diagram (2.5
resummation in unrenormalized form. Renormalization is
discussed in Sec. Ill. We present our numerical results iMno summation over). If the classical field has more than

Sec. IV and discuss their implication for the phase structurg, |, nonvanishing component, the Green function can be
of the model. Conclusions are presented in Sec. V. likewise expressed in terms of mode functions of a coupled
systen{51,53. The occurrence of the mode functions allows
Il. FORMULATION OF THE MODEL for an interpretation in terms of Fock space states which has
been used often to define particle numbers that refer explic-
itly to such a basis. If higher order corrections are included
such naive interpretations have to be reconsidered.
D U Superficially M, can be associated with the sigma mass,
L= E&MCDWCD—Z(Q)Z—UZ)Z. (2.))  and M, with the pion mass. The actual meaning of these
mass type parameters is more subtle, as discussed by

We consider theO(N) vector model with spontaneous
symmetry breaking as defined by the Lagrange density

We consider a quantum system out of equilibrium that iSNemoto et al.. We will come back to this point later on.

; . . Using the ansatz2.4) for the propagator Nemoto et al.
characterized by a spatially homogenous background field, - ; ) ! .
The fieldslzare sgpara?edI asy genet grou I derive the CJT effective action, which for a space and time

independent configuration is characterized by the effective

D o= (1) + 7a(X,1) (2.2  Ppotential
into a classical parp,=(®d,) and a fluctuation pargy, with 1 A 1
(m)=0. Furthermore, in view of spatial translation invari- V(h, My, M) =5M 2p%— §¢4+mm2{M§+(N
ance it is convenient to decompose the quantum fluctuations ( )
via
_ xn_ - 4
(D)= | —————T[afi(k,H)e™+alf*(k,t)e ],
7i(X,1) f(zw)32wi0[ kfi(k,t) ki (k,t) 1 +3(N_1)M‘21_2(N_1)M§M§
(2.3 4
47, = 2 2
where wg; = Vk*+ mzio. m;o will be defined below. The sub- 2NmT 2f (277)4“'1('( +M1)
scripti=1 denotes the sigma moda<1), i =2 denotes the
pion modes §=2 ...N). N—1 d*% ) 5
In formulating the equations of motion and the renormal- Tt (277)4“’1('( +M3). (2.6
ization we follow the presentation of Nemott al. [21]
whose generalization to the nonequilibrium system is
straightforward. . _ . Here ¢?= 2. We note that our convention for the coupling
We introduce the inverse propagator in the classical backeonstant differs from the one [21]; furthermore we have to

ground field in anO(N) symmetric form setm?= —\v>.

We can easily generalize this effective potential to obtain
the nonequilibrium energy density

gab1=[D+M§]5ab+%w%<t>—xw§<t>].

2.9 1.1 A
£= 5 HgMId 5 ¢ sy AIMIT(N
Here M, , are trial masses that will be determined self-

consistently. In contrast to equilibrium quantum field theory

these masses, as well as the classical field, are allowed to ~ —1)M3}— m[(NﬂLl)M‘l1+ 3(N-1)M3
depend on time. This is not the most general parametrization

of an inverse propagator; it is sufficiently general if the CJT —2(N=1)MIM5+2N 204+ E 1+ (N— 1) &2
formalism is restricted to the Hartree-Fock approximation,

but not beyond it(see, e.g.[43]). If the inverse propagator 2.7

has this restricted form, the propagator itself can be written
in factorized form in terms of the mode functiofigk,t). In  with
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1 d3k ) constant value. Likewise, in the static case, at finite tempera-
&“:EJ T[|fi|2+(k2+Miz(t))|fi|2]. ture, one finds that the “pion” masg1, is not in general
(27) 2w zero; the question has been raised, whether Goldstone’s theo-
(2.9 rem is violated by the approximation or otherwise.

The equations of motion can easily be derived by requirin The interpretation of the masses and the value of the pion

that this energy density be conserved. This is the case if thy a;sfln tgf 2pres:|(_3r:1t contet>r<1t have bee?hiﬁcgssedt textbenswely
equation of motion for the field is given by In ke s.[21,23. ese authors argue 2 1S ot o be
interpreted as the pion mass, but as a variational parameter

y 204\ _ 2 _ which does not necessarily have an immediate physical in-
SO+ MU =20 $(O7TA(1)=0, @9 terpretation. The ansatz for the inverse Green function and in
if the quantum modes satisfy the equations of motion consequence the effective potential have @({IN) symme-
try. The field ¢ appearing there is thabsolute valueof the
'f'i(k,t)J,-[kz.l,-_/\/liz(t)]fi(k,t)zo, (2.10  field ¢,. Therefore by symmetry the pion mass must trivi-
ally be zero in the minimum of the effective potential, which
and if the trial masses satisfy, for dllthe gap equations is anO(N—1) sphere. Nemotet al. show that trivially the
5 appropriate second derivatives of the effective potential lead
M (1) =N[3¢%(t) —v?+3F (1) +(N—1) Fy(1)] to a vanishing pion mass. Likewiset, is another parameter

(211 characterizing the Green function and is different from the

) 5 ) sigma mass which is given by
M) =A[ (1) —v=+ Fa(t) + (N+ 1) Fp(t) ].

