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Induced parity violating thermal effective action for „2¿1…-dimensional fermions interacting
with a non-Abelian background
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We study the parity breaking effective action in 211 dimensions, generated, at finite temperature, by
massive fermions interacting with a non-Abelian gauge background. We explicitly calculate, in the static limit,
parity violating amplitudes up to the seven point function, which allows us to determine the corresponding
effective actions. There are two classes of such actions that arise: namely, terms that do not manifestly depend

on EW and ones that do. We derive the exact effective action that is not manifestly dependent onEW . For the other

class that depends explicitly onEW , there are families of terms that can be determined order by order in
perturbation theory. We attempt to generalize our results to nonstatic backgrounds through the use of time
ordered exponentials and prove gauge invariance, bothsmall and large, of the resulting effective action. We
also point out some open questions that need to be further understood.
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I. INTRODUCTION

Chern-Simons theories in 211 dimensions@1,2# have at-
tracted a lot of attention in the past few years for a variety
reasons@3#. One of the issues studied extensively, for e
ample, is the question oflarge gauge invariance at finite
temperature@4–12#. In particular, it is known for sometime
now that, at finite temperature, massive fermions interac
with a background non-Abelian gauge field induce a Che
Simons term with a coefficient which is a continuous fun
tion of temperature@4#. Therefore, at an arbitrary temper
ture, the Chern-Simons coefficient cannot have a disc
value as would be necessary for invariance underlarge
gauge transformations.

There has been a lot of progress in understanding
puzzle in the past few years. It has been shown, for exam
within the context of (011)-dimensional fermions interact
ing with an external Abelian gauge field, that at finite te
perature, an infinity of terms is induced in the effective a
tion @5# in such a way thatlarge gauge invariance is restore
in the complete effective action, even though at any fin
order in perturbation theory such an invariance will not
manifest@5,10#. Subsequently, this analysis has been gen
alized to (211)-dimensional fermions interacting with a
Abelian gauge background@6–9#. Although, at zero tempera
ture, Abelian gauge transformations correspond to trans
mations with a trivial winding number and impose no restr
tions on the Chern-Simons coefficient, at finite temperatu
because of periodicity~in the imaginary time formalism!,
Abelian transformations with nontrivial winding are po
sible. Furthermore, at finite temperature, amplitudes a
therefore, the effective action become non-analytic functi
at the origin in the energy-momentum plane@13–15# ~be-
cause of additional channels available for processes in a
0556-2821/2002/65~6!/065013~13!/$20.00 65 0650
f
-

g
-

-

te

is
le,

-
-

e

r-

r-
-
e,

d,
s

er-

mal medium!. In the case of Abelian gauge backgrounds,
understand the resolution of the puzzle oflarge gauge invari-
ance, at least, in two distinct conventional limits. In the lo
wave ~LW! limit, where all spatial momenta vanish, it ha
been shown through explicit perturbative calculations up
the four point function thatlarge gauge invariance is not a
problem order by order in perturbation theory@16#. On the
other hand, in the static limit, where all energies vanish
any order in perturbation,large gauge invariance is no
manifest. However, it is also known that one can sum
leading order terms in the parity violating effective action
this limit and the resulting effective action has a form whi
is a generalization of the (011)-dimensional result and is
invariant underlarge gauge transformations much the sam
way @6–9#. The leading order parity violating effective ac
tion, in this limit, also corresponds to the exact effecti
action~parity violating! when the electric field vanishes. Be
yond the leading order, one picks up contributions which
proportional to the electric field and all such terms are ma
festly largegauge invariant@17#. It is worth pointing out here
that, for any intermediate limit~between the two conven
tional limits, namely, LW and static!, calculations become
extremely complicated owing to the analytic continuati
that is needed in the imaginary time formalism. As a con
quence, explicit forms for the parity violating effective a
tion are not available in this regime. However, it is natural
believe thatlarge gauge invariance will hold in the complet
effective action in this case as well.

The studies in the Abelian gauge background have gi
us very valuable insights into the question oflarge gauge
invariance in such theories. With this knowledge, therefo
it is natural to reanalyze the question oflarge gauge invari-
ance for a (211)-dimensional massive fermion interactin
with a non-Abelian gauge background at finite temperat
©2002 The American Physical Society13-1



rli
e
s

fie
at
an
th
be
e-
.
ity
o
d
ti

r-

te
lu

tw

he
tly

-
it
re
u

he
ke
de
g

in
u
ve
ly
r
ld

o

ly
fo
n

we
cu
on
re

le

r-
sues
es-

ent
on,
d
an

g
-
the
ion
l
n
is
s

e
ic
ese
ose

ec-

e
pli-

ion:
a

we
tic
e,
ing
th

us
clu-
te
ral

nse-
as
ss

n

s
ed

of

F. T. BRANDT, ASHOK DAS, AND J. FRENKEL PHYSICAL REVIEW D65 065013
~which, in fact, led to all these studies!. We would like to
point out that such an analysis was, in fact, carried out ea
@9#, in the path integral formalism, for a very restrictiv
gauge background of the form@gauge potentials are matrice
belonging toSU(N)#

Ai5Ai~xW !, A05A0~ t !

@A0 ,Ai #50. ~1!

Such a background corresponds to a vanishing electric
and it was shown that the resulting form of the parity viol
ing effective action, in this background, had an Abeli
structure, which was a simple generalization of that for
Abelian case. However, it is generally believed that the A
lian form of this parity violating effective action is a cons
quence of the above restriction on the background fields

To analyze the true non-Abelian structure of the par
violating effective action at finite temperature, we have ch
sen a more direct approach. Namely, we study the amplitu
in perturbation theory, at finite temperature, in the sta
limit. We choose the static limit for two reasons:~i! it is in
this limit that large gauge invariance is not manifest in pe
turbation theory in the Abelian case and~ii ! calculations are
much more complicated in other limits. We have calcula
amplitudes up to the seven point function and our conc
sions are as follows. We find that the effective action has
classes of terms—one that manifestly depends onEW and an-
other which does not. In the static limit, we find that t
parity violating effective action, which does not manifes
depend onEW has a form similar to that in@9# ~with proper
non-Abelian terms!. For a vanishing electric field, the non
Abelian structures drop out and our action coincides w
that obtained in@9#, although our gauge background is mo
general. We give a path integral derivation of this, for o
choice of backgrounds, along the lines of@9# showing that
this is indeed the exact parity violating effective action in t
static limit, when the electric field vanishes. However, unli
the Abelian case, it is not true that this is the leading or
effective action in the static limit. The static parity violatin
effective action, which manifestly depends onEW , has a fam-
ily of other terms, which can also contribute at the lead
order. Some of these additional terms, in fact, do contrib
non trivially at zero temperature and, therefore, can be gi
a Lorentz invariant description. This is, in fact, complete
consistent with the non-Abelian Ward identities of the theo
~namely, in the Abelian theory, the Ward identities wou
imply that then-point function withn.2 is, at least, of the
order of pn @18#; however, non-Abelian Ward identities d
allow dependence on momenta of lower order!.

