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Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation
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~Received 8 October 2001; published 28 February 2002!

The exact renormalization group equation for pure quantum gravity is used to derive the nonperturbative
b-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by
the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff
function. The features of these flow equations are compared to those found when using a smooth cutoff. The
system of equations with a sharp cutoff is then solved numerically, deriving the complete renormalization
group flow of the Einstein-Hilbert truncation ind54. The resulting renormalization group trajectories are
classified and their physical relevance is discussed. The nontrivial fixed point which, if present in the exact
theory, might render quantum Einstein gravity nonperturbatively renormalizable is investigated for various
spacetime dimensionalities.

DOI: 10.1103/PhysRevD.65.065016 PACS number~s!: 11.10.Hi, 04.60.2m, 11.10.Jj, 11.15.Tk
th

e
ld

ce
e
nc

de
is

-
to
in

no
ca

ro
ain
th

iv
ed
rt
e-

t,

-

e
ss

rt
nal
et
n

ct
z-

a-
V

p-

g

it

o a
ical

in-
on

IR
y
e

lu-
ical

a

ast
I. INTRODUCTION

Exact renormalization group~RG! equations@1# provide a
powerful tool for the nonperturbative investigation of bo
fundamental~renormalizable! and effective quantum field
theories. In particular the RG equation of the effective av
age action@2# has been applied to a variety of matter fie
theories as well as to Euclidean quantum gravity@3,4#.

The effective average actionGk is a Wilsonian~coarse
grained! free energy functional defined on a smooth spa
time manifold. Its construction is based upon a modified v
sion of the standard path integral for the generating fu
tional which has a built-in infrared~IR! cutoff at the mass
scalek. All quantum fluctuations with momentap2.k2 are
integrated out as usual, while the contributions from mo
with p2,k2 are suppressed by the cutoff. This cutoff
implemented by giving a momentum dependent~squared!
massRk(p2) to the modes with covariant momentump @2#.

The k-dependence ofGk is governed by an exact func
tional RG equation. In any realistic theory it is impossible
solve this equation exactly, but by appropriately truncat
the space of action functionals~‘‘theory space’’! one can
obtain nonperturbative approximate solutions which do
rely upon small expansion parameters. The truncation is
ried out by making an ansatz forGk which contains finitely
or infinitely many free,k-dependent parameters gi(k). Upon
inserting this ansatz into the functional RG equation and p
jecting the RG flow onto the truncation subspace one obt
a coupled system of ordinary differential equations for
gi .

For the case of Euclidean quantum gravity, the effect
average action and its RG equation have been construct
@3# where also the flow equations for the ‘‘Einstein-Hilbe
truncation’’ were derived. The Einstein-Hilbert truncation r
tains only the invariants*ddxAgR and*ddxAg, the associ-
ated coupling constants beingGk , the running Newton con-
stant, and l̄k , the running cosmological constan
respectively. The original construction of Ref.@3# employs a
cutoff of ‘‘type A’’ which is formulated in terms of the com
plete metric fluctuationhmn . In Refs.@5,6# a new cutoff of
0556-2821/2002/65~6!/065016~26!/$20.00 65 0650
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‘‘type B’’ was introduced which is formulated in terms of th
component fields ofhmn appearing in its transverse-tracele
decomposition@7#.

One of the interesting predictions of the Einstein-Hilbe
truncation is that the high energy behavior of 4-dimensio
quantum gravity is governed by a non-trivial ultraviol
~UV!-attractive fixed point for the dimensionless Newto
constant and cosmological constant@3,5,6,8#. ~In d dimen-

sions, they are defined asgk[kd22Gk and lk[l̄k /k2, re-
spectively.! If this fixed point is present also in the exa
theory, Quantum Einstein Gravity is likely to be renormali
able at the nonperturbative level@9#. Despite its perturbative
nonrenormalizability it could then be a predictive, fund
mental theory valid at arbitrarily small distances. An U
fixed point g* for gk entails thatGk[g* /kd22 vanish for
k→` ~providedd.2) so that the theory becomes asym
totically free.

Also the ‘‘phenomenological’’ implications of the runnin
gravitational constants for black hole physics@10,11# and for
cosmology@12,13# have been investigated. In particular,
has been argued@12# that the UV fixed point reflects itself in
the cosmology of the Planck era and that it might lead t
solution of the flatness and the horizon problems of class
Friedmann-Robertson-Walker cosmology.

Previous investigations and applications of the Einste
Hilbert truncated flow equations have mainly been based
approximate solutions of the RG-equations in the far
(k→0) and far UV (k→`). Besides these solutions onl
little is known about the complete RG flow given by th
Einstein-Hilbert truncation.

In this paper we shall therefore study the numerical so
tions to the flow equation for the dimensionless cosmolog
constantlk and the dimensionless Newton constantgk , ana-
lyzing the RG flow in the completel-g–plane. For a generic
cutoff, the pertinentb-functions bl and bg contain rather
complicated ‘‘threshold functions’’ which are functions oflk
and gk , and functionals ofRk(p2). In order to make a nu-
merical solution of the flow equation feasible we introduce
sharp cutoff @2,14# for which the integrals defining the
threshold functions can be evaluated analytically. In contr
©2002 The American Physical Society16-1
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to many standard matter field theories where the sing
nature of the sharp cutoff often leads to ill defined or div
gentb-functions, we shall see that applying the sharp cu
to the b-functions arising from the Einstein-Hilbert trunca
tion leads not only to well defined functionsbl ,bg , but in
addition yields the same characteristic behavior of the
trajectories. Moreover, for universal quantities, even
quantitative results are very similar to those found when
ing a smooth cutoff function.

Theb-functions employed in the present investigation a
those derived in the original paper@3#, i.e. they arise from a
cutoff of ‘‘type A’’ and a constant gauge fixing paramet
a51.

The remaining sections of this paper are organized as
lows. In Sec. II we give a brief summary of the origin
derivation@3# of the ‘‘type A’’ flow equation for l̄k andGk ,
introducing all the definitions needed for the later analys
In Sec. III we investigate the properties of the thresh
functions as an important ingredient of the flow equation.
this course we introduce a sharp cutoff function which
lows the analytical evaluation of the integrals appearing
these functions. Sections IV and V contain the results of
numerical analysis. In Sec. IV we investigate the renorm
ization group flow below the Planck scale and compare
results obtained with the sharp and a smooth expone
cutoff function. In Sec. V we use the sharp cutoff to deri
the full RG flow on theg-l–phase space and classify a
possible solutions to the flow equation ind54. Here we also
investigate the reliability of the Einstein-Hilbert truncation
d54 and its limitations ford.4 by investigating the behav
ior of the non-trivial fixed point in various other dimension

II. THE FLOW EQUATION OF THE EINSTEIN-HILBERT
TRUNCATION

In order to derive the nonperturbative flow equation
the dynamical Newton constantGk and the cosmologica
constantl̄k on the theory space spanned by the Einste
Hilbert truncation we use the effective average action
proach to pure quantum gravity. For the details of the f
lowing discussion we refer to the original paper@3#.

The main ingredient of this method is the exact evolut
equation for the effective average actionGk@gmn# for gravity.
The derivation of this evolution equation parallels the a
proach already successfully tested for Yang-Mills theor
@15,16#. In principle it is also possible to include the add
tional renormalization effects ofl̄k and Gk coming from
matter fields@17,18#, but these are not included in the prese
derivation.

In the construction ofGk@g# one starts out with the usua
path integral ofd-dimensional Euclidean gravity. This i
gauge fixed by using the background field method@19,20#
and employing a background gauge fixing condition. Due
the introduction of the background metricḡ the effective
average actionGk@g;ḡ# now depends on both the full metri
g and the background metricḡ. The conventional effective
action G@g# is regained as thek→0 limit of Gk@g#
[Gk@g;ḡ5g#, where the two metrics have been identifie
06501
ar
-
ff

G
e
-

e

l-

.
d
n
-
n
r

l-
e

ial

r

-
-
-

-
s

t

o

.

In this mannerGk@g# becomes invariant under general coo
dinate transformations.

The crucial new component in the construction
Gk@g,ḡ# is thek-dependent IR-cutoff termDkS in the action
under the path integral. This term discriminates between
high (p2.k2) and low-momentum modes (p2,k2). It sup-
presses the contribution of the low-momentum modes to
path integral by adding a momentum dependent mass te

DkS@h,C,C̄;ḡ#5
1

2
k2E ddx Aḡ hmnRk

grav@ ḡ#mnrshrs

1A2E ddx Aḡ C̄mRk
gh@ ḡ#Cm. ~2.1!

Here k2 is a constant, and the first and second term on
right-hand side~RHS! provide the cutoff for the fluctuations
of the metrichmn5gmn2ḡmn and the ghost fieldsC̄m ,Cm,
respectively. In this work we choose the following form
the cutoff operatorsRk

grav andRk
gh:

Rk
grav@ ḡ#5Zk

gravk2R(0)~2D̄/k2!,

Rk
gh@ ḡ#5k2R(0)~2D̄/k2!. ~2.2!

Here (Zk
grav)mnrs5@(I 2Pf)mnrs2(d22)/2Pf

mnrs#ZNk is a
matrix acting on hmn . In this expression (Pf)mnrs

[d21ḡmnḡrs projectshmn onto its trace partf. In the ter-
minology of @5#, this form of the cutoff function defines th
‘‘cutoff of type A.’’ The so-called shape functionR(0) is ar-
bitrary except that it has to satisfy the conditions

R(0)~0!51, R(0)~z→`!50. ~2.3!

Neglecting the evolution of the ghost sector which cor
sponds to a first truncation of the general structure ofGk ,
one finds thatGk@g;ḡ# satisfies the following flow equation

] tGk@g;ḡ#5
1

2
Tr@~k22Gk

(2)1Rk
grav@ ḡ# !21] tRk

grav@ ḡ##

2Tr@~2M@g;ḡ#1Rk
gh@ ḡ# !21] tRk

gh@ ḡ##.

~2.4!

HereGk
(2)@g;ḡ# denotes the Hessian ofGk@g;ḡ# with respect

to gmn at fixed background fieldḡmn and t[ ln(k/k̂) is the
‘‘renormalization group time’’ with respect to the referenc
scale k̂. Furthermore,M represents the Faddeev-Pop
ghost operator.

In order to obtain the nonperturbative flow equation f
the running Newton constantGk and the cosmological con
stant l̄k we now approximateGk@g;ḡ# by the Einstein-
Hilbert truncation, considering the subspace spanned by
operators*ddxAg and*ddxAg R only:

Gk@g;ḡ#5~16pGk!
21E ddx Ag $2R12l̄k%

1classical gauge fixing. ~2.5!
6-2
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Substituting this ansatz into the evolution equation~2.4! and
projecting the resulting flow onto the subspace given by
Einstein-Hilbert truncation then leads to the flow equat
for l̄k and Gk . This equation is conveniently written dow
using the dimensionless Newton constantgk and cosmologi-
cal constantlk :

gk[kd22Gk , lk[l̄kk
22. ~2.6!