(2.12 , dm?
o mZ=2v2 > 2\ . (2.149
Here F;(t) are the fluctuation integrals d¢
d3k This is equal to 2v? on the tree level only.
Fi(t)= f Tlfi(k,tﬂz. (2.13 It is instructive to do the simple algebra of taking second
(27)°2wig derivatives of arO(N) symmetric function:
The gap equations incorporate the resummation of bubble PH(?)
diagrams. o ﬁ:25abf/(¢2)+4¢a¢bf”(¢2)- (2.15
For a time-dependent problem we have to specify initial $addp

conditions. We choose at=0 a value of the classical field
¢o= ¢(0) different from its value in the equilibrium ground
state, which is given by apart from quantum corrections.
The initial mass parametens,,=M;(0) are obtained by
solving the gap equation®.11) and(2.12 att=0, i.e., by

finding the extremum of the effective potential at a fixe
value of = ¢o. So the initial configuration is an equilibrium

The pion mass is the second derivative perpendicular to the
direction of ¢, , so it is given by the first term and vanishes

if f'($2)=0, which defines the minimum. This corresponds
precisely to thdirst derivative of the potential appearing in

dthe classical equation of motion. We note that this effective
mass is given by

configuration with an externally fixed fieldy,. When the 2 _ 204y _ 2
field is allowed, fort>0, to become an internal dynamical Ma= MO =21 5(D). (.19
field the nonequilibrium evolution sets in. It vanishes trivially if the field settles at late times at some

The equations of motion and the gap equations still conggnstant value.
tain divergent integrals and need to be replaced by renormal- 1he massesm? andM2| determine the fluctuations of the
o C

ized ones. Th‘?se.W'". be denve_d in the next section. classical field¢ near the minimum of the effective potential
_ Before continuing in developing the formalism we would j, an510gy to the tree level masses of the sigma and pion
like to come back to the discussion of the masses. The magg4s | all higher corrections were included, one would

parameters\; naively represent the effective masses for theg, et these masses to determine the exact propagator near
o and 7 fluctuations. In finite temperature quantum field 20 In this sense the vanishingM2| entails a pole of the
" Cl

theory one expects massless quanta, the Goldstone modes, 2_ )
the field is in the temperature-dependent minimum of th .‘Bn propagator ak*=0. However, contrary (o the large

effective potential in the broken symmetry phase. Likewise,'m't’ Mg Is not th“e m a”s s that determines the fluctuatibns
in the nonequilibrium evolution of largh- systems it has and, thereby, the “pion” propagatdy,.

been found10-14 that the mass of the fluctuations goes to

zero in the broken symmetry phase as the classical field ap- IIl. RENORMALIZATION

proaches an equilibrium value. In some sense that is t_rivial The renormalization of the effective potential has been
there, because the mass of the fluctuations appears in thscyssed ifi21] and[22). As stated in the latter publication
classical equation of motion as well, and in equilibrium wep,qh formulations are equivalent; here we follow the one of
must have¢=—M?(t)$=0. Here the situation is more Nemoto et al, employing the auxiliary field method, in
complicated and indeed we will find thau ﬁ(t) will notgo  which the counterterms in the effective potential are intro-
to zero at late times, even if the classical field settles at someuced via the trial masses:
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1 1 theory[21] the divergent parts can be removed by choosing
8€=AvZM{+Bov’M §+§CM i+ 5(N=1)DM 3. the counterterm¢3.1) asA=B=0 and as
(3.)
1
Divergent and finite parts of the fluctuation integrafsand C=D= > (3.8
of the fluctuation energy densities have been analyzed in 64

[9,45] using a perturbation expansion in the “potentials”

With this choice the energy density as well as the gap equa-

Vi(t) =Mi2(t) —Miz(O). (3.2 tions become finite. The equations of motion are not affected.

The energy density is obtained simply by replacing the fluc-
As the definition of the Green functior®.5), the expres- tuation energies by the right hand sides of B3 omitting
sions for the energy densiti€2.8) and for the fluctuation the term proportional td.. Likewise the renormalized gap
integrals(2.13, as well as the equatior(®.10 satisfied by  equations are obtained by replacing the fluctuation integrals
the mode functions are entirely analogous to thosp4bj, by the right hand sides of E¢3.4) without the term propor-
the expansions derived there can be applied here in the sartienal to L. In our numerical computations the renormaliza-
way. In the power series expansion of the energy densitie§on scaleu has been taken equal to the sigma mass. As long
with respect to/; the zeroth, first and second order terms areas the ratio ofu and the relevant masses is far from the
UV divergent, while in the fluctuation integrals it is the ze- Landau pole, i.e.m? u?<exp 167%/\ the dependence on
roth and first order terms. In dimensional regularization thethe renormalization scale is weak. This is the condition under
powers ofY; can be arranged with powers mﬁ) into powers  which thed* theory can be treated as a low energy effective
of MZ. The expansion then reads theory. For our numerical simulations with=1 this condi-

