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Non-Abelian plane waves and stochastic regimes for„2¿1…-dimensional gauge field models
with a Chern-Simons term
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An exact time-dependent solution of field equations for the 3D gauge field model with a Chern-Simons~CS!
topological mass is found. Limiting cases of a constant solution and a solution with a vanishing topological
mass are considered. After Lorentz boost, the found solution describes a massive nonlinear non-Abelian plane
wave. For the more complicated case of gauge fields with CS mass interacting with a Higgs field, the stochastic
character of motion is demonstrated.
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I. INTRODUCTION

The non-Abelian Yang-Mills~YM ! gauge field theory is
essentially nonlinear. In particular, such characteristic in
red phenomena of QCD as confinement and chiral symm
breaking are explained by the nonlinear nature of gluon
teractions leading to the formation of specific nonpertur
tive configurations of gauge fields responsible for these p
nomena. Various exact topologically nontrivial finite ener
solutions of the classical gauge field equations in~311!-
dimensional space-time with or without Higgs fields~e.g.
instantons@1#, vortices@2#, monopoles@3#! as well as non-
Abelian plane-wave solutions@4–7# have been found~for a
detailed discussion of YM equations, see, e.g.,@8,9#!. In ~2
11!-dimensional space-time, a nonlinear topological te
@the so-called Chern-Simons~CS! secondary character#
which is responsible for the formation of a topological ma
of the non-Abelian gauge field, may be added to the fi
Lagrangian@10#. In this case, constant non-Abelian solutio
of the gauge field equations with a CS mass were found@11#.
Clearly, the investigation of general properties of classi
solutions of gauge field equations is important and may p
vide new knowledge about the vacuum structure of a gi
theory. Among these properties the irregular stochastic c
acter of the gauge field dynamics is of great interest~see
@12#!. The stochastic behavior of the YM theory has be
studied in the pioneering papers@5,6,13–15#. The chaotic
behavior of the YM mechanics with 3 degrees of freed
was demonstrated by a Painleve´ test @16# and by studying
Lyapunov exponents@17#. The consideration of possible in
teractions with a Higgs field is also interesting, but makes
problem somewhat more complicated. Investigations of
stochastic behavior of classical field systems with Hig
fields but without a Chern-Simons term were, for examp
made in@7#. Moreover, numerical investigations of Poinca´
sections of the YM-Higgs theory with anSU(2) doublet
Higgs field were performed in@14#. Taking only the vacuum
0556-2821/2002/65~6!/065017~8!/$20.00 65 0650
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expectation value of the Higgs field into account, the auth
of this paper showed qualitatively the stabilizing role of t
Higgs mechanism for the YM dynamics. Furthermore,
@18# the dynamical contribution of Higgs fields was consi
ered. It was shown that a field system with spatially unifo
but time-dependent dynamical Higgs fields, coupled to
gauge field@SO(3) Georgi-Glashow model#, also demon-
strates chaotic behavior with certain threshold values of
energy. It is further worth noticing that the chaotic dynam
of the three-dimensional topologically massive gauge fie
~without Higgs fields! was also studied in the framework o
the time-dependent and spatially-uniform Chern-Simo
model in Ref.@19#. The numerical studies of the CS fiel
equations were performed there by the Runge-Kutta meth
The boundary conditions were chosen in such a way tha
three gauge potentials, now being considered as coordin
of fictitious ‘‘particles,’’ were put on a circle. The genera
motion might thus be interpreted as that of three effect
particles moving in a plane and interacting nonlinea
through a quartic potential and under the influence of
‘‘external magnetic field’’ of strengthm (m is a topological
mass!. It was demonstrated that a background ‘‘magne
field’’ tries to order the system, forcing the ‘‘particles’’ to
move in periodic orbits, similar to the influence of a Higg
condensate on the otherwise chaotic classical YM dynam
Therefore, if the strengthm of the topological term is large
compared to the energy density~in the quantized theory, this
would mean strong coupling!, the motion is regular, while in
the opposite case it is chaotic. This ‘‘order to chaos tran
tion’’ was observed in numerical studies of the CS model
well as in the coupled YM-Higgs model, although the tw
models differ in many respects. Note also that the transit
from regularity to irregularity in quantum systems, which a
classically chaotic, was considered for ad5(211) YM-
Higgs theory in@20#. Attention should also be paid to sim
larity with the case of dynamical mass generation in h
quark-gluon plasma, where the Hamiltonian looks like t
Higgs case@21#.
©2002 The American Physical Society17-1
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In the present paper, we consider the generalization of
plane-wave solutions, found earlier in thed5311 case~see
@4–7#!, to the case of a~211!-dimensional gauge field
theory with topological Chern-Simons term. Clearly, the
pological mass provides an additional dimensional param
for the massive nonlinear field configuration in question.
this way, we find a new plane-wave solution of the cor
sponding field equations. Next, the possibility of passing t
constant background field@11# with energy density lower
than the perturbative vacuum energy is considered. Mo
over, we demonstrate that the dynamics of 3D YM fie
with a CS topological mass interacting with Higgs fields
described by solutions that, generally speaking, are not re
lar, but rather obtain ergodic properties. This study was m
for an ansatz which is specific for the gauge fields in~211!-
dimensional space-time and different from that conside
earlier in the (311)D case without CS term or in the (2
11)D case with CS term. Our numerical study of the s
chastic properties of solutions with growing energy dem
strates that a chaotic behavior of solutions is observed mo
for those values of the energy which are near to the crit
‘‘saddle’’ point value of the potential energy of the effectiv
mechanical system. We emphasize that we have also co
ered the important case of spontaneous symmetry brea
in the CS-Georgi-Glashow model~where the mass term ha
the sign required for spontaneous symmetry breaking,
the real mass squared is negative2m2,0). Finally, the dy-
namics of a system of coupled gauge and Higgs fields
investigated in the general case, where fairly large value
the energy are admitted and, in contrast to earlier work,
assumptions are made that the system is near a stable
tion ~near the ‘‘minimum’’ critical point of the effective po
tential!.

