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We study the parity breaking effective action int2 dimensions, generated, at finite temperature, by
massive fermions interacting with a non-Abelian gauge background. We explicitly calculate, in the static limit,
parity violating amplitudes up to the seven point function, which allows us to determine the corresponding
effective actions. There are two classes of such actions that arise: namely, terms that do not manifestly depend
onE and ones that do. We derive the exact effective action that is not manifestly depend@erarthe other
class that depends explicitly OB, there are families of terms that can be determined order by order in
perturbation theory. We attempt to generalize our results to nonstatic backgrounds through the use of time
ordered exponentials and prove gauge invariance, ol andlarge, of the resulting effective action. We
also point out some open questions that need to be further understood.
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I. INTRODUCTION mal medium. In the case of Abelian gauge backgrounds, we
understand the resolution of the puzzldarfye gauge invari-
Chern-Simons theories in21 dimensiong1,2] have at- ance, at least, in two distinct conventional limits. In the long
tracted a lot of attention in the past few years for a variety ofwave (LW) limit, where all spatial momenta vanish, it has
reasong 3]. One of the issues studied extensively, for ex-been shown through explicit perturbative calculations up to
ample, is the question darge gauge invariance at finite the four point function thatarge gauge invariance is not a
temperaturg4—12]. In particular, it is known for sometime problem order by order in perturbation thedd6]. On the
now that, at finite temperature, massive fermions interactingther hand, in the static limit, where all energies vanish, at
with a background non-Abelian gauge field induce a Chernany order in perturbationlarge gauge invariance is not
Simons term with a coefficient which is a continuous func-manifest. However, it is also known that one can sum the
tion of temperaturd4]. Therefore, at an arbitrary tempera- leading order terms in the parity violating effective action in
ture, the Chern-Simons coefficient cannot have a discretthis limit and the resulting effective action has a form which
value as would be necessary for invariance unldege is a generalization of the (91)-dimensional result and is
gauge transformations. invariant undeldarge gauge transformations much the same
There has been a lot of progress in understanding thisvay [6—9]. The leading order parity violating effective ac-
puzzle in the past few years. It has been shown, for exampleion, in this limit, also corresponds to the exact effective
within the context of (G- 1)-dimensional fermions interact- action(parity violating when the electric field vanishes. Be-
ing with an external Abelian gauge field, that at finite tem-yond the leading order, one picks up contributions which are
perature, an infinity of terms is induced in the effective ac-proportional to the electric field and all such terms are mani-
tion [5] in such a way thalarge gauge invariance is restored festly large gauge invarianfl7]. It is worth pointing out here
in the complete effective action, even though at any finitethat, for any intermediate limitbetween the two conven-
order in perturbation theory such an invariance will not betional limits, namely, LW and stati¢ calculations become
manifest[5,10]. Subsequently, this analysis has been generextremely complicated owing to the analytic continuation
alized to (2+1)-dimensional fermions interacting with an that is needed in the imaginary time formalism. As a conse-
Abelian gauge backgroué-9]. Although, at zero tempera- quence, explicit forms for the parity violating effective ac-
ture, Abelian gauge transformations correspond to transfottion are not available in this regime. However, it is natural to
mations with a trivial winding number and impose no restric-believe thatarge gauge invariance will hold in the complete
tions on the Chern-Simons coefficient, at finite temperatureeffective action in this case as well.
because of periodicitfin the imaginary time formalisim The studies in the Abelian gauge background have given
Abelian transformations with nontrivial winding are pos- us very valuable insights into the question lafge gauge
sible. Furthermore, at finite temperature, amplitudes andpvariance in such theories. With this knowledge, therefore,
therefore, the effective action become non-analytic functiondt is natural to reanalyze the questionlafge gauge invari-
at the origin in the energy-momentum plafi3—19 (be- ance for a (2-1)-dimensional massive fermion interacting
cause of additional channels available for processes in a thewith a non-Abelian gauge background at finite temperature
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(which, in fact, led to all these studiesMe would like to  sults away from the strictly static limit. We derive a possible
point out that such an analysis was, in fact, carried out earlieform of the parity violating effective action, drawing from
[9], in the path integral formalism, for a very restrictive the studies in the Abelian theory, that will be batmall and
gauge background of the forfgauge potentials are matrices large gauge invariant. The situation, however, is very differ-

belonging toSU(N) ] ent from the Abelian case and it seems to us that many issues
_ remain to be clarified before we understand fully the ques-
Ai=Ai(X), Ag=Aq(t) tion of large gauge invariance in such a case.
The paper is organized as follows. In Sec. Il, we present
[Ao,Ai]=0. (1) our results for the amplitudes, up to the seven point function,

o .. in the static limit for terms which do not manifestly depend
Such a background corresponds to a vanishing electric field = . .
. ; L on E. We show that these amplitudes can be derived from an

and it was shown that the resulting form of the parity violat-

ing effective action, in this background, had an Abelianact|on, whose form is similar to that of the parity violating

structure, which was a simple generalization of that for th effective action in[9], but with genuine non-Abelian struc-

Abelian case. However, it is generally believed that the Ab:jtures. We show that when the electric field vanishes, the

lian form of this parity violating effective action is a conse- no_n-AbeIian_ interac_tion terms _indeed drop out and our action
o : coincides with that if9]. We give an alternate path integral
guence of the above restriction on the background fields.

To analyze the true non-Abelian structure of the paritydenvatlon, showing that this parity violating effective action

violating effective action at finite temperature, we have cho-:ism?txalzt fSoerCthﬁlcz\a;ee V\gigntth(tehzlzcrglclitfﬁgsls}c:?\;ﬂ I?e:mz
sen a more direct approach. Namely, we study the amplitudes o P P

in perturbation theory, at finite temperature, in the static¢vhich manifestly depend oB. These amplitudes satisfy the
limit. We choose the static limit for two reason(} it is in non-Abelian Ward identity following from the residual static
this limit that large gauge invariance is not manifest in per- 9auge invariance of the theory. It is shown that some of these
turbation theory in the Abelian case afit) calculations are @mplitudes do contribute at the same leading order as those
much more complicated in other limits. We have calculated? Sec. Il and, therefore, unlike the Abelian case, the effec-
amplitudes up to the seven point function and our conclutive action that does not manifestly dependBncannot be
sions are as follows. We find that the effective action has twdhought of as the leading order term in the static limit. We