The parity violating static effective action is manifest
invariant under residual static non-Abelian gauge trans
mations, which aresmall gauge transformations. In fact, i
the strict static limit, there can be nolarge gauge transfor-
mation and, therefore, to analyze the question oflarge gauge
invariance, one has to go away from the static limit. As
have already argued, such a calculation is extremely diffi
and, consequently, based on the results of our calculati
we have tried to look for possible generalizations of our
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sults away from the strictly static limit. We derive a possib
form of the parity violating effective action, drawing from
the studies in the Abelian theory, that will be bothsmall and
large gauge invariant. The situation, however, is very diffe
ent from the Abelian case and it seems to us that many is
remain to be clarified before we understand fully the qu
tion of large gauge invariance in such a case.

The paper is organized as follows. In Sec. II, we pres
our results for the amplitudes, up to the seven point functi
in the static limit for terms which do not manifestly depen
on EW . We show that these amplitudes can be derived from
action, whose form is similar to that of the parity violatin
effective action in@9#, but with genuine non-Abelian struc
tures. We show that when the electric field vanishes,
non-Abelian interaction terms indeed drop out and our act
coincides with that in@9#. We give an alternate path integra
derivation, showing that this parity violating effective actio
is exact for the case when the electric field is trivial in th
limit. In Sec. III, we present the amplitudes for the term
which manifestly depend onEW . These amplitudes satisfy th
non-Abelian Ward identity following from the residual stat
gauge invariance of the theory. It is shown that some of th
amplitudes do contribute at the same leading order as th
in Sec. II and, therefore, unlike the Abelian case, the eff
tive action that does not manifestly depend onEW , cannot be
thought of as the leading order term in the static limit. W
present an effective action that would generate these am
tudes. There are two classes of terms in this effective act
~i! terms with a nontrivial limit at zero temperature have
covariant form and~ii ! those with a vanishing limit at zero
temperature have a non-covariant structure. In Sec. IV,
try to generalize our results away from the strictly sta
limit. Following closely to the derivation in the Abelian cas
we propose a possible generalization of the parity violat
effective action to non-static backgrounds that will be bo
small and large gauge invariant. We also discuss vario
issues that remain to be clarified and present a brief con
sion in Sec. V. In Appendix A, we compile some useful fini
temperature relations. In Appendix B, we discuss gene
properties of thermal gauge transformations and the co
quences of a vanishing electric field, both in the Abelian
well as the non-Abelian theory. In Appendix C, we discu
briefly how the restriction in Eq.~1! necessarily leads to a
Abelian structure for the parity violating effective action.

II. MANIFESTLY E¢ INDEPENDENT PARITY VIOLATING
EFFECTIVE ACTION

We are considering (211)-dimensional massive fermion
interacting with a non-Abelian gauge background describ
by the Lagrangian density

L5c̄~ igmDm2M !c ~2!

where we assumeM.0 for simplicity. The fermions are
assumed to belong to the fundamental representation
SU(N) so that the covariant derivative is defined to be

Dm5]m1 igAm
3-2
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INDUCED PARITY VIOLATING THERMAL EFFECTIVE . . . PHYSICAL REVIEW D 65 065013
where the gauge fields,Am , are matrices belonging to th
fundamental representation ofSU(N).

In calculating the amplitudes at finite temperature, we w
use the imaginary time formalism, where the time axis
rotated to a finite interval in the imaginary axis~we refer the
readers to@15,19,20# for details!. In this Euclidean space, th
three Dirac matrices can be chosen to be anti-Hermitian
a particular representation can be chosen to be~although our
results are independent of any choice of the representat!

g05 is3 , g15 is1 , g25 is2 .

We are interested in calculating the amplitudes in the st
limit, which corresponds to a choice of the background fie
of the form

A05A0~xW !, Ai5Ai~xW ! ~3!

without any further restriction onEW .
In this static background, the action has a residual ga

invariance of the form

c→U21~xW !c

A0→U21~xW !A0U~xW ! ~4!

Ai→U21~xW !AiU~xW !2
i

g
U21~xW !] iU~xW !.

As a consequence of this symmetry, it is straightforward
derive that the gauge amplitudes will have to satisfy
Ward identities following from

] i

dGeff

dAi
a

1g fabcA0
b dGeff

dA0
c

1g fabcAi
b dGeff

dAi
c

50 ~5!

whereGeff is the effective action resulting from evaluatin
the fermion loops.

As we have already mentioned in the Introduction, o
calculations of the amplitudes give rise to two classes
effective actions—one that manifestly depends onEW and an-
other which does not. In this section, we will concern o
selves only with the class that does not depend manifestl
EW . From the structure of the terms which depend manife
on EW ~which we will discuss in the next section!, it is easy to
recognize that these may be thought of as resulting from
full effective action when the electric field is covariant
constant. Although the vanishing electric field is a subcl
of these configurations, we do not, in fact, assume the e
tric field to vanish and we will comment more extensively
this special subclass later in this section.

The calculation of the amplitudes is tedious, but straig
forward, and we will not give details of the calculation whic
have been described earlier@16,17# ~within the context of an
Abelian background!. However, let us define some notatio
to present the results of our calculations in a more mana
able form. Let
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I (r 11)5
M

4prb (
n

1

~M21vn
2!r

~6!

where

vn5
~2n11!p

b
~7!

represents the Matsubara frequencies for fermions anb
51/T with T representing the temperature. These quanti
can all be evaluated in a closed form by successive differ
tiation of ~see Appendix A for the explicit forms of some o
the lower orderI (r )’s!

I (2)5
1

8p
tanh

bM

2
. ~8!

Let us also define a completely symmetrized fourth rank t
sor in the internal space of the form

Dabcd5dabdcd1dacdbd1daddbc. ~9!

All the amplitudes can be represented in terms of th
quantities in the following way. First, let us note some e
sential features of the amplitudes in the static limit. In th
limit, the parity violating amplitudes involve only an od
number ofA0 fields. The amplitudes, which lead to the e
fective action that does not manifestly depend onEW , have the
following forms (kW1 ,kW2 , . . . correspond to the external mo
menta associated with the first, second, . . . indices, all in-
coming; for the two point function, the momentum is ass
ciated with the second index!:

P0i
ab,(1)52g2dabe i j kj I

(2)

P0i j
abc,(1)5 ig3f abcI (2)e i j ~10!

P000i
abcd,(1)5g4e i j k4 j S 2

N
Dabcd1dabedcde1dacedbde

1dadedbceD ~ I (3)22M2I (4)!.

Here, f abc and dabc denote respectively the anti-symmetr
and symmetric structure constants forSU(N).

