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Nonequilibrium evolution in scalar O„N… models with spontaneous symmetry breaking
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We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for
a scalarO(N) model with spontaneously broken symmetry. In contrast with previous studies we do not
consider the largeN limit, but the case of finiteN, including N51, i.e., plainlf4 theory. The instabilities
encountered in the one-loop approximation are prevented, as in the large-N limit, by back reaction of the
fluctuations on themselves, or, equivalently, by including a resummation of bubble diagrams. For this resum-
mation and its renormalization we use formulations developed recently based on the effective action formalism
of Cornwall, Jackiw and Tomboulis. The formulation of renormalized equations for finiteN derived here
represents a useful tool for simulations with realistic models. Here we concentrate on the phase structure of
such models. We observe the transition between the spontaneously broken and the symmetric phase at low and
high energy densities, respectively. This shows that the typical structures expected in thermal equilibrium are
encountered in nonequilibrium dynamics even at early times, i.e., before an efficient rescattering can lead to
thermalization.
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I. INTRODUCTION

The investigation of theO(N) vector model at largeN has
a long-standing history in quantum field theory@1–3#. The
dynamical exploration of nonequilibrium properties of su
models has been developed only recently@4–9#. The non-
equilibrium aspects of spontaneous symmetry breaking
particular have been studied in the large-N approximation in
Refs.@10–14#.

At finite N there have been several approaches to form
lating a Hartree-type interaction between the quant
modes. These lead, in general, to problems with renorma
tion @15,16#. On the other hand, without such a back react
the nonequilibrium systems with spontaneous symme
breaking run into seemingly unphysical instabilities~see,
e.g., Fig. 9 in@14# for an illustration!. For equilibrium quan-
tum field theory at finite temperature this interaction betwe
quantum modes is taken into account by resummation
bubble diagrams, i.e., by including daisy and super-daisy
grams. These are essential for studying the phase transi
between the spontaneously broken phase and the phase
restored symmetry. Techniques of bubble resummation h
been developed@17–19# based on the effective action fo
malism of Cornwall, Jackiw, and Tomboulis~CJT! @20#. Re-
cently there have been some new resummation schemes@21–
24# which can be consistently renormalized. While Ref.@21#
is restricted to the lowest order two-loop graphs in the acti
leading to bubble diagram resummation, the formalism
be extended to include higher order graphs@22–24#. These
approaches can be taken over to a formulation of none
librium equations of motion. Here we restrict ourselves
including two-loop graphs of leading order inl and 1/N
only; within the CJT formalism this is denoted as Hartr
approximation@20#.

*Electronic address: baacke@physik.uni-dortmund.de
†Electronic address: stefan.michalski@udo.edu
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Having at our disposal a formalism for renormalize
finite-N nonequilibrium dynamics we can study the new fe
tures introduced by the back reaction between quantum fl
tuations in scalar quantum field theories with spontane
symmetry breaking forfinite N. A case of particular interes
is N54; theO(4) sigma model is widely used as an effe
tive theory for low energy meson interactions. Its nonpert
bative aspects may be an essential element for understan
the phenomena observed at the BNL Relativistic Heavy
Collider ~RHIC! @25#. Such aspects have been discussed p
viously in @26–30#. Larger values ofN may be realized in
grand unified theories, whose nonequilibrium evolution m
be of importance in inflationary cosmology@6,31–37#; we
have included simulations for a suggestive valueN510. It
should be stressed that the present approximation just co
tutes a 1/N correction, and the application to low values ofN
should be taken, therefore, with caution. Indeed, higher or
corrections obtained when including the sunset diagram h
been found to be of importance@24# in equilibrium quantum
field theory. In nonequilibrium quantum field theory the ro
of such higher corrections is being discussed at present@38–
44#.

The out-of-equilibrium configuration that has mainly be
studied is characterized by an initial state in which one of
components has a spatially homogenous classical expe
tion valuef(t). For brevity, and referring to theO(4) case
used as a model of low energy pion interactions, we call t
component sigma (s,a51), the remainingN21 compo-
nents pions (p,a52 . . .N). In the initial states has a clas-
sical valuef(0), thequantum vacuum is characterized by
Bogoliubov transformation of the Fock space vacuum stat
Bogoliubov transformation characterized by initial mass
M1(0) and M2(0). These masses are determined se
consistently, as are their values at finite times.

The evolution of the system is governed by the class
equation of motion for the fieldf(t) and by the mode equa
tions for the quantum fieldsha(x,t). The expectation values
^ha(x,t)ha(x,t)&,a51 . . .N, appear in both equations o
©2002 The American Physical Society19-1
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JÜRGEN BAACKE AND STEFAN MICHALSKI PHYSICAL REVIEW D 65 065019
motion, this constitutes the quantum back reaction. In
large-N limit one omits the quantum fluctuations of th
sigma modea51 and just considers the Goldstone mod
Here we are able to study the behavior of thes fluctuations
as well; we will find that this is a rather important aspect
the critical region.

The plan of this paper is as follows: in Sec. II we intr
duce the model and the potential obtained by bubble diag
resummation in unrenormalized form. Renormalization
discussed in Sec. III. We present our numerical results
Sec. IV and discuss their implication for the phase struct
of the model. Conclusions are presented in Sec. V.

II. FORMULATION OF THE MODEL

We consider theO(N) vector model with spontaneou
symmetry breaking as defined by the Lagrange density

L5
1

2
]mFW ]mFW 2

l

4
~FW 22v2!2. ~2.1!