II. TIME-DEPENDENT SOLUTIONS

Consider a 3-dimensionalSU(2) gauge field theory with
a Chern-Simons term. The gauge field Lagrangian can
written as follows:

Lg52
1

4
Fmn

a Fmna1
m

4
emnaFFmn

a Aa
a2

g

3
eabcAm

a An
bAa

c G ,
~1!

where Fmn
a 5]mAn

a2]nAm
a 1geabcAm

b An
c is the gauge field

tensor. The last term in Eq.~1! is the CS term@10# that
describes the topological massm of the gauge field.

The Lagrangian~1! is not gauge invariant, since
changes by a full derivative under a gauge transformatio

S5E d3xL g→E d3xLg1m~8p2/g2!W~U !,

where

W~U !5
1

24p2E d3xeabg tr@]aUU21]bUU21]gUU21#,

andU(x)5exp@isaua(x)#. HereW(U) is the ‘‘winding num-
ber’’ of the gauge transformationU(x), sa are Pauli matri-
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ces. In order to make exp(iS) gauge-invariant, the Chern
Simons parameterm should be quantized@10#

m5
g2n

4p
, nPZ. ~2!

From the Lagrange equations

]Lg

]An
a

2
]

]xm

]Lg

]An,m
a

50,

one obtains the field equation

DnFnma1
m

2
emabFab

a 50, ~3!

whereDmFab
a 5]mFab

a 1geabcAm
b Fab

c .
Let us seek solutionsAm

a 5Am
a (t) that depend only on the

time t, but not on coordinatesx and choose the following
rather restrictive ansatz

Am
a 5dm

a f a~ t !, Ama5gmaf a~ t !, ~4!

a51,2,3,m51,2,3~x15t,x25x,x35y!,

gmn5diag~1,2,2 !, ~5!

