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Dressing a scalar mass up to two-loop order at finite temperature
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In this paper we use modified self-consistent resummafié8CR) in order to obtain the scalar dressed
mass by evaluating the self-energy up to two loops in the neutral scafamodel at finite temperature. With
this laboratory model we show that if a theory is renormalizable at zero temperature, by using MSCR it is
always possible to obtain a finite corrected mass at finite temperature. This feature of MSCR is not observed
in some other approximation techniques usually found in the literature.
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I. INTRODUCTION relativistic energy, is given byk?+m?. The first term in the

_ _ _ _ integral is the finite temperature contribution, which is free
_Itis well known that particles immersed in a thermal me-from UV divergences. The last term in the integral is the zero
dium at temperaturd have their properties modified. The temperature partat this stageand is divergent. By the use
knowledge of the reasons for these modifications and theigf some nonperturbative method like the Hartree approxima-
consequences is of great relevance in the context of finitgy,  gne getsMZ(T)zmﬁJrHl(M) with M being the
temperature field theoryFTFT). However, quantum field o556 mass. If the mass running in the loop is the vacuum
theory at finite temperature has some subtleties such as ﬂ?ﬁass(i.e., as in conventional perturbation theprihen the

breakdpwn of the perturpatlve expansion which is m.an"theory can also be renormalized at finite temperatumet, if
fested in two cases. The first one is the appearance of infra- : R . )
.Some resummation approximation is naively used as in the

red divergences in massless field theories or tachyonig ample above, the theory is nonrenormalizable at finite tem-
masses in theories with spontaneous symmetry breaking< P ’ y

[1-3]. The second breakdown surges in calculations usin erature since one cannot absorb Tdn@mal Lagrangian
higher order diagrams where largecompensates for the the infinity term, \[M?(T)/(4)?]1/e (obtained using di-
powers of the coupling constant. The practical way to cir-mensional regularizatiof10]). The nonobservance of this
cumvent these problems is a resummation of certain classé#compatibility” is one of the reasons for the failure in

of graphs up to a given order in the perturbative expansionfinding appropriate renormalization conditions for a theory in
This resummatior(of an infinite set of diagramshas been study. The difficulty in obtaining renormalization prescrip-
studied intensively in the last three decafie2,4—§. Nev-  tions in a theory treated by a self-consistent approximation
ertheless, the use of these kinds of nonperturbative methoggethod at finite temperature is also manifested in other theo-
does not altogether solve the problem of the ultravidlBt)  ries such as the linear sigma mofi#l—14. Being aware of
divergences(which will become temperature dependentthese problems, the authors[dfL,9,14 proposed to treat the
through the gap equation for the magisat are still present.  |inear sigma model as an effective model, with the undesired
In the related literature, it is frequently claimed that the polesesult that the theory and its predictions are sensitive to the
are suppressed by the renormalization procedure, but it is n@lue of the finite momentum cutof. In fact, it was known
always shown how. It is not necessary to say that, if onenore than 20 years ago that these approximations requires
wants believable resultS, the prOblemS raised by the diver‘femperature-dependent Counterterm]_ Then one con-
gences must be satisfactorily resolved. For example, considgfudes that in order to achieve renormalization in self-
the contribution to the mass squared at one loop in the nelonsistent approximation methods, the counterterms need

tral A ¢* model: also to receive the benefits of resummatja6—18,23. Of
course it is not necessary to resum the counterterms if one
I d3k 1 employs ordinary perturbation theory at finite temperature to
IT1(mg) = ETE f >3 2, 2 leading order in the perturbative expansid®,2Q since fi-
n (27)° wpt wy

nite temperature does not introduce any new UV divergence
to the theony7]. In a recent papdR1] we presented a modi-

(1)  fied self-consistent resummatiofMSCR) which resums
higher-order terms in a nonperturbative way and cures the
problem of breakdown of the perturbative expansion. Since

wherem, is the vacuum massy, are the Matsubara fre- this method is developed in steps, it has the essential features

quencies, defined as,=2n=T for bosonsng(x)=1/(e’

