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Stochastic theory of relativistic particles moving in a quantum field:
Scalar Abraham-Lorentz-Dirac-Langevin equation,
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We apply the open systems concept and the influence functional formalism to establish a stochastic theory
of relativistic moving spinless particles in a quantum scalar field. The stochastic regime resting between the
guantum and semiclassical regimes captures the statistical mechanical attributes of the full theory. Applying the
particle-centric world line quantization formulation to describe charged particles in a scalar quantum field
environment, we derive a modified Abraham-Lorentz-DifAtD) equation with time-dependent coefficients
and show that it is the correct semiclassical limit for nonlinear particle-field systems without the need of
making the dipole or nonrelativistic approximations. Our modified ALD equation is causal and free of runaway
solutions. We show this technically, as a consequence of the nonequilibrium open system dynamics, and
conceptually, invoking decoherence. Progressing to the stochastic regime, we derive a relativistic ALD-
Langevin(ALDL ) equation for nonlinearly coupled charges in a scalar quantum field. The ALD and ALDL
equations clarify the relation of radiation reaction, dissipation and vacuum fluctuations. This self-consistent
treatment serves as a new platform for investigations into problems related to relativistic moving charges.
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[. INTRODUCTION system concept and the coarse-grained effective action tech-

nigue our approach is based on. We distinguish between the

This is the second in a series of paplr®] exploring the  four regimes: classical, semiclassical, stochastic and quan-
regime of stochastic behavior manifested by relativistic partum and discuss how the processes of fluctuations, noise,
ticles moving through quantum fields. It highlights a self- decoherence and dissipation are interrelated. Decoherence
consistent treatment of relativistic, nonlinearly interactingdue to noise is instrumental to the emergence of a classical
quantum dynamical particle-field systems, and the effects o$olution, the presence of a stochastic component in the tra-

and the interconnections amongst noise, decoherence, disi§ctory. and provides a rationale for the cure of pathologies.
pation, fluctuations, and correlation This requires a proper treatment of causal and non-

In [1] we have set up the basic framework built on theMarkovian behavior on the basis of self-consistent back re-

concepts of quantum open systef3$, the model of quan- action. Fin_aIIy we give a brief summary pf previous work
tum Brownian motionQBM) [4], and the methodologies of and dhescrlget t?eér hshortcomlngs which justify a new ap-
the influence functional5] or the closed-time-pati6] proach as detaried here.
coarse-grained effective acti¢], and world line quantiza- .
tion [8]. In this paper we apply this framework to spinless A. Main results
relativistic moving particles in a quantum scalar field. The The main results of this investigation are the following.
interaction is chosen to be the scalar analog of QED coupling (1) First principles derivation of a time-dependent
so that we can avoid the complications of photon polarizaAbraham-Lorentz-Dira¢dALD) equation for the semiclassi-
tions and gauge invariance in an electromagnetic field. Theal limit of relativistic particles in a scalar quantum field
results here should describe correctly particle motion whemvithout making the dipole or nonrelativistic approximations.
spin and photon polarization are unimportant, and when th©ur time-dependent ALD equation is fully causal; its low-
particle is sufficiently decohered such that its quantum flucenergy and late time limit is the ordinary ALD equation.
tuations effectively produce stochastic dynanjig®—14. (2) Consistent resolution of the paradoxes of the ALD
We divide our introduction into four parts: First, we de- equation, including the problems of runaway and acausal
scribe the main results from this work. Second, we give ge.g. preacceleratingsolutions, and other pathologies. We
discussion of the pathologies and misconceptions of thehow how the non-Markovian nature of the quantum particle
Abraham-Lorentz-Dirac equation from the conventional ap-open-system enforces causality in the equations of motion.
proach, specifically the existence of preaccelerating and runA/e also discuss the crucial conceptual role that decoherence
away solutions, and the misconception that classical radigplays in understanding these problems.
tion reaction and vacuum fluctuations are related by a (3) Derivation of multiparticle Abraham-Lorentz-Dirac-
fluctuation-dissipation relation. Third, we describe the operLangevin (ALDL) equations describing the quantum sto-
chastic dynamics of relativistic particles. The familiar classi-
cal ALD equation is reached as it@ise-averagedorm. The
*Electronic address: philipj@physics.umd.edu stochastic regime, characterized by balanced noise and dissi-
"Electronic address: hub@physics.umd.edu pation, plays a crucial role in bridging the gap between quan-
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tum and (emergent classical behaviors. Thé\-particle- accelerated particle does radiatd/e will show in this paper
irreducible (NPI) and master effective actidri5] provide a  that the average radiation reaction force on a uniformly ac-
route for generalizing our treatment to teelf-consistenin-  celerated particle also vanishes in the semiclassical limit.

clusion of higher order quantum corrections. However, at the stochastic level there are quantum-
fluctuation-induced variations in the radiation reaction force
B. Pathologies and misconceptions that act to damp fluctuations of the particle away from its

averaged trajectory. It is this dissipative effect which is re-
lated to vacuum fluctuations by a generalized set of FDRs
The classical theory of moving charges interacting with a1]. The uniformly accelerated particle example illustrates
classical electromagnetic field has controversial difficultieshe distinction between semiclassical RR forces for which a
associated with back reactidi6]. The generally accepted FDR plays no role, and the deviations from the semiclassical
classical equation of motion in a covariant form for charged RR force of stochastic nature that are governed by a FDR.
spinless point particles, including the effect of radiation re- To remedy the ALD pathologies and correct the RR ver-
action, is the Abraham-Lorentz-Dird&LD) equation[17]: sus VF misconceptions we need a brief expose of the con-
ceptual framework and methodology of open systems and

2+ (262/3m) (222 + 74) = (elm)Z,F2%(2).  (L.1) initial value functional formulations.

1. Runaway solutions and preacceleration

The time scaler0=(2e2/3mc3) determines the relative im- C. Quantum, stochastic, semiclassical and classical
portance of the radiation reaction term. For electrons,
~10"?* sec, which is roughly the time it takes light to cross
the electron classical radiug~10"'° m. The ALD equa- A closed quantum system can be partitioned into several
tion has been derived in a variety of ways, often involvingSubsystems according to the relevant physical scales. If one
some regularization procedure leading to a renormalizatio# interested in the details of one such subsystem, call it the
of the particle’s mass. Feynman and Wheeler derived thiglistinguished, or relevarsystemand decides to ignore cer-
result from their “Absorber” theory which symmetrically tain details of the other subsystems, comprisingetheiron-
treats both advanced and retarded radiation on the same fodhent the distinguished subsystem is thereby rendered as an
ing [18]. Coleman solved the classical problem using theoPen system. The overall effect of the coarse-grained envi-
same configuration-space Pauli-Villars regulated Greengnmenton the open system can be captured by the influence
function that we employ in the Appendi29]. functional technique of. Feynman and_ VernQ@], or the

The ALD equation has strange features, whose status afdosely related closed-time-path effective action method of
still debated. It is a third order differential equation requiring Schwinger and Keldysf6]. These are initial value formula-
the specification of extra initial date.g. the initial accelera- tions. For the model of particle-field interactions under study,
tion) in addition to the usual position and velocity required this approach yields an exact, nonlocal and nonlinear, coarse-
by first order Hamiltonian systems. This leads to the exis-grained effective actiotCGEA) for the particle motiorf7].
tence of runaway solutions. Physidal.g. nonrunawayso- ~ The CGEA may be used to treat the nonequilibrium quantum
lutions may be enforced by transforming Ed.1) to a sec-  dynamics of |nter_actlng.part|cles. _
ond order integral equation with boundary condition such When the particle trajectory becomes largely well defined
that the final energy of the particle is finite and consisten{With some degree of stochasticity caused by noae a
with the total work done on it by external forces. But the résult of effective decoherence due to interactions with the
removal of runaway trajectories comes at a price: the solufield the CGEA can be meaningfully transcribed into a sto-
tions to the integral equation exhibit the acausal phenomenghastic effective action, describing stochastic particle mo-
of preacceleration on time scaleg. This is the source of tion. In this program of investigation we take a microscopic
lingering questions on whether the classical theory of poiniéw, using quantum field theory as the tool to give a first-
particles and fields is causal. This is one major conceptudlrinciples derivation of moving particles interacting with a
point we want to clarify. The other is the relation betweenguantum field from an open-systems perspective. We high-
radiation reaction and vacuum fluctuations, a point of longight two regimes between the classical and the quantum: At

1. Quantum open system and coarse-grained effective action

standing confusion. the semiclassicalevel, where a classical particle is treated
self-consistently with back reaction from the quantum field,
2. Radiation reaction and vacuum fluctuations an equation of motion—the ALD equation—for theean

o ) ] _ coordinates of the particle trajectory is obtained. At she-
Radiation reactioRR) is often regarded as necessarily

balanced by vacuum fluctuatiogF) via a fluctuation dis-

sipation relation(FDR). This is a misconception. RR exists  itps js 4 case where the near and intermediate field dynamics
already at the classical level, whereas VF is of quantum nasannot be ignored. Work is done on and by the so-called accelera-
ture[2,20]. An interesting example involves the special caseon field (also known as the Shott fielat different stages of the

of uniform acceleration where RR vanishes in the classicaparticle motion such that the total energy content of radiation field,
limit but vacuum fluctuations of quantum fields have anparticle,and acceleration field is conservg@1]. It is incorrect to

ubiquitous existence. This well-known classical result ofdemand equality between the particle afsymptoti¢ radiation
vanishing RR is at first sight surprising because a uniformlyfields alone; they are not the complete system.
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chasticlevel self-consistent back reaction of tflectuations nary ALD equation with no runaway trajectories. Whether
in the quantum field is included in our consideration, and thehe semiclassical solution is unique depends on both the ini-
ALDL equation is obtained. tial particle and field states. If the field begins in a superpo-

sition of macroscopically distinct configurations, each con-

2. Decoherent histories, semiclassicality and stochasticity ~ figuration may lead to macroscopically distinct particle
. , trajectories. This happens because there will, in that case, no

A consequence of coarse-graining the environni@uén-  |onger be a single extremal solution of the CGEA around
tum field) is the appearance of noise which is instrumental tQyhich the evolution propagator can be expanded. If these
the decoherence of the system and the emergence of a Clagtinct coarse-grained trajectories decohere they are identi-
sical particle picture. Decoherence or dephasing refers to thg,§ a5 a set of semiclassical solutions. In this paper we as-

loss of phase coherence in the quantum open system arisingme initial field states that are simple functional Gaussians

from the interaction of the system with the environmgait (like vacuum, squeezed, coherent, or thermal field states

When the environment is a quantum field quantum fluctuay,pere this problem does not arise. Finally, the particle’s ini-

tions (under certain approximationsan act effectively as @ 5| state may involve a superposition of distinguishable

classical stochastic source, or noj2]. wave packets that, after coarse-graining and decoherence,
Under reasonable physical conditiofil, 14 the evolu- 54 to multiple semiclassical solutions. Thus, only for ini-

tion propagator for the reduced density matrix of the opena)y |ocalized particle states in quantum fields that are suf-
system is dominateVia the stationary phase approximation ficiently classical(i.e. not involving macroscopically distin-

by the particle trajectory gi_ving the extremal solution of theguishable superpositionshould we expect to find a unique
real part of the coarse-grained effective aci@BEA). Be-  (gjnglg semiclassical solution. Finally, because the semiclas-
cause the CGEA is derived by summing over all historiesica |imit describes the quantum average of coarse-grained

of the quantum field, this extremal solution—the ALD pigiories, the ALD equation loses its meaning in the finest-
equation—incorporates the average radiation reaction forcgyined quantum limit.

and hence gives the self-consistent semiclassical trajectory:

In this emergent picture of quantum to classical transition,
there is always some degree of residual stochasticity in the D. Prior work in relation to ours
system dynamic§l1,14]. Stochastic fluctuations around de-

coherent semiclassical trajectories are described by thgemiclassical radiation reaction(for atoms as well as

imaginary part of the CGEA. We use this fact below to de- L L .
. L . charges moving in quantum fieldsicluding those by Rohr-
rive the relativistic ALDL equation. If1] we show that an I'#ch, Moniz-Sharp, Cohen-Tannout al, Milonni, and oth-

flctuations and disSipation about the semiciassical sotuortrS|2L:23.24. Kampen, Moniz, Sharp, and othdes] sug-
That result applies topthe ALDL equation here gested that the problems of causality and runaways can be

resolved in both classical and quantum theory by considering
B _ extended charge models. It is true that extended objects can
3. Pathology-free modified ALD equation give consistent causal dynamics, but this approach, while