As we go to higher point amplitudes, the calculation i
volves a color trace over more and more color matrices
as a result, the color factors become more and more com
cated. Therefore, we will present the results of our calcu
tions of higher point functions only forSU(2), where we
obtain

P000i j
abcde,(1)52 ig5e i j ~dabecde1dacebde1dbceade!~ I (3)

22M2I (4)!

P00000i
abcde f,(1)5

g6

2
e i j k6 jC

abcde f~3I (4)216M2I (5)

116M4I (6)! ~11!
3-3
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P00000i j
abcde f g,(1)52

ig7

2
e i j C

abcde f g~3I (4)216M2I (5)

116M4I (6)!

where

Cabcde f5(
i 51

5

Ci
abcde f

C1
abcde f5de fDabcd,

C2
abcde f5dd fDabce

C3
abcde f5dc fDabde,

C4
abcde f5db fDacde, ~12!

C5
abcde f5da fDbcde

Cabcde f g5ea f gDbcde1eb f gDacde

1ec f gDabde1ed f gDabce

1ee f gDabcd.

From the definition in Eq.~6!, it is easy to see that th
parity violating amplitudes, to this order, completely coi
cide with those following from the action

Geff
PV,(1)5

ig

2pE d2x Tr arctanS tanh
bM

2
tan

gbA0~xW !

2
DB~xW !

~13!

where the magnetic field has the standard definition

B5
1

2
e i j Fi j 5

1

2
e i j ~] iAj2] jAi1 ig@Ai ,Aj # !. ~14!

We also note that the branch of arctan is chosen such
Geff

PV,(1) is a continuous function ofA0, which reduces, in the
zero temperature limit, to the corresponding CS action.

This is, in fact, the form of the action~but with a non-
Abelian structure because the background is more gen!
derived in@9# for a much more restrictive gauge backgroun
In fact, let us now specialize to the case of a vanishing e
tric field. In a static background, a vanishing electric fie
would correspond to a field configuration satisfying

2Ei5DiA05] iA01 ig@Ai ,A0#50. ~15!

This would further constrain the relations on the amplitud
following from the Ward identities in Eq.~5!. We would like
to emphasize that the gauge backgrounds in Eq.~1! and those
in Eqs. ~3!,~15! are inequivalent~although both correspon
to EW 50) in the sense that there is no smooth gauge trans
mation which will take one to the other~see Appendix B on
more details on the consequences of a vanishing electric
at finite temperature!. In this case, it is straightforward t
check from Eq.~13! that
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PV,(EW 50)5

ig

4pE d2x Tr arctanS tanh
bM

2
tan

gbA0~xW !

2
D

3e i j ~DiAj2] jAi !

5
ig

8pE d2x Tr arctanS tanh
bM

2
tan

gbA0~xW !

2
D

3e i j ~] iAj2] jAi !

where the first term vanishes upon integration by parts w
the electric field vanishes. This is, in fact, the exact par
violating effective action that was obtained in@9# ~We note
here that our result, in this limit, differs from that in@9# by a
multiplicative factor of 1

2 . However, we do not fully under-
stand if this is a real difference, since these authors imply
a later publication@12# that when evaluated in a smoot
manner, there appears a factor of 2. So, we will ignore t
difference in the multiplicative factor from now on.!. It is
quite surprising that the perturbative calculations with a l
restrictive background seem to yield a parity violating effe
tive action of exactly the same form. In what follows, w
will show that this is indeed the exact parity violating effe
tive action, in the static limit, when the electric field va
ishes.

Let us consider a fermion interacting with a static bac
ground with a vanishing electric field@see Eqs.~3!,~15!#. In
the imaginary time formalism, the action, for such a theo
~Fourier transformed in energy!, would have the form

S5
1

b (
n
E d2xc̄n„ig iDi1g0@vn2gA0~xW !#2M …cn

5
1

b (
n
E d2xc̄n~ ig iDi1g0ṽn2M !cn . ~16!

Here, we have defined

ṽn~xW !5vn2gA0~xW ! ~17!

which is a nontrivial matrix in the internal space, but is pr
portional to the identity matrix in the Dirac space.

As in the Abelian case, following@8,9#, let us define

g0ṽn~xW !2M5rn~xW !eig0fn(xW ) ~18!

where

rn~xW !5Aṽn
2~xW !1M2, fn~xW !5arctan

ṽn~xW !

M
. ~19!

Here,rn ,fn are matrices in the internal space, but are p
portional to the identity matrix in the Dirac space. Furthe
more, since the nontrivial matrix structures forrn(xW ),fn(xW )
arise only from their dependence onA0(xW ), it follows @see
Eq. ~15!# that

@rn~xW !,fn~xW !#50, Difn~xW !50. ~20!
3-4



in

a

th
-
of
he

on
e

nal
ion
he

es,
e
e
lat-

stly

tly
ion.
rts

-
for
e

INDUCED PARITY VIOLATING THERMAL EFFECTIVE . . . PHYSICAL REVIEW D 65 065013
We note that this is a crucial difference from the derivation
@9#. The special gauge background in@9# does satisfy this,
but here our derivation is quite general.

In terms of these new variables, the action of Eq.~16!
takes the form

S5
1

b (
n
E d2xc̄n„ig iDi1rn~xW !eig0fn(xW )

…cn . ~21!

If we now make a chiral redefinition~from the point of view
of two dimensions! of the fermion fields of the form

cn5e2( i /2)g0fn(xW )c̃n , c̄n5 c̄̃ne2( i /2)g0fn(xW ) ~22!

it is straightforward to show, using the properties of the m
trices rn ,fn discussed above as well as Eq.~20!, that the
action, Eq.~21!, takes the form

S5
1

b (
n
E d2xc̄̃n„ig iDi1rn~xW !…c̃n . ~23!

From the definitions in Eq.~19!, it is clear thatrn is parity
conserving and, therefore, when functionally integrated,
action in Eq.~23! will only contribute to the parity conserv
ing part of the effective action. The parity violating part
the effective action will arise only from the Jacobian for t
field redefinitions in Eq.~22!

Dc̄nDcn5JnDc̄̃nDc̃n

which can be calculated following@9,21# and leads to the
parity violating effective action of the form

Geff
PV,(EW 50)5(

n
logJn5

ig

4p (
n
E d2x Tr fn~xW !e i j Fi j

5
ig

8pE d2x Tr arctanS tanh
bM

2
tan

gbA0~xW !

2
D

3e i j ~] iAj2] jAi !. ~24!

This is, therefore, the exact parity violating effective acti
in the static case when the electric field vanishes, indep
06501
-

e

n-

dent of the directions of the gauge potentials in the inter
symmetry space. One can explicitly check that this act
leads to the parity violating amplitudes calculated in t
static limit ~for vanishing electric field! given in Eqs.
~10!,~11!.