where no summation overa is assumed. This case formall
corresponds to a mechanical system with a finite numbe
degrees of freedom, whose motion is described by the
tem of equations

mg f2f 31g2f 1~ f 2
21 f 3

2!50,

mg f1f 32 f̈ 21g2f 2~ f 1
22 f 3

2!50,

mg f1f 22 f̈ 31g2f 3~ f 1
22 f 2

2!50, ~6!

m ḟ 21g~ ḟ 1f 312 f 1 ḟ 3!50,

m ḟ 31g~ ḟ 1f 212 f 1 ḟ 2!50,

wheref ȧ5] f a /]t . It is evident that these equations descri
three coupled unharmonical oscillators. It is interesting
note that forf 15 f 25 f 35 f only a trivial solution exists, i.e.,
f 50. Thus, in order to find a non-trivial solution, the fun
tions f a should not be taken equal. Let us seek solutions fr
the classf 1Þ f 25 f 35 f . In this case, one obtains

mg f212g2f 1f 250,

mg f1f 2 f̈ 1g2f ~ f 1
22 f 2!50, ~7!

m ḟ 1g~ f 1̇f 12 f 1 ḟ !50.

First of all, we mention that this system of equations h
constant solutions, found earlier in@11#

f 152
m

2g
, f 25 f 356 i

m

2g
. ~8!

Solutions that depend on time can also be found
7-2
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f 152
m

2g
,

f 25 f 35 f ~ t !. ~9!

Then the corresponding chromoelectric and chromom
netic field components are defined as follows:

Ei
a5F1i

a ,

Ei
15~0,0,0!, Ei

25S 0,ḟ ,
m

2
f D ,

~10!

Ei
35S 0,2

m

2
f , ḟ D , Ha5

1

2
e i j Fi j

a ,

H15g f2, H25H350.

The functionf (t) satisfies the following nonlinear differen
tial equation:

f̈ 1
m2

4
f 1g2f 350. ~11!

This equation has a first integral which is the energy integ
of motion E for our mechanical system

ḟ 21
g2

2
f 41

m2

4
f 25const5E. ~12!

At the same timeE is the energy density of the Yang-Mill
field corresponding to theT0

0 component of the energy
momentum tensor of the field

T0
05E5

1

2
„~Ha!21~Ei

a!2
….

Note that the Chern-Simons term gives no contribution to
energy density.

Equation~12! can be easily integrated

E d f

AE2
g2

2
f 42

m2

4
f 2

5t2t0 . ~13!

This integral can be expressed in terms of the elliptic fu
tions,

f ~ t !5
m

A2g

k

A122k2
cnS S m4

16
12Eg2D 1/4

~ t2t0!,kD ,

~14!

where cn(x,k) is the elliptic Jacobicosine function of the
argumentx and the modulek @22#

k5A1

2 S 12
m2

4S m4

16
12Eg2D 1/2D . ~15!

This solution is periodical with the period
06501
g-

l

e

-

T5
4K~k!

S m4

16
12Eg2D 1/4, ~16!

where K(x) is a full elliptic integral of the first kind@22#.
The oscillation period is inversely proportional to th

combination of the dimensional parameters of the theory,
the CS massm and the energy of the solutionE. This, evi-
dently, could be predicted without solving the equation: th
are two scales in the equations, one of them is provided b
characteristic amplitude of the fieldgA;(Eg2)1/4, whose di-
mension is@(gA)#5m;1/T, and the other is the Chern
Simons parameter with the dimension of a mass@m#5m.

Since the solution is a function of time only and does n
depend on spatial coordinates, this corresponds to the
frame of reference for the field configuration. Therefore, it
quite natural thatPi5T0i50, i.e., the energy flux is equal t
zero in this frame.