This view of the emergence of semiclassical solutions a§lUite interesting, misses the point that point parti¢tesim-
decoherent historiekl0,11,14 also suggests a new way to Plied by local quantum field theorieshould obey a good
look at the paradoxes of charged particle radiation reaction ifPW-energy effective theory that is consistent so long as the
the ALD equation. While it has long been felt that the reso-high-energy(short distancestructure of the particle is not
lution of these problems must lie in quantum theory, this stillbeing probed. Wilson, Weinberg, and othE26] have shown
leaves open the fo”owing questions: When’ if ever, does th@OW effective theOI’y deSCI‘Iptlon is sufficient to understand
ALD equation appropriately characterize the classical limitlow-energy physics because complicated, and often irrel-
of particle back reaction; how does the classical limitevant, high-energy details of the fine structure are not being
emerge; and what imprints do the correlations of the quanProbed at the physical energy scales of interest. Therefore
tum field environment leave. one should not need to invoke extended charge theory to

Since the semiclassical limit describes the equations o¢nderstand low-energy particle dynamics and radiation reac-
motion for the expectation value corresponding to thetlon.
quantum-averaged particle trajectafter sufficient coarse- (2) By examining the time dependence of operator ca-
graining we are led to ask1) are the decoherent histories nonical commutation relations Milonni showed the necessity
describing particle trajectories the solutions tdpmssibly ~ Of electromagnetic field vacuum fluctuations for radiating
modified ALD equation,(2) are these solutions unique and Nonrelativisticchargeg 24]. If a quantum particle is coupled
runaway free, an@) are they causal without preacceleration t0 aclassicalelectromagnetic field, radiative losses lead to a
on the coarse-grained scale in which they decohere? contraction in “phase space” of the particle position and mo-

We show below that the semiclassical soluti@rs in-  mentum violating the commutation relatiopys p]=i#. The
deed described by a modified ALD equation with time-vacuum field balances this dissipation effect preserving the
dependent coefficients satisfying these criteria. The timeeommutation relations as a consequence of a fluctuation-
dependent effects act to preserve causality, occurring in theissipation relatiofFDR). Our relativistic treatmentwithin
short time after the field begins to dress the initial particlea particle-centric or world line frameworlgeneralizes these
state. At latter times the solutions essentially obey the ordiconsiderations to a particle’s spacetime variables. For ex-

(1) There are many works amorrelativistic quantuniand
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ample, the relativistic ALD-Langevin equation derived be-assume a special value for the cutoff one generally does find
low describes fluctuations in the particle’s time as well asboth fluctuations and dissipation, though Ford and Lewis’s

space coordinate. This is expected since relativity requiresounter-example shows how careful one must be in making
that a physical (on-shel) particle satisfy 'Z//-'ZM:i:Z(T) automatic assumptions about the existence and nature of

—7%(7)=1, and therefore any fluctuations in spatial vari- FDRs.

ables must be balanced by fluctuations in the time coordi- .Our results agree with t.h_e conclusion that .causallty re-
nate. quires a cutoff below the critical value, but we find no com-

(3) The derivation and use of quantum Langevin equapelling justification for the claim that the cuta$houldtake

tions (QLE’s) to describe fluctuations of a system in contactexaCtly that special value. It is certainly interesting that a
with a quantum environment has a long hist6y]. Typi- critical value of the cutoff implies that all higher time deriva-

cally, QLE’s are assumed to describe fluctuations in the Iin—t'\,’es vanish frqm the equations of mot!on. However, even
ithout a specially chosen cutoff, the influence of higher

ear response regime for a system around equilibrium, b o ) | datl X
their validity need not be so restrictive. Nonequilibrium con- d€fvative terms is strongly suppressed at low energies, as

ditions can be treated with the Feynman-Vernon influencé:OL p0|_nted out, and hencg the h|gh_—energy structure of the
functional as exemplified by Caldeira and Leggett’s study Oi{heory(llke thg exact cutoffis largely irrelevant to the low-
quantum Brownian motioQBM), which has led to an ex- €M€"9Y behavpr. R .
tensive literaturd4], particularly in regard to decoherence . Ford and 0 C_o_nne_ll alst_)_propose a relat'.V'St'C gene_rallza-
issues[9,10]. Barone and Caldeirfl3] have applied this tion of their modlfled_(|.e. crltlcal_cutofb equations of mot!o_n _
method to the question of whether nonrelativistic, dipolefor the average trajectory derived from the nonrelativistic

coupled electrons decohere in a quantum electromagnet LE [29]._Our deriyation of the .sFoc_:hastic limit goes well
field. An advantage of Barone and Caldeira’s work is that it eyond this by starting from relativistic quantum field theory,

is not limited to initial factorization of the system and envi- and by y|eId|nt§); a relat|V|st|g Langevnj equ.artllol:.
ronment states; they use the preparation function method (5)prertl;|jr e_ltlvg expa:jnsu)_n agrehelng with t eAL%I?hequa-
which allows the inclusion of certain kinds of initial particle- tion after a derivative reduction scheme up to oreehas

field correlations. Despite this, Romero and Paz have pointef€€" derived from QED field theory by Krivitskii and Tsy-

out that the preparation function method still suffers from antOViCh [31], including the additional forces arising from par-

(implicit) unphysical depiction of instantaneous measure-t'de spin. Thelr work shows that a perturbative fqrm of .the
ment characterizing the initial state preparat[@8]. As a ALD equation may be understood from conventional field
consequence, anomalous short time behavior still manifesg‘ec?ry’ but the a_uthors have not ad.dressed the role of fluc-
on the cutoff time scaléncluding the decoherence rate hav- f[uat'lons, correlation, .decoherence, tlme-dependent renormal-
ing a strong cutoff dependencdhis fact indicates that the ization, nor self—cor'13|sten'F baclf react!on. Our met.hod should
preparation function does not truly resolve the issue. For thig’e effectlve_zly equwal_en'(lgnorlng Spin to summing the
reason, and for simplicity in illustration, we stay with the _Feynman diagrams without electron Iqops to_ aII_ordere of
simpler assumption of initial factorizability. Clearly, going " [31]. and hence produces the full third derivative form of
beyond this by correctly describing the kinds of initial statesthe ALD equation. .

produced by physically realistic preparation procedures is al (6) Low [32,] shqwed that runaway solutions appqrently
important problem both in regard to the short time dynamicsdC NOt occur in spin 1/2 QED; but he does not derive the
and questions like decoherence that are sensitive to the CL{%‘—LD equatloq, or address the semwlasswgl or stoc_hastlc I'm'
off. its. While an important result, we emphasize the view that it
does not, and should not, matter whether particles are spin
2, spin 0, or have some other internal structure in regard to
e causality of the low-energy effective theory for center of
mass particle motion.

(7) Using the influence functional, Db [33] derived a
arkovian master equation in nonrelativistic quantum me-

(4) Ford, Lewis, and O’ConnelfFOL) have extensively
discussed the electromagnetic field as a thermal bath in tht
linear, dipole coupled regim29], and pioneered the appli-
cation of QLE’s to nonrelativistic particle motion in QED.
They have detailed the conditions for causality in the ther-M

modynamic, equmbnu_m limit d(_escnbed by_the IaFe time I|n_— chanics. Ford12] has considered the loss of electron coher-
ear quantum Langevin equation. A crucial point of their

L . S .ence from vacuum fluctuations. In contrast, it is our intent to
analysis is that particle motion is runaway free and causal 'rémphasize the non-Markovian, nonlinear, and nonequilib-

the late time limit as long as the spectral density of the field;, 1, reqimes with special attention paid to self-consistency.

is cut off below a critical value determined by the classicalg,4112] has considered the loss of electron coherence from
electron radius. 1H130], they suggest a form of the equations vacuum fluctuation

of motion that gives fluctuations without dissipation for a

free electron, but this result is special to the case where the

cutoff is precisely equal to the critical value, which in turn E. Organization and notation

implies that the bare mass of the particle exactly vanishes. In

contrast, we take the effective theory point of view which In Sec. Il we obtain the influence function@F), coarse-
emphasizes the typical insensitivity of low-energy phenom-grained effective actio@CGEA), and stochastic effective ac-
ena to unobserved high-energy structure. When one does ntion (S,) for spinless relativistic particles. We show how to
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use S, to derive both nonlinear semiclassical equations ofWe define the basis states hy;,z)=|¢;)®|z), where|z)
motion for relativistic particles, and stochastic equations ofare positive or negative frequency relativistic configuration-
motion (a Langevin equationdescribing the fluctuations in space states defined as

relativistic particle motion induced by quantum fluctuations

in a field. In Sec. Ill we consider the single particle case, and 1z)=|z 1)

derive the (scalar-field modified Abraham-Lorentz-Dirac 4
(ALD) equation with time-dependent coefficients as the self- :f dp 5(4)(p2—m2) 0(+p0)e(—i/h)pﬂz/‘|p Po).
consistent semiclassical limit. Section 1V shows how this (2m)* B o

limit emerges free of pathologies. In Sec. V we derive a 22
Langevin equation—the ALDL equation—taking into ac- (2.2

count the stochastic fluctuations of relativistic particles abougecause we are interested in the semiclassical equations of

the semiclassical trajectories for both one particle and mulg,qtion (and stochastic fluctuations around the semiclassical

tipartiple cases. m Sec. VI we gi.ve gsimple example of thes%olutions) for well-localized particles, we restrict to the case
equations for a single free particle in a vacuum scalar fieldypere

In Sec. VIl we summarize our main results and mention
areas of applications, of both theoretical and practical inter- 0z ,2)=11,8(z,— z0) 8(z] — Z;0), 2.3
est.
Greek letters will run from O to 3. We use the notation with z, the initial position of theith particle. The particle
dx=d*x=dxdt, andx=(x,t). Spatial(3-vector$ appear as state in Eq.(2.3) should be antisymmetrizedor fermions
bold faced. A bar denotes a semiclassical trajectery.z), or symmetrizedfor bosong, but we will ignore this effect of
and a tilda denotes a stochastic traject@yy.Z). The mea- particle statistics at the semiclassi¢ahd stochasticlevel.
sures for pathor functiona) integrals are denoted The Lorentz-invariant configuration-space states defined by
Eq. (2.2 are the most localizable relativistic one-particle
_ states, nonetheless they still correspond to particles with size
DZ_H d2(7)dz(7) characterized by the Compton wavelength=h/mc. This
can be verified by computing the overldg,t|z’,t)# 5(z
where the parameter is discretized, or —27') between two such states at equal times. As a conse-
quence the semiclassical equations of motion for the mean
De=[] de(x) partic_le trajectory W?II not have a resolution finer thag
X (and it may be considerably coarser
In the initially uncorrelatedi.e. factorizedl case involving
where the spacetime coordinates discretized. The metricis highly localized particle initial states, the particle’s reduced
g.,=diag(1,—-1,-1,-1), and we set=1. density matrix at later times is given by

II. SPINLESS RELATIVISTIC PARTICLES MOVING IN A

SCALAR FIELD pr(Zs ,Zé):f dzdz J,(z,2¢ ;2,2 ) p(z ,Z])

A. Coarse-grained and stochastic effective action =3:(2¢,2¢ ;Z0,Zi)- (2.9

Relativistic quantum theories are usually focused prima—_l_he reduced densitv-matrix evolution operator is aiven b
rily on quantized fields, the notion of particles following tra- y P 9 y

jectories is somewhat secondary. As explained in greater de- oy . ,
tail in [1], we employ a “hybrid” model in which the  J/(z,z ;zio,zio)=f "t DzDZ eMEASAZ N[ Z,2']
environment is a field, but the system is the collection of

particle world lines with spacetime coordinag r,,) where

n indicates then'" particle coordinate, with world line pa- f
rameterr,, chargee,, and masan,. For simplicity, we

denote the entire collection of particle world line coordinates A . .
M ) - . F[z,z'] is the Feynman-Vernon influence functiohd] for a
{zk(7,)} by z stating explicitly when we are only consider-

ing the case of a single particle. pair of particle histories{@,},{z;}). The influence functional

