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Dressing a scalar mass up to two-loop order at finite temperature
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In this paper we use modified self-consistent resummation~MSCR! in order to obtain the scalar dressed
mass by evaluating the self-energy up to two loops in the neutral scalarlf4 model at finite temperature. With
this laboratory model we show that if a theory is renormalizable at zero temperature, by using MSCR it is
always possible to obtain a finite corrected mass at finite temperature. This feature of MSCR is not observed
in some other approximation techniques usually found in the literature.
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I. INTRODUCTION

It is well known that particles immersed in a thermal m
dium at temperatureT have their properties modified. Th
knowledge of the reasons for these modifications and t
consequences is of great relevance in the context of fi
temperature field theory~FTFT!. However, quantum field
theory at finite temperature has some subtleties such as
breakdown of the perturbative expansion which is ma
fested in two cases. The first one is the appearance of in
red divergences in massless field theories or tachyo
masses in theories with spontaneous symmetry brea
@1–3#. The second breakdown surges in calculations us
higher order diagrams where largeT compensates for the
powers of the coupling constant. The practical way to c
cumvent these problems is a resummation of certain cla
of graphs up to a given order in the perturbative expans
This resummation~of an infinite set of diagrams! has been
studied intensively in the last three decades@1,2,4–8#. Nev-
ertheless, the use of these kinds of nonperturbative meth
does not altogether solve the problem of the ultraviolet~UV!
divergences~which will become temperature depende
through the gap equation for the mass! that are still present
In the related literature, it is frequently claimed that the po
are suppressed by the renormalization procedure, but it is
always shown how. It is not necessary to say that, if o
wants believable results, the problems raised by the di
gences must be satisfactorily resolved. For example, cons
the contribution to the mass