We consider a quantum system out of equilibrium that
characterized by a spatially homogenous background fi
The fields are separated as

Fa5fa~ t !1ha~x,t ! ~2.2!

into a classical partfa5^Fa& and a fluctuation partha with
^ha&50. Furthermore, in view of spatial translation inva
ance it is convenient to decompose the quantum fluctuat
via

h i~x,t !5E d3k

~2p!32v i0

@ak f i~k,t !eikx1ak
†f i* ~k,t !e2 ikx#,

~2.3!

wherev0i5Ak21mi0
2 . mi0 will be defined below. The sub

script i 51 denotes the sigma mode (a51), i 52 denotes the
pion modes (a52 . . .N).

In formulating the equations of motion and the renorm
ization we follow the presentation of Nemotoet al. @21#
whose generalization to the nonequilibrium system
straightforward.

We introduce the inverse propagator in the classical ba
ground field in anO(N) symmetric form

G ab
215@h1M 2

2#dab1
fafb

fW 2
@M 1

2~ t !2M 2
2~ t !#.

~2.4!

Here M1,2 are trial masses that will be determined se
consistently. In contrast to equilibrium quantum field theo
these masses, as well as the classical field, are allowe
depend on time. This is not the most general parametriza
of an inverse propagator; it is sufficiently general if the C
formalism is restricted to the Hartree-Fock approximatio
but not beyond it~see, e.g.,@43#!. If the inverse propagato
has this restricted form, the propagator itself can be writ
in factorized form in terms of the mode functionsf i(k,t). In
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our application the classical field has just one nonvanish
componentf1; then the inverse propagator has only diago
elements and these read

Gi i ~x,x8!5E d3k

~2p!32v0i

exp„ik•~x2x8!…f i~k,t.! f i* ~k,t,!

~2.5!

~no summation overi ). If the classical field has more tha
one nonvanishing component, the Green function can
likewise expressed in terms of mode functions of a coup
system@51,53#. The occurrence of the mode functions allow
for an interpretation in terms of Fock space states which
been used often to define particle numbers that refer exp
itly to such a basis. If higher order corrections are includ
such naive interpretations have to be reconsidered.

SuperficiallyM1 can be associated with the sigma ma
and M2 with the pion mass. The actual meaning of the
mass type parameters is more subtle, as discussed
Nemoto et al.. We will come back to this point later on.

Using the ansatz~2.4! for the propagator Nemoto et a
derive the CJT effective action, which for a space and ti
independent configuration is characterized by the effec
potential

V~f,M1 ,M2!5
1

2
M 1

2f22
l

2
f41

1

2l~N12!
m2$M 1

21~N

21!M 2
2%2

1

8l~N12!
@~N11!M 1

4

13~N21!M 2
422~N21!M 1

2M 2
2

12Nm4#1
1

2E d4k

~2p!4
ln~k21M 1

2!

1
N21

2 E d4k

~2p!4
ln~k21M 2

2!. ~2.6!

Heref25fW 2. We note that our convention for the couplin
constant differs from the one in@21#; furthermore we have to
setm252lv2.

We can easily generalize this effective potential to obt
the nonequilibrium energy density

E5
1

2
ḟ21

1

2
M 1

2f22
l

2
f42

1

2~N12!
v2$M 1

21~N

21!M 2
2%2

1

8l~N12!
@~N11!M 1

413~N21!M 2
4

22~N21!M 1
2M 2

212Nl2v4#1Efl,11~N21!Efl,2

~2.7!

with
9-2
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Efl, i5
1

2E d3k

~2p!32v0i

@ u ḟ i u21„k21M i
2~ t !…u f i u2#.

~2.8!

The equations of motion can easily be derived by requir
that this energy density be conserved. This is the case if
equation of motion for the fieldf is given by

f̈~ t !1@M 1
2~ t !22lf~ t !2#f~ t !50, ~2.9!

if the quantum modes satisfy the equations of motion

f̈ i~k,t !1@k21M i
2~ t !# f i~k,t !50, ~2.10!

and if the trial masses satisfy, for allt, the gap equations

M 1
2~ t !5l@3f2~ t !2v213F1~ t !1~N21!F2~ t !#

~2.11!

M 2
2~ t !5l@f2~ t !2v21F1~ t !1~N11!F2~ t !#.

~2.12!

HereFi(t) are the fluctuation integrals

Fi~ t !5E d3k

~2p!32v i0

u f i~k,t !u2. ~2.13!

The gap equations incorporate the resummation of bub
diagrams.

For a time-dependent problem we have to specify ini
conditions. We choose att50 a value of the classical field
f05f(0) different from its value in the equilibrium groun
state, which is given byv apart from quantum corrections
The initial mass parametersmi05Mi(0) are obtained by
solving the gap equations~2.11! and ~2.12! at t50, i.e., by
finding the extremum of the effective potential at a fix
value off5f0. So the initial configuration is an equilibrium
configuration with an externally fixed fieldf0. When the
field is allowed, fort.0, to become an internal dynamic
field the nonequilibrium evolution sets in.

The equations of motion and the gap equations still c
tain divergent integrals and need to be replaced by renorm
ized ones. These will be derived in the next section.

Before continuing in developing the formalism we wou
like to come back to the discussion of the masses. The m
parametersMi naively represent the effective masses for
s and p fluctuations. In finite temperature quantum fie
theory one expects massless quanta, the Goldstone mod
the field is in the temperature-dependent minimum of
effective potential in the broken symmetry phase. Likewi
in the nonequilibrium evolution of large-N systems it has
been found@10–14# that the mass of the fluctuations goes
zero in the broken symmetry phase as the classical field
proaches an equilibrium value. In some sense that is tri
there, because the mass of the fluctuations appears in
classical equation of motion as well, and in equilibrium w
must havef̈52M 2(t)f50. Here the situation is more
complicated and indeed we will find thatM 2

2(t) will not go
to zero at late times, even if the classical field settles at so
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constant value. Likewise, in the static case, at finite tempe
ture, one finds that the ‘‘pion’’ massM2 is not in general
zero; the question has been raised, whether Goldstone’s t
rem is violated by the approximation or otherwise.