tion is satisfied.
2

1 . me , ., 1, i The gap equations for the masses have to be solved once,
&ni= oa? M| —LtIn— ] =2Mimig+ 5mig| +&i  att=0. By subtracting these equationstatO from the gen-
1 M 33 eral gap equations one obtains the renormalized gap equa-
33 tions for the potentialy’;. These read explicitly
1| m? _
= ——| M2 —L+In— | —md |+ F, (3.4) . o o3 mi
167 m Vi=\|3(¢°= ) +3F "+ (N=1) 73"+ ——In — V(1)
; 167 %
Here
1 mgov (t)] (3.9
n—Vy,, .
L= %— v+Inda, (3.5 167 MZ

w is the renormalization scale, amq, are the mass param- In m_iov (t)
eters appearing in the fluctuation integrals. In order to avoi w? .
bad initial singularitied46—-48 they have to be chosen as

mio=M;(0), the ‘initial masses.” Finally the finite fluctua- N+1 m3,

tion integrals are defined by subtracting the UV divergent o2 In ?Vz(t)

parts under the momentum integral via

, , 1
3/2=x{(¢2—¢S>+ff1'“+(N+1)f2“+ "

772

: (3.10

! d3 . These linear equations can be solved easilyM¢t),i=1,2
& :—f ———— | i+ (K + MD)[fi]*~ 20—V, using a time-independent matrix. This matrix is analogous to
Y 2) (2m)32wig the factor C=[1+ (\/1672)In(m?/m@)]* appearing in the
5 largeN case[45].
i L (3.6) The numerical implementation has been described in sev-

40?) eral previous publicationsee, e.g.[9]), so we do not repeat
this here. The accuracy of the computations is monitored by
1 a3k _ verifying the energy conservation, which holds with a typical
]:iﬁn:_f — | |fi]?—1+ ! l (3.7 precision of five significant digits.
2) (27)%2wjo w? We finally mention the problem of initial singularities that

appears in the context of renormalizati@i®—48. These can
The subtractions used here are analytically equivalent to Be avoided by modifying the initial quantum ensemble via a
numerically more sophisticated procedure used9h The suitable Bogoliubov transformation. This can be done in the
subtracted integrals are UV finite. present model as well. For the values of the couplings and
From Egs.(3.3) and(3.4) it is evident that the divergent initial parameters considered here the initial singularities are
parts <L are independent of the initial massmf0 and  numerically unimportant and have been therefore disre-
thereby of the initial conditions. Exactly as in equilibrium garded.
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IV. RESULTS AND DISCUSSION ; r
o(t)

A. Numerical simulations

We have performed numerical simulations for the cases
N=1, N=4, andN=10. The coupling constant was taken
to bex=1 and we have varied the initial value for the field
do= ¢(0). We have considered only values,>uv, as for
smaller values the initial mass,,= M,(0) becomes imagi-
nary. The regiong<<v is only explored dynamically. We
display the time evolution of the classical amplituglét) for
the parameterbl=4, A=1 in Figs. la—1c, for initial ampli-
tudes ¢o=1.30<\2v, ¢o=1.44%=2v and ¢y=1.6v
>2v. For the tree level potential the valye= \2v is the
value for which the energy is equal to the height of the bar-
rier (N=1) or the top of the Mexican hatN>1). We will
discuss the physics associated with the three ranges of pa-
rameters below.

In the nonequilibrium evolution of models with spontane-
ous symmetry breaking both squared mas$&§2 can in
general take negative values. In lafgedynamics it is well
known[12-14 that in this situation the fluctations increase
exponentially and drive the squared masses back to positive -1F .
values. This stabilizes the system dynamically and prevents ‘ o
an unphysical behavior in which an exponentially increasing 0 100 200 300 400 500 600
amount of quantum energy, taken from the vacuum, is con- (b)
verted into classical one. Our first essential observation is
that for all parameter sets and initial values this stabilization
takes place for finiteN as well. We display a typical time
evolution of the classical field and of the squared masses
Miz in Fig. 2a and Fig. 2b, based on the parametérs
=4,\=1, and¢y=1.4v. In Fig. 2a both squared masses are
seen to become negative at early times and to reach positive
values at late times. In Fig. 2b one sees the evolution of the
energy of the fluctuations which is very strong in the time
range where the squared masses are negative. The classical
minimum of the energy is aEy,=—\v*/4, i.e.,Eq=—.25
for this parameter set. So essentially all the energy is trans- 0o 30 1(')0 : 150 300
ferred to fluctuations within a few oscillations of the conden- ©
sate field¢. In Fig. 2c we display the two fluctuation inte-

rals as functions of time fop,=2v, again forN=4 and . . . ,
?\zl, i.e., in the symmetricc;)‘ziloase. Thr—? pion fluctuations are FIG. 1. (8 Time evolution of the classical field) for ¢y

seen to develop rather quickly, while the sigma fluctuations V2v (broken symmetry phakeField amplitude and time are in

v d | t later ti ™ . t il id units ofv andv !, respectively. Parameters axe=4, A\=1, and
(;ny .evr;a opha ater imes. fehmaln SSFE;C Vr\]/e Wi IconSI e{%o:laj. (b) Time evolution of the classical fields for ¢,
ere Is the phase structure of the model. In thermal quantum. 5, critical regior). Parameters as above biis=1.445. (c)

field theory one expects a phase with spontaneously bmke’ﬂme evolution of the classical fieldb for ¢o>2v (symmetric
symmetry at low temperature, and symmetry restoration 8lhase. Parameters as above bty =1.60.

