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Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation
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The exact renormalization group equation for pure quantum gravity is used to derive the nonperturbative
B-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by
the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff
function. The features of these flow equations are compared to those found when using a smooth cutoff. The
system of equations with a sharp cutoff is then solved numerically, deriving the complete renormalization
group flow of the Einstein-Hilbert truncation id=4. The resulting renormalization group trajectories are
classified and their physical relevance is discussed. The nontrivial fixed point which, if present in the exact
theory, might render quantum Einstein gravity nonperturbatively renormalizable is investigated for various
spacetime dimensionalities.
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[. INTRODUCTION “type B” was introduced which is formulated in terms of the
component fields of,, appearing in its transverse-traceless
Exact renormalization groufRG) equationg1] provide a  decompositior7].
powerful tool for the nonperturbative investigation of both  One of the interesting predictions of the Einstein-Hilbert
fundamental(renormalizablg and effective quantum field truncation is that the high energy behavior of 4-dimensional
theories. In particular the RG equation of the effective averquantum gravity is governed by a non-trivial ultraviolet
age action2] has been applied to a variety of matter field (UV)-attractive fixed point for the dimensionless Newton
theories as well as to Euclidean quantum graj/@y]. constant and cosmological constdBt5,6,8. (In d dimen-
The effective average actiohiy is a Wilsonian(coarse  sjons, they are defined ag=k% 2G, and \=\/k?, re-
grained free energy functional defined on a smooth spacespectively) If this fixed point is present also in the exact
time manifold. Its construction is based upon a modified vertheory, Quantum Einstein Gravity is likely to be renormaliz-
sion of the standard path integral for the generating funcaple at the nonperturbative leViél]. Despite its perturbative
tional which has a built-in infrarediR) cutoff at the mass nonrenormalizability it could then be a predictive, funda-
scalek. All quantum fluctuations with momenta?>k? are  mental theory valid at arbitrarily small distances. An UV
integrated out as usual, while the contributions from modesixed pointg* for g, entails thatG,=g*/k%~2 vanish for

with p?<k® are suppressed by the cutoff. This cutoff is k. (providedd>2) so that the theory becomes asymp-
implemented by giving a momentum dependésquaregl totically free.
massR,(p?) to the modes with covariant momentymi2]. Also the “phenomenological” implications of the running

The k-dependence of’ is governed by an exact func- gravitational constants for black hole physjd$,11] and for
tional RG equation. In any realistic theory it is impossible t0cosmology[12,13 have been investigated. In particular, it
solve this equation exactly, but by appropriately truncatinghas peen argudd 2] that the UV fixed point reflects itself in
the space of action functionalStheory space’) one can the cosmology of the Planck era and that it might lead to a
obtain nonperturbative approximate solutions which do nokgytion of the flatness and the horizon problems of classical
rely upon small expansion parameters. The truncation is cagriedmann-Robertson-Walker cosmology.
ried out by making an ansatz fdl, which contains finitely Previous investigations and applications of the Einstein-
or infinitely many free k-dependent parameterg(k). Upon  Hilpert truncated flow equations have mainly been based on
inserting this ansatz into the functional RG equation and Progpproximate solutions of the RG-equations in the far IR
jecting the RG flow onto the truncation subspace one obtain(sk_>0) and far UV k—). Besides these solutions only
a coupled system of ordinary differential equations for thejitie is known about the complete RG flow given by the
i _ ) _ Einstein-Hilbert truncation.

For the case of Euclidean quantum gravity, the effective | this paper we shall therefore study the numerical solu-
average action and its RG equation have been constructed fns to the flow equation for the dimensionless cosmological
[3] where also the flow equations for the “Einstein-Hilbert constant\, and the dimensionless Newton constgpt ana-
truncation” were derived. The Einstein-Hilbert truncation re- lyzing the RG flow in the complete-g—plane. For a generic
tains only the invariant§d®x\/gR and fd’x\/g, the associ-  cuytoff, the pertinentg-functions B, and B, contain rather
ated coupling constants beiii, the running Newton con-  complicated “threshold functions” which are functions Xxf
stant, and )\, the running cosmological constant, andg,, and functionals oR,(p?). In order to make a nu-
respectively. The original construction of REB] employs a  merical solution of the flow equation feasible we introduce a
cutoff of “type A” which is formulated in terms of the com- sharp cutoff[2,14] for which the integrals defining the
plete metric fluctuatiorh,,. In Refs.[5,6] a new cutoff of  threshold functions can be evaluated analytically. In contrast

0556-2821/2002/66)/06501626)/$20.00 65 065016-1 ©2002 The American Physical Society



M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW [B5 065016

to many standard matter field theories where the singulain this mannefl”,[ g] becomes invariant under general coor-
nature of the sharp cutoff often leads to ill defined or diver-dinate transformations.

gent B-functions, we shall see that applying the sharp cutoff The crucial new component in the construction of
to the B-functions arising from the Einstein-Hilbert trunca- I'\[ g,g] is thek-dependent IR-cutoff term S in the action
tion leads not only to well defined function, , By, but in  under the path integral. This term discriminates between the
addition yields the same characteristic behavior of the RGigh (p?>>k?) and low-momentum modep{<k?). It sup-
trajectories. Moreover, for universal quantities, even thepresses the contribution of the low-momentum modes to the
guantitative results are very similar to those found when uspath integral by adding a momentum dependent mass term
ing a smooth cutoff function.

The B-functions employed in the present investigation are
those derived in the original papfs], i.e. they arise from a
cutoff of “type A’ and a constant gauge fixing parameter
a=1. + ﬁf d% Vg C,RIgIC. (2.1

The remaining sections of this paper are organized as fol- K
lows. In Sec. Il we give a brief summary of the original 5. )

Here x“ is a constant, and the first and second term on the

derivation[3] of the “type A’ flow equation for\, andG,, - : : -
introducing all the definitions needed for the later analysis.rlght hand sid¢RHS) provide the cutoff for the fluctuations

In Sec. Il we investigate the properties of the thresholg®! the metrich,,=g,,—g,, and the ghost field€, ,C*,
functions as an important ingredient of the flow equation. InféSPectively. In this work we choose the following form of
this course we introduce a sharp cutoff function which al-the cutoff operator&™ and Rg":

lows the analytical evaluation of the integrals appearing in

— 1

these functions. Sections IV and V contain the results of our RY™(g]=2¢*%*R©(-D/K?),
numerical analysis. In Sec. IV we investigate the renormal- _
ization group flow below the Planck scale and compare the REh[m:sz(o)(— D/K?). (2.2

results obtained with the sharp and a smooth exponential

cutoff function. In Sec. V we use the sharp cutoff to deriveHere (Z§)*"*7=[(1 =P ,)*"*7—(d—2)/2P4""7]Zy is a
the full RG flow on theg-\—phase space and classify all matrix acting on h,,. In this expression R,)*"*”
possible solutions to the flow equationds-4. Here we also  =d~'g*"g"” projectsh,,, onto its trace partp. In the ter-
investigate the reliability of the Einstein-Hilbert truncation in minology of [5], this form of the cutoff function defines the
d=4 and its limitations fod>4 by investigating the behav- “cutoff of type A.” The so-called shape functioR® is ar-
ior of the non-trivial fixed point in various other dimensions. bitrary except that it has to satisfy the conditions

RO0)=1, RO(z—x)=0. (2.3
Il. THE FLOW EQUATION OF THE EINSTEIN-HILBERT . . .
TRUNCATION Neglecting the evolution of the ghost sector which corre-
sponds to a first truncation of the general structurd’pf
In order to derive the nonperturbative flow equation forone finds thal",[ g;g] satisfies the following flow equation:
the dynamical Newton constai@®, and the cosmological L
cqnstant)\k on_the theory space spanned by the E|_nste|n— o\ [9:9]= —Tr[(K’ZF(kZ)JrREra"[@)’latRE'a‘{m]
Hilbert truncation we use the effective average action ap- 2
proach to pure quantum gravity. For the details of the fol- i _
lowing discussion we refer to the original pag8t. ~ (= Mlg:gl+ Rgh[gj) 1‘9IREh[gj]'
The main ingredient of this method is the exact evolution (2.9
equation for the effective average actibi] g,,, ] for gravity.
The derivation of this evolution equation parallels the ap-HereI'*)[g;g] denotes the Hessian b%[g;g] with respect
proach already successfully tested for Yang-Mills theoriegg 9, at fixed background fieldj,,, andtzm(k/R) is the
[15,16]. In principle it is also possible to include the addi- “renormalization group time” with respect to the reference
tional renormalization effects ok, and G, coming from  scale k. Furthermore, M represents the Faddeev-Popov
matter field4 17,18, but these are not included in the presentghost operator.
derivation. In order to obtain the nonperturbative flow equation for
In the construction of",[g] one starts out with the usual the running Newton constai®, and the cosmological con-

path integral ofd-dimensional Euclidean gravity. This is stant \, we now approximatel' [g:g] by the Einstein-

gauge fixed_ by using the backgrounc_i _ﬁeld me?'ﬁ“’g’zq Hilbert truncation, considering the subspace spanned by the
and employing a background gauge fixing condition. Due tooperatorsfddx g and [d%\/g R only:
the introduction of the background metrig the effective ’

average actioi’,[ g;g] now depends on both the full metric _

g and the background metrig. The conventional effective Fk[Q?@Z(l&TGk)*lf d% Vg {—R+2)\¢

action I'[g] is regained as the&k—O0 limit of I'[g]

=I'\[g;9=g], where the two metrics have been identified. + classical gauge fixing. (2.5
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Substituting this ansatz into the evolution equati@r) and
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For convenience we also introduée=kM ! as a dimen-

projecting the resulting flow onto the subspace given by th&jonless scale parameter.

Einstein-Hilbert truncation then leads to the flow equation

Substituting the dimensionless coupling constd@td?2

for A, and G This equation is conveniently written down into the B-functions(2.8) one finds the following set of dif-

using the dimensionless Newton constgpiand cosmologi-
cal constani:

Jk= kd_ZGk, )\kErkk_z. (26)
For these couplings the flow equation reads
IN= BN, Gk)s  419k= By( N, k) 2.7
where theg-functions are given by
1 1-d/2
B(N9) =~ (2= A +5(4m) g
X[2d(d+ 1), —2\) —8dd},(0)
—d(d+1) pdg(—20)]
(2.9

By(A,g)=(d—2+ 7y)g.

Here 5y is the anomalous dimension of the operator

fd%\gR,

gB;(N)

7n(g,N) = -8B, (2.9

and the function®8,(\) andB,(\) have the following defi-
nition:

Bi(M)= %(477)17d/2[d(d+ D@ gip1(—2\)

—6d(d—1)®3,(—2\) —4dDY,_,(0)

—24D5,,(0)]
. (2.10
B,(\)=— 6(47T)1—d’2[o|(o|+ 1D, 1 (—2N)

—6d(d—1)®,(—2))].

