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An exact time-dependent solution of field equations for the 3D gauge field model with a Chern-$@&pns
topological mass is found. Limiting cases of a constant solution and a solution with a vanishing topological
mass are considered. After Lorentz boost, the found solution describes a massive nonlinear non-Abelian plane
wave. For the more complicated case of gauge fields with CS mass interacting with a Higgs field, the stochastic
character of motion is demonstrated.
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[. INTRODUCTION expectation value of the Higgs field into account, the authors

of this paper showed qualitatively the stabilizing role of the

The non-Abelian Yang-MillSYM) gauge field theory is Higgs mechanism for the YM dynamics. Furthermore, in
essentially nonlinear. In particular, such characteristic infral18] the dynamical contribution of Higgs fields was consid-

red phenomena of QCD as confinement and chiral symmetr red. It was shown that a field system with spatially uniform

breaking are explained by the nonlinear nature of gluon in- ut time-dependent dynamical Higgs fields, coupled to a

: ! : . gauge field[SQ(3) Georgi-Glashow modgl also demon-
:i?/r:‘it(')?]?% J?:S(;T}gs t)of ;Ziézr?:}ggr:e%fpzﬁiﬂg fg??ﬁgsrteu;)bhis_trates chaotic behavior with certain threshold values of the

. . R energy. It is further worth noticing that the chaotic dynamics
nomena. Various exact topologically nontrivial finite energy

; . . . of the three-dimensional topologically massive gauge fields
solutions of the classical gauge field equations(3#1)-  ithout Higgs fields was also studied in the framework of

dimensional space-time with or without Higgs fields9.  the time-dependent and spatially-uniform Chern-Simons
instantong 1], vortices[2], monopoled3]) as well as non-  model in Ref.[19]. The numerical studies of the CS field
Abelian plane-wave solutior{gt—7] have been foundfor a  equations were performed there by the Runge-Kutta method.
detailed discussion of YM equations, see, €8,9)). In (2 The boundary conditions were chosen in such a way that all
+1)-dimensional space-time, a nonlinear topological termthree gauge potentials, now being considered as coordinates
[the so-called Chern-Simon$éCS secondary character of fictitious “particles,” were put on a circle. The general
which is responsible for the formation of a topological massmotion might thus be interpreted as that of three effective
of the non-Abelian gauge field, may be added to the fieldoarticles moving in a plane and interacting nonlinearly
Lagrangiar{10]. In this case, constant non-Abelian solutionsthrough a quartic potential and under the influence of an
of the gauge field equations with a CS mass were fqadfl ~ “external magnetic field” of strengthw (u is a topological
Clearly, the investigation of general properties of classicamass$. It was demonstrated that a background “magnetic
solutions of gauge field equations is important and may profield” tries to order the system, forcing the “particles” to
vide new knowledge about the vacuum structure of a givemove in periodic orbits, similar to the influence of a Higgs
theory. Among these properties the irregular stochastic chatondensate on the otherwise chaotic classical YM dynamics.
acter of the gauge field dynamics is of great intefsgte  Therefore, if the strengtle of the topological term is large
[12]). The stochastic behavior of the YM theory has beencompared to the energy densiiy the quantized theory, this
studied in the pioneering papef5,6,13—15. The chaotic would mean strong couplingthe motion is regular, while in
behavior of the YM mechanics with 3 degrees of freedomthe opposite case it is chaotic. This “order to chaos transi-
was demonstrated by a Painletest[16] and by studying tion” was observed in numerical studies of the CS model as
Lyapunov exponentgl7]. The consideration of possible in- well as in the coupled YM-Higgs model, although the two
teractions with a Higgs field is also interesting, but makes thenodels differ in many respects. Note also that the transition
problem somewhat more complicated. Investigations of thérom regularity to irregularity in quantum systems, which are
stochastic behavior of classical field systems with Higgsclassically chaotic, was considered forda=(2+1) YM-
fields but without a Chern-Simons term were, for example Higgs theory in[20]. Attention should also be paid to simi-
made in[7]. Moreover, numerical investigations of Poincare larity with the case of dynamical mass generation in hot
sections of the YM-Higgs theory with aBU(2) doublet quark-gluon plasma, where the Hamiltonian looks like the
Higgs field were performed ifil4]. Taking only the vacuum Higgs casd21].
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In the present paper, we consider the generalization of thees. In order to make ex@) gauge-invariant, the Chern-
plane-wave solutions, found earlier in the-3+1 case(see  Simons parameter should be quantizefil0]
[4-7)), to the case of a2+1)-dimensional gauge field