classes of terms—one that manifestly depend€and an-  Present an effective action that would generate these ampli-
other which does not. In the static limit, we find that the tudes. There are two classes of terms in this effective action:

parity violating effective action, which does not manifestly (i) terms with a nontrivial limit at zero temperature have a

depend orE has a form similar to that ifi9] (with proper covariant form andii) those W|t_h a vanishing limit at zero
. s L temperature have a non-covariant structure. In Sec. IV, we
non-Abelian termks For a vanishing electric field, the non- try to generalize our results away from the strictly static
Abelian structures drop out and our action coincides Withlir)r/ﬂt Fgllowin closely to the deriva}t/tion in the Abeliar): case
that obtained 9], although our gauge background is more ) 9 ely L R
we propose a possible generalization of the parity violating

gﬁgiifIbfvﬁzgﬁvfoﬁn%?haﬁgfgrtiledner:gsﬁgcﬁnsﬁg\f\t}f’ iﬁ;toureﬁective action to non-static backgrounds that will be both
9 ' 9 9 small and large gauge invariant. We also discuss various

this is indeed the exact parity violating effective action in theissues that remain to be clarified and present a brief conclu-
static limit, when the electric field vanishes. However, unlike P

the Abelian case, it is not true that this is the leading ordepon N Sec. V. In Appendix A, we compile some useful finite

effective action in the static limit. The static parity violating temperature relations. In Appendix B, we discuss general
properties of thermal gauge transformations and the conse-

effective action, which manifestly depends Bnhas a fam-  gyences of a vanishing electric field, both in the Abelian as
ily of other terms, which can also contribute at the leadingq|| as the non-Abelian theory. In Appendix C, we discuss
order. Some of these additional terms, in fact, do contrlbutebrieﬂy how the restriction in Eq(1) necessarily leads to an

non trivially at zero temperature and, therefore, can be givepelian structure for the parity violating effective action.
a Lorentz invariant description. This is, in fact, completely

consistent with the non-Abelian Ward identities of the theory

(namely, in the Abelian theory, the Ward identities would

imply that then-point function withn>2 is, at least, of the

order of p" [18]; however, non-Abelian Ward identities do  We are considering (2 1)-dimensional massive fermions

allow dependence on momenta of lower ojder interacting with a non-Abelian gauge background described
The parity violating static effective action is manifestly py the Lagrangian density

invariant under residual static non-Abelian gauge transfor-

mations, which aresmall gauge transformations. In fact, in ‘C:E(i'y'u’Dp'—M)lp (2)

the strict static limit, there can be Harge gauge transfor-

mation and, therefore, to analyze the questiofaafe gauge where we assumé&l >0 for simplicity. The fermions are

invariance, one has to go away from the static limit. As weassumed to belong to the fundamental representation of

have already argued, such a calculation is extremely difficulSU(N) so that the covariant derivative is defined to be

and, consequently, based on the results of our calculations, )

we have tried to look for possible generalizations of our re- D,=d,tIigA,

Il. MANIFESTLY E INDEPENDENT PARITY VIOLATING
EFFECTIVE ACTION
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where the gauge field9),, are matrices belonging to the M 1

fundamental representation SU(N). (D= > 5 (6)
In calculating the amplitudes at finite temperature, we will 4m B R (M%+ wp)f

use the imaginary time formalism, where the time axis is

rotated to a finite interval in the imaginary axise refer the where

readers t415,19,2Q for detailg. In this Euclidean space, the (2n+1)7

three Dirac matrices can be chosen to be anti-Hermitian and W=

a particular representation can be chosen t¢altaough our B

results are independent of any choice of the representation

@)

represents the Matsubara frequencies for fermions @nd
=1/T with T representing the temperature. These quantities
can all be evaluated in a closed form by successive differen-

We are interested in calculating the amplitudes in the stati%:jatlon of (see A;()rp)),endlx A for the explicit forms of some of
e lower orded"’s)

limit, which corresponds to a choice of the background fields

Yo=losz, Y1=l0y, Y2=l103.

of the form
i ) I(2)=8itanhﬁ7M. )
Ao=Ro(X), A=A(X) (3) i
. Let us also define a completely symmetrized fourth rank ten-
without any further restriction ok. sor in the internal space of the form
In this static background, the action has a residual gauge
invariance of the form ABPed= 52b50d 4 5acsbdy 52050, ©)
1> All the amplitudes can be represented in terms of these
y—UT ) quantities in the following way. First, let us note some es-
. . sential features of the amplitudes in the static limit. In this
Ao— U~ (X)AgU(x) (4) limit, the parity violating amplitudes involve only an odd

number ofA, fields. The amplitudes, which lead to the ef-
fective action that does not manifestly dependsgave the

following forms (k;,k», ... correspond to the external mo-
menta associated with the first, second. indices, all in-
As a consequence of this symmetry, it is straightforward tacoming; for the two point function, the momentum is asso-
derive that the gauge amplitudes will have to satisfy theciated with the second indgx

Ward identities following from

Ai—>U’1(>Z)AiU(>Z)—IaU’l()Z)aiU(i).

Hgib'(l): — 925ab6ij kj | 2

Ol ot Ol o Ol ot
é, +gfabeAl ——+gfibAl——=0 (5 IaPeM=jg3fabq ¢, 10
I5A? g 05A8 g i 5Aic 0ij g ij ( )
2
whereT o is the effective action resulting from evaluating Hgggd‘l):g4eijk4j(NAadeJr dabegede gacegbde

the fermion loops.
As we have already mentioned in the Introduction, our
calculations of the amplitudes give rise to two classes of +dadedb°e)(|(3)—2M2|(4))-
effective actions—one that manifestly depends‘?oand an-
other which does not. In this section, we will concern our-Here, 3°¢ and d2°¢ denote respectively the anti-symmetric
selves only with the class that does not depend manifestly oand symmetric structure constants ®dJ(N).