For these couplings the flow equation reads

] tlk5bl~lk ,gk!, ] tgk5bg~lk ,gk! ~2.7!

where theb-functions are given by

bl~l,g!52~22hN!l1
1

2
~4p!12d/2g

3@2d~d11!Fd/2
1 ~22l!28dFd/2

1 ~0!

2d~d11!hNF̃d/2
1 ~22l!#

~2.8!
bg~l,g!5~d221hN!g.

Here hN is the anomalous dimension of the opera
*ddxAgR,

hN~g,l!5
gB1~l!

12gB2~l!
, ~2.9!

and the functionsB1(l) andB2(l) have the following defi-
nition:

B1~l![
1

3
~4p!12d/2@d~d11!Fd/221

1 ~22l!

26d~d21!Fd/2
2 ~22l!24dFd/221

1 ~0!

224Fd/2
2 ~0!#

~2.10!

B2~l![2
1

6
~4p!12d/2@d~d11!F̃d/221

1 ~22l!

26d~d21!F̃d/2
2 ~22l!#.

Furthermore, we introduced theR(0)-dependent threshold
functionsFn

p andF̃n
p (p51,2, . . . ) as

Fn
p~w!5

1

G~n!
E

0

`

dzzn21
R(0)~z!2zR(0)8~z!

@z1R(0)~z!1w#p

~2.11!

F̃n
p~w!5

1

G~n!
E

0

`

dzzn21
R(0)~z!

@z1R(0)~z!1w#p
.

In order to investigate the renormalization group flow b
low the Planck scale it is more convenient to introduce
second set of coupling constants which are made dimens
less by using an arbitrary but fixed scaleM rather thank:

Ğ~ k̆![GkM
d22, l̆~ k̆![l̄kM

22. ~2.12!
06501
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For convenience we also introducek̆[kM21 as a dimen-
sionless scale parameter.

Substituting the dimensionless coupling constants~2.12!
into theb-functions~2.8! one finds the following set of dif-
ferential equations

k̆
d

dk̆
Ğ~ k̆!5hNĞ~ k̆! ~2.13!

k̆
d

dk̆
l̆~ k̆!5hNl̆1

1

2
~4p!12d/2k̆dĞ

3@2d~d11!Fd/2
1 ~22l̆/ k̆2!28dFd/2

1 ~0!

2d~d11!hNF̃d/2
1 ~22l̆/ k̆2!# ~2.14!

with

hN5
k̆d22ĞB1~ l̆/ k̆2!

12 k̆d22ĞB2~ l̆/ k̆2!
. ~2.15!

Here ] t5kd/dk5 k̆d/dk̆ has been used. Equations~2.13!,
~2.14! and ~2.15! will be our starting point for investigating
the renormalization group flow below the scaleM in Sec. IV.

III. THRESHOLD FUNCTIONS

Before we can turn to the numerical solution of the flo
equations~2.8!, ~2.13!, and ~2.14! it is important to under-
stand the characteristics of the threshold functionsFn

p and

F̃n
p which depend on the form of the cutoff functionR(0)

chosen.

A. Smooth cutoff functions

For the purpose of studying the general properties of
threshold functions, we first assume thatR(0) satisfies Eq.
~2.3! and is a smooth function which does not vanish t
quickly for small values of its argument:z1R(0)(z)>1,
; z>0. Under this condition the definition of the thresho
functions ~2.11! immediately shows that they vanish fo
w→`.

Furthermore one notes by examining the denominato
the integrands in Eq.~2.11! that the functionsFn

p(w) and

F̃n
p(w) are well defined only for argumentsw.21. For

w,21 the denominator vanishes for somez in the region of
integration, yielding a non-integrable singularity. Therefo
Fn

p(w) and F̃n
p(w) are finite and well defined for

wP(21,̀ ) only.
One can derive a recursion formula which connects

threshold functions with differentp-values. Interchanging the
derivative with respect tow and thez-integration yields

d

dw
Fn

p~w!52pFn
p11~w!,

d

dw
F̃n

p~w!52pF̃n
p11~w!.

~3.1!
6-3



e

al

e
e

n
u-
m

fo
e
n

.
et

e

n
t

it

d.

l
es

o

e
r

:

M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW D65 065016
B. The exponential cutoff

For practical computations it is necessary to have an
plicit form of the cutoff functionR(0). In the calculations
done in @8,11,12# the one-parameter family of exponenti
cutoffs

R(0)~z;s!Exp5
sz

exp~sz!21
for s.0 ~3.2!

has been used. Heres is a ‘‘shape parameter’’. For thes
cutoffs the threshold functions~2.11! are seen to be positiv
definite:

Fn
p~w!Exp>0, F̃n

p~w!Exp>0,

p51,2, . . . , n51,2, . . . andwP~21,̀ !. ~3.3!

The integral defining the threshold functions with expone
tial cutoff can be carried out analytically for vanishing arg
ment. Using the integral representations for polylogarith
and the Riemannz-function,

Li n~s!5
1

G~n!
E

0

`

dz
~szn21!

~ez2s!

and

z~n!5
1

G~n!
E

0

`

dz
~zn21!

~ez21!
@21#,

one easily verifies

Fn
1~0!Exp5

n

sn
$z~n11!2Lin11~12s!%

~3.4!

Fn
2~0!Exp5

1

sn22~12s!
Lin21~12s!.

But for non-vanishing argumentsw an analytic solution to
these integrals is unknown.

C. The sharp cutoff

In order to be able to evaluate the threshold functions
any argumentw we introduce a different cutoff function, th
sharp cutoff. On the level of the dimensionful functio
Rk(p2)[k2R(0)(p2/k2) the sharp cutoff is defined as

Rk~p2!sc[R̂Q~12p2/k2! ~3.5!

where the limitR̂→` is to be takenafter the integration over
p, i.e. after substituting Eq.~3.5! into the threshold functions
In the path integral this choice of cutoff leads to a compl
suppression of modes with momentump2,k2 while all
modes withp2>k2 are completely integrated out without th
additional mass term.

The evaluation of the integrals in the threshold functio
then proceeds as follows. In the first step one substitu
z5p2/k2 andw5v/k2 into the definition ofFn

p(w) :
06501
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Fn
p~v/k2!5

1

G~n!
~k2!p2nE

0

`

dp2~p2!n21

3
R(0)~p2/k2!2~p2/k2!R(0)8~p2/k2!

@p21Rk~p2!1v#p
.

~3.6!

Here the prime denotes the derivative ofR(0) with respect to
its argument. The integrand of Eq.~3.6! can then be written
as a total derivative with respect tok, for any p.1:

Fn
p~v/k2!52

1

2G~n!~p21!
~k2!p2n21

3E
0

`

dp2k
D

Dk

~p2!n21

@p21Rk~p2!1v#p21

52
1

2G~n!~p21!
~k2!p2n21

3E
0

`

dp2k
]

]k

~p2!n21

@p21Rk~p2!1 ṽ#p21U
ṽ5v

. ~3.7!

Here the derivativeD/Dk acts by definition only on the
k-dependence ofRk , but not onv. In order to rewrite it in
terms of]/]k we introduced the constantṽ which is strictly
independent ofk. Only at the end of the calculation is
identified withv[wk2. @For p51 the formula~3.7! breaks
down since its right hand side is no longer well define#
Assuming p.1, we interchange thez-integration and the
derivative with respect tok. This is allowed since the integra
in Eq. ~3.7! is absolutely convergent. If one now substitut
the sharp cutoffRk(p2)sc[R̂Q(12p2/k2) one finds

Fn
p~v/k2!sc52

~k2!p2n21

2G~n!~p21!
k

]

]k

3E
0

`

dp2
~p2!n21

@p21R̂Q~12p2/k2!1 ṽ#p21U
ṽ5v

.

~3.8!

Taking the limitR̂→` restricts the momentum integration t
p2,k2:

Fn
p~v/k2!sc52

~k2!p2n21

2G~n!~p21!
k

]

]k

3E
k2

`

dp2
~p2!n21

~p21 ṽ !p21U
ṽ5v

. ~3.9!

The resulting integral is trivially evaluated by acting with th
k-derivative on the lower integration limit. This yields ou
final result for the threshold functions with a sharp cutoff
6-4
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FIG. 1. Comparison between the threshold functions in theb-functions ford54 for the exponential and the sharp cutoff. The horizon
lines indicate the ‘‘confidence interval’’ in which the two cutoff types yield similar results.
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Fn
p~w!sc5

1

G~n!

1

p21

1

~11w!p21
for p.1.

~3.10!

One easily verifies that these threshold functions also
isfy the recursion relation~3.1! derived for a smooth cutoff
This relation can be used todefineFn

1(w)sc as the solution
to the differential equation (d/dw)Fn

1(w)sc5
2@1/G(n)#@1/(11w)# which arises from substituting
Fn

2(w)sc into Eq.~3.1!. Thereby we avoid the diverging func
tions Fn

1(w)sc which would arise from directly substitutin
the sharp cutoff into Eq.~3.6! with1 p51. The resulting
Fn

1(w)sc’s are then determined up to a constant of integ
tion:

Fn
1~w!sc52

1

G~n!
ln~11w!1Fn

1~0!sc. ~3.11!

The constantsFn
1(0)sc[wn are undefineda priori; they pa-

rametrize the residual cutoff scheme dependence whic
still present after having opted for a sharp cutoff.

1This is the technical reason why, in the present application,
sharp cutoff leads to a finite and well-defined evolution equatio
06501
t-

-

is

For numerical calculations we need to fix thewn’s. Usu-
ally we shall assume them equal to the corresponding c
stants arising from the exponential cutoff with the shape
rameters51:

wn[Fn
1~0!sc5Fn

1~0!Exp (s51) ~3.12!

This choice leads to a very good agreement between
threshold functions evaluated by using the exponential
the sharp cutoff, at least for values ofw in the ‘‘confidence
interval’’ @20.7,1#. This is shown in Fig. 1, where the nu
merical values of thoseFn

p-functions which appear in the
b-functions ford54 are compared for the two types of cu
offs.

In order to investigate the residual cutoff scheme dep
dence of the results obtained from the sharp cutoff it is use
to define a one-parameter family ofwn’s, analogous to the
one-parameter family of exponential cutoff functions~3.2!.
This is done by generalizing the relation~3.12! to arbitrary
values of the shape parameters:

wn~s![Fn
1~0!Exp (s) ~3.13!

The resulting functionsw1(s) andw2(s), which are the only
constants of integration appearing ind54, are shown in Fig.
2. Here one finds that fors.15 the numerical values o
w1(s) and w2(s) are not subject to relevant changes a
more. Therefore we will limit further investigations of th
residual cutoff scheme dependence to the regions,15.
e

6-5
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FIG. 2. Dependence of the constants of integrationw1 andw2 on the shape parameters.
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For theF̃n
p-functions the integral appearing in Eq.~2.11!

can also be evaluated explicitly by substituting the sh
cutoff. In a calculation similar to the one shown above o
obtains

F̃n
1~w!sc5

1

G~n11!
for p51

~3.14!