III. MANIFESTLY E¢ DEPENDENT PARITY VIOLATING
EFFECTIVE ACTION

We have also calculated the parity violating amplitud
up to the seven point function, in the static limit for th
general case when there is manifestEW dependence. For eas
of presentation, let us decompose an arbitrary parity vio
ing amplitude as

Pm1•••mn

a1•••an 5Pm1•••mn

a1•••an ,(1)
1Pm1•••mn

a1•••an ,(2) . ~25!

Correspondingly, we will also define

Geff
PV5Geff

PV,(1)1Geff
PV,(2) ~26!

where we identify the second class of terms as manife
depending onEW , namely,

Pm1•••mn

a1•••an ,(2)
5Pm1•••mn

a1•••an ,(EW ) , Geff
PV,(2)5Geff

PV,(EW ) . ~27!

The amplitudes as well as the effective action for manifes
EW independent terms are already given in the earlier sect
Therefore, in this section, we will only describe the pa
which manifestly depend onEW . Let us also define the follow-
ing notation for any pair of two-dimensional vectors,aW ,bW
~repeated indices are summed!:

aW •bW 5aibi , aW 3bW 5e i j aibj . ~28!

With this, the parity violating amplitudes take the follow
ing forms. Since the color factors are not so complicated
the amplitudes up to the four point function, we will giv
their general forms first:
P0i
ab,(EW )52g2dabe i j kj S k2I (3)

3
1

~k2!2I (4)

10
1••• D

P0i j
abc,(EW )5 ig3f abcF I (3)

3
$d i j kW23kW32e i j ~2k2

213kW2•kW312k3
2!1~k2ik2l2k3ik3l !e l j 1~k2 j k2l2k3 j k3l !e l i %2

I (4)

20
$d i j kW2

3kW3~3k2
212kW2•kW313k3

2!1e i j „6k2
415~kW2•kW3!2115k2

2kW2•kW315k2
2k3

21k2↔k3…1@e i l k3l„k2 j~k3
22k2

2!1k3 j~3k2
2

14kW2•kW314k3
2!…2~k2↔k3 ,i↔ j !#2„e i l k2lk2 j~4k2

214kW2•kW313k3
2!2~k2↔k3 ,i↔ j !…%1•••G

P000
abc,(EW )52 ig3f abckW13kW2S I (3)1

I (4)

2
~k1

21kW1•kW21k2
2!1••• D ~29!
3-5
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P000i
abcd,(EW )5

g4I (3)

3
e i j S S 2

N
dabdcd1dabedcdeD ~3k31k4! j1~b↔c,k2↔k3!1~a↔c,k1↔k3!1••• D

P0i j l
abcd,(EW )52

g4

12
I (3)f abef cde

„A0i j l ~k2 ,k3 ,k4!2~ j↔ l ,k3↔k4!1•••…
n
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where ••• represent higher order terms in momentum a
we have defined

A0i j l ~k2 ,k3 ,k4!5Fd i j e lm~k21k4!m2
d i l e jm

2
~k212k31k4!m

1e i j ~k212k31k4! l1
e i l

2
~k22k4! j

1~ i↔ l ,k2↔k4!G .
The higher point functions are simpler to describe for

case ofSU(2) ~for simplicity of color factors!, where they
take the forms

P00000
abcde,(EW )5

ig5

2
@~3I (4)28M2I (5)!~eabedcdkW13kW2

1eacedbdkW13kW31eadedbckW13kW41ebcedadkW2

3kW31ebdedackW23kW41ecdedabkW33kW4!1•••#

P000i j
abcde,(EW )5

2ig5I (3)

3
e i j ~dabecde1dacebde1dbceade!

1•••

P0i j lm
abcde,(EW )5F2ig5I (3)

3
~eabcddee i j d lm1eabddcee i l d jm

1eacddbee j l d im1eabedcde imd j l

1eacedbde jmd i l 1eadedbce lmd i j !1•••G
~30!

P00000i
abcde f,(EW )5Fg6~3I (4)28M2I (5)!

10
e i j „~5k51k6! jC1

abcde f

1~5k41k6! jC2
abcde f1~5k31k6! jC3

abcde f

1~5k21k6! jC4
abcde f1~5k11k6! jC5

abcde f
…

1•••G
P00000i j

abcde f g,(EW )52
2ig7

5
~3I (4)28M2I (5)!Cabcde f ge i j 1•••

where theC’s are defined in Eq.~12!.
06501
d
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There are several things to note from the structures
these amplitudes. First of all, we can think of the new str

tures,P0i
ab,(EW ) andP0i j

abc,(EW ) , as higher order corrections to th
basic structure in Eq.~10!. However, structures where a
Lorentz indices are ‘‘0’’ or structures with more than tw
spatial indices are completely new and are not presen

terms that do not manifestly depend onEW . Furthermore, even
the structures with one and two spatial indices in E
~29!,~30! are of the same order~in powers of momentum! as
those in Eqs.~10!,~11!. Thus, unlike in the Abelian case, her
the amplitudes, coming from the parity violating effectiv

action that does not manifestly depend onEW , cannot be
thought of as leading order contributions in the static lim
Furthermore, it can be easily checked that the amplitude
Eqs. ~29!,~30! satisfy the Ward identity, Eq.~5!, following
from the residual gauge invariance of the static action.

There is one other significant difference between
structure of the amplitudes in Eqs.~10!,~11! and those in Eqs.
~29!,~30!, which also reflects the difference in the structu
of the Abelian and the non-Abelian theories. Namely, it
easy to check that the only amplitudes in Eqs.~10!,~11!
which survive in the zero temperature limit are the two a
the three point amplitudes. All higher amplitudes in Eq
~10!,~11! vanish at zero temperature. In contrast, all the a
plitudes in Eqs.~29!,~30! have a non-vanishing contributio
at zero temperature. Furthermore, we note that all amplitu

with one spatial index~for example,P000i
abcd,(EW )) are linear in

momentum in the leading order, while those with two spa

indices ~for example,P000i j
abcde,(EW )) have a leading behavio

which is independent of momentum. In general, we note t
all the amplitudes in Eqs.~29!,~30! have a leading momen
tum dependence which is of lower order than their Abel
counterpart at zero temperature@18# ~the Abelian box ampli-
tude, at zero temperature, for example, would have a lead
momentum dependence that is at least quartic@16#!. This
difference in the behavior of the Abelian and the no
Abelian amplitudes is a consequence of the nontrivial fo
of the Ward identity in the non-Abelian case. In fact, we ha
explicitly checked that the amplitudes, Eqs.~29!,~30!, do sat-
isfy the non-Abelian Ward identities at any temperature.