—1) is the usual Bose-Einstein distribution aag(m), the

_xj d3k 1

1
2) (2 andmo) | ™) 2

We consider that the theory under investigation is renormalizable
at zero temperature. In the case of th¢* model one has to also
*Email address: hcaldas@funrei.br consider the “triviality” behavior of the theory9].
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that allow the absorption of UV divergences, the avoidance
of overcounting diagrams and the identification of regions of ( )
validity [21]. The main difference between the methods used IT,(m,) =

in [16—-18 and MSCR are that if16] and[18] a mass pa-

rameter was introduced in the beginning to be determined FIG. 1. The one-loop contribution to the self-energy.

later by some criteria and ifL7] a known mass parameter

was addedhaving in both cases the subtracted term treated _

as a new two-point interactiphwhereas MSCR keep the L=~ E¢4’ (4)
same fundamental theory in the recalculation of the self- '

energy[21]. It is important to point out that, although one 4.4 the counterterm Lagrangi@f'(¢,\) is expressed as
has, in principle, the freedom of adding and subtracting mass

parameters to a Lagrangidrgne must be careful. For in- 1 1 1

stance, in the case 8] (where a resummation was applied £°(¢,\)= EA()\)&quaf‘q’)— EB()\)m%Z— EC()\)qﬁ“.

in the linear sigma model at one-loop order in the perturba- ’ )
tive expansiopy this operation provided the pion and the

sigma dressed masses with the same corrections. This is iis we shall see next, up to two-loop level the coefficient of
correct, since the self-energy for these fields are different, ahe counterterms afe0,17

least at one-loop order. It is worth remarking that even if

they had added differertand correct contributions to the A2 1

sigma and pion fields, neither th®(4) linear ¢ model A(N)=— —,

would be renormalizable nor would Goldstone’s theorem be (4m)* 24e

satisfied in the region of intermediate temperatuasund

T., the critical temperatuje[21]. This is because in that Nl A2 1 1
temperature region, quantum fluctuation may need a more B(A)= (4m)? z+(4ﬂ)4(§_ﬁ>1 (6)

detailed description and certainly, more than one loop in the
perturbative expansiof22]. In this paper we investigate the 5 3
neutral scalam ¢* model at finite temperature. We apply cV)= A i+ A (i_i)
MSCR, and use imaginary time formalism to calculate the (4m)22e (4m)*\ 4 2¢)’
self-energy up to two-loop order in the perturbative expan-
sion. Some previous works describing two-loop calculationsyhere we use the modified minimal subtractioMS)
may be found inf17,23 and more recently ifi24]. We fol- ~ scheme. Through out this paper, we employ dimensional
low the conventions of Ref21]. The reader who is unfamil-  regularization, but we omit, for notational simplicity the fac-
iar with FTFT may consulf7] and the more recent publica- tor ,2¢ which multiplies\. In the X ¢* model, only the self-
tions [25,26]. energy has to be resumgg} 17]. So, the coupling constant

This paper is organized as follows. In Sec. Il we calculatecan be treated as the expansion parameter without the neces-
the self-energy of tha ¢* model up to two-loop order and sjty of resummation. This allows us to make the calculations
isolate the divergent and finite temperature contributions inn terms of the renormalizex.
order to proceed with the resummation and renormalization. | et us now compute the one- and two-loop contribution to
In Sec. Il we brleﬂy note MSCR which will execute this the Se|f-energy Ofﬁ. The on|y contribution to the Se|f-energy

resummation. We conclude in Sec. IV. at one loop comes from the diagram in Fig. 1 and it is given
by Eq.(1). One obtains the self-energy in the usual fashion
II. THE LABORATORY MODEL (71,
Consider the following Lagrangian density describing the IT,(mg)=I1%(mg) + I14(my) (7
i ; 4 .
self-interacting\ ¢* theory: )\m(z) 1 - m2
i = —=z—1+In| —
L=Lo(d)+L™(p)+ LY PN, 2 2(4m?| € p
where Ef‘”dp P’ ng(wp)
2)o 272 wp(mo),
1 m’ .
Lo=50,¢9"¢= - ¢, (3 with 1/e=[2/(4—d)]— y+In(4m), wherey is the Euler con-

stant andu is the renormalization scale. The divergent con-
the interaction Lagrangiasi™(g) is given by grg;:;t;odn;; this graph comes only frodd;(mg) and will be