Furthermore, we introduced thR(®)-dependent threshold
functions®? and®P (p=1,2,...) as

_ RO(2)- 2R (z)

[z+RO(z)+w]P
(2.11)

CIJF’(W)zifcdzi1
" I'(n)Jo

RO)(z)
[z+RO(z)+w]P

- 1 ®
Pl — -1
DR(w) F(n)fo dz?'

ferential equations

.d. . .
k—G (k)= nyG (k) (2.13
dk
K= mkt (49
dk 2
X[2d(d+1)DY,(— 2N K?) —8dD},,(0)
—d(d+1) pdg( —2MKk)] (2.14
with

_ k972GBy(MK?)
1-k92GB,(Mk?)

" (2.15

Here 9,=kd/dk=kd/dk has been used. Equatioi2.13),
(2.14 and (2.195 will be our starting point for investigating
the renormalization group flow below the scMen Sec. IV.

Ill. THRESHOLD FUNCTIONS

Before we can turn to the numerical solution of the flow
equations(2.8), (2.13, and(2.14) it is important to under-
stand the characteristics of the threshold functidfsand

P which depend on the form of the cutoff functid®®)
chosen.

A. Smooth cutoff functions

For the purpose of studying the general properties of the
threshold functions, we first assume tHRif) satisfies Eq.
(2.3 and is a smooth function which does not vanish too
quickly for small values of its argumenz+R(©(z)=1,

V z=0. Under this condition the definition of the threshold
functions (2.11) immediately shows that they vanish for
W— 0,

Furthermore one notes by examining the denominator of

the integrands in Eq(2.11) that the functionsbf(w) and

dP(w) are well defined only for argumenis>—1. For
w< —1 the denominator vanishes for somia the region of
integration, yielding a non-integrable singularity. Therefore
®P(w) and DP(w) are finite and well defined for
we (—1,2) only.

One can derive a recursion formula which connects the

In order to investigate the renormalization group flow be-threshold functions with differerg-values. Interchanging the
low the Planck scale it is more convenient to introduce aderivative with respect tw and thez-integration yields
second set of coupling constants which are made dimension-

less by using an arbitrary but fixed scdlerather thark:

G(k)=G,M% 2 Xk=\M"2 (2.12

d - ~
— DP(w)=—pdPFi(w).

SOhw) = peE W), o
(3.9

dw
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B. The exponential cutoff 1

p 2y — 2\p—n ” 2/ ~2yn—1
For practical computations it is necessary to have an ex- Pr(v/k) I'(n) (k% Jo dp(p%)

plicit form of the cutoff functionR(®). In the calculations

done in[8,11,17 the one-parameter family of exponential RO(p?/k?) — (p2/k?)R®' (p?/Kk?)
X .
cutoffs [P+ R(p?) + 0]
sz (3.6
O)(gg)BP— S5
R%™)(z;s) exasd—1 for s>0 (3.2

o ) Here the prime denotes the derivativeRSP) with respect to
has been used. Heis a “shape parameter”. For these i argument. The integrand of E(8.6) can then be written
cutoffs the threshold function@.11) are seen to be positive 55 3 total derivative with respect kpfor any p>1:
definite:

OP(W)BP=0, DP(w)FP=0, P(p/kd) = — — —  (k2)p-n-1
n(W) n(W) DP(v/k?) 2F(n)(p—1)(k )
p=12,..., n=12,... andwe(—1>). (3.3 y fwd ZKR (p?)n-t
The integral defining the threshold functions with exponen- 0 P Dk [p?+Ry(p?)+v]Pt
tial cutoff can be carried out analytically for vanishing argu-
ment. Using the integral representations for polylogarithms
and the Riemanig-function, =——————(K®)P "1
2I'(n)(p—1)
Li (S): ! J‘ocd_'(SZVl) o J ( Z)nfl
! T(v) Jo “(e*—s) xf dp?k— P — . (37
o K[pP+R(pH)+D]PH_
and
1 = (271 Here the derivativeD/Dk acts by definition only on the
( V):F( ) f dz(eZ 1 [21], k-dependence oRy, but not onv. In order to rewrite it in
14 0 -

terms ofd/dk we introduced the constantwhich is strictly
independent ok. Only at the end of the calculation is it
identified withv=wk?. [For p=1 the formula(3.7) breaks
n down since its right hand side is no longer well defifed.
@%(O)EXP: —{Z(n+1)—Liy,1(1—s)} Assuming p>1, we interchange the-integration and the
s" derivative with respect tk. This is allowed since the integral
(3.9 in Eqg. (3.7) is absolutely convergent. If one now substitutes

the sharp cutofR,(p?)s=R0 (1 p?/k?) one finds

one easily verifies

®7(0)5P= Lin-1(1-5).

n—2 1—
S ( S) (kZ)pfnfl 9

2\sc_
But for non-vanishing arguments an analytic solution to PR(v/k*)*=— 2 (n)(p—1) k@
these integrals is unknown.

0 ( 2)n71
X f dp? - i
C. The sharp cutoff 0 [p2+RO(1—p2k?)+71P~ 1|
In order to be able to evaluate the threshold functions for -
any argumentv we introduce a different cutoff function, the 3.9
sharp cutoff. On the level of the dimensionful function R
Re(p?)=k?RO(p?/k?) the sharp cutoff is defined as T?king the limitR— o restricts the momentum integration to
pe<k-:
R(p?)*=RO(1-p?k?) (3.9
(kZ)p—n—l J
where the limitR— is to be takerafter the integration over Dh(v/k?)%=— mkﬁ
p, i.e. after substituting Eq3.5) into the threshold functions.
In the path integral this choice of cutoff leads to a complete % (p?)n—t
suppression of modes with momentupf<k? while all JZ 2 PRI (3.9
modes withp?>=k? are completely integrated out without the K (p°+v)

v=v
additional mass term.

The evaluation of the integrals in the threshold functionsThe resulting integral is trivially evaluated by acting with the
then proceeds as follows. In the first step one substitutelk-derivative on the lower integration limit. This yields our
z=p?/k? andw=u/k? into the definition ofd®?(w): final result for the threshold functions with a sharp cutoff:
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¢ 5(w) o W

FIG. 1. Comparison between the threshold functions in@Hanctions ford=4 for the exponential and the sharp cutoff. The horizontal
lines indicate the “confidence interval” in which the two cutoff types yield similar results.

1 1 1 For numerical calculations we need to fix tlg's. Usu-
rbﬁ(w)“:r 1 — for p>1. ally we shall assume them equal to the corresponding con-
(M P=1 (14+w)P stants arising from the exponential cutoff with the shape pa-

(3.10 rameters=1:

=Pl sc— Hl Exp (s=1)
One easily verifies that these threshold functions also sat- ¢n=Pn(0)>=(0) (3.12

isfy the recursion relation3.1) deriveld for a smooth cutoff. This choice leads to a very good agreement between the
This relation can be used ttefined;(w)* as the solution  {hreshold functions evaluated by using the exponential and
to the differential  equation d/dw)Pi(W)*=  the sharp cutoff, at least for values wfin the “confidence
—[1U(n)][1/(1+w)] which arises from substituting interval” [—0.7,1]. This is shown in Fig. 1, where the nu-
d7(w)Cinto Eq.(3.1). Thereby we avoid the diverging func- merical values of thosebP-functions which appear in the
tions & (w)® which would arise from directly substituting g-functions ford=4 are compared for the two types of cut-
the sharp cutoff into Eq(3.6) with! p=1. The resulting offs.
<1)r11(w)5°s are then determined up to a constant of integra- In order to investigate the residual cutoff scheme depen-
tion: dence of the results obtained from the sharp cutoff it is useful
to define a one-parameter family ef,'s, analogous to the
1 one-parameter family of exponential cutoff functiof82).
1/nsc o 1, sc This is done by generalizing the relatio®.12 to arbitrar
Pr(w)™= I'(n) IN(L+w)+Pr(0) 319 values of the s);lzgpe parame?ter ’

en(S)=D(0)FP ) (3.13

The constant®}(0)%°= ¢, are undefined priori; they pa-
rametrize the residual cutoff scheme dependence which i§he resulting functiong(s) and¢,(s), which are the only
still present after having opted for a sharp cutoff. constants of integration appearingds-4, are shown in Fig.

2. Here one finds that fos>15 the numerical values of

¢1(s) and ¢,(s) are not subject to relevant changes any

IThis is the technical reason why, in the present application, thénore. Therefore we will limit further investigations of the

sharp cutoff leads to a finite and well-defined evolution equation. residual cutoff scheme dependence to the regiari5.
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FIG. 2. Dependence of the constants of integratigrand ¢, on the shape parameter

For thedP-functions the integral appearing in E@.1)  Thus the flow equatior(2.7) has now boiled down to a
can also be evaluated explicitly by substituting the shargoupled system of ordinary differential equations whose
cutoff. In a calculation similar to the one shown above oneR|‘|||S is known explicitly and which is easily solved numeri-
obtains cally.

~ 1 IV. RG TRAJECTORIES BELOW THE PLANCK SCALE
P (W)¥=——— for p=1

I'(n+1) In this section we discuss numerical solutions to the
_ (314w \_scaled” differential equationé2.13), (2.14 for & andXx
®dP(w)**=0 for p>1. in d=4 dimensions. We specify initial conditions at some

_ N _ fixed scalek=k and identify the mass scaM, which was
Having at hand the explicit form of the thrgshold fgl_ﬁcnons,used in Eq(2.12 for defining the dimensionless variablés
Egs.(3.10, (3.1D and(3.14, we are now in a position 1o % '\ yith this initial pointM =k. It will prove convenient

write down theB-functions(2.8) with all integrations carried to rewrite the flow equations in terms of the scale parameter
out. The result reads

=k2=K2/M?2
By(N\,9)%°=(d—2+ 73)g y=k?*=k?/M?2. (4.2)

Hence the initial poink=M corresponds t§=1.