Note that the constant solution~8! can be obtained from
the solution~14! in the limit of an infinite periodT→`. This
is achieved if we allowE to be equal to2m4/32g2:

E→2
m4

32g2
, T→`,

k

A122k2
→6

im

A2
,

f ~ t !→6
im

2g
. ~17!

It is evident that this limiting procedure can be perform
only if complex values off are allowed. In this case, th
energyE remains real, though it becomes negative, wh
indicates a possibility of lowering the gauge field energy.

Using our solution, we can pass to the limit of a vanishi
Chern-Simons term corresponding to the Lagrangian

Lg52
1

4
Fmn

a Fmna.

To this end, we assumem→0, A1
1→0. As a result, the fol-

lowing limiting solution is received:

A1
150, A2

25A3
35S 2E

g2 D 1/4

cn„~2Eg2!1/4~ t2t0!,1/A2….

~18!

It should be mentioned that a similar solution was obtain
in Refs. @5,6# for the case of a 4-dimensional Yang-Mill
theory without Chern-Simons term.

III. PLANE-WAVE SOLUTIONS

The solution~14! describes a nonlinear standing wave. B
applying a Lorentz boost, one can obtain nonlinear propa
ing waves. It is easy to see that the argument of the ab
periodical solution can be Lorentz transformed in the follo
ing way: xm8 5am

n (vW )xn ,kx5k8x8, where

k085Mg, ki85Mv ig, @g5~12v2!21/2#. ~19!
7-3
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HereM has the meaning of a mass, sincek25M2.
As was already mentioned above,E and g have the fol-

lowing dimensions:

E;@m#3,g;@m#1/2.

To define the effective mass of the solution, we have to t
the factor with the dimension of a mass in front of (t2t0) in
the cn function leading to the expression

M;S m4

16
12Eg2D 1/4

.

As expected, the effective mass includes besides the en
density of the solution the topological mass of the gau
field. Further investigations of realistic field configuratio
of this type should concentrate on the search for poss
non-Abelian solutions that describe localized field config
rations with a finite energy at rest~for a general discussion o
this point see, e.g.,@23–25#!.

IV. „2¿1…D GAUGE FIELD THEORY WITH A CS TERM
AND HIGGS FIELDS

In the previous sections we considered the SU~2! gauge
field model in 211 dimensions with a Chern-Simons top
logical term and obtained non-Abelian plane wave solutio
Let us now generalize our considerations by including
addition a Higgs field contribution which leads us to a
53 Georgi-Glashow model with CS term~‘‘CS-Georgi-
Glashow model’’!.
06501
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The Lagrangian can now be written as follows:

L5Lg1
1

2
~DmFa!~DmFa!1

m2

2
FaFa2

l

4
~FaFa!2,

~20!

where Lg is the gauge field Lagrangian~1!, and Fa(a
51,2,3) is the scalar Higgs field in the adjoint representat
(DmFa5]m1geabcAm

b Fc). The corresponding field equa
tions now take the form

DnFnma1
m

2
emabFab

a 1gebacFcDmFb50,

DnDnFa2m2Fa1l~FbFb!Fa50.
~21!

We are again seeking solutions that depend only on
time t, but not onx, Am

a 5Am
a (t), Fa5Fa(t). Let us choose

the following restrictive ansatz

Am
a 5dm

a f a~ t !, Ama5gmaf a~ t !,

Fa5„F1~ t !,F2~ t !,F3~ t !…,

a51,2,3, m51,2,3~x15t,x25x,x35y!, ~22!

where no summation overa is assumed. Then we arrive a
the following equations of motion for a mechanical syste
with a finite number of degrees of freedom:
mg f2f 31g2f 1~ f 2
21 f 3

2!1g2f 1~F3
21F2

2!50,

mg f1f 32 f̈ 21g2f 2~ f 1
22 f 3

2!2g2f 3~F3
21F1

2!50,

mg f1f 22 f̈ 31g2f 3~ f 1
22 f 2

2!2g2f 3~F2
21F1

2!50,

m ḟ 21g~ f 1̇f 312 f 1f 3̇!1g2F3F2f 350,

m ḟ 31g~ f 1̇f 212 f 1f 2̇!2g2F2F3f 250,

gF1~Ḟ31g f1F2!50,

gF1~Ḟ31gF2f 1!50, ~23!