Given the amplitudes in Eqs.~29!,~30!, we can also look
for the appropriate action that would give rise to these a
plitudes up to this order. With a lot of work, it can be dete
mined that all the leading order terms in the amplitudes
Eqs. ~29!,~30! can be derived from the effective action@the
normalization is easily determined from the leading ord
two-point function in Eq.~29!#
3-6
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G1,eff
PV,(EW )52

ig2I (3)

3 E d2x Tr~EiDiB2BDiEi1e i j EiD0Ej !.

~31!

In the static limit, of course, the time derivative term inD0
gives zero. It is interesting that the relative coefficients
tween theEW 2B term and theEW 2EW term could have been
different, in principle. The fact that they are the same at a
temperature and have a nonzero limit at vanishing temp
ture suggests that they come from a single Lorentz invar
structure of the form

G1,eff
PV,(EW )52

ig2I (3)

6 E d2x Tr emnlFmnDaFal . ~32!

It is worth pointing out here that there is a second poss
Lorentz invariant structure that is available at this ord
namely,

E d2x Tr emnlFmaDnFal

which, however, is related to the structure in Eq.~32! by
Bianchi identity. Therefore, at this order, the parity violatin
effective action has the unique form given in Eq.~32!.

In going beyond five point amplitudes~and leading or-
der!, there are more possible structures available. We fi
after a lot of analysis, that the rest of the structures in
amplitudes in Eqs.~29!,~30! including the seven point func
tions can be derived from an effective action of the form

G2,eff
PV,(EW )5E d2x Tr@c1

EB~EiDaDaDiB2BDaDaDiEi !

1c2
EB~EiDaDiDaB2BDaDiDaEi !

1e i j ~c1
EEEiDaDaD0Ej1c2

EEEiDaD0DaEj !#.

~33!

The four coefficientsc1,2
EB,EE can all be determined, in prin

ciple, comparing the effective action with the diagramma
results. For instance, the two-point function in Eq.~29! gives

c1
EB1c2

EB52
ig2I (4)

10
, ~34!

while the 000 component of the three-point function in E
~29! as well as the 00000 component of the five point fun
tion in Eq. ~30! yield respectively

2c1
EE1c2

EE52
ig2I (4)

4

c1
EE1c2

EE5
ig2

20
~3I (4)28m2I (5)!. ~35!

As a consequence of gauge invariance, all the other resu
Eqs.~29! and ~30! are consistent with the previous relatio
~they do not give new relations!. A closed system of equa
tions for all the coefficients would require further analys
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involving the sub-leading contribution to the 000i compo-
nent of the four point function. Nonetheless, the coefficie
c1,2

EE are already fully determined from Eq.~35!. It is interest-

ing that, unlike the earlier case ofG1,eff
PV,(EW ) , here, c1,2

EE(T)
Þc1,2

EB(T). Therefore, these terms do not combine to a L
entz invariant form at finite temperature~Rather, they can be
written as the sum of two terms, one of which is manifes
Lorentz invariant while the other is not.!. However, it is also
clear that, in the limit of zero temperature, whenI (5)

5(5/8m2)I (4) ~see Appendix A!, Eq. ~34! and the second
relation in Eq.~35! are consistent withc1,2

EE(T50)5c1,2
EB(T

50), so that the zero temperature effective action tha
manifestly Lorentz invariant takes the form

G2,eff
PV,(EW )~T50!52

ig2I (4)~T50!

20 E d2x Tr emnl

3~3FmnDaDaDbFbl2FmnDaDbDaFbl!.

~36!

Thus, we see that, in the presence of a non-vanish
electric field, the theory develops a family of parity violatin
effective actions in the static limit at finite temperature of t
form

Geff
PV,(EW )5G1,eff

PV,(EW )1G2,eff
PV,(EW )1••• ~37!

where the higher order terms can be determined from a
culation of perturbative amplitudes at higher orders. Th
actions are manifestly invariant under the residual ga
transformations in the static gauge. They have a n
vanishing contribution at zero temperature completely c
sistent with the Ward identities of the non-Abelian theory.
fact, their forms are suggestive and can be trivially extend
to the non-static case in which case they will be invaria
under a general non-Abeliansmall gauge transformation.

IV. GOING BEYOND THE STATIC LIMIT

Our calculations have been strictly in the static limit a
have yielded the static effective action of the form

Geff
PV5Geff

PV,(1)1Geff
PV,(EW ) ~38!

with the forms of these actions given in the earlier sectio

In particular,Geff
PV,(EW ) contains a family of terms involving

electric and magnetic fields, which can, in principle, be d
termined order by order from a calculation of the amplitud
These actions are invariant under the residual gauge tran
mations in Eq.~4!. However, these aresmall gauge transfor-
mations and our interest has been to understand the beh
of the thermal parity violating effective action under alarge
gauge transformation. It is clear that, in the strict static lim
there can be nolarge gauge transformation and we mu
necessarily go away from the strict static limit if we want
analyze the behavior of the effective action under alarge
gauge transformation.
3-7
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There have been some previous attempts at construc
thermallarge gauge transformations@22,23#. For example, in
@22# , it has been shown, for the gauge groupSU(2), that the
gauge transformations

U~ t,xW ,b!5expF2p i t

b
û~xW !•sW G ~39!

where û(xW ) is a two dimensional instanton, lead to a no
vanishing winding number which is even. Although the ge
eral structure of thermal, non-Abelianlarge gauge transfor-
mations is not yet fully understood, it is clear that these m
be time-dependent non-Abelian transformations, which
periodic in time with a periodb. We note from our discus
sion in the last section that the structure of the terms

Geff
PV,(EW ) is suggestive and we have, in fact, already writt

these in a form that holds for non-static backgrounds. Th
terms reduce to the appropriate result in the static limit a
are invariant under non-Abelian gauge transformatio
small and large. The main question, therefore, is how
generalizeGeff

PV,(1) away from the static limit.
As we have argued in the introduction, it is very hard

go beyond the static limit computationally. For general en
gies and momenta, this is rather involved, even in the cas
the self-energy@16# and the level of complexity increase
enormously as we go to higher point functions in a no
Abelian background. As a result, we have taken an altern
approach. Namely, we have the effective action in the st
limit and we have tried to look for generalizations, aw
from the strict static limit, that would reduce in a natur
manner to the static result in the appropriate limit and will
gauge invariant, only in the simpler case of a vanishing e
tric field.

To this end, we take guidance from the earlier works
Abelian gauge backgrounds and follow as closely as poss
to the structures that arise there, since after all, the n
Abelian result should yield the Abelian one in the approp
ate limit. In this connection, we recall that, in an Abelia
background withEW 50, the Bianchi identity implies that the
magnetic field is static which allows us to choose a ba
ground of the form

A05A0~ t !, Ai5Ai~xW !.

Subsequently, one can rotate away the time dependenc
theA0 field, without affecting the time dependence of theAi
field, by a suitable time dependent gauge transformation
the form

Am→Am2]mV, V~ t !5S E
0

t

2
t

bE0

b D dt8A0~ t8!.