E. From the structure of the terms which depend manifestly AS We go to higher point amplitudes, the calculation in-
onE (which we will discuss in the next sectiprit is easy to volves a color trace over more and more color matrices and

recognize that these may be thought of as resulting from th@sta dre_T_lrjllt’ trf1e color fagltlors becct)rphe moreltandfmore c?mlph-
full effective action when the electric field is covariantly cated. therefore, we will present the resulls ot our caicula-

constant. Although the vanishing electric field is a subclas§igns_ of higher point functions only foBUY(2), where we
of these configurations, we do not, in fact, assume the ele@Ptain

tric field to vanish and we will comment more extensively on T1abede()— igséij (57PeCdet gacebde sbeeade) (| (3)
this special subclass later in this section. J
The calculation of the amplitudes is tedious, but straight- —2M?21 %)

forward, and we will not give details of the calculation which
have been described earlidi6,17] (within the context of an
Abelian background However, let us define some notation
to present the results of our calculations in a more manage-
able form. Let +16M41(®)) (1)

6
35650 = % €jkg; C2P9e(31M —16M 2 %)
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abedefgr)_ 19’ bedefq o (4 2/(5 z ig BM_ gBA(X)
IGgooa; ° = = =~ € C**°%° {31 -16M21> FZ}Y“E=°)=EJ d2xTrarctar( tanhTtanT>
+16M4|(6)) Xeij(DiAj_&in)
where i <
_ 19 f d>x Tr arctar( tanh/ﬂtanw)
5 8m 2 2
abcdef_ abcdef
¢ ;1 C X €j(9iA;— I;A)
Cél\bcdef: sefaaped where the first term vanishes upon integration by parts when
the electric field vanishes. This is, in fact, the exact parity
Cgbcdef: sdfpabce violating effective action that was obtained [i@] (We note
here that our result, in this limit, differs from that i@l] by a
Cgbcdef: sefaabde multiplicative factor of;. However, we do not fully under-
stand if this is a real difference, since these authors imply, in
cabedet sbfpacde 12 @ later publication[12] that when evaluated in a smooth
manner, there appears a factor of 2. So, we will ignore this
cabedef_ gafpbede difference in the multiplicative factor from now on.lt is
° quite surprising that the perturbative calculations with a less
cabcdefo cafgpbedey bfgpacde restrictive background seem to yield a parity violating effec-
tive action of exactly the same form. In what follows, we
+ ecfopabdey cdigpabee will show that this is indeed the exact parity violating effec-
tive action, in the static limit, when the electric field van-
4 Eengabcd' .
ishes.

Let us consider a fermion interacting with a static back-
ground with a vanishing electric fieldee Eqgs(3),(15)]. In
the imaginary time formalism, the action, for such a theory
(Fourier transformed in energywould have the form

From the definition in Eq(6), it is easy to see that the
parity violating amplitudes, to this order, completely coin-
cide with those following from the action

=32 [ dz”famta’( a5 a0 B s=5 3 [ D+ volon- AR~ Mg,
(13 "
where the magnetic field has the standard definition =% ; f d2X (i viDi + Yoo, — M) i, - (16)
B= %E”F” :%E”(ﬁiAj_‘?iAng[Ai AD. (14 Here, we have defined
We also note that the branch of arctan is chosen such that ©n(X) = wp—gAY(X) (17

'Y is a continuous function of,, which reduces, in the

zero temperature limit, to the corresponding CS action. ~ which is a nontrivial matrix in the internal space, but is pro-
This is, in fact, the form of the actiotbut with a non-  portional to the identity matrix in the Dirac space.

Abelian structure because the background is more géneral As in the Abelian case, followingg,9], let us define

derived in[9] for a much more restrictive gauge background. .

In fact, let us now specialize to the case of a vanishing elec- Yo0n(X) — M= p,(X)e 7% (18)

tric field. In a static background, a vanishing electric field

would correspond to a field configuration satisfying where

_Ei:DiAOZ&iAo'f'ig[Ai ,A0]=0. (15) = (v

()= B2 ME, () —arctan™ (19
This would further constrain the relations on the amplitudes M

following from the Ward identities in E(5). We would like . ) ,

to emphasize that the gauge backgrounds in(Band those €€, pn, ¢, are matrices in the internal space, but are pro-
in Egs. (3),(15) are inequivalentalthough both correspond portional to the identity matrix in the Dirac space. Further-
to E=0) in the sense that there is no smooth gauge transfoflre, since the nontrivial matrix structures jay(x), ¢n(x)
mation which will take one to the othésee Appendix B on arise only from their dependence @g(x), it follows [see
more details on the consequences of a vanishing electric fieldd. (15)] that

at finite temperatude In this case, it is straightforward to ~ . R

check from Eq.(13) that [pn(X),d,(X)]=0, D;d,(x)=0. (20
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We note that this is a crucial difference from the derivation indent of the directions of the gauge potentials in the internal
[9]. The special gauge background [i@] does satisfy this, symmetry space. One can explicitly check that this action

but here our derivation is quite general. leads to the parity violating amplitudes calculated in the
In terms of these new variables, the action of Efp)  static limit (for vanishing electric field given in Egs.

takes the form (10),(12).

1 — - . R

S==> f d2X i, (i yiD; + pp(x)€ 700Xy (21) IIl. MANIFESTLY E DEPENDENT PARITY VIOLATING

B % EFFECTIVE ACTION
If we now make a chiral redefinitioffrom the point of view We have also calculated the parity violating amplitudes,
of two dimensionsof the fermion fields of the form up to the seven point function, in the static limit for the

L (i12) o) — = 12)yeba() general case when there is manifésdependence. For ease
Yn=e 0, Yn=ine o%n (220 of presentation, let us decompose an arbitrary parity violat-

it is straightforward to show, using the properties of the ma-"9 amplitude as

trices p,,, ¢, discussed above as well as EQO), that the

ap---a, _ aA..an’(l) a...an'(z)
action, Eq.(21), takes the form 1L Dl | Dt | UM (25
1 = -~ : : ,
S= 5 En: f A2 (i ¥iDi+ pr(X)) T (23) Correspondingly, we will also define
Per=Tey e ® (26)

From the definitions in Eq19), it is clear thalp,, is parity
conserving and, therefore, when functionally integrated, th
action in Eq.(23) will only contribute to the parity conserv-
ing part of the effective action. The parity violating part of
the effective action will arise only from the Jacobian for the . .
field redefinitions in Eq(22) e e @y an® - pPL@_ P E o (27)

JRRRy '™ Mt Mg

Svhere we identify the second class of terms as manifestly
depending orE, namely,

