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Stochastic theory of relativistic particles moving in a quantum field:
Scalar Abraham-Lorentz-Dirac-Langevin equation,

radiation reaction, and vacuum fluctuations

Philip R. Johnson* and B. L. Hu†

Department of Physics, University of Maryland, College Park, Maryland 20742-4111
~Received 30 December 2000; revised manuscript received 14 September 2001; published 28 February 2002!

We apply the open systems concept and the influence functional formalism to establish a stochastic theory
of relativistic moving spinless particles in a quantum scalar field. The stochastic regime resting between the
quantum and semiclassical regimes captures the statistical mechanical attributes of the full theory. Applying the
particle-centric world line quantization formulation to describe charged particles in a scalar quantum field
environment, we derive a modified Abraham-Lorentz-Dirac~ALD ! equation with time-dependent coefficients
and show that it is the correct semiclassical limit for nonlinear particle-field systems without the need of
making the dipole or nonrelativistic approximations. Our modified ALD equation is causal and free of runaway
solutions. We show this technically, as a consequence of the nonequilibrium open system dynamics, and
conceptually, invoking decoherence. Progressing to the stochastic regime, we derive a relativistic ALD-
Langevin~ALDL ! equation for nonlinearly coupled charges in a scalar quantum field. The ALD and ALDL
equations clarify the relation of radiation reaction, dissipation and vacuum fluctuations. This self-consistent
treatment serves as a new platform for investigations into problems related to relativistic moving charges.

DOI: 10.1103/PhysRevD.65.065015 PACS number~s!: 03.70.1k, 05.40.2a, 12.20.Ds, 32.80.2t
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I. INTRODUCTION

This is the second in a series of papers@1,2# exploring the
regime of stochastic behavior manifested by relativistic p
ticles moving through quantum fields. It highlights a se
consistent treatment of relativistic, nonlinearly interacti
quantum dynamical particle-field systems, and the effect
and the interconnections amongst noise, decoherence, d
pation, fluctuations, and correlation.

In @1# we have set up the basic framework built on t
concepts of quantum open systems@3#, the model of quan-
tum Brownian motion~QBM! @4#, and the methodologies o
the influence functional@5# or the closed-time-path@6#
coarse-grained effective action@7#, and world line quantiza-
tion @8#. In this paper we apply this framework to spinle
relativistic moving particles in a quantum scalar field. T
interaction is chosen to be the scalar analog of QED coup
so that we can avoid the complications of photon polari
tions and gauge invariance in an electromagnetic field.
results here should describe correctly particle motion w
spin and photon polarization are unimportant, and when
particle is sufficiently decohered such that its quantum fl
tuations effectively produce stochastic dynamics@4,9–14#.

We divide our introduction into four parts: First, we d
scribe the main results from this work. Second, we give
discussion of the pathologies and misconceptions of
Abraham-Lorentz-Dirac equation from the conventional a
proach, specifically the existence of preaccelerating and
away solutions, and the misconception that classical ra
tion reaction and vacuum fluctuations are related by
fluctuation-dissipation relation. Third, we describe the op
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system concept and the coarse-grained effective action t
nique our approach is based on. We distinguish between
four regimes: classical, semiclassical, stochastic and qu
tum and discuss how the processes of fluctuations, no
decoherence and dissipation are interrelated. Decoher
due to noise is instrumental to the emergence of a class
solution, the presence of a stochastic component in the
jectory, and provides a rationale for the cure of patholog
This requires a proper treatment of causal and n
Markovian behavior on the basis of self-consistent back
action. Finally we give a brief summary of previous wo
and describe their shortcomings which justify a new a
proach as detailed here.

A. Main results

The main results of this investigation are the following
~1! First principles derivation of a time-depende

Abraham-Lorentz-Dirac~ALD ! equation for the semiclassi
cal limit of relativistic particles in a scalar quantum fie
without making the dipole or nonrelativistic approximation
Our time-dependent ALD equation is fully causal; its low
energy and late time limit is the ordinary ALD equation.

~2! Consistent resolution of the paradoxes of the AL
equation, including the problems of runaway and acau
~e.g. preaccelerating! solutions, and other pathologies. W
show how the non-Markovian nature of the quantum parti
open-system enforces causality in the equations of mot
We also discuss the crucial conceptual role that decohere
plays in understanding these problems.

~3! Derivation of multiparticle Abraham-Lorentz-Dirac
Langevin ~ALDL ! equations describing the quantum st
chastic dynamics of relativistic particles. The familiar clas
cal ALD equation is reached as itsnoise-averagedform. The
stochastic regime, characterized by balanced noise and d
pation, plays a crucial role in bridging the gap between qu
©2002 The American Physical Society15-1
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tum and ~emergent! classical behaviors. TheN-particle-
irreducible~NPI! and master effective action@15# provide a
route for generalizing our treatment to theself-consistentin-
clusion of higher order quantum corrections.

B. Pathologies and misconceptions

1. Runaway solutions and preacceleration

The classical theory of moving charges interacting with
classical electromagnetic field has controversial difficult
associated with back reaction@16#. The generally accepte
classical equation of motion in a covariant form for charg
spinless point particles, including the effect of radiation
action, is the Abraham-Lorentz-Dirac~ALD ! equation@17#:

z̈m1~2e2/3m!~ żmz̈21 ẑm!5~e/m!żnFext
mn~z!. ~1.1!

The time scalet05(2e2/3mc3) determines the relative im
portance of the radiation reaction term. For electrons,t0
;10224 sec, which is roughly the time it takes light to cro
the electron classical radiusr 0;10215 m. The ALD equa-
tion has been derived in a variety of ways, often involvi
some regularization procedure leading to a renormaliza
of the particle’s mass. Feynman and Wheeler derived
result from their ‘‘Absorber’’ theory which symmetrically
treats both advanced and retarded radiation on the same
ing @18#. Coleman solved the classical problem using
same configuration-space Pauli-Villars regulated Gre
function that we employ in the Appendix@19#.

The ALD equation has strange features, whose status
still debated. It is a third order differential equation requiri
the specification of extra initial data~e.g. the initial accelera
tion! in addition to the usual position and velocity requir
by first order Hamiltonian systems. This leads to the ex
tence of runaway solutions. Physical~e.g. nonrunaway! so-
lutions may be enforced by transforming Eq.~1.1! to a sec-
ond order integral equation with boundary condition su
that the final energy of the particle is finite and consist
with the total work done on it by external forces. But th
removal of runaway trajectories comes at a price: the s
tions to the integral equation exhibit the acausal phenom
of preacceleration on time scalest0 . This is the source of
lingering questions on whether the classical theory of po
particles and fields is causal. This is one major concep
point we want to clarify. The other is the relation betwe
radiation reaction and vacuum fluctuations, a point of lo
standing confusion.

2. Radiation reaction and vacuum fluctuations

Radiation reaction~RR! is often regarded as necessar
balanced by vacuum fluctuations~VF! via a fluctuation dis-
sipation relation~FDR!. This is a misconception. RR exis
already at the classical level, whereas VF is of quantum
ture @2,20#. An interesting example involves the special ca
of uniform acceleration where RR vanishes in the class
limit but vacuum fluctuations of quantum fields have
ubiquitous existence. This well-known classical result
vanishing RR is at first sight surprising because a uniform
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accelerated particle does radiate.1 We will show in this paper
that the average radiation reaction force on a uniformly
celerated particle also vanishes in the semiclassical lim
However, at the stochastic level there are quantu
fluctuation-induced variations in the radiation reaction for
that act to damp fluctuations of the particle away from
averaged trajectory. It is this dissipative effect which is
lated to vacuum fluctuations by a generalized set of FD
@1#. The uniformly accelerated particle example illustrat
the distinction between semiclassical RR forces for whic
FDR plays no role, and the deviations from the semiclass
RR force of stochastic nature that are governed by a FD

To remedy the ALD pathologies and correct the RR v
sus VF misconceptions we need a brief expose of the c
ceptual framework and methodology of open systems
initial value functional formulations.

C. Quantum, stochastic, semiclassical and classical

1. Quantum open system and coarse-grained effective action

A closed quantum system can be partitioned into sev
subsystems according to the relevant physical scales. If
is interested in the details of one such subsystem, call it
distinguished, or relevantsystem, and decides to ignore cer
tain details of the other subsystems, comprising theenviron-
ment, the distinguished subsystem is thereby rendered a
open system. The overall effect of the coarse-grained e
ronment on the open system can be captured by the influe
functional technique of Feynman and Vernon@5#, or the
closely related closed-time-path effective action method
Schwinger and Keldysh@6#. These are initial value formula
tions. For the model of particle-field interactions under stu
this approach yields an exact, nonlocal and nonlinear, coa
grained effective action~CGEA! for the particle motion@7#.
The CGEA may be used to treat the nonequilibrium quant
dynamics of interacting particles.

When the particle trajectory becomes largely well defin
~with some degree of stochasticity caused by noise! as a
result of effective decoherence due to interactions with
field the CGEA can be meaningfully transcribed into a s
chastic effective action, describing stochastic particle m
tion. In this program of investigation we take a microscop
view, using quantum field theory as the tool to give a fir
principles derivation of moving particles interacting with
quantum field from an open-systems perspective. We h
light two regimes between the classical and the quantum
the semiclassicallevel, where a classical particle is treate
self-consistently with back reaction from the quantum fie
an equation of motion—the ALD equation—for themean
coordinates of the particle trajectory is obtained. At thesto-

1This is a case where the near and intermediate field dynam
cannot be ignored. Work is done on and by the so-called acce
tion field ~also known as the Shott field! at different stages of the
particle motion such that the total energy content of radiation fie
particle,and acceleration field is conserved@21#. It is incorrect to
demand equality between the particle and~asymptotic! radiation
fields alone; they are not the complete system.
5-2
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chasticlevel self-consistent back reaction of thefluctuations
in the quantum field is included in our consideration, and
ALDL equation is obtained.

2. Decoherent histories, semiclassicality and stochasticity

A consequence of coarse-graining the environment~quan-
tum field! is the appearance of noise which is instrumenta
the decoherence of the system and the emergence of a
sical particle picture. Decoherence or dephasing refers to
loss of phase coherence in the quantum open system ar
from the interaction of the system with the environment@9#.
When the environment is a quantum field quantum fluct
tions ~under certain approximations! can act effectively as a
classical stochastic source, or noise@22#.

Under reasonable physical conditions@11,14# the evolu-
tion propagator for the reduced density matrix of the op
system is dominated~via the stationary phase approximatio!
by the particle trajectory giving the extremal solution of t
real part of the coarse-grained effective action~CGEA!. Be-
cause the CGEA is derived by summing over all histor
of the quantum field, this extremal solution—the AL
equation—incorporates the average radiation reaction fo
and hence gives the self-consistent semiclassical traject

In this emergent picture of quantum to classical transiti
there is always some degree of residual stochasticity in
system dynamics@11,14#. Stochastic fluctuations around d
coherent semiclassical trajectories are described by
imaginary part of the CGEA. We use this fact below to d
rive the relativistic ALDL equation. In@1# we show that an
approximate FDR may be obtained describing the balanc
fluctuations and dissipation about the semiclassical solut
That result applies to the ALDL equation here.

3. Pathology-free modified ALD equation

This view of the emergence of semiclassical solutions
decoherent histories@10,11,14# also suggests a new way t
look at the paradoxes of charged particle radiation reactio
the ALD equation. While it has long been felt that the res
lution of these problems must lie in quantum theory, this s
leaves open the following questions: when, if ever, does
ALD equation appropriately characterize the classical lim
of particle back reaction; how does the classical lim
emerge; and what imprints do the correlations of the qu
tum field environment leave.

Since the semiclassical limit describes the equations
motion for the expectation value corresponding to
quantum-averaged particle trajectoryafter sufficient coarse-
graining we are led to ask:~1! are the decoherent historie
describing particle trajectories the solutions to a~possibly
modified! ALD equation,~2! are these solutions unique an
runaway free, and~3! are they causal without preaccelerati
on the coarse-grained scale in which they decohere?

We show below that the semiclassical solutionsare in-
deed described by a modified ALD equation with tim
dependent coefficients satisfying these criteria. The tim
dependent effects act to preserve causality, occurring in
short time after the field begins to dress the initial parti
state. At latter times the solutions essentially obey the o
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nary ALD equation with no runaway trajectories. Wheth
the semiclassical solution is unique depends on both the
tial particle and field states. If the field begins in a superp
sition of macroscopically distinct configurations, each co
figuration may lead to macroscopically distinct partic
trajectories. This happens because there will, in that case
longer be a single extremal solution of the CGEA arou
which the evolution propagator can be expanded. If th
distinct coarse-grained trajectories decohere they are ide
fied as a set of semiclassical solutions. In this paper we
sume initial field states that are simple functional Gaussi
~like vacuum, squeezed, coherent, or thermal field sta!
where this problem does not arise. Finally, the particle’s i
tial state may involve a superposition of distinguishab
wave packets that, after coarse-graining and decohere
lead to multiple semiclassical solutions. Thus, only for in
tially localized particle states in quantum fields that are s
ficiently classical~i.e. not involving macroscopically distin
guishable superpositions! should we expect to find a uniqu
~single! semiclassical solution. Finally, because the semic
sical limit describes the quantum average of coarse-gra
histories, the ALD equation loses its meaning in the fine
grained quantum limit.