F̃n
p~w!sc50 for p.1.

Having at hand the explicit form of the threshold function
Eqs. ~3.10!, ~3.11! and ~3.14!, we are now in a position to
write down theb-functions~2.8! with all integrations carried
out. The result reads

bg~l,g!sc5~d221hN
sc!g

bl~l,g!sc52~22hN
sc!l1

1

2
~4p!12d/2g

3F2
2d~d11!

G~d/2!
ln~122l!12d~d23!wd/2

2
d~d11!

G~d/211!
hN

scG ~3.15!

with

hN
sc~l,g!5

gB1~l!sc

12gB2~l!sc
. ~3.16!

HereB1(l)sc andB2(l)sc are given by

B1~l!sc5
1

3
~4p!12d/2H 2

d~d11!

G~d/221!
ln~122l!

1d~d23!wd/2212
6d~d21!

G~d/2!

1

122l
2

24

G~d/2!J
~3.17!

B2~l!sc52
1

6
~4p!12d/2

d~d11!

G~d/2!
.

06501
p
e
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Thus the flow equation~2.7! has now boiled down to a
coupled system of ordinary differential equations who
RHS is known explicitly and which is easily solved nume
cally.

IV. RG TRAJECTORIES BELOW THE PLANCK SCALE

In this section we discuss numerical solutions to t
‘‘ M-scaled’’ differential equations~2.13!, ~2.14! for Ğ and l̆
in d54 dimensions. We specify initial conditions at som
fixed scalek5 k̂ and identify the mass scaleM, which was
used in Eq.~2.12! for defining the dimensionless variablesĞ

and l̆, with this initial point M[ k̂. It will prove convenient
to rewrite the flow equations in terms of the scale parame

y[ k̆2[k2/M2. ~4.1!

Hence the initial pointk̂[M corresponds toŷ51.
We shall see that some RG trajectories can be contin

down to k50, while others terminate in a singularity at
nonzero value ofk. For every trajectory which can be ex
tended tok50 we define a Planck mass in terms of the fin
i.e. infrared, value of Newton’s constant:

mPl[G0
21/2[G~k50!21/2. ~4.2!

As a consequence of this definition,

Ğ~0![G0M25M2/mPl
2 . ~4.3!

FIG. 3. Solution~4.5! to the naive flow equation for differen

initial valuesl̆( ŷ) andĞ(0)51.
6-6
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FIG. 4. Numerical solutions to the flow equations~4.6! and ~4.7! for the exponential and the sharp cutoff forĞ(0)51 and shape

parameters52. The straight line indicates the boundaryl̆5y/2 introduced by the threshold functions. Trajectories leading to negative va

l̆(0) as well as trajectories terminating in the singularity are found.
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After having solved the RG equation and having found
final valueĞ(0) one could in principle use Eq.~4.3! in order
to expressM in terms of the more physical Planck mass.

In order to disentangle the various effects which contr
ute to the running ofĞ andl̆ it is helpful to start the discus
sion by analyzing two approximate forms of the system
Eqs.~2.13!, ~2.14!. At a first level of approximation, we ne
glect the running ofĞ by settinghN50 and focus on the
scale dependence ofl̆ alone. The motivation is that accord
ing to canonical dimensional analysis the running ofl̆ is
much more ‘‘relevant’’ than that of Newton’s constant. At
second level of approximation, we further simplify the r
maining equation~2.14! with hN set to zero, by neglecting
the backreaction which the changingl̆ has on the flow via
the threshold functions; to this end we setFn

1(22l̆/ k̆2)
'Fn

1(0) .

A. The naive renormalization group flow

Let us start with the ‘‘naive’’ RG flow which is defined b
the following two approximations:

Ğ~ k̆!'Ğ~0!5const, i.e. hN'0, and

Fn
p
„22l̆~y!/y…'Fn

p~0!. ~4.4!

The remaining differential equation „dl̆(y)/dy…

5(y/2p)Ğ(0)F2
1(0) is easily solved:

l̆~y!5l̆ ~ ŷ!1
1

4p
F2

1~0!Ğ~0!~y22 ŷ2!. ~4.5!

This corresponds to the result of a naive one loop calcula
with an IR cutoff which also yields a running ofl̄k propor-
tional to y2}k4.

The solutions~4.5! are plotted in Fig. 3 where the dimen
sionless Newton constant was chosen to beĞ(0)51. By Eq.
~4.3! this choice implies thatM5mPl , i.e. that the initial
conditions are imposed atk̂5mPl , and that the cosmologica
constant is measured in Planckian units.

As Fig. 3 shows, the solutions~4.5! allow for any value of
the ‘‘renormalized’’ cosmological constantl̆(0) in the limit
06501
e

-

f

n

k→0, depending on the initial value set at the scaleŷ. We
could ‘‘fine-tune’’ this initial value so that the renormalize
cosmological constant becomesl̆(0)50, but clearly this
would not explain the smallness of the cosmological cons
in a natural way.

B. The impact of the threshold functions

Now we drop the second assumption made in Eq.~4.4!
and allow for a non-trivial argument of the threshold fun
tion F2

1, while keepinghN50. The resulting flow equation
for a generic smooth cutoff reads

dl̆

dy
5

y

2p
Ğ~0!@5F2

1~22l̆/y!24F2
1~0!#. ~4.6!

For the sharp cutoff it becomes

dl̆

dy
5

y

2p
Ğ~0!@25 ln~122l̆/y!1w2#. ~4.7!

We shall solve Eqs.~4.6! and~4.7! numerically and compare
the resulting trajectories. We specify initial valuesl̆( ŷ) at
the initial point y5 ŷ[1. In order to visualize the generi
solution to these flow equations we have to abandon
choices51 for the shape parameter because for this spe
value the RG trajectories have certain properties which
not typical. Let us start withs52 instead which illustrates
the general situation.@For the sharp cutoff this change ofs

FIG. 5. Behavior of trajectories close to the boundaryl̆5y/2.
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FIG. 6. Numerical solutions to the flow equations~4.6! and ~4.7! for the exponential and the sharp cutoff forĞ(0)51 and shape

parameters51. The bold, straight line indicates the boundaryl̆5y/2 introduced by the threshold functions. In contrast to the generic c

s52 no trajectories terminate on the boundaryl̆5y/2.
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leads to a different numerical value of thewn’s, whose
s-dependence has been defined in Eq.~3.13!.#

The resulting trajectories fors52 are shown in Fig. 4.
The special case arising froms51 is displayed in Fig. 6.
Again we choseĞ(0)51, implying thatM5mPl for those
trajectories for whichG(k50) is defined.

Comparing the ‘‘Exp’’ to the ‘‘sc’’ diagrams in Figs. 4 an
6 clearly indicates that the sharp and the smooth expone
cutoff yield essentially the same RG trajectories.

The most striking feature of Fig. 4 is that some trajec
ries cannot be continued below a certain finite va
y5yterm. Trajectories which, in Fig. 3, have led to positiv
IR valuesl̆(0).0 now terminate because they hit the s
gular linel̆5y/2. It is due to the singularities of theF- and
F̃-functions atw[22l̆/y521. Looking at the flow equa-
tions ~4.6! and ~4.7! we see that their right hand sides d
verge,bl̆→1`, if l̆ approachesy/2. Some solutions to Eq
~4.7! in the vicinity of l̆5y/2 are shown in Fig. 5. The tra
jectories approach the singularity with a slopebl̆ smaller
than 1/2. Only directly on the boundary would the slo
jump to ` discontinuously. Equations~4.6! and ~4.7! show
that the singularity ofbl̆ also extends to

l̆>
y

2
. ~4.8!

Hence the RG flow is defined only forl̆,y/2. This leads to
the following consequences for all cutoffs:

~i! It is not possible to choose initial valuesl̆( ŷ) larger
than ŷ/2.

~ii ! There are no trajectories in the regionl̆.y/2. There-
fore we obtain only negative values for the cosmologi
constantl̄0 in the limit k→0. Trajectories that in Fig. 3 hav
led to positive valuesl̆(0).0 now either lead to negativ
values of the cosmological constant,l̆(0),0, or run into
the boundary linel̆5y/2 and terminate at finite value
yterm.0.

Comparing those trajectories that in Fig. 3 and Fig
yield negative IR-valuesl̆(0),0 we see that including the
nontrivial argument of the threshold functions leads to
06501
ial

-
e

l

a

~rather weak! focusing of the cosmological constant towar
zero, in the sense that the trajectories in Fig. 4 curve upw
for y→0.

Looking at Fig. 6 we see that the choices51 leads to a
non-generic behavior since the termination of the trajecto
at l̆5y/2 does not occur. In this case all admissible init
conditions imposed atŷ51 give rise to trajectories which
can be continued down toy50. They all yield a negative or
vanishingl̆0.

C. The complete system

Let us now also drop the approximationGk5const and
consider the full flow equations~2.13! and ~2.14!, treating
both Ğ(k) and l̆(k) dynamical. We compute the solution
for the initial values

Ğ~ ŷ51!50.25, l̆~ ŷ51! arbitrary. ~4.9!

The resulting trajectories for the sharp cutoff are shown
Fig. 7. Here two classes of solutions immediately beco
apparent.

Trajectories which end at a negative value of the cosm
logical constantl̆(0),0 have already appeared in Figs.
and 6. Later on they will be referred to as of ‘‘Type Ia’
Comparing the trajectories withl̆(0),0 of Fig. 7 to those in
Figs. 4 and 6 one finds that including a dynamical Newt
constant in the flow equation counteracts the effect of foc
ing ul̄0u towards smaller values, leading to even more ne
tive values ofl̆(0).

The second class of solutions in Fig. 7, which will b
classified as Type IIIa, is formed by the trajectories end
on the boundary linel̆5y/2. For l̆→y/2 the anomalous di-
mensionhN rapidly diverges. This leads to a vast increase
the Newton constantĞ(y) preceding the termination of th
trajectory. Due to the divergence ofhN , the RHS of both
Eqs.~2.13! and~2.14! approaches2` asl̆→y/2. Therefore
the tangents of the functionsĞ(y) and l̆(y) turn vertical
causing the trajectory to terminate at a finite valueyterm.0.

Furthermore, Fig. 7 clearly shows the ‘‘anti-screenin
character of pure quantum gravity, i.e. the monotone
6-8
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FIG. 7. Solution to the full flow equation withĞ( ŷ51)50.25 and various initial valuesl̆( ŷ51) for the sharp cutoff withs51. The bold

line indicates the boundary atl̆5y/2.
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crease of the Newton constantGk with increasing values ofy
or k @3#.

The most important change arising from the inclusion o
running Ğ(y), which cannot directly be deduced from th
Figs. 4, 6 and 7, is the modification of the backward evo
tion when weincreasey and try to send it to infinity. For the
flow equations~4.6! and ~4.7! with Ğ(y)5Ğ(0) kept con-
stant we find that the backward evolution becomes undefi
for sufficiently large values ofy. ŷ. All trajectories termi-
nate at the boundary linel̆5y/2 at a finite valuey,` and
cannot be continued to ‘‘y5` ’ ’ .