high temperature. Here we have a microcanonical descrip-
tion, so instead of temperature we specify the energy whic . . . .
P pecify gy tEhe effective potential receives quantum corrections the

in turn is determined by the initial value,. As already . X . . X
mentioned the system will not thermalize in the approximf:l—bour?d"’Irles of .these intervals will .be sllghtly.shlfted, for
revity we continue to use the classical values in the follow-

tion used here, but it is characterized at late times by limitin di X
values, or time averages, attained by the various masses, a iy discussion.
by the classical fields. The latter can be compared with the
temperature-dependent vacuum expectation valli@, the
former ones are associated to correlation lengths. We first considerp..(d), the value of¢ averaged at late
Classically the spontaneously broken phase is expected times, which can be considered as an order parameter, re-
be situated in the interval< ¢,</2v. For larger values of placing the vacuum expectation valw€r) of finite tempera-
¢o one should be in the phase of restored symmetry. Sinceure field theory. In the analysis of the broken symmetry

t

B. Late time behavior of the classical field
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FIG. 2. (a) Time evolution of the masse&/liz. Parameters are

N=4, A\=1, and ¢o=1.4v. The upper curve is/\/li. (b) Time FIG. 3. (a) The late-time amplitude as a function of the initial
evolution of the energy densities. Parameters a@jnDisplayed  amplitude. Parameters ale=1 and\=1. (b) Same a<a), for N
are the classical energy density, the fluctuation energy density in=4 and\=1. (c) Same aga), for N=10 and\ =1.
cluding finite renormalization terms and the total energy deniy.
Time evolution of the fluctuations integrals. Parameters a@in a phase transition of second order. In a first order phase
however with¢y=2v. Upper curve: pion fluctuations; lower curve: transition the vacuum expectation value of the true minimum
sigma fluctuations. jumps at the phase transition from the broken symmetry
minimum to the symmetric one. As the functional behavior
phase in the largé&t limit it was observed12—14 that the  of Eq.(4.1) has an infinite slope at the critical point it is hard
value of ¢ at late times has a specific and universal depento decide from numerical data whethéx, near ¢o= J2v
dence on the initial valué, given at zero temperature by goes to zero continously or via a discontinuity. The results
2m o 21 strongly indicate that the transition is discontinuous. This is
b= bp(20°— ) ™" (4. suggested as well by the time evolution ¢fdisplayed in
Fig. 1b. There seems to be a minimum¢at O and another
We find that this is the case for finité¢ as well. The depen- one near¢=.5v, as one knows it from typical finite tem-
dence¢..(¢o) is shown in Figs. 3a—3c faN=1,4 and 10, perature potentials of first order phase transitions. However,
respectively, the curves are rough fits of the form of Eqg.even if the transition is first order, it is very close to a second
(4.1), taking into account a slight shift of the point of “phase order one. In thermal equilibrium a first order phase transi-
transition” ¢=2v. Such a functional behavior is typical of tion is expected21,24); it becomes second order only after
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— 1 - T T T 1 The formalism presented here contains of course the limit
2'_ a i N—co. This limit is obtained by letting.« 1/N and ¢, ¢,
L, "o ] voeN. In this limit the quantum fluctuationsy; become
1,5 M " 5 o irrelevant, and so does1,. The “pion” mass M, and the
: o ; “classical mass” M become identical to the masst of
1 % o 8 A Refs.[11-14 or x(t) of Ref.[10]. In the broken symmetry
I g . T phase the instability pushes this mass to zero. Here, for finite
0,5r . K ° 7 N, we find M % to remain positive though small in the broken
0' > 0 ¢ = ° symmetry phase, while\? again vanishes. It should be
®, ] mentioned that the vanishing of the classical m&§in the
I I L broken symmetry phase is due to the fact that the figt)

" " 1 "
1 12 14 1,6 1.8 2 settles at a constant nonzero value. For the fluctuation mass

FIG. 4. The various masses averaged at late times$(0), as M 5 the dynamics of back reaction only forces it to en-
functions of the initial amplitude. Squares# 2; diamonds: M 3; negative In the largeN limit the identity of the two masses
circles: M2 . Parameters al=4 and\=1. M?= M 3= M? entails their vanishing at late times, as ex-

pected from the Nambu-Goldstone theorem. The situation

including higher loop corrections. Figure 1b puts in evidencefound here at large times is analogous to the one found in
that the time averaging is problematic near the phase transihermal equilibrium(21,23 (see Sec. )l
tion; this implies that the functional dependence the “order For a phase transition of second order themass, all
parameter”¢.,. near ¢,=+2v is not determined with high Mass scales are expected to vanish at the “critical point,”
precision. i.e., for ¢pp= \/fv. We see from Fig. 4 that this is almost the