D. Prior work in relation to ours

~1! There are many works onnonrelativistic quantum~and
semiclassical! radiation reaction~for atoms as well as
charges moving in quantum fields! including those by Rohr-
lich, Moniz-Sharp, Cohen-Tannoudjiet al., Milonni, and oth-
ers @21,23,24#. Kampen, Moniz, Sharp, and others@25# sug-
gested that the problems of causality and runaways can
resolved in both classical and quantum theory by conside
extended charge models. It is true that extended objects
give consistent causal dynamics, but this approach, w
quite interesting, misses the point that point particles~as im-
plied by local quantum field theories! should obey a good
low-energy effective theory that is consistent so long as
high-energy~short distance! structure of the particle is no
being probed. Wilson, Weinberg, and others@26# have shown
how effective theory description is sufficient to understa
low-energy physics because complicated, and often ir
evant, high-energy details of the fine structure are not be
probed at the physical energy scales of interest. There
one should not need to invoke extended charge theory
understand low-energy particle dynamics and radiation re
tion.

~2! By examining the time dependence of operator
nonical commutation relations Milonni showed the necess
of electromagnetic field vacuum fluctuations for radiati
nonrelativisticcharges@24#. If a quantum particle is coupled
to aclassicalelectromagnetic field, radiative losses lead to
contraction in ‘‘phase space’’ of the particle position and m
mentum violating the commutation relations@ x̂,p̂#5 i\. The
vacuum field balances this dissipation effect preserving
commutation relations as a consequence of a fluctuat
dissipation relation~FDR!. Our relativistic treatment~within
a particle-centric or world line framework! generalizes these
considerations to a particle’s spacetime variables. For
5-3
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ample, the relativistic ALD-Langevin equation derived b
low describes fluctuations in the particle’s time as well
space coordinate. This is expected since relativity requ

that a physical ~on-shell! particle satisfy żmżm5 ṫ2(t)

2 ż2(t)51, and therefore any fluctuations in spatial va
ables must be balanced by fluctuations in the time coo
nate.

~3! The derivation and use of quantum Langevin eq
tions ~QLE’s! to describe fluctuations of a system in conta
with a quantum environment has a long history@27#. Typi-
cally, QLE’s are assumed to describe fluctuations in the
ear response regime for a system around equilibrium,
their validity need not be so restrictive. Nonequilibrium co
ditions can be treated with the Feynman-Vernon influe
functional as exemplified by Caldeira and Leggett’s study
quantum Brownian motion~QBM!, which has led to an ex
tensive literature@4#, particularly in regard to decoherenc
issues@9,10#. Barone and Caldeira@13# have applied this
method to the question of whether nonrelativistic, dipo
coupled electrons decohere in a quantum electromagn
field. An advantage of Barone and Caldeira’s work is tha
is not limited to initial factorization of the system and env
ronment states; they use the preparation function met
which allows the inclusion of certain kinds of initial particle
field correlations. Despite this, Romero and Paz have poin
out that the preparation function method still suffers from
~implicit! unphysical depiction of instantaneous measu
ment characterizing the initial state preparation@28#. As a
consequence, anomalous short time behavior still manif
on the cutoff time scale~including the decoherence rate ha
ing a strong cutoff dependence!. This fact indicates that the
preparation function does not truly resolve the issue. For
reason, and for simplicity in illustration, we stay with th
simpler assumption of initial factorizability. Clearly, goin
beyond this by correctly describing the kinds of initial sta
produced by physically realistic preparation procedures is
important problem both in regard to the short time dynam
and questions like decoherence that are sensitive to the
off.

~4! Ford, Lewis, and O’Connell~FOL! have extensively
discussed the electromagnetic field as a thermal bath in
linear, dipole coupled regime@29#, and pioneered the appli
cation of QLE’s to nonrelativistic particle motion in QED
They have detailed the conditions for causality in the th
modynamic, equilibrium limit described by the late time li
ear quantum Langevin equation. A crucial point of th
analysis is that particle motion is runaway free and causa
the late time limit as long as the spectral density of the fi
is cut off below a critical value determined by the classi
electron radius. In@30#, they suggest a form of the equation
of motion that gives fluctuations without dissipation for
free electron, but this result is special to the case where
cutoff is precisely equal to the critical value, which in tu
implies that the bare mass of the particle exactly vanishes
contrast, we take the effective theory point of view whi
emphasizes the typical insensitivity of low-energy pheno
ena to unobserved high-energy structure. When one doe
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assume a special value for the cutoff one generally does
both fluctuations and dissipation, though Ford and Lew
counter-example shows how careful one must be in mak
automatic assumptions about the existence and natur
FDRs.

Our results agree with the conclusion that causality
quires a cutoff below the critical value, but we find no com
pelling justification for the claim that the cutoffshouldtake
exactly that special value. It is certainly interesting tha
critical value of the cutoff implies that all higher time deriva
tives vanish from the equations of motion. However, ev
without a specially chosen cutoff, the influence of high
derivative terms is strongly suppressed at low energies
FOL pointed out, and hence the high-energy structure of
theory~like the exact cutoff! is largely irrelevant to the low-
energy behavior.

Ford and O’Connell also propose a relativistic generali
tion of their modified~i.e. critical cutoff! equations of motion
for the average trajectory derived from the nonrelativis
QLE @29#. Our derivation of the stochastic limit goes we
beyond this by starting from relativistic quantum field theo
and by yielding a relativistic Langevin equation.

~5! A perturbative expansion agreeing with the ALD equ
tion after a derivative reduction scheme up to ordere3 has
been derived from QED field theory by Krivitskii and Tsy
tovich @31#, including the additional forces arising from pa
ticle spin. Their work shows that a perturbative form of t
ALD equation may be understood from conventional fie
theory, but the authors have not addressed the role of fl
tuations, correlation, decoherence, time-dependent renor
ization, nor self-consistent back reaction. Our method sho
be effectively equivalent~ignoring spin! to summing the
Feynman diagrams without electron loops to all orders oe
in @31#, and hence produces the full third derivative form
the ALD equation.

~6! Low @32# showed that runaway solutions apparen
do not occur in spin 1/2 QED; but he does not derive
ALD equation, or address the semiclassical or stochastic
its. While an important result, we emphasize the view tha
does not, and should not, matter whether particles are
1/2, spin 0, or have some other internal structure in regar
the causality of the low-energy effective theory for center
mass particle motion.

~7! Using the influence functional, Dio´si @33# derived a
Markovian master equation in nonrelativistic quantum m
chanics. Ford@12# has considered the loss of electron coh
ence from vacuum fluctuations. In contrast, it is our intent
emphasize the non-Markovian, nonlinear, and nonequi
rium regimes with special attention paid to self-consisten
Ford @12# has considered the loss of electron coherence fr
vacuum fluctuation.

E. Organization and notation

In Sec. II we obtain the influence functional~IF!, coarse-
grained effective action~CGEA!, and stochastic effective ac
tion (Sx) for spinless relativistic particles. We show how
5-4
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use Sx to derive both nonlinear semiclassical equations
motion for relativistic particles, and stochastic equations
motion ~a Langevin equation! describing the fluctuations in
relativistic particle motion induced by quantum fluctuatio
in a field. In Sec. III we consider the single particle case, a
derive the ~scalar-field! modified Abraham-Lorentz-Dirac
~ALD ! equation with time-dependent coefficients as the s
consistent semiclassical limit. Section IV shows how t
limit emerges free of pathologies. In Sec. V we derive
Langevin equation—the ALDL equation—taking into a
count the stochastic fluctuations of relativistic particles ab
the semiclassical trajectories for both one particle and m
tiparticle cases. In Sec. VI we give a simple example of th
equations for a single free particle in a vacuum scalar fie
In Sec. VII we summarize our main results and ment
areas of applications, of both theoretical and practical in
est.

Greek letters will run from 0 to 3. We use the notatio
dx5d4x5dxdt, andx5(x,t). Spatial~3-vectors! appear as
bold faced. A bar denotes a semiclassical trajectory~e.g. z̄),
and a tilda denotes a stochastic trajectory~e.g. z̃). The mea-
sures for path~or functional! integrals are denoted

Dz5)
t

dz0~t!dz~t!

where the parametert is discretized, or

Dw5)
x

dw~x!

where the spacetime coordinatex is discretized. The metric is
gmn5diag(1,21,21,21), and we setc51.

II. SPINLESS RELATIVISTIC PARTICLES MOVING IN A
SCALAR FIELD

A. Coarse-grained and stochastic effective action

Relativistic quantum theories are usually focused prim
rily on quantized fields, the notion of particles following tr
jectories is somewhat secondary. As explained in greater
tail in @1#, we employ a ‘‘hybrid’’ model in which the
environment is a field, but the system is the collection
particle world lines with spacetime coordinateszn

m(tn) where
n indicates thenth particle coordinate, with world line pa
rametertn , chargeen , and massmn . For simplicity, we
denote the entire collection of particle world line coordina
$zn

m(tn)% by z, stating explicitly when we are only conside
ing the case of a single particle.

The initial quantum state of the particle plus field syste
at time t i , described by the density matrixr̂(t i), is assumed
to be uncorrelated and expressible as the product of par
and field density matrices,r̂z and r̂w , respectively:

r̂~ t i !5 r̂z~ t i ! ^ r̂w~ t i !

5E dw idw i8dzidzi8rw~w i ,w i8!rz~zi ,zi8!uw i ,zi&^w i8 ,zi8u.

~2.1!
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We define the basis states byuw i ,zi&5uw i& ^ uzi&, whereuzi&
are positive or negative frequency relativistic configuratio
space states defined as

uzi&[uzi ,t i&

5E d4p

~2p!4
d (4)~p22m2!u~6p0!e(2 i /\)pmzm

up,p0&.

~2.2!

Because we are interested in the semiclassical equation
motion ~and stochastic fluctuations around the semiclass
solutions! for well-localized particles, we restrict to the cas
where

rz~zi ,zi8!5P id~zi2zi0!d~zi82zi0!, ~2.3!

with zi0 the initial position of thei th particle. The particle
state in Eq.~2.3! should be antisymmetrized~for fermions!
or symmetrized~for bosons!, but we will ignore this effect of
particle statistics at the semiclassical~and stochastic! level.
The Lorentz-invariant configuration-space states defined
Eq. ~2.2! are the most localizable relativistic one-partic
states, nonetheless they still correspond to particles with
characterized by the Compton wavelengthlc5h/mc. This
can be verified by computing the overlap^z,tuz8,t&Þd(z
2z8) between two such states at equal times. As a con
quence the semiclassical equations of motion for the m
particle trajectory will not have a resolution finer thanlc
~and it may be considerably coarser!.

In the initially uncorrelated~i.e. factorized! case involving
highly localized particle initial states, the particle’s reduc
density matrix at later times is given by

r r~zf ,zf8!5E dzidzi8Jr~zf ,zf8 ;zi ,zi8!rz~zi ,zi8!

5Jr~zf ,zf8 ;zi0 ,zi0!. ~2.4!

The reduced density-matrix evolution operator is given b

Jr~zf ,zf8 ;zi0 ,zi0!5E
zi ,zi85zi0

zf ,zf8 DzDz8e( i /\)(Sz[z]Sz[z8])F@z,z8#

5E
zi ,zi85zi0

zf ,zf8 DzDz8e( i /\)SCGEA[z,z8] . ~2.5!

F@z,z8# is the Feynman-Vernon influence functional@5# for a
pair of particle histories ($zn%,$zn8%). The influence functional
for a free, massless scalar field is shown in Sec. II B,
~2.20!. The coarse-grained effective action~CGEA! is de-
fined as

SCGEA@z,z8#5Sz@z#2Sz@z8#1SIF@z,z8# ~2.6!

SIF52 i\ ln F@z,z8#. ~2.7!

SIF is called the influence action. The CGEA contains t
full information about the influence of the~coarse-grained!
field on the particle, and hence is a highly nonlocal objec
5-5
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The measureDz indicates path integration2 over the par-
ticle world lines zn

m(t). Development of the full quantum
dynamics requires evaluation of these world line path in
grals; because particle-field couplings are nonlinear one
resort to perturbation theory in practice. The treatment of
problem is the topic of our second series of papers. For
tailed discussion on the extraction of a semiclassical and
chastic limit from the open-system evolution propaga
~2.5! in this context see@1#. In brief, semiclassical trajecto
ries ~world lines! exist whenJr is dominated by the station
ary phase solution of the world line path integrals, which
the extremal solutions to the real part ofSCGEA. Under re-
lated conditions to those that imply decoherence of the
jectories~see@1#!, the quantum fluctuations of the particle
around the stationary phase solution act effectively as a c
sical stochastic source. In this case, it is also possible
introduce a real stochastic effective actionSx@z,z8# such that

e( i /\)SCGEA[z,z8]5E DxP@x#e( i /\)Sx[z,z8] , ~2.8!

whereP@x# is a positive definite probability measure for
stochastic fieldx(x,t). When the stochastic regime phys
cally obtains, the stochastic equations of motion derived
the extremal solution ofSx then encode the same informatio
as the~symmetrized! quantum correlation functions for th
particle coordinates. We shall use these facts to obtain b
the semiclassical and stochastic limit for relativistic partic
below.