The interpretation of the masses and the value of the p
mass in the present context have been discussed extens
in Refs. @21,23#. These authors argue thatM2 is not to be
interpreted as the pion mass, but as a variational param
which does not necessarily have an immediate physical
terpretation. The ansatz for the inverse Green function an
consequence the effective potential have fullO(N) symme-
try. The fieldf appearing there is theabsolute valueof the
field fa . Therefore by symmetry the pion mass must triv
ally be zero in the minimum of the effective potential, whic
is anO(N21) sphere. Nemotoet al. show that trivially the
appropriate second derivatives of the effective potential l
to a vanishing pion mass. LikewiseM1 is another paramete
characterizing the Green function and is different from t
sigma mass which is given by

ms
252v2S dM 1

2

df2
22l D . ~2.14!

This is equal to 2lv2 on the tree level only.
It is instructive to do the simple algebra of taking seco

derivatives of anO(N) symmetric function:

]2f ~fW 2!

]fa]fb
52dabf 8~fW 2!14fafbf 9~fW 2!. ~2.15!

The pion mass is the second derivative perpendicular to
direction offa , so it is given by the first term and vanishe
if f 8(fW 2)50, which defines the minimum. This correspon
precisely to thefirst derivative of the potential appearing i
the classical equation of motion. We note that this effect
mass is given by

Mcl
2 5„M 1

2~ t !22lf2~ t !…. ~2.16!

It vanishes trivially if the field settles at late times at som
constant value.

The massesms
2 andMcl

2 determine the fluctuations of th
classical fieldf near the minimum of the effective potentia
in analogy to the tree level masses of the sigma and p
fields. If all higher corrections were included, one wou
expect these masses to determine the exact propagator
k250. In this sense the vanishing ofMcl

2 entails a pole of the
pion propagator atk250. However, contrary to the large-N
limit, Mcl

2 is not the mass that determines the fluctuationsf 2

and, thereby, the ‘‘pion’’ propagatorG22.

III. RENORMALIZATION

The renormalization of the effective potential has be
discussed in@21# and@22#. As stated in the latter publication
both formulations are equivalent; here we follow the one
Nemoto et al., employing the auxiliary field method, in
which the counterterms in the effective potential are int
duced via the trial masses:
9-3
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dE5Av2M 1
21Bv2M 2

21
1

2
CM 1

41
1

2
~N21!DM 2

4 .

~3.1!

Divergent and finite parts of the fluctuation integralsFi and
of the fluctuation energy densities have been analyzed
@9,45# using a perturbation expansion in the ‘‘potentials’’

Vi~ t !5Mi
2~ t !2Mi

2~0!. ~3.2!

As the definition of the Green functions~2.5!, the expres-
sions for the energy densities~2.8! and for the fluctuation
integrals~2.13!, as well as the equations~2.10! satisfied by
the mode functions are entirely analogous to those in@45#,
the expansions derived there can be applied here in the s
way. In the power series expansion of the energy dens
with respect toVi the zeroth, first and second order terms a
UV divergent, while in the fluctuation integrals it is the z
roth and first order terms. In dimensional regularization
powers ofVi can be arranged with powers ofmi0

2 into powers
of M i

2 . The expansion then reads

Efl, i5
1

64p2 FM i
4S 2L1 ln

mi0
2

m2 D 22M i
2mi0

2 1
1

2
mi0

4 G1Efl, i
fin

~3.3!

Fi5
1

16p2 FM i
2S 2L1 ln

mi0
2

m2 D 2mi0
2 G1F i

fin . ~3.4!

Here

L5
2

e
2g1 ln 4p, ~3.5!

m is the renormalization scale, andmi0 are the mass param
eters appearing in the fluctuation integrals. In order to av
bad initial singularities@46–48# they have to be chosen a
mi05Mi(0), the ‘‘initial masses.’’ Finally the finite fluctua-
tion integrals are defined by subtracting the UV diverg
parts under the momentum integral via

Efl, i
fin 5

1

2E d3k

~2p!32v i0
F u ḟ i u21~k21M i

2!u f i u222v i0
2 2Vi

1
V i

2

4v i0
2 G ~3.6!

F i
fin5

1

2E d3k

~2p!32v i0
F u f i u2211

Vi

2v i0
2 G . ~3.7!

The subtractions used here are analytically equivalent
numerically more sophisticated procedure used in@9#. The
subtracted integrals are UV finite.

From Eqs.~3.3! and ~3.4! it is evident that the divergen
parts }L are independent of the initial massesmi0

2 and
thereby of the initial conditions. Exactly as in equilibriu
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theory @21# the divergent parts can be removed by choos
the counterterms~3.1! asA5B50 and as

C5D5
1

64p2
L. ~3.8!

With this choice the energy density as well as the gap eq
tions become finite. The equations of motion are not affec
The energy density is obtained simply by replacing the fl
tuation energies by the right hand sides of Eq.~3.3! omitting
the term proportional toL. Likewise the renormalized gap
equations are obtained by replacing the fluctuation integ
by the right hand sides of Eq.~3.4! without the term propor-
tional to L. In our numerical computations the renormaliz
tion scalem has been taken equal to the sigma mass. As l
as the ratio ofm and the relevant masses is far from t
Landau pole, i.e.,m2/m2!exp 16p2/l the dependence on
the renormalization scale is weak. This is the condition un
which theF4 theory can be treated as a low energy effect
theory. For our numerical simulations withl51 this condi-
tion is satisfied.

The gap equations for the masses have to be solved o
at t50. By subtracting these equations att50 from the gen-
eral gap equations one obtains the renormalized gap e
tions for the potentialsVi . These read explicitly

V15lF3~f22f0
2!13F 1

fin1~N21!F 2
fin1

3

16p2
ln

m10
2

m2
V1~ t !