We would like to remark that we have chosen specialcase. For a first order phase transition the curvature of the
initial conditions which allow the classical field to move in potential in the broken symmetry minimum decreases when
one fixed direction only. So the system cannot see the differapproaching the phase transition, but remains positive up to
ence between a double-well and a Mexican hat potentiagnd beyond the phase transition. Above the phase transition
Imposing more general initial conditiofi§3] may lead to an  the curvature in the symmetric minimum increases again.
improved understanding of the nonequilibrium properties ofThe fact thatM 2 does not really reach zero may of course
the system. Such a generalization may be useful especiallye a deficiency of our numerics. We point out, however, that
near the transition poin=+2uv. critical behavior implies large length and also time scales, so

For ¢>/2v the time average op vanishes as—, and  that in this neighborhood the time averaging is precarious
in fact already at an early stage of evolution. However, theand the late time values are not very precise. It is not clear
amplitude of the oscillations decreases very slowly, if at all.whether the field in Fig. 1b will jump back and forth between
SO, a|th0ugh the order pararneté,;c shows the behavior the various minima at later times again and, if it doeS,
expected in the symmetric phase of a thermal system, an@hether this is not a consequence of accumulated tiny nu-
although the system becomes essentially stationary, it showgerical errors. We again conclude that, if the phase transition
no resemblance to a system in thermal equilibrium with as of first order, it is “weakly first order.” While we have
constant value ofs. We will further analyze this phase, be- mostly presented results fot=4, we find similar results for
low. N=1 andN=10. ForN=1 the mass\, is of course mean-
ingless.

As we have mentioned above, in the symmetric phase the
time average of the fielp becomes zero at late times, while

Another set of variables characteristic for the phase structhe field itself continues to oscillate with essentially constant
ture of theO(N) model in equilibrium are the mass scales oramplitude, implying that the time averagep?) of the
correlation lengths. In the broken symmetry phase we expeciquared field remains different from zero. This implies that
a vanishing pion mass and a nonzero value of the fielth  the masses\ 3 and M 3 necessarily have different time av-
Sec. Il we have discussed to some extent the problem of therages; indeed the classical field contributes witl{ @) to
Goldstone mass, which should not be identified naively withy A12) but only with A($2) to (M 2). Actually even the
My,; rather, we have proposed to associate it with the “clasgyantum fluctuations?; and F, have different time aver-
sical mass” M, defined in Eq.(2.16. Both masses would ages. This is contrary to what one expects in a symmetric
coincide in the largeN limit. Likewise, the sigma mass is not equilibrium phase. The problem is inherent in the initial con-
given nazlvely bYé\/il- We plot the three squared massesgitions which necessarily require a high excitation and the
M7, M35, and Mg as functions ofgy in Fig. 4, forN=4,  choice of direction inO(N) space. It is appropriate at this
A=1. M2 is seen to be almost zero for ¢y<y2v and to point to compare with &* modelwithoutspontaneous sym-
increase for larger values af,, as expected for the Gold- metry breaking, i.e., wittm?=—\v2>0. There again the
stone mass. The mas&z«l% is small forv<¢oy<+2v but classical field oscillates aroungi=0 with slowly decreasing
definitely different from zero, and increases likewise for amplitude. Again the time average of mass; remains dif-
>2v. The “sigma mass"M, is different from zero every- ferent from the one oﬁ\/l% pertaining to the fieldsy, with
where, except neap,=2v. a=2...N. We show in Fig. 5 the dependence of the late

C. Late time behavior of the masses
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FIG. 5. The various masses averaged at late tihes300), as (a)

functions of the initial amplitude for a model without symmetry

1 = — 2 2y — . . v T T T
breakingN=4, A\=1, v°=—m‘/A=—1. Symbols as in Fig. 4. 10 \/\/\A/V\MMMW o(t=2r)

time averaged masses for this manifestly symmetric theory.

The close resemblance with the behavior in the high energy 5 |i

phase of the model with spontaneous symmetry breaking is i I
\\ A |
Al

obvious. The difference between the masses is not related to
spontaneous symmetry breaking but to the fact that the sys- 0 ‘V' ATk
tem is prepared in a non-symmetric state. A
While the behavior of massest3 and M2 found here _J !
essentially reproduces the one/of 2 in the largeN limit we
have seen here, that the sigma mass contains valuable infor- - : : P
mation about the nature of the phase transition, not available ~ © 50 100 150 200 250
in the largeN limit, and that the sigma fluctuations are rel- ~ ®
evant for finiteN.