As we shall see in the next section this behavior chan
drastically when the running ofĞ(y) is included. This is due
to the appearance of a non-trivial fixed point which gove
the RG flow of the coupledĞ-l̆–system for largey@1. As a
consequence, all trajectories shown in Fig. 7 where the
ning of Ğ was included have a well defined backward ev
lution and can be continued up to ‘‘y5` ’ ’ .

Next we solve Eqs.~2.13! and ~2.14! using the initial
conditions~4.9! and theexponentialcutoff. The results are
displayed in Fig. 8. Comparing the trajectories in Figs. 7 a
8 one sees that the trajectories obtained using the sharp
the exponential cutoff are very similar except when they
close to the singular linel̆5y/2.

A new phenomenon occurs if we choose initial conditio
close to the boundaryl̆5y/2. Here the trajectory obtaine
using the sharp cutoff shows no particularities while the o
06501
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found using the exponential cutoff crosses all the other T
IIIa trajectories which start at lowerl̆( ŷ) and terminates a
an ‘‘unnaturally low’’ valuey, see the first diagram of Fig. 8
This behavior is due to the divergence ofhN

Exp on a certain
2-dimensional surface inl̆-Ğ-y–space which is discussed i
detail in the Appendix. It leads to a termination of the traje
tories slightly before thel̆5y/2-line is reached. This differ-
ence between the sharp and the smooth cutoff occurs
region very close to the singularity where the Einste
Hilbert truncation is unreliable in any case. It is clear tha
has no physical significance. For the sharp cutoff the an
gous singularityhN

sc→` is located in the~probably unphysi-
cal! region with negativeĞ(y).

V. THE COMPLETE RENORMALIZATION GROUP FLOW

After having studied the properties of the RG flow belo
the scaleM in the last section we now investigate the com
plete RG flow, i.e. the RG flow on the entirel-g–plane. In
this course we first look at the qualitative features of the fl
equation, determining its fixed points and their stability pro
erties. Afterwards we construct the full phase portrait of t
flow by numerically solving the ‘‘k-scaled’’ flow equation
with the sharp cutoff.

A. The fixed points

1. General remarks

The existence and consequences of a non-trivial fi
point in the Einstein-Hilbert truncation of pure quantu
FIG. 8. Solution to the full flow equation withĞ( ŷ51)50.25 and various initial valuesl̆( ŷ51) for the exponential cutoff with

s51. The bold line indicates the singularity atl̆5y/2.
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gravity have already been discussed in Refs.@5,6,8#. Refer-
ence@8# uses the exponential shape function~3.2! for a cut-
off of type A, establishing the existence of this fixed point f
a wide range of shape parameterss. In @5# the properties of
the fixed point are investigated using the type B cutoff
various smooth shape functionsR(0). In this subsection we
extend these surveys to the sharp cutoffR(0)sc within the
original type A cutoff scheme and compare our results
those obtained by usingR(0)Exp.

In order to investigate the fixed points we now turn to t
flow equations written in terms of thek-scaled coupling con-
stantsl,g of Eqs.~2.8! and ~3.15!. The existence of a fixed
point l* ,g* requires that theb-functions of the Einstein-
Hilbert truncation vanish simultaneously:

bl~l5l* ,g5g* !50, bg~l5l* ,g5g* !50. ~5.1!

Equation ~5.1! has two solutions: A trivial one for which
l* 50,g* 50 and a non-trivial solution withg* Þ0. They
give rise to a ‘‘Gaussian’’ and a ‘‘non-Gaussian’’ fixed poin
respectively.

An important property of a fixed point is the anomalo
dimensionhN(l* ,g* ) at this fixed point. From Eqs.~2.8!
and ~2.9! one findshN(l* ,g* )50 and hN(l* ,g* )522d
for the ‘‘Gaussian’’ and the ‘‘non-Gaussian’’ fixed point, re
spectively.

In order to investigate their stability properties we linea
ize the RG flow at the fixed points,

] tgi'(
j

Bi j ~gj2gj* !, B[@Bi j #5F ]bl

]l

]bl

]g

]bg

]l

]bg

]g

G .

~5.2!

In our case the generalized couplings gi are given by
g15l, g25g, and the derivatives definingBi j are taken at
gi5gi* . At an arbitrary point (l,g), and for anyR(0), the
partial derivatives of theb-functions are easily found by
making use of the recursion formula~3.1!:

]bl

]l
52~22hN!1S l2

g

2
~4p!12d/2d~d11!F̃d/2

1 ~22l! D
3

]hN

]l
1

g

2
~4p!12d/2@4d~d11!Fd/2

2 ~22l!

22d~d11!hNF̃d/2
2 ~22l!#

~5.3!

]bl

]g
5S l2

g

2
~4p!12d/2d~d11!F̃d/2

1 ~22l! D ]hN

]g

1
1

2
~4p!12d/2@2d~d11!Fd/2

1 ~22l!28dFd/2
1 ~0!

2d~d11!hNF̃d/2
1 ~22l!#
06501
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]bg

]l
5

g2

12gB2~l!
@B1

8~l!1hNB2
8~l!#

]bg

]g
5d221S 21

gB2~l!

12gB2~l! DhN .

Here the derivatives ofhN are given by

]hN

]g
5S 1

g
1

B2~l!

12gB2~l! DhN ,

~5.4!
]hN

]l
5

g

12gB2~l!
@B18~l!1hNB2

8~l!#

andB18(l) andB28(l) are the derivatives ofB1(l) andB2(l)
with respect to their arguments:

B18~l!5
1

3
~4p!12d/2@2d~d11!Fd/221

2 ~22l!

224d~d21!Fd/2
3 ~22l!#

~5.5!

B2
8~l!52

1

6
~4p!12d/2@2d~d11!F̃d/221

2 ~22l!

224d~d21!F̃d/2
3 ~22l!#.

Since these equations make no use of the fixed point va
l* andg* they can be used to investigate both the trivial a
the non-trivial fixed point. The eigenvalues and right eige
vectors ofB, evaluated at the corresponding fixed point, th
determine its critical exponents and scaling fields, resp
tively. Since, generically,B is not symmetric, its eigenvalue
are not real and the eigenvectors are not orthogonal in g
eral. We define the stability coefficientsu I, I51,2, as the
negative eigenvalues ofB satisfying the equation
BVI52u IVI, whereVI are the right eigenvectors ofB.

2. The trivial fixed point

Substitutingl* 50,g* 50 into Eq.~5.2! the stability ma-
trix simplifies to

BGFP5F22 ~4p!12d/2d~d23!Fd/2
1 ~0!

0 d22
G . ~5.6!

Diagonalizing Eq.~5.6! then leads totwo real stability coef-
ficients with their corresponding right eigenvectors:

u152 with V15S 1

0D
~5.7!

u2522d with V25S ~4p!12d/2~d23!Fd/2
1 ~0!

1
D .

The results~5.7! can be used to write down the linearize
renormalization group flow of the coupling constantslk ,gk
in the vicinity of the Gaussian fixed point:
6-10
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TABLE I. Renormalization group flow oflk in the vicinity of the trivial fixed point, depending on th
sign of a1.

Type Sign ofa1 Asymptotic behavior

Ia a1,0 a1-contribution dominates in Eq.~5.8!;
lk→2` in the limit k→0.

IIa a150 a2-contribution dominates in Eq.~5.8!;
lk is proportional tokd22: lk→0 in the limit k→0.

IIIa a1.0 a1-contribution dominates in Eq.~5.8!;
lk→1` in the limit k→0.
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lk5a1

M2

k2
1a2~4p!12d/2~d23!Fd/2

1 ~0!
kd22

Md22
1•••

~5.8!

gk5a2

kd22

Md22
1••• . ~5.9!

Herea1 anda2 are constants of integration allowing to a
just the solution to given initial conditions.

Equations ~5.8! and ~5.9! show that, in d54, the
V2-direction of the Gaussian fixed point is attractive f
k→0, leading to a vanishinggk , while the V1-direction is
repulsive. The behavior oflk crucially depends on the sig
of a1. For a1,0, a1.0 anda150, the trajectories start to
the left, to the right, or on theV2-axis. They will be referred
to as trajectories of Type Ia, IIa and IIIa, respectively. T
corresponding renormalization group behavior oflk is sum-
marized in Table I.

For the dimensionful coupling constants, Eqs.~5.8! and
~5.9! read

Gk5G01•••

~5.10!

l̄k5l̄01~4p!12d/2~d23!Fd/2
1 ~0!G0kd1••• .

Here we choseM5mPl by settinga251, and we identified
l̄05a1mPl

2 . From Eqs.~5.10! it is easy to see that bothGk

and l̄k run towards constant but non-zero values in the lim
k→0, unless we seta150 by hand. But since there is n
compelling reason fora1 to be zero we see thatl̄0 depends
on the free parametera1 and therefore on the trajectory cho
sen. Hence the Gaussian fixed point does not determine
value of the cosmological constantl̄0 in the infrared.

3. The non-trivial fixed point

The existence of a non-trivial fixed point withg* Þ0 im-
pliesd221hN(l* ,g* )50 in order forbg to vanish. Using
Eq. ~2.9! this relation can be solved forg* as a function of
l* :

g* ~l* !5
d22

~d22!B2~l* !2B1~l* !
. ~5.11!
06501
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This equation can be used to eliminate theg-dependence of
bl at the non-trivial fixed point, i.e. we have to solv
bl„l* ,g* (l* )…50 for l* . Due to its complicated structur
this equation can only be solved numerically. For t
b-functions with sharp cutoff~3.15! the numerical evaluation
yields a non-Gaussian fixed point at

l* 50.330, g* 50.403. ~5.12!

In order to discuss its properties, we take the general
bility matrix ~5.3! and substitute the condition for the non
trivial fixed point,hN(l* ,g* )522d. Using the sharp cutoff
we find the following matrix entries:

]bl

]l U
NGFP

sc

52d1S l* 2~4p!12d/2
g*

2

d~d11!

G~d/211! D
3

g*

12g* B2~l* !sc

1

3
~4p!12d/2

3S 2d~d11!

G~d/221!

1

122l*

2
12d~d21!

G~d/2!

1

~122l* !2D
1~4p!12d/2g*

2d~d11!

G~d/2!

1

122l*

]bl

]g U
NGFP

sc

5~22d!S l* 2~4p!12d/2
g*

2

d~d11!

G~d/211! D
3S 1

g*
1

B2~l* !sc

12g* B2~l* !scD 1
~4p!12d/2

2

3S 2
2d~d11!

G~d/2!
ln~122l* !

12d~d23!wd/22
d~d11!~22d!

G~d/211! D
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TABLE II. Comparison between the numerical results for the non-trivial fixed point using the sharp
exponential cutoff with different values for the shape parameters.