~40!

This leads to the time-independent transformed fie
a0(xW ,b), given by

a0~xW ,b!5
1

bE0

b

dt8A0~ t8,xW ! ~41!
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which becomes space independent for a vanishing ele
field, as mentioned above.

Let us now analyze the corresponding issues in the cas
a non-Abelian background. Here, for a vanishing elec
field, Bianchi identity only implies that

]0B1 ig@A0 ,B#5D0B50. ~42!

Namely, the magnetic field is not necessarily static, bu
covariantly constant in time. In a non-static background,
this case, we can again find a time dependent gauge tran
mation which will rotate away the time dependence in theA0
field. Namely, under

Am→Ãm5U21AmU2
i

g
U21]mU ~43!

with

U~ t,xW !5~Pe2 ig*0
t dt8A0(t8,xW )!~Peig*0

bdt8A0(t8,xW )! t/b ~44!

whereP stands for the path ordering along the time directio
the time dependence ofA0(t,xW ) can be transformed awa
much like in the Abelian case.~We avoid the symbolT for
time ordering so as not to create confusion with tempe
ture.! For simplicity, we have taken the path ordering wi
respect tot50, and assume thatU(t50, xW )51. This, then,
leads to the periodicity at finite temperature to correspond

U~b,xW !5U~0,xW !51

which can be easily checked to hold true.
Such a gauge transformation, which preserves the co

tion ~42!, goes over to the Abelian one, Eq.~40!, in the
appropriate limit, since, in that case, path ordering is triv
The transformation~44! also brings out an interesting featu
of the non-Abelian theory, namely, path ordered quantit
@24# do arise in this case in a natural manner.

It is worth noting here, for later purposes, that

Tr@~Pe2 ig*0
bdt8A0(t8,xW )!B~0,xW !#

5Tr@~Pe2 ig*
x0

x01b
dt8A0(t8,xW )!B~x0 ,xW !# ~45!

which can be verified using the cyclicity of trace, periodici
of gauge transformations and the fact thatB is covariantly
conserved. This relation shows that, although individua
the path ordered exponential and the magnetic field pick u
dependence on the reference timex0 ~with respect to which
path ordering is defined!, the above combination is, in fac
independent of the choice of the reference time. Furtherm
both the path ordered exponential as well as the magn
field transform covariantly under a general, periodic no
Abelian gauge transformation, for example,

~Pe2 ig*
x0

x01b
dt8A0(t8,xW )!

→U21~x0 ,xW !~Pe2 ig*
x0

x01b
dt8A0(t8,xW )!U~x0 ,xW !.

~46!
3-8
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Keeping these properties in mind, let us try to genera
the parity violating effective action, in the absence of elec
fields @see Eq.~13! or ~25!#, to non-static backgrounds. T
this end, let us note that the transformed field,Ã0(x0 ,xW ,b),
which depends on the reference timex0, can be shown to be
related to the path ordered exponential as

e2 igbÃ0(x0 ,xW ,b)5~Pe2 ig*
x0

x01b
dt8A0(t8,xW )!. ~47!

This implies that, in the static limit, when the time orderin
is irrelevant,Ã0(x0 ,xW ,b)5A0(xW ), as expected. Furthermore
in the Abelian case, where the limits of integration can a
be translated, Eq.~47! goes over to the relation~41!.

The above observations are quite important since they
low us to write a generalization of the parity violating sta
effective action, Eq.~13! @or Eq. ~25!# to non-static back-
grounds of the form

Geff
PV,(EW 50)5

ig

2pbE0

b

dx0E d2x Tr arctan

3S tanh
bM

2
tan

gbÃ0~x0 ,xW ,b!

2
DB~x0 ,xW !.

~48!

We remark here parenthetically that, in view of Eq.~45!, the
above integrand is actually independent ofx0 for vanishing
electric fields. However, for non-vanishing electric fields, t
integrand will depend on the reference point and, in t
case, the integration overx0 is meaningful.

Let us also note that

tan
gbÃ0

2
5 i

12eigbÃ0

11eigbÃ0
5 i @122eigbÃ012~eigbÃ0!21•••#.

~49!

Namely, the tangent can be expanded in terms of power
the path ordered exponential. Furthermore, since the
ordered exponential as well as the magnetic field transf
covariantly under a general non-Abelian gauge transfor
tion, the effective action in Eq.~48! will be invariant under
small gauge transformations. Under alarge gauge transfor-
mation, this action shifts bypn ~assuming that the magnet
flux is quantized!, wheren is an integer depending on th
branch of arctan.

Although the effective action in Eq.~48! looks superfi-
cially similar to that in Eq.~13! @or Eq. ~25!#, to which it
reduces in the static limit, it has, in fact, a distinct charac
It is invariant under general periodic non-Abelian gau
transformations and is a functional ofÃ0(x0 ,xW ,b), where
@see Eq.~47!#

Ã0~x0 ,xW ,b!5
i

gb
log~Pe2 ig*

x0

x01b
dt8A0(t8,xW )!. ~50!

This is a non-trivial functional ofA0, in general, and only in
the static limit does it coincide withA0(xW ), as we have men
tioned earlier.
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V. CONCLUSION

In this paper, we have derived the parity violating therm
effective action induced by (211)-dimensional fermions in-
teracting with a non-Abelian static gauge background from
perturbative calculation of amplitudes up to the seven po
function. We have attempted to generalize this result to n
static backgrounds in a way that naturally reduces to
static action as well as the one for Abelian backgrounds
the appropriate limits, and which is alsosmall and large
gauge invariant. The part of the action which involves no

vanishing electric fields,Geff
PV,(EW ) , contains families of terms

which are manifestly gauge invariant. Within each fami
there are several terms which are related, in a deriva
expansion@25,26#, by the non-Abelian Ward identities. Th
generalization ofGeff

PV,(1) in Eq. ~13! @or ~25!#, for the case of

vanishingEW , given by the action~48! seems to be the bes
that one can do by following the parallel with the Abelia
case as much as is possible. We conjecture that this
represent a relevant part of the complete parity violating
fective action away from the static limit, but not the com
plete action. The reason why this action cannot represen
complete answer, in the absence of electric fields, can
seen as follows. Let us consider the non-static, induced
action at zero temperature, which, then, can be written a

Geff
PV,(EW 50)5

ig2

4pE d3x TrS A0B2
1

2
e i j A0DiAj D . ~51!