: : _ . Am3 1
2In the classical level this procedure changes nothing. However, to H‘f“’(mo)z — 0

finite order in perturbation theory it has consequerjdgs 2(4m)? €’

®

065005-2



DRESSING A SCALAR MASS UP TO TWO-LOOP ORDH. .. PHYSICAL REVIEW D 65 065005

. NmZ (1 L 2 N
II5 (mg)=———1= 1-2In| — | | ; +finite terms,
extra ' 4(47T) 2 E o
IT,(my) = + (14)
) (b)
FIG. 2. The “extra” one-loop diagramga) the mass counter- A2 15(mg) m2
term diagram andb) the vertex counterterm diagram. s (Mg)=— g0 —[15(Mmg)]+In 9
2170 4 2mg gmyt A0 w2l
while the finite temperature contribution is given by (15)
=dp p* ng(w)
Hi(mo) =3 fo 272 wp(Mp) ) S € [
2mo)= o 2| mo + amu(mo)]
The mass and vertex counterterm generated two extra dia- (16

grams to one-loop ord€rl0] which are drawn in Fig. 2.

. . 1 2 . . . . . . .
These diagrams, defined HS*'"™ andII$*"®, will be nec-  The “setting sun” diagram gives the following contributions:
essary to cancel the infinities formed with the mixingTof

=0 andT+#0 pieces of Fig. 3 and are easily calculated to Rell, Amy,K)= sz(mo K)+H (Mg, K +H22(m0 K),

give (17)
\ AMm2 o1l 1 |1 m2 . 0

extral_ _ 02: S| ==1n _2 where we have definedI (my,K), I15(mgy,K) and

4(4m)* € (4m) s Hg;‘;(mo,K) as the real parts of the functior®,(K,K),

3 G,(Ko,K) and G;(K,,K), respectively, since, accordingly
—[15(mg)] ¢, (100 with the notation of 17], I1, (mgy,K) =G+ G; + G,. These

2mg Jmg real retarded parts have been obtained after the necessary
, , analytic continuatiorky— —iQ + €, with e—~0" andQ>0.
extre_ _ 37 mg 11 1-1In Mo Now, with K2=Q2+k?2, one has
! 4(4m) P u?
2 2 2
1 1 m
3\ 1 T19 (Mg, K2) = 0 3-2y—21In| —
———— =15(mp), (12) 220770 2 Y- 2
4(4m)? e B( 0 4(4m)* € M
: A2 K?
with — +finite terms, (18
(477)
dg® 2 ng(wg)
1€(mg) = 4ff . (12)
#(Mo) = (217)32¢ wq(Mg) L A2 (= Ng(wp)
115 (mo,iQ,k=0)=— J dP P My
At two-loop order there are two contributiotk, ,(mg) and 8(2m)*Jo p70
I, mg,K) that are depicted in Fig. 3. We note here that <[4 ne(q) | Y4 19
only the second two-loop contribution depends & quq(mo) _

=(k°,l2), the external four-momentum. The “double scoop”
diagram is where
[T24(mg) =I13 (M) + 115 (mo) + I3 H(m), ~ (13)
Y. =[Q%- (wpt+ wgt wpiq)z][ﬂz— (0g—wp+ a)piq)2]

where X[ Q2= (wp— g+ wpsq)?]
X[Q%=(wg+ wp— wpeq)?], (20)
. A215(mg) | 1 z
7\ M28(my,iQ,k=0)=——2—=| = —jn| 2| +2
I1,(m,K) = + U 22(Mo 2(4m)? |e w?
© o +F(Q?), (21)