While we emphasize the fact that this particle-field mo
has a well-founded microscopic quantum theory which th
allows one to explore in detail the quantum, stochastic,
semiclassical regimes, we might also view our model
analogy to the treatment of quantum fields in curved spa
time @34#. There, one takes the gravitational field~spacetime!
as a classical system coupled to quantum fields. It is imp
tant to include the back reaction of quantum fields on
classical spacetime dynamics. The back reaction of t
mean yields the semiclassical Einstein equation which fo
the basis of semiclassical gravity@35#. The inclusion of fluc-
tuations of the stress energy of the quantum fields and
induced metric fluctuations yields the Einstein-Lange
equations which forms the basis of stochastic semiclass
gravity @36#. In our work here, the particle coordinates a
analogous to the gravitational field~metric tensor!.

B. The scalar field influence functional and stochastic equations
of motion

The free particle action is

Sz@z#5(
n
E dtnA~ żn

m!2@mn1V„zn~tn!…#. ~2.9!

2The relativistic particle action is reparametrization invaria
hence, the path integral requires gauge fixing to prevent summ
over an infinity of gauge-equivalent histories. For simplicity, w
assume the gaugeżmżm51 making the parameterstn proper times.
Treatment of gauge fixing becomes important in the full quanti
world line theory.
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From Sz follow the relativistic equations of motion:

mżn
m/Ażn

252]mV~zn!. ~2.10!

For generality, we include a possible background potentiaV,
in addition to the quantum scalar field environment trea
below. The scalar current is

j @z,x!5(
n
E dtnenun~tn!d„x2zn~tn!…, ~2.11!

with

un~tn!5Ażn
m~tn!żn,m~tn!. ~2.12!

In @2#, we treat a vector current coupled to the electrom
netic vector potentialAm . In both cases we assume spinle
particles. The inclusion of spin or color is important to ma
ing full use of these methods in QED and QCD.

The interaction between the particles and a scalar fiel
given by the monopole coupling term

Sint5E dx j@z,x!w~x!5e(
n
E dtnun~tn!w„zn~tn!….

~2.13!

This is the general type of interaction treated in@1#. In the
second line we have used the expression for the cur
~2.11!. The free field action is

Sw5
1

2E dx ]mw]mw. ~2.14!

Because the interaction is linear inw, the exact expression
for the influence functional may be obtained~for a summary
see@1#!:

F@ j 6#5expH 2
i

\E dxE dx8@2 j 2~x!GR~x,x8! j 1~x8!

2 i j 2~x!GH~x8,x8! j 2~x8!#J , ~2.15!

where

j 2[„j @z,x!2 j @z8,x!… ~2.16!

j 1[„j @z,x!1 j @z8,x!…/2 ~2.17!

and

GR~x,x8!5u~x02x08!^@ŵ~x!,ŵ~x8!#& ~2.18!

GH~x,x8!5^$ŵ~x!,ŵ~x8!%&. ~2.19!

GR and GH are the scalar field retarded and Hadama
Green’s functions, respectively. Substitution of Eq.~2.11!
then gives the multiparticle influence functional

;
g

d

5-6



x-
er

to

io

me
h-

eld

s of

a

the
o-

STOCHASTIC THEORY OF RELATIVISTIC PARTICLES . . . PHYSICAL REVIEW D 65 065015
F@$z%,$z8%#5expH 2
e2

\ (
nm

E dtnE dtmu~T2zn
0!

3u~zn
02zm

0 !@unGH~zn ,zm!um

2un8G
H~zn8 ,zm!um2unGH~zn ,zm8 !um8

1un8G
H~zn8 ,zm8 !um8 1unGR~zn ,zm!um

2un8G
R~zn8 ,zm!um1unGR~zn ,zm8 !um8

2un8G
R~zn8 ,zm8 !um8 #J ~2.20!

whereun85un(zn8), etc. The influence functional may be e
pressed more compactly by using a matrix notation wh
un

T5(un ,un8)[(un
1 ,un

2), giving

F@za#5expH 2
e2

\ (
nm

E dtndtm~un
TGnm

R um1un
TGnm

H um!J
~2.21!

5expH 2
e2

\
~un

TGnm
R um1un

TGnm
H um!J ~2.22!

5expH i

\
SIF@za#J . ~2.23!

The superscriptT denotes the transpose of the column vec
u. In Eq. ~2.22!, and below, we leave the sumSnm and
integrations *dtndtm implicit for brevity. The matrices
Gnm

H ,Gnm
R are given by

Gnm
H 5u~T2zn

0!u~zn
02zm

0 !

3S G(11)
H ~zn

1 ,zm
1 ! 2G(12)

H ~zn
1 ,zm

2 !

2G(21)
H ~zn

2 ,zm
1 ! G(22)

H ~zn
2 ,zm

2 !
D ~2.24!

and

Gnm
R 5u~T2zn

0!u~zn
02zm

0 !

3S G(11)
R ~zn

1 ,zm
1 ! G(12)

R ~zn
1 ,zm

2 !

2G(21)
R ~zn

2 ,zm
1 ! 2G(22)

R ~zn
2 ,zm

2 !
D . ~2.25!

In Eq. ~2.23!, we have defined the influence actionSIF . GH,R

are the scalar-field Hadamard or Retarded Green’s funct
evaluated at various combinations of spacetime pointszn,m

1,2 .
After defining the sum and difference variables

z25~z2z8! ~2.26!

z15~z1z8!/2, ~2.27!

the stochastic effective action is given by~see@1#!
06501
e
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Sx@z6#5SA@z6#1E dx j2@z6,x!Hx~x!

12E dx8GR~x,x8! j 1@z6,x8!J
5SA@za#1un

TGnm
R um1un

TÃn , ~2.28!

where

un
TÃn5un~zn!x~zn!2un~zn8!x~zn8!, ~2.29!

and x(zn) is the stochastic field evaluated at the spaceti
position of thenth particle. The stochastic field has vanis
ing mean and autocorrelation function given by

^x~x!x~x8!&s5\^$ŵ~x!,ŵ~x8!%&5\GH~x,x8!.
~2.30!

Hence,x(x)8s statistics encodes those of the quantum fi
ŵ(x).

We may express the stochastic effective action in term
stochastic variableshm(t) coupled directly to the particle
trajectories by writing the influence functional in terms of
cumulant expansion:

F@z6#5expH i

\E dt1z1
m2C1,m

(h)~t1 ;z1#

2
1

2\2E E dt1dt2z1
m2z2

n2C2,mn
(h) ~t1 ,t2 ;z1#

1•••J
5expH i

\E dt1z1
m2

„C1,m
(h)~t1 ;z1#…J

3E DhmP@hm ;z1#e( i /\)*dt1z1
m2hm(t1 ;z1] .

~2.31!

The Cn.1
(h) are then the cumulants of the noisehm(t) whose

probability distribution isP@hm ;z1#. They are given by

Cn,m1 . . . mn

(h) 5S \

i D
n dnSIF@z6#

dzm12~t1! . . . dzmn2~tn!
uz250 .

~2.32!

Note that because of the nonlinear nature of the coupling
cumulantsCn.2

(h) do not vanish as is the case for linear the
ries with Gaussian noise.

The stochastic effective actionSh is then

Sh@z6,h#5Sz@z6#1E dt zm2~t!„C1,m
(h)~t,z1#1hm~t!….

~2.33!
5-7
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The stochastic equations of motion follow immediate
from3

dSh

dzm2~t!
U

z250,z15z

50, ~2.34!

giving

dSz@z#

dzm~t!
1C1,m

(h)~t,z#1hm~t!50. ~2.35!

The cumulantC1,m
(h)(t,z# describes dissipation, or in thi

context radiation reaction. If Eq.~2.35! were linear, we
would interpret it as a Langevin equation for the partic
trajectories with additive, but colored noiseh(t). In fact, as
it stands Eq.~2.35! is nonlinear, and the noise depends in
complicated way on the trajectoriesz15z because the prob
ability distributionP@h;z# is itself a functional of the trajec
tories.

The semiclassical equations of motion are given by

dSz@ z̄#

d z̄m~t!
1C1,m

(h)~t,z̄#50, ~2.36!

wherez̄m(t) is the semiclassical trajectory. These equatio
of motion will be nonlinear in general. To find linear stocha
tic equations of motion~a Langevin equation! for fluctua-
tions around the mean trajectoryz̄, given to lowest order by
the solution to the generally nonlinear equations of mot
~2.36!, we expand Eq.~2.35! to linear order in the deviation
variable

z̃m[zm2 z̄m. ~2.37!

The linearized Langevin equations, with a Gaussian no
approximation, becomes

E dtS d2Sz@ z̄#

d z̄m~t!d z̄n~t8!
1

dC1,m
(h)~t,z̄#

d z̄n~t8!
D z̃n~t8!5hm~t; z̄!,

~2.38!

with noise correlator

^hm~t!hn~t8!&5C2,mn
(h) ~t,t8; z̄# ~2.39!

^hm~t!&50. ~2.40!

3One can verify by examining the structure of the effective act
that the functional derivative with respect to the difference varia
z2 ~i.e. d/dz2) corresponds to finding the expectation value ofz1.
Setting z250, after taking the functional derivative, thus corr
sponds to the desired expectation valuez15z.
06501
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We shall apply both Eqs.~2.36! and ~2.38! below in de-
riving the semiclassical and stochastic limit for relativis
particles. One of the important advantages of the world l
formulation for relativistic quantum particles is that we c
more readily evaluate~perhaps numerically, or exactly fo
special cases such as uniform acceleration! the nonlinear
equations of motion~2.36! to obtain a semiclassical solutio
that provides the basis for deriving a stochastic equation
cluding fluctuations. The Langevin equations therefore s
consistently depend on the nonlinear semiclassical equat
of motion.

This is one aspect that distinguishes our approach~world
line formulation! from a purely field theoretic treatment~e.g.
Dirac field! of relativistic charged particles. In general, no
linear semiclassical equations of motion for a relativis
charged particle field are not so easy to solve, and a Lan
vin equation describing fluctuations of the field around
nonlinear semiclassical solution is a far more complica
object than that obtained in Eq.~2.36!. Albeit, a Langevin
equation for a relativistic field contains far more informatio
than Eq.~2.38!, but when distinct particle trajectories are
interest our approach should be considerably more effic
at extracting the desired~though more limited! information.

C. Langevin integrodifferential equations of motion

We define new sum and difference variables

v65~u6u8!/2 ~2.41!

with vT5(v2,v1). Then the influence action has the form

SIF@za#5
e2

\
~vTGv

Rv1 ivTGv
Hv!, ~2.42!

where

Gv
R5S G11

R 2G12
R 1G21

R 2G22
R G11

R 1G12
R 1G21

R 1G22
R

G11
R 2G12

R 2G21
R 1G22

R G11
R 1G12

R 2G21
R 2G22

R D
~2.43!

and

Gv
H5S G11

H 1G12
H 1G21

H 1G22
H G11

H 2G12
H 1G21

H 2G22
H

G11
H 1G12

H 2G21
H 2G22

H G11
H 2G12

H 2G21
H 1G22

H D .

~2.44!

The lowest order cumulant in the Langevin equatio
C1,m

(h) , is found by evaluatingdSIF /dzm2, and then setting
z250 andz15z. There are two kinds of terms that aris
those whered/dzm2 acts onv, and those where it acts onG
R,H. For thedv/dzm2 terms, settingz250 collapses the ma
trices~2.43! and~2.44! to one term each: only the (1,2) term
of Gv

R , and the (1,1) term ofGv
H survive. But, settingz2

50 givesv250, v15u, and since the (1,1) term of Gv
H is

proportional to two factors ofv2, it also vanishes. When

n
e

5-8
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STOCHASTIC THEORY OF RELATIVISTIC PARTICLES . . . PHYSICAL REVIEW D 65 065015
d/dzm2 acts onGv
R , only the (2,2) term survives4 ~because

it is the only term not proportional to a factor ofv2). For
similar reasons, the only contributing element ofGH is also
its (2,2) term. To evaluate (dGv(22)

R /dzm2)uz250, we note

d

dz2m
5

1

2 H d

dz
2

d

dzm8J . ~2.45!

After a little algebra, we are left with

~dGv(22)
R /dzm2!uz2505

dGR
„z~t!,z~t8!…

dzm~t!
, ~2.46!

where the derivative only acts on thez(t), and not thez(t8)
argument, in GR. The same algebra in evaluating th
(dGv(22)

H /dzm2)uz250 term shows that all the factors cance
and thereforeGH does not contribute to the first cumulant
all. Because the imaginary part ofSIF@za# does not contrib-
ute to the first cumulant, the equations of motion of t
mean-trajectory are explicitly real, which is an importa
consequence of using an initial value formulation like t
influence functional~or closed-time-path! method.