gF1~Ḟ21gF3f 1!50,

g2f 2F2F150,

g2f 3F3F150,

F̈a11g2F1~ f 2
21 f 3

2!2m2F11lFaFaF150,

F̈22g~ ḟ 1F312 f 1Ḟ3!1g2F2~ f 3
22 f 1

2!2m2F21lFaFaF250,

F̈31g~ ḟ 1F212 f 1Ḟ2!1g2F3~ f 2
22 f 1

2!2m2F31lFaFaF350,
7-4
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FIG. 1. PotentialU( f ,F) for g51, m51,
m51, l52
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where ḟ a5] f a /]t, Ḟa5]Fa/]t. Let us seek solutions from
the following classf 1Þ f 25 f 35 f , F15F, F25F350. In
this case, one obtains

mg f212g2f 1f 250,

mg f1f 2 f̈ 1g2f ~ f 1
22 f 2!2g2f F250, ~24!

m ḟ 1g~ f 1̇f 12 f 1 ḟ !50,

F̈12g2F f 22m2F1lF350.

The first equation in Eq.~24! is solved forf 152m/2g, while
for F and f we get the equations

f̈ 1 f S m2

4
1g2F2D1g2f 350,

F̈1F~2g2f 22m2!1lF350. ~25!

The potential energy for this system

U~ f ,F!5
g2

2
f 41l

F4

4
1

m2

4
f 22

m2

2
F21g2f 2F2 ~26!

is presented in Fig. 1
There are three critical points: two points of the ‘‘min

mum’’ type with the coordinates (0,6Am/l), and one point
of the ‘‘saddle’’ type with the coordinates~0,0!.

The system of equations~25! has a first integral, which is
the conserved energy for the mechanical system with c
dinatesf andF

ḟ 21
g2

2
f 41

Ḟ2

2
1l

F4

4
1

m2

4
f 21g2f 2F22

m2

2
F25const

5E.
~27!
06501
r-

The nonlinear system~25! has many solutions; most of them
can be obtained only numerically, and only a few can
found analytically. As an example, we present here an a
lytical periodical solution expressed in terms of the ellip
Jacobi cosine cn(x,k) and sine sn(x,k) functions of the ar-
gumentx and the modulek

f 5
1

g
AS 12

g2

l D S m2

2
12m2D cn~Bt,k!,

F5A1

l S m2

2
12m2D sn~Bt,k!, ~28!

B25
1

4
m21S 12

g2

l D S m2

2
12m2D ,

k2512

m2

2
1m2

B2
.

The energy integralE for the solution~28! reads

E5S 1

g2
2

1

l D S 3

2
m2m21

m4

4
12m4D1

m2

4l S m21
1

4
m2D .

~29!

It is seen that this solution forf andF is real, if l.g2. This
evidently describes a regular periodic motion of the syst
around the saddle point of the potential,f 50, F50. The
energyE in this case is positive, and well above the ‘‘saddl
point value of the potentialU( f ,F)50. This classical solu-
tion corresponds to the situation with restored symmetry
the YM-Higgs Lagrangian in quantum theory~for negative
values of the energyE,0 the effective ‘‘classical’’ particle
should move near one of the nontrivial minima of the pote
tial, which corresponds to broken symmetry of the YM
7-5
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FIG. 2. System behavior for initial conditionsf 050.5, ḟ 050, F050.5, Ḟ050 and the set of parameter valuesg51, m51, m51, l
52.
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Higgs Lagrangian!. It is easily seen that with growingm, the
energy increases~if l.g2). Thus, we may suppose that th
presence of the CS term is conducive to restoration of s
metry. For energy values below the saddle point the solu
tends to concentrate near one of the nontrivial minima of
potential~corresponding to breaking of symmetry!. It should
be expected that near the saddle point, trajectories of
system are highly unstable and the system should dem
strate stochastic behavior. In order to study this situation
should apply numerical methods of calculation. This will
done in the following section.