" . ) for a free, massless scalar field is shown in Sec. IIB, Eq.
The initial quantum state of the particle plus field system ’ ) . : . '
at timet;, described by the density matrixt;), is assumed (2.20. The coarse-grained effective acti¢gBGEA) is de-

to be uncorrelated and expressible as the product of particlftlaned as

’
ziyzi =Zjo

2% 5, Dy elihScoedz?] (2.5

’
Zi,zi 7Zi0

and field density matrice$,, andp,,, respectively: Scoedz2'1=S[z]-S,[2' 1+ Se[2,2'] (2.6)
ﬁ(t|):ﬁz(t|)®f’¢:(t|) S||::_iﬁ|n F[Z Z/]. (27)
=f deidedzdz/ p(¢i. ¢ )pAz.2)| @i, z){e] .Z]]. Sk is called the influence action. The CGEA contains the

full information about the influence of th@oarse-grained
(2.2)  field on the particle, and hence is a highly nonlocal object.
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The measur®z indicates path integratidrover the par- From S, follow the relativistic equations of motion:
ticle world lines z/(7). Development of the full quantum
dynamics requires evaluation of these world line path inte- m'z{f/\/Zz —"V(z,). (2.10
grals; because particle-field couplings are nonlinear one may
resort to perturbation theory in practice. The treatment of thigor generality, we include a possible background poteNtial

problem is the topic of our second series of papers. For den addition to the quantum scalar field environment treated
tailed discussion on the extraction of a semiclassical and stqye|ow. The scalar current is

chastic limit from the open-system evolution propagator

(2.5 in this context se¢l]. In brief, semiclassical trajecto-

ries (world lineg exist whenJ, is dominated by the station- j[Z,x)=2 f drenun( ) 6(X—z4(7)), (2.11
ary phase solution of the world line path integrals, which are n

the extremal solutions to the real part 8fgg. Under re- .

lated conditions to those that imply decoherence of the tra\-’vIth
jectories(see[1]), the quantum fluctuations of the particles — Pz (1)
around the stationary phase solution act effectively as a clas- Un(7n) = N2n(7n) Zn, (7o) (212
sical stochastic source. In this case, it is also possible t

introduce a real stochastic effective act®yiz,z’ | such that ?n [2], we treat a vector current coupled to the electromag-

netic vector potentiah ,. In both cases we assume spinless
. , . , particles. The inclusion of spin or color is important to mak-
o1/ Scoedz '] — f DxP[x]e"™Sd221, (2.8 jng full use of these methods in QED and QCD.
The interaction between the particles and a scalar field is
whereP[ x] is a positive definite probability measure for a given by the monopole coupling term
stochastic fieldy(x,t). When the stochastic regime physi-
cally obtains, the stochastic equations of motion derived as .
the extremal solution o8, then encode the same information Sint:J dx J[Z,X)QD(X)Ze; J d7aUn(70) 9(Z4(70)).
as the(symmetrizedl quantum correlation functions for the (2.13
particle coordinates. We shall use these facts to obtain both '

the semiclassical and stochastic limit for relativistic particlestyis is the general type of interaction treated/1d. In the

below. _ _ o second line we have used the expression for the current
While we emphasize the fact that this particle-field model(z_lj)_ The free field action is

has a well-founded microscopic quantum theory which thus

allows one to explore in detail the quantum, stochastic, and 1

semiclassical regimes, we might also view our model in S<p:_f dxd, ed”e. (2.149
analogy to the treatment of quantum fields in curved space-

time [34]. There, one takes the gravitational fi¢fphacetimg B the int tionis I inth ¢ .
as a classical system coupled to quantum fields. It is impor: ecause Ine interaction 1S ineéarqn the exact expression

tant to include the back reaction of quantum fields on thefor the influence functional may be obtain€idr a summary

classical spacetime dynamics. The back reaction of thei?ee[l]):

mean yields the semiclassical Einstein equation which forms i

the basis of semiclassical gravity5]. The inclusion of fluc- FIj :]:exq’ — %f dxf dx'[2j ~(X)GR(x,x")j " (x")
tuations of the stress energy of the quantum fields and the

induced metric fluctuations yields the Einstein-Langevin

equations which forms the basis of stochastic semiclassical —ij (x)GH(x’,x’)j(x’)]], (2.15
gravity [36]. In our work here, the particle coordinates are

analogous to the gravitational fie(thetric tensoy.
where

B. The scalar field influence functional and stochastic equations . _
of motion i =({lzx)—j[z'.x)) (2.19

The free particle action is . . .
P iT=GlzX)+i[2' )2 (2.17)

SZ[Z]=;fdTnv('Zﬁ)z[mn+V(Zn(Tn))]- (29  and

GROX, X )= 00— x" ) [p(x),6(x")]) (218

“The relativistic particle action is reparametrization invariant; H , . .
hence, the path integral requires gauge fixing to prevent summing G (x,x")={@(x),e(x")}). (2.19
over an infinity of gauge-equivalent histories. For simplicity, we ]
assume the gaug#'z, =1 making the parametets, proper times. GR and G" are the scalar field retarded and Hadamard
Treatment of gauge fixing becomes important in the full quantizedSreen’s functions, respectively. Substitution of E@.11)
world line theory. then gives the multiparticle influence functional
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e? . . R
F[{z},{z’}]zexp{—?% fdrnf dTmG(T—zﬂ) SX[z—]=SA[z—]+deJ [z—,x)[)((x)
X 0(2y = 2) [UnG (0, Zm) Uy +2f dx’GR(x.x’)f[z*,x’)]
—u'GM(z. .z )uy—u,GH(z,,z,)u!
A nemmem nmem =S\[Z2]+ U GR Ut ulw,, (2.28
+u,G"(z},z})ul +u,GR(z,, 2 U,
—u,GR(z} .z U+ u,GR(z,, 2/ U/, where
Un®n=Un(Zn) X(Zn) = Un(Zn) X(2Zp), (2.29

—UAGR(ZA,z{n)ua]J (2.20
and x(z,) is the stochastic field evaluated at the spacetime
position of thenth particle. The stochastic field has vanish-

whereu,=un(z;), etc. The influence functional may be ex- ing mean and autocorrelation function given by
pressed more compactly by using a matrix notation where

Un=(Un,Up) =(ug,up), giving (XOOX(X)) = R0, (X)) =G (x,X").
(2.30
a e2 T~R TH . .
FlZ%]=exp — & ;n d7,d 7 (Un GrUm+ Un GymUim) Hence,x(x)’s statistics encodes those of the quantum field
@(x).
(2.21 We may express the stochastic effective action in terms of
) stochastic variablesy,(7) coupled directly to the particle
e . B . . . .
_ — 2 (uTeR u+uTGH _ trajectories by writing the influence functional in terms of a
exp‘ 7 (UnGamtim+ UnGantim) (2.22 cumulant expansion:
i + i m=c(n) +
=ex %S,,:[za] . (2.23 Flz7]=exp 5| dnizy Ci(m;z”]
The superscript denotes the transpose of the column vector _LJ' fd dr.zt™ 72~ Clm R
u. In Eq. (2.22, and below, we leave the suil,, and 272 ndn2y 2 Counlm1,72i27]
integrations [dr,dr,, implicit for brevity. The matrices
GH ,GR are given by N ]

GH=0(T—20) (23— 23)

( G(Hll)(zﬁ -Z#) - G(Hu)(Zﬁ 'Zrzn)

H 2,1 H 2 2
- G(21)( Zy ’Zm) G(22)( Z, vzm)

i
:eXp[ %f dnzi (CY(m1;27])
(2.24
XJ D 7,P[ 7, ;2" |e/MIdnz n.(miz'],
and

(2.31)
Grm=0(T—23) 6(z0—2py)
( G(Rll)(zﬁ .Z#) GFlZ)(Zﬁ 'Zrzn)

- GFZl)(Zﬁ azrln) - G?zz)(zﬁ :sz)

The C{?, are then the cumulants of the noigg(7) whose
) probability distribution isP[ 7, :z*]. They are given by
. (2.2

C(,]) _(h)n 5nSIF[Zi] |
Nopr oo | 5 _ — z7=0-"

In Eq.(2.23, we have defined the influence actigp . GH'R P AV szt (1) L. 82#07 (1)

are the scalar-field Hadamard or Retarded Green'’s functions (2.32
evaluated at various combinations of spacetime paii;!fﬁ.

After defining the sum and difference variables Note that because of the nonlinear nature of the coupling the

cumulantsC{”, do not vanish as is the case for linear theo-
ries with Gaussian noise.

z =(z=7)) (2.29 The stochastic effective actidd), is then
zt=(z+2")12, (2.27 N . _ (N o+
S,[z7 n]=S[z" ]+ | drz* (1) (CY) (7,27 ]+ 7,(7)).
the stochastic effective action is given see[1]) (2.33
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The stochastic equations of motion follow immediately We shall apply both Eqg92.36) and (2.38 below in de-
from® riving the semiclassical and stochastic limit for relativistic
particles. One of the important advantages of the world line
formulation for relativistic quantum particles is that we can
n -0, (2.34 more readily evaluatéperha_\ps numerically_, or exac_tly for

special cases such as uniform acceleratittre nonlinear
equations of motiori2.36) to obtain a semiclassical solution
giving that provides the basis for deriving a stochastic equation in-
cluding fluctuations. The Langevin equations therefore self-
consistently depend on the nonlinear semiclassical equations
of motion.

This is one aspect that distinguishes our apprdacirid
line formulatiorn) from a purely field theoretic treatme(d.g.
Dirac field) of relativistic charged particles. In general, non-
linear semiclassical equations of motion for a relativistic
charged particle field are not so easy to solve, and a Lange-
vin equation describing fluctuations of the field around its
nonlinear semiclassical solution is a far more complicated
object than that obtained in E¢2.36. Albeit, a Langevin
equation for a relativistic field contains far more information
than Eq.(2.38, but when distinct particle trajectories are of
interest our approach should be considerably more efficient
at extracting the desiredhough more limiteglinformation.

0S5 7]
ozM( 1)

+C{(7,2]+ ,(1)=0. (2.35

The cumulantC{”)(7,z] describes dissipation, or in this
context radiation reaction. If Eq(2.35 were linear, we
would interpret it as a Langevin equation for the particle
trajectories with additive, but colored noisg 7). In fact, as
it stands Eq(2.39 is nonlinear, and the noise depends in a
complicated way on the trajectories$ = z because the prob-
ability distributionP[ #;z] is itself a functional of the trajec-
tories.

The semiclassical equations of motion are given by

S, 7] C. Langevin integrodifferential equations of motion

>z +C{(r7]=0, (2.36 "o g el _

6Z"( 1) ‘ We define new sum and difference variables
wherez,(7) is the semiclassical trajectory. These equations vE=(uxu')i2 (2.4

of motion will be nonlinear in general. To find linear stochas-
tic equations of motiona Langevin equationfor fluctua-
tions around the mean trajectazy given to lowest order by
the solution to the generally nonlinear equations of motion
(2.36, we expand Eq(2.35 to linear order in the deviation
variable

with vi=(v~,v™). Then the influence action has the form

e2
Se[Z3]= g(vTfoer iviGv), (2.42

H=2"-7" (2.37  Where

[ i i i i i i R R R R R R R R
The linearized Langevin equations, with a Gaussian noise . [GH-GH+GE -GS, GR+GR+Gh+GE,
approximation, becomes R=

R_~R_~R_,~R ~R,~R_~R_A~R
GGG+ Gy Gt G— Gy~ Gy,

2.4
f d ( R o
T + : V()= 7.2),
ST oT(r) Tu and
(2.39
R GIi+ G+ Gy + Gy, G~ G+ Gy~ Gy,
with noise correlator G;': GH4Gh—GH_GH GH—GH_GH 4 GH |
11 12 21 22 11 12 21 22
(P77 =CY(7,72) (239 (249
The lowest order cumulant in the Langevin equation,
(7u(7))=0. (2.40 C{”), is found by evaluating’S-/5z*~, and then setting

z~ =0 andz" =z. There are two kinds of terms that arise:
those wheres/ §z#~ acts onv, and those where it acts dn
RH For thedv/ 6z*~ terms, setting” =0 collapses the ma-

30ne can verify by examining the structure of the effective action, .

that the functional derivative with respect to the difference variabletr'ces(2'43) and(2.44 to one term each: only the (1,2) term

R H . . _
z~ (i.e. 8/62°) corresponds to finding the expectation valuebf  Of GU.' and_the (1,1) term OG_U survive. But, Settlngz'
Settingz~ =0, after taking the functional derivative, thus corre- =0 givesv ™ =0, v*=u, and since the (1,1) term of/Gs
sponds to the desired expectation vaiie=z. proportional to two factors ot ~, it also vanishes. When
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ol 62+~ acts onGUR, only the (2,2) term survivégbecause
it is the only term not proportional to a factor of ). For
similar reasons, the only contributing element@ft is also
its (2,2) term. To evaIuateéGf(zz)léz“*)|27:0, we note

o 1)90 1) »
52*#_5 5z Sz | (2.49
After a little algebra, we are left with
_ 8GR(z(7),2(7"))
(5(35(22)/52” )|z-=o=—, (2.46

ozM( 1)

where the derivative only acts on tkér), and not thez(7')