FIG. 6. (a) Equal-time correlations of pion fluctuations. We plot
rC(r), with C(r) as defined in Eq(4.2), at timest=30, 50, 100,

D. Correlations for parameters =N, A=1/N, N=4, 10 and forN—co. Initial

Correlations of mode functions have been discussed i@MPplituded,=1.024. On top the amplitude(t)/v for N— . (b)
various publicationg§10,13,28,29 If one thinks of theN Equal-time c.or_r_elatlons_ of pion fluctuations; parametsrs4, A
— 4 model as a model for pion production, possibly display-~ /4. v=2. initial amplitude¢o=1.2.
ing structures like disordered chiral condensates, it is the
correlations between the pion fluctuations=@ or a N-N=1, with N=0o0, 10 and 4. The initial amplitude ig
=2 ...N) which are relevant. In the largé-limit these are  =1.024 implying in all casesm,;=0.2v. It is seen that
the only available correlations. It was found in a lale- there are long range correlations in all cases. They are seem-
computation including the full back reactidd3] that the ingly related to or actually generated by the oscillations of
correlation length grows with time in the broken symmetrythe classical field. Its amplitude is displayed in the same
phase. Kaisef28], analyzing the correlations in the initial figure for the caseN—c, the finite N amplitudes behave
phase, before back reaction sets in, suggested the occurrenggy similarly. The correlations are positive throughout for
of large correlation lengths. Hiro-Oka and Minakp28] per-  the largeN case. FoN= 10 andN=4 they alternate in sign
forming a computation with back reaction, however unrenorqn the central region at late times. So at snlin particular
malized and with a different Hartree factorization, suggestegyt N=4, these results certainly do not suggest a growth of

that the correlation length remains small. _ positively correlated domains but rather a wash-out implied

The pion correlations are obtain¢d3] as the Fourier- py the alternating signs. In fact the size of a positively cor-

Bessel transform related region is essentially of the order of an oscillation
&K period of the sigma field.

C(r.t)= Xt 0.t))= ek X (K 1)[2 ~ The close relationship between the oscillations of the clas-

(1,0 ={m2(x072(0,1)) f (27)%2wo0 (kD) sical field and the correlations is further demonstrated in Fig.

6b. ForN=4, \=1 and an initial valuepy=1.2v the oscil-
1 (= lations of the classical field decay rather quickly, and so do
= f dk ksin(kr)|f,(k,t)|2. (4.2)  the correlations. This means that one has to be cautious with
27?rJo their interpretation: these correlations are not due to an inter-
action between field fluctuations but are generated by the
We have performed a series of simulations illustrating thecoherence of such fluctuations with an external source. This
transition fromN—-oo to finite N. Figure 6a shows the cor- is not necessarily the wrong physics, but certainly this fea-

relation functionsrC(r) at timest=30, 50 and 100 for ture is inherent in the mean field approach.
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E. Momentum spectra 0.012

T

In the largeN limit one of the most pronounced charac- 0.01
teristics of the momentum spectra of the “pion” fluctuations o og
is the occurrence of parametric resonance bands. These de-
velop already in the early stage of evolution, before back
reaction sets in. Then the time dependence of the classical 0004 |
field is described by Jacobian elliptic functions, and the fluc-  0.002
tuations are solutions of the Laneguation. These solutions 0
have been derived and discussed extensive[{l1r-13.

For our finiteN system the early time behavior of the
classical field and of the pion modes is the same as in the -0.004

0.006

I—

-0.002

largeN limit, as before the onset of fluctuations batZ -0.006 : k
and M 5 are approximatley equal to($?—v?), while M3 0 ! 2 3 4 3
=\ (3¢%—v?). The analysis of the pion fluctuations can be @
taken over from Ref[11], therefore. Forpy< \/2v the para- 2
metric resonance band is given [B6] 18 t
pr N 1.6 |
2 0 2 2 14
)\(u 7) <k <§¢0, (4.3 5
1
as given in Ref[11]. For ¢o>+2v parametric resonance 0.8
occurs(see the Appendixin the momentum interval 0.6
0.4
0< K2 D 0.2 H
<k <§ ¢0. (4.4) 0 —
02 : : A k
0.5 1 L5 2

In Figs. 7 and 8 we plot the integrands of the various fluc- (b)
tuation integrals?;, i.e.,
FIG. 7. (a) Spectrum of sigma fluctuations in the broken sym-
metry phase. We display the integrand defined in @) of the
) (4.5 fluctuation integral as a function &ffor A=1, v=1, ¢p=1.2» at
t=100. (b) Spectrum of pion fluctuations in the broken symmetry
phase. Notation and parameters agan

< If,(k,0)[2— 1+ Vi
2 n 2w

2
27 2wig Wio

as functions ok.