1 : : .
Bi(N\9)¥=— (2= N+ 5 (4m) 1~V We shall see that some RG trajectories can be continued
2 down to k=0, while others terminate in a singularity at a
2d(d+1) nonzero value ok. For every trajectory which can be ex-
[— Wln(l—Z)\HZd(d— 3) e tended tdk=0 we define a Planck mass in terms of the final,
(df2) i.e. infrared, value of Newton’s constant:
dd+1) . 1
ECNL (319 mp=Go Y2=G(k=0)"*2 4.2
with As a consequence of this definition,
- = 2_ M2/ m?2
g 9B, (V) 316 G(0)=GgM*=M*mg,. 4.3
NET 1 gB,(V)C )
Ay)
HereB;(\)*¢ andB,(\)s¢ are given by R T
P -
1 B dd+1) L ___--- ---77 s
Bl(A)SC:§(4ﬂ.)1 dr2 _mln(l_z)\) 0.2 0.4 0._6-_—0._8__——13!—15/7"@]
R -
3 6dd-1) 1 24 O R T
(A=3)¢0-1" Trarm) 1-21 T2 Y BRSNS T
(3.17 ) T
B,(\)5= _E(4w)1—d/2d(d+ 1) FIG. 3. Solution(4.5 to the naive flow equation for different
2 6 r'(d/2) initial values\(y) andG(0)=1.
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) )
0.4; Exps=2 0.4} scs=2
0.2 0.2

: : : ::::mz:::ﬁ:tzzgzg::fzgzzzf”
BT e — —0.2\
o —0.4\

FIG. 4. Numerical solutions to the flow equatio%6) and (4.7) for the exponential and the sharp cutoff f&(0)=1 and shape
parametes=2. The straight line indicates the boundfiﬁy y/2 introduced by the threshold functions. Trajectories leading to negative values
X(O) as well as trajectories terminating in the singularity are found.

After having solved the RG equation and having found thek— 0, depending on the initial value set at the scaléVe
final valueG(0) one could in principle use E¢4.3) in order ~ could “fine-tune” this initial value so that the renormalized
to expresM in terms of the more physical Planck mass.  cosmological constant become@$0)=0, but clearly this

In order to disentangle the various effects which contrib-would not explain the smallness of the cosmological constant
ute to the running o5 and\ it is helpful to start the discus- in a natural way.
sion by analyzing two approximate forms of the system of
Egs.(2.13, (2.14). At a first level of approximation, we ne- B. The impact of the threshold functions

glect the running ofG by settingy=0 and focus on the Now we drop the second assumption made in @)
scale dependence afalone. The motivation is that accord- and allow for a non-trivial argument of the threshold func-
ing to canonical dimensional analysis the runninghofs  tion ®3, while keepingzy=0. The resulting flow equation
much more “relevant” than that of Newton’s constant. At a for a generic smooth cutoff reads

second level of approximation, we further simplify the re-

maining equation(2.14) with zy set to zero, by neglecting dv  y . .
N Gv=15-C(O[5D3(~2}y) ~4D3(0)]. (4.6

the backreaction which the changinghas on the flow via dy
the threshold functions; to this end we sef(—2\/k?)
~®1(0). For the sharp cutoff it becomes
i izati d)\
A. The naive renormalization group flow o= G(O)[ 5In(1— ley)+¢2] @7
Let us start with the “naive” RG flow which is defined by y

the following two approximations: )
We shall solve Eq94.6) and(4.7) numerically and compare

G(k)~G(0)=const, i.e.npy~0, and the resulting trajectories. We specify initial valukgy) at
the initial pointy=9y=1. In order to visualize the generic
cpg(_z)“\(y)/y)mq>g(o)_ (4.4 solution to these flow equations we have to abandon our

choices=1 for the shape parameter because for this special

The remaining differential  equation (dX(y)/dy) value the RG trajectories have certain properties which are
— (v/2m)G(0)DL(0) is easilv solved: not typical. Let us start witls=2 instead which illustrates
(y/2m)G(0)P2(0) y the general situatior{For the sharp cutoff this change sf

N TR 1 st 2_¢2
)\(Y):)\(Y)"'E(I’z(O)G(O)(y -99. (4.5 &)

bt
0.1
This corresponds to the result of a naive one loop calculation
with an IR cutoff which also yields a running af propor-
tional to y?eck*. 0.06

The solutiong4.5) are plotted in Fig. 3 where the dimen-
sionless Newton constant was chosen t@&16)=1. By Eq.
(4.3 this choice implies thaM =mp,, i.e. that the initial 0.02
conditions are imposed &t= mp,, and that the cosmological ___—//
constant is measured in Planckian units.

As Fig. 3 shows, the solutiorid.5) allow for any value of

the “renormalized” cosmological constaﬁ'(O) in the limit FIG. 5. Behavior of trajectories close to the boundaryy/2.

0.08

0.04

0.05 0.1 0.15 0.2Y
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) )
0.4; Exps=1 0.4 scs=1
0.2 0.2
—©0 24— 0.6 08— 1° —5-> 05 <¢ 06 00— 1
B T L e ——
e
-0.6 -0.6

FIG. 6. Numerical solutions to the flow equatio%6) and (4.7) for the exponential and the sharp cutoff f&(0)=1 and shape
parametes=1. The bold, straight line indicates the boundiuﬂyylz introduced by the threshold functions. In contrast to the generic case
s=2 no trajectories terminate on the boundiryylZ.

leads to a different numerical value of thg,'s, whose (rather weakfocusing of the cosmological constant towards

s-dependence has been defined in E&413.] zero, in the sense that the trajectories in Fig. 4 curve upward
The resulting trajectories fos=2 are shown in Fig. 4. for y—O0.

The special case arising fros=1 is displayed in Fig. 6. Looking at Fig. 6 we see that the choise 1 leads to a

Again we chose3(0)=1, implying thatM =mj, for those ~ Non-generic behavior since the termination of the trajectories

trajectories for whichG(k=0) is defined. at \=y/2 does not occur. In this case all admissible initial

Comparing the “Exp” to the “sc” diagrams in Figs. 4 and conditions imposed a§=1 give rise to trajectories which
6 clearly indicates that the sharp and the smooth exponentigin be continued down tp=0. They all yield a negative or
cutoff yield essentially the same RG trajectories. vanishingX,.
The most striking feature of Fig. 4 is that some trajecto-
ries cannot be continued below a certain finite value
Y=VYierm- Trajectories which, in Fig. 3, have led to positive C. The complete system
IR values\(0)>0 now terminate because they hit the sin- Let us now also drop the approximati@ = const and
gular linex=y/2. It is due to the singularities of th&- and consider the full flow equationg2.13 and (2.14), treating
®-functions atw= —2\/y=—1. Looking at the flow equa- both G(k) and A(k) dynamical. We compute the solutions
tions (4.6) and (4.7) we see that their right hand sides di- for the initial values
verge,B;— +, if \ approachey/2. Some solutions to Eq.
(4.7) in the vicinity of A=y/2 are shown in Fig. 5. The tra-
jectories approach the singularity with a slogg smaller
than 1/2. Only directly on the boundary would the slopeThe resulting trajectories for the sharp cutoff are shown in
jump to o discontinuously. Equationgt.6) and (4.7) show  Fig. 7. Here two classes of solutions immediately become
that the singularity of8; also extends to apparent.
Trajectories which end at a negative value of the cosmo-
logical constant\(0)<0 have already appeared in Figs. 4
(4.8 and 6. Later on they will be referred to as of “Type la”.
Comparing the trajectories wifk(O)<O of Fig. 7 to those in
. Figs. 4 and 6 one finds that including a dynamical Newton
Hence the RG flow is defined only far<y/2. This leads to  constant in the flow equation counteracts the effect of focus-
the following consequences for all cutoffs: ing |\o| towards smaller values, leading to even more nega-
(i)AIt is not possible to choose initial valuegy) larger tive values ofx(0).
thany/2. . The second class of solutions in Fig. 7, which will be
(i) There are no trajectories in the regiary/2. There-  classified as Type llla, is formed by the trajectories ending
fore we obtain only negative values for the cosmological,, {he boundary lind=y/2. Fork—y/2 the anomalous di-
constant, in the limit k—0. Trajectories that in Fig. 3 have mensions, rapidly diverges. This leads to a vast increase of
led to positive values(0)>0 now either lead to negative the Newton constarG(y) preceding the termination of the
values of the cosmological constanf0)<<0, or run into trajectory. Due to the divergence afy, the RHS of both
the boundary linex=y/2 and terminate at finite values Egs.(2.13 and(2.14 approaches—oo asX—>y/2 Therefore
Yterm> 0. the tangents of the functlor@(y) and 7\(y) turn vertical
Comparing those trajectories that in Fig. 3 and Fig. 4causing the trajectory to terminate at a finite vayyg,>0.
yield negative IR- value$(0)<0 we see that including the Furthermore, Fig. 7 clearly shows the “anti-screening”
nontrivial argument of the threshold functions leads to acharacter of pure quantum gravity, i.e. the monotone de-

G(y=1)=0.25, X(§=1) arbitrary. (4.9

>«
\Y
N <
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) Gly)
1
0.4} sc
0.2 0.8

0.2 0.4 0.6 0.8 1'FM™
FIG. 7. Solution to the full flow equation Wité()“/: 1)=0.25 and various initial valuevs()"/: 1) for the sharp cutoff witls=1. The bold
line indicates the boundary at= yI2.

crease of the Newton constaBj with increasing values of ~ found using the exponential cutoff crosses all the other Type
or k [3]. Illa trajectories which start at lowex(y) and terminates at
The most important change arising from the inclusion of a&n “unnaturally low” valuey, see the first di%gram of Fig. 8.
running G(y), which cannot directly be deduced from the Th|§ behgwor is due t‘?vtrle dlvergence@ﬁ ona certaln'
Figs. 4, 6 and 7, is the modification of the backward evolu-2-dimensional surface ik-G-y—space which is discussed in
tion when weincreasey and try to send it to infinity. For the detail in the Appendix. I'E leads to a termination of the trajec-
flow equations(4.6) and (4.7) with é(y):é(o) kept con- tories slightly before tha.=y/2-line is reached. This differ-
stant we find that the backward evolution becomes undefine@NCc€ between the sharp and the smooth cutoff occurs in a

for sufficiently large values of>9. All trajectories termi- €dion very close to the singularity where the Einstein-

he boundary link=v/2 fini | q Hilbert truncation is unreliable in any case. It is clear that it
nate at the boundary line=y/2 at a finite valuey<> and ¢ hg physical significance. For the sharp cutoff the analo-
cannot be continued to y=x"".

ous singularityny- is located in theprobably unphysi-
As we shall see in the next section this behavior changeg g YN ap y tnphy

. YA . cal) region with negative(y).
drastically when the running @(y) is included. This is due ) reg g )
to the appearance of a non-trivial fixed point which governsy. THE COMPLETE RENORMALIZATION GROUP FLOW

the RG flow of the couple®-\—system for largg>1. As a After having studied the properties of the RG flow below

consequence, all trajectories shown in Fig. 7 where the runge scalem in the last section we now investigate the com-

ning of G was included have a well defined backward evo-plete RG flow, i.e. the RG flow on the entikeg—plane. In

lution and can be continued up toy'="", this course we first look at the qualitative features of the flow
Next we solve Eqgs(2.13 and (2.14 using the initial equation, determining its fixed points and their stability prop-

conditions(4.9) and theexponentialcutoff. The results are erties. Afterwards we construct the full phase portrait of the

displayed in Fig. 8. Comparing the trajectories in Figs. 7 andlow by numerically solving the k-scaled” flow equation