2
theory with topological Chern-Simons term. Clearly, the to- _gn

pological mass provides an additional dimensional parameter K= nez. @
for the massive nonlinear field configuration in question. In )

this way, we find a new plane-wave solution of the corre-From the Lagrange equations

sponding field equations. Next, the possibility of passing to a ar 0 ar

constant background fielfiLl1] with energy density lower 9 9 _p,

than the perturbative vacuum energy is considered. More- IAS  axM IAT

over, we demonstrate that the dynamics of 3D YM fields

with a CS topological mass interacting with Higgs fields is©ne obtains the field equation

described by solutions that, generally speaking, are not regu- P

lar, but rather obtain ergodic properties. This study was made DVFV“a+EeW'BF§B=O, 3)
for an ansatz which is specific for the gauge field$2 1)-
dimensional space-time and different from that considered a _ a abcab -c
earlier in the (3+1)D case without CS term or in the (2 WhereD“Faﬁ_ﬂ“F“.ﬁ-'—g:_ Ag‘“F“B'

+1)D case with CS term. Our numerical study of the sto- . Let us seek SOIUt'OnAM_AM(t) that depend only on _the
chastic properties of solutions with growing energy demoniMe & but not on coordinatex and choose the following
strates that a chaotic behavior of solutions is observed mostl&fa‘ther restrictive ansatz

for those values of the energy which are near to the critical Azz 5‘Zfa(t), Ara=graf (1), (4
“saddle” point value of the potential energy of the effective

mechanical system. We emphasize that we have also consid- a=1,2,3u=1,2,3X;=t,X;=X,X3=Y),

ered the important case of spontaneous symmetry breaking _

in the CS-Georgi-Glashow modélhere the mass term has 9u=diag +,—,-), ®)

the sign required for spontaneous symmetry breaking, and . . :
' D : where no summation ovex is assumed. This case formally
the real mass squared is negativen“<<0). Finally, the dy- X . o
) d ) .corresponds to a mechanical system with a finite number of
namics of a system of coupled gauge and Higgs fields is s :
) . . . egrees of freedom, whose motion is described by the sys-
investigated in the general case, where fairly large values :
em of equations

the energy are admitted and, in contrast to earlier work, no

assumptions are made that the system is near a stable solu- ugfofs+ g2f1(f§+f§)=0,
tion (near the “minimum?” critical point of the effective po- i
tentia)). ngfifs—f+g?f,(f5—13)=0,
Il. TIME-DEPENDENT SOLUTIONS ugfif—fa+g?fa(f2—f2)=0, (6)
Consider a 3-dimension&U(2) gauge field theory with ufotg(fifat2ffs)=0
a Chern-Simons term. The gauge field Lagrangian can be 2 13 1s ’
written as follows: ufs+g(f,f+2f,f,)=0,
1 M g i,
Lg=— ZFZVF“”""JrZe””“ FZVA§—§eab°AZAEAZ , wheref,=df,/dt . Itis evident that these equations describe

(1) three coupled unharmonical oscillators. It is interesting to
note that forf,=f,=fz;="f only a trivial solution exists, i.e.,
where F2 =9 A%~ 9, A% +ge®P°APAC is the gauge field f=0. Thus, in order to find a non-trivial solution, the func-
tensor. The last term in Eqd) is the CS term[10] that  tionsf, should not be taken equal. Let us seek solutions from
describes the topological magsof the gauge field. the classf, #f,=f3=f. In this case, one obtains
The Lagrangian(l) is_ not gauge invariant, since. it g2+ 2g2f,£2=0,
changes by a full derivative under a gauge transformation
pgfif—f+g*f (512 =0, (7)
s=f d3x,cg—>J d3XLy+ u(87%1gH)W(U), L _
uf+g(f,f+2f,f)=0.

where First of all, we mention that this system of equations has
1 constant solutions, found earlier fifhl]
W(U)= J d*xe*A 7t 9,UU 19,uU g, U1,
24 D S ®
1 2g ’ 2 37 — 29 .