DipnDipn=InDipn D The amplitudes as well as the effective action for manifestly

which can be calculated followinf9,21] and leads to the E independent terms are already given in the earlier section.

parity violating effective action of the form Therefore, in this section, we will only describe the parts
. which manifestly depend oB. Let us also define the follow-
- ig - . . . . . -
FRYVE=0-% o3, =— > f d2x Tr ¢ (X) €:F: ing notation for any pair of two-dimensional vectoesb
o n 9n Am “q 3 ue (repeated indices are summed
i M Ag(X - -
=%f dszrarctar( tanh'BTtangBZA) a-b=ab;, axb=¢;ab;. (28)
X &;(AiA— iA). (24) With this, the parity violating amplitudes take the follow-

ing forms. Since the color factors are not so complicated for
This is, therefore, the exact parity violating effective actionthe amplitudes up to the four point function, we will give
in the static case when the electric field vanishes, indepertheir general forms first:

- K1) (k%))
g e = - gzﬁbfiij(T 710

. (3 R L. |4
Hgibjc’(E):'ggfabc[?{@jkzx ks_Eij(2k§+3k2'k3+2k§)+(k2ik2|_kaikal)fu+(k2jk2|_k3jk3|)€|i}_E{

>

8iika
X K3(3K3+ 2K, - kg+3K3) + € (6K3+ 5(Ka- Kg) 2+ 15k3Ky - Ka+ 5kok3+ Ko Ka) + [ €iKa) (Kaj (K5 — K3) + ks; (33
+4Kp- kgt 4K3)) — (Kp kg i )] = (€ kaikyy (4K3+ 4Ky Kyt 3K3) — (Koeka, i = )+ -

1) L
|<3>+7(k§+k1-k2+k§)+.-. (29

[135e () = _jg3fabog, x K,
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g4| (3)
3

11355~
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2
Eij( (Naabac%dabedcde (3Kg+kg)j+ (besC kperkg) +(aeC, Ky kg) + - - -

4
5 g :
T33P = — TSI 20Uy (kg kg ka) = (=l kg k) + - )

where - - -
we have defined

Si| €
Adiji(Ka K3, Ke) =| 8 eim( Ko+ ka)m—— (Ka+ 2Kg+Ka)m

€j)
+ € (K 2kg+ k) + 5 (Ko=),

+ (il ky—ky)

The higher point functions are simpler to describe for th

case ofSU(2) (for simplicity of color factorg, where they
take the forms

5
= I - -
556850 = 0 [(3191-8M2 9) (205K, x K,

+ eaceﬁde1X |Z3+ Eadeﬁbcﬁlx |24+ Ebceﬁadﬁz

><|23+ deeﬁaCRZXE‘ﬁ- Ecde5ab|23>< R’4)+ . ]

R 2ig5|(3)
Hggc(j:jde(E): Eij(éabecde+ 5ac6bde+ 5bc6ade)
+ ...
bede(@) _ | 21971
Hgi”cme( ) — (Eabcédeeij5|m+eabd(5°eei|5jm
+ EaCdébeE“ 5im+ Eabeécdé'iméﬂ
+ Eaceb‘bdfjmﬁn + Eadetsbcﬂm(sij ) + -
(30)
R 6(3](4)— 21(5)
g8(319—gMm2| )
1185585 ©= o (5K i) O

+ (5k4+ kﬁ)jcgdeef+ (5k3+ k6)jC§de6f

+(5ky+kg) jC5 71 (5ky + k) CEP04%)

+o.

- 2i 7
Hgggg(ﬁfg(E): - ?Q(SI (#)—gm2 () cavedeli, ...

where theC’s are defined in Eq(12).

represent higher order terms in momentum and There are several things to note from the structures of

these amplitudes. First of all, we can think of the new struc-

tures,I15>® andI13}%®), as higher order corrections to the
basic structure in Eq(10). However, structures where all
Lorentz indices are “0” or structures with more than two
spatial indices are completely new and are not present in

terms that do not manifestly depend BnFurthermore, even
the structures with one and two spatial indices in Egs.
(29),(30) are of the same ordéin powers of momentuinas
those in Eqs(10),(11). Thus, unlike in the Abelian case, here
the amplitudes, coming from the parity violating effective

€action that does not manifestly depend Bn cannot be
thought of as leading order contributions in the static limit.
Furthermore, it can be easily checked that the amplitudes in
Egs. (29),(30) satisfy the Ward identity, Eq5), following
from the residual gauge invariance of the static action.
There is one other significant difference between the
structure of the amplitudes in Eq4.0),(11) and those in Egs.
(29),(30), which also reflects the difference in the structure
of the Abelian and the non-Abelian theories. Namely, it is
easy to check that the only amplitudes in E¢$0),(11)
which survive in the zero temperature limit are the two and
the three point amplitudes. All higher amplitudes in Egs.
(10),(12) vanish at zero temperature. In contrast, all the am-
plitudes in Egs(29),(30) have a non-vanishing contribution
at zero temperature. Furthermore, we note that all amplitudes

with one spatial indexfor example I1555%(®) are linear in

momentum in the leading order, while those with two spatial

indices (for example, I1§55"¢®) have a leading behavior
which is independent of momentum. In general, we note that
all the amplitudes in Eqg29),(30) have a leading momen-
tum dependence which is of lower order than their Abelian
counterpart at zero temperatufes] (the Abelian box ampli-
tude, at zero temperature, for example, would have a leading
momentum dependence that is at least qudt&]). This
difference in the behavior of the Abelian and the non-
Abelian amplitudes is a consequence of the nontrivial form
of the Ward identity in the non-Abelian case. In fact, we have
explicitly checked that the amplitudes, E¢®9),(30), do sat-
isfy the non-Abelian Ward identities at any temperature.
Given the amplitudes in Eq$29),(30), we can also look
for the appropriate action that would give rise to these am-
plitudes up to this order. With a lot of work, it can be deter-
mined that all the leading order terms in the amplitudes in
Egs.(29),(30) can be derived from the effective actiftine
normalization is easily determined from the leading order
two-point function in Eq(29)]
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ov.©) ig?l® , involving the sub-leading contribution to the 006ompo-
Pie '=— Tf d“x Tr(E;D;B—BD;E;+ € E;DoE;). nent of the four point function. Nonetheless, the coefficients
(31)  Cis are already fully determined from E(B5). It is interest-
o _ o ing that, unlike the earlier case df;u=, here,cE5(T)
In the static limit, of course, the time derivative termiry iCE,E(T)- Therefore, these terms do not combine to a Lor-
gives zero. It is interesting that the relative coefficients be'entz invariant form at finite temperatutRather, they can be
tween theE—B term and theE—E term could have been ritten as the sum of two terms, one of which is manifestly
different, in principle. The fact that they are the same at any grentz invariant while the other is natHowever, it is also
temperature and have a nonzero limit at vanishing tempergiear that, in the limit of zero temperature, whef?
ture suggests that they come from a single Lorentz invarianL(5/8m2)|(4) (see Appendix A Eq. (34) and the second