8 one sees that the trajectories obtained using the sharp amdth the sharp cutoff.

the exponential cutoff are very similar except when they get

close to the singular lina=y/2.
A new phenomenon occurs if we choose initial conditions 1. General remarks

close to the boundar§(=y/2. Here the trajectory obtained The existence and consequences of a non-trivial fixed
using the sharp cutoff shows no particularities while the ongoint in the Einstein-Hilbert truncation of pure quantum

A. The fixed points

Al) Gy)
1
0.4} Exp
0.2 0.8
PR —— s AU
-0.2 0.4 \\
-0.4 = ——
0.2
-0.6 Exp

0.2 0.4 0.6 0.8 1 v=EAr

FIG. 8. Solution to the full flow equation witis(§=1)=0.25 and various initial values(y=1) for the exponential cutoff with
s=1. The bold line indicates the singularity Xt y/2.
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gravity have already been discussed in RE¥s6,8]. Refer-
ence[8] uses the exponential shape functi@?2) for a cut-
off of type A, establishing the existence of this fixed point for
a wide range of shape parametersn [5] the properties of

the fixed point are investigated using the type B cutoff for

various smooth shape functiof®. In this subsection we
extend these surveys to the sharp cut@ff’sc within the
original type A cutoff scheme and compare our results to
those obtained by using(® &P,

In order to investigate the fixed points we now turn to the

flow equations written in terms of tHescaled coupling con-
stants\,g of Egs.(2.8) and(3.15. The existence of a fixed
point A*,g* requires that theB-functions of the Einstein-
Hilbert truncation vanish simultaneously:

B\(A=\",0=0%)=0, By(A=\*,g=g*)=0. (5.1

Equation (5.1 has two solutions: A trivial one for which
A*=0,0*=0 and a non-trivial solution witlg* #0. They
give rise to a “Gaussian” and a “non-Gaussian” fixed point,
respectively.

An important property of a fixed point is the anomalous
dimensionny(\*,g*) at this fixed point. From Eq92.8)
and (2.9) one findszy(\*,g*)=0 and y(\*,g*)=2—-d
for the “Gaussian” and the “non-Gaussian” fixed point, re-
spectively.

In order to investigate their stability properties we linear-
ize the RG flow at the fixed points,

76
2N
98y
2N

8,
g
78
79

g~ 2 BI] g] BE[Bij]:

(5.2

In our case the generalized couplings @re given by
gl—)\ g;=9, and the derivatives defining;; are taken at
gi=g" . At an arbitrary point X,g), and for anyR(®, the
partial derivatives of theB-functions are easily found by
making use of the recursion formu(a.2):

P (2 | N (A (0 1B 2”)
g 9,
X S (A9 4d(d+ 1) D3~ 20)
—2d(d+1) m®5(—2N)]
(5.3
fgx }\__(4 )E92d(d+ 1) D g — 2>\))

1
+ 5(477)1’d’2[2d(d+ 1) DL ,(—2\) —8dd2,,(0)

—d(d+1) @ Fa(—2N)]

PHYSICAL REVIEW [B5 065016

2

9Bqg g

K:m[Bl (M) +7nBy (V)]

I

Here the derivatives ofyy are given by

gBy(N)

By _
=d—-2+|2+
1-9gBy(N)

dm_ (1 BN )
og \g 1-gB,(n)) ™
(5.4)
InNN g , '
N m[BMH 7Bz (V)]

andB;(\) andBj(\) are the derivatives d8;(\) andB,()\)
with respect to their arguments:

Bj(\)= %(477)1’d’2[2d(d+ 1)®3,_,(—2\)

—24d(d— 1) D~ 21 ]
(5.5

7 1 ~
B, (\)=— E(477)1*"’2[2o|(o|+ 1) D3, 1(—2)\)

—24d(d—1)D3,(—2))].

Since these equations make no use of the fixed point values
\* andg* they can be used to investigate both the trivial and
the non-trivial fixed point. The eigenvalues and right eigen-
vectors ofB, evaluated at the corresponding fixed point, then
determine its critical exponents and scaling fields, respec-
tively. Since, genericallyB is not symmetric, its eigenvalues
are not real and the eigenvectors are not orthogonal in gen-
eral. We define the stability coefficien®, 1=1,2, as the
negative eigenvalues ofB satisfying the equation
BV'=—¢'V!, whereV' are the right eigenvectors &.

2. The trivial fixed point

Substituting\* =0,g* =0 into Eq.(5.2) the stability ma-
trix simplifies to

-2 (4m*92d(d—3)dL,(0)

5
0 d-2 (

.6)

Berr=

Diagonalizing Eq(5.6) then leads tdwo real stability coef-
ficients with their corresponding right eigenvectors:

|

6,=2—d with V2=(

1
6,=2 with Vi= ( 0
(5.7)

(4m)t~92(d—3)®],(0)

1
The resultg5.7) can be used to write down the linearized

renormalization group flow of the coupling constanisg,
in the vicinity of the Gaussian fixed point:

065016-10
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TABLE I. Renormalization group flow ok, in the vicinity of the trivial fixed point, depending on the
sign of a;.

Type Sign ofa, Asymptotic behavior

la a1<0 aq-contribution dominates in Eq5.8);
N¢— — 2 in the limit k— 0.
lla a;=0 ay-contribution dominates in Eq5.8);
A is proportional tok9~2: \,—0 in the limitk—0.
llla a1>0 a4-contribution dominates in Ed5.9);
\¢— + o in the limit k—0.

2 Kd—2 This equation can be used to eliminate thdependence of

M= ag— +ap(4m)t P(d=3)DGp(0) ——— + - - B, at the non-trivial fixed point, i.e. we have to solve
k M B(\*,g* (\*))=0 for \*. Due to its complicated structure

(5.8 this equation can only be solved numerically. For the
B-functions with sharp cutoff3.15 the numerical evaluation

Kd—2 yields a non-Gaussian fixed point at

gk:aZWjL' SR (5.9

* *
Here @, and a, are constants of integration allowing to ad- A\*=0.330, g7=0.403. (5.12

just the solution to given initial conditions.

Equations (5.8) and (5.9 show that, ind=4, the
V2-direction of the Gaussian fixed point is attractive for
k—0, leading to a vanishing,, while the V!-direction is
repulsive. The behavior ofy crucially depends on the sign
of a;. Fora;<0, @;>0 anda;=0, the trajectories start to
the left, to the right, or on th¥2-axis. They will be referred
to as trajectories of Type la, lla and llla, respectively. The

In order to discuss its properties, we take the general sta-
bility matrix (5.3 and substitute the condition for the non-
trivial fixed point, y(\*,9*)=2—d. Using the sharp cutoff
we find the following matrix entries:

SC *
corresponding renormalization group behaviongfis sum- a_m = —d+/|\* _(477)1de29_ M
marized in Table . IN | \arp 2 I'(dl2+1)
For the dimensionful coupling constants, E¢5.8) and .
1
(5.9 read « 9 Z(4m)t-a2
1-g*By(\*)** 3
Gk: GO+ e
(5.10 ( 2d(d+1) 1
M= Ror+ (4m)1 92(d=3) DF,(0) Gk - - T(diz=1) 12y
Here we choséM = mp, by settinga,=1, and we identified — 121?(3/; Y 1 2)
— *
Ao=a;m3,. From Eqs.(5.10 it is easy to see that boiB, (d2) - (1-2x%)
and, run towards constant but non-zero values in the limit 2d(d+1) 1
_ H i 1-d/i2n*
k—0, unless we setr;=0 by hand. But since there is no +(4) g T(d2) .
compelling reason fow, to be zero we see that depends 1=2x
on the free parameter; and therefore on the trajectory cho-
sen. Hence the Gaussian fixed point does not determine the
; — : B\ |%C _.g* d(d+1)
value of the cosmological constaxy in the infrared. P =2—d)| N —(4m)l-orl
99 | yarp 2 I'(d/i2+1)

3. The non-trivial fixed point
) o ) . ) ) 1 B ()\*)SC (47T)lfd/2
The existence of a non-trivial fixed point witfi #0 im- x| =+ 2 +
pliesd—2+ ny(\*,g*)=0 in order forB, to vanish. Using g* 1—g*B,(\*)% 2
Eq. (2.9 this relation can be solved fg* as a function of

*: 2d(d+1)
AT _ _oyk
( T -2
g* (A )= d—2 | 510 © (A 3o d(d+1)(2—d))
(d—2)By(\*)—By(\*) (d=3) a2 —Fgmr1)
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TABLE Il. Comparison between the numerical results for the non-trivial fixed point using the sharp and
exponential cutoff with different values for the shape parameter

Sharp cutoff Exponential cutoff
S )\* g* )\* g* 0/ 0// )\* g* )\* g* 0! 0’/
0.8 0.340 0.378 0.129 2.141 3.438 0.390 0.233 0.091 1.376 4.710
1 0.330 0.403 0.133 1.941 3.147 0.359 0.272 0.098 1.422 4.307
5 0.281 0.507 0.143 1.348 2.743 0.154 0.834 0.128 1.499 3.224
10 0.273 0.521 0.142 1.294 2.654 0.098 1.378 0.144 1.518 3.111
30 0.268 0.529 0.142 1.270 2.592 0.044 3.149 0.140 1.562 3.064
0By (47)L-d2 g*z based upon a trajectory emanqﬁng from an uv fi)ged ppint
— = the physical (observablg quantities are universal in this
99 I\Grp 3 1-g*Ba(N)** sense. However, an artificial scheme dependence can arise
due to the approximations one has to make in all practical
2d(d+1) . calculations. Analyzing the cutoff dependence of universal
I'(d/2—1) 1—2)\* quantities therefore provides a useful tool for judging the
quality of the truncation. One expects that a truncation which
12d(d—1) 1 yields a good approximation of the exact RG flow leads to
- T(d2) (1—2\%)2 universal quantities which are fairly independent of the cut-
off scheme used.
3B, | B, () (5.13 _Natural candidates for testing the quality of the Einstein-
79 =(2—d)( 1+ 9 P2 ) Hilbert truncation are the stability coefficien® and 6"
99 | \erp 1-g*By(\*)*° [22]. Furthermore, one can argue that the prodntg*

should be universal, tofb,23]. The argument is as follows:
B1(N)*°andB,(\)*Care given by Eq(3.17). Substituting the  The functionsk—g, ,\, and their UV limitsg* and\* de-
numerical values of the non-trivial fixed poit5.12 and  pend on the cutoff operatd, and are therefore not directly
diagonalizing thg stab|I|t_y _matr!x leads to the following pair gpservable. Whilek and, as a consequend@, andfk at a
of complexstability coefficients: prescribed value df cannot be measured separately, we may
im0 +i0"=1941+i3.147 invert 'Fhe functlorkHGk. and _msert the resuk=k(G) into
M\« . This leads to a relationship between the Newton constant
(5.19 . . . o
P=0"—i0"=1.941—i3.147. and the cosmological constant which, at least in principle,
could be tested experimentally=\(G). In general this re-
In analogy to Egs(5.8) and (5.9) the solution to the lin- lation depends on the renormalization group trajectory cho-
earized flow equation in the vicinity of the non-trivial fixed sen. But in the fixed point regime all trajectories approach

point then reads M=N\*k? and G,=g*/k? which gives rise to\(G)
ot —g* =g*\*/G for \>m3 andG<mg?. Assuming thah andG
( ) =aysin(— 0"t)e” "t RgVY) have the status of observable quantities, this relation shows
A(t)—N* thatg*\* should be observable, and herRgindependent.