FIG. 3. Two-loop contribution to the self-energyc) the
“double scoop” diagram andd) the “setting sun” diagram. whereF(Q?) is
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E(02)= - N2 fm Ng(wy) ITA(my,i Q,k=0)=T1§(mg) + 1% (my)
8(2m)*Jo (Mo +114 my,iQ,k=0)
= dqg X e
<), wq<mo)[q'”f _4"}’ (2 —% 2—In(:—§ FR(02),
with (26)
where the two terms in the third line of E26) come from
Xi(Qz):[Qz_(wp+wq+wpiq)2] ngg(mo,iQ,IZZO).
X[Q2—(wg— wp+ wpeg)?]. (239
IIl. DRESSING THE MASS
In Egs.(16) and(21), ng/f(mo) andﬂgjg(mo) contain the We now begin our calculation of the dressed mass up to

mixed temperature-dependent divergent contributions fronj0-loop order in the perturbative expansion. The thermal
the T=0 part from one loop with th@ 0 from the second Mass is defined to be the real part of the pole of the corrected
loop in each graph of Fig. 3. When the extra diagrams ar@ropagator at zerok) momentum
taken into account, these spurioimt absorbable by coun-
terterm$ temperature-dependent divergences fortunately R
cancel as the reader can easily check combining Ed. D*1=D61+H(mo,iQ,k=O)=O—>
and(21) with Eq. (11). In addition, the reader can see that the
term |ﬂ(ﬁ%/,u/2) in the simple pole has been also canceled
[10].

Thus, the divergent contribution to the mass at two-loop
order after the cancellation of the divergences from thg ex”@vherel)o is the tree-level propagator afib= [0+ I18 is the
diagrams with the ones frofi, ,(mo) and I, (mo,K) i self-energy at finite temperature up to a given number of

02=m3+1I(my,iQ,k=0), 27)

given by loops at zero momentum. In this woik® is given by Eq.
(25) andII? is given by Eq(26). Namely, the finite terms of
_ Nme( 1 1 113, 113, andI13, has been dropped.
119" (mg) = — T_—~>. (24) However, as we have discussed earlier, the perturbative
(4m)*\ 2e* 4e expansion breaks down in the temperature dependent part of

the self-energy mainly in two ways. The necessity of a con-

2 I N . sistent resummation is evident both at low and high tempera-
The term[A%/(4m)"](K*/24e) in Eq. (18) is canceled by tures. Of course this breakdown is also manifested in the

the usual two-loop wave function renormalization counter-x¢4 model as well. The first necessity surges when there is a

::%r:]‘ ;g{]eosd?vgfeefgtcfgrgtrlisbl?tli\cl)inub&;g\t)wznn—lcl)zoq' c(ﬁzj.e-r”t]g thesymmetry breaking, and in this situation we would have for
P 9 P P the shiftedA ¢* model: m3—m2=m3+3\v?(T), where

squared mass is then expressed as v(T) is the thermal expectation value ¢f defined inT=0
as \/—6m02/)\, with m§<0 to allow symmetry breaking. In

119 (mg) =11§" (mg) + 115" (mo) this case, the mass running in the loops become tachyonic
) ) even belowT; sincev(T) decreases aBincreases. The sec-