structure of the form relation in Eq.(35) are consistent witfe] 5(T=0)=c5(T
; ig2® =0), so that the zero temperature effective action that is
FEX#E): -5 f d?x Tr € F D oF an - (32 manifestly Lorentz invariant takes the form

. . . ) B F2 (A T—
It is worth pointing out here that there is a second pOSS|qu~Pv,(E)(T:0): _ MI d?x Tre
. . . . . 2 eff 20 MVN
Lorentz invariant structure that is available at this order,

namely, X (3F ,,D 4D oD gF sy —F ,,D oD gD F ).

J A2X Tr €\ F oD ,F an (36
. . _ Thus, we see that, in the presence of a non-vanishing
which, however, is related to the structure in B82) by  gjectric field, the theory develops a family of parity violating

Bianchi identity. Therefore, at this order, the parity violating effective actions in the static limit at finite temperature of the
effective action has the unique form given in E§2). form

In going beyond five point amplitude@nd leading or-
den, there are more possible structures available. We find,
after a lot of analysis, that the rest of the structures in the

amplitudes in Eqgs(29),(30) including the seven point func- ) )
tions can be derived from an effective action of the form Where the higher order terms can be determined from a cal-

culation of perturbative amplitudes at higher orders. These

TPYV.E=r T,\é#é) n Fg,\é#é) oo (37)

PV.(E)_ | 42 EB _ actions are manifestly invariant under the residual gauge
[oeit = | dXTrlcr (EiD,D,DiB~BD,D,DiE) transformations in the static gauge. They have a non-
B vanishing contribution at zero temperature completely con-

+c¢; (ED,D;D,B-BD,D;D,E;) sistent with the Ward identities of the non-Abelian theory. In

fact, their forms are suggestive and can be trivially extended

EE EE ’

* & (Cr EiD D Dok +¢;"EiD DoDoEj)]. to the non-static case in which case they will be invariant
(33 under a general non-Abelissmall gauge transformation.

The four coefficientxt55F can all be determined, in prin-

ciple, comparing the effective action with the diagrammatic
results. For instance, the two-point function in E2p) gives Our calculations have been strictly in the static limit and
have yielded the static effective action of the form

IV. GOING BEYOND THE STATIC LIMIT

EB EB Igzl @
Ci+C == 5 (34 .
ey =Tey @+ Tg® (39)
while the 000 component of the three-point function in Eq.

(29) as well as the 00000 component of the five point func-With the forms of these actions given in the earlier sections.
tion in Eq. (30) yield respectively In particular, '%"® contains a family of terms involving

electric and magnetic fields, which can, in principle, be de-

ZCEE+ CEE: _ igs® termined order by order from a calculation of the amplitudes.
4 These actions are invariant under the residual gauge transfor-
mations in Eq{(4). However, these aremallgauge transfor-
EE, EE_ ig? @) 2,(5) mations and our interest has been to understand the behavior
Cr +Cp = 53T —8m™). (39 of the thermal parity violating effective action undefaage

gauge transformation. It is clear that, in the strict static limit,
As a consequence of gauge invariance, all the other results there can be ndarge gauge transformation and we must
Egs.(29) and(30) are consistent with the previous relations necessarily go away from the strict static limit if we want to
(they do not give new relationsA closed system of equa- analyze the behavior of the effective action undelage
tions for all the coefficients would require further analysisgauge transformation.
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There have been some previous attempts at constructinghich becomes space independent for a vanishing electric
thermallarge gauge transformatiori2,23. For example, in  field, as mentioned above.
[22], it has been shown, for the gauge gr&ipg(2), that the Let us now analyze the corresponding issues in the case of
gauge transformations a non-Abelian background. Here, for a vanishing electric
o field, Bianchi identity only implies that
mit. - .

U(t,i,ﬂ)=exr{70(><)~o (39 doB+ig[A,,B]=D,B=0. (42)

e ) ) . Namely, the magnetic field is not necessarily static, but is
where 6(x) is a two dimensional instanton, lead to @ non- oy ariantly constant in time. In a non-static background, in
vanishing winding number which is even. Although the gen-;s case, we can again find a time dependent gauge transfor-

eral structure of thermal, non-Abelidarge gauge transfor-  ation which will rotate away the time dependence inAge
mations is not yet fully understood, it is clear that these musig 4. Namely, under

be time-dependent non-Abelian transformations, which are
periodic in time with a periog3. We note from our discus- - . i
sion in the last section that the structure of the terms in A,—A,=U AﬂU—gU a,u (43)

I'ey® is suggestive and we have, in fact, already written
these in a form that holds for non-static backgrounds. Theswith
terms reduce to the appropriate result in the static limit and

are invariant under non-Abelian gauge transformations, U(t,%) = (Pe19/edt Aot X)) (p gal§at Aot W) UB (44
small and large. The main question, therefore, is how to ) ) o
generaliz@?}“” away from the static limit. whereP stands for the path ordering along the time direction,

As we have argued in the introduction, it is very hard tothe time dependence &,(t,x) can be transformed away
go beyond the static limit computationally. For general enermuch like in the Abelian caséWe avoid the symboT for
gies and momenta, this is rather involved, even in the case é¢tme ordering so as not to create confusion with tempera-
the self-energy[16] and the level of complexity increases ture) For simplicity, we have taken the path ordering with
enormously as we go to higher point functions in a non-respect tat=0, and assume thm(tzoj):l, This, then,
Abelian background. As a result, we have taken an alternatieads to the periodicity at finite temperature to correspond to
approach. Namely, we have the effective action in the static
limit and we have tried to look for generalizations, away U(,8,>_<’)=U(O,>Z)=1
from the strict static limit, that would reduce in a natural
manner to the static result in the appropriate limit and will bewhich can be easily checked to hold true.
gauge invariant, only in the simpler case of a vanishing elec- Such a gauge transformation, which preserves the condi-
tric field. tion (42), goes over to the Abelian one, E(10), in the