Therefore we also include the quantitf g* when we
plot the numerical values fag* and\* obtained from the

Here one sees that due to the positive real-part'ofthe Iti?(gpogentlal and the sharp cutoff. The results are shown in

non-trivial fixed point is UV attractive in both directions of Here one finds that the non-trivial fixed point exists in the

theg-A—plane, i.e. attractive far=In(k/k)—c. Furthermore,  gnvire region under investigation, &:&< 15. While the nu-
the non-zero imaginary part of the stability coefficient cause§y qrical values fon* (s) andg* (s) vastly differ for the vari-
the trajectories to spiral into the non-Gaussian fixed poinbus values o6 and between the two families of cutoff func-
whent—e. o tions, one finds that the product*(s)g*(s) is almost

_ We emphasize that the nonzero imaginary part of the stag jyqependent and that its values for both types of cutoff
bility coefficients is not an artifact of our singular cutoff but_ functions are very similar. For the “plateau” values xfg*

appears for the smooth exponential cutoff as well, as ige fing with the different function®© employed in this
shown in Table II. paper:

Let us now turn to the investigation of the cutoff scheme
dependence of the results obtained above. A change of the .o _
cutoff functionR(®) ¢ generally leads to a change in the RG N*g*=0.14 fortype A, sap=1,
flow. By definition, universal quantities are cutoff scheme (5.19
independent in an exact treatment. In a fundamental theory N*g*=0.14 fortype A, Expa=1.

+a,cof—0"t)e tim(VY). (5.15
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FIG. 9. The location of the non-trivial fixed point depending on the shape parametdmile A\* andg* show a fairly strong cutoff
scheme dependence, their prodntg* is constant with a remarkable precision, approaching the same “plateau” valuggbffor large
values ofs. In the third diagram\* is plotted againsg* . Both of the two lines start &= 0.8 and end a$=15. From the different lengths
of the lines for the sharp and the exponential cutoff one sees that the sharp cutoff leads to a mucls-siediadence than its exponential
counterpart.

The analogous results found B] using the type B cutoff fixed point is always UV-attractive. This provides us with
scheme are: further evidence for the existence of a non-trivial fixed point
in the full theory[5,6,8].
\*g*=0.12 fortype B, Expg=1,

(5.17
N*g*=0.14 for type B, Expg=0. B. The phase portrait

_ Motivated by the very good agreement between the expo-
ential and the sharp cutoff found when solving Mescaled

low equation in Sec. Ill and analyzing the non-trivial fixed
point, we now investigate the fuN-g—parameter space, us-
ing the B-functions (3.15 with the technically much more

We see that these values are very close to our present find
ings. In particular, the differences between the type A an
type B cutoff are comparable to the difference between th
gauge fixing parametes=0 anda =1 [5,8]. This supports

the assumption that the productg* has a universal mean- /
ing. The rather small numerical deviations of the pIateal,f:onven'e”t sharp cutoff.

height can be attributed to using only a very simple trunca-. But before pr_esentlng the numerical solutions, we summa-
tion. rize the properties of the parameter space that can be directly

In order to round up our survey of the properties of theread off from(3.15. As has been noted in the context of Eq.

non-trivial fixed point ind=4, we now treatp; and ¢, as  (4.8), the flow equation is singuJar for=y/2. In terms of the
two independent, positive numbers obeying no further conk-scaled coupling constant,=\(y)/y this singularity oc-
straints. The resulting numerical values idr,g*,6" and¢”  curs for A=1/2, resulting in a boundary of the
are shown in Fig. 10. \-g—parameter space given by the line 1/2.

This analysis clearly shows the existence of the non- The vanishing of8,(\,g) for g=0 and arbitraryx leads
trivial fixed point for the complete region under investiga- to a separation of the phase space into two decoupled regions
tion, 0<¢q,9,<10. Even though the magnitude of the sta-with positive and negative coupling, respectively. Trajec-
bility coefficients varies by about a factor of 3, as an effect oftories starting in one of these regions will never cross the
our truncation, the qualitative properties of the fixed pointseparation linegg=0.
are the same for all values af; and ¢,. The fixed point The characteristics of the trivial and the non-trivial fixed
always possesses a pair of complex-conjugate stability coepoint have already been discussed in the previous subsection.
ficients whose real-part is positive, RE(=6'>0, i.e. the One expects that the non-Gaussian fixed point dominates the
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FIG. 10. Numerical results for the location and stability coefficients of the non-trivial fixed point, treatiagd ¢, as independent. The
solid line corresponds to the results obtained by considesingnd ¢, as a function of the shape parameteFor all values ofp,; and ¢,
the non-Gaussian fixed point is seen to have the same qualitative features.

RG flow for larget=In(k/k), leading to a spiraling in of the tonomous differentigl equation for the&k“scaled” quantities
trajectories on the point¢,g*). The stability axis/? of the ~ 9k and A. In the first step we focus on the part of the
Gaussian fixed point will provide a separation between the--g—plane where the RG flow is governed by the two fixed
trajectories which run towards,= —% and \,=+1/2, re- points found in the previous subsection.

spectively. The resulting flow diagram is shown in Fig. 12.

In terms of the coordinates,g it is also easy to visualize ~ This figure clearly shows the separation between the tra-
the singularity of the anomalous dimensigR encountered jectories with positive and negative coupligg
in Sec. lll. The functionyy(\,g) diverges at those points The most interesting feature of this diagram is the inter-
(g,\) at which the denominator of E2.9) vanishes. The play between the non-Gaussian and the Gaussian fixed point
functiong(\) defined by +g(\)B,(\)=0 is shown in Fig. in the positive coupling region. In the limit- the non-

11. For the sharp cutoff one finds that this singularity occursGaussian fixed point completely dominates the flow of all
on ans-independent horizontal line &= —6/5. For the trajectories in this region, leading to their spiraling in on the
exponential cutoff the divergence ofy® leads to an point (\*,g*). This result exactly matches the behavior ex-
(s-dependentline in the first quadrant of thk-g—plane. pected from the complex stability coefficients found in the
We shall now derive the full phase portrait of the previous subsection. The behavior of the trajectories in the
Einstein-Hilbert truncation by numerically solving the au- vicinity of the trivial fixed point confirms Table I: Trajecto-
g ries starting to the left of the separation line,;&0) are
's =30 running towards\— —oo while those to the right ¢,>0)
al\ ' terminate at the border singularity=1/2 at finite values of
- k.
S os=1] The trajectory separating these two regions is of special
~. interest and will be called “the” separatrix. It connects the
Y non-trivial fixed point in the UV to the trivial fixed point for
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 k—0. As a result, this trajectory leads tovanishingrenor-
2 malized cosmological constaig.

The trajectories running to the left of the separatrix also
possess a well defined limk—0. They lead to negative
values of the renormalized cosmological constent

In the next step we now extend our numerical survey to
FIG. 11. The points in the parameter space wheyediverges  the full parameter space. The resulting renormalization group
for the sharp and exponential cutoff. The bars indicate the locatioflow is shown in Fig. 13. Here it becomes obvious that the
of the non-trivial fixed point for the exponential cutoff with shape negativeg region also contains a trajectory which separates
parameters=1 ands=30. the regions with trajectories running towarls-—o and

--- Exp

SC 2
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8

FIG. 12. Part of the parameter space with its RG flow. The arrows along the trajectories point in the direction of the renormalization
group flow, i.e. towards decreasing valuekof he flow pattern is dominated by a non-Gaussian fixed point in the first quadrant and a trivial
one at the origin.

\—1/2. Furthermore one sees that the singularityygff at (iii) Trajectories with lim._..g(t)<0. They form the
g=—67/5 results in a separation between trajectories show-negative coupling region”. .
ing a screening and anti-screening behavior of the Newton Note the oscillating behavior a(t) before the trajecto-

constanig, in the IR. This resembles the behavior found for €S adopt their asymptotic value. This is caused by the non-
the exponential cutoff in Sec. . zero imaginary part of the stability coefficients found for the

In a first step of classifying the trajectories found in Fig. no?—trlwal flx%d E’O'mz' lassify the traiectories shown in Fi
13, we project the renormalization group trajectories of th N a second step we cassily the trajectories shown in Fig.

€13 according to their starting and end points. Figure 15
full systemonto theg-axis. The results are displayed in Fig. shows the resulting phase space regions Whi(;h are distin-

14. According to their limit fork—0 or t:In(k/R)—>f°° guished by a different kind of dashing of their trajectories.
three different classes of trajectories can be distinguished: The characteristics of each region are summarized in Table

(i) Trajectories with lim., ..g(t)—c. They form the | which contains the classification of all trajectories occur-
“strong coupling region”. ring in the Einstein-Hilbert truncation. Table Il is organized

(i) Trajectories with lipp,_..g(t)=0. They form the as follows: The first column labels the type of the trajectory
“weak coupling region”. as it is marked in the phase space diagram Fig(Q&ly the

singletrajectories of Type lla and llb separating the regions
la and llla and Ib and lllb, respectively, are not marked
explicitly in this diagram). The columns labeled “UV-" and
“IR-behavior” indicate the characteristic features of the tra-
jectories, “UV” referring to the end point of the trajectories
for k—o and “IR” relating to k—0. These limits do not

““\\\
e ————]
__—_d_/—«”‘
o < ] exist for all the classes. The aborting of the trajectory at a
finite value ofk in either the UV or the IR is indicated by
2 x “Sing.” The values of\,g given in the table indicate where
s \

the corresponding RG trajectories end.
In the column “UV-behavior” the label “NGFP” means
that the trajectory runs into the non-Gaussian fixed point.