V. EFFECTIVE SYSTEM WITH THE POTENTIAL U„f ,F…

Here, we will numerically analyze the behavior of th
effective mechanical system with the potentialU( f ,F) given
in, Eq. ~26! leading to the system of equations~25!. Let us
look for its numerical solutions for various choices of initi
conditions. The functionsf (t) and F(t) for two choices of
initial conditions are plotted in Figs. 2 and 3. The curves
depicted for the following values of parametersg51, m
51, m51, l52.

From the figures, one can see that there exist significa
differing types of motion for the system. Indeed, the traje
tories correspond to three different types of motion: perio
cal, quasi-periodical and stochastic ones. The latter situa
can be described by treating the interacting fields as an
fective mechanical system with coordinatesF, f and the La-
grangian

L5 ḟ 22
m2

4
f 22

g2

2
f 41

Ḟ2

2
1

m2

2
F22l

F4

4
2g2f 2F2.

~30!
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Let us now consider the term2g2f 2F2 as a perturbation of
the unperturbed system described by the Lagrangian

L05 ḟ 22
m2

4
f 22

g2

2
f 41

Ḟ2

2
1

m2

2
F22l

F4

4
. ~31!

For the system with the LagrangianL0 all trajectories are
either periodical or quasi-periodical, since variablesf andF
are separately described by independent equations of
typical form ẋ21ax21bx45const with the solutions
Acn(Bx,k) andAsn(Bx,k) @22#. In order to describe the role
of the perturbation, the Kolmogerov-Arnold-Moser~KAM !
theorem@26# can be applied which states that, if the pertu
bation is analytical and small enough, the part of the ph
space, spanned by our system, can be divided into two
gions of nonvanishing volumes, one of them being small
compared to the other and tending to zero in the limit o
vanishing perturbation. The larger region consists of inva
ant embedded toruses, densely covered with trajectories
other words, for the majority of possible initial condition
trajectories are of the Lissajous type, similar to the oscilla
case. However, there exists a comparatively small reg
corresponding to a small set of initial conditions, where t
jectories are completely chaotic and may go astray from
neighboring ‘‘restricted’’ trajectories. This region has a no
zero volume and it may be called ‘‘instability region.’’

To examine the trajectories in detail, let us follow@27#
and seek numerical solutions with the LagrangianL and find
intersections of trajectories and the planef 50 under the
condition f 8.0. Plotting the intersection points in the s
called Poincare´ surfaces of intersection, we can study t
character of motion for the mechanical system equivalen
our interacting gauge and Higgs fields. In Fig. 4 we pres
such pictures for different values ofE. Each picture contains
FIG. 3. System behavior for initial conditionsf 052.0, ḟ 050, F050.5, Ḟ050 and the set of parameter valuesg51, m51, m51,
l52.
7-6
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FIG. 4. F anddF/dt for f 50, ḟ .0, E520.1 and 0.1(g51,m51,m51,l52).
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a set of trajectories with equalE. If the set of intersection
points for the given trajectory is restricted to a point, t
motion is periodical; if they lie along the same curve, t
motion is quasi-periodical.