1
N21

16p2
ln

m20
2

m2
V2~ t !G ~3.9!

V25lF ~f22f0
2!1F 1

fin1~N11!F 2
fin1

1

16p2
ln

m10
2

m2
V1~ t !

1
N11

16p2
ln

m20
2

m2
V2~ t !G . ~3.10!

These linear equations can be solved easily forVi(t),i 51,2
using a time-independent matrix. This matrix is analogous
the factor C5@11(l/16p2)ln(m2/m0

2)#21 appearing in the
large-N case@45#.

The numerical implementation has been described in s
eral previous publications~see, e.g.,@9#!, so we do not repea
this here. The accuracy of the computations is monitored
verifying the energy conservation, which holds with a typic
precision of five significant digits.

We finally mention the problem of initial singularities tha
appears in the context of renormalization@46–48#. These can
be avoided by modifying the initial quantum ensemble via
suitable Bogoliubov transformation. This can be done in
present model as well. For the values of the couplings
initial parameters considered here the initial singularities
numerically unimportant and have been therefore dis
garded.
9-4
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IV. RESULTS AND DISCUSSION

A. Numerical simulations

We have performed numerical simulations for the ca
N51, N54, andN510. The coupling constant was take
to bel51 and we have varied the initial value for the fie
f05f(0). We have considered only valuesf0.v, as for
smaller values the initial massm205M2(0) becomes imagi-
nary. The regionf,v is only explored dynamically. We
display the time evolution of the classical amplitudef(t) for
the parametersN54, l51 in Figs. 1a–1c, for initial ampli-
tudes f051.3v,A2v, f051.445v.A2v and f051.6v
.A2v. For the tree level potential the valuef5A2v is the
value for which the energy is equal to the height of the b
rier (N51) or the top of the Mexican hat (N.1). We will
discuss the physics associated with the three ranges o
rameters below.

In the nonequilibrium evolution of models with spontan
ous symmetry breaking both squared massesM1,2

2 can in
general take negative values. In large-N dynamics it is well
known @12–14# that in this situation the fluctations increa
exponentially and drive the squared masses back to pos
values. This stabilizes the system dynamically and preve
an unphysical behavior in which an exponentially increas
amount of quantum energy, taken from the vacuum, is c
verted into classical one. Our first essential observation
that for all parameter sets and initial values this stabilizat
takes place for finiteN as well. We display a typical time
evolution of the classical field and of the squared mas
M1,2

2 in Fig. 2a and Fig. 2b, based on the parametersN
54, l51, andf051.4v. In Fig. 2a both squared masses a
seen to become negative at early times and to reach pos
values at late times. In Fig. 2b one sees the evolution of
energy of the fluctuations which is very strong in the tim
range where the squared masses are negative. The cla
minimum of the energy is atE052lv4/4, i.e., E052.25
for this parameter set. So essentially all the energy is tra
ferred to fluctuations within a few oscillations of the conde
sate fieldf. In Fig. 2c we display the two fluctuation inte
grals as functions of time forf052v, again forN54 and
l51, i.e., in the symmetric phase. The pion fluctuations
seen to develop rather quickly, while the sigma fluctuatio
only develop at later times. The main aspect we will consi
here is the phase structure of the model. In thermal quan
field theory one expects a phase with spontaneously bro
symmetry at low temperature, and symmetry restoration
high temperature. Here we have a microcanonical desc
tion, so instead of temperature we specify the energy wh
in turn is determined by the initial valuef0. As already
mentioned the system will not thermalize in the approxim
tion used here, but it is characterized at late times by limit
values, or time averages, attained by the various masses
by the classical fieldf. The latter can be compared with th
temperature-dependent vacuum expectation valuev(T), the
former ones are associated to correlation lengths.

Classically the spontaneously broken phase is expecte
be situated in the intervalv,f0,A2v. For larger values of
f0 one should be in the phase of restored symmetry. S
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the effective potential receives quantum corrections
boundaries of these intervals will be slightly shifted, f
brevity we continue to use the classical values in the follo
ing discussion.

B. Late time behavior of the classical field

We first considerf`(f0), the value off averaged at late
times, which can be considered as an order parameter
placing the vacuum expectation valuev(T) of finite tempera-
ture field theory. In the analysis of the broken symme

FIG. 1. ~a! Time evolution of the classical fieldf for f0

,A2v ~broken symmetry phase!. Field amplitude and time are in
units of v andv21, respectively. Parameters areN54, l51, and
f051.3v. ~b! Time evolution of the classical fieldf for f0

.A2v ~critical region!. Parameters as above butf051.445v. ~c!
Time evolution of the classical fieldf for f0.A2v ~symmetric
phase!. Parameters as above butf051.6v.
9-5



en

q
e
f

ase
um
try

ior
rd

lts
is

-
ver,
nd
si-
r

i

:

al
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phase in the large-N limit it was observed@12–14# that the
value off at late times has a specific and universal dep
dence on the initial valuef0, given at zero temperature by

f`.@f0
2~2v22f0

2!#1/4. ~4.1!