Sharp cutoff Exponential cutoff
s l* g* l* g* u8 u9 l* g* l* g* u8 u9

0.8 0.340 0.378 0.129 2.141 3.438 0.390 0.233 0.091 1.376 4.7
1 0.330 0.403 0.133 1.941 3.147 0.359 0.272 0.098 1.422 4.3
5 0.281 0.507 0.143 1.348 2.743 0.154 0.834 0.128 1.499 3.2
10 0.273 0.521 0.142 1.294 2.654 0.098 1.378 0.144 1.518 3.1
30 0.268 0.529 0.142 1.270 2.592 0.044 3.149 0.140 1.562 3.0
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]bg

]g U
NGFP

sc

5
~4p!12d/2

3

g*
2

12g* B2~l!sc

3S 2d~d11!

G~d/221!

1

122l*

2
12d~d21!

G~d/2!

1

~122l* !2D
~5.13!

]bg

]g U
NGFP

sc

5~22d!S 11
g* B2~l* !sc

12g* B2~l* !scD .

B1(l)sc andB2(l)sc are given by Eq.~3.17!. Substituting the
numerical values of the non-trivial fixed point~5.12! and
diagonalizing the stability matrix leads to the following pa
of complexstability coefficients:

u1[u81 iu951.9411 i3.147
~5.14!

u2[u82 iu951.9412 i3.147.

In analogy to Eqs.~5.8! and ~5.9! the solution to the lin-
earized flow equation in the vicinity of the non-trivial fixe
point then reads

S g~ t !2g*

l~ t !2l* D 5a1 sin~2u9t !e2u8t Re~V1!

1a2 cos~2u9t !e2u8t Im~V1!. ~5.15!

Here one sees that due to the positive real-part ofu I , the
non-trivial fixed point is UV attractive in both directions o
theg-l–plane, i.e. attractive fort5 ln(k/k̂)→`. Furthermore,
the non-zero imaginary part of the stability coefficient cau
the trajectories to spiral into the non-Gaussian fixed po
when t→`.

We emphasize that the nonzero imaginary part of the
bility coefficients is not an artifact of our singular cutoff b
appears for the smooth exponential cutoff as well, as
shown in Table II.

Let us now turn to the investigation of the cutoff schem
dependence of the results obtained above. A change o
cutoff functionR(0) sc generally leads to a change in the R
flow. By definition, universal quantities are cutoff schem
independent in an exact treatment. In a fundamental the
06501
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based upon a trajectory emanating from an UV fixed po
the physical ~observable! quantities are universal in thi
sense. However, an artificial scheme dependence can
due to the approximations one has to make in all pract
calculations. Analyzing the cutoff dependence of univer
quantities therefore provides a useful tool for judging t
quality of the truncation. One expects that a truncation wh
yields a good approximation of the exact RG flow leads
universal quantities which are fairly independent of the c
off scheme used.

Natural candidates for testing the quality of the Einste
Hilbert truncation are the stability coefficientsu8 and u9
@22#. Furthermore, one can argue that the productl* g*
should be universal, too@5,23#. The argument is as follows
The functionsk°gk ,lk and their UV limitsg* andl* de-
pend on the cutoff operatorRk and are therefore not directl
observable. Whilek and, as a consequence,Gk and l̄k at a
prescribed value ofk cannot be measured separately, we m
invert the functionk°Gk and insert the resultk5k(G) into
l̄k . This leads to a relationship between the Newton cons
and the cosmological constant which, at least in princip
could be tested experimentally:l̄5l̄(G). In general this re-
lation depends on the renormalization group trajectory c
sen. But in the fixed point regime all trajectories approa
l̄k5l* k2 and Gk5g* /k2 which gives rise to l̄(G)
5g* l* /G for l̄@mPl

2 andG!mPl
22 . Assuming thatl̄ andG

have the status of observable quantities, this relation sh
that g* l* should be observable, and henceRk-independent.

Therefore we also include the quantityl* g* when we
plot the numerical values forg* and l* obtained from the
exponential and the sharp cutoff. The results are shown
Fig. 9.

Here one finds that the non-trivial fixed point exists in t
entire region under investigation, 0.8,s,15. While the nu-
merical values forl* (s) andg* (s) vastly differ for the vari-
ous values ofs and between the two families of cutoff func
tions, one finds that the productl* (s)g* (s) is almost
s-independent and that its values for both types of cut
functions are very similar. For the ‘‘plateau’’ values ofl* g*
we find with the different functionsR(0) employed in this
paper:

l* g* 50.14 for type A, sc,a51,
~5.16!

l* g* 50.14 for type A, Exp,a51.
6-12
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FIG. 9. The location of the non-trivial fixed point depending on the shape parameters. While l* and g* show a fairly strong cutoff
scheme dependence, their productl* g* is constant with a remarkable precision, approaching the same ‘‘plateau’’ values ofl* g* for large
values ofs. In the third diagraml* is plotted againstg* . Both of the two lines start ats50.8 and end ats515. From the different lengths
of the lines for the sharp and the exponential cutoff one sees that the sharp cutoff leads to a much smallers-dependence than its exponenti
counterpart.
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The analogous results found in@5# using the type B cutoff
scheme are:

l* g* 50.12 for type B, Exp,a51,
~5.17!

l* g* 50.14 for type B, Exp,a50.

We see that these values are very close to our present
ings. In particular, the differences between the type A a
type B cutoff are comparable to the difference between
gauge fixing parametersa50 anda51 @5,8#. This supports
the assumption that the productl* g* has a universal mean
ing. The rather small numerical deviations of the plate
height can be attributed to using only a very simple trun
tion.

In order to round up our survey of the properties of t
non-trivial fixed point ind54, we now treatw1 and w2 as
two independent, positive numbers obeying no further c
straints. The resulting numerical values forl* ,g* ,u8 andu9
are shown in Fig. 10.

This analysis clearly shows the existence of the n
trivial fixed point for the complete region under investig
tion, 0,w1 ,w2,10. Even though the magnitude of the st
bility coefficients varies by about a factor of 3, as an effect
our truncation, the qualitative properties of the fixed po
are the same for all values ofw1 and w2. The fixed point
always possesses a pair of complex-conjugate stability c
ficients whose real-part is positive, Re(u I)[u8.0, i.e. the
06501
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fixed point is always UV-attractive. This provides us wi
further evidence for the existence of a non-trivial fixed po
in the full theory@5,6,8#.

B. The phase portrait

Motivated by the very good agreement between the ex
nential and the sharp cutoff found when solving theM-scaled
flow equation in Sec. III and analyzing the non-trivial fixe
point, we now investigate the fulll-g–parameter space, us
ing the b-functions ~3.15! with the technically much more
convenient sharp cutoff.

But before presenting the numerical solutions, we summ
rize the properties of the parameter space that can be dire
read off from~3.15!. As has been noted in the context of E
~4.8!, the flow equation is singular forl̆>y/2. In terms of the
k-scaled coupling constantlk5l̆(y)/y this singularity oc-
curs for l>1/2, resulting in a boundary of the
l-g–parameter space given by the linel51/2.

The vanishing ofbg(l,g) for g50 and arbitraryl leads
to a separation of the phase space into two decoupled reg
with positive and negative couplingg, respectively. Trajec-
tories starting in one of these regions will never cross
separation lineg50.

The characteristics of the trivial and the non-trivial fixe
point have already been discussed in the previous subsec
One expects that the non-Gaussian fixed point dominates
6-13
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FIG. 10. Numerical results for the location and stability coefficients of the non-trivial fixed point, treatingw1 andw2 as independent. The
solid line corresponds to the results obtained by consideringw1 andw2 as a function of the shape parameters. For all values ofw1 andw2

the non-Gaussian fixed point is seen to have the same qualitative features.
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RG flow for larget5 ln(k/k̂), leading to a spiraling in of the
trajectories on the point (l* ,g* ). The stability axisV2 of the
Gaussian fixed point will provide a separation between
trajectories which run towardslk52` and lk511/2, re-
spectively.

In terms of the coordinatesl,g it is also easy to visualize
the singularity of the anomalous dimensionhN encountered
in Sec. III. The functionhN(l,g) diverges at those point
(g,l) at which the denominator of Eq.~2.9! vanishes. The
functiong(l) defined by 12g(l)B2(l)50 is shown in Fig.
11. For the sharp cutoff one finds that this singularity occ
on an s-independent horizontal line atg526p/5. For the
exponential cutoff the divergence ofhN

Exp leads to an
(s-dependent! line in the first quadrant of thel-g–plane.

We shall now derive the full phase portrait of th
Einstein-Hilbert truncation by numerically solving the a

FIG. 11. The points in the parameter space wherehN diverges
for the sharp and exponential cutoff. The bars indicate the loca
of the non-trivial fixed point for the exponential cutoff with shap
parameterss51 ands530.
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e
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tonomous differential equation for the ‘‘k-scaled’’ quantities
gk and lk . In the first step we focus on the part of th
l-g–plane where the RG flow is governed by the two fix
points found in the previous subsection.

The resulting flow diagram is shown in Fig. 12.
This figure clearly shows the separation between the

jectories with positive and negative couplingg.
The most interesting feature of this diagram is the int

play between the non-Gaussian and the Gaussian fixed p
in the positive coupling region. In the limitt→` the non-
Gaussian fixed point completely dominates the flow of
trajectories in this region, leading to their spiraling in on t
point (l* ,g* ). This result exactly matches the behavior e
pected from the complex stability coefficients found in t
previous subsection. The behavior of the trajectories in
vicinity of the trivial fixed point confirms Table I: Trajecto
ries starting to the left of the separation line (a1,0) are
running towardsl→2` while those to the right (a1.0)
terminate at the border singularityl51/2 at finite values of
k.

The trajectory separating these two regions is of spe
interest and will be called ‘‘the’’ separatrix. It connects th
non-trivial fixed point in the UV to the trivial fixed point for
k→0. As a result, this trajectory leads to avanishingrenor-
malized cosmological constantl̄0.

The trajectories running to the left of the separatrix a
possess a well defined limitk→0. They lead to negative
values of the renormalized cosmological constantl̄0.

In the next step we now extend our numerical survey
the full parameter space. The resulting renormalization gr
flow is shown in Fig. 13. Here it becomes obvious that t
negative-g region also contains a trajectory which separa
the regions with trajectories running towardsl→2` and

n
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FIG. 12. Part of the parameter space with its RG flow. The arrows along the trajectories point in the direction of the renorm
group flow, i.e. towards decreasing values ofk. The flow pattern is dominated by a non-Gaussian fixed point in the first quadrant and a
one at the origin.
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l→1/2. Furthermore one sees that the singularity ofhN
sc at

g526p/5 results in a separation between trajectories sh
ing a screening and anti-screening behavior of the New
constantgk in the IR. This resembles the behavior found f
the exponential cutoff in Sec. III.

In a first step of classifying the trajectories found in F
13, we project the renormalization group trajectories of
full systemonto theg-axis. The results are displayed in Fi
14. According to their limit fork→0 or t5 ln(k/k̂)→2`
three different classes of trajectories can be distinguishe

~i! Trajectories with limt→2`g(t)→`. They form the
‘‘strong coupling region’’.