As seen in Figs. 7b and 8b parametric resonance indeetie classical field is not related to spontaneous breaking but
dominates the pion fluctuations within the momentum inter+to the non-symmetry of the state.
vals (4.3) and(4.4) in the broken symmetry and in the sym-
metric phase respectively. The sigma fluctuations are unim-
portant in the broken symmetry phase, as displayed in Fig.
7a. In the symmetric phase they develop a pronounced reso- As we have seen, the behavior of the system bedigwv
nance which seemingly becomes sharper and sharper as time\2v displays the features of a spontaneously broken phase
increases. The position of the resonance can be obtained lyy a rather convincing way, while for the symmetric phase
considering the periodicityl of the square of the classical the non-symmetric initial conditions remain manifest even at
field and the frequency of the “sigma” fluctuations; one ex- late times. The amplitude of oscillations of the classical field
pectsk?+ (M 2)=472/T2. The empirical“measured”’) val-  does not go to zero even if we extend the simulation to times
ues of T and(.M 2) for the simulation with our parameter set beyond which we believe our numerical reliability. The evi-
yield k=1.5 in agreement with Fig. 8a. As the resonance idence for symmetry restoration remains indirect, therefore.
due to a time-dependent mass term, it should be situated in®@ it might be useful to have yet another criterion. This is
resonance band, as indeed suggested by Fig. 8a. For tHi&ven by the dynamics of the classical field. In a rather trivial
resonance band the early time analysis does not apply, as tM&y the potential that yields the “force” experienced by the
sigma fluctuations evolve at a time when back reaction duélassical field is given by the potential energy, obtained by
to pion fluctuations has already modified the equation for thgubtracting the kinetic energy from the total energy,
condensate fielgh(t), see Fig. 2c. It should be noted that an =E— ¢?%/2. This potential is of course time-dependent and is
analoguos resonance appears in the spectrum of siigma  explored only within the range of oscillations of the field. We
gitudina) fluctuations in theb* modelwithout spontaneous display this potential energy in Figs. 9a and 9b for the broken
symmetry breaking, while the piofiransversgfluctuations and for the symmetric phase, respectively. It is seen that the
display a broad parametric resonance band. So again the difositions of minima shift fromp=*=v to smaller absolute
ference between the fluctuations parallel and orthogonal twalues in the broken symmetry phase, while in the symmetric

F. A naive dynamical effective potential
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FIG. 9. (a) Evolution of the potential energy. Definition as in
Sec. IV F. Parameters:i=1, A=1, and¢y=1.20. (b) Evolution of
éhe potential energy. Parameters agan howeverg,=2v.

FIG. 8. (a) Spectrum of sigma fluctuations in the symmetric
phase. Notation and parameters as(ay however ¢o=2v. (b)
Spectrum of pion fluctuations in the symmetric phase. Notation an
parameters as ifg), howevergpy,=2v.

Our approach provides an new tool for performing studies
phase the separate minima entirely disappear after a few osf nonequilibrium evolution in scenarios typical of heavy ion

cillations and a new minimum appearsé& 0. collisions [25] or of the dynamics of inflation in the early
universe[31], using appropriate models like tl@&4) sigma
V. CONCLUSIONS model or realistic grand unified theories. It should be espe-

We have presented here an analysis of nonequilibriurr?'a”y useful for studying phase transitions and critical be-

S . havior in a nonequilibrium context. It would be useful to
dynamics in O(N) models with spontaneous symmetry extend this study to more general initial conditions exploit-
breaking at finiteN in a bubble-resummed one-loop approxi- y 9 P

mation. This has allowed us to study some new features dﬂg more of the multi-dimensional Mexican hat structure of
' t

such systems, not accessible to the laxger one-loop ap- e potentials in models Wlthl#l. The tgchmques using
proximations. coupled-channel Green functions are availddie—51].

We have found that the back reaction of the quantum Thermalization is not expected in the laryeapproxima-
fluctuations on themselves prevents, as in the latgap-  tion and, in the absence of a rescattering involving the next
proximation, a catastrophic instability of the system as founcPrder sunset diagrams, may not be expected here either. One
in the one-loop approximation. The mechanism is, like inmay consider this as a drawback of the Hartree type approxi-
largeN, an exponential evolution of those quantum fluctua-mation we are using. In simpler quantum systems where one
tions whose effective mass squared has become negativean compare to the exact time evolution the Hartree approxi-
pushing this mass squared back to positive values. mation is found to constitute an improvement with respect to

The dependence on the initial conditions displays featurethe largeN approximation, but is further improved by the
of an expected phase transition between a regime with spomaclusion of sunset diagrani88—-4(Q. Still it describes well
taneous symmetry breaking and a symmetric phase. A monge early time behavior. In heavy ion collisions or in the
detailed analysis of nonequilibrium dynamics in the criticalearly universe the behavior at early times, and/or without

region may provide new insights into the nature of the phasgeaching equilibrium and thermalization, may be even more
transition.
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realistic and is therefore interesting as well. It is rewardingwhere sn denotes the Jacobi elliptic function; its indteis
that the phase structure of the theory is revealed by nonequgiven by kIXo/‘/Z(on— 1). It may be related to a Weier-
librium dynamics at early times already. strass elliptic functiorP via

Thermalization is, on the other hand, a basic theoretical
issue, independent of realization in concrete physical pro- 1
cesses. It has recently been investigated by studying the tinfP(7y/x5—1,k) = —————

201 —
evolution of classical fluctuations in Hartree approximation k“(el—e3)
[41]. As the present formalism can be extended to include [2 7 s
higher-loop diagramg22—-24 our work can be considered as % 7;( TVXo— 111K (k)) —es].  (A5)
a first step towards calculations including rescattering of vei—e3

fluctuations[42] and of “controlled nonperturbative dynam- )

ics” [43,44] in three dimensions, using a continuum regular-Furthermore _we have(see section 18.9 of Ref[54])
ization. This requires the inclusion of sunset and higher ordefK ' (k) =’ e, —e; whereo' is the imaginary half period
diagrams, incorporating rescattering of the quantum fluctuaof the Weierstrass functiof?. For the rootse; we find e,
tions. Such calculations are being performed at prel&git =x&2—2/3, e,=1/3, ande;= — y3/2+1/3, the invariants
using lattice regularizations. We think that it will still take a are given by gzz(XS— 1)?>+1/3 and 3y3= —()(S—l)2
long time until the limitations introduced by various approxi- + 1/9. The half periods of the double-periodic functiBrare
mations are fully understood, leading to a well-based undenelated to the roots byP(w)=e;, P(w+w’')=e, and
standing of thermalization in quantum field theory. So vari-P(w')=e;. The equations of motion for thig then become
ous alternative approaches will have to be considered. With

our modest new step, introducirpmel/N corrections we f1+[g*+1-6P(7+w')]f1=0 (A6)
are clearly still far off such a demanding formal and in par-
ticular numerical task; we think, however, that our investiga-
tion provides some useful, and possibly inspiring, new in-
sights.