We find that this is the case for finiteN as well. The depen-
dencef`(f0) is shown in Figs. 3a–3c forN51,4 and 10,
respectively, the curves are rough fits of the form of E
~4.1!, taking into account a slight shift of the point of ‘‘phas
transition’’ f.A2v. Such a functional behavior is typical o

FIG. 2. ~a! Time evolution of the massesM1,2
2 . Parameters are

N54, l51, and f051.4v. The upper curve isM 1
2. ~b! Time

evolution of the energy densities. Parameters as in~a!. Displayed
are the classical energy density, the fluctuation energy density
cluding finite renormalization terms and the total energy density.~c!
Time evolution of the fluctuations integrals. Parameters as in~a!,
however withf052v. Upper curve: pion fluctuations; lower curve
sigma fluctuations.
06501
-

.

a phase transition of second order. In a first order ph
transition the vacuum expectation value of the true minim
jumps at the phase transition from the broken symme
minimum to the symmetric one. As the functional behav
of Eq. ~4.1! has an infinite slope at the critical point it is ha
to decide from numerical data whetherf` near f05A2v
goes to zero continously or via a discontinuity. The resu
strongly indicate that the transition is discontinuous. This
suggested as well by the time evolution off displayed in
Fig. 1b. There seems to be a minimum atf50 and another
one nearf..5v, as one knows it from typical finite tem
perature potentials of first order phase transitions. Howe
even if the transition is first order, it is very close to a seco
order one. In thermal equilibrium a first order phase tran
tion is expected@21,24#; it becomes second order only afte

n-

FIG. 3. ~a! The late-time amplitude as a function of the initi
amplitude. Parameters areN51 andl51. ~b! Same as~a!, for N
54 andl51. ~c! Same as~a!, for N510 andl51.
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including higher loop corrections. Figure 1b puts in eviden
that the time averaging is problematic near the phase tra
tion; this implies that the functional dependence the ‘‘ord
parameter’’f` nearf0.A2v is not determined with high
precision.

We would like to remark that we have chosen spec
initial conditions which allow the classical field to move
one fixed direction only. So the system cannot see the dif
ence between a double-well and a Mexican hat poten
Imposing more general initial conditions@53# may lead to an
improved understanding of the nonequilibrium properties
the system. Such a generalization may be useful espec
near the transition pointf0.A2v.

For f.A2v the time average off vanishes ast→`, and
in fact already at an early stage of evolution. However,
amplitude of the oscillations decreases very slowly, if at
So, although the order parameterf` shows the behavio
expected in the symmetric phase of a thermal system,
although the system becomes essentially stationary, it sh
no resemblance to a system in thermal equilibrium with
constant value off. We will further analyze this phase, be
low.

C. Late time behavior of the masses

Another set of variables characteristic for the phase st
ture of theO(N) model in equilibrium are the mass scales
correlation lengths. In the broken symmetry phase we exp
a vanishing pion mass and a nonzero value of the fieldf. In
Sec. II we have discussed to some extent the problem o
Goldstone mass, which should not be identified naively w
M2; rather, we have proposed to associate it with the ‘‘cl
sical mass’’Mcl defined in Eq.~2.16!. Both masses would
coincide in the large-N limit. Likewise, the sigma mass is no
given naively byM1. We plot the three squared mass
M 1

2, M 2
2, andMcl

2 as functions off0 in Fig. 4, for N54,
l51. Mcl

2 is seen to be almost zero forv,f0,A2v and to
increase for larger values off0, as expected for the Gold
stone mass. The massM 2

2 is small for v,f0,A2v but
definitely different from zero, and increases likewise forv
.A2v. The ‘‘sigma mass’’M1 is different from zero every-
where, except nearf05A2v.

FIG. 4. The various masses averaged at late times (t5300), as
functions of the initial amplitude. Squares:M 1

2; diamonds:M 2
2;

circles:Mcl
2 . Parameters areN54 andl51.
06501
e
si-
r

l

r-
l.

f
lly

e
l.

nd
ws
a

c-
r
ct

he
h
-

The formalism presented here contains of course the l
N→`. This limit is obtained by lettingl}1/N andf, f0 ,
v}AN. In this limit the quantum fluctuationsh1 become
irrelevant, and so doesM1. The ‘‘pion’’ massM2 and the
‘‘classical mass’’Mcl become identical to the massM of
Refs.@11–14# or x(t) of Ref. @10#. In the broken symmetry
phase the instability pushes this mass to zero. Here, for fi
N, we findM 2

2 to remain positive though small in the broke
symmetry phase, whileMcl

2 again vanishes. It should b
mentioned that the vanishing of the classical massMcl

2 in the
broken symmetry phase is due to the fact that the fieldf(t)
settles at a constant nonzero value. For the fluctuation m
M 2

2 the dynamics of back reaction only forces it to benon-
negative. In the large-N limit the identity of the two masses
M 25M 2

25Mcl
2 entails their vanishing at late times, as e

pected from the Nambu-Goldstone theorem. The situa
found here at large times is analogous to the one found
thermal equilibrium@21,23# ~see Sec. II!.

For a phase transition of second order thes mass, all
mass scales are expected to vanish at the ‘‘critical poin
i.e., for f0.A2v. We see from Fig. 4 that this is almost th
case. For a first order phase transition the curvature of
potential in the broken symmetry minimum decreases w
approaching the phase transition, but remains positive u
and beyond the phase transition. Above the phase trans
the curvature in the symmetric minimum increases aga
The fact thatM 1

2 does not really reach zero may of cour
be a deficiency of our numerics. We point out, however, t
critical behavior implies large length and also time scales
that in this neighborhood the time averaging is precario
and the late time values are not very precise. It is not cl
whether the field in Fig. 1b will jump back and forth betwee
the various minima at later times again and, if it doe
whether this is not a consequence of accumulated tiny
merical errors. We again conclude that, if the phase transi
is of first order, it is ‘‘weakly first order.’’ While we have
mostly presented results forN54, we find similar results for
N51 andN510. ForN51 the massM2 is of course mean-
ingless.