andU (x) =exdic*#(x)]. HereW(U) is the “winding num-
ber” of the gauge transformatiod (x), o® are Pauli matri- Solutions that depend on time can also be found
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f—_ K 4K(K)
1= 2g ’ T= ﬁ, (16)
— +2&97
fa=fa=f(1). ©) 16
Then the corresponding chromoelectric and chromomag¥here K) is a full elliptic integral of the first kind22].
netic field components are defined as follows: The oscillation period is inversely proportional to the
combination of the dimensional parameters of the theory, i.e.
Ef=F3, the CS masg: and the energy of the solutiah This, evi-
dently, could be predicted without solving the equation: there
E!=(0,00, E’= ( 0f _f> are two scales in the equations, one of them is provided by a
characteristic amplitude of the fieglA~ (£g?)*4, whose di-
(100 mension is[(gA)]=m~1/T, and the other is the Chern-
E3= ( 0— ﬁf f) Ha= Ee"Fa Sim(_)ns parameter Wi_th the dimension of a mgg$=m.
: ' 2 e Since the solution is a function of time only and does not
depend on spatial coordinates, this corresponds to the rest
Hl=gf?, H?=H3=0. frame of reference for the field configuration. Therefore, it is

) o ) ) ) quite natural thaP'=T% =0, i.e., the energy flux is equal to
The functionf(t) satisfies the following nonlinear differen- ,grg in this frame.

tial equation: Note that the constant solutiag8) can be obtained from
P the solution(14) in the limit of an infinite periodl —co. This
f+ Tf+ng3=0. (11)  is achieved if we allow€ to be equal to— x*/32g:
w? k
This equation has a first integral which is the energy integral E—— — T, —
of motion £ for our mechanical system 329 v1-2k V2
2 2
o 00, n
2,9 4 Mo im
fe+ 2f + 7 fe=const=¢&. (12 f(t)— =+ E (17)

At the same time is the energy density of the Yang-Mills t s evident that this limiting procedure can be performed
field corresponding to thélg component of the energy- only if complex values off are allowed. In this case, the

momentum tensor of the field energy £ remains real, though it becomes negative, which
1 indicates a possibility of lowering the gauge field energy.
=£= 5((Ha)2+ (E®?). Using our solution, we can pass to the limit of a vanishing

Chern-Simons term corresponding to the Lagrangian

Note that the Chern-Simons term gives no contribution to the 1
energy density. Ly=— 2 Fo P2,
Equation(12) can be easily integrated

df
/ 2 L
5_g_f4_,u_f2 o8 1/4
a4 Al=0, A2=pA3= —2) (2892 M(t—to), 1V2).
g

This integral can be expressed in terms of the elliptic func- (18)
tions,

To this end, we assume—0, Al—0. As a result, the fol-
(13 lowing limiting solution is received:

It should be mentioned that a similar solution was obtained
k 4 1/4 . . . :
( M 1269 ) (t—to).k in Refs.[5,6] for the case of a 4-dimensional Yang-Mills
\/E N onR ) theory without Chern-Simons term.
14

f(t)= ——

. o L . Ill. PLANE-WAVE SOLUTIONS
where cnk,k) is the elliptic Jacobicosinefunction of the

argumentx and the modulé [22] The solution(14) describes a nonlinear standing wave. By
applying a Lorentz boost, one can obtain nonlinear propagat-
w? ing waves. It is easy to see that the argument of the above
k= > 1- —FMA | - (15 periodical solution can be Lorentz transformed in the follow-
e R ) ing way: x/,=a’(v)x, kx=k'x’, where
This solution is periodical with the period ko=My, ki=Muviy, [y=(1-v®)""]. (19
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HereM has the meaning of a mass, siride= M?2. The Lagrangian can now be written as follows:
As was already mentioned abow&andg have the fol-

lowing dimensions: 1 m2 N

L=Ly+ 5(D, D) (D D?) + — DD~ —(PAD?)?,

3 1/2 2 2 4

E~[m]®,g~[m]~= (20)

To define the effective mass of the solution, we have to takg . e r
the factor with the dimension of a mass in front of-(ty) in
the cn function leading to the expression