PHYSICAL REVIEW D 65 065015

Next we evaluate the second cumulant. After similar ma-
nipulations as above, we find that the second cumulant in-
volves only G". We note that the action ofj/5z* on an
arbitrary function is given by

f dx f(X)=ef dxf dTg_;[(zz)llz

X o(x—z(7))]f(x)

5] (x)
8z*(7)

d| z z,\ d
:e|d_r<u(/;))+(u(l:—))d_r
J
—u(7) —]f(Z(T)). (2.48
oz*

Because of the constraif=12 we can setu=1 andu

argument inGR. The same algebra in evaluating the —q Also z4z,=0. Then

(5GU(22)/52 7)|,-—o term shows that all the factors cancel,

and thereforés"™ does not contribute to the first cumulant at

all. Because the imaginary part 8fc[ z%] does not contrib-

ute to the first cumulant, the equations of motion of the
mean-trajectory are explicitly real, which is an important
consequence of using an initial value formulation like the

influence functionalor closed-time-pathmethod.
The first cumulant, describingdiation reaction is there-
fore given by

dSiE

(n)[z )= 52#—*(7-)

z==0

szdr’ez[( Su(z)

52 T)> GR(z(7),z(7"))u(z(7"))
+u(z(7))

5GR(z<r>,z(r'>>> ,
52#—(7_) U(Z(T ))]

(2.47

This expression is explicitly causal both because the proper

time integration is only over values' <, and because of

the explicit occurrence of the retarded Green’s function.
Contrary to common perception, the radiation reaction force
is not necessarily dissipative in nature. For

given by C{”

1.
instance, we shall see th@ﬁ”) vanishes for uniformly accel-

erated motion, despite the presence of radiation from a
In other circumstances,

uniformly accelerating charge.
C(lﬁ[z,r) may actually provide an anti-damping force for
some portions of the particle trajectory.

“Note that for linear theories, unlike the case h&8,” is not a
function of the dynamical variables, but is instgatimosj a func-
tion of some predetermined kinematical variables thapriori

[ ot

f(X) e{(z,+2"2,9,)}f(z(7))

=ew,(2)f(z(7)). (2.49

This last expression defines the operaﬁ;r(z). We have
usedd/dr=2z,9". The operatowrlﬂ satisfies the identity

7MW ,(2) = (22, + 2272 ,9,7) =0,

(2.50

as long as the solution, is on-shell. This identity ensures
that neither radiation reaction nor noise-induced fluctuations
in the particle’s trajectory move the particle off-sh@k., the
stochastic equations of motion preserve the constrint
=1).
With these definitions, the noisg“(7) is given by
7,(7)=ehM W, (2) x(2(7)

=ehVq(2,+2"2,0,)}x(2) (2.5
and the second-order noise correlator by

CYzim 7' ) =({n*(7),n"(")})
w (2" )({x @) x @)}
=W (W"(2') G (7). 2(7")).

=e2hwH(2)

(2.52

The operatorK/“(z) acts only on thein G"(z,z'); likewise,
the operatow”(z’) acts only onz’.

This scalar field result is reminiscent of electromagnetism,
where the Lorentz force from théantisymmetri¢ field
strength tensofF ) is f-V=2"FE)=27"9;,A, . The anti-
symmetry ofF 5 mplresz“fﬁ"" 0. We may define a scalar

specify the trajectory. Hence, there is no contribution fromanalog of the antlsymmetr(csecond rankfield strength ten-

SGRHI 524 type terms.

sor by
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21FX ,=7,d,x. (2.53 lated with the noise that every other particle sees. The non-
locally correlated stochastic fielgd(x) reflects the correlated
This shows that the second term on the right-hand side of Eqature of the quantum vacuum. From the fluctuation-
(2.51) gives the scalar analog @& stochasticelectromag- dissipation relations found ifl] the n=m quantum noise is
netic Lorentz forcefX=2"FX . The first term on the right- related to then=m dissipative forces. Under some, budt
hand sidgRHS) of Eq. (2.51), 2, x(z), does not occur in the all, circumstancesthe n#m correlation terms are likewise
treatment of the electromagnetic field. In the scalar-fieldrelated to then# m propagation(interaction terms through
theory, this term may be thought of as a stochastic compoa multiparticle generalization of the FDR, called a
nent to the particle mass. propagation-correlation relatidi37].
The stochastic equations of motion are We have already noted that the first term in Ej51) has
the form of a stochastic contribution to the particle’s effec-
- tive mass, thus allowing us to define the stochastic mass as
mz,=— aMV(z)+e2f d7'w,(2)GR(z(7),2(7"))
_ 112
+eh 2w, (2)x(z(7)). (2.54 My = (m+ei "x(2)). (259
Fluctuations of the stochastic mass automatically preserve

I\Teeg:gzﬁlrgféﬁ?a|'5£$t?¥sa fi?t t?l];ngglrltri‘gaer '(srtz(;jzr;?()s:ilgsthe mass-shell condition. Likewise, the effective stochastic
P
force F M satisfies

z,[ ;7). Noise is absent in the classical limit found by the
prescriptionz— 0 (this definition of classicality is formal in

that the true semiclassical or classical limit requires coarse- 2,FX=2,2,7"9"x(2) = 2,2,)2" 9" x(2)=0.
graining and decoherence, and is not just a matter of taking (2.60
the limit #—0).

The generalization of E¢2.54 to multiparticles is now This shows that the stochastic fluctuation-forces preserve the

straightforward. If we reinsert the particle number indices,constrain
the first cumulant is

tz=1, as noted above.

Ill. THE SEMICLASSICAL REGIME:
THE SCALAR-FIELD

=> f d 7)€ Wy,,,(Z0) ALD EQUATION
m

2,=0 We have emphasized ifil] that the emergence of a
Langevin equatiori2.54) or (2.58 presupposes decoherence

R ! ’

X G Zn(7n), Zn TU@m( 7)), (259 yorking to suppress large fluctuations away from the semi-

classical trajectories found from the coarse-grained effective

action. Hence, the Langevin equation describes the dynamics

of the fluctuation&*=z*—2z" around the semiclassical so-

0Sie[Z]
6z (7)

Clmulz 1) =

the noise term is given by

k(1) =eh AWl (z,) X (Zn( 7)), (256 |utionZ*. The semiclassical limit is therefore the noise aver-
, . age of the Langevin equation. The stochastic regime is char-
and the noise correlator is acterized by fluctuations around the semiclassical solution
which originate from quantum fluctuations in the field but
Cliomlz o, T) = ({70 (), (T 1) that are rendered effectively classical and stochastic via de-
. . coherence. In our second series of papers we explore the
=% hWh (Zn)Win(Zm) G (Za(71)  Zm( 71y))- stochastic behavior due to higher-order quantum effects that

(2.57 refurbish the particle’s quantum nature.
On a conceptual level, we note that the full quantum
The nonlinear multiparticle Langevin equations are thereforéheory in the world line path integral formulation involves
summing over all world lines of the particle joining the ini-
tial and final spacetime positiong, andz;, respectively. In
summing over particle histories there is no distinction be-
tween, say, a runaway trajectory and any other type of

MZy,, (7)== 3,V (2n( 7))+ YA ,(2,) X (2o( 7))

&3 [ 47, 2(9)G (7). 20 7).

(2.58 5See[37] and Ref[1], Sec. IV, for a discussion of this point. In
. . . . brief, the noise correlation between spacelike separated charges
The n#m terms in Eq.(2.58 are particle-particle inter- goes not vanish owing to the nonlocality of quantum theory, but the

action terms. Because of the appearance of the retardedysal force terms involvinGR do always vanish between space-
Green's function, all of these interactions are causal. he |ike separated points. These two kinds of terms are only connected
=m terms are the self-interactidradiation reactionforces.  through a “propagation-correlation” relatiafthe multiparticle gen-
Then#m noise correlator terms represent nonlocal particle-eralization of an FDRwhen one particle is in the other’s casual
particle correlations: the noise that one particle sees is corréuture (or pas}.
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trajectory? They are just different possible fine-grained his- the semiclassical limit in a self-consistent fashion. These two
tories included in the path integral. Furthermore, no meansteps constitute the full back reaction problem for nonlinear
ingful sense of causality is associated with individual fine-particle field interactions in the semiclassical and stochastic
grained histories. Any particular path in the sum goingregimes. For more general conceptual discussions on deco-
through the intermediate poimtat world line parameter time herent histories and semiclassical domains,[$6¢11,14.
7 bears no causal relation to it than going through the point
z' at some later parameter time. Only physical observ-
ables computed from the full sum over histories need be
causal. In terms of decoherent histories analysis the semi- Even in classical electromagnetic theory, point particles
classical trajectory is associated with a coarse-grained, decean couple to arbitrarily short wavelength modes of the field
hered particle trajectory. Unlike fine-grained histories,leading to ultraviolet(UV) divergences. In the usual treat-
coarse-grained decohered histories should be causal singeent from quantum field theory, infrare@R) divergences
they can be associated with physical observables—the meaiso arise if one makes an artificial distinction between soft
particle trajectories. and virtual photon emissions. However, the “in-in” method

More generally, questions of causality, uniqueness, an@dopted here avoids these by summing over all final field
runaways arise in regard to the solutions to the equations ditates without distinguishing between soft and virtual quanta.
motion for the hierarchy of correlation functions of the world From another point of view, IR divergences are an artifact of
line coordinategthe expectation value that gives the semi-incorrectly neglecting recoilradiation reactionon the par-
classical trajectory being just the lowest order examptés  ticle motion.
here that an initial value formulation is crucial because only In this work we take the effective field theory philosophy
then are the equations of motion guaranteed to be real ar@p our guide. One does not need to know the detailed struc-
causal[6]. In contrast, equations of motion found from the ture of the correct high-energy theory because low-energy
in-out effective action(a transition amplitude formulation processes are largely insensitive to thg26] beyond the
are generally neither real nor casual. Moreover, the equatiorgffective renormalization of system parameters and sup-
of motion for correlation functions must be unique and fully pressed high-energy corrections. These observations are true
determined by the initial state if the theory is complete. for both classical and quantum theories, though the classical

So the pertinent questions regarding radiation reaction igase is more trivial since one does not have the subtleties
a quantum to stochastic to semiclassical treatment are tressociated with divergent loop terms from intermediate vir-
following: What are the equations of motion for the meantual processes. In this paper we have integrated out all of the
and higher-order correlation functions? Atteeseequations massless scalar photolthe field. Since the field is qua-
of motion causal and well defined? Specifically, is the semidratic in the action this one-loqfin the field result is exact,
classical (quantum-averagédsolution unique and physical but the resulting scalar Green’s functions have singularities
(e.g. causal and runaway fi@eHow significant are the quan- requiring regularization.
tum fluctuations around the semiclassical trajectory? When Following standard procedure, we now regularize the field
does decoherence suppress the probability of observing largereen’s functions by suppressing their high-frequency com-
fluctuations in the motion? When do the quantum fluctuafonents. In Sec. IlIB we discuss how this follows from
tions assume a classical stochastic behavior? For exampl@odifying the field-environment’s spectral density at high
quantum theory predicts that there is always a possibility ofnergy in a way that is consistent with the assumed initial
observing a trajectory very different than the quantum-state. Different regulators may give different high-energy
average one, including trajectories that might look like run-corrections but should yield the same low-energy physics.
aways, but decoherence should suppress this probability toMonetheless, the general qualitative behavior of possible
negligible amplitude in both the semiclassical and stochastibigh-energy corrections may be interesting. Such is the case
regimes. in effective theorie$26] where one shows the generic form

It is only by addressing these questions that the true semnd scaling of corrections to low-energy phenomena from
classical motion may be identified, together with the noisethe high-energy sector without knowing the true high-energy
associated with quantum fluctuations which is instrumentatheory other than some basic propertiesy. symmetries
for decoherence. With this discussion as our guide, we profhe point of such an analysis here is twofold. First, to dis-
ceed in two steps. First, in Sec. Ill A we find the semiclassi-cover whether the qualitative behavior is consistent as they
cal limit for the equations of motion and evaluate its causapertain to issues like causality and consistency. Second, to
properties. Second, in Sec. IllB we describe the stochastigalculate the possible form of corrections resulting from
fluctuations around that limit. Since we are dealing with asome assumed high-energy theory that might be tested in

nonlinear theory, the fluctuations themselves must depend dprinciple. It is in this spirit that we explore the general form
of high-energy corrections in this paper. We emphasize that

the low-energy limit is described by those terms in the equa-
®n fact, trajectories in the path integral can be even stranger thaons of motion that are independent of the cuttdfiter
the runaways that appear in classical theory. Most paths are nondif€normalization
ferentiable(infinitely rough and may even include those that are  In this section we adopt a somewhad hoc regulated
faster than light or backward in time, depending on how the worldGreen'’s function chosen because it is convenient and simple.
line path integral is gauge fixed and defined. In the Appendix we show that the low-energy limit is iden-

A. Divergences and regularization
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tical to that found by employing Pauli-Villars regularization, gether and experience mutual interactions. The separation of
though the detailed high-energy corrections differ as onehese two processes in time is essential to the standard scat-
would expect. That the low-energy limits agree is not sur-tering formalism.

prising. More importantly, we show that the qualitative be- Ideally, one would like to be able to describe initially
havior of the high-energy corrections is also identical, andcorrelated particle-field states at a finite initial tirge This
therefore the conclusions following from the general analysisvould require a description of the true interacting particle
of causality and consistency carried out below appliestates—a difficult and unsolved probleunfortunately the
equally well to Pauli-Villars regularizatiofiand any other preparation function method, while it does describe a limited

regularization that shares some basic feajures class of more generally correlated states, does not solve this
Here, we choose a regulated retarded Green’s functioproblem. In this context we address another aspect of the
given by the Gaussian form radiation reaction problem: whether the nonequilibrium
y a2 quantum dynamics of an initially bare particle state evolving,
R, \_ a0 o e 7 through interactions with the field, into a dresgedrrelated
Gi(0)=0(z"(7)—Z(7"))6(0) = 3D state is causal and runaway free.