The first cumulant, describingradiation reaction, is there-
fore given by

C1,m
(h)@z,t!5

dSIF

dzm2~t!
U

z250

5E
t i

t

dt8e2H S du~z!

dzm~t!
D GR

„z~t!,z~t8!…u„z~t8!…

1u„z~t!…S dGR
„z~t!,z~t8!…

dzm~t!
D u„z~t8!…J .

~2.47!

This expression is explicitly causal both because the pro
time integration is only over valuest8,t, and because o
the explicit occurrence of the retarded Green’s functi
Contrary to common perception, the radiation reaction fo
given by C1,m

(h) is not necessarily dissipative in nature. F
instance, we shall see thatC1,m

(h) vanishes for uniformly accel
erated motion, despite the presence of radiation from
uniformly accelerating charge. In other circumstanc
C1,m

(h)@z,t) may actually provide an anti-damping force f
some portions of the particle trajectory.

4Note that for linear theories, unlike the case here,GR,H is not a
function of the dynamical variables, but is instead~at most! a func-
tion of some predetermined kinematical variables thata priori
specify the trajectory. Hence, there is no contribution fro
dGR,H/dzm2 type terms.
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Next we evaluate the second cumulant. After similar m
nipulations as above, we find that the second cumulant
volves only GH. We note that the action ofd j /dzm on an
arbitrary function is given by

E dx
d j ~x!

dzm~t!
f ~x!5eE dxE dt

d

dzm
@~ ż2!1/2

3d„x2z~t!…# f ~x!

5eH d

dt S żm

u~t! D1S żm

u~t! D d

dt

2u~t!
]

]zmJ f „z~t!…. ~2.48!

Because of the constraintż2512 we can setu51 and u̇
50. Also żmz̈m50. Then

E dx
d j ~x!

dzm~t!
f ~x!5e$~ z̈m1 żnż[m]n] !% f „z~t!…

[ewW m~z! f „z~t!…. ~2.49!

This last expression defines the operatorwW m(z). We have
usedd/dt5 żn]n. The operatorwW m satisfies the identity

żmwW m~z!5~ żmz̈m1 żmżnż[m]n] !50, ~2.50!

as long as the solutionzm is on-shell. This identity ensure
that neither radiation reaction nor noise-induced fluctuati
in the particle’s trajectory move the particle off-shell~i.e., the
stochastic equations of motion preserve the constraintż2

51).
With these definitions, the noisehm(t) is given by

hm~t!5e\1/2wW m~z!x„z~t!…

5e\1/2$~ z̈m1 żnż[m]n] !%x~z!, ~2.51!

and the second-order noise correlator by

C2
(h)mn@z;t,t8!5^$hm~t!,hn~t8!%&

5e2\wW m~z!wW n~z8!^$x„z~t!…,x„z~t8!…%&

5e2\wW m~z!wW n~z8!GH
„z~t!,z~t8!….

~2.52!

The operatorwW m(z) acts only on thez in GH(z,z8); likewise,
the operatorwW n(z8) acts only onz8.

This scalar field result is reminiscent of electromagnetis
where the Lorentz force from the~antisymmetric! field
strength tensorFmn

EM is f m
EM5 żnFmn

EM5 żn] [mAn] . The anti-
symmetry ofFmn

EM implies żm f m
EM50. We may define a scala

analog of the antisymmetric~second rank! field strength ten-
sor by
5-9
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PHILIP R. JOHNSON AND B. L. HU PHYSICAL REVIEW D65 065015
21Fmn
x [ ż[m]n]x. ~2.53!

This shows that the second term on the right-hand side of
~2.51! gives the scalar analog of~a stochastic! electromag-
netic Lorentz force:f m

x 5 żnFmn
x . The first term on the right-

hand side~RHS! of Eq. ~2.51!, z̈mx(z), does not occur in the
treatment of the electromagnetic field. In the scalar-fi
theory, this term may be thought of as a stochastic com
nent to the particle mass.

The stochastic equations of motion are

mz̈m52]mV~z!1e2E t

dt8wW m~z!GR
„z~t!,z~t8!…

1e\1/2wm~z!x„z~t!…. ~2.54!

The result~2.54! is formally a set of nonlinear stochast
integrodifferential equations for the particle trajectori
zm@h;t). Noise is absent in the classical limit found by th
prescription\→0 ~this definition of classicality is formal in
that the true semiclassical or classical limit requires coa
graining and decoherence, and is not just a matter of tak
the limit \→0).

The generalization of Eq.~2.54! to multiparticles is now
straightforward. If we reinsert the particle number indic
the first cumulant is

C1(n)m
h @z,t!5

dSIF@z#

dzn
m2~t!

U
z
m
250

5(
m

E dtm8 e2wW nm~zn!

3GR
„zn~tn!,zm~tm8 !…u„zm~tm8 !…, ~2.55!

the noise term is given by

hn
m~t!5e\1/2wn

m~zn!xW „zn~tn!…, ~2.56!

and the noise correlator is

C2(nm)
hmn @z;tn ,tm8 !5^$hn

m~tn!,hm
n ~tm8 !%&

5e2\wW n
m~zn!wW m

n ~zm!GH
„zn~tn!,zm~tm8 !….

~2.57!

The nonlinear multiparticle Langevin equations are theref

mz̈nm~t!52]mV„zn~t!…1e\1/2wW m~zn!x„zn~t!…

1e2(
m

E
t i

t f
dt8wW m„zn~t!…GR

„zn~t!,zm~t8!….

~2.58!

The nÞm terms in Eq.~2.58! are particle-particle inter-
action terms. Because of the appearance of the reta
Green’s function, all of these interactions are causal. Thn
5m terms are the self-interaction~radiation reaction! forces.
ThenÞm noise correlator terms represent nonlocal partic
particle correlations: the noise that one particle sees is co
06501
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lated with the noise that every other particle sees. The n
locally correlated stochastic fieldx(x) reflects the correlated
nature of the quantum vacuum. From the fluctuatio
dissipation relations found in@1# then5m quantum noise is
related to then5m dissipative forces. Under some, butnot
all, circumstances5 the nÞm correlation terms are likewise
related to thenÞm propagation~interaction! terms through
a multiparticle generalization of the FDR, called
propagation-correlation relation@37#.

We have already noted that the first term in Eq.~2.51! has
the form of a stochastic contribution to the particle’s effe
tive mass, thus allowing us to define the stochastic mass

mx5„m1e\1/2x~z!…. ~2.59!

Fluctuations of the stochastic mass automatically prese
the mass-shell condition. Likewise, the effective stocha
force Fm

x satisfies

żmFm
x 5 żmżnż[n]m]x~z!5 ż(mżn)ż

[n]m]x~z!50.
~2.60!

This shows that the stochastic fluctuation-forces preserve
constraintż251, as noted above.

III. THE SEMICLASSICAL REGIME:
THE SCALAR-FIELD

ALD EQUATION

We have emphasized in@1# that the emergence of
Langevin equation~2.54! or ~2.58! presupposes decoheren
working to suppress large fluctuations away from the se
classical trajectories found from the coarse-grained effec
action. Hence, the Langevin equation describes the dynam
of the fluctuationsz̃m[zm2 z̄m around the semiclassical so
lution z̄m. The semiclassical limit is therefore the noise av
age of the Langevin equation. The stochastic regime is c
acterized by fluctuations around the semiclassical solu
which originate from quantum fluctuations in the field b
that are rendered effectively classical and stochastic via
coherence. In our second series of papers we explore
stochastic behavior due to higher-order quantum effects
refurbish the particle’s quantum nature.

On a conceptual level, we note that the full quantu
theory in the world line path integral formulation involve
summing over all world lines of the particle joining the in
tial and final spacetime positions,zi andzf , respectively. In
summing over particle histories there is no distinction b
tween, say, a runaway trajectory and any other type

5See@37# and Ref.@1#, Sec. IV, for a discussion of this point. In
brief, the noise correlation between spacelike separated cha
does not vanish owing to the nonlocality of quantum theory, but
causal force terms involvingGR do always vanish between spac
like separated points. These two kinds of terms are only conne
through a ‘‘propagation-correlation’’ relation~the multiparticle gen-
eralization of an FDR! when one particle is in the other’s casu
future ~or past!.
5-10
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STOCHASTIC THEORY OF RELATIVISTIC PARTICLES . . . PHYSICAL REVIEW D 65 065015
trajectory.6 They are just different possible fine-grained h
tories included in the path integral. Furthermore, no me
ingful sense of causality is associated with individual fin
grained histories. Any particular path in the sum goi
through the intermediate pointz at world line parameter time
t bears no causal relation to it than going through the po
z8 at some later parameter timet8. Only physical observ-
ables computed from the full sum over histories need
causal. In terms of decoherent histories analysis the se
classical trajectory is associated with a coarse-grained, d
hered particle trajectory. Unlike fine-grained historie
coarse-grained decohered histories should be causal
they can be associated with physical observables—the m
particle trajectories.

More generally, questions of causality, uniqueness,
runaways arise in regard to the solutions to the equation
motion for the hierarchy of correlation functions of the wor
line coordinates~the expectation value that gives the sem
classical trajectory being just the lowest order example!. It is
here that an initial value formulation is crucial because o
then are the equations of motion guaranteed to be real
causal@6#. In contrast, equations of motion found from th
in-out effective action~a transition amplitude formulation!
are generally neither real nor casual. Moreover, the equat
of motion for correlation functions must be unique and fu
determined by the initial state if the theory is complete.

So the pertinent questions regarding radiation reactio
a quantum to stochastic to semiclassical treatment are
following: What are the equations of motion for the me
and higher-order correlation functions? Aretheseequations
of motion causal and well defined? Specifically, is the se
classical~quantum-averaged! solution unique and physica
~e.g. causal and runaway free!? How significant are the quan
tum fluctuations around the semiclassical trajectory? W
does decoherence suppress the probability of observing l
fluctuations in the motion? When do the quantum fluct
tions assume a classical stochastic behavior? For exam
quantum theory predicts that there is always a possibility
observing a trajectory very different than the quantu
average one, including trajectories that might look like ru
aways, but decoherence should suppress this probability
negligible amplitude in both the semiclassical and stocha
regimes.

It is only by addressing these questions that the true se
classical motion may be identified, together with the no
associated with quantum fluctuations which is instrumen
for decoherence. With this discussion as our guide, we p
ceed in two steps. First, in Sec. III A we find the semiclas
cal limit for the equations of motion and evaluate its cau
properties. Second, in Sec. III B we describe the stocha
fluctuations around that limit. Since we are dealing with
nonlinear theory, the fluctuations themselves must depen

6In fact, trajectories in the path integral can be even stranger
the runaways that appear in classical theory. Most paths are no
ferentiable~infinitely rough! and may even include those that a
faster than light or backward in time, depending on how the wo
line path integral is gauge fixed and defined.
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the semiclassical limit in a self-consistent fashion. These
steps constitute the full back reaction problem for nonlin
particle field interactions in the semiclassical and stocha
regimes. For more general conceptual discussions on d
herent histories and semiclassical domains, see@10,11,14#.

A. Divergences and regularization

Even in classical electromagnetic theory, point partic
can couple to arbitrarily short wavelength modes of the fi
leading to ultraviolet~UV! divergences. In the usual trea
ment from quantum field theory, infrared~IR! divergences
also arise if one makes an artificial distinction between s
and virtual photon emissions. However, the ‘‘in-in’’ metho
adopted here avoids these by summing over all final fi
states without distinguishing between soft and virtual quan
From another point of view, IR divergences are an artifact
incorrectly neglecting recoil~radiation reaction! on the par-
ticle motion.

In this work we take the effective field theory philosoph
as our guide. One does not need to know the detailed st
ture of the correct high-energy theory because low-ene
processes are largely insensitive to them@26# beyond the
effective renormalization of system parameters and s
pressed high-energy corrections. These observations are
for both classical and quantum theories, though the class
case is more trivial since one does not have the subtle
associated with divergent loop terms from intermediate v
tual processes. In this paper we have integrated out all of
massless scalar photons~the field!. Since the field is qua-
dratic in the action this one-loop~in the field! result is exact,
but the resulting scalar Green’s functions have singulari
requiring regularization.

Following standard procedure, we now regularize the fi
Green’s functions by suppressing their high-frequency co
ponents. In Sec. III B we discuss how this follows fro
modifying the field-environment’s spectral density at hi
energy in a way that is consistent with the assumed ini
state. Different regulators may give different high-ener
corrections but should yield the same low-energy phys
Nonetheless, the general qualitative behavior of poss
high-energy corrections may be interesting. Such is the c
in effective theories@26# where one shows the generic for
and scaling of corrections to low-energy phenomena fr
the high-energy sector without knowing the true high-ene
theory other than some basic properties~e.g. symmetries!.
The point of such an analysis here is twofold. First, to d
cover whether the qualitative behavior is consistent as t
pertain to issues like causality and consistency. Second
calculate the possible form of corrections resulting fro
some assumed high-energy theory that might be teste
principle. It is in this spirit that we explore the general for
of high-energy corrections in this paper. We emphasize
the low-energy limit is described by those terms in the eq
tions of motion that are independent of the cutoff~after
renormalization!.