To this end, we take guidance from the earlier works onappropriate limit, since, in that case, path ordering is trivial.
Abelian gauge backgrounds and follow as closely as possibl&he transformationt44) also brings out an interesting feature
to the structures that arise there, since after all, the noref the non-Abelian theory, namely, path ordered quantities
Abelian result should yield the Abelian one in the appropri-[24] do arise in this case in a natural manner.
ate limit. In this connection, we recall that, in an Abelian It is worth noting here, for later purposes, that

background withE=0, the Bianchi identity implies that the - _
magnetic field is static which allows us to choose a back- Tr[(Pe '9/o4 Aot ) B(0 ) ]
ground of the form ot Bk .
=T (Pe !9, A )B(x,x)] (45
Ao=Ao(t), A=A(X). . . . . o
which can be verified using the cyclicity of trace, periodicity
Subsequently, one can rotate away the time dependence @f gauge transformations and the fact tiats covariantly
the A, field, without affecting the time dependence of the ~ conserved. This relation shows that, although individually

field, by a suitable time dependent gauge transformation dihe path ordered exponential and the magnetic field pick up a
the form dependence on the reference timge(with respect to which

path ordering is defingdthe above combination is, in fact,
tot (B ) independent of the choice of the reference time. Furthermore,
A—AL—d,0, Q)= JO_E . dt’Aq(t’). both the path ordered exponential as well as the magnetic
(40) field transform covariantly under a general, periodic non-
Abelian gauge transformation, for example,
This leads to the time-independent transformed field, ot By 0
ao(X, ), given by (a8l 4ol )
N . XgtB,., , 2 >
— U Y(x0,X)(Pe 1805 A" X))y (xy,X).

- 18 -
ag(Xx,B)= EJO dt’ Ag(t’,x) (41 49
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Keeping these properties in mind, let us try to generalize V. CONCLUSION
the parity violating effective action, in the absence of electric

fields [see Eq.(13) or (25)], to non-static backgrounds. To effective action induced by (21)-dimensional fermions in-

this end, let us note that the transformed fiéMd(Xo,X,8),  teracting with a non-Abelian static gauge background from a
which depends on the reference timg can be shown to be  peryyrhative calculation of amplitudes up to the seven point
related to the path ordered exponential as function. We have attempted to generalize this result to non-
static backgrounds in a way that naturally reduces to the
static action as well as the one for Abelian backgrounds in
the appropriate limits, and which is alsmall and large

gauge invariant. The part of the action which involves non-

' vanishing electric fields["5y"® , contains families of terms

in the Abelian case, where the limits of integration can aIsqNhich are manifestly gauge invariant. Within each family,

be%rr]agsalt?é?/i’ Ebcgg\)/gt?oer?soz:reer tﬁittzt?rrzefrtgﬁlgi.nce the aIt_here are several terms which are related, in a derivative
. 1S are q portant sin y expansion 25,26, by the non-Abelian Ward identities. The
low us to write a generalization of the parity violating static

effective action, Eq(13) [or Eqg. (25)] to non-static back- gen_era_llzayon_of;\f”(l) n Eq.f13) [or (25)], for the case of
grounds of the form vanishingE, given by the actior{48) seems to be the best
that one can do by following the parallel with the Abelian
va,(é=0)_ ig Bd ) case as much as is possible. We conjecturg that this may
eff 278 J o 0% f d°x Trarctan represent a relevant part of the complete parity violating ef-
fective action away from the static limit, but not the com-
. plete action. The reason why this action cannot represent the
)B(xo,x). complete answer, in the absence of electric fields, can be
seen as follows. Let us consider the non-static, induced CS
(48 action at zero temperature, which, then, can be written as

In this paper, we have derived the parity violating thermal

e 108Ro(x0 %.6) = (p il Fat Ag(t’ )). 47

This implies that, in the static limit, when the time ordering
is irrelevant,"AO(xo,)Z,,B)=AO(>Z), as expected. Furthermore

BM_ gBAy(Xo,X,B)
n—

X
tanhTta 5

We remark here parenthetically that, in view of E45), the ) ig2 1
above integrand is actually independentxgffor vanishing rg’f\f/~(E=0):_j d3x Tr( AoB— S€;ADiA;|. (5]
electric fields. However, for non-vanishing electric fields, the am 2
integrand will depend on the reference point and, in this
case, the integration oveyg is meaningful. Note that the second term in E¢1) vanishes identically in
Let us also note that the static limit, in view of Eq(15). Our action(48), for E
=0, therefore, represents a generalization of the first term in
. T i0 8RN 2 Eg. (51), which includes all higher order thermal radiative
=i[1-2e/9P o +2(e90)%+ .. -], corrections proportional to the magnetic field. To obtain the
(49) complete parity violating effective action in this case, one
also needs to determine the corresponding higher order cor-
Namely, the tangent can be expanded in terms of powers agctions to the second term in E¢l). This is a nontrivial
the path ordered exponential. Furthermore, since the patbpen problem that remains to be understood. We would like
ordered exponential as well as the magnetic field transforno note here that, in the Abelian case, the two terms have, in
covariantly under a general non-Abelian gauge transformafact, the same structuréwith different numerical coeffi-
tion, the effective action in Eq48) will be invariant under cient9, which explains why the generalization of the parity
small gauge transformations. Underlarge gauge transfor- violating effective action in the Abelian case is straightfor-
mation, this action shifts byrn (assuming that the magnetic ward.
flux is quantizegl wheren is an integer depending on the
branch of arctan.
Although the effective action in Eq48) looks superfi-
cially similar to that in Eq.(13) [or Eq. (25)], to which it We would like to thank Professor G. V. Dunne, Professor
reduces in the static limit, it has, in fact, a distinct characters, Okubo and Professor J. C. Taylor for many helpful dis-
It is invariant under general periodic non-Abelian gaugecussions. This work was supported in part by US DOE Grant
transformations and is a functional Efo(xo,i,ﬂ), where  No. DE-FG 02-91ER40685 and by CNPqg and FAPESP, Bra-