As we have mentioned above, in the symmetric phase
time average of the fieldf becomes zero at late times, whi
the field itself continues to oscillate with essentially const
amplitude, implying that the time averagêf2& of the
squared field remains different from zero. This implies th
the massesM 1

2 andM 2
2 necessarily have different time av

erages; indeed the classical field contributes with 3l^f2& to
^M 1

2& but only with l^f2& to ^M 2
2&. Actually even the

quantum fluctuationsF1 and F2 have different time aver-
ages. This is contrary to what one expects in a symme
equilibrium phase. The problem is inherent in the initial co
ditions which necessarily require a high excitation and
choice of direction inO(N) space. It is appropriate at thi
point to compare with aF4 modelwithoutspontaneous sym
metry breaking, i.e., withm252lv2.0. There again the
classical field oscillates aroundf50 with slowly decreasing
amplitude. Again the time average of massM 1

2 remains dif-
ferent from the one ofM 2

2 pertaining to the fieldsha with
a52 . . .N. We show in Fig. 5 the dependence of the la
9-7
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time averaged masses for this manifestly symmetric the
The close resemblance with the behavior in the high ene
phase of the model with spontaneous symmetry breakin
obvious. The difference between the masses is not relate
spontaneous symmetry breaking but to the fact that the
tem is prepared in a non-symmetric state.

While the behavior of massesM 2
2 and Mcl

2 found here
essentially reproduces the one ofM 2 in the large-N limit we
have seen here, that the sigma mass contains valuable i
mation about the nature of the phase transition, not availa
in the large-N limit, and that the sigma fluctuations are re
evant for finiteN.

D. Correlations

Correlations of mode functions have been discussed
various publications@10,13,28,29#. If one thinks of theN
54 model as a model for pion production, possibly displa
ing structures like disordered chiral condensates, it is
correlations between the pion fluctuations (i 52 or a
52 . . .N) which are relevant. In the large-N limit these are
the only available correlations. It was found in a largeN
computation including the full back reaction@13# that the
correlation length grows with time in the broken symme
phase. Kaiser@28#, analyzing the correlations in the initia
phase, before back reaction sets in, suggested the occur
of large correlation lengths. Hiro-Oka and Minakata@29# per-
forming a computation with back reaction, however unren
malized and with a different Hartree factorization, sugges
that the correlation length remains small.

The pion correlations are obtained@13# as the Fourier-
Bessel transform

C~r ,t !5^h2~x,t !h2~0,t !&5E d3k

~2p!32v20

eik•xu f 2~k,t !u2

5
1

2p2r
E

0

`

dk ksin~kr !u f 2~k,t !u2. ~4.2!

We have performed a series of simulations illustrating
transition fromN→` to finite N. Figure 6a shows the cor
relation functionsrC(r ) at times t530, 50 and 100 for

FIG. 5. The various masses averaged at late times (t5300), as
functions of the initial amplitude for a model without symmet
breaking,N54, l51, v252m2/l521. Symbols as in Fig. 4.
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l•N51, with N5`, 10 and 4. The initial amplitude isf0

.1.024v implying in all casesm20.0.2v. It is seen that
there are long range correlations in all cases. They are se
ingly related to or actually generated by the oscillations
the classical field. Its amplitude is displayed in the sa
figure for the caseN→`, the finite N amplitudes behave
very similarly. The correlations are positive throughout f
the large-N case. ForN510 andN54 they alternate in sign
in the central region at late times. So at smallN, in particular
at N54, these results certainly do not suggest a growth
positively correlated domains but rather a wash-out impl
by the alternating signs. In fact the size of a positively c
related region is essentially of the order of an oscillati
period of the sigma field.

The close relationship between the oscillations of the c
sical field and the correlations is further demonstrated in F
6b. ForN54, l51 and an initial valuef051.2v the oscil-
lations of the classical field decay rather quickly, and so
the correlations. This means that one has to be cautious
their interpretation: these correlations are not due to an in
action between field fluctuations but are generated by
coherence of such fluctuations with an external source. T
is not necessarily the wrong physics, but certainly this f
ture is inherent in the mean field approach.

FIG. 6. ~a! Equal-time correlations of pion fluctuations. We pl
rC(r ), with C(r ) as defined in Eq.~4.2!, at timest530, 50, 100,
for parametersv5AN, l51/N, N54, 10 and forN→`. Initial
amplitudef051.024v. On top the amplitudef(t)/v for N→`. ~b!
Equal-time correlations of pion fluctuations; parametersN54, l
51/4, v52, initial amplitudef051.2v.
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E. Momentum spectra

In the large-N limit one of the most pronounced chara
teristics of the momentum spectra of the ‘‘pion’’ fluctuatio
is the occurrence of parametric resonance bands. Thes
velop already in the early stage of evolution, before ba
reaction sets in. Then the time dependence of the clas
field is described by Jacobian elliptic functions, and the fl
tuations are solutions of the Lame´ equation. These solution
have been derived and discussed extensively in@11–13#.

For our finite-N system the early time behavior of th
classical field and of the pion modes is the same as in
large-N limit, as before the onset of fluctuations bothMcl

2

andM 2
2 are approximatley equal tol(f22v2), while M 1

2

.l(3f22v2). The analysis of the pion fluctuations can
taken over from Ref.@11#, therefore. Forf0,A2v the para-
metric resonance band is given by@56#

lS v22
f0

2

2 D ,k2,
l

2
f0

2 , ~4.3!

as given in Ref.@11#. For f0.A2v parametric resonanc
occurs~see the Appendix! in the momentum interval

0,k2,
l

2
f0

2 . ~4.4!