In a density matrix approach, the asymptotic scattering
with support inside and on the future light conez¢f'). We ~ assumption is equivalent to having a factorized initial state of
have defined the form

a(8)=y*(S)Y () (3.2 P(=0)=p(=2)®p (=), (3.9
yA(S)=ZM(7) —Z4(') (3.3 wherep,(—«) is the density matrix for bare charged particle
with each particle initially well separated. We, on the other
s=r'—1, (3.4  hand, assume a factorized density matrix of the form
and the average acceleration P(t)=pt) ©py(ti), (3.10
a,=7.(7) 2=y 3.5 at a finite timet; in the past, where each charged particle is
mo TR ® initially well separated from the others. Hence, our neglect of
In the limit A — oo, initial particle-particle correlations is physically viable, but
the neglect of initial particle-field correlatior(g.g. starting
lim Gi(g): S(o)l2m, (3.6)  with bare states at a finite time in the pasgsults in time-
A—oo dependent renormalization effects, coming from the self-

o _ _ interaction of the particle with itself via the field. This domi-
giving back the unregulated Green’s function. Expanding theyates the initial dynamics. Particle-particle interactions for

function o for small s gives initially well-separated particles only come later due to the
finite speed of light.
o(8)=y*(s)yu(s) This paper therefore demonstrates that the semiclassical
=g2—a%s*12+ O(sP), (3.7) particle dynami_cs, starting from an initial density matrix of
the form (3.10 is causal and runaway free, but still leaves
and open guestions regarding the possible role of initial correla-
tions between the particle and field that exist in any truly
. A2e~ A2 3 physical initial state. Since the sta&10 quickly evolves to
Gi(s)= W(U‘ 0(s?), (3.8 a correlated density matrix, and the memory of the initial

state is rapidly lost, one expects that the late time dynamics
should be independent of these initial state assumpfiions
the same way that asymptotic scattering theory is insensitive
to the use of bare initial or final particle stateBut since the
neglected initial particle-field correlations are, by nature,
A significant and outstanding problem in quantum fieldnonlocal, one might still wonder if causality can be violated
theory is the description of physical states for interactingin some more subtle way. We do not think this is the case,
systems. For example, ti&ematrix theory applied to charged but offer no proof here. Our analysis yields the semiclassical
particle scattering in QED assumes bare charge statés at(or stochasticequations of motion and thus does not address
= *oo, which are subsequently dressed by interactions wittthis more complicated problem.
the electromagnetic field. The justification of this approach We can also consider the stat®10 from another per-
(say, in the LSZ reduction formulecan be subtle. In any spective. Such a product state, constructed out of the basis
case one is generally limited to the scattering of asymptoti¢z,t)®|¢(x)), is highly excited with respect to the interact-
states where each particle is sufficiently separated so that itsg theory’s true ground state. If the theory were not ultra-
interactions with each other are negligible at initial and finalviolet regulated, producing such a state would require infinite
times. Under these conditions, the particle-field interactiongnergy. This is not surprising since it is impossible to take a
dress(renormalize the particles before they come close to- fully dressed particle state and strip away all arbitrarily high-

assuming a timelike trajecto/*(7).

B. The initial state
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energy correlations by some finite energy operation. With a FLi.i"1=(etlef)=(UjeilU; @), (3.13
cutoff, Eq. (3.10 becomes a finite energy state and is thus
physically achievable, though depending on the cutofit
may still require considerable energy to prepare. Of courseyhereU; ;. is the evolution operator for the field in the pres-
ultimately taking the limitA —oo returns us to the well- ence of a classical currepior j’. If the currents associated
known problem of bare states versus physical states of theith j (determined by the particle trajectorgo not produce
interacting(dresseditheory. However, we shall later see that radiation in|k|> A field modes, thede;(k)| ¢ (k))=1 for
the limit A— < is inconsistent with causal and runaway-free |k|> A .
semiclassical motion. This is already knowfior example, So it is consistent, given our conjecture tﬂmMc does
see[29] where it is shown that the cutoff must be less thannot effect the low-frequency equations of motion, to compute
the critical value determined from the classical electron rathe influence functionaland hence the coarse-grained effec-
dius). ) tive action by only integrating over field modes witfk|

We can estimate a reasonable value for the cutofis <A . This argument implies that we cut off the field spec-
follows. Assume that the particle-field state is fully corre- g density atk|= A in computing the noise and dissipation
lated but that at; some finite energy preparati¢a measure-  kernels. Because the field retarded and Hadamard Green’s
meny is made on the particle localizing it to withie;. A functions that appear in the equations of motion are found
measurement trying to localize a relativistic particle morefrom the noise and dissipation kernétge, for examplél]),

sharply will result in pair production. Assume this statee obtain the regulated Greens functions
preparation is such as to produce the density matrix

N pAt)®p,(t), B(k) modes with|k|<A, . 1 o o
p(ti)= G (x,y)—ﬁkgc cogk|(x°—y®)cok- (x—y)

(3.11) (3.14

Pcorrelates  #(K) modes With|k|>Ac

at timet; , WhereAc=)\C_1, and®(k) denotes th&™ Fourier
mode of the field. The correlated stabgyreaeq may, for — and
instance, be the vacuum of the interacting theory abbye

Such a state would entail the particle uncorrelated with field 1

modes below the characteristic frequenty determined by GH(x.v)= sinkl(x°=v®) cok - (x—
a preparation maximally localizing the particle to withNg, (x.y) J2L3 k<2AC IKI¢ YY) (x=Y).
but with the particle-field state undisturbed with regard to (3.15

modes above\ .

With an initial state taking the forni3.11), the reduced
density matrix evolution operatal, will separate into two
terms:

When the sum over modes is unrestricted we recover the
usual free field Green’s functions. But, rather than using the
regulated expressions in E@.14), which are not covariant,
J3.=7 +3 , 31 we instead use a covaria(mgulated Green’s fgnction with

Ik =A T k= A (312 the same effective behavior of removing the influence of the

. . . : . |k|> A Fourier components of the field. Hence, the use of
associated with the two pieces in Bg.11. We will assume regulated Green'’s functions follows directly from there being

that the correlated piece, representing the contributions frona cutoff in the spectral density of the relevant modes of the

the initial part_lc!e-fleld state at high fre_quenmes, IS unaf'field environment. For particles maximally localized initially,
fected by the finite energy state preparation. We also asSUME. " iaile the identification ~ A =\ -. Note that this is
o

that this sector is in equilibrium. Then, it is plausible that thea common choice of cutoff in the literature.

J|k|>_4c t.erm, representin_g the high-frequency fiel_d modes in Because our semiclassic@nd stochasticequations of
equilibrium with the particle state, does not contribute to theygtion describe coarse-grained particle motion on a scale
low-frequency dynamics of the particle’s semiclassi@ld  gxpected to be much larger thap, we will ultimately drop
stochastig motion. One anticipates thafy - contributes  terms proportional to inverse powers af,. Furthermore,
only to time-independent renormalization and exponentiallye will see below that the late time behavior of the equations
small stochastic effects38]. If this conjecture is true, then of motion is largely insensitive to the details of the initial
the low-energy time-dependent semiclassical and stochastitate. Finally, consistency requires that the noise kernel
dynamics are determined by tlig -, _term. should also be regulated in terms of the same effective spec-
Furthermore, as long as the particle’s semiclassical trajedral density.
tory has a sufficiently large radius of curvature at every point
in its history, it will not produce any significant radiation into
the |k|> A sector of the field. In this case, the influence
functional only needs to be computed with field modes sat- The semiclassical limit is given by the equations of mo-
isfying |k|<A.. We see this by writing the influence func- tion for the average trajectory. The regulated semiclassical
tional in the form equations of motion are then

C. Single-particle scalar-ALD equation
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—yH(s)=ZH(7) +a(1)s+at(7)s%2+ O(sY),

(3.18
—a_ 23 4
Vo (s)=s—as°/24+ O(s"), (3.19
and use&?=1, ?‘aM:O, anda?= —7*a,, to simplify. Both
dz/d7 anddy/ds are denoted by overdots,andy, respec-
tively. Using
. Jo(s)
¥(3)=2(7)-=(7) =2y*(s) (3.20
N - az*
do(s)
s =2y"y,=2s—a’s’2+ O(s*) (3.21)
N allows the gradient operator to be expressed as
-1
FIG. 1. The trajectory and the light cone of a particlezét). 9 :(7_0 izzy d_U) i = y_f‘ i (3.22
The radiation reaction force on a particle t) depends on the # gz do #lds/ ds yvy ds
particle trajectory in the interior of its past light cone. For a mass- ]
less field, the radiation reaction force is local except that the regu¥Ve define
lated Green’s functioGR smears out the radiation reaction over the
past trajectory expanded in a Taylor series aromfw), as in Eq. r=7—r (3.23
3.9. . . .
@8 to be the total elapsed proper time for the particle since the
. initial time 7, . Recall thatr; is defined byz’(r;)=t; where
moaﬂ(T)_%V@:C(fL):ezf dr'[a,(7) t; is the initial time at which the statg(t;) = p,(t;) ® p,(t;)
7 is defined.
N R , These definitions and relations let us write the rhs of Eq.
+2(7)7;,(7) 9,116} (2(7),2(7")) (3.16 as

(3.16

where thed, acts only on th&(7) in GY, and not th&( ")
term. We add the subscript toy because it is the particle’s & d
bare mass, though it is assumed to already include any renor- 2> 2 AR 3
malization from the|k|> A sector of the field. Equation U 6 dsGA(SHO(S )J’ 3.29
(3.16) describes the full non-Markovian semiclassical par-
ticle dynamics, which depend on the past particle history fowvhere
proper times in the rander, 7;].