For the stochastic motion, the intersection points co
densely a finite area. The left picture in Fig. 4 correspond
comparatively low energies, well below the ‘‘saddle’’ poin
It is easily seen that all the trajectories form closed curv
According to KAM theorem, this means that practically t
entire phase space consists of toruses, which correspon
quasiperiodical motion. For higher energies and larger p
turbations the right picture of Fig. 4, the situation is co
pletely different: there arise regions of ergodic behav
though there remain some small regions of toroidal struct
It should be clearly understood that dispersed points in Fi
form one and the same trajectory which chaotically go
through almost the entire accessible domain of the ph
space. For still higher energies the situation is different. T
motion of the system again becomes more and more s
lized, which is seen in Figs. 4 and 5. The conclusion wh
follows from these numerical calculations is that near
saddle point the character of motion changes, correspon
to the symmetry breaking in the Lagrangian. The mot
becomes more unstable and its stochastic character more
nounced when the energy is closer to the saddle point va

We have also made use of the Toda-Brumer criterion@28#
to find the critical energyEc such that for energies belowEc
no chaotic trajectories should be found. For our choice
06501
r
to

s.

to
r-
-
r,
e.
4
s
se
e
bi-
h
e
ng
n
ro-
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f

parameters (g51, m51, m51, l52), we found Ec5
25/72. This value does not contradict our conclusion ma
with regard to numerical calculations and studies of Poinc´
surfaces of section~see above!. Unfortunately the Toda-
Brumer criterion failed for critical energies above the sad
point.

VI. SUMMARY AND CONCLUSIONS

In this paper we have found an exact plane-wave solu
of the field equations for the 3D gauge field theory with
non-zero topological mass. The effective mass of the solu
depends on two dimensional parameters of the model:
amplitude of the wave and the Chern-Simons topologi
mass. The plane-wave form of the solution becomes evid
after applying the Lorentz boost. Thus, we obtain a nonlin
massive plane wave, and this is due not only to the nonlin
character of the gauge field equations, as was the case
the usual 4D Yang-Mills equation@5#, but also to the role of
the massive Chern-Simons term. This term, on one ha
adds a positive contribution to the effective mass of the
lution, and this makes the wave even heavier. On the o
hand, it allows the energy density to become negative. H
as a limiting case, we obtained a known static solution w
the lowest energy possible for the class of solutions con
ered.

We were faced with another interesting situation, wh
we chose to include not only the CS term, but also a sc
FIG. 5. F anddF/dt for f 50, ḟ .0, E50.5 and 8.0 (g51, m51, m51, l52).
7-7



he
ti
av
as
or
re

se
ly

m
on
o
he
e

to
ul

o

m

idy
v-
her

th a
y-

cal
ym-

-
nd

d

r-
p of
ay
36

D. EBERT, V. CH. ZHUKOVSKY, AND M. V. ROGAL PHYSICAL REVIEW D65 065017
Higgs field. A choice of the restrictive ansatz, similar to t
one used in the previous sections, now led us to an effec
mechanical system with two degrees of freedom. We h
demonstrated that for special initial conditions, the ph
space trajectories are closed and regular. Chaotic behavi
the Yang-Mills theory in the 4D space-time was discove
and studied by Matinyan and Savvidy~see@29# and@15# for
reviews and discussions!. In @14# thed52 dimensional YM-
Higgs theory was studied. There, the Higgs field was cho
to be anSU(2) doublet. In that paper it was qualitative
demonstrated that spontaneous breakdown of gauge sym
try by the Higgs mechanism has a stabilizing effect on n
Abelian gauge field dynamics. In our case, no spontane
breaking of symmetry was initially assumed; rather t
Higgs field was taken as a dynamical variable. Moreov
since we studied thed53 case, we included the CS term in
the consideration. Our result, based on numerical calc
tions, is that with growing energyE, the motion of the effec-
tive classical mechanical system first becomes more cha
~in the vicinity of the critical saddle point of the potential!,
then with further growth of energy, again some regular co
ponents may appear.
sp

h.
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.,
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The general physical conclusion of Matinyan and Savv
@29# is that the Yang-Mills field system is not exactly sol
able ~otherwise, the trajectories would have a regular rat
than chaotic form!. This conclusion is confirmed in the
present paper for the case of a 3D gauge field model wi
topological CS term and an additional interaction with a d
namical Higgs field. The presence of the CS topologi
mass in the 3D case is conducive to the restoration of s
metry and to stabilizing the system.
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