¢ is the gauge field Lagrangiafl), and ®%(a
=1,2,3) is the scalar Higgs field in the adjoint representation
(D, ®%= &M-i—geabCAZCI)C). The corresponding field equa-

A tions now take the form

1/4

M ~("1L—6+2592) .
| _ _ D Fruas & cuaspa L gebacgepugb—o,

As expected, the effective mass includes besides the energy 2 h

density of the solution the topological mass of the gauge

field. Further investigations of realistic field configurations D,D"®2—m?®3+ \(PPDP)Dd2=0.

of this type should concentrate on the search for possible (21)

non-Abelian solutions that describe localized field configu- ) ] ]

rations with a finite energy at re€or a general discussion of ~ We are again seeking solutions that depend only on the

this point see, e.g[23—25). timet, but notonx, A% =A7(t), ®¥=®d%t). Letus choose

the following restrictive ansatz

IV. (2+1)D GAUGE FIELD THEORY WITH A CS TERM

AND HIGGS FIELDS AL=d,Ta(1),  AME=grafy(D),
In the previous sections we considered the(Blyauge PA= (P4 (1), D,(1),D4(1)),
field model in 2+1 dimensions with a Chern-Simons topo-
logical term and obtained non-Abelian plane wave solutions. a=1,2,3, u=1,2,3X;=1,X,=X,X3=Y), (22)

Let us now generalize our considerations by including in

addition a Higgs field contribution which leads us to a Dwhere no summation ovex is assumed. Then we arrive at
=3 Georgi-Glashow model with CS terrfCS-Georgi- the following equations of motion for a mechanical system
Glashow model). with a finite number of degrees of freedom:

ngfafat g?fi(f3+13) + g*f 1 (P5+@3) =0,
ngfifs— ot g?fo(15—15) — g?fy(@5+dF) =0,
pgfifa—ts+g?fa(fi—12)—g’fa(@3+ P =0,
ufotg(fifat2f,f3)+g2dad,f2=0,
pis+g(fifo+2fify) —g20,05f,=0,
9¢1(‘b3+9f1q’2)=0,
9P (P3+gP,f) =0, 23
g, (d,+gdsf)=0,
9?f,®,P,=0,
9?f3@3®, =0,
da;+g2D(f2+12)—m2d, + A\ D2D2D, =0,
y—g(f,D 5+ 2f 1D 3) + gD o(F2— F2) — M2, + A D2PaD,=0,
Dy+g(f 1Dy + 21 Dy) +g2Dy( 15— 15) - MPD 3+ N D2DAD =0,
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FIG. 1. PotentialU(f,®) for g=1, u=1,
m=1,A=2

L /T
L

wheref = df ,/ot, 3= ad¥ ot. Let us seek solutions from The nonlinear syster25) has many solutions; most of them
the following class,# f,=fs=f, ®,=®, ®,=P,=0.In  Can be obtained only numerically, and only a few can be

this case. one obtains found analytically. As an example, we present here an ana-
’ lytical periodical solution expressed in terms of the elliptic
wgf2+2g2f,f2=0, Jacobi cosine cix(k) and sine sn{,k) functions of the ar-
gumentx and the module
ugf f—f+g?f(f2—12)—g?fd2=0, (24) . T
. ] . f=—\/(1—y> %+2m2>cn(Bt,k),
uf+g(f, f+2f,F)=0, 9
. 1/ u?
b +29?Pf2—mPd+N\P3=0. b= N '%JerZ)sr(Bt,k), (29

The first equation in Eq24) is solved forf,= — w/2g, while

for @ andf we get the equations 2\ [ u?
2 4 N2
. 2
f+f T+ng>2 +g?f3=0, ,
~r 2
7+m
&+ P(2g%F2—m?) + A D3=0. (25) k?=1—