2A plot of g(t) similar to Fig. 14 has been given in R¢8], see
FIG. 13. Full phase structure of the Einstein-Hilbert truncatedFig. 2 there. In this reference the runninghofias been disregarded,
theory. On the bold horizontal liney’ diverges. however. As a consequence, no oscillations were found.
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The column “coupling region” finally specifies to which
coupling region, as defined in Fig. 14, the trajectory belongs.
. .. The Newtonian regime consists of the trajectories in the
Tl - weak coupling region. They are the only ones yielding a

finite, positive Newton constai@, in the IR. In this respect
it is important to note that only the trajectories of the Types
la and lla can be continued downke-0, leading to a finite
value of Gy and a negative or vanishing cosmological con-

strong coupling

IR negative coupling‘.\‘{‘\\\\- Uv stant, respectively. Since for these two classes the limit
i k— is also well-defined, these solutions could possibly be

-3 -2 -1 0 1 2 3 used in order to define a fundamental quantum theory of

8(t)
v o e o

t gravity with a vanishing or a negative renormalized cosmo-

FIG. 14. Projecting the full renormalization group flow onto the logical constant, respectively. The trajectories of Type llla,
g-axis leads to a separation between the trajectories in the strongyhich run towards positive values af terminate at the sin-
weak and negative coupling region. gularity A=1/2 and do not give rise to well-defined renor-

The trajectories labeled with “Sing.” either end at the malized parametery andGo atk=0.

boundary linex=1/2 where we distinguish between the two

regionsg>0 andg<O0 or in the singular line caused by the C. Crossover behavior

divergence ofyy at g=—6m/5 and arbitrary values of. The phase diagram Fig. 12 shows that the trajectories la,
Note that the limitk— oo exists only for the trajectories run- [la and llla which are relevant for the Newtonian limit of
ning into the “NGFP”. guantum gravity cross over from the non-trivial fixed point

In the IR, trajectories which possess an IR-lif#t-0 are  in the UV to the basin of attraction of the trivial fixed point
indicated by the note “o.k.”. They lead to negative values ofin the IR. In this subsection we first concentrate on the
the renormalized cosmological constaxy with positive  classes la and lla. They lead to finike—0 limits of the
(gk—07) or negative ¢,—0~) Newton constant, respec- coupling constants. Since these trajectories extend down to
tively. The label “GFP” indicates that the corresponding tra- k=0 they allow us to identify the scal with the Planck-
jectory ends at the Gaussian fixed point, yielding a vanishingcalemp=G, 2.
cosmological constanty. Singular behavior, i.e. the termi- Due to the trivial and the non-trivial fixed point governing
nation of the trajectory at a finite value &f appears when the RG flow of these trajectories in the limits—0 and
the trajectory reaches the boundary1/2 in the positive k—oo, respectively, the trajectories of these classes obey
(g>0) or negative (0-g>—67/5g9<—6/5) coupling re- simple scaling laws in these regimes.

gion. The possibility ofg, diverging at a finite value of is In the UV one finds the following scale dependence of the
indicated bygy— o, \y,— — . coupling constants, valid for both types of trajectories:
2Fk--Z--Z-ZC-Z-Z-z=--=-
1 L
0
¢—1 S i~
P ™ -
N N
2 \:\:\:\-:,:.
ARSI
LTI
— 3Rz
it bu g
e
] e
\. k

|
-
N
o
-
N
o
=

-0.4

FIG. 15. Classification of th&ull Einstein-Hilbert truncated theory space. The trajectories lla and llb end at the trivial fixed point and
separate the regions la and llla, Ib and llib, respectively. They are not labeled explicitly.
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TABLE lll. Classification of all RG trajectories occurring in the Einstein-Hilbert truncation.

Type UV-behavior IR-behavior Coupling region
)\k_) — .
la NGFP *,g*) 0.k weak coupling
9k—0"
lla NGFP (\*,g*) N0 weak couplin
separatrix 9 GFP g—0" ping
N=1/2 .
Illa NGFP (\*,g*) Sing. weak coupling
g>0
)\k—> — 0 )
IVa NGFP (\*,g*) Sing. strong coupling
gk—*
Va Sing. Sing. strong coupling
g>0 gy—°
\=1/2 0~
Ib Sing. ok. 9 negative coupling
g<o Ag— —®
\=1/2 Ne— 0™ . .
IIb Sing. GFP negative coupling
g<0 gx—0"~
b A=172 A=172 negative coupling
Sing. Sing.
g g<o0 "9 g<o
IVb Si A Kk N = negative coupling
ing. 9= —6m/5 o.k. G0
Vb i A i A=1/2 negative coupling
SING. o= 65 SING- o 65

A\— const, g,— const= Gy, Gk 2, N, hock?. the non-Gaussian and the Gaussian fixed poird=4, re-

In the IR the trivial fixed point leads to the scaling laws Spectively) For the Type Illa the termination of the trajectory
given by Eqgs.(5.8) and (5.9). For Type la trajectories they is accompanied by a steep decreasenf caused by the
are g,xk2=G,,Gxk®, Nk 2N, A=k, and for the divergence oB;(\)%¢at constanB,(\)*¢ for A approaching
Type lla they ready,<k?c Gy ,Gk?, Aock2en,  hork?. the boundary linen=1/2.[This can easily be _check_ed from

Next we determine the scale at which the transition Eq. (3.17).] The vast decrease afy for the trajectories llla

. ; ..._suggests that the Einstein-Hilbert truncation may not be suf-
between these regimes takes place. Thanks t9 the |dent|f|c?|1(-:i?;‘?]t to describe the RG flow close to the boyun dary line
tion M =mp, the related dimensionful quantiks= kmp, has a A=1/2

clear physical interpretation. We solve E®.15 with the Motivated by the important role played by the product

“final condition” G(k=0)=1, together withA(k=0)= \*g* we also plotk— \(k)g(k) for those trajectories which
—0.01 andA\(k=0)=0 for a typical trajectory of Type la \yere considered in Fig. 18. The results are shown in Fig. 19.

and lla, respectively. This leads to the results displayed in v
Figs. 16 and 17. The main conclusion is that the change in Here we observe that for small valueslotk=1 say, the

the scaling laws arising from the two fixed point regions isvalue ofA(k)g(k) along the separatrix provides a clear sepa-
located rather close to the Planck-scale=mp,. For  ration of the trajectories la and llla. In the region abdve

k=0.1 andk=10 the respective scaling laws of the trivial ~1 the trajectories cross. In this region thg-value along
and non-trivial fixed point already dominate the running ofthe separatrix does not provide a separator between the tra-
the coupling constants. jectories la and llla. This behavior is caused by the non-zero

This picture is confirmed by the diagrams displaying theimaginary part of the stability coefficients of the non-
anomalous dimensiok— 77N()\k1gk) a|0ng the trajectories Gaussian fixed point. It leads to the observed oscillations of

la, lla and Illa shown in Fig. 18. In the region governed bythe trajectories in the intermediate region. In this respect we
the non-trivial fixed point one hagy~—2 while in the point out that for a non-Gaussian fixed point which by
IR-region 7, vanishes(Recall thatyf,=—2 and7}=0 at  chance has In{') =0, the quantity\(k)g(k) along the sepa-
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1 X(k)
Type Ia 0.25
0.8 Type Ia
0.2
0.6 0.15
0.4 0.1
0.05
0.2
) ——s—>—04 0.6 0.8 1™
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0.01 0.1 1 10 100 0.01 0.1 1 10 100

FIG. 16. Scaling laws for Type la trajectories. Hor 0.1 andk>10 the flow is governed by the scaling laws of the Gaussian and the
non-Gaussian fixed point, respectively. The transition between these scaling laws hapkemspat The cusp appearing in the double

logarithmic diagrams for the modulus of the cosmological constant is causg¢kpyand A\, becoming negative at finite.

ratrix would provide a good separator between the trajecto- The results in Fig. 20 show that the scheme dependence
ries running in the regions la and Illa for all valueskofrhis ~ of both the(nonuniversallocation and theuniversal criti-

remark will become important when we compare our resu|t§al indices at the fixed pOint increases Steadily with increas-
to those found in lattice calculations in Sec. VI. ing d. But up to dimensionalities between about 4.5 or 5, say,

one still finds a relatively good agreement between the re-

sults obtained with the different cutoff functions. Beyond this

) ) . point the universal quantitie8’ and 6" become seriously
The p-functions(2.8) and the entries of the stability ma- ¢-peme dependent.

trix B in Eq. (5.3 have been derived for arbitrary and It is reassuring to see that there seem to be no qualitative

allow for an investigation of the non-trivial fixed pointin any itterences betweed=4 andd=2+ . We interpret this as

dimensiond. For 2+e<d=4, the existence of the non- another confirmation of the reliability of the Einstein-Hilbert

trivial fixed point for the g-function with the exponential truncation in 4 dimensions, at least at a qualitative level.

cutoff (3.2) has already been demonstrated 56,8]. Looking at the cutoff dependence ®f,g* in the region
Figure 20 shows the numerical values)f,g*, 6" and  d>4, one finds that the trend of the growing scheme depen-

0" obtained by using both the exponential and the sharp cuidence of the fixed point properties continues. Figure 21

off. The s-dependence of the sharp cutoff is again defined byshows that the value af* vastly increases for increasirul

the relation(3.13 which trivially extends to anyl. and that\* approaches the singularity at=1/2. Once

D. The non-trivial fixed point in other dimensions
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G(k)
1 (k)
Type Ila 0.25
0.8 Type Ila
0.2
0.6 0.15
0.4 0.1
0.05
0.2
) 0.2 0.4 0.6 0.8 1iftm
0.5 1 1.5 2 2.5 3 3.5 4™ _p.05
10310(é(k))
1 logo(A(k))
0 5
kO
. 2.5
0 k?
-2 -2.5
_3 k—2 _5
-4 =-7.5
-10 Kt
-5 Type Ila
. -12.5 Type Ila
k
0.01 0.1 1 10 Tog/™ 0.01 0.1 1 10 1o0d/™
log,,(8(k)) log ,, (A(k)
1 1
0 0
2 2
-3 -3
4 ¥ s K
_5 -5
-6 -6
Type Ila : Type Ila :
/i /i
0.01 0.1 1 10 Too 0.01 0.1 1 10 Too

FIG. 17. Scaling laws for the trajectory lla, the separatrix.chnO.l andk>10 the flow is governed by the scaling laws of the Gaussian
and the non-Gaussian fixed point, respectively. The change between these power laws happens .at

\* =1/2 is reached, the non-trivial fixed point disappears at aa— B,(\,g* (\)), whose zero i3*, for both the exponential
certain critical dimensiom, which strongly depends on the and sharp cutoff and for various dimensiahsThe function
cutoff function. In Fig. 21 one finds g* (\) thereby is given by Eq5.11). One finds that, for the
exponential cutoff,8,(\,g* (\))¥*® is positive definite for
d>d. which implies that there can be no non-trivial fixed
point. For the sharp cutoffB,(\,g* (\)) develops a second

d.~6 for the exponential cutoff withs=1,

dc~17 forthe sharp cutoff withs=1, (518 zero in the negative coupling region before the old non-
_ trivial fixed point in the positive region escapes through the
d.>26 for the sharp cutoff withs=30. \=1/2 boundary. The appearance of the second zero is indi-

cated by the branching shown in th&-d—diagram of Fig.
The first diagram of Fig. 21 shows quite impressively that22. Ford>d. only the new fixed point in the negative cou-
d=4 seems still to lie on the safe side of a rather pronouncegling region remains.