Note that the second term in Eq.~51! vanishes identically in
the static limit, in view of Eq.~15!. Our action~48!, for EW
50, therefore, represents a generalization of the first term
Eq. ~51!, which includes all higher order thermal radiativ
corrections proportional to the magnetic field. To obtain t
complete parity violating effective action in this case, o
also needs to determine the corresponding higher order
rections to the second term in Eq.~51!. This is a nontrivial
open problem that remains to be understood. We would
to note here that, in the Abelian case, the two terms have
fact, the same structure~with different numerical coeffi-
cients!, which explains why the generalization of the pari
violating effective action in the Abelian case is straightfo
ward.
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APPENDIX A: EXPLICIT LOW ORDER FORMS
FOR I „r¿1…

The explicit results for Eq.~6! can be related to each othe
by differentiation in relation toM2. Using this simple prop-
erty and the basic formula
3-9
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I (2)~T!5
MT

8p (
n52`

`
1

~M21vn
2!

5
1

8p
tanhS M

2TD , ~A1!

we have derived the following results:

I (3)~T!5
1

32MTpF T

M
tanhS M

2TD1
1

2
tanh2S M

2TD2
1

2G ,
~A2!

I (4)~T!5
1

64M3Tp F S T

M
2

M

6TD tanhS M

2TD1
1

2
tanh2S M

2TD
1

M

6T
tanh3S M

2TD2
1

2G , ~A3!

I (5)~T!5
1

512M5Tp F S 5T

M
2

M

T D tanhS M

2TD1S 5

2

2
M2

3T2D tanh2S M

2TD1
M

T
tanh3S M

2TD
1

M2

4T2tanh4S M

2TD1
M2

12T2 2
5

2G ~A4!

and

I (6)~T!5
1

1024M7TpF S 7T

M
2

3M

2T
1

M3

15T3D tanhS M

2TD
1S 7

2
2

2M2

3T2 D tanh2S M

2TD1S 3M

2T

2
M3

6T3D tanh3S M

2TD1
M2

2T2tanh4S M

2TD
1

M3

10T3tanh5S M

2TD1
M2

6T2 2
7

2G . ~A5!

APPENDIX B: VANISHING ELECTRIC FIELD AT FINITE
TEMPERATURE

In this appendix, we will describe some of the cons
quences of a vanishing electric field, both in the Abelian
well as the non-Abelian theory, which will also clarify wh
our choice of backgrounds is inequivalent to those in@9#.

First, let us consider the Abelian theory where a vanish
electric field implies

Ei5]0Ai2] iA050. ~B1!

The Bianchi identity, in this case, leads to

]0B50, B5
1

2
e i j Fi j ~B2!

so that the magnetic field is static and determines

Ai~xW ,t !5Āi~xW !1] ia~xW ,t !. ~B3!
06501
-
s

g

The vanishing of the electric field condition, then, dete
mines

A0~xW ,t !5]0a~xW ,t !. ~B4!

At zero temperature, it is clear that we can make a ga
transformation to set theA0 field to zero. For example, sinc
under a gauge transformation,

Am→Am8 5Am2 iU 21]mU ~B5!

we can choose

U5e2 iV ~B6!

where

V5a~xW ,t !5E
0

t

dt8A0~xW ,t8! ~B7!

which would yield

A0~xW ,t !→0, Ai~xW ,t !→Āi~xW !. ~B8!

In other words, at zero temperature, in the Abelian theo
the same gauge transformation that setsA0 to zero also
makesAi static.

At finite temperature, however, the gauge fields as wel
the gauge transformations have to be periodic. In this c
choosing

V~xW ,t !5E
0

t

dt8A0~xW ,t8!2
t

bE0

b

dtA0~xW ,t ! ~B9!

we obtain~only true for vanishing electric fields!

A0~xW ,t !→A085
1

bE0

b

dt A0~xW ,t !, Ai~xW ,t !→Ai85Āi~xW !.

~B10!

Thus, in the Abelian theory, even at finite temperature,
same gauge transformation makesA0 andAi simultaneously
static. However, the scalar potential can no longer be se
zero. Note also that, althoughA08 is seemingly space depen
dent, it is in fact a constant when the electric field vanish
since

] iA085
1

bE0

b

dt ] iA05
1

bE0

b

dt ]0Ai50 ~B11!

because of the periodicity of the fields~and the vanishing
electric field!.

Let us next consider a non-Abelian theory. Here, the fie
are matrices belonging to some representation of the ga
group and the vanishing electric field condition implies~we
will set the coupling to unity!

Ei5]0Ai2] iA01 i @A0 ,Ai #50. ~B12!

The Bianchi identity, in this case, would imply
3-10
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D0B5]0B1 i @A0 ,B#50 ~B13!

where

B5
1

2
e i j Fi j 5

1

2
e i j ~] iAj2] jAi1 i @Ai ,Aj # !. ~B14!

Let us note that, under a non-Abelian gauge transformat

Am→Am8 5U21AmU2 iU 21]mU ~B15!

whereas the field strengths, such asB and Ei , transform
covariantly.

We see that, in the non-Abelian theory, a vanishing el
tric field does not imply that the magnetic field is stat
rather it is covariantly static. However, the solution to t
covariantly static condition gives

B~xW ,t !5UB~xW ,0!U21, U5~Pe2 i *0
t dt8A0(xW ,t8)!

~B16!

whereU involves a path ordered exponential signifying t
non-Abelian nature of the fields. At zero temperature, it
clear that we can make a gauge transformation withU de-
fined above which will makeB static, namely,

B~xW ,t !→U21B~xW ,t !U5B~xW ,0!. ~B17!

It is also easy to check that, under the same gauge tran
mation,

A0→A085U21A0U2 iU 21]0U50
~B18!

Ai→Ai85U21AiU2 iU 21] iU

where

]0Ai850 ~B19!

when the electric field vanishes. Namely, at zero tempe
ture, the same transformation that makes the magnetic
static, also makesAi8 static andA0850 for a vanishing elec-
tric field. It trivially follows now that~becauseA0850)

@A08 ,Ai8#50. ~B20!

At finite temperature, however, the gauge transformati
have to be periodic. We can generalize the earlier ga
transformation to be periodic by defining

U (b)5~Pe2 i *0
t dt8A0(xW ,t8)!eitÃ0(xW ) ~B21!

where, periodicity determines

e2 ibÃ0(xW )5~Pe2 i *0
bdtA0(xW ,t)!. ~B22!

Under such a gauge transformation,

B~xW ,t !→~U (b)!21B~xW ,t !U (b)5B~xW ,0! ~B23!
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which follows from the fact that, at finite temperature, t
magnetic field has to be periodic, which in turn implies th

@A0~xW ,t !,B~xW ,0!#50. ~B24!

Namely, even at finite temperature, the magnetic field
static when the electric field vanishes. In fact, this is a v
general feature at finite temperature, namely, a variable
is periodic in the time variable and transforms covarian
under a gauge transformation can be made static, if i
covariantly static.

Under the gauge transformationU (b), we have

A0~xW ,t !→A085~U (b)!21A0U (b)2 i ~U (b)!21]0U (b)5Ã0~xW !

Ai~xW ,t !→Ai85~U (b)!21AiU
(b)2 i ~U (b)!21] iU

(b).
~B25!