The potential energy for this system ) )
The energy integraf for the solution(28) reads

g2 P4 u2 m2
U(F,@)= St N+ 2= 24 g°f20? (26) 1 1\(3 u? 2
—m2,,2. 7 4 -
(Zm,u,-i- 4+2m +4)\

g? A

1
24 Z 4,2
m 2 o
is presented in Fig. 1
There are three critical points: two points of the “mini-

mum” type with the coordinates (&, /m/\), and one point

of the “saddle” type with the coordinate®,0). . ltis seen that this solution fdrand® is real, if A\ >g?. This
The system of equatior{®5) has a first integral, which is g\ jqently describes a regular periodic motion of the system
the conserved energy for the mechanical system with coot3,,nd the saddle point of the potentiak=0, ®=0. The
dinatesf and @ energy¢ in this case is positive, and well above the “saddle”
5 c PR ) point value of the potentidl (f,®)=0. This classical solu-
2, 9 K m tion corresponds to the situation with restored symmetry of
24 2 f44 47 g2 2292 p2= p y y
f 2 f 2 A 4 4 Frgfe 2 ®7=const the YM-Higgs Lagrangian in quantum theoffor negative
values of the energy¥<O0 the effective “classical” particle
=¢. should move near one of the nontrivial minima of the poten-
(27 tial, which corresponds to broken symmetry of the YM-

(29
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FIG. 2. System behavior for initial conditiorfy=0.5, f,=0, ®,=0.5, ®,=0 and the set of parameter valugs 1, u=1, m=1,

Higgs Lagrangian It is easily seen that with growing, the  Let us now consider the term g2f?®? as a perturbation of
energy increase§f A>g?). Thus, we may suppose that the the unperturbed system described by the Lagrangian
presence of the CS term is conducive to restoration of sym-
metry. For energy values below the saddle point the solution
tends to concentrate near one of the nontrivial minima of the
potential(corresponding to breaking of symmetrit should
be expected that near the saddle point, trajectories of the For the system with the Lagrangi&n all trajectories are
system are highly unstable and the system should demorither periodical or quasi-periodical, since variatflesnd ®
strate stochastic behavior. In order to study this situation were separately described by independent equations of the
should apply numerical methods of calculation. This will betypical form x2+ax?+bx*=const with the solutions
done in the following section. Acn(Bx,k) andAsn(Bx,k) [22]. In order to describe the role
of the perturbation, the Kolmogerov-Arnold-Mog€AM )
theorem[26] can be applied which states that, if the pertur-
bation is analytical and small enough, the part of the phase
Here, we will numerically analyze the behavior of the space, spanned by our system, can be divided into two re-
effective mechanical system with the potentigf,®) given  gions of nonvanishing volumes, one of them being small as
in, Eq. (26) leading to the system of equatiof®5). Let us  compared to the other and tending to zero in the limit of a
look for its numerical solutions for various choices of initial vanishing perturbation. The larger region consists of invari-
conditions. The function$(t) and ®(t) for two choices of ~ant embedded toruses, densely covered with trajectories. In
initial conditions are plotted in Figs. 2 and 3. The curves areother words, for the majority of possible initial conditions,
depicted for the following values of parameteys-1, u trajectories are of the Lissajous type, similar to the oscillator
=1, m=1,\=2. case. However, there exists a comparatively small region,
From the figures, one can see that there exist significantigorresponding to a small set of initial conditions, where tra-
differing types of motion for the system. Indeed, the trajec-jectories are completely chaotic and may go astray from the
tories correspond to three different types of motion: periodi-neighboring “restricted” trajectories. This region has a non-
cal, quasi-periodical and stochastic ones. The latter situatiogero volume and it may be called “instability region.”
can be described by treating the interacting fields as an ef- To examine the trajectories in detail, let us follg&7]

fective mechanical system with coordinatesf and the La- and seek numerical solutions with the Lagrandiaand find
grangian intersections of trajectories and the plahe0 under the

condition f'>0. Plotting the intersection points in the so
called Poincaresurfaces of intersection, we can study the
character of motion for the mechanical system equivalent to
our interacting gauge and Higgs fields. In Fig. 4 we present
(30 such pictures for different values 6f Each picture contains

u?

4

2 2 2 4

m
g fA4+ —+ 7<1>2—>\—. (31

2_ =
f 2 2 4

LOZ fz—

V. EFFECTIVE SYSTEM WITH THE POTENTIAL U(f,®)

. 2 2 ('I)Z m2 (D4
L= f2_ %fz_ %f4+ 74‘ 7(132—)\T—ng2(1)2,

£ Phi

2 1.5

ML AL

O

i
i

'
i

-1

-1.5

FIG. 3. System behavior for initial conditiorfg=2.0, i‘0=0, $,=0.5, (i>0=0 and the set of parameter valugs-1, =1, m=1,
AN=2.