“phase-transition” atd~5. At this point,g* suddenly jumps The properties of these fixed points for selected dimen-
from g* <1 tog*>1, so that we must expect the truncation sions are shown in Table IV and Table V for the sharp and
to become problematic at~5. the exponential cutoff, respectively.

In order to better understand the disappearance of the The data shown in Tables IV and V suggest that the
non-Gaussian fixed point, we plot in Fig. 22 the functionEinstein-Hilbert truncation should produce reliable results up
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FIG. 18. Anomalous dimensiony along the Type Ia, lla and Illa trajectories shown in the first diagram.

to d=4 or maybed=5. Beyond that the results shown in ~ Summarizing the results of this subsection we find that
Table IV are untrustworthy and should be understood as athe Einstein-Hilbert truncation is most likely insufficient to
illustration of the effects arising from an improper trunca-describe the RG flow fod=5. This limitation is due to
tion. For the non-trivial fixed point this unreliability is indi- operators likef dx+/gR? and higher powers of the curvature
cated by the fixed point lying very close to the boundary linescalar which are not included in the truncation. Based on the
A=1/2 and at large valueg*>1. In this region of the canonical dimensions of their coupling constants one expects
\-g—plane, the termination of the trajectories and the steepn increasing importance of these terms in the UWds
decrease ingy indicate that the Einstein-Hilbert truncation increased. Therefore it is likely that in order to properly de-
might be insufficient in describing the RG flow. The appear-scribe quantum gravity in higher dimensional spacetimes a
ance of the second zero of tigfunction with sharp cutoff more refined truncation will be needed.

and the absence of this new zero for the smooth exponential

cutoff point towards a strong scheme dependence even at the V1. DISCUSSION AND CONCLUSION
qualitativelevel. This is a typical symptom of an insufficient

truncation. In this paper we studied the exact renormalization group

equation for the effective average action of pure quantum
gravity in its original formulatior{3]. The RG flow of New-

Mk)g(k
0.2( ) ton’s constant and the cosmological constant was investi-
— Typela gated nonperturbatively within the Einstein-Hilbert trunca-
0.15 tion of the theory space. The new contributions of the present
— Typella paper are the introduction of a sharp cutoff and a compre-
oq| ———- Typellla hensive numerical analysis of the RG trajectories in 4 space-
‘ time dimensions.
As in Ref.[3], we used a cutoff actioA S whose general
0.05 structure is of “type A’ in the terminology of Ref[5].3 It
_____ contains a shape functid®’® for which we considered both
;EE = T R T B Ci k a smooth exponential ansatz and, as a singular limit, a sharp
-0.05

. ) . 3This cutoff should not be confused with the new one introduced
FIG. 19. Produch(k)g(k) for the representative trajectories 1a, i, ref. [5] whose general structure is of the “type B” which ap-

lla and llla shown in Fig. 18. The parametkris given byk  pears naturally when the transverse-traceless decomposition of the
=k/mp, for Type la and lla, andk=k/M for Type llla. metric is used.
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A* ¢
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---8s5=1
o al 1 ---- scs=30
—— Exps=1

9/
17.5
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0’/

FIG. 20. Comparison of the numerical valuesndf,g*,8’ and #” for different cutoff functions in dependence of the dimengioiThe
upper line shows that for2 e<d=<4 the cutoff scheme dependence of the results is rather small. The lower diagram shows that increasing
d beyond about 5 leads to a significant difference in the result®'fa#” obtained with the different cutoff schemes.

step function of infinite height. While in other applications g-\ — parameter space. Our main results are summarized in
sharp cutoffs often lead to inaccurate or even undefined dFigs. 12 and 15 and in Table IlI.

divergent results, we found that the flow equationsgand The most prominent feature of the RG flow resulting from
N\ remain perfectly well defined in the sharp cutoff limit. the Einstein-Hilbert truncation is a non-Gaussian fixed point
Moreover, all RG trajectories which we computed with bothwhich acts as an UV-attractor for the trajectories la, lla, Illa
the smooth and the sharp cutoff turned out virtually identicaland IVa on theg>0 half plane. It is an extremely important

Thus having confidence in the technically much more conquestion whether this fixed point is a truncation artifact or
venient sharp cutoff we employed it for a complete classifi-whether it is also present in the full theory. In the latter case
cation and computation of the RG trajectories on the4-dimensional Quantum Einstein Gravity is likely to be “as-

-1
(8*) Ak
3
0.5 7 — 7
= - s= -———
2.5 --- sc g=] 0.1 7 I T =30
) . ’ 1= I
5 -... 8¢ $=30 1 - \
Lo ' sC
— Exp s=] 0.3 I’ 1 [
1.5 : :_Exp
0.2 | |
1 1 I
1 I
0.5 0.1 1 1
1 |
d ' ' d
10 15 20 25 5 10 15 20 25

FIG. 21. Numerical values* and (g*) ! for the non-trivial fixed point ird>4. The branching occurring for the sharp cutoff indicates
the existence of a second fixed point in the negative coupling region.
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FIG. 22. B,(\,g*(N\)) as a function ofs for the exponential and the sharp cutoff with shape paransetdr for selected dimensiorts
The zero of this function ia*. The left diagram demonstrates the escape of the non-trivial fixed point into the boundarg for the
exponential cutoff. The right diagram shows the appearance of a second zero and the vanishing of the familiar non-trivial fixed point for the
sharp cutoff.

ymptotically safe”[9], i.e. nonperturbatively renormalizable tion. Hence we have very good reasons to believe that the
by taking the infinite cutoff limit at this fixed point. Einstein fixed point actually should exist in the full theory. Only when
gravity would then have the status of a fundamental ratheone lowers the cutoff and leaves the region of asymptotic
than merely an effective theory, and it could be valid at ar-scaling more complicated operators suchR&sR®, . .. are
bitrarily small distance scales. generated.

In Refs.[5,6] this question was investigated in detail. The  The results of the present paper provide further evidence
reliability of the Einstein-Hilbert truncation was tested both supporting the hypothesis of the non-Gaussian fixed point. In
by analyzing the scheme dependence within this truncatioorder to judge the reliability of the truncation, we checked
[5] and by adding a higher-derivative invariant tg6f. The the cutoff scheme dependence of various universal quantities
picture suggested by these investigations is that, in 4 dimer(-9’,0",g* \*) which are expected to be scheme independent
sions, the RG flow in the vicinity of the non-Gaussian fixedin an exact treatment. Quite remarkably, the results found
point is very well described by the Einstein-Hilbert trunca- here for a sharp cutoff of type A are rather similar to those

TABLE IV. Numerical values for the non-trivial fixed point and the fixed point appearing in the negative
coupling region for the8-functions with sharp cutoff witls=1 in selected dimensiors Here “-” denotes
that no fixed point of the corresponding type exists for this dimension. A pair of real-valued stability
coefficients, appearing fat> 6, is indicated by giving the two correspondifigralues in thed’ -column. For
d=6 the results found here are certainly not reflecting properties of the full theory and should be seen as a
demonstration of the limitations of the Einstein-Hilbert truncation in higher dimensional spacetimes.

Non-trivial fixed point

Fixed point in the negative coupling region

d )\* g-k g* )\* 0! 0!/ )\-k g* 0! 07!
3 0.112 0.150 0.017 1.159 0.746 - - - -
4 0330 0403 0133 1941 3.311 - - - -
5 0.398 1.143 0454 5401 5.526 - - - -
6 0.435 3576 1554 1089 ¢ - - - -
16.14
10 0495 3241 1604 1015 ¢ ~3.138 —2232. 8.167 0
9227 10.12
11 0498 957.4 4768 1107 ¢ —3.042 —6075. 9.074 0
2480. 11.05
25 - - - - - —3.000 —5x 101 23.00 0
25.00
26 - - - - - —3.000 —2x101 24.00 0
26.00
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TABLE V. Numerical values for the non-trivial fixed point with  the effective average action of Yang-Mills theory has a very
exponential cutoff in selected dimensiahd=ord>6 no non-trivial simple local structure, and simple truncations such as
fixed point exists. I\ =1/4Z,[d(F3,)? are sufficient[24]. Only whenk is
close to, or much smaller thahqcp does its structure be-
come very complicated and nonlocal. Also gravity seems to

Non-trivial fixed point for exponential cutoff witk=1

d \* g* A g* 0’ 0" b . .
e asymptotically fre¢3], and if the results of5,6] and the
3 0.140 0.133 0.019 1.063 1.109  present paper point in the right direction, gravity, too, can be
4 0.359 0.272 0.098 1.422 4.307 described by a simple local truncation abokig,~mp.
5 0.445 0.636 0.283 3.419 8503 Only when we lowerk down to the Planck scale will’,
6 0.497 1.673 0.831 10.02 16.82 contain higher order local invariantRR¥{,---) as well as