As an integral equation, E@3.16) depends on the entire
history ofz(7) betweenr; and 7. For this reason, the trans- .
formation from Eq.(3.16) to a local differential equation of uf)=@az+au) (3.26
motion requires every derivative @l 7) [e.g.,d"z(7)/d7" _ _ o
for all n]. This is the origin of higher time derivatives in the andO(s") terms involve up to ther(+1)th time derivative
local equations of motion for radiation reactiériassically ~ ©f Z(7). The integrals oves give time-dependent coefficients
as well as semiclassicallyBy integrating out the field vari- defined as
3bles, we have removed an infinite set of nonlold) ) A T(L4AA*412)

egrees of freedom in favor of nonlocal kernels whose Tay- h(O)(r)=f ds GY(s)= _K< 1—

lor expansions give higher-derivative terms. 0 A 4 I'(1/4)

We may now transform the integral equatit16 to a (3.27
local differential equation by expanding the functigrtys)
arounds=0. In Fig. 1 we show a semiclassical trajectory and
with respect to the light cone af 7). Taking 7 as fixed, we

change integration variables usidg=d7’. Next, we need g"(r)= ers—l —GR(s)
the expansions o (n+1)lds

r s d
eZJOdS[ uGR(s) +ui S S GR(9)

uM=a,(7) (3.29

n

o 32—(n—2)/4
—yH(s)=Z*(7)s+a(7)s%2+ a(1)s3 16+ O(s?), (

n
- 1+—,L4r4/2>, 3.2
(3.17 7B+ 1)1Ln2 .28

4
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wherel’(x) is the gamma functior, (x,y) is the incomplete plus higher-derivative terms suppressed by the cutoff.
gamma function, and/(x,y)=1"(x) —I'(X,y). The constant These semiclassical equations of motion are one of the
k=T(1/4)/(2Y*71?)=1.72 depends on the details of the main results of this paper. They are almost of the ALD form,
high-energy cutoff, but is of order one for reasonable cutoffsexcept for the time-dependent renormalization of the effec-
For completeness we should also consider higher order terntiye mass, the time-dependent radiation reaction force, and
from the expansion of the regulated Green’s function in Eqthe possible presence of higher than third-time derivative
(3.9), which start atO(s®). These terms involve additional terms. The mass renormalization is to be expected, indeed it
integrals of the form occurs in the classical derivation as well. It is a consequence
of the initial-value formulation with the initial state given at
a finite time in the past that these renormalization effects are
time dependent. Notice that this result also demonstrates our
earlier claim, made in the Introduction, that radiation reac-
In this analysis we are concerned with the qualitative betion (RR) vanishes in the semiclassical limit for uniform ac-
havior of these time-dependent coefficients because that beeleration. This follows sincé#=0:a2=0.
havior is related to the issue of causality. The exact quanti-
tative behavior is dependent on the regularization details butV. RENORMALIZATION, CAUSALITY, AND RUNAWAYS
is unobservable at low energwith large cutoff, as we will
show. We discuss this behavior in detail in Sec. IV A, but
here we briefly note that the coefficierg§” and h™ are The time dependence of the effective maxs), and par-
bounded for alf, including the late time limit —. Also, ticularly the “radiation reaction” coefficieng®)(r), play an
important role in demonstrating the consistency of the semi-
lim h((r)= lim g("(r)=0. (3.30 classical limit. The initial particle at timé (r=0) is as-
n—e n—e sumed, by our choice of initial state, to be fully uncorrelated
with the field. This means the particle’s initial mass is just
the massan,. Interactions between the particle and field then

than the other scales of the probldsuch as, for example, redress” the particle state, one of the consequences being a

the inverse radius of curvature of the particle’s semiclassicagenormalization of its effective mass. For a particle coupled
. X 0 a scalar field there are two types of mass renormalization
trajectory the g">2 and h™1) terms will be suppressed. yp

Assuming this is the case, we will drop such terms in theeﬁeCtS' one coming from the, ¢ interaction, and the other

A : . ming from thez*z interaction. W mmented in
final equations of motion. However, we keep these terms 5%0 g from thez"z,9, ¢ interaction. We commented

this stage so that we mav studv the qualitative behavior oPEC" II C that the latter interaction is essentially a scalar field
1ag L y y q version of the electromagnetic coupling, if one defines the
any higher-derivative effects.

The resulting local equations of motion are scalar field analog of the field strength tensor as shown in
9 q Eqg. (2.53. We find that this interaction contributes a mass

rog"
h(”)(r)zf dsn—lei(s), n=e6. (3.29
0 H

A. Time-dependent mass renormalization

Finally, these coefficients scale withasg((r)~ A2~ " and
h(W(r)~A*"". As a consequence, wheh is much larger

moaM(T)—%V(Z):C(f,’B shift at late times of
= 2O (r)ud + e2g ) (r)ud) omy = k(e?A/8). (4.1
+ezg(2)(r)u£f)+ o (3.31) In the Appendix using the Pauli-Villars regulator one finds

this mass shift but withc—cy=1. As expected, the precise
In the Appendix an explicit form of the higher derivative value of the(unobserveimass shift is regulator dependent.

terms is derived, though these are suppressed by the cutoff H§[2] it is shown thatsm, is just one-half the mass shift that
we have noted above. is found when the particle moves in the electromagnetic

From Eq.(3.25 we deduce that the® terms give time-  field. This is consistent with the interpretation of the electro-
dependent mass renormalization. Accordingly we define th8agnetic field as equivalent to two scalar fieldse for each

renormalized mass as polarization. Therefore one expects, and finds, twice the
mass renormalization in the electromagnetic cad®g,
m(r)=my—e?h®(r)—e?gM(r) =28m,. (For the same reason we see below that the radia-
tion reaction force, and stochastic noise, are each also re-
=mMmg+ ém(r). (332 duced by half compared to the electromagnetic ¢ase.

The scalar field, unlike the electromagnetic field, also has
fa 2, interaction that gives a negative mass sldifh,=
—26m,. The total mass shift is thus negative. At late times,
the renormalized mass is

Similarly, theu® term is the usual third derivative radiation
reaction force from the ALD equation. Thus, the equations o
motion may be written as

m(r)a,(7)—d,V(z)=fFR(r) (3.33 m= lim m(r)

r—oo
where
= m0+ 5ml+ 5m2

fE'R'(r)zezg(z)(r)@az‘*‘ a,) (3.39 =my— k(€?A/8). 4.2
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For a fixedmy, if the cutoff exceeds\ >167mq/ke?, the 1.0000 Proper-time {units of 1/4)
renormalized mass is negative and the equations of motion 1 2 3
are unstable. It is well known that environments with overly
large cutoffs can qualitative change the system dynamics. We

0.9990
therefore must assume that the bare mass and cutoff are con- Renormalized mass mix)

sistent withm>0, which in turn gives a bound on the cutoff: (@rbitrary units)
0.9980

A<16mmy/ke?. 4.3
FIG. 2. The time-dependent renormalized miaxs) of the par-
Thus for the scalar field case the field interactieducesthe  ticle plotted against the proper times=r7—r7;, elapsed since the
effective particle mass, whereas in the electromagtetic- ipitia! time ti_gt which the factorized ir_litial state of the particle plus
tor) field case the field interactioincreasesthe effective  field is specified. The actual mass shift depends on the citaffie
particle masgsee[2]). This has an interesting consequence ifvertl_cal mass units are arbitrary smce_the_y depend on thenunknown
we follow FOL's[29,30 choice of picking the critical cutoff Particle bare massn,. The renormalization time scale igen
A =16mwmy/ke?. For the scalar field this would imply that ~ LA
m=0. This is a kind of “critical” case balanced between
stable and unstable particle motion. While there may be spe-
cial instances where such behavior is of interest, it does not The coefficientg'®)(r) determines how quickly the par-
seem to represent the generic behavior of typiosassiveé  ticle is able to build its own self-field after assuming an
particles interacting with scalar field degrees of freedom. Wahnitially factorized state at; . This in turn controls the back
will defer further comparison with EM quantum Langevin reaction on the particle motion, ensuring that it is causal. We
equations to paper [I2] where the electromagnetic field is find, as is typical of effective theories, that the equations of
treated and the mass renormalization has the more familianotion involve higher derivative termg.e. d"z/d+" for n
sign. >3) beyond the usual ALD third derivative foriisee the
Consider further the role of causality in the equations ofAppendix for more detail These terms are suppressed at
motion. In the preceding paragraph we see that for the longow energieswhen A exceeds the other relevant scalbat
term motion to be stabl@.e. positive effective particle mass there is no reason they must be ruled out absolutely.
there is an upper bound on the field cutoff. This is well Nothing in principle prevents additional higher derivative
known, as detailed ih29,30, for example. There, the QLE terms in the interaction Lagrangian as long as they respect
is assumed to be of the form the fundamental symmetriés.g. Lorentz and reparametriza-
tion invariance of our particle-field model. The coupling
t term we assumeds\Z°¢(z), is the only one with a dimen-
m'>'<+f dt’ w(t—t)x(t")+V'(x)=F(t), (44  sjonless coupling constaet but one could as well have a
o reparametrization invariant term like

B. Nonequilibrium radiation reaction

where the time integration runs from« to t. Causality is

related to the analyticity of.(z) [the Fourier transform of
w(t—t")]in the upper half plane of the complex varialle
The traditional QLE of the typé4.4) with the lower integra-  wheree, has mass dimensidvl 2. In fact, there could be an
tion limit set att;=— effectively makes the assumption infinite set of such reparametrization and Lorentz invariant
that the particle has been in contact with its environment fainteraction terms in the effective Lagrangian. Our results
longer than the environment’s memory time. In our analysisuggest that even if these terms are not originally present,
the lower limit in Eq.(3.16 is 7;, not —. It is the (non-  they may arise as high-energy corrections. Indeed, since one
equilibrium) dynamics at early times immediately after the cannot take the limitA —c without making the renormal-
initial particle-field state is prepared where we have someized mass negative, we conjecture that any consistent high-
thing new to say about how causality is preserved, and runenergy theory may entail suppressed higher-derivative cor-
aways are avoided. rections for the semiclassical motion. If we go further by
The proper time dependence of the mass renormalizatioassuming a cutoff at the Compton wavelength as implied by
is shown in Fig. 2. The horizontal axis marks the proper timean initial state of the forn3.11) together with our arguments
in units of the cutoff time scale A/. The vertical scale is in Sec. Il B, then we expect that additional quantum correc-
arbitrary, depending on the particle bare mass. Notice ongons from the particle will modify the semiclassical equa-
unusual feature: the mass shift is not monotonic with timetions of motion with higher derivative terms suppressed by
but instead first overshoots its final asymptotic value. ThisA .. But we gain the additional insight that even if such
occurs because there are two competing mass renormalizingrms are present one expects them not to affect the low
interactions that have slightly different time scales. In anyenergy behavior. This suggests that the ALD equations of
case, the time-dependent mass shift is a rapid effect with theotion may be the low-energy semiclassical limit in general
final dressed mass) reached within a few 1. If we set  for reparametrization and Lorentz invariant particle models.
A~Ac=)\c‘1, this occurs on the time scale required for light A detailed proof of this conjecture from an effective theory
to cross the particle’s Compton radius. methodology would be interesting.

SLin= | dreiN2#2,12%¢(2), (4.5
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08 9,0= — dependence of the renormalization effects are approximately
radiation reaction g,(=)=1/4n . : St : :
coeflicient the same as one would find in the nonrelativistic situation,

sincer =(7— 7;)~(t—t;). For rapidly moving particles time
dilation can significantly lengthen the observed time scales
with respect to the background Minkowski time. This indi-
cates that highly relativistic particles will take longevith
respect to background timg to equilibrate with the quan-
tum field environment than do more slowly moving particles.
Finally, we note that the radiation reaction force is exactly
FIG. 3. The time-dependent coefficiegs(r) that determines half that found for the electromagnetic field.
the radiation reactiofRR) plotted against the elapsed proper time,
r=7—7;, since the initial timet; at which the factorized initial
state of the particle plus field is specified. The radiation reaction )
vanishes at =0, but quickly builds to the asymptotic value familiar  We have shown the emergence at low energies and late
from the Abraham-Lorentz-Dirac equation on a time scale.1/ ~ times of the ALD radiation reaction ford@eglecting other
particle structure, such as spin, which gives rise to additional
The time scales and relative contributions of these highedow-energy corrections The classical ALD equation is
derivative forces are determined by the coefficiegif8(r).  plagued with pathologies like acausal and runaway solutions.
For a fixed cutoffA, the late time behavior of thg™(r) We now show how the equations of motions in the form
scale as [Egs.(3.33 and(3.34), or more generally in EqAL13) in-
volving higher derivativeppreserve the causal nature of the
2"2T(1+n/2) 5 solutions with radiation reaction. To address these questions
——, A" (4.6)  we now examine the early-time behavior.
As differential equations, Eqs3.33 and (3.34 may
seem to be unphysical at first sight because of the apparent
need to specify initial data

04

Proper-time {(units of 1/4)
1 2 3

C. Causality and early-time behavior

limgM(r)=
r—»xg ( ) (277)3/2

Therefore, they® term has the late time limit

1
limg®(r)= ., 4.7) 7P (7)=d"Z,(m)/d7" 4.8
r—o

for n=2. But the coefficientg™(r) satisfy the crucial prop-
which is independent oh. Borrowing terminology from ef-  erty that

fective field theory, this makes the=2 term renormalizable

and implies that it corresponds to a “marginal” coupling or g™ (0)=0, (4.9
interaction. In the same terminology the mass renormaliza-

tion, scaling as\, corresponds to a relevafienormalizable  for all n. We see this graphically fog)(r) in Fig. 3, and
coupling. In this vein, the higher-derivative corrections pro-analytically for allg{™(r) in Eq. (3.28. Consequently, the
portional tog(">?), suppressed by powers of the cutoff scaleparticle self-force at= 7; identically vanishesto all orders
A, correspond to irrelevant couplings. in n), and only smoothly rebuilds as the particle’s self-field

In F|g 3 we show the proper time dependenc@@f(r), is reconstituted. Therefore, the initial dataTaiiS fU”y (and
with the same horizontal time scale as in Fig. 2. It is evidentiniquely determined by
that the radiation reaction force approaches the ALD form
quickly, essentially on the cutoff time. While the radiation ma, (7)) =3,V (7)), (4.10
reaction force is non-Markovian, the memory time of the hich onl ires the ordi Newtonian initial data. Th
field environment is short. The non-Markovian evolution is ' o O requires te ordinary lewtonian ini |a> ata. the
characterized by the dependence of the coefficieity and initial values for t_he higher derivative tern@s.g. n/_2) in

@) R . . Eq. (3.34 are not independent but are determined iteratively
g'“’(r) on the initial timer;, but become effectively inde- from
pendent ofr; after r,~1/A. This parallels the well-known
behavior for quantum Brownian motion models found4h 47 (r qn-2
The effectively transient nature of the short-time behavior . Zu(mi) -
helps justify our use of an initially uncorrelateéhctoriz- ds' dr"?
able particle and field state.