9BR,  1—e9Fh
an =

t 2 ! 1+eigﬁz‘0
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[see Eq(47)] zil.
—_ . | . +B [
Ao(Xg,X,8)= —Iog(Pe"gfig dtAo(t"X)y (50 APPENDIX A: EXPLICIT LOW ORDER FORMS
9s FOR | ("+D
This is a non-trivial functional of\,, in general, and only in The explicit results for Eq6) can be related to each other
the static limit does it coincide withy(x), as we have men- by differentiation in relation tV 2. Using this simple prop-
tioned earlier. erty and the basic formula
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MT & 1 1

12(T)= —————=—tan il (A1)
8mn» (M?>+w?2) 87 2T}

we have derived the following results:

o L [T ML M
(D= 3omTa MM 27) T 280 55|~ 5]
(A2)
1Ty = T oMt M L M
(D= eam3=| |\ M~ 61/ @M 27/ + 2T 57
M oM 1 s
+ﬁtan 51 2 (A3)
oL 5T M) (M| (5
D= 55T\ w7/ 27) T2
M2 M) M M
- 37 tanit >T +?tanh°’ >T
M?2 H‘M M2 5 "
TR o T 2 (Ad)
and
{O)T)— 1 7T 3M+ M3 t M
(D= Toean ™=\ M ~ 27 " 1573/ 27
7 2M?2 e M 3M
2~ 37z ) o7 Tl o7
M3 2 M
—ﬁtanr?ﬁ +ﬁtanH‘ ﬁ)
+ M 13 M +M2 ! A5
1073 o7 e T g (A5)

APPENDIX B: VANISHING ELECTRIC FIELD AT FINITE
TEMPERATURE

In this appendix, we will describe some of the conse-
guences of a vanishing electric field, both in the Abelian a

PHYSICAL REVIEW D65 065013

The vanishing of the electric field condition, then, deter-
mines

Ao(X,t) = doa(X,1). (B4)

At zero temperature, it is clear that we can make a gauge
transformation to set thA, field to zero. For example, since
under a gauge transformation,

— N
A,—AL=A,—-iU"19,U (B5)

we can choose

U=e i (B6)
where
- t -
Q=a(x,t)=f dt’ Ag(x,t") (B7)
0
which would yield
Ao(X,t)—0, Ai(X,H)—A(X). (B8)

In other words, at zero temperature, in the Abelian theory,
the same gauge transformation that s@tsto zero also
makesA; static.

At finite temperature, however, the gauge fields as well as
the gauge transformations have to be periodic. In this case,
choosing

R t R t (8 >
Q(x,t)zf dt’AO(x,t’)——f dtAy(X,t) (B9)
0 Blo
we obtain(only true for vanishing electric fielgls

- 18 - - — .
Ao(X,t)—’A(’):Ej dt Ag(x,t),  Ai(X,H)—A/=A{(X).
0
(B10)
Thus, in the Abelian theory, even at finite temperature, the
same gauge transformation maklgsandA; simultaneously

static. However, the scalar potential can no longer be set to
zero. Note also that, althoughy, is seemingly space depen-

%ent, it is in fact a constant when the electric field vanishes,

well as the non-Abelian theory, which will also clarify why .

our choice of backgrounds is inequivalent to thos¢dh

First, let us consider the Abelian theory where a vanishing

electric field implies
Ei:ﬁoAi_aiAOZO. (Bl)

The Bianchi identity, in this case, leads to

1
B:_EijFij (BZ)

(908:0, 2

so that the magnetic field is static and determines

A (XD =A(X)+ da(X,t). (B3)

1(8 1(8
5iA6:Ef0 dtaiAOZEfo dtaoAi:O (Bll)

because of the periodicity of the fieldand the vanishing
electric field.

Let us next consider a non-Abelian theory. Here, the fields
are matrices belonging to some representation of the gauge
group and the vanishing electric field condition impliege
will set the coupling to unity

Ei:(goAi_(yiAO_l_i[AOiAi]:O' (812)

The Bianchi identity, in this case, would imply
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DoB=3dyB+i[Ay,B]=0 (B13) which follows from the fact that, at finite temperature, the
magnetic field has to be periodic, which in turn implies that
where
[Ag(X,1),B(x,00]=0. (B24)

1 1 _

2 Namely, even at finite temperature, the magnetic field is

static when the electric field vanishes. In fact, this is a very
Let us note that, under a non-Abelian gauge transformatiorgeneral feature at finite temperature, namely, a variable that
is periodic in the time variable and transforms covariantly

A/L—>A;L:U*1A#U—iu*1<9ﬂu (B15  under a gauge transformation can be made static, if it is
covariantly static.
whereas the field strengths, such Bsand E;, transform Under the gauge transformatia@h?), we have

covariantly.

We see that, in the non-Abelian theory, a vanishing e|eC'Ao(>Z,t)—>A{)=(U(B))‘lAOU(B)—i(U(B))‘laOU(B)=RO(§)
tric field does not imply that the magnetic field is static,
rather_ it is covgrlantly'§tat|c_. However, the solution to the AKX — A =(UB)“IAUB —j(UB)~15U®),
covariantly static condition gives (B25)

B(X,H)=UB(X,0U"%, U=(Pe at'Axt") Note that under this transformation, whi¢§ becomes static,
(B16)  there is noa priori reason forA! to be static. Let us pursue

. L this question a little bit more in detail.
whereU involves a path ordered exponential signifying the The vanishing electric field condition, in terms of the new

non-Abelian nature of the fields. At zero temperature, it isgqqg readgelectric field transforms covarianily
clear that we can make a gauge transformation Wwitde- ’
fined above which will mak® static, namely, DA/ = oA/ +i[AL A 1=aA)  or,
v > > B2
B(x,t)— U B(x,t)U=B(x,0). (B17) BoA = aks (B26)
1 1 .

It is also easy to check that, under the same gauge transfor- ) . ) o
We note that, sincé\/ is not covariantly static, it is no&

mation,
priori clear that it will be static even when we impose peri-
Ag—Ay=U"1AU—iU 19,U=0 odicity at finite temperature. _
(B18) In fact, we can solve the above equation exactly and the
A—A =U “IAU-iU 14U general solution has the form
~ t ~ ~ ~
Where Al,()_(),t) :e—itAo Al,()_(),O)-i— fodt/eit’AO(é}iZO)e—it’Ao eitAO.