~ii ! Trajectories with limt→2`g(t)50. They form the
‘‘weak coupling region’’.

FIG. 13. Full phase structure of the Einstein-Hilbert trunca
theory. On the bold horizontal linehN

sc diverges.
06501
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~iii ! Trajectories with limt→2`g(t),0. They form the
‘‘negative coupling region’’.

Note the oscillating behavior ofg(t) before the trajecto-
ries adopt their asymptotic value. This is caused by the n
zero imaginary part of the stability coefficients found for t
non-trivial fixed point.2

In a second step we classify the trajectories shown in F
13 according to their starting and end points. Figure
shows the resulting phase space regions, which are di
guished by a different kind of dashing of their trajectories
The characteristics of each region are summarized in Ta
III which contains the classification of all trajectories occu
ring in the Einstein-Hilbert truncation. Table III is organize
as follows: The first column labels the type of the trajecto
as it is marked in the phase space diagram Fig. 15.~Only the
single trajectories of Type IIa and IIb separating the regio
Ia and IIIa and Ib and IIIb, respectively, are not mark
explicitly in this diagram.! The columns labeled ‘‘UV-’’ and
‘‘IR-behavior’’ indicate the characteristic features of the tr
jectories, ‘‘UV’’ referring to the end point of the trajectorie
for k→` and ‘‘IR’’ relating to k→0. These limits do not
exist for all the classes. The aborting of the trajectory a
finite value ofk in either the UV or the IR is indicated by
‘‘Sing.’’ The values ofl,g given in the table indicate wher
the corresponding RG trajectories end.

In the column ‘‘UV-behavior’’ the label ‘‘NGFP’’ means
that the trajectory runs into the non-Gaussian fixed po

2A plot of g(t) similar to Fig. 14 has been given in Ref.@8#, see
Fig. 2 there. In this reference the running ofl has been disregarded
however. As a consequence, no oscillations were found.

d
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M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW D65 065016
The trajectories labeled with ‘‘Sing.’’ either end at th
boundary linel51/2 where we distinguish between the tw
regionsg.0 andg,0 or in the singular line caused by th
divergence ofhN

sc at g526p/5 and arbitrary values ofl.
Note that the limitk→` exists only for the trajectories run
ning into the ‘‘NGFP’’.

In the IR, trajectories which possess an IR-limitk→0 are
indicated by the note ‘‘o.k.’’. They lead to negative values
the renormalized cosmological constantl̄0 with positive
(gk→01) or negative (gk→02) Newton constant, respec
tively. The label ‘‘GFP’’ indicates that the corresponding tr
jectory ends at the Gaussian fixed point, yielding a vanish
cosmological constantl̄0. Singular behavior, i.e. the term
nation of the trajectory at a finite value ofk, appears when
the trajectory reaches the boundaryl51/2 in the positive
(g.0) or negative (0.g.26p/5,g,26p/5) coupling re-
gion. The possibility ofgk diverging at a finite value ofk is
indicated bygk→`,lk→2`.

FIG. 14. Projecting the full renormalization group flow onto t
g-axis leads to a separation between the trajectories in the str
weak and negative coupling region.
06501
f

g

The column ‘‘coupling region’’ finally specifies to which
coupling region, as defined in Fig. 14, the trajectory belon

The Newtonian regime consists of the trajectories in
weak coupling region. They are the only ones yielding
finite, positive Newton constantGk in the IR. In this respect
it is important to note that only the trajectories of the Typ
Ia and IIa can be continued down tok50, leading to a finite
value of G0 and a negative or vanishing cosmological co
stant, respectively. Since for these two classes the l
k→` is also well-defined, these solutions could possibly
used in order to define a fundamental quantum theory
gravity with a vanishing or a negative renormalized cosm
logical constant, respectively. The trajectories of Type II

which run towards positive values ofl̄, terminate at the sin-
gularity l51/2 and do not give rise to well-defined reno

malized parametersl̄0 andG0 at k50.

C. Crossover behavior

The phase diagram Fig. 12 shows that the trajectories
IIa and IIIa which are relevant for the Newtonian limit o
quantum gravity cross over from the non-trivial fixed poi
in the UV to the basin of attraction of the trivial fixed poin
in the IR. In this subsection we first concentrate on t
classes Ia and IIa. They lead to finitek→0 limits of the
coupling constants. Since these trajectories extend dow
k50 they allow us to identify the scaleM with the Planck-
scalemPl5G0

21/2.
Due to the trivial and the non-trivial fixed point governin

the RG flow of these trajectories in the limitsk→0 and
k→`, respectively, the trajectories of these classes o
simple scaling laws in these regimes.

In the UV one finds the following scale dependence of
coupling constants, valid for both types of trajectorie

g,
t and
FIG. 15. Classification of thefull Einstein-Hilbert truncated theory space. The trajectories IIa and IIb end at the trivial fixed poin
separate the regions Ia and IIIa, Ib and IIIb, respectively. They are not labeled explicitly.
6-16
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TABLE III. Classification of all RG trajectories occurring in the Einstein-Hilbert truncation.

Type UV-behavior IR-behavior Coupling region

Ia NGFP (l* ,g* ) o.k.
lk→2`

gk→01
weak coupling

IIa
separatrix

NGFP (l* ,g* ) GFP
lk→01

gk→01
weak coupling

IIIa NGFP (l* ,g* ) Sing.
l51/2

g.0
weak coupling

IVa NGFP (l* ,g* ) Sing.
lk→2`

gk→`
strong coupling

Va Sing.
l51/2

g.0
Sing.

lk→2`

gk→`
strong coupling

Ib Sing.
l51/2

g,0
o.k.

gk→02

lk→2`
negative coupling

IIb Sing.
l51/2

g,0
GFP

lk→02

gk→02
negative coupling

IIIb Sing.
l51/2

g,0
Sing.

l51/2

g,0
negative coupling

IVb Sing.
l

g526p/5
o.k.

lk→2`

gk→02
negative coupling

Vb Sing.
l

g526p/5
Sing.

l51/2

g,26p/5
negative coupling
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lk→const,gk→const⇔Gk ,Ğ}k22, l̄k ,l̆}k2.
In the IR the trivial fixed point leads to the scaling law

given by Eqs.~5.8! and ~5.9!. For Type Ia trajectories they
are gk}k2⇔Gk ,Ğ}k0, lk}k22⇔l̄k ,l̆}k0, and for the
Type IIa they readgk}k2⇔Gk ,Ğ}k0, lk}k2⇔l̄k ,l̆}k4.

Next we determine the scalek̆, at which the transition
between these regimes takes place. Thanks to the ident
tion M5mPl the related dimensionful quantityk5 k̆mPl has a
clear physical interpretation. We solve Eq.~3.15! with the
‘‘final condition’’ Ğ(k50)51, together with l̆(k50)5
20.01 andl̆(k50)50 for a typical trajectory of Type Ia
and IIa, respectively. This leads to the results displayed
Figs. 16 and 17. The main conclusion is that the chang
the scaling laws arising from the two fixed point regions
located rather close to the Planck-scale,k[mPl . For
k̆&0.1 andk̆*10 the respective scaling laws of the trivi
and non-trivial fixed point already dominate the running
the coupling constants.

This picture is confirmed by the diagrams displaying t
anomalous dimensionk°hN(lk ,gk) along the trajectories
Ia, IIa and IIIa shown in Fig. 18. In the region governed
the non-trivial fixed point one hashN'22 while in the
IR-regionhN vanishes.~Recall thathN* 522 andhN* 50 at
06501
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in
in

f

the non-Gaussian and the Gaussian fixed point ind54, re-
spectively.! For the Type IIIa the termination of the trajector
is accompanied by a steep decrease ofhN , caused by the
divergence ofB1(l)sc at constantB2(l)sc for l approaching
the boundary linel51/2. @This can easily be checked from
Eq. ~3.17!.# The vast decrease ofhN for the trajectories IIIa
suggests that the Einstein-Hilbert truncation may not be s
ficient to describe the RG flow close to the boundary li
l51/2.

Motivated by the important role played by the produ

l* g* we also plotk̆°l( k̆)g( k̆) for those trajectories which
were considered in Fig. 18. The results are shown in Fig.

Here we observe that for small values ofk̆, k̆&1 say, the

value ofl( k̆)g( k̆) along the separatrix provides a clear sep
ration of the trajectories Ia and IIIa. In the region abovek̆
'1 the trajectories cross. In this region thelg-value along
the separatrix does not provide a separator between the
jectories Ia and IIIa. This behavior is caused by the non-z
imaginary part of the stability coefficients of the no
Gaussian fixed point. It leads to the observed oscillations
the trajectories in the intermediate region. In this respect
point out that for a non-Gaussian fixed point which
chance has Im(u I)50, the quantityl( k̆)g( k̆) along the sepa-
6-17
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FIG. 16. Scaling laws for Type Ia trajectories. Fork̆,0.1 andk̆.10 the flow is governed by the scaling laws of the Gaussian and
non-Gaussian fixed point, respectively. The transition between these scaling laws happens atk'mPl . The cusp appearing in the doub

logarithmic diagrams for the modulus of the cosmological constant is caused byl̆( k̆) andlk becoming negative at finitek̆.
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ratrix would provide a good separator between the traje

ries running in the regions Ia and IIIa for all values ofk̆. This
remark will become important when we compare our res
to those found in lattice calculations in Sec. VI.

D. The non-trivial fixed point in other dimensions

The b-functions~2.8! and the entries of the stability ma
trix B in Eq. ~5.3! have been derived for arbitraryd and
allow for an investigation of the non-trivial fixed point in an
dimensiond. For 21e<d<4, the existence of the non
trivial fixed point for the b-function with the exponentia
cutoff ~3.2! has already been demonstrated in@5,6,8#.

Figure 20 shows the numerical values ofl* ,g* , u8 and
u9 obtained by using both the exponential and the sharp
off. The s-dependence of the sharp cutoff is again defined
the relation~3.13! which trivially extends to anyd.
06501
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The results in Fig. 20 show that the scheme depende
of both the~nonuniversal! location and the~universal! criti-
cal indices at the fixed point increases steadily with incre
ing d. But up to dimensionalities between about 4.5 or 5, s
one still finds a relatively good agreement between the
sults obtained with the different cutoff functions. Beyond th
point the universal quantitiesu8 and u9 become seriously
scheme dependent.

It is reassuring to see that there seem to be no qualita
differences betweend54 andd521e. We interpret this as
another confirmation of the reliability of the Einstein-Hilbe
truncation in 4 dimensions, at least at a qualitative level.