Also notice the role played by the particle’s elapsedThus, given the(Newtoniarn) initial data the equations of
proper time,r=7—17;. For particles with small average motion are determined uniquely for all later times, to any
velocitied the particle’s proper time is roughly the back- order inn. In the classical ALD equations, one finds run-
ground Minkowski time coordinaté In this case, the time aways even in the case of vanishing external potental,

=0. In our case, becaugé”(0)=0 for alln, V=0 implies
that Z(’(;)=0 for all n=2. With these initial conditions
"The small velocity approximation is relative to a choice of refer- (andV=0), the equations of motio(8.33, (3.34 are
ence frame. If1] we discuss how the choice of an initially factor-
ized state at some timtg picks out a special frame. a,(r)=0 (4.12

3,V @ ). (4.12)
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with unique solutionsz,,(7) =7, (r;)+ (7~ r,)z (). Run- already been included in the kinetic terfd.1) above. We

aways do not arise. We find only the phy3|cally expecteofherefore need théunctiona) derivative with respect ta,
inertial solution. of the radiation reaction term

Finally, we note that the vanishing of the time-dependent RR_ 2 (2) =,
coefficients in the modified ALD equation at the initial time . =e7g'"(r)(z,a°+a,). 53
t; is a consequence of the factorized initial state. The initial;g -
behavior of our equations then describes the time-depende P O(2), we have
“redressing” of the particle by the low-energy modes of the fR R. (_5
field. _Thls happgns smoothly.ln such a way that causality is F,= f dr'z, (1) —4—— (5.4)
not violated. If it were technically feasible to treat a more 8z,(7')
generally correlated initial state we can probe new interesting
behavior arising from the particle’s correlations with the 7, is the dissipation force that appears in the linearized
longer wavelengths of the field. We expect that time- Langevm equation. While it is derived from the radiation
dependentinonequilibrium quantum theoyyeffects similar  reaction force fRR , it is important to distinguish be-
to those illustrated in this paper will also act to preservetween the role 01fRR at the semiclassical level ané, at
causality of the semiclassical equations of motion in thisthe stochastic level.
more complicated yet realistic circumstance. Of course, for \We note thatF, is a function of the der|vat|ve§f123)
completely arbitrary initially correlated particle-field states, therefore we have
one must carefully address the question of when and how

a semiclassical equations of motion obtains, and what it e? @ 5 SR —
means. ]:,u:?g (r)[a (g,uv_z,uav)z ]+(g,u,v_z,uzv)z ]

2
e . ~
V. THE STOCHASTIC REGIME AND THE = Eg(z)(r)(sﬂyzw R.,Z"), (5.5
ALD-LANGEVIN EQUATION

A. Single particle stochastic limit where

The nonlinear Langevin equation in E.54) shows a
complex relationship between noise and radiation reaction. A
nonlinear Langevin equation similar to these have been ) .
found for stochastic gravity by Hu and Matal&5] describ- Su(D=2a%(9,=2,7,). (5.7
ing the stochastic behavior of the gravitational field in re-
sponse to quantum fluctuations of the stress-energy tensq hh
We now apply the results in E42.38 giving the linearized
Langevin equation for fluctuations around the mean trajec-

R.(2D=(9,,~7,2,) (5.6

e late time (A\r>1) single particle Langevin equations are

2
tory. The free kinetic term is given by n(7)= nis (1) +7, l/(_j e ,sz+R V’T’Z..V).
97"z, 8w K

5 5°S]7] (5.9

dr'Z" ()| ——= ¢
oz*() 67°(1') Equation(5.8) is the second main result of this paper. They
o2 are to be used together with the semiclassical equations of

=m(r) | dr'"z"(7' )gw 5(7- ") motion in Eq.(3.34 which self-consistently determiné;,,

andR,,, . Just as was the case for the semiclassical equations
of motlon the vanishing o§®(r) for r=0 implies that the
d?z,(7)
© (5.1) initial data for the stochastic equations of motion are just the
d2 ' ' ordinary kind involving no higher than first order derivatives.
The noisen,,(7) is given by

=m(r)

where we have included the time-dependent mass renormal-

ization effect in the kinetic term. The external potential term 7,(7) =W, @ 7)) =e(z,(7) +272(,d,))x @ 7)), 59
is :
where the stochastic field is evaluated using the semiclassical
, 52V(7 2V (2) solutionz. The correlato 7,,(7) (7)) [see Eq(5.1D)] is
dr2(1) — = §7(1) 52(r') (T) g7m2 (5.2 then found using the field correlator:

o . (x@ ) x@ )} =hG" @), Z7')). (5.10
hence, the second derivative ®f acts as a force linearly

coupled toz. The dissipative term foZ involves the(func-  Equation(5.9) shows that the noise experienced by the par-
tional) derivative of the first cumularisee Eq.3.31)] with  ticle depends not just on the stochastic properties of the
the mass renormalizatiomE 1) piece removed, as it has quantum field, but on the mean-solutiafr). For instance,
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the a, x(2) =z, x(2) term in Eq. (5.9 gives noise that is semiclassical limit(obtaining whenr A>1) is essentially
i ) icle i kovian. The multiparticle theory is non-Markovian even

proportional to the average particle acceleration. The secorfarkovian. nultipar y Markovial

term in Eq.(5.9) depends on the antisymmetrized combina-in the semiclassical limit because of multiparticle interac-

L : . _ tions. Particle A may indirectly depend on its own past state
2'3?T)Z§l‘:‘9€)])(®' It follows immediately from{y)=0 that of motion through the emission of radiation interacting with

From Eq.(5.11 we see that the noise correlator is another particle B, which in turn, emits radiation that rein-
9.0 fluences particle A at some point in the future. The nonlocal

A~ -, , field degrees of freedom stores information the form of
(7, (T 7(7)) =W ()W, (') (X @(M))x (7)) radiation about the particle’s past. Only for a single timelike
O N Y particle in flat space without boundaries is this information
(e°hIcT)(z,+2 Z[“ﬁ”)(z’ permanently lost insofar as the particle’s future motion is

Lo 57 HZzZ concerned. These WeII—kn_own facts make the multiparticle

2 2,0,)G(2.2) behavior extremely complicated.

- We may evaluate the integral in E&.12 using the iden-
S AuYN d ;
=(4mhcro)| z,+2 ~ 7 do tity
y
. .z 8((Zn =)A= 8(7— )22y~ Z) Zmy» (513

> 5p' [Vy)\] H

Xlz,+z yz % G" (o).

where 7 is the time when particlen crosses particla’'s
(5.11 past light cone.(The regulated Green's function would
spread this out over approximately a time 1.) Defining
The noise(when the field is initially in its vacuum statés  z, =7 -7, we use
nonlocal(colored, reflecting the highly correlated nature of
the quantum vacuum. Only in the high temperature limit
does the noise become approximately logahite). Notice f d7mdh GR(Zn  Zm) = —f dry
that the noise correlator inherits an implicit dependence on
the initial conditions atr; through the time-dependent equa-

dG*  (Zow"

S (Zn ) Zme

— R
tions of motion forz. But whenrA>1, the equations of _ | GF@m*
motion become effectively independent of the initial time. (?nm)a'z—m

The noise given by Eq(5.1]) is not stationary except for
special cases of the solutiafr).
Finally, we understand the precise meaning of FDRs for +f dSGRd—S

Za) 1

nonlinear particle-field systems. Clearly, vacuum fluctuations (Zam) “Zma

(VF) and radiation reactiofRR) cannot be directly related, N

as the vanishing of RR in the semiclassical limit demon- — 1 _ i (?nm)_ _
strates. It is the dissipative forcg, that is related to vacuum 2(Zow) Zrmy ds (Zo) Zrna
fluctuations through a fluctuation-dissipation relatjdmh (5.14

B. Multiparticle stochastic limit and stochastic Ward identities . . . . .
The particle-particle interaction terms are then given by

It is a straightforward generalization to construct multi-
particle Langevin equations. The two additional features are

particle-particle interactions, and particle-particle correla- e?> (a’;+?ﬁl_zf“a/’])GR(Z] +Zm)
tions. The semiclassical limit is modified by the addition of m#n
the terms e
. ( NN
i - o - -
2> | drWALZn( 7o) GR@n(70) Zon( 7). ™0 A [(Zam) "Zmi ] 2(Zam) "Zm
m#n J 7 A
(5.12 Xi{ ()" 1 (5.15
d7m (Zam) “Zma

= 7%
'Tm T

The use of the regulate@f is essential for consistency be-
tween the radiation that is emitted during the regime of time- R
dependent renormalization and radiation reaction; it ensureshere, as before, the/(z,) acts only on the,,, and not the
agreement between the work done by radiation reaction ang,(7*). Equation (5.15 is just the scalar analog of the
the radiant energy. A field cutoff implies that the radiation Liénard-Wiechert forces. They include both the near-field
wave front emitted at; is smoothed on a time scale™*. and far-field effects.

We note one significant difference between the single par- The long range particle-particle terms in the Langevin
ticle and multiparticle theories. For a single particle, theequations are found using E®.58, so we have the addi-
dissipation is local(when the field is masslessand the tional Langevin term for theith particle, given by
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o VI. EXAMPLE: FREE PARTICLES IN THE SCALAR
e dfn‘z,ﬁa;‘[ e FIELD VACUUM
m#n [(Zm) “Zma]

As a concrete example, we find the Langevin equations
Zom)™ H for V(z) =0 and the scalar field initially in the vacuum state.
T Using the stochastic equations of motion we can address the
(?nm)ﬁfmﬁ ro=1% question of whether a free particle will experience Brownian

motion induced by the vacuum fluctuations of the scalar
(5.16 field. WhenV(z) =0, we immediately see from the semiclas-

Equation (5.16 contains no third(or highey derivative  Sical equations that"(r)=ag = const: the radiation reaction

Rn,un d

2(?nm)d-z_ma d7y

terms. The multiparticle noise correlator is force identically vanishes. The fact thg{(0)=0 uniquely
fixesagy=0 due to the initial data boundary conditions for
U (o) 7 7)1y = WA )W 7o) (X (Ze) X (Zr) })- the higher derivative termgt.11); hence, there are no run-

(5.17 away solutions characterized by a nonzero constant accelera-
_ _ . _ tion. Writing z#(7) =v* andz*(7)=sv*, wherev* is a con-
In general,iparthle—partlclc_e correlations between spacelikgtant spacetime velocity vector satisfying ttreass-shell
separated points will not vanish as a consequence of the nogonstrainty?=1, we conclude that an inertial particle mov-
local correlations implicitly encoded b@™. For instance, ing in accordance with the semiclassical solution neither ra-

when there are two oppositely charged particles which nevediates nor experiences radiation reaction. Usirfg=v2s?
enter each other’s causal future, there will be no particle—s?=(7—7)2, we find from Eq.(5.8) the linearized Lange-

particle interactions mediated I§R; however, the particles yin equation
will still be correlated through the field vacuum v&t'. This
shows that it will not be possible to find a generalized mul- - e 2 =,
tiparticle fluctuation-dissipation relation under all circum- Mz, (1) + 5 g7 (1R, 27=7,(7). 6.1
stanceg37].
We now briefly consider general properties of the stochasThe noise correlator is found from E¢p.11) to be
tic equations of motion. Notice that the noise satisfies the
identity (n,(T)1,(7"))

2

Z4(7) (7 = ZH(IW (2)x(2)=0,  (5.18 :ezﬁ(a g
“odr

??[My)\] d;'z)_l
Yy, \ d7

which follows as a consequence 'lﬁvflnﬂ=0, for any on- 3 v | do? _1
?/ [vY\] (_)
yPyp \ d7r’

shell solutionszs . This is an essential property since the ><(4772¢72)‘1(a;+—

particle fluctuations are real, not virtual. We may use Eq. dr’
(5.18 to prove what might be calle@by analogy with QED 6.2
stochastic Ward-Takahashi identitijg9]. The n-point corre- :
lation functions for the particle-noise are
2 ( d N U[MU)\]S ) 1
=e‘h| —|v
<{ 7],u,l( Tl) e ﬂMi(Ti) et 7],u,n( Tn)}> dr 2v% D[SZ 477232
=W, (Z1) ... W, () ... W, (Z,) N B TUNE ) 63
d7r’ —20vPy ﬁsz

X({x(z1) ... x(z) - .. x(z0)}), (5.19
R where we have substituted the vacuum Hadamard function
with eachw,, (z) acting on the corresponding(z). These for the field-noise correlatafyx’). The antisymmetric com-
correlation functions may both involve different times alongbinationv,v,; vanishes, and hence
the world line of one particldi.e. self-particle noige and )
correlations between different particles. From E@s.19 (n,(T)n,(7"))=0 for Z*=0. (6.4

and(5.18 follow “Ward” identities:
The origin of this at first surprising result is not hard to find.