JoA =0 (B19) (B27)

when the electric field vanishes. Namely, at zero temperak is clear from this that, if
ture, the same transformation that makes the magnetic field

static, also makes, static andAj=0 for a vanishing elec- [Ao(X),A!(x,0]=0 and [Ay(X),(3Ax(X)]=0
tric field. It trivially follows now that(becaused;=0) (B29)
[A§,A/]=0. (B20)  then, using periodicity of the fields, we can conclude #at

is static. Let us recall that we still have the freedom of doing
At finite temperature, however, the gauge transformations time-independent gauge transformation. However, it is hard
have to be periodic. We can generalize the earlier gaugt® imagine that a single gauge transformation can achieve

transformation to be periodic by defining both these conditions simultaneously. In fact, let us show
next that this cannot be achieved unless some further condi-
U(,B):(Pefidet’Ao(;,t’))eitﬂo(i) (B21) tion is imposed.

Let us define

where, periodicity determines - - . ~ . .
[A0,(3iA0)]=M;(X), [Ag,A{(X,0]=N;(X).

e 1BR) = (p g~ i/EdtAd(x.D)). (B22) (B29)
Under such a gauge transformation, If we now make a gauge transformatib_k(i), then
B(X,H)—(U®) IB(x,)UB=B(X,00  (B23 Ap=U'AU, A=U'A/U-iU %3U. (B30
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It is straightforward to check that such a transformation can PV, (E=0) ig )
achieve the first of the conditions provided Peg™ :EJ d“x Trarctan

[[Ro.(310)U ], Agl=—iM;(X) (B31) O f thO(t))
while, for the second, we need x tanhTIa 2 €ij A (X).
B o . (B36)
[Ag, (6 U)UH=iNi(x). (B32)

Without worrying about the difference in the overall multi-
The two conditions can, then, be shown to be compatiblélicative factor, we note that the latter expression is a total
provided derivative(sinceA, is only a function oft) and will vanish
unless the background configurations are singular. This
makes it clear that we cannot go from the static background
to the second background through a smooth and regular
gauge transformation.
In general, however, there is no reason why this should hold
and, unlike in the Abelian theory, in a non-Abelian theory at
finite temperature, we cannot go to a static configuration,
even if the electric field vanishes.

However, given a vanishing electric field, we can always In this appendix, we will point out briefly why the parity
choose specific backgrounds that will solve this. The statiwviolating effective action, restricted to the particular back-
background Ag=Ag(X),A;=A;(x) with D;A,=0 would grou_nd field configuration of Eq(l) cannot have a non-
solve this, as will the backgrounh=A(t),A;=A(X) with Abelian structure. Let us note that the particular background

[Ag,A]=0. However, as we have already seen, these ar'gl Ed. (1) leads to a vanishing electric field and, therefore,

background choicethat cannot necessarily be implementedwe are necessarily talking abolify" &= . As we will ar-

through a gauge transformation. Furthermore, it is not posgue, it is the last condition in Eq1),

sible to transform the first background to the second by a

gauge transformation. This is simply seen by noting that if [Ao,Ai]=0 (CY

we have such a gauge transformatibh it must necessarily

be time dependent and satisfy which is particularly restrictive and does not allow any non-
Abelian structure iy ®=%  In fact, let us first show ex-

d,(UIAU—iU " 1,U)=0 plicitly that the effective action in9] contains no non-

Abelian structure. When EqC1) holds, it follows that

[Ag,diAg+i[A! (X,0),A0]]=0. (B33

APPENDIX C: ABELIAN NATURE OF PV ACTION
IN A SPECIAL GAUGE BACKGROUND

1A 11—it1- 1, —

. I 1 I B wheren is any arbitrary integer. Using this as well as the

[U"AgU—iU 79U, U "AU—iU ~“4U]=0. cyclicity of trace, it follows trivially that

These are three independent conditions, and as we have al- Tr((Ag)"[Ai,Aj])=0. (C3

ready seen earlier with two conditions, they cannot automati-

cally be satisfied simultaneously. At least, it cannot be doné his shows that the non-Abelian terms in the effective action

through well behaved and smooth gauge transformationsn [9] are, in fact, absent as a consequence of(Eq).

which can be seen as follows. Let us now show this in general. We note that EQ1)
Note that, with a vanishing electric field, the parity vio- implies one of the following two possibilities.

lating part of the effective action can be written, in the static (i) The obvious solution to EqC1) is thatA, andA; are

background, as parallel in the internal space. In this case, the field configu-

rations are truly Abelian. In this case, though, let us note that

- |g
[EyE=0) :Ef d?x Trarctan TrAoA; #0. (C4

BM 9,3Ao(>2) . (i) The second possibility will be to hawk, and A; or-
tanhTtanT € 9iA(X). thogonal in the internal space in a special way. For example,
when consideringSU(N), we can always choose a basis
(B35  such that we havéU(N—1)@U(1) embedded ir8 U(N).
In this case, we can choose

X

On the other hand, in the background[@f, this effective
action has the form ApeU(1l), A, eSUN-1) (CH
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and they will satisfy Eq(C1). In fact, if N is sufficiently  electric field, the parity violating part of the effective action
large, we can choose a basis to emb&8W(N—m) has the form
®SUm)eU(1),m>1 in SU(N). In such a case, we can

choose

2
Ace SUM®U(L), AeSUN-m)  (C6) JdXTrF(AO)B' €8

anq they'W|II commute. In this case, the gauge field Con.f'gu'Such an action will vanish for the second possibility with a
rations will have truly non-Abelian character. However, since

A andA. belond to orthodonal spaces in this case. we WiIItruly non-Abelian nature of the gauge field configurations,
hgve : 9 9 P ' while it will be nonzero only for the first possibility where

the gauge field configurations have an Abelian character. In
Tr AA =0. (c7)  otherwords, the last condition in EQ) is too restrictive and
necessarily forces the parity violating part of the effective
As we have already shown in Sec.(br as can also be action, in the absence of electric fields, to have only an Abe-
seen in a derivative expansid@5,26), in the absence of lian structure.
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