In this section we adopt a somewhatad hoc regulated
Green’s function chosen because it is convenient and sim
In the Appendix we show that the low-energy limit is ide

an
if-

d
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PHILIP R. JOHNSON AND B. L. HU PHYSICAL REVIEW D65 065015
tical to that found by employing Pauli-Villars regularizatio
though the detailed high-energy corrections differ as o
would expect. That the low-energy limits agree is not s
prising. More importantly, we show that the qualitative b
havior of the high-energy corrections is also identical, a
therefore the conclusions following from the general analy
of causality and consistency carried out below app
equally well to Pauli-Villars regularization~and any other
regularization that shares some basic features!.

Here, we choose a regulated retarded Green’s func
given by the Gaussian form

GL
R~s!5u„z0~t!2z0~t8!…u~s!

L2e2L4s2/2

A2p3
~3.1!

with support inside and on the future light cone ofz(t8). We
have defined

s~s!5ym~s!ym~s! ~3.2!

ym~s![ z̄m~t!2 z̄m~t8! ~3.3!

s[t82t, ~3.4!

and the average acceleration

am[ z̈̄m~t!, a25 z̈̄m z̈̄m . ~3.5!

In the limit L→`,

lim
L→`

GL
R~s!5d~s!/2p, ~3.6!

giving back the unregulated Green’s function. Expanding
function s for small s gives

s~s!5ym~s!ym~s!

5s22a4s4/121O~s5!, ~3.7!

and

GL
R~s!5

L2e2L4s4/2

A2p3
„11O~s6!…, ~3.8!

assuming a timelike trajectoryzm(t).

B. The initial state

A significant and outstanding problem in quantum fie
theory is the description of physical states for interact
systems. For example, theS-matrix theory applied to charge
particle scattering in QED assumes bare charge statest
56`, which are subsequently dressed by interactions w
the electromagnetic field. The justification of this approa
~say, in the LSZ reduction formula! can be subtle. In any
case one is generally limited to the scattering of asympt
states where each particle is sufficiently separated so tha
interactions with each other are negligible at initial and fin
times. Under these conditions, the particle-field interacti
dress~renormalize! the particles before they come close t
06501
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gether and experience mutual interactions. The separatio
these two processes in time is essential to the standard
tering formalism.

Ideally, one would like to be able to describe initial
correlated particle-field states at a finite initial timet i . This
would require a description of the true interacting partic
states—a difficult and unsolved problem~unfortunately the
preparation function method, while it does describe a limi
class of more generally correlated states, does not solve
problem!. In this context we address another aspect of
radiation reaction problem: whether the nonequilibriu
quantum dynamics of an initially bare particle state evolvin
through interactions with the field, into a dressed~correlated!
state is causal and runaway free.

In a density matrix approach, the asymptotic scatter
assumption is equivalent to having a factorized initial state
the form

r̂~2`!5 r̂z~2`! ^ r̂w~2`!, ~3.9!

wherer̂z(2`) is the density matrix for bare charged partic
with each particle initially well separated. We, on the oth
hand, assume a factorized density matrix of the form

r̂~ t i !5 r̂z~ t i ! ^ r̂w~ t i !, ~3.10!

at a finite timet i in the past, where each charged particle
initially well separated from the others. Hence, our neglec
initial particle-particle correlations is physically viable, b
the neglect of initial particle-field correlations~e.g. starting
with bare states at a finite time in the past! results in time-
dependent renormalization effects, coming from the s
interaction of the particle with itself via the field. This dom
nates the initial dynamics. Particle-particle interactions
initially well-separated particles only come later due to t
finite speed of light.

This paper therefore demonstrates that the semiclas
particle dynamics, starting from an initial density matrix
the form ~3.10! is causal and runaway free, but still leav
open questions regarding the possible role of initial corre
tions between the particle and field that exist in any tru
physical initial state. Since the state~3.10! quickly evolves to
a correlated density matrix, and the memory of the init
state is rapidly lost, one expects that the late time dynam
should be independent of these initial state assumptions~in
the same way that asymptotic scattering theory is insens
to the use of bare initial or final particle states!. But since the
neglected initial particle-field correlations are, by natu
nonlocal, one might still wonder if causality can be violat
in some more subtle way. We do not think this is the ca
but offer no proof here. Our analysis yields the semiclass
~or stochastic! equations of motion and thus does not addr
this more complicated problem.

We can also consider the state~3.10! from another per-
spective. Such a product state, constructed out of the b
uz,t& ^ uw(x)&, is highly excited with respect to the interac
ing theory’s true ground state. If the theory were not ult
violet regulated, producing such a state would require infin
energy. This is not surprising since it is impossible to tak
fully dressed particle state and strip away all arbitrarily hig
5-12
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STOCHASTIC THEORY OF RELATIVISTIC PARTICLES . . . PHYSICAL REVIEW D 65 065015
energy correlations by some finite energy operation. Wit
cutoff, Eq. ~3.10! becomes a finite energy state and is th
physically achievable, though depending on the cutoffL it
may still require considerable energy to prepare. Of cou
ultimately taking the limitL→` returns us to the well-
known problem of bare states versus physical states of
interacting~dressed! theory. However, we shall later see th
the limit L→` is inconsistent with causal and runaway-fr
semiclassical motion. This is already known~for example,
see@29# where it is shown that the cutoff must be less th
the critical value determined from the classical electron
dius!.

We can estimate a reasonable value for the cutoffL as
follows. Assume that the particle-field state is fully corr
lated but that att i some finite energy preparation~a measure-
ment! is made on the particle localizing it to withinlc . A
measurement trying to localize a relativistic particle mo
sharply will result in pair production. Assume this sta
preparation is such as to produce the density matrix

r̂~ t i !5H r̂z~ t i ! ^ r̂w~ t i !, w̃~k! modes with uku,Lc

r̂correlated, w̃~k! modes with uku.Lc
~3.11!

at timet i , whereLc5lc
21 , andw̃(k) denotes thekth Fourier

mode of the field. The correlated stater̂correlated may, for
instance, be the vacuum of the interacting theory aboveLc .
Such a state would entail the particle uncorrelated with fi
modes below the characteristic frequencyLc determined by
a preparation maximally localizing the particle to withinlc ,
but with the particle-field state undisturbed with regard
modes aboveLc .

With an initial state taking the form~3.11!, the reduced
density matrix evolution operatorJr will separate into two
terms:

Jr5Juku,Lc
1Juku.Lc

, ~3.12!

associated with the two pieces in Eq.~3.11!. We will assume
that the correlated piece, representing the contributions f
the initial particle-field state at high frequencies, is un
fected by the finite energy state preparation. We also ass
that this sector is in equilibrium. Then, it is plausible that t
Juku.Lc

term, representing the high-frequency field modes
equilibrium with the particle state, does not contribute to
low-frequency dynamics of the particle’s semiclassical~and
stochastic! motion. One anticipates thatJuku.Lc

contributes
only to time-independent renormalization and exponentia
small stochastic effects@38#. If this conjecture is true, then
the low-energy time-dependent semiclassical and stoch
dynamics are determined by theJuku,Lc

term.
Furthermore, as long as the particle’s semiclassical tra

tory has a sufficiently large radius of curvature at every po
in its history, it will not produce any significant radiation int
the uku.Lc sector of the field. In this case, the influen
functional only needs to be computed with field modes s
isfying uku,Lc . We see this by writing the influence func
tional in the form
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F@ j , j 8#5^w f uw f8&5^U jw i uU j 8w i8&, ~3.13!

whereU j , j 8 is the evolution operator for the field in the pre
ence of a classical currentj or j 8. If the currents associate
with j ~determined by the particle trajectory! do not produce
radiation inuku.Lc field modes, then̂w̃ f(k)uw̃ f8(k)&51 for
uku.Lc .

So it is consistent, given our conjecture thatJuku.Lc
does

not effect the low-frequency equations of motion, to comp
the influence functional~and hence the coarse-grained effe
tive action! by only integrating over field modes withuku
,Lc . This argument implies that we cut off the field spe
tral density atuku5Lc in computing the noise and dissipatio
kernels. Because the field retarded and Hadamard Gre
functions that appear in the equations of motion are fou
from the noise and dissipation kernels~see, for example@1#!,
we obtain the regulated Greens functions

GR~x,y!5
1

A2L3 (
k,Lc

cosuku~x02y0!cosk•~x2y!

~3.14!

and

GH~x,y!5
1

A2L3 (
k,Lc

sinuku~x02y0!cosk•~x2y!.

~3.15!

When the sum over modes is unrestricted we recover
usual free field Green’s functions. But, rather than using
regulated expressions in Eq.~3.14!, which are not covariant
we instead use a covariant~regulated! Green’s function with
the same effective behavior of removing the influence of
uku.Lc Fourier components of the field. Hence, the use
regulated Green’s functions follows directly from there bei
a cutoff in the spectral density of the relevant modes of
field environment. For particles maximally localized initiall
this entails the identificationL'Lc5lc

21 . Note that this is
a common choice of cutoff in the literature.

Because our semiclassical~and stochastic! equations of
motion describe coarse-grained particle motion on a sc
expected to be much larger thanlc , we will ultimately drop
terms proportional to inverse powers ofLc . Furthermore,
we will see below that the late time behavior of the equatio
of motion is largely insensitive to the details of the initi
state. Finally, consistency requires that the noise ke
should also be regulated in terms of the same effective s
tral density.

C. Single-particle scalar-ALD equation

The semiclassical limit is given by the equations of m
tion for the average trajectory. The regulated semiclass
equations of motion are then
5-13
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m0am~t!2]mV~ z̄!5C1m
(h)5e2E

t i

t

dt8@am~t!

1 ż̄n~t! ż̄[m~t!]n] #GL
R
„z̄~t!,z̄~t8!…

~3.16!

where the]n acts only on thez̄(t) in GL
R , and not thez̄(t8)

term. We add the subscript tom0 because it is the particle’
bare mass, though it is assumed to already include any re
malization from theuku.Lc sector of the field. Equation
~3.16! describes the full non-Markovian semiclassical p
ticle dynamics, which depend on the past particle history
proper times in the range@t,t i #.

As an integral equation, Eq.~3.16! depends on the entir
history of z̄(t) betweent i andt. For this reason, the trans
formation from Eq.~3.16! to a local differential equation o
motion requires every derivative ofz̄(t) @e.g., dnz̄(t)/dt n

for all n#. This is the origin of higher time derivatives in th
local equations of motion for radiation reaction~classically
as well as semiclassically!. By integrating out the field vari-
ables, we have removed an infinite set of nonlocal~field!
degrees of freedom in favor of nonlocal kernels whose T
lor expansions give higher-derivative terms.

We may now transform the integral equation~3.16! to a
local differential equation by expanding the functionsym(s)
arounds50. In Fig. 1 we show a semiclassical trajecto
with respect to the light cone atz̄(t). Taking t as fixed, we
change integration variables usingds5dt8. Next, we need
the expansions

2ym~s!5 ż̄m~t!s1am~t!s2/21ȧm~t!s3/61O~s4!,

~3.17!

FIG. 1. The trajectory and the light cone of a particle atz(t).
The radiation reaction force on a particle atz(t) depends on the
particle trajectory in the interior of its past light cone. For a ma
less field, the radiation reaction force is local except that the re
lated Green’s functionGL

R smears out the radiation reaction over t
past trajectory expanded in a Taylor series aroundz(t), as in Eq.
~3.8!.
06501
or-

-
r

-

2 ẏm~s!5 ż̄m~t!1am~t!s1ȧm~t!s2/21O~s3!,
~3.18!

As~s!5s2a2s3/241O~s4!, ~3.19!

and useż̄ 251, ż̄mam50, anda252 ż̄mȧm to simplify. Both
dz̄/dt anddy/ds are denoted by overdots,ż and ẏ, respec-
tively. Using

]s~s!

]zm
52ym~s! ~3.20!

ds~s!

ds
52ymẏm52s2a2s3/21O~s4! ~3.21!

allows the gradient operator to be expressed as

]m5
]s

]zm

d

ds
52ymS ds

dsD 21 d

ds
5

ym

ynẏn

d

ds
. ~3.22!

We define

r 5t2t i ~3.23!

to be the total elapsed proper time for the particle since
initial time t i . Recall thatt i is defined byz0(t i)5t i where
t i is the initial time at which the stater̂(t i)5 r̂z(t i) ^ r̂w(t i)
is defined.

These definitions and relations let us write the rhs of E
~3.16! as

e2E
0

r

dsH um
(1)GL

R~s!1um
(1) s

2

d

ds
GL

R~s!

1um
(2) s2

6

d

ds
GL

R~s!1O~s3!J , ~3.24!

where

um
(1)5am~t! ~3.25!

um
(2)5~ ż̄ma21ȧm! ~3.26!

andO(sn) terms involve up to the (n11)th time derivative
of z(t). The integrals overs give time-dependent coefficient
defined as

h(0)~r !5E
0

r

ds GL
R~s!5

L

4p
kS 12

G~1/4,L4r 4/2!

G~1/4! D
~3.27!

and

g(n)~r !5E
0

r

ds
sn

~n11!!

d

ds
GL

R~s!