Looking at the cutoff dependence ofl* ,g* in the region
d@4, one finds that the trend of the growing scheme dep
dence of the fixed point properties continues. Figure
shows that the value ofg* vastly increases for increasingd,
and that l* approaches the singularity atl51/2. Once
6-18
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FIG. 17. Scaling laws for the trajectory IIa, the separatrix. Fork̆,0.1 andk̆.10 the flow is governed by the scaling laws of the Gauss
and the non-Gaussian fixed point, respectively. The change between these power laws happens atk'mPl .
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l* 51/2 is reached, the non-trivial fixed point disappears a
certain critical dimensiondc which strongly depends on th
cutoff function. In Fig. 21 one finds

dc'6 for the exponential cutoff withs51,

dc'17 for the sharp cutoff withs51, ~5.18!

dc.26 for the sharp cutoff withs530.

The first diagram of Fig. 21 shows quite impressively th
d54 seems still to lie on the safe side of a rather pronoun
‘‘phase-transition’’ atd'5. At this point,g* suddenly jumps
from g* ,1 to g* @1, so that we must expect the truncatio
to become problematic atd'5.

In order to better understand the disappearance of
non-Gaussian fixed point, we plot in Fig. 22 the functi
06501
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l°bl„l,g* (l)…, whose zero isl* , for both the exponentia
and sharp cutoff and for various dimensionsd. The function
g* (l) thereby is given by Eq.~5.11!. One finds that, for the
exponential cutoff,bl„l,g* (l)…Exp is positive definite for
d.dc which implies that there can be no non-trivial fixe
point. For the sharp cutoff,bl„l,g* (l)… develops a second
zero in the negative coupling region before the old no
trivial fixed point in the positive region escapes through t
l51/2 boundary. The appearance of the second zero is i
cated by the branching shown in thel* -d–diagram of Fig.
22. Ford.dc only the new fixed point in the negative cou
pling region remains.

The properties of these fixed points for selected dim
sions are shown in Table IV and Table V for the sharp a
the exponential cutoff, respectively.

The data shown in Tables IV and V suggest that
Einstein-Hilbert truncation should produce reliable results
6-19



M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW D65 065016
FIG. 18. Anomalous dimensionhN along the Type Ia, IIa and IIIa trajectories shown in the first diagram.
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to d54 or maybed55. Beyond that the results shown
Table IV are untrustworthy and should be understood as
illustration of the effects arising from an improper trunc
tion. For the non-trivial fixed point this unreliability is indi
cated by the fixed point lying very close to the boundary l
l51/2 and at large valuesg* @1. In this region of the
l-g–plane, the termination of the trajectories and the st
decrease inhN indicate that the Einstein-Hilbert truncatio
might be insufficient in describing the RG flow. The appe
ance of the second zero of theb-function with sharp cutoff
and the absence of this new zero for the smooth expone
cutoff point towards a strong scheme dependence even a
qualitativelevel. This is a typical symptom of an insufficien
truncation.

FIG. 19. Productl(k)g(k) for the representative trajectories I

IIa and IIIa shown in Fig. 18. The parameterk̆ is given by k̆

5k/mPl for Type Ia and IIa, andk̆5k/M for Type IIIa.
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Summarizing the results of this subsection we find t
the Einstein-Hilbert truncation is most likely insufficient t
describe the RG flow ford*5. This limitation is due to
operators like*ddxAgR2 and higher powers of the curvatur
scalar which are not included in the truncation. Based on
canonical dimensions of their coupling constants one exp
an increasing importance of these terms in the UV asd is
increased. Therefore it is likely that in order to properly d
scribe quantum gravity in higher dimensional spacetime
more refined truncation will be needed.

VI. DISCUSSION AND CONCLUSION

In this paper we studied the exact renormalization gro
equation for the effective average action of pure quant
gravity in its original formulation@3#. The RG flow of New-
ton’s constant and the cosmological constant was inve
gated nonperturbatively within the Einstein-Hilbert trunc
tion of the theory space. The new contributions of the pres
paper are the introduction of a sharp cutoff and a comp
hensive numerical analysis of the RG trajectories in 4 spa
time dimensions.

As in Ref.@3#, we used a cutoff actionDkS whose general
structure is of ‘‘type A’’ in the terminology of Ref.@5#.3 It
contains a shape functionR(0) for which we considered both
a smooth exponential ansatz and, as a singular limit, a s

3This cutoff should not be confused with the new one introduc
in Ref. @5# whose general structure is of the ‘‘type B’’ which ap
pears naturally when the transverse-traceless decomposition o
metric is used.
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FIG. 20. Comparison of the numerical values ofl* ,g* ,u8 andu9 for different cutoff functions in dependence of the dimensiond. The
upper line shows that for 21e<d<4 the cutoff scheme dependence of the results is rather small. The lower diagram shows that inc
d beyond about 5 leads to a significant difference in the results foru8,u9 obtained with the different cutoff schemes.
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step function of infinite height. While in other application
sharp cutoffs often lead to inaccurate or even undefined
divergent results, we found that the flow equations forg and
l remain perfectly well defined in the sharp cutoff lim
Moreover, all RG trajectories which we computed with bo
the smooth and the sharp cutoff turned out virtually identic
Thus having confidence in the technically much more c
venient sharp cutoff we employed it for a complete class
cation and computation of the RG trajectories on
06501
or

l.
-
-
e

g-l2parameter space. Our main results are summarize
Figs. 12 and 15 and in Table III.

The most prominent feature of the RG flow resulting fro
the Einstein-Hilbert truncation is a non-Gaussian fixed po
which acts as an UV-attractor for the trajectories Ia, IIa, I
and IVa on theg.0 half plane. It is an extremely importan
question whether this fixed point is a truncation artifact
whether it is also present in the full theory. In the latter ca
4-dimensional Quantum Einstein Gravity is likely to be ‘‘a
es
FIG. 21. Numerical valuesl* and (g* )21 for the non-trivial fixed point ind.4. The branching occurring for the sharp cutoff indicat
the existence of a second fixed point in the negative coupling region.
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M. REUTER AND F. SAUERESSIG PHYSICAL REVIEW D65 065016
FIG. 22. bl„l,g* (l)… as a function ofl for the exponential and the sharp cutoff with shape parameters51 for selected dimensionsd.
The zero of this function isl* . The left diagram demonstrates the escape of the non-trivial fixed point into the boundaryl51/2 for the
exponential cutoff. The right diagram shows the appearance of a second zero and the vanishing of the familiar non-trivial fixed poi
sharp cutoff.
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ymptotically safe’’@9#, i.e. nonperturbatively renormalizabl
by taking the infinite cutoff limit at this fixed point. Einstei
gravity would then have the status of a fundamental rat
than merely an effective theory, and it could be valid at
bitrarily small distance scales.

In Refs.@5,6# this question was investigated in detail. Th
reliability of the Einstein-Hilbert truncation was tested bo
by analyzing the scheme dependence within this trunca
@5# and by adding a higher-derivative invariant to it@6#. The
picture suggested by these investigations is that, in 4 dim
sions, the RG flow in the vicinity of the non-Gaussian fix
point is very well described by the Einstein-Hilbert trunc
06501
r
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tion. Hence we have very good reasons to believe that
fixed point actually should exist in the full theory. Only whe
one lowers the cutoff and leaves the region of asympto
scaling more complicated operators such asR2,R3, . . . are
generated.

The results of the present paper provide further evide
supporting the hypothesis of the non-Gaussian fixed poin
order to judge the reliability of the truncation, we check
the cutoff scheme dependence of various universal quant
(u8,u9,g* l* ) which are expected to be scheme independ
in an exact treatment. Quite remarkably, the results fou
here for a sharp cutoff of type A are rather similar to tho
tive

bility

en as a
TABLE IV. Numerical values for the non-trivial fixed point and the fixed point appearing in the nega
coupling region for theb-functions with sharp cutoff withs51 in selected dimensionsd. Here ‘‘-’’ denotes
that no fixed point of the corresponding type exists for this dimension. A pair of real-valued sta
coefficients, appearing ford.6, is indicated by giving the two correspondingu-values in theu8-column. For
d>6 the results found here are certainly not reflecting properties of the full theory and should be se
demonstration of the limitations of the Einstein-Hilbert truncation in higher dimensional spacetimes.

Non-trivial fixed point Fixed point in the negative coupling region
d l* g* g* l* u8 u9 l* g* u8 u9

3 0.112 0.150 0.017 1.159 0.746 – – – –

4 0.330 0.403 0.133 1.941 3.311 – – – –

5 0.398 1.143 0.454 5.401 5.526 – – – –

6 0.435 3.576 1.554 10.89
16.14

0 – – – –

10 0.495 324.1 160.4 10.15
922.7

0 23.138 22232. 8.167
10.12

0

11 0.498 957.4 476.8 11.07
2480.

0 23.042 26075. 9.074
11.05

0

25 – – – – – 23.000 2531010 23.00
25.00

0

26 – – – – – 23.000 2231011 24.00
26.00

0
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found in @5# with a smooth cutoff of type B. Typically the
scheme dependence within the family of sharp cutoffs~pa-
rametrized byw1 andw2) is of about the same magnitude
the differences between the sharp and the smooth cutoff,
between the type A and type B structure. In particular
productl* g* was found to be scheme independent with
very surprising precision. Here the sharp cutoff leads to e
slightly more stable results than the smooth one, as is sh
in the last diagram of Fig. 9.

We also investigated how the scheme dependence o
fixed point data varies with the dimensionalityd. With in-
creasingd the quality of the Einstein-Hilbert truncation de
teriorates and it certainly becomes insufficient at ab
d56 where the existence or nonexistence of the non-tri
fixed point depends on the cutoff chosen. It seems tha
d54, at least qualitatively, the conditions are still very sim
lar to d521e with 0,e!1. All admissible cutoffs lead to
the presence of the non-trivial fixed point. They agree o
quantitative (l* g* ) or at least semi-quantitative leve
(u8,u9).

While in @5,6# only the linearized flow near the fixe
points is discussed, the numerical investigations of
present paper allow us to follow the trajectories emana
from the non-Gaussian fixed point all their way down fro
the UV to the IR. In particular we were able to determine t
scalekasym where the asymptotic scaling behavior govern
by the UV fixed point comes to an end. For the trajector
which can be continued tok50 we found thatkasym'mPl
[G(k50)21/2. Below this scale the RG flow is governed b
a trivial fixed point at the origin of thel-g–plane. The
~Planck! scalekasym is analogous to the mass scaleLQCD in
QCD in the sense that it marks the lower border of
asymptotic scaling region.

Probably the analogy between QCD and gravity go
even further. Fork@LQCD, thanks to asymptotic freedom4

4In gravity, the term ‘‘asymptotic freedom’’ refers only to the d
creasing coupling constant inGk a priori. While in QCD the de-
creasing gauge coupling has an immediate physical interpretatio
terms of a decreasing interaction among heavy quarks, the an
gous physical interpretation in gravity is more subtle. Some asp
of this problem have been investigated in@11# where the dynamics
of a test particle in a RG improved black hole spacetime was
rived. In particular, as a consequence of the non-Gaussian fi
point and asymptotic freedom, very light black holes were found
have no event horizon.

TABLE V. Numerical values for the non-trivial fixed point with
exponential cutoff in selected dimensionsd. Ford.6 no non-trivial
fixed point exists.