nonlocal invariants[25,26. Presumably the use of the
Einstein-Hilbert truncation is much more problematic at
found in[5] with a smooth cutoff of type B. Typically the k=~mp than atk>mp,. In fact, the aborting trajectories of
scheme dependence within the family of sharp cutgits=  Type llla and the unbounded increase |afy| which pre-
rametrized byp; and¢,) is of about the same magnitude as cedes their termination most probably hint at an insufficiency
the differences between the sharp and the smooth cutoff, ar¥f the Einstein-Hilbert truncatiom the infrared It must be
between the type A and type B structure. In particular theemphasized that there are no analogous consistency prob-
productA\* g* was found to be scheme independent with alems abovek,gn.
very surprising precision. Here the sharp cutoff leads to even It is likely that in the IR a proper treatment of the Type
slightly more stable results than the smooth one, as is showila trajectories (or rather their counterparts in the exact
in the last diagram of Fig. 9. theory requires much more sophisticated truncations. It is
We also investigated how the scheme dependence of tHdausible to speculate that those truncations will encode the
fixed point data varies with the dimensionalily With in-  strong IR-quantum effects which have been discussed in Ref.
creasingd the quality of the Einstein-Hilbert truncation de- [5]. They might be the key to a dynamical resolution of the
teriorates and it certainly becomes insufficient at abougosmological constant problem.
d=6 where the existence or nonexistence of the non-trivial The above picture of quantum gravity being “simple”
fixed point depends on the cutoff chosen. It seems that iigbovemp and “complicated” belowmg, contradicts the gen-
d=4, at least qualitatively, the conditions are still very simi- €ral prejudice that far belowy, gravity is well described by
lar to d=2+ € with 0<e<1. All admissible cutoffs lead to the “simple” Einstein-Hilbert action and becomes very
the presence of the non-trivial fixed point. They agree on acomplicated” for all k=mp,. We think that this prejudice
quantitative §*g*) or at least semi-quantitative level Might turn out wrong for(at least two complementary rea-
(0',0"). sons: (i) Ordinary perturbation theory predicts thBj be-
While in [5,6] only the linearized flow near the fixed comes “complicated(higher operators are generateehen
points is discussed, the numerical investigations of th& approaches the Planck scéiem below While this is prob-
present paper allow us to follow the trajectories emanatingbly correct, it is an unjustified extrapolation tigt contin-
from the non-Gaussian fixed point all their way down fromues to be “complicated” fork>mp,. In this regime the
the UV to the IR. In particular we were able to determine the"simplicity” due to asymptotic freedom sets in, but this can-
scalek,s,mWhere the asymptotic scaling behavior governednot be discovered by ordinary perturbation thedii). The
by the UV fixed point comes to an end. For the trajectoriesclassic experimental tests of general relativity all refer to the
which can be continued tk=0 we found thatkag,,~ Mg theory without a cosmological constant. From this side noth-
=G(k=0)""2 Below this scale the RG flow is governed by ing is known about the IR-properties of thguantum theory
a trivial fixed point at the origin of the\-g—plane. The with A# 0 which could be rather “complicated” without con-
(Planck scalek,g,mis analogous to the mass scalgcp in - tradicting any experimental fact.
QCD in the sense that it marks the lower border of the The weak coupling region of the-g—plane contains the
asymptotic scaling region. _ trajectories of Type la, leading thy<0, and of Type llia,
Probably the analogy between QCD and gravity goeserminating at the boundary=1/2. The two classes of tra-
even further. Fok> A qcp, thanks to asymptotic freedofn, jectories are separated by a single trajectory of Type lla, the
separatrix. It runs from the non-trivial to the trivial fixed
point and leads to a vanishing renormalized cosmological

constant)T0=0 at its end point.
. We saw that the la and lla trajectories can be continued
Hown to k=0 without any problem and thatyy| remains

terms of a decreasing interaction among heavy quarks, the anal?)'ounded along these trajectories. This might indicate that in

gous physical interpretation in gravity is more subtle. Some aspectﬁ].s sector. characterized by a renormalized cosmological
of this problem have been investigated iri] where the dynamics ! ’ 12 y 12 a

of a test particle in a RG improved black hole spacetime was deconstantA,<O0, the Einstein-Hilbert truncation is reliable
rived. In particular, as a consequence of the non-Gaussian fixegven in the IR, at least at a qualitative level. With the present
point and asymptotic freedom, very light black holes were found tocalculational techniques it would be very hard to check this
have no event horizon. conjecture on a theoretical basis. However, as far as the case

“4In gravity, the term “asymptotic freedom” refers only to the de-
creasing coupling constant i, a priori. While in QCD the de-
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po

plicial formulation of gravity[27,28. These studies indicate

0.5 that simplicial quantum gravity in four dimensions exhibits a
phase transition in the bare coupli@between the follow-
0.4 ing two phases: a strong coupling phase in which the geom-
. etry is smooth at large distance scales wit)),,)~cd,,,,
0.3 A=uv/2 and a weak coupling phase in which the geometry is degen-
0.2 g erate(g,,,)=0 (branched polymer-like phasenterestingly
’ Asing(y) enough, in the strong coupling phase one finds a snegja-
0.1 tive average curvature.
It is tempting to identify the strong coupling phase with
y our Type la trajectories which ultimately go to negativg

0.2 0.4 0.6 0.8 1 ) — )
and negative curvatui@=4\, and the weak coupling phase

FIG. 23. Line of n5*-singularities for fixedG=0.5. This line  with the Type llla trajectories which have no linkt-0 and
separates regions with{>0 above it and withy5**<0 below it.  therefore cannot describe large, nearly flat universes. Ham-
ber[27] parametrizes the bare couplings by a quarkityot

— ) . to be confused with our cutgffvhich reads, in our notation,
Mo=0 is concerned, the phenomenological success of classi-

cal general relativitfwithout a cosmological constaris an _
excellent confirmation of the Einstein-Hilbert action in the k=[87G\]~*=[8mg\] 2
IR.

The Einstein-Hilbert action thus being a good approxima-Strong (weak coupling meansk <k, (k>k.) for a certain
tion to I'y both in the extreme UV and the extreme IR, it is critical valuek,. This matches precisely with our findings in
plausible to assume that the separatrix which connects thgec. V. Depending on whether the prodgattakes on nega-
two fixed points does not change much when we go from theive or positive values in the IR, either the Type la or the
truncated to the full theory. It is then possible to define theType llla trajectories are realized. This can be read off from
theory called “Quantum Einstein Gravitytwith zero renor-  Fig. 19 provided one ignores the oscillations and the crossing
malized cosmological constarity means of this specific RG  of the trajectories which are caused by the imaginary part of
trajectory. the critical exponend. It remains to be seen if this identifi-

It is natural to interpret the separatrix as a kind of phase&ation is correct.
transition line. It is in fact similar to the critical line running A quantity which in principle might lend itself to a quan-
into the Gaussian fixed point in scalar theories. In the lattefitative comparison is the exponedt In [27] the analogous
case this line separates the symmetric from the spontangxponent is assumed to be re@k 6’ =1/v, with v the con-
ously broken phase, i.e. trajectories with positive and negagentionally defined critical exponent used in the theory of
tive (mas$®, respectively. In the case of gravity the line critical phenomena. The fit to the data yields a value close to
separates the trajectories which, in the IR, lead to a positivg =1/3 so that we should expe6! ~3. The typical values
or negative cosmological constant, respectively. On the sidge found in Sec. V are somewhat smaller. Howeveitha
with A>0 the RG trajectories terminate at a certain finitedetailed investigation of the fixed point with a generalized
value ofk. Whether this is an artifact of the truncation or a truncation and a quantitatively probably more reliable
real physical effect cannot be decided on the basis of themooth cutoff has been performed. The results suggest that
present analysis. an improved calculation indeed could stabilize close to

In this context it is intriguing to compare our results to 8’~3. It is unclear, however, how the imaginary part f
those obtained by numerical simulations within Regge’s simshould be properly taken into account in this comparison.

() G)
0.5 2.5
0.4 AN
7 ~
2 ~
0.3 // AN
s ~
0.2 i 1.5 S~
O.l /// \\\\\
- 1 \\\\
0.2 0.4 _p<6 0.8 1Y Sl
-0.1 ’,/’/ 0.5 =
—0.2p--"""" } —

0.2 0.4 0.6 0.8 1Y

FIG. 24. Typical trajectories starting in the regio}sising(y) (dashed Iin}aand)v\sing(y)<i<9/2 (solid line). While the trajectory below
Xsing(y) shows the typical behavior discussed in Sec. 1V, the solution aﬁgyg(ey) yields a screening behavior of the Newton constant.
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In the present paper we considered pure gravity only. It i%-y—parameter spacéor G fixed) into a region below

clear, however, that the inclusion of matter fields can chang v v v .
the RG flow also in the gravitational sector. [h7] it was ?X<)\sing(y)) andE?bove[?\sing(%’2<7\<y/2] it. In these re-
P<0 and »y*>0, respectively. From a

shown that appropriate matter systems can turn the anti€ions one findsyy _ _ na
creening behavior of pure gravity into a screening behaviorPurely mathematical point of view, one can pose admissible
We expect that also the presence or absence of the no#utial conditions for the RG equations in both regions.
Gaussian fixed point and of asymptotic freedom depends on Two typical trajectories starting below and abd‘g@]g(y)

the matter content of the universe. In the above discussioare shown in Fig. 24. The most probably unphysical trajec-
we assumed implicitly that the renormalization effects due tqjeg starting in the narrow regid?ging(9)<X(9)<9/2 ter-

the matter fields do not overwhelm those of pure gravity and . v
that they do not change the qualitative features of the raninate at the boundary=y/2. They would lead to a screen-

flow in the gravitational sector. The results [df7] suggest ing behavior of the Newton constant, i.€(y) increases
that matter field theories with this property should existwith increasingy =k?/M?.
abundantly. The trajectories starting with(9) <Xgn9), i.e. in the
region Wherenﬁx”<0, lead to the RG trajectories discussed
ACKNOWLEDGMENTS in Sec. IVC which are physically relevant and show the

We would like to thank A. Bonanno. W. Dittrich expected antiscreening. According to their initial values,

O. Lauscher and C. Wetterich for helpful discussions. these trajectories are solutions of Type Ia, lla or llla.
Here it is interesting to note that trajectories starting close

APPENDIX: SINGULARITY OF 7, FOR THE to the singularity ofpy, i.e. M(§) =\siny) can be continued
EXPONENTIAL CUTOFF down to “unnaturally low” valuesy. The corresponding tra-

When investigating the complete systén13 and(2.14) chtories cross the ones starting at lower valNgg) in the
in Sec. IV we omitted discussing some peculiar properties of-y—plane before they terminate at the boundary. An ex-
the RG flow derived with the exponential cutoff. These prop-ample is the trajectory with the largesty) in the first plot
erties will be analyzed in this appendix. of Fig. 8. Since all trajectories of this type terminate, this
The key to understanding this behavior is the fact thatmechanism cannot be used to change the Type Illa character
there exists a line on the-g—plane along whichyg®(\,9)  of a trajectory.
diverges. This line is shown in Fig. 11. Switching from the  We want to point out that the region above the singular
variables §,9,k) to (\,G,y) leads to an analogous diver- line at Agy) is probably unphysical. This assumption is
gence of 75®(\,G,y=k? on a 2-dimensional curved sur- supported by the fact that our investigation with the sharp
face in the 3-dimensional-G-y—space. We can visualize cutoff did not yield any comparable behavior in the positive

this surface by intersecting it with some plafie=const coupling region. The trajectories calculated with the smooth

hich then lead i ¢ sinqulariti i | and the sharp cutoff, respectively, agree quite well for
which then leads to a line of singularities on thiy—plane. -~y only close to their end point do qualitative differ-

For a given value ofG, we parametrize this line as gnceq appear, such as the earlier termination;afy) rather

¥">)‘sing(y)- Th? result forG'=0.5 is shown in Fig. 23. One  y,,05 —y/2. This scheme dependence is a typical symptom
finds that the linesin(y) is located below the boundary showing that the truncation becomes unreliable close to the
A=y/2, approaching it ay—0. This line separates the boundary of parameter space.
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