5
322(n22)/4

p3/2~n11!!Ln22
gS 11

n

4
,L4r 4/2D , ~3.28!

-
u-
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STOCHASTIC THEORY OF RELATIVISTIC PARTICLES . . . PHYSICAL REVIEW D 65 065015
whereG(x) is the gamma function,G(x,y) is the incomplete
gamma function, andg(x,y)5G(x)2G(x,y). The constant
k5G(1/4)/(21/4p1/2).1.72 depends on the details of th
high-energy cutoff, but is of order one for reasonable cuto
For completeness we should also consider higher order te
from the expansion of the regulated Green’s function in E
~3.8!, which start atO(s6). These terms involve additiona
integrals of the form

h(n)~r !5E
0

r

ds
sn

n!
GL

R~s!, n>6. ~3.29!

In this analysis we are concerned with the qualitative
havior of these time-dependent coefficients because tha
havior is related to the issue of causality. The exact qua
tative behavior is dependent on the regularization details
is unobservable at low energy~with large cutoff!, as we will
show. We discuss this behavior in detail in Sec. IV A, b
here we briefly note that the coefficientsg(n) and h(n) are
bounded for allr, including the late time limitr→`. Also,

lim
n→`

h(n)~r !5 lim
n→`

g(n)~r !50. ~3.30!

Finally, these coefficients scale withL asg(n)(r );L22n and
h(n)(r );L12n. As a consequence, whenL is much larger
than the other scales of the problem~such as, for example
the inverse radius of curvature of the particle’s semiclass
trajectory! the g(n.2) and h(n.1) terms will be suppressed
Assuming this is the case, we will drop such terms in
final equations of motion. However, we keep these term
this stage so that we may study the qualitative behavio
any higher-derivative effects.

The resulting local equations of motion are

m0am~t!2]mV~z!5C1m
(h)

5e2h(0)~r !um
(1)1e2g(1)~r !um

(1)

1e2g(2)~r !um
(2)1 . . . . ~3.31!

In the Appendix an explicit form of the higher derivativ
terms is derived, though these are suppressed by the cuto
we have noted above.

From Eq.~3.25! we deduce that theu(1) terms give time-
dependent mass renormalization. Accordingly we define
renormalized mass as

m~r !5m02e2h(0)~r !2e2g(1)~r !

5m01dm~r !. ~3.32!

Similarly, theu(2) term is the usual third derivative radiatio
reaction force from the ALD equation. Thus, the equations
motion may be written as

m~r !am~t!2]mV~z!5 f m
R.R.~r ! ~3.33!

where

f m
R.R.~r !5e2g(2)~r !~ ż̄ma21ȧm! ~3.34!
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plus higher-derivative terms suppressed by the cutoff.
These semiclassical equations of motion are one of

main results of this paper. They are almost of the ALD for
except for the time-dependent renormalization of the eff
tive mass, the time-dependent radiation reaction force,
the possible presence of higher than third-time derivat
terms. The mass renormalization is to be expected, indee
occurs in the classical derivation as well. It is a conseque
of the initial-value formulation with the initial state given a
a finite time in the past that these renormalization effects
time dependent. Notice that this result also demonstrates
earlier claim, made in the Introduction, that radiation rea
tion ~RR! vanishes in the semiclassical limit for uniform a
celeration. This follows sinceȧm50⇒a250.

IV. RENORMALIZATION, CAUSALITY, AND RUNAWAYS

A. Time-dependent mass renormalization

The time dependence of the effective massm(r ), and par-
ticularly the ‘‘radiation reaction’’ coefficientg(2)(r ), play an
important role in demonstrating the consistency of the se
classical limit. The initial particle at timet i (r 50) is as-
sumed, by our choice of initial state, to be fully uncorrelat
with the field. This means the particle’s initial mass is ju
the massm0. Interactions between the particle and field th
‘‘redress’’ the particle state, one of the consequences bein
renormalization of its effective mass. For a particle coup
to a scalar field there are two types of mass renormaliza
effects, one coming from thez̈mw interaction, and the othe
coming from theżmż[n]m]w interaction. We commented in
Sec. II C that the latter interaction is essentially a scalar fi
version of the electromagnetic coupling, if one defines
scalar field analog of the field strength tensor as shown
Eq. ~2.53!. We find that this interaction contributes a ma
shift at late times of

dm15k~e2L/8p!. ~4.1!

In the Appendix using the Pauli-Villars regulator one fin
this mass shift but withk→c051. As expected, the precis
value of the~unobserved! mass shift is regulator dependen
In @2# it is shown thatdm1 is just one-half the mass shift tha
is found when the particle moves in the electromagne
field. This is consistent with the interpretation of the elect
magnetic field as equivalent to two scalar fields~one for each
polarization!. Therefore one expects, and finds, twice t
mass renormalization in the electromagnetic case:dmEM
52dm1. ~For the same reason we see below that the ra
tion reaction force, and stochastic noise, are each also
duced by half compared to the electromagnetic case.!

The scalar field, unlike the electromagnetic field, also h
a z̈mw interaction that gives a negative mass shiftdm25
22dm1. The total mass shift is thus negative. At late time
the renormalized mass is

m[ lim
r→`

m~r !

5m01dm11dm2

5m02k~e2L/8p!. ~4.2!
5-15
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For a fixedm0, if the cutoff exceedsL.16pm0 /ke2, the
renormalized mass is negative and the equations of mo
are unstable. It is well known that environments with ove
large cutoffs can qualitative change the system dynamics
therefore must assume that the bare mass and cutoff are
sistent withm.0, which in turn gives a bound on the cutof

L,16pm0 /ke2. ~4.3!

Thus for the scalar field case the field interactionreducesthe
effective particle mass, whereas in the electromagnetic~vec-
tor! field case the field interactionincreasesthe effective
particle mass~see@2#!. This has an interesting consequence
we follow FOL’s @29,30# choice of picking the critical cutoff
L516pm0 /ke2. For the scalar field this would imply tha
m50. This is a kind of ‘‘critical’’ case balanced betwee
stable and unstable particle motion. While there may be s
cial instances where such behavior is of interest, it does
seem to represent the generic behavior of typical~massive!
particles interacting with scalar field degrees of freedom.
will defer further comparison with EM quantum Langev
equations to paper II@2# where the electromagnetic field
treated and the mass renormalization has the more fam
sign.

Consider further the role of causality in the equations
motion. In the preceding paragraph we see that for the lo
term motion to be stable~i.e. positive effective particle mass!
there is an upper bound on the field cutoff. This is w
known, as detailed in@29,30#, for example. There, the QLE
is assumed to be of the form

mẍ1E
2`

t

dt8m~ t2t8!ẋ~ t8!1V8~x!5F~ t !, ~4.4!

where the time integration runs from2` to t. Causality is
related to the analyticity ofm̃(z) @the Fourier transform of
m(t2t8)# in the upper half plane of the complex variablez.
The traditional QLE of the type~4.4! with the lower integra-
tion limit set at t i52` effectively makes the assumptio
that the particle has been in contact with its environment
longer than the environment’s memory time. In our analy
the lower limit in Eq.~3.16! is t i , not 2`. It is the ~non-
equilibrium! dynamics at early times immediately after th
initial particle-field state is prepared where we have som
thing new to say about how causality is preserved, and r
aways are avoided.

The proper time dependence of the mass renormaliza
is shown in Fig. 2. The horizontal axis marks the proper ti
in units of the cutoff time scale 1/L. The vertical scale is
arbitrary, depending on the particle bare mass. Notice
unusual feature: the mass shift is not monotonic with tim
but instead first overshoots its final asymptotic value. T
occurs because there are two competing mass renormal
interactions that have slightly different time scales. In a
case, the time-dependent mass shift is a rapid effect with
final dressed massm reached within a few 1/L. If we set
L'Lc5lc

21 , this occurs on the time scale required for lig
to cross the particle’s Compton radius.
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B. Nonequilibrium radiation reaction

The coefficientg(2)(r ) determines how quickly the par
ticle is able to build its own self-field after assuming a
initially factorized state att i . This in turn controls the back
reaction on the particle motion, ensuring that it is causal.
find, as is typical of effective theories, that the equations
motion involve higher derivative terms~i.e. dnz/dt n for n
.3) beyond the usual ALD third derivative form~see the
Appendix for more detail!. These terms are suppressed
low energies~whenL exceeds the other relevant scales! but
there is no reason they must be ruled out absolutely.

Nothing in principle prevents additional higher derivativ
terms in the interaction Lagrangian as long as they resp
the fundamental symmetries~e.g. Lorentz and reparametriza
tion invariance! of our particle-field model. The coupling
term we assumed,eAż2w(z), is the only one with a dimen-
sionless coupling constante, but one could as well have
reparametrization invariant term like

dLint5E dt e1Az̈mz̈m / ż2w~z!, ~4.5!

wheree1 has mass dimensionM 21. In fact, there could be an
infinite set of such reparametrization and Lorentz invari
interaction terms in the effective Lagrangian. Our resu
suggest that even if these terms are not originally pres
they may arise as high-energy corrections. Indeed, since
cannot take the limitL→` without making the renormal-
ized mass negative, we conjecture that any consistent h
energy theory may entail suppressed higher-derivative
rections for the semiclassical motion. If we go further
assuming a cutoff at the Compton wavelength as implied
an initial state of the form~3.11! together with our argument
in Sec. III B, then we expect that additional quantum corr
tions from the particle will modify the semiclassical equ
tions of motion with higher derivative terms suppressed
Lc . But we gain the additional insight that even if suc
terms are present one expects them not to affect the
energy behavior. This suggests that the ALD equations
motion may be the low-energy semiclassical limit in gene
for reparametrization and Lorentz invariant particle mode
A detailed proof of this conjecture from an effective theo
methodology would be interesting.

FIG. 2. The time-dependent renormalized massm(r ) of the par-
ticle plotted against the proper time,r 5t2t i , elapsed since the
initial time t i at which the factorized initial state of the particle plu
field is specified. The actual mass shift depends on the cutoffL; the
vertical mass units are arbitrary since they depend on the unkn
particle bare massm0. The renormalization time scale ist ren

;1/L.
5-16
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The time scales and relative contributions of these high
derivative forces are determined by the coefficientsg(n)(r ).
For a fixed cutoffL, the late time behavior of theg(n)(r )
scale as

lim
r→`

g(n)~r !5
2n/2G~11n/2!

~2p!3/2
L22n. ~4.6!

Therefore, theg(2) term has the late time limit

lim
r→`

g(2)~r !5
1

4p
, ~4.7!

which is independent ofL. Borrowing terminology from ef-
fective field theory, this makes then52 term renormalizable
and implies that it corresponds to a ‘‘marginal’’ coupling
interaction. In the same terminology the mass renormal
tion, scaling asL, corresponds to a relevant~renormalizable!
coupling. In this vein, the higher-derivative corrections p
portional tog(n.2), suppressed by powers of the cutoff sca
L, correspond to irrelevant couplings.

In Fig. 3 we show the proper time dependence ofg(2)(r ),
with the same horizontal time scale as in Fig. 2. It is evid
that the radiation reaction force approaches the ALD fo
quickly, essentially on the cutoff time. While the radiatio
reaction force is non-Markovian, the memory time of t
field environment is short. The non-Markovian evolution
characterized by the dependence of the coefficientsm(r ) and
g(2)(r ) on the initial timet i , but become effectively inde
pendent oft i after tL;1/L. This parallels the well-known
behavior for quantum Brownian motion models found in@4#.
The effectively transient nature of the short-time behav
helps justify our use of an initially uncorrelated~factoriz-
able! particle and field state.

Also notice the role played by the particle’s elaps
proper time, r 5t2t i . For particles with small averag
velocities7 the particle’s proper time is roughly the bac
ground Minkowski time coordinatet. In this case, the time

7The small velocity approximation is relative to a choice of ref
ence frame. In@1# we discuss how the choice of an initially facto
ized state at some timet i picks out a special frame.

FIG. 3. The time-dependent coefficientg2(r ) that determines
the radiation reaction~RR! plotted against the elapsed proper tim
r 5t2t i , since the initial timet i at which the factorized initial
state of the particle plus field is specified. The radiation reac
vanishes atr 50, but quickly builds to the asymptotic value familia
from the Abraham-Lorentz-Dirac equation on a time scale 1/L.
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dependence of the renormalization effects are approxima
the same as one would find in the nonrelativistic situati
sincer 5(t2t i)'(t2t i). For rapidly moving particles time
dilation can significantly lengthen the observed time sca
with respect to the background Minkowski time. This ind
cates that highly relativistic particles will take longer~with
respect to background timet) to equilibrate with the quan-
tum field environment than do more slowly moving particle
Finally, we note that the radiation reaction force is exac
half that found for the electromagnetic field.

C. Causality and early-time behavior

We have shown the emergence at low energies and
times of the ALD radiation reaction force~neglecting other
particle structure, such as spin, which gives rise to additio
low-energy corrections!. The classical ALD equation is
plagued with pathologies like acausal and runaway solutio
We now show how the equations of motions in the fo
@Eqs. ~3.33! and ~3.34!, or more generally in Eq.~A13! in-
volving higher derivatives# preserve the causal nature of th
solutions with radiation reaction. To address these quest
we now examine the early-time behavior.