Note that under this transformation, whileA08 becomes static,
there is noa priori reason forAi8 to be static. Let us pursue
this question a little bit more in detail.

The vanishing electric field condition, in terms of the ne
fields, reads~electric field transforms covariantly!

D08Ai8[]0Ai81 i @A08 ,Ai8#5] iA08 or,
~B26!

D̃0Ai85] i Ã0 .

We note that, sinceAi8 is not covariantly static, it is nota
priori clear that it will be static even when we impose pe
odicity at finite temperature.

In fact, we can solve the above equation exactly and
general solution has the form

Ai8~xW ,t !5e2 i tÃ0FAi8~xW ,0!1E
0

t

dt8eit 8Ã0~] i Ã0!e2 i t 8Ã0GeitÃ0.

~B27!

It is clear from this that, if

@Ã0~xW !,Ai8~xW ,0!#50 and @Ã0~xW !,~] i Ã0~xW !#50
~B28!

then, using periodicity of the fields, we can conclude thatAi8
is static. Let us recall that we still have the freedom of doi
a time-independent gauge transformation. However, it is h
to imagine that a single gauge transformation can achi
both these conditions simultaneously. In fact, let us sh
next that this cannot be achieved unless some further co
tion is imposed.

Let us define

@Ã0 ,~] i Ã0!#5Mi~xW !, @Ã0 ,Ai8~xW ,0!#5Ni~xW !.
~B29!

If we now make a gauge transformationŪ(xW ), then

Ā05Ū21Ã0Ū, Āi5Ū21Ai8Ū2 iŪ 21] i Ū. ~B30!
3-11
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It is straightforward to check that such a transformation c
achieve the first of the conditions provided

†@Ã0 ,~] i Ū !Ū21#,Ã0‡52 iM i~xW ! ~B31!

while, for the second, we need

@Ã0 ,~] i Ū !Ū21#5 iNi~xW !. ~B32!

The two conditions can, then, be shown to be compat
provided

†Ã0 ,] i Ã01 i @Ai8~xW ,0!,Ã0#‡50. ~B33!

In general, however, there is no reason why this should h
and, unlike in the Abelian theory, in a non-Abelian theory
finite temperature, we cannot go to a static configurati
even if the electric field vanishes.

However, given a vanishing electric field, we can alwa
choose specific backgrounds that will solve this. The st
background A05A0(xW ),Ai5Ai(xW ) with DiA050 would
solve this, as will the backgroundA05A0(t),Ai5Ai(xW ) with
@A0 ,Ai #50. However, as we have already seen, these
background choicesthat cannot necessarily be implement
through a gauge transformation. Furthermore, it is not p
sible to transform the first background to the second b
gauge transformation. This is simply seen by noting tha
we have such a gauge transformation,U, it must necessarily
be time dependent and satisfy

] i~U21A0U2 iU 21]0U !50

]0~U21AiU2 iU 21] iU !50
~B34!

@U21A0U2 iU 21]0U,U21AiU2 iU 21] iU#50.

These are three independent conditions, and as we hav
ready seen earlier with two conditions, they cannot autom
cally be satisfied simultaneously. At least, it cannot be d
through well behaved and smooth gauge transformatio
which can be seen as follows.

Note that, with a vanishing electric field, the parity vi
lating part of the effective action can be written, in the sta
background, as

Geff
PV,(EW 50)5

ig

4pE d2x Tr arctan

3S tanh
bM

2
tan

gbA0~xW !

2
D e i j ] iAj~xW !.

~B35!

On the other hand, in the background of@9#, this effective
action has the form
06501
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Geff
PV,(EW 50)5

ig

2pE d2x Tr arctan

3S tanh
bM

2
tan

gXE dtA0~ t ! C
2

D e i j ] iAj~xW !.

~B36!

Without worrying about the difference in the overall mult
plicative factor, we note that the latter expression is a to
derivative~sinceA0 is only a function oft) and will vanish
unless the background configurations are singular. T
makes it clear that we cannot go from the static backgro
to the second background through a smooth and reg
gauge transformation.

APPENDIX C: ABELIAN NATURE OF PV ACTION
IN A SPECIAL GAUGE BACKGROUND

In this appendix, we will point out briefly why the parit
violating effective action, restricted to the particular bac
ground field configuration of Eq.~1! cannot have a non
Abelian structure. Let us note that the particular backgrou
in Eq. ~1! leads to a vanishing electric field and, therefo

we are necessarily talking aboutGeff
PV,(EW 50) . As we will ar-

gue, it is the last condition in Eq.~1!,

@A0 ,Ai #50 ~C1!

which is particularly restrictive and does not allow any no

Abelian structure inGeff
PV,(EW 50) . In fact, let us first show ex-

plicitly that the effective action in@9# contains no non-
Abelian structure. When Eq.~C1! holds, it follows that

@~A0!n,Ai #50 ~C2!

where n is any arbitrary integer. Using this as well as th
cyclicity of trace, it follows trivially that

Tr„~A0!n@Ai ,Aj #…50. ~C3!

This shows that the non-Abelian terms in the effective act
in @9# are, in fact, absent as a consequence of Eq.~C1!.

Let us now show this in general. We note that Eq.~C1!
implies one of the following two possibilities.

~i! The obvious solution to Eq.~C1! is thatA0 andAi are
parallel in the internal space. In this case, the field confi
rations are truly Abelian. In this case, though, let us note t

Tr A0AiÞ0. ~C4!

~ii ! The second possibility will be to haveA0 andAi or-
thogonal in the internal space in a special way. For exam
when consideringSU(N), we can always choose a bas
such that we haveSU(N21)% U(1) embedded inSU(N).
In this case, we can choose

A0PU~1!, AiPSU~N21! ~C5!
3-12
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and they will satisfy Eq.~C1!. In fact, if N is sufficiently
large, we can choose a basis to embedSU(N2m)
% SU(m) % U(1),m.1 in SU(N). In such a case, we ca
choose

A0PSU~m! % U~1!, AiPSU~N2m! ~C6!

and they will commute. In this case, the gauge field confi
rations will have truly non-Abelian character. However, sin
A0 andAi belong to orthogonal spaces in this case, we w
have

Tr A0Ai50. ~C7!

As we have already shown in Sec. II~or as can also be
seen in a derivative expansion@25,26#!, in the absence o
s

et

.

06501
-

ll

electric field, the parity violating part of the effective actio
has the form

E d2x Tr F~A0!B. ~C8!

Such an action will vanish for the second possibility with
truly non-Abelian nature of the gauge field configuration
while it will be nonzero only for the first possibility wher
the gauge field configurations have an Abelian character
other words, the last condition in Eq.~1! is too restrictive and
necessarily forces the parity violating part of the effecti
action, in the absence of electric fields, to have only an A
lian structure.
. D
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