In Figs. 7 and 8 we plot the integrands of the various flu
tuation integralsFi , i.e.,

k2

2p22v i0
S u f i~k,t !u2211

V i

2v i0
2 D ~4.5!

as functions ofk.
As seen in Figs. 7b and 8b parametric resonance ind

dominates the pion fluctuations within the momentum int
vals ~4.3! and~4.4! in the broken symmetry and in the sym
metric phase respectively. The sigma fluctuations are un
portant in the broken symmetry phase, as displayed in
7a. In the symmetric phase they develop a pronounced r
nance which seemingly becomes sharper and sharper as
increases. The position of the resonance can be obtaine
considering the periodicityT of the square of the classica
field and the frequency of the ‘‘sigma’’ fluctuations; one e
pectsk21^M 1

2&.4p2/T2. The empirical~‘‘measured’’! val-
ues ofT and^M 1

2& for the simulation with our parameter s
yield k.1.5 in agreement with Fig. 8a. As the resonance
due to a time-dependent mass term, it should be situated
resonance band, as indeed suggested by Fig. 8a. For
resonance band the early time analysis does not apply, a
sigma fluctuations evolve at a time when back reaction
to pion fluctuations has already modified the equation for
condensate fieldf(t), see Fig. 2c. It should be noted that a
analoguos resonance appears in the spectrum of sigma~lon-
gitudinal! fluctuations in theF4 modelwithout spontaneous
symmetry breaking, while the pion~transverse! fluctuations
display a broad parametric resonance band. So again the
ference between the fluctuations parallel and orthogona
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the classical field is not related to spontaneous breaking
to the non-symmetry of the state.

F. A naive dynamical effective potential

As we have seen, the behavior of the system belowf0

5A2v displays the features of a spontaneously broken ph
in a rather convincing way, while for the symmetric pha
the non-symmetric initial conditions remain manifest even
late times. The amplitude of oscillations of the classical fie
does not go to zero even if we extend the simulation to tim
beyond which we believe our numerical reliability. The ev
dence for symmetry restoration remains indirect, therefo
So it might be useful to have yet another criterion. This
given by the dynamics of the classical field. In a rather triv
way the potential that yields the ‘‘force’’ experienced by th
classical field is given by the potential energy, obtained
subtracting the kinetic energy from the total energy,Vpot

5E2ḟ2/2. This potential is of course time-dependent and
explored only within the range of oscillations of the field. W
display this potential energy in Figs. 9a and 9b for the brok
and for the symmetric phase, respectively. It is seen that
positions of minima shift fromf56v to smaller absolute
values in the broken symmetry phase, while in the symme

FIG. 7. ~a! Spectrum of sigma fluctuations in the broken sym
metry phase. We display the integrand defined in Eq.~4.5! of the
fluctuation integral as a function ofk for l51, v51, f051.2v at
t5100. ~b! Spectrum of pion fluctuations in the broken symme
phase. Notation and parameters as in~a!.
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JÜRGEN BAACKE AND STEFAN MICHALSKI PHYSICAL REVIEW D 65 065019
phase the separate minima entirely disappear after a few
cillations and a new minimum appears atf50.

V. CONCLUSIONS

We have presented here an analysis of nonequilibr
dynamics in O(N) models with spontaneous symmet
breaking at finiteN in a bubble-resummed one-loop approx
mation. This has allowed us to study some new feature
such systems, not accessible to the large-N or one-loop ap-
proximations.

We have found that the back reaction of the quant
fluctuations on themselves prevents, as in the large-N ap-
proximation, a catastrophic instability of the system as fou
in the one-loop approximation. The mechanism is, like
large-N, an exponential evolution of those quantum fluctu
tions whose effective mass squared has become nega
pushing this mass squared back to positive values.

The dependence on the initial conditions displays featu
of an expected phase transition between a regime with s
taneous symmetry breaking and a symmetric phase. A m
detailed analysis of nonequilibrium dynamics in the critic
region may provide new insights into the nature of the ph
transition.

FIG. 8. ~a! Spectrum of sigma fluctuations in the symmet
phase. Notation and parameters as in~a!, howeverf052v. ~b!
Spectrum of pion fluctuations in the symmetric phase. Notation
parameters as in~a!, howeverf052v.
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Our approach provides an new tool for performing stud
of nonequilibrium evolution in scenarios typical of heavy io
collisions @25# or of the dynamics of inflation in the earl
universe@31#, using appropriate models like theO(4) sigma
model or realistic grand unified theories. It should be es
cially useful for studying phase transitions and critical b
havior in a nonequilibrium context. It would be useful
extend this study to more general initial conditions explo
ing more of the multi-dimensional Mexican hat structure
the potentials in models withNÞ1. The techniques using
coupled-channel Green functions are available@49–51#.

Thermalization is not expected in the large-N approxima-
tion and, in the absence of a rescattering involving the n
order sunset diagrams, may not be expected here either.
may consider this as a drawback of the Hartree type appr
mation we are using. In simpler quantum systems where
can compare to the exact time evolution the Hartree appr
mation is found to constitute an improvement with respec
the large-N approximation, but is further improved by th
inclusion of sunset diagrams@38–40#. Still it describes well
the early time behavior. In heavy ion collisions or in th
early universe the behavior at early times, and/or with
reaching equilibrium and thermalization, may be even m

d

FIG. 9. ~a! Evolution of the potential energy. Definition as i
Sec. IV F. Parameters:v51, l51, andf051.2v. ~b! Evolution of
the potential energy. Parameters as in~a!, howeverf052v.
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realistic and is therefore interesting as well. It is reward
that the phase structure of the theory is revealed by none
librium dynamics at early times already.