As differential equations, Eqs.~3.33! and ~3.34! may
seem to be unphysical at first sight because of the appa
need to specify initial data

z̄m
(n)~t i !5dnz̄m~t i !/dt n ~4.8!

for n>2. But the coefficientsg(n)(r ) satisfy the crucial prop-
erty that

g(n)~0!50, ~4.9!

for all n. We see this graphically forg(2)(r ) in Fig. 3, and
analytically for all g(n)(r ) in Eq. ~3.28!. Consequently, the
particle self-force att5t i identically vanishes~to all orders
in n), and only smoothly rebuilds as the particle’s self-fie
is reconstituted. Therefore, the initial data att i is fully ~and
uniquely! determined by

mam~t i !52]mV„z̄~t i !…, ~4.10!

which only requires the ordinary Newtonian initial data. T
initial values for the higher derivative terms~e.g. n>2) in
Eq. ~3.34! are not independent but are determined iterativ
from

m
dnz̄m~t i !

dt i
n

52
dn22

dt i
n22

]mV„z̄~t i !…. ~4.11!

Thus, given the~Newtonian! initial data the equations o
motion are determined uniquely for all later times, to a
order in n. In the classical ALD equations, one finds ru
aways even in the case of vanishing external potentialV
50. In our case, becauseg(n)(0)50 for all n, V50 implies
that z̄m

(n)(t i)50 for all n>2. With these initial conditions
~andV50), the equations of motion~3.33!, ~3.34! are

am~t!50 ~4.12!

-

n
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with unique solutionsz̄m(t)5 z̄m(t i)1(t2t i) ż̄m(t i). Run-
aways do not arise. We find only the physically expec
inertial solution.

Finally, we note that the vanishing of the time-depend
coefficients in the modified ALD equation at the initial tim
t i is a consequence of the factorized initial state. The ini
behavior of our equations then describes the time-depen
‘‘redressing’’ of the particle by the low-energy modes of t
field. This happens smoothly in such a way that causalit
not violated. If it were technically feasible to treat a mo
generally correlated initial state we can probe new interes
behavior arising from the particle’s correlations with t
longer wavelengths of the field. We expect that tim
dependent~nonequilibrium quantum theory! effects similar
to those illustrated in this paper will also act to prese
causality of the semiclassical equations of motion in t
more complicated yet realistic circumstance. Of course,
completely arbitrary initially correlated particle-field state
one must carefully address the question of when and h
a semiclassical equations of motion obtains, and wha
means.

V. THE STOCHASTIC REGIME AND THE
ALD-LANGEVIN EQUATION

A. Single particle stochastic limit

The nonlinear Langevin equation in Eq.~2.54! shows a
complex relationship between noise and radiation reactio
nonlinear Langevin equation similar to these have b
found for stochastic gravity by Hu and Matacz@35# describ-
ing the stochastic behavior of the gravitational field in
sponse to quantum fluctuations of the stress-energy ten
We now apply the results in Eq.~2.38! giving the linearized
Langevin equation for fluctuations around the mean tra
tory. The free kinetic term is given by

E dt8z̃n~t8!S d2Sz@ z̄#

d z̄m~t!d z̄n~t8!
D

5m~r !E dt8z̃n~t8!gmn

d2

dt2
d~t2t8!

5m~r !
d2z̃m~t!

dt2
, ~5.1!

where we have included the time-dependent mass renor
ization effect in the kinetic term. The external potential te
is

E dt8z̃n~t8!S d2V~ z̄!

d z̄m~t!d z̄n~t8!
D 5 z̃m~t!

]2V~ z̄!

] z̄m2
, ~5.2!

hence, the second derivative ofV acts as a force linearly
coupled toz̃. The dissipative term forz̃ involves the~func-
tional! derivative of the first cumulant@see Eq.~3.31!# with
the mass renormalization (n51) piece removed, as it ha
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already been included in the kinetic term~5.1! above. We
therefore need the~functional! derivative with respect toz̄m
of the radiation reaction term

f m
R.R.5e2g(2)~r !~ ż̄ma21ȧm!. ~5.3!

To O( z̃), we have

Fm5E dt8z̃n~t8!
d f m

R.R.~ z̄!

d z̄n~t8!
. ~5.4!

Fm is the dissipation force that appears in the lineariz
Langevin equation. While it is derived from the radiatio
reaction force f m

R.R. , it is important to distinguish be-
tween the role off m

R.R. at the semiclassical level andFm at
the stochastic level.

We note thatFm is a function of the derivativesz̄m
(1,2,3),

therefore we have

Fm5
e2

2
g(2)~r !@a2~gmn2 ż̄mȧn! ż̃n#1~gmn2 ż̄m ż̄n! z̃̂n]

5
e2

2
g(2)~r !~Smn ż̃n1Rmn z̃̂n!, ~5.5!

where

Rmn~ z̄![~gmn2 ż̄m ż̄n! ~5.6!

Smn~ z̄![a2~gmn2 ż̄m ẑ̄n!. ~5.7!

The late time (Lr @1) single particle Langevin equations a
thus

h~t!5mz̈̃m~t!1 z̃n

]V~ z̄!

] z̄m] z̄n

2
e2

8p
~Smn ż̃n1Rmn z̃̂n!.

~5.8!

Equation~5.8! is the second main result of this paper. Th
are to be used together with the semiclassical equation
motion in Eq.~3.34! which self-consistently determinesSmn

andRmn . Just as was the case for the semiclassical equat
of motion, the vanishing ofg(2)(r ) for r 50 implies that the
initial data for the stochastic equations of motion are just
ordinary kind involving no higher than first order derivative

The noisehm(t) is given by

hm~t!5wW mx„z̄~t!…5e„z̈̄m~t!1 ż̄n ż̄[n]m]…x„z̄~t!…,
~5.9!

where the stochastic field is evaluated using the semiclas
solution z̄. The correlator̂ hm(t)hn(t8)& @see Eq.~5.11!# is
then found using the field correlator:

^$x„z̄~t!…,x„z̄~t8!…%&5\GH
„z̄~t!,z̄~t8!…. ~5.10!

Equation~5.9! shows that the noise experienced by the p
ticle depends not just on the stochastic properties of
quantum field, but on the mean-solutionz̄(t). For instance,
5-18
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the amx(z)5 z̈̄mx(z) term in Eq. ~5.9! gives noise that is
proportional to the average particle acceleration. The sec
term in Eq.~5.9! depends on the antisymmetrized combin

tion ż̄[m]n]x( z̄). It follows immediately from^x&50 that
^h(t)&50.

From Eq.~5.11! we see that the noise correlator is

^hm~t!hn~t8!&5wW m~t!wW n~t8!^x„z̄~t!…x„z̄~t8!…&

5~e2\/c4!~ z̈̄m1 ż̄l ż̄[m]l]
z !~ z̈̄n8

1 ż̄r8ż̄[n8 ]r]
z8!GH~ z̄,z̄8!

5~4plcr c!S z̈̄m1 ż̄l
ż̄[myl]

y2

d

ds D
3S z̈̄n81 ż̄r8

ż̄[n8 yl]

y2

d

ds D GH~s!.

~5.11!

The noise~when the field is initially in its vacuum state! is
nonlocal~colored!, reflecting the highly correlated nature o
the quantum vacuum. Only in the high temperature lim
does the noise become approximately local~white!. Notice
that the noise correlator inherits an implicit dependence
the initial conditions att i through the time-dependent equ
tions of motion for z̄. But when rL@1, the equations of
motion become effectively independent of the initial tim
The noise given by Eq.~5.11! is not stationary except fo
special cases of the solutionz̄(t).

Finally, we understand the precise meaning of FDRs
nonlinear particle-field systems. Clearly, vacuum fluctuatio
~VF! and radiation reaction~RR! cannot be directly related
as the vanishing of RR in the semiclassical limit demo
strates. It is the dissipative forceFm that is related to vacuum
fluctuations through a fluctuation-dissipation relation@1#.

B. Multiparticle stochastic limit and stochastic Ward identities

It is a straightforward generalization to construct mu
particle Langevin equations. The two additional features
particle-particle interactions, and particle-particle corre
tions. The semiclassical limit is modified by the addition
the terms

e2 (
mÞn

E
t i

t f
dtmwW n

m@ z̄n~tn!GL
R
„z̄n~tn!,z̄m~tm!…#.

~5.12!

The use of the regulatedGL
R is essential for consistency be

tween the radiation that is emitted during the regime of tim
dependent renormalization and radiation reaction; it ens
agreement between the work done by radiation reaction
the radiant energy. A field cutoffL implies that the radiation
wave front emitted att i is smoothed on a time scaleL21.

We note one significant difference between the single p
ticle and multiparticle theories. For a single particle, t
dissipation is local~when the field is massless!, and the
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semiclassical limit~obtaining whenrL@1) is essentially
Markovian. The multiparticle theory is non-Markovian eve
in the semiclassical limit because of multiparticle intera
tions. Particle A may indirectly depend on its own past st
of motion through the emission of radiation interacting w
another particle B, which in turn, emits radiation that re
fluences particle A at some point in the future. The nonlo
field degrees of freedom stores information~in the form of
radiation! about the particle’s past. Only for a single timelik
particle in flat space without boundaries is this informati
permanently lost insofar as the particle’s future motion
concerned. These well-known facts make the multiparti
behavior extremely complicated.

We may evaluate the integral in Eq.~5.12! using the iden-
tity

d„~ z̄n2 z̄m!2
…5d~t2t* !/2~ z̄n2 z̄m!n ż̄mn , ~5.13!

where t* is the time when particlem crosses particlen’s
past light cone.~The regulated Green’s function woul
spread this out over approximately a timeL21.! Defining
z̄nm[ z̄n2 z̄m , we use

E dtm]m
l GR~ z̄n ,z̄m!52E dtm

dGR

ds

~ z̄nm!l

~ z̄nm!a ż̄ma

52F GR~ z̄nm!l

~ z̄nm!a ż̄ma
G

1E dsGR
d

dsF ~ z̄nm!l

~ z̄nm!a ż̄ma
G

5
1

2~ z̄nm!n ż̄mn

d

dsF ~ z̄nm!l

~ z̄nm!a ż̄ma
G .

~5.14!

The particle-particle interaction terms are then given by

e2 (
mÞn

~an
m1 ż̄b ż̄[m]b] !GR~ z̄n ,z̄m!

5e2 (
mÞn

S an
m

@~ z̄nm!n ż̄mn#
1

ż̄n
m ż̄nl2dl

m

2~ z̄nm!n ż̄mn

3
d

dtm
F ~ z̄nm!l

~ z̄nm!a ż̄ma
G

tm5t*

, ~5.15!

where, as before, thewW n
m( z̄n) acts only on thez̄n , and not the

z̄m(t* ). Equation ~5.15! is just the scalar analog of th
Liénard-Wiechert forces. They include both the near-fie
and far-field effects.

The long range particle-particle terms in the Langev
equations are found using Eq.~2.58!, so we have the addi
tional Langevin term for thenth particle, given by
5-19
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e2 (
mÞn

E dtnz̃n
n]n

nH an
m

@~ z̄nm!a ż̄ma#

2
Rn,ml

2~ z̄nm!a ż̄ma

d

dtm
F ~ z̄nm!l

~ z̄nm!b ż̄mb
G J

tm5t*

.

~5.16!

Equation ~5.16! contains no third~or higher! derivative
terms. The multiparticle noise correlator is

^$hn
m~tn!hm

n ~tm!%&5wW n
m~tn!wW m

n ~tm!^$x~ z̄n!x~ z̄m!%&.

~5.17!

In general, particle-particle correlations between space
separated points will not vanish as a consequence of the
local correlations implicitly encoded byGH. For instance,
when there are two oppositely charged particles which ne
enter each other’s causal future, there will be no partic
particle interactions mediated byGR; however, the particles
will still be correlated through the field vacuum viaGH. This
shows that it will not be possible to find a generalized m
tiparticle fluctuation-dissipation relation under all circum
stances@37#.

We now briefly consider general properties of the stoch
tic equations of motion. Notice that the noise satisfies
identity

żn
m~t!hnm~t!5 żn

m~t!wW
nm~zn!x~zn!50, ~5.18!

which follows as a consequence ofżn
mwW nm50, for any on-

shell solutionsżn
m . This is an essential property since th

particle fluctuations are real, not virtual. We may use E
~5.18! to prove what might be called~by analogy with QED!
stochastic Ward-Takahashi identities@39#. Then-point corre-
lation functions for the particle-noise are

^$hm1
~t1! . . . hm i

~t i ! . . . hmn
~tn!%&

5wW m1
~z1! . . . wW m i

~zi ! . . . wW mn
~zn!

3^$x~z1! . . . x~zi ! . . . x~zn!%&, ~5.19!

with eachwW m i
(zi) acting on the correspondingx(zi). These

correlation functions may both involve different times alo
the world line of one particle~i.e. self-particle noise!, and
correlations between different particles. From Eqs.~5.19!
and ~5.18! follow ‘‘Ward’’ identities:

żi
m i^hm1

~t1! . . . hm i
~t i ! . . . hmn

~tn!&50,

for all i and n. ~5.20!