_ A Mg A o, 1 1 ond necessity is due to the fact that higher order diagrams are
T 204m? e (4m)* Mol 5=~ 2] larger than the lower ones at high even if the strength of

the coupling is small. For instance, consider the diagram
(25 114 (mg). In the high temperature limit, it gives?(T/m).
For a diagram withy bubbles attached, the power ©fmj
which justifiesB(\) in Eq. (6). An important remark is now becomes more severe, BT~ /mg~%). Thus, higher or-
in order. As we shall see in the next section, with MSCR theder terms must be resummed to get sensible results afThigh
counterterms that remove divergences in the self-energy at With MSCR, the resummation is consistently achieved by
zero temperature also remove the divergences at finite tenthe recalculation of the self-energy. Let us now review our
perature. The only difference is that the recalculation of thegprocedure which resums higher loop diagrams in the tree-
self-energy changes the vacuum mass by a thermal madsvel propagators. The goal is to make renormalization pos-
However, the cancellation of the temperature-dependent irsible when obtaining the pole of the effective propagator.
finities is still guaranteed due to the consistency of theThe method consists of recalculating the self-energy, in
MSCR method. steps, using in each step the mass obtained in the previous
The temperature-dependent part of the self-energy at on@ne such thaM?2=(A,+1)M2_,+II(M,_;), wheren is
and two-loop order at zero three-momentum is given by  the order of the nonperturbative correction afgd is the
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coefficient of the appropriate counterterm. With this proce- M2= M2+H(m0 Q,k=0)

dure it is easier to identify and absorb the divergent parts of ! 0 T

the self-energy(since the masses which multiply the diver- =(A;+1)mZ+1I(my,Mg,k=0)

gences are necessarily the same as in countenténnasder

to have finite thermal masses. =mZ+TII1R®(my,M,k=0), (29

Step 1: Start with the effective Lagrangian where the

mass is given by where Ar=[ N (4m)2](1/2€)+ [ N2/ (4m)*][ (1/2€2)

M2=m2. (28)  —(1/4e)] is given by the second line of E¢p).

Step 3: Now we take the mass computed in the previous
Step 2: Evaluate the one- and two-loop self-energy cor-step and improve the results by defining a next-order nonper-
rections to this mass from Eq&5) and(26) and define the turbative correction. With this we get a new effective La-
first order corrected mass as grangian where the mass is given by

2
M

M2=M>+T1(M |, Q,k=0)=m2+T18"(mg,M o,k =0) + (M, =M,k =0)

= (Ag+ D)m2+ (By+ DIE"(mo,M o,k =0)+ (M, Q=M ,k=0) =m2+1E"(M,,Q=M,,k=0),
(30

whereA,=A,. The coefficient of the temperature-dependenting, M? in Eq. (31) should be obtained numerically since
mass counterterrB, is fixed in a manner to cancel not only TIR®(M) cannot be evaluated in a closed form. However,

the divergence proportional #d(my,Q,k=0), but also this We can get a rough expression for the gap equation in the

term together. Generalizing, at each stage of the procedurBigh temperature limit

for n>1, in the expressions foM,, the self-energy

II(M,_,) have to be canceled to avoid the overcounting of 9 2 AT? 3M AN2T (T2 MT

diagrams. This implies tha,=A,—1. It is shown that this M*=mg+ o4 1= T + 327 M

first recalculation(iteration corresponds to a daisy sum

[2,7,21. A2T2 3M . \2T?2 | M)\?
Step 4: Proceeding with the iteration, in the limit— oo T oA\t aT) T oxa2 n T

the masdM,, have formally the same expression as the mass 12(4) 24(4m)

M, _1 which is already renormalized. Thus, in this limit we
will have +5.068 .. .|, (32

12 4=

M2=m3+IIR*(M,,k=0). (3D , , , _
where the last term in the equation above is the computation
At each intermediate step, in the loops we @8=M2_, in  of II5(M)+F(M) which we borrow from[17]. Thus, the
the computation oM?2. This ensures the cancellation of the resummed thermal mass up to two-loop order is the positive
divergences in all stages of the process, since the masses/fPt of the equation
the counterterms will necessarily be the same as in the diver-

gences. In the end, in the resulting integral equation of inter- ) AT2  A2T2 M 2
est,0?=M? as it should. A part of the complete self-energy M3—| m§+ ﬁ+ﬁln(?> M
diagrams in the superdaisy sum is shown in Fig. 4. As we are A4)
concerned only about finite temperature effects, AT o)\ \2T3