Thermalization is, on the other hand, a basic theoret
issue, independent of realization in concrete physical p
cesses. It has recently been investigated by studying the
evolution of classical fluctuations in Hartree approximati
@41#. As the present formalism can be extended to inclu
higher-loop diagrams@22–24# our work can be considered a
a first step towards calculations including rescattering
fluctuations@42# and of ‘‘controlled nonperturbative dynam
ics’’ @43,44# in three dimensions, using a continuum regul
ization. This requires the inclusion of sunset and higher or
diagrams, incorporating rescattering of the quantum fluct
tions. Such calculations are being performed at present@52#,
using lattice regularizations. We think that it will still take
long time until the limitations introduced by various approx
mations are fully understood, leading to a well-based und
standing of thermalization in quantum field theory. So va
ous alternative approaches will have to be considered. W
our modest new step, introducingsome1/N corrections we
are clearly still far off such a demanding formal and in p
ticular numerical task; we think, however, that our investig
tion provides some useful, and possibly inspiring, new
sights.
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APPENDIX: SOME SOLUTIONS OF THE LAME´

EQUATION

The following analysis follows closely the one in Re
@11#. The basic formulas are from Ref.@54#, the only differ-
ence in notation is in the argument of the elliptic integralK
which is m there andk5Am here. We introduce the dimen
sionless classical fieldx5f/v and the dimensionless tim
variablet5Alvt. We denote differentiation with respect t
x by a prime,d f /dt5 f 8. Then the equation of motion forx
before the onset of back reaction via fluctuations, and
glecting finite renormalization terms@57# is given by

x91x32x50. ~A1!

Using the dimensionless momentum variableq5k/Alv
~herek is the momentum variable used in the main text! the
mode equations before the onset of back reaction read

f 191~q22113x2! f 150 ~A2!

f 291~q2211x2! f 250. ~A3!

For the symmetric phase, i.e.,x05f0 /v.A2, the solution
of the classical equation of motion is given by

x~t!5x0@12sn2~tAx0
221,k!#1/2, ~A4!
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where sn denotes the Jacobi elliptic function; its indexk is
given by k5x0 /A2(x0

221). It may be related to a Weier
strass elliptic functionP via

sn2~tAx0
221,k!5

1

k2~e12e3!

3FPS tAx0
2211 iK 8~k!

Ae12e3
D 2e3G . ~A5!

Furthermore we have~see section 18.9 of Ref.@54#!
iK 8(k)5v8Ae12e3 wherev8 is the imaginary half period
of the Weierstrass functionP. For the rootsei we find e1

5x0
2/222/3, e251/3, ande352x0

2/211/3, the invariants
are given by g25(x0

221)211/3 and 3g352(x0
221)2

11/9. The half periods of the double-periodic functionP are
related to the roots byP(v)5e1 , P(v1v8)5e2 and
P(v8)5e3. The equations of motion for thef i then become

f 191@q21126P~t1v8!# f 150 ~A6!

f 291Fq22
1

3
22P~t1v8!G f 250. ~A7!

The general Lame´ equation reads@55#

f 92@a1n~n11!P# f 50. ~A8!

For f 2 we haven51 and the solution is given by

f 25
s~t6a!

s~t!
exp„7tz~a!…, ~A9!

wherea is determined by the equation

P~a!5a, ~A10!

and wheres andz are Weierstrass functions.
For f 1 we haven52 and the solution is given by@55#

f 15
d

dx

s~t6a!

s~t!
exp„7t@z~a!1b#…, ~A11!

wherea is one of the solutions of

P~a!5
a1

31g3

3a1
22g2

~A12!

with a15a/3, and where

b5
P8~a!

2P~a!2a1
. ~A13!

The solutions of the Lame´ equation are quasiperiodic; if th
argument increases by a period 2v then the solution repro-
duces itself up to factor exp„iF (a)… whereF(a) is known as
Floquet index. If it is imaginary then there is an expone
tially increasing solution, if it is real the solutions are pe
odic up to a phase. The right hand sides of Eqs.~A12! and
9-11
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JÜRGEN BAACKE AND STEFAN MICHALSKI PHYSICAL REVIEW D 65 065019
~A10! are real. The Weierstrass functionP maps the funda-
mental rectangle@0,v,v1v8,v8,0# onto the upper half
plane, so the solutionsa of these equations are situated
the boundary of the fundamental rectangle; the origina50
is mapped to the infinite point.

For f 2 a closer analysis shows that on the sections@0,v#
and @v8,v81v# of this boundary the Floquet index

F~a!522i „az~v!2vz~a!… ~A14!

is imaginary, so in these regions one has parametric r
nance ~‘‘forbidden bands’’ in analogy to solutions of th
Schrödinger equation in periodic potentials!; on the sections
@0,v8# and @v,v1v8# the solutions are oscillatory~‘‘al-
lowed bands’’!. The ‘‘forbidden’’ bands are characterized b
e1,P(a),` and e3,P(a),e2. For f 2 this implies para-
metric resonance in the intervals2`,q2,2x0

2/211,0
which is excluded kinematically, and in the interval 0,q2

,x0
2/2. This resonance band manifests itself in Fig. 8b.

For f 1, the sigma fluctuations, the analysis is somew
more cumbersome; Eq.~A12! becomes explicitly

P~a!52
1

9

~11q2!32119~x0
221!2

~11q2!22123~x0
221!2

. ~A15!
.R

. D

A

nd

D

d

J

do

06501
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t

Again a is situated on the boundary of the fundamental re
angle with the same corners. The Floquet index is found
be

iF ~a!5az~v!2vz~a!2v
P8~a!

2P~a!1~11q2!/3
.

~A16!

It is imaginary for values ofa on the sections@0,v# and
@v8,v81v# of the boundary of the fundamental rectang
Again this maps onto the intervalse1,P(a),` and e3
,P(a),e2. The analysis of the function on the right-han
side of Eq.~A15! shows that the resonance bands are2`
,q2,212A3(x0

221)211 and23x0
2/2,q2,0 which are

excluded kinematically, and, in the physical region, 3x0
2/2

23,q2,211A3(x0
221)211. The latter resonance ban

is not manifest in Fig. 8a as the sigma fluctuations deve
only after the classical equation of motion is modified by t
back reaction due to the pion fluctuations. We have verifi
that our analytical result for the resonance band is correc
running the simulation without back reaction. The parame
resonance of the sigma fluctuations analyzed here may m
fest itself for other parameter sets and the result may be
importance.
r-
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