065017-6



NON-ABELIAN PLANE WAVES AND STOCHASTLC . ..

dPhi dt, forE=-0.1

0.

ok

d Phi dt, forE<0.1
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FIG. 4. ® andd®/dt for f=0, f>0, E=-0.1and 0.1g=1u=1m=1A=2).

a set of trajectories with equdl. If the set of intersection parameters =1, u=1, m=1, A=2), we found E.=
points for the given trajectory is restricted to a point, the—5/72. This value does not contradict our conclusion made
motion is periodical; if they lie along the same curve, thewith regard to numerical calculations and studies of Poincare
motion is quasi-periodical. surfaces of sectiorsee above Unfortunately the Toda-
For the stochastic motion, the intersection points coveBrumer criterion failed for critical energies above the saddle
densely a finite area. The left picture in Fig. 4 corresponds t@oint.
comparatively low energies, well below the “saddle” point.
It is easily seen that all the trajectories form closed curves.
According to KAM theorem, this means that practically the
entire phase space consists of toruses, which corresponds toIn this paper we have found an exact plane-wave solution
quasiperiodical motion. For higher energies and larger peref the field equations for the 3D gauge field theory with a
turbations the right picture of Fig. 4, the situation is com-non-zero topological mass. The effective mass of the solution
pletely different: there arise regions of ergodic behaviordepends on two dimensional parameters of the model: the
though there remain some small regions of toroidal structureamplitude of the wave and the Chern-Simons topological
It should be clearly understood that dispersed points in Fig. 4nass. The plane-wave form of the solution becomes evident
form one and the same trajectory which chaotically goesfter applying the Lorentz boost. Thus, we obtain a nonlinear
through almost the entire accessible domain of the phasmassive plane wave, and this is due not only to the nonlinear
space. For still higher energies the situation is different. Theharacter of the gauge field equations, as was the case with
motion of the system again becomes more and more stabihe usual 4D Yang-Mills equatiofb], but also to the role of
lized, which is seen in Figs. 4 and 5. The conclusion whichthe massive Chern-Simons term. This term, on one hand,
follows from these numerical calculations is that near theadds a positive contribution to the effective mass of the so-
saddle point the character of motion changes, correspondirigtion, and this makes the wave even heavier. On the other
to the symmetry breaking in the Lagrangian. The motionhand, it allows the energy density to become negative. Here,
becomes more unstable and its stochastic character more pras a limiting case, we obtained a known static solution with
nounced when the energy is closer to the saddle point valu¢he lowest energy possible for the class of solutions consid-
We have also made use of the Toda-Brumer critef8]  ered.
to find the critical energ¥. such that for energies belok;, We were faced with another interesting situation, when
no chaotic trajectories should be found. For our choice ofwve chose to include not only the CS term, but also a scalar

VI. SUMMARY AND CONCLUSIONS

dPhi dt, forE=0.5 dPhi dt, forE=8.0

1t .

FIG. 5. ® anddd/dt for f=0, >0, £=0.5 and 8.0 =1, u=1, m=1, \=2).
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Higgs field. A choice of the restrictive ansatz, similar to the

PHYSICAL REVIEW D65 065017

The general physical conclusion of Matinyan and Savvidy

one used in the previous sections, now led us to an effectivg29] is that the Yang-Mills field system is not exactly solv-
mechanical system with two degrees of freedom. We haveable (otherwise, the trajectories would have a regular rather
demonstrated that for special initial conditions, the phasd¢han chaotic formn This conclusion is confirmed in the
space trajectories are closed and regular. Chaotic behavior pfesent paper for the case of a 3D gauge field model with a
the Yang-Mills theory in the 4D space-time was discoveredopological CS term and an additional interaction with a dy-

and studied by Matinyan and Savvidsee[29] and[15] for
reviews and discussiondn [14] thed=2 dimensional YM-

namical Higgs field. The presence of the CS topological
mass in the 3D case is conducive to the restoration of sym-

Higgs theory was studied. There, the Higgs field was chosemetry and to stabilizing the system.

to be anSU(2) doublet. In that paper it was qualitatively

demonstrated that spontaneous breakdown of gauge symme-
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