'z{”(r;ul(rl) oo (7)o (T0)) =0, First, the stochastic mass tering vanish since the average
acceleration is zero, but why should the other terms in
forall i and n. (5.20 the correlator vanish? From Ed6.3), we see that the

second term in the particle-noise correlator involves

The contraction of on-shell moment“) with the stochastic 2'7{,d5;G"(z,Z). But the gradient of the vacuum Had-
correlation functions always vanishes. These identities aramard kernelwhich is a function ofo) satisfiesaMGH(a)
fundamental to the consistency of the relativistic Langevinxy,, and is therefore always in the direction of the space-
equations. time vector connecting(r) andz(7'). However, for the
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inertial particle)y ,>v ,, and thus the antisymmetrized term, invariance. This is a problem of considerable practical rel-

Z[,0,)GM(0) v} ,v,,G", always vanishes. It therefore fol- €vance. In a second series of papets], we use the same
lows that a scalar field with the coupling that we have as<conceptual framework and methodology but go beyond the
sumed does not induce stochastic fluctuations in a free pafémiclassical and stochastic regimes to incorporate the full
ticles trajectory at this linearized Langevin level. However,fange of quantum phenomena, addressing questions such as
there are noise fluctuations when the field is not in thgh€ role of dissipation and correlation in charged particle
vacuum statée.g. a thermal quantum fieldand/or when the ~Pair-creation, and other quantum relativistic processes. Theo-
particle is subject to external forces that make its averaggetically, by interpreting a particle’s spacetime properties

acceleration nonzer¢e.g. an accelerated particle (e.g.'its location in tim'e' and spacas effectively micro-
We therefore find that the free particle fluctuatigimsthis ~ SCOPIiC “clocks and position markers(e.g. eventswe see
special caseobey the equations of motion fa, that a quantum-covariant description of particle world line
motion is not just particle dynamics, it is the quantum dy-
. e? ) ~ namics of spacetime events. For example, tinge of the
mZﬂ(T)+§9( Y(r)R,,Z2"=0. (6.5  particle is treated as a quantum variable on equal footing
with position, and hence a question like localization applies
Equation(6.1) has the unique solution not just to localization in space, but localization in time. It
would be natural to apply this approach to subjects like
% (1=0 (6.6) “time of flight,” and questions regarding decoherence of
" .

time (variables, together with space variablgs.g. the emer-
gence of(local) time for particles. At the level of this paper
we have derived a particle’s time as a stochastic variable.
In conclusion, the self-consistent treatment of back reac-
tion from quantum field activities on a charged particle is an
essential yet often neglected factor in many problems dealing
with charged particle motion. Our approach is appropriate
for any situation where particle motidias opposed to field
properties is the center of attention. The ALD-Langevin
equations for charged particle motion in the quantum elec-

that a particle moving through the scalar vacuum will expe-;r?magnn?t'?nf'gld g]erév?]d rIrIFiZ] IS r?(; pr)]arttzulfrnlmﬁortianceo ,
rience a dissipation force proportional to its velocity which isrﬁ tﬂug u N bea "y dat Crslativi i eahy—ro dp yﬁ[icls. mu-
in direct contradiction with experience. Their result comes,. ethods can be applied 1o refativistic charged particie mo

from an incorrect treatment of the retarded Green'’s functio Ié)g(;]q(:ngnf?/egjef:ci:gﬁdlapsaerrt;d:s biﬁaig'ns (?Stilcns agl::f laelrs"’goi:]s
in 1+ 1 spacetime dimensions. ' Pucs,

strong fields such as particles moving in matinystals or
in plasma media as in astrophysical contgx2].

after recalling thag®(0)=0=7#(0)=0. The same initial
time behavior that gives uniqueunaway-freg solutions for
Z (the semiclassical solutigrapply toZ (the stochastic fluc-
tuations.

Let us comment on the difference of our result from that
of [40Q]. First, the dissipation term in our equations of motion
is relativistically invariant for motion in the vacuum, and
vanishes for inertial motion. The equations of motiori40]
are not relativistically invariant; the authors[d@f0] conclude

VII. DISCUSSION

We now summarize the main results of this paper, what ACKNOWLEDGMENTS
follows from here, and point out areas for potential applica- _ )
tions of theoretical and practical values. This work is supported by NSF grant PHY98-00967 and

Perhaps the most significant difference between this anBPOE grant DEFG0296ER40949.
earlier work in terms of approach is the use of a particle-
centric an_d initial valge(causa] formulat_ion of rel_ati\{istic APPENDIX: PAULI-VILLARS REGULATOR AND HIGHER
guantum field theory, in terms of world-line quantization and DERIVATIVE TERMS IN THE EQUATIONS
influence functional formalisms, with focus on the coarse- OF MOTION
grained and stochastic effective actions and their derived sto-
chastic equations of motion. This is a general approach The regulated Green’s functigB.1) is somewhatd hog
whose range of applicability extends from the full quantumthough perfectly acceptable from an effective theory point of
to the classical regime, and should not be viewed as an apdew since it only implies a modification of the unobserved
proximation scheme valid only for the semiclassical. Therehigh-energy modes of the field. The strength with which Eq.
exists a great variety of physical problems where a particle¢3.1) falls off as a function ofc made the analysis straight-
centric formulation is more adept than a field-centric formu-forward. Alternatively, we could have employed a hard cut-
lation. The initial value technique with full back reaction off in the spectrum of the field modés.g. Eq.(3.14], but
ensures the self-consistency and causal behavior of the sentivis conflicts with the desire to produce a covariant formula-
classical and stochastic equations of motion. Our ALD andion.

ALD-Langevin equations for relativistic particles in a scalar In this appendix we show that Pauli-Villars regularization
guantum field are pathology free. gives the same semiclassical limit and qualitative behavior as
For further development, if2] we shall extend these re- the Gaussian regulator choi¢®1). This shows how the low-
sults to spinless particles moving in the quantum electromagenergy physics is insensitive to the choice of the regulator.

netic field, where we need to deal with the issues of gaugépplying Pauli-Villars regularization is more subtle, how-
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Ty O'n
a, fo domGA(0)>

S(n m)lnm

ever, as we will show now. The problem is that the Pauli- *
Villars regulated Green'’s function does not really fall off that e?>, [sn
fast in configuration space, and hence the integrals involving n=0
o" with n>1, corresponding to the effect of higher deriva- n
tive terms(beyond thea term), do not converge. While di- E
mensional analysis shows that these terms are suppressed by m=0
inverse powers of the cutofA, and thus are presumably
negligible at low energies, one might still wonder if there is «
some long-term inconsistency resulting from Pauli-Villars
regularization.

In configuration space, the Pauli-Villars regulated re-where
tarded Green'’s function is

o 0,n+1 d

(n+1)!

lhm=r———-
A oM (n—m)!l(m+1)!

AJ (A7)
GiV(o)=

amo The upper limit of integration is o,=0c(r), with
lim,_,,o(r)—oe.
in the forward light cone. Our goal is to evaluate the integral  performing theo integrals with the Gaussian regulator
term in Eq.(3.16. In terms of the variables andr this  form (3.1) gives our earlier results generalized to all orders.
involves The Pauli-Villars regulatof G}V'(o)] gives integrals that
do not converge for"~. But one may show thas" (o)
N o by X f(ao) does converge even in the limit—0, and the

¢ fodS[a#(T)‘FZ (1)Z,(1)d, ]Gy " (0).  (A2)  resultis independent of the choice of functibfaro) so long
asf is sufficiently regular, goes to zero exponentially with
o—o0, and goes to 1 a8— 0. The results for the integrals in

It follows from the semiclassical solution being a timelike Eq. (A6) after this extra regulatoffollowed by the limit «
trajectory thato = o(s) can be inverted as a functionsfTo  _,0) are

change variables froms to o in Eq. (A2) we needda/ds.
The Taylor series fowr(s) has coefficients involving time o o Alfn
derivatives ofz*(7) [e.g. Eq.(3.19]. Inversion of this series f

gives

hd, (Aa,),  (A8)

Oy "l d ALl-D -

S — n

ds(o)/do= >, s,a"/n! fo 4o D)1 do CA(0) =~ 7 CnGp (Aor)
n=0

(A9)
_ 2 2 5 3
=1+a‘0“/8+a*a, o6+ . (A3) with
In general, thes, coefficient is a scalar involving+ 2 time he1.[ 37N
derivatives. (Ao)™ T
Next, the gradient operator may be written ey (Aep)= 3
2n+ ll'*( )
2
y, d
= do (A4) - 1+n 23+n A%0?
Xl 2 2 ] ’ 2 ' 4 l
and the Taylor series for, /o gives (A10)
3—-n
—y,lo= >, u(mem (Ao)" 3| ——
n=0 gid.(Aor)= 5n
—7,— ga,/2+ ocX(Z,a[ 2] + 4a,) 24— o¥(a%a, 20| ——
~Z,a%a,+8,)/24+ ... . (A5) e [[3+n] [,5+n A2g?
X]_ 2 2 l 3 2 ' 4 3
The ul™ are also scalars constructed involving terms with (A1)
m+ 2 andm+ 3 time derivatives. Changing integration vari-
ables and rearranging we then have where F, are the hypergeometric functions,
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B - 3-n " ’
n — f—
2 2
andcy=1.

The time-dependent back reaction term is then

(A12)

2 <)
€
E| = Al_ncn{snh%n.)v.(/\o'r)a,u

n
- mE:O S(n—m)ln,ngDn.)\/.(Ao'r)Z Z[MUEJTJrl):H :

(A13)

PHYSICAL REVIEW D 65 065015

by h, —g{", —1, and thus at low energies only the
=0,1 terms contribute. These produce mass renormalization
and the standard ALD result, as may be easily verified from
Eqg. (A13). Unigueness and causality of the equations of mo-
tion follow from the fact thath{}, =g, =0 for all n.
Hence, Pauli-Villars leads to the same conclusions that we
drew earlier based on the Gaussian regulated Green’s func-
tion. Moreover, it is clear that any reasonably smooth regu-
lator should share these general features.

Finally, we could derive the higher-derivative terms
(those suppressed by inverse powers\9fin the Langevin
equation. We would do this to demonstrate that these higher-
derivative corrections do not spoil the consistency of the
stochastic equations of motion with acausal or runaway ef-

Of course, the detailed behavior of the time-dependent coefects. The argument is the same as that for the semiclassical

ficients depends on the choice of reguldtitie Pauli-Villars
and Gaussian regulator results are not the $aBw what is

equations of motion, and it is straightforward after some al-
gebra to see that the vanishing of the time-dependent coeffi-

important is that they have the same crucial qualitative beeients h(W(Ao,) and g™ (Ao,) at Ao, =0 also removes

haviors in common. The,— (i.e. late time result is given

runaways and acausal solutions.
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