Re P — H H ; _ . _ 2__ _
m~*\™M,,k=0) is given solely by Eq(26). Strictly speak 877( (477)2) 3847 0. (33

simple application exemplifies that, indeed, the method
works very well. The main results are quoted here:

We have shown thdi21] to one-loop order the thermal
Q mass of the massless¢? in the weak coupling limit X
TI(M) = +ve + + + b oee <1) at high temperature can be dressed algebraically. This

FIG. 4. A part of the complete self-energy diagrams in the su-
perdaisy sum. The extra diagrams have been omitted. Mq=0,
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TZ

MZ=MZ+I1(M A 34
1=Mg+II(Mo)=—, (34)

M3=M2+TI(M;)=(A,+ 1)IIRE( M) +I1(M,)

3M;
T

A 1/2
1-3 ,
2472

The mass dressed by the second iteratidp, which was
obtained in our method evaluating Fig. 1 wilh; in that

_)\TZ
T 24

_)\TZ
T 24

(39

loop can equivalently be achieved by summing an infinite se
of “daisy” diagrams with M in the loops. In this case all

daisy type diagrams are IR divergent siridg=0, but their
sum is IR finite[7,17,2] Continuing the iterations,

M5=M3+I1(M,)

CAT? 3M; 3M, |2

T 24| AT \T aT

_AT 3( A l/2+9 A (36)
24 247 2\ 2472 |’

and finally, for thenth iteration, we obtainMﬁz(ATzl
24)(1+3]_ (1271 [ ~3(\/247%) 2]}, The “superdaisy”
sum (which corresponds to the limit—«) gives

3 A 1/2
_’]_ -
AT? 2\ 2472

:ﬂﬂﬁ

2 (37)
1+ A
2\ 2472
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IV. CONCLUDING REMARKS

In this paper we have computed the self-energy of the
neutral A * model up to two-loop order at finite tempera-
ture. We have used MSCR in order to overcome the prob-
lems raised at finite temperature which demand resummation
and renormalization. Thus, the finite thermal mass has been
consistently dressed up to two-loop order in the perturbative
expansion and infinitely many other diagrams nonperturba-
tively. A comparison with other results in the recent literature
may be done. In the second referenc¢2d] the self-energy
of a model having cubic and quartic interactions has been
calculated at two-loop order. The model was used to illus-
trate the connection between multiloop self-energy diagrams
?nd multiple scattering in a medium. The renormalization
was discussed only for the first calculation of the self-energy,
i.e., with the vacuum magsain the loops though the replace-
ment ofm by a thermal mase; in the loops is considered.

In [24] the 2PPI expansion has been used to compute the
effective potential and the effective mass at the two-loop
order in the\ ¢* model. Although they obtain renormalized
quantities, there are mainly two differences. The first is that
the corrections the 2PPI expansion take into account are not
the complete two-loop corrections. The double scoop dia-
gram is missing. As discussed in RET], in order to respect
the symmetries of the Lagrangian, one must retain all dia-
grams to the given number of loops. The second difference is
that they calculated the setting sun diagram at zero four-
momentum. By definition this does not give the pole and
necessarily the physical mass. Our work is more closely re-
lated with Parwani’s resummed perturbative expangiof.

He was concerned in obtaining consistently the pole of the
effective propagator up to ordgf (\?) taking into account
temperature-dependent counterterms as we did. The basic
difference between his work and this one is that he used a
mass corrected only by the one-loop diagrpmhich corre-
sponds to ouM3, Eq.(35)] in the calculation of the thermal
mass up to two-loop order. However, this assured the com-
putation of the thermal mass up to ordg}, as he intended.

Although this model is very simple, the formalism applied
here ought to be used in more realistic theories since the

As one can see, the nonperturbative nature of the proceduieteraction and characteristics present here may find a place
leaves its signature in the nonanalyticity of the coupling conthere. A next step could be the application of some properties

stant in all stages of the process for 1.

of MSCR in (more involved gauge theories.
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