The contraction of on-shell momenta (żm) with the stochastic
correlation functions always vanishes. These identities
fundamental to the consistency of the relativistic Lange
equations.
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VI. EXAMPLE: FREE PARTICLES IN THE SCALAR
FIELD VACUUM

As a concrete example, we find the Langevin equatio
for V(z)50 and the scalar field initially in the vacuum stat
Using the stochastic equations of motion we can address
question of whether a free particle will experience Browni
motion induced by the vacuum fluctuations of the sca
field. WhenV(z)50, we immediately see from the semicla

sical equations thatz̈̄m(t)5a0
m5const: the radiation reaction

force identically vanishes. The fact thatgn(0)50 uniquely
fixes a0

m50 due to the initial data boundary conditions f
the higher derivative terms~4.11!; hence, there are no run
away solutions characterized by a nonzero constant acce

tion. Writing ż̄m(t)5vm andz̄m(t)5svm, wherevm is a con-
stant spacetime velocity vector satisfying the~mass-shell!
constraintv251, we conclude that an inertial particle mov
ing in accordance with the semiclassical solution neither
diates nor experiences radiation reaction. Usings25v2s2

5s25(t2t8)2, we find from Eq.~5.8! the linearized Lange-
vin equation

mz̈̃m~t!1
e2

2
g(2)~r !Rmn z̃̂n5hm~t!. ~6.1!

The noise correlator is found from Eq.~5.11! to be

^hh~t!hn~t8!&

5e2\S am2
d

dt F ż̄l
ż̄[myl]

yaẏa
S ds2

dt D 21G D
3~4p2s2!21S an81

d

dt8
F ż̄r8

ż̄[n8 yl]

ybẏb
S ds2

dt8
D 21G D

~6.2!

5e2\S d

dt Fvl
v [mvl]s

2vavas2G D 1

4p2s2

3S d

dt8
Fvr

v [nvl]s

22vbvbs2G D , ~6.3!

where we have substituted the vacuum Hadamard func
for the field-noise correlator̂xx8&. The antisymmetric com-
binationv [mvn] vanishes, and hence

^hh~t!hn~t8!&50 for z̈̄m50. ~6.4!

The origin of this at first surprising result is not hard to fin

First, the stochastic mass termsz̈̄x vanish since the averag
acceleration is zero, but why should the other terms
the correlator vanish? From Eq.~6.3!, we see that the
second term in the particle-noise correlator involv

ż̄l ż̄[m]l]
z GH( z̄,z̄8). But the gradient of the vacuum Had

amard kernel~which is a function ofs) satisfies]mGH(s)
}ym , and is therefore always in the direction of the spa
time vector connectingz̄(t) and z̄(t8). However, for the
5-20
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inertial particle,ym}vm , and thus the antisymmetrized term

ż̄[m]n]G
H(s̄)}v [mvn]G

H, always vanishes. It therefore fo
lows that a scalar field with the coupling that we have
sumed does not induce stochastic fluctuations in a free
ticles trajectory at this linearized Langevin level. Howev
there are noise fluctuations when the field is not in
vacuum state~e.g. a thermal quantum field!, and/or when the
particle is subject to external forces that make its aver
acceleration nonzero~e.g. an accelerated particle!.

We therefore find that the free particle fluctuations~in this
special case! obey the equations of motion forz̃m ,

mz̈̃m~t!1
e2

2
g(2)~r !Rmn z̃̂n50. ~6.5!

Equation~6.1! has the unique solution

z̈̃m~t!50 ~6.6!

after recalling thatg(2)(0)50⇒ z̃̂m(0)50. The same initial
time behavior that gives unique~runaway-free! solutions for
z̄ ~the semiclassical solution! apply to z̃ ~the stochastic fluc-
tuations!.

Let us comment on the difference of our result from th
of @40#. First, the dissipation term in our equations of moti
is relativistically invariant for motion in the vacuum, an
vanishes for inertial motion. The equations of motion in@40#
are not relativistically invariant; the authors of@40# conclude
that a particle moving through the scalar vacuum will exp
rience a dissipation force proportional to its velocity which
in direct contradiction with experience. Their result com
from an incorrect treatment of the retarded Green’s funct
in 111 spacetime dimensions.

VII. DISCUSSION

We now summarize the main results of this paper, w
follows from here, and point out areas for potential applic
tions of theoretical and practical values.

Perhaps the most significant difference between this
earlier work in terms of approach is the use of a partic
centric and initial value~causal! formulation of relativistic
quantum field theory, in terms of world-line quantization a
influence functional formalisms, with focus on the coars
grained and stochastic effective actions and their derived
chastic equations of motion. This is a general appro
whose range of applicability extends from the full quantu
to the classical regime, and should not be viewed as an
proximation scheme valid only for the semiclassical. Th
exists a great variety of physical problems where a parti
centric formulation is more adept than a field-centric form
lation. The initial value technique with full back reactio
ensures the self-consistency and causal behavior of the s
classical and stochastic equations of motion. Our ALD a
ALD-Langevin equations for relativistic particles in a sca
quantum field are pathology free.

For further development, in@2# we shall extend these re
sults to spinless particles moving in the quantum electrom
netic field, where we need to deal with the issues of ga
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invariance. This is a problem of considerable practical r
evance. In a second series of papers@41#, we use the same
conceptual framework and methodology but go beyond
semiclassical and stochastic regimes to incorporate the
range of quantum phenomena, addressing questions su
the role of dissipation and correlation in charged parti
pair-creation, and other quantum relativistic processes. Th
retically, by interpreting a particle’s spacetime propert
~e.g. its location in time and space! as effectively micro-
scopic ‘‘clocks and position markers’’~e.g. events! we see
that a quantum-covariant description of particle world li
motion is not just particle dynamics, it is the quantum d
namics of spacetime events. For example, thetime of the
particle is treated as a quantum variable on equal foo
with position, and hence a question like localization appl
not just to localization in space, but localization in time.
would be natural to apply this approach to subjects l
‘‘time of flight,’’ and questions regarding decoherence
time ~variables!, together with space variables@e.g. the emer-
gence of~local! time for particles#. At the level of this paper
we have derived a particle’s time as a stochastic variable

In conclusion, the self-consistent treatment of back re
tion from quantum field activities on a charged particle is
essential yet often neglected factor in many problems dea
with charged particle motion. Our approach is appropri
for any situation where particle motion~as opposed to field
properties! is the center of attention. The ALD-Langevi
equations for charged particle motion in the quantum el
tromagnetic field derived in@2# is of particular importance
for quantum beam dynamics and heavy-ion physics. O
methods can be applied to relativistic charged particle m
tion not only in charged particle beams as in accelera
@2,20# and free-electron lasers as in ion optics, but also
strong fields such as particles moving in matter~crystals! or
in plasma media as in astrophysical contexts@42#.
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APPENDIX: PAULI-VILLARS REGULATOR AND HIGHER
DERIVATIVE TERMS IN THE EQUATIONS

OF MOTION

The regulated Green’s function~3.1! is somewhatad hoc,
though perfectly acceptable from an effective theory point
view since it only implies a modification of the unobserv
high-energy modes of the field. The strength with which E
~3.1! falls off as a function ofs made the analysis straigh
forward. Alternatively, we could have employed a hard c
off in the spectrum of the field modes@e.g. Eq.~3.14!#, but
this conflicts with the desire to produce a covariant formu
tion.

In this appendix we show that Pauli-Villars regularizatio
gives the same semiclassical limit and qualitative behavio
the Gaussian regulator choice~3.1!. This shows how the low-
energy physics is insensitive to the choice of the regula
Applying Pauli-Villars regularization is more subtle, how
5-21
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ever, as we will show now. The problem is that the Pau
Villars regulated Green’s function does not really fall off th
fast in configuration space, and hence the integrals involv
sn with n.1, corresponding to the effect of higher deriv
tive terms~beyond theȧ term!, do not converge. While di-
mensional analysis shows that these terms are suppress
inverse powers of the cutoffL, and thus are presumabl
negligible at low energies, one might still wonder if there
some long-term inconsistency resulting from Pauli-Villa
regularization.

In configuration space, the Pauli-Villars regulated
tarded Green’s function is

GL
P.V.~s!5

LJ1~Ls!

4ps
~A1!

in the forward light cone. Our goal is to evaluate the integ
term in Eq. ~3.16!. In terms of the variabless and r this
involves

e2E
0

r

ds@am~t!1 ż̄n~t! ż̄[m~t!]n] #GL
P.V.~s!. ~A2!

It follows from the semiclassical solution being a timelik
trajectory thats5s(s) can be inverted as a function ofs. To
change variables froms to s in Eq. ~A2! we needds/ds.
The Taylor series fors(s) has coefficients involving time
derivatives ofz̄m(t) @e.g. Eq.~3.19!#. Inversion of this series
gives

ds~s!/ds5 (
n50

snsn/n!

511a2s2/81amȧms3/61••• . ~A3!

In general, thesn coefficient is a scalar involvingn12 time
derivatives.

Next, the gradient operator may be written

]n52
yn

s

d

ds
, ~A4!

and the Taylor series foryn /s gives

2yn /s5 (
m50

un
(m)sm

5 ż̄n2san/21s2~ ż̄na@2#14ȧn!/242s3~a2av

2 ż̄namȧm1än!/241 . . . . ~A5!

The un
(m) are also scalars constructed involving terms w

m12 andm13 time derivatives. Changing integration var
ables and rearranging we then have
06501
-

g

by

-

l

e2(
n50

` H snamS E
0

sr
ds

sn

n!
GL~s! D

1 (
m50

n

ż̄n ż̄[mun]
(m11)s(n2m)l n,m

3S E
0

sr
ds

sn11

~n11!!

d

ds
GL~s! D J , ~A6!

where

l n,m5
~n11!!

~n2m!! ~m11!!
. ~A7!

The upper limit of integration is s r[s(r ), with
limr→`s(r )→`.

Performing thes integrals with the Gaussian regulato
form ~3.1! gives our earlier results generalized to all orde
The Pauli-Villars regulator@GL

P.V.(s)# gives integrals that
do not converge forsn.1. But one may show thatGL

P.V(s)
3 f (as) does converge even in the limita→0, and the
result is independent of the choice of functionf (as) so long
as f is sufficiently regular, goes to zero exponentially wi
s→`, and goes to 1 asa→0. The results for the integrals in
Eq. ~A6! after this extra regulator~followed by the limit a
→0) are

E
0

sr
ds

sn

n!
GL~s!5

L12n

4p
cnhP.V.

(n) ~Ls r !, ~A8!

E
0

sr
ds

sn11

~n11!!

d

ds
GL~s!52

L12n

4p
cngP.V.

(n) ~Ls r !

~A9!

with

hP.V.
(n) ~Ls r !5

~Ls r !
n11GS 32n

2 D
2n11GS 31n

2 D
31F2S H 11n

2 J ,H 2,
31n

2 J ,2
L2s r

2

4 D ,

~A10!

gP.V.
(n) ~Ls r !5

~Ls r !
n13GS 32n

2 D
2n14GS 51n

2 D
31F2S H 31n

2 J ,H 3,
51n

2 J ,2
L2s r

2

4 D ,

~A11!

where pFp are the hypergeometric functions,
5-22
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cn5
Ap

nGS 32n

2 DGS n

2D , ~A12!

andc051.
The time-dependent back reaction term is then

e2

4p H (
n50

`

L12ncnFsnhP.V.
(n) ~Ls r !am

2 (
m50

n

s(n2m)l n,mgP.V.
(n) ~Ls r ! ż̄

n ż̄[mun]
(m11)G J .

~A13!

Of course, the detailed behavior of the time-dependent c
ficients depends on the choice of regulator~the Pauli-Villars
and Gaussian regulator results are not the same!. But what is
important is that they have the same crucial qualitative
haviors in common. Thes r→` ~i.e. late time! result is given
tic
nd

tic
tic
a
B

tu

-

,

-

s.

-
d-

06501
f-

-

by hP.V.
(n) →gP.V.

(n) →1, and thus at low energies only then
50,1 terms contribute. These produce mass renormaliza
and the standard ALD result, as may be easily verified fr
Eq. ~A13!. Uniqueness and causality of the equations of m
tion follow from the fact thathP.V.

(n) 5gP.V.
(n) 50 for all n.

Hence, Pauli-Villars leads to the same conclusions that
drew earlier based on the Gaussian regulated Green’s f
tion. Moreover, it is clear that any reasonably smooth re
lator should share these general features.

Finally, we could derive the higher-derivative term
~those suppressed by inverse powers ofL) in the Langevin
equation. We would do this to demonstrate that these hig
derivative corrections do not spoil the consistency of
stochastic equations of motion with acausal or runaway
fects. The argument is the same as that for the semiclas
equations of motion, and it is straightforward after some
gebra to see that the vanishing of the time-dependent co
cients h(n)(Ls r) and g(n)(Ls r) at Ls r50 also removes
runaways and acausal solutions.
n.

,

.
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