Non-trivial fixed point for exponential cutoff withs51
d l* g* l* g* u8 u9

3 0.140 0.133 0.019 1.063 1.109
4 0.359 0.272 0.098 1.422 4.307
5 0.445 0.636 0.283 3.419 8.503
6 0.497 1.673 0.831 10.02 16.82
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the effective average action of Yang-Mills theory has a ve
simple local structure, and simple truncations such
Gk51/4Zk*ddx(Fmn

a )2 are sufficient@24#. Only when k is
close to, or much smaller thanLQCD does its structure be
come very complicated and nonlocal. Also gravity seems
be asymptotically free@3#, and if the results of@5,6# and the
present paper point in the right direction, gravity, too, can
described by a simple local truncation abovekasym'mPl .
Only when we lowerk down to the Planck scale willGk
contain higher order local invariants (Rn,•••) as well as
nonlocal invariants@25,26#. Presumably the use of th
Einstein-Hilbert truncation is much more problematic
k'mPl than atk@mPl . In fact, the aborting trajectories o
Type IIIa and the unbounded increase ofuhNu which pre-
cedes their termination most probably hint at an insufficien
of the Einstein-Hilbert truncationin the infrared. It must be
emphasized that there are no analogous consistency p
lems abovekasym.

It is likely that in the IR a proper treatment of the Typ
IIIa trajectories ~or rather their counterparts in the exa
theory! requires much more sophisticated truncations. It
plausible to speculate that those truncations will encode
strong IR-quantum effects which have been discussed in
@5#. They might be the key to a dynamical resolution of t
cosmological constant problem.

The above picture of quantum gravity being ‘‘simple
abovemPl and ‘‘complicated’’ belowmPl contradicts the gen-
eral prejudice that far belowmPl gravity is well described by
the ‘‘simple’’ Einstein-Hilbert action and becomes ve
‘‘complicated’’ for all k*mPl . We think that this prejudice
might turn out wrong for~at least! two complementary rea
sons: ~i! Ordinary perturbation theory predicts thatGk be-
comes ‘‘complicated’’~higher operators are generated! when
k approaches the Planck scalefrom below. While this is prob-
ably correct, it is an unjustified extrapolation thatGk contin-
ues to be ‘‘complicated’’ fork@mPl . In this regime the
‘‘simplicity’’ due to asymptotic freedom sets in, but this can
not be discovered by ordinary perturbation theory.~ii ! The
classic experimental tests of general relativity all refer to
theory without a cosmological constant. From this side no
ing is known about the IR-properties of the~quantum! theory
with l̄Þ0 which could be rather ‘‘complicated’’ without con
tradicting any experimental fact.

The weak coupling region of thel-g–plane contains the
trajectories of Type Ia, leading tol̄0,0, and of Type IIIa,
terminating at the boundaryl51/2. The two classes of tra
jectories are separated by a single trajectory of Type IIa,
separatrix. It runs from the non-trivial to the trivial fixe
point and leads to a vanishing renormalized cosmolog
constantl̄050 at its end point.

We saw that the Ia and IIa trajectories can be continu
down to k50 without any problem and thatuhNu remains
bounded along these trajectories. This might indicate tha
this sector, characterized by a renormalized cosmolog
constantl̄0<0, the Einstein-Hilbert truncation is reliabl
even in the IR, at least at a qualitative level. With the pres
calculational techniques it would be very hard to check t
conjecture on a theoretical basis. However, as far as the
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l̄050 is concerned, the phenomenological success of cla
cal general relativity~without a cosmological constant! is an
excellent confirmation of the Einstein-Hilbert action in th
IR.

The Einstein-Hilbert action thus being a good approxim
tion to Gk both in the extreme UV and the extreme IR, it
plausible to assume that the separatrix which connects
two fixed points does not change much when we go from
truncated to the full theory. It is then possible to define
theory called ‘‘Quantum Einstein Gravity’’~with zero renor-
malized cosmological constant! by means of this specific RG
trajectory.

It is natural to interpret the separatrix as a kind of pha
transition line. It is in fact similar to the critical line runnin
into the Gaussian fixed point in scalar theories. In the la
case this line separates the symmetric from the spont
ously broken phase, i.e. trajectories with positive and ne
tive ~mass!2, respectively. In the case of gravity the lin
separates the trajectories which, in the IR, lead to a pos
or negative cosmological constant, respectively. On the
with l̄.0 the RG trajectories terminate at a certain fin
value ofk. Whether this is an artifact of the truncation or
real physical effect cannot be decided on the basis of
present analysis.

In this context it is intriguing to compare our results
those obtained by numerical simulations within Regge’s s

FIG. 23. Line ofhN
Exp-singularities for fixedĞ50.5. This line

separates regions withhN
Exp.0 above it and withhN

Exp,0 below it.
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plicial formulation of gravity@27,28#. These studies indicate
that simplicial quantum gravity in four dimensions exhibits
phase transition in the bare couplingG between the follow-
ing two phases: a strong coupling phase in which the ge
etry is smooth at large distance scales with^gmn&'cdmn ,
and a weak coupling phase in which the geometry is deg
erate,̂ gmn&50 ~branched polymer-like phase!. Interestingly
enough, in the strong coupling phase one finds a smallnega-
tive average curvature.

It is tempting to identify the strong coupling phase wi
our Type Ia trajectories which ultimately go to negativel̄0

and negative curvatureR54l̄, and the weak coupling phas
with the Type IIIa trajectories which have no limitk→0 and
therefore cannot describe large, nearly flat universes. H
ber @27# parametrizes the bare couplings by a quantityk ~not
to be confused with our cutoff! which reads, in our notation

k5@8pGl̄#21/25@8pgl#21/2.

Strong ~weak! coupling meansk,kc (k.kc) for a certain
critical valuekc . This matches precisely with our findings i
Sec. V. Depending on whether the productgl takes on nega-
tive or positive values in the IR, either the Type Ia or t
Type IIIa trajectories are realized. This can be read off fro
Fig. 19 provided one ignores the oscillations and the cross
of the trajectories which are caused by the imaginary par
the critical exponentu. It remains to be seen if this identifi
cation is correct.

A quantity which in principle might lend itself to a quan
titative comparison is the exponentu. In @27# the analogous
exponent is assumed to be real,u5u851/n, with n the con-
ventionally defined critical exponent used in the theory
critical phenomena. The fit to the data yields a value close
n51/3 so that we should expectu8'3. The typical values
we found in Sec. V are somewhat smaller. However in@6# a
detailed investigation of the fixed point with a generaliz
truncation and a quantitatively probably more reliab
smooth cutoff has been performed. The results suggest
an improved calculation indeed could stabilize close
u8'3. It is unclear, however, how the imaginary part ofu
should be properly taken into account in this comparison
t.
FIG. 24. Typical trajectories starting in the regionsl̆,l̆sing( ŷ) ~dashed line! andl̆sing( ŷ),l̆, ŷ/2 ~solid line!. While the trajectory below

l̆sing( ŷ) shows the typical behavior discussed in Sec. IV, the solution abovel̆sing( ŷ) yields a screening behavior of the Newton constan
6-24
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In the present paper we considered pure gravity only. I
clear, however, that the inclusion of matter fields can cha
the RG flow also in the gravitational sector. In@17# it was
shown that appropriate matter systems can turn the a
creening behavior of pure gravity into a screening behav
We expect that also the presence or absence of the
Gaussian fixed point and of asymptotic freedom depends
the matter content of the universe. In the above discus
we assumed implicitly that the renormalization effects due
the matter fields do not overwhelm those of pure gravity a
that they do not change the qualitative features of the
flow in the gravitational sector. The results of@17# suggest
that matter field theories with this property should ex
abundantly.

ACKNOWLEDGMENTS

We would like to thank A. Bonanno, W. Dittrich
O. Lauscher and C. Wetterich for helpful discussions.

APPENDIX: SINGULARITY OF hN FOR THE
EXPONENTIAL CUTOFF

When investigating the complete system~2.13! and~2.14!
in Sec. IV we omitted discussing some peculiar properties
the RG flow derived with the exponential cutoff. These pro
erties will be analyzed in this appendix.

The key to understanding this behavior is the fact t
there exists a line on thel-g–plane along whichhN

Exp(l,g)
diverges. This line is shown in Fig. 11. Switching from th
variables (l,g,k) to (l̆,Ğ,y) leads to an analogous dive
gence ofhN

Exp(l̆,Ğ,y[ k̆2) on a 2-dimensional curved su

face in the 3-dimensionall̆-Ğ-y–space. We can visualiz
this surface by intersecting it with some planeĞ5const,
which then leads to a line of singularities on thisl̆-y–plane.
For a given value ofĞ, we parametrize this line a
y°l̆sing(y). The result forĞ50.5 is shown in Fig. 23. One
finds that the linel̆sing(y) is located below the boundar
l̆5y/2, approaching it asy→0. This line separates th
ic

rt
ics

ar
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l̆-y–parameter space~for Ğ fixed! into a region below

„l̆,l̆sing(y)… and above@ l̆sing(y),l̆,y/2# it. In these re-
gions one findshN

Exp,0 andhN
Exp.0, respectively. From a

purely mathematical point of view, one can pose admiss
initial conditions for the RG equations in both regions.

Two typical trajectories starting below and abovel̆sing( ŷ)
are shown in Fig. 24. The most probably unphysical traj

tories starting in the narrow regionl̆sing( ŷ),l̆( ŷ), ŷ/2 ter-

minate at the boundaryl̆5y/2. They would lead to a screen

ing behavior of the Newton constant, i.e.Ğ(y) increases
with increasingy5k2/M2.

The trajectories starting withl̆( ŷ),l̆sing( ŷ), i.e. in the
region wherehN

Exp,0, lead to the RG trajectories discuss
in Sec. IV C which are physically relevant and show t
expected antiscreening. According to their initial value
these trajectories are solutions of Type Ia, IIa or IIIa.

Here it is interesting to note that trajectories starting clo

to the singularity ofhN , i.e. l̆( ŷ)&l̆sing( ŷ) can be continued
down to ‘‘unnaturally low’’ valuesy. The corresponding tra

jectories cross the ones starting at lower valuesl̆( ŷ) in the

l̆-y–plane before they terminate at the boundary. An

ample is the trajectory with the largestl̆( ŷ) in the first plot
of Fig. 8. Since all trajectories of this type terminate, th
mechanism cannot be used to change the Type IIIa chara
of a trajectory.

We want to point out that the region above the singu

line at l̆sing(y) is probably unphysical. This assumption
supported by the fact that our investigation with the sh
cutoff did not yield any comparable behavior in the positi
coupling region. The trajectories calculated with the smo
and the sharp cutoff, respectively, agree quite well
y.yterm. Only close to their end point do qualitative diffe
ences appear, such as the earlier termination atl̆sing(y) rather
than l̆5y/2. This scheme dependence is a typical sympt
showing that the truncation becomes unreliable close to
boundary of parameter space.
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