1
fy+|a*= 3 —2P(7+w") |f,=0. (A7)

The general Lamequation read§55]
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. o(1*a) _
APPENDIX: SOME SOLUTIONS OF THE LAME fz:—a( D exp(+ 7{(a)), (A9)
EQUATION

The following analysis follows closely the one in Ref. wherea is determined by the equation

[11]. The basic formulas are from Rgb4], the only differ- Pla)=a (A10)
ence in notation is in the argument of the elliptic intedfal '
which is m there anck= \/m here. We introduce the dimen- and wheres and¢ are Weierstrass functions.
sionless classical fielgg= ¢/v and the dimensionless time For f; we haven=2 and the solution is given bib5]
variable 7= \Avt. We denote differentiation with respect to
x by a prime,df/dr=f’. Then the equation of motion for d o(t*a) _
before the onset of back reaction via fluctuations, and ne- f1=3x () exp(+ [ {(a) + B]), (A11)
glecting finite renormalization ternj$7] is given by

wherea is one of the solutions of

X"+ x%=x=0. (A1) ,
_a;tgs A12
Using the dimensionless momentum variatgle=k/\\v @ 3a’-g, (A12)
(herek is the momentum variable used in the main ke
mode equations before the onset of back reaction read with a;=a/3, and where
f14+(q2—1+3x?)f,=0 (A2) ~_ Pla)
P= o P(a)—a, (AL3)

f54+(9?— 1+ x?)f,=0. A3 ,
2+(d Xt (A3) The solutions of the Lamequation are quasiperiodic; if the

argument increases by a period 2hen the solution repro-
duces itself up to factor exi- («)) whereF () is known as
Floquet index. If it is imaginary then there is an exponen-
tially increasing solution, if it is real the solutions are peri-
X(7)=xo[1=srP(7yx5—1,k)]"2, (A4)  odic up to a phase. The right hand sides of Hgd.2) and

For the symmetric phase, i.exg= ¢o/v> J2, the solution
of the classical equation of motion is given by
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(A10) are real. The Weierstrass functi#hmaps the funda- Again « is situated on the boundary of the fundamental rect-
mental rectangld 0,w,w+ ®»’,0’,0] onto the upper half angle with the same corners. The Floquet index is found to
plane, so the solutiona of these equations are situated on be

the boundary of the fundamental rectangle; the origin0

is mapped to the infinite point. iF ()= ag(0)— ol(a)- P'(a)
For f, a closer analysis shows that on the sectif®] a)=aslw)mwdla)mo 2P(a) +(1+2)/3°
and[o',0’ + w] of this boundary the Floquet index (A16)
Fla)=—2i(al(w)~ol(a)) (Al4) |t is imaginary for values ofx on the section§0,w] and

is imaginary, so in these regions one has parametric res ', 0"+ o] of the boundary of the fundamental rectangle.
gmnary, 9 P gain this maps onto the intervaks; <P(a)<~ and eg

nance (“forbidden bands” in analogy to solutions of the : . :
e R o . . <P(«a)<e,. The analysis of the function on the right-hand
Schralinger equation in periodic potentigl®n the sections side of Eq.(A15) shows that the resonance bands are

[0O,w'] and [w,w+ w’] the solutions are oscillator{‘al- > > 2 5 )

lowed bands). The “forbidden” bands are characterized by <q <_l_, 3(X0,_l) +1 a”f"3Xo/2<q_ <0 wh|ch2are
e,<P(a)<x andes<P(a)<e,. For f, this implies para- excluded kinematically, and, in the physical regiong;2
metric resonance in the intervalse<q2<—y2/2+1<0  —3<g*<—1+y3(xp—1)*+1. The latter resonance band
which is excluded kinematically, and in the intervak? is not manifest in Fig. 8a as the sigma fluctuations develop
< x2/2. This resonance band manifests itself in Fig. 8b. only after the classical equation of motion is modified by the

For f,, the sigma fluctuations, the analysis is somewhafack reaction due to the pion fluctuations. We have verified
more cur'nbersome' EGAL2) becc;mes explicitly that our analytical result for the resonance band is correct by

running the simulation without back reaction. The parametric

1 (1+02)3—1+9(x2—1)2 resonance of the sigma fluctuations analyzed here may mani-
Pla)=—= 55 > - (A15)  fest itself for other parameter sets and the result may be of
9 (1+0%)?-1-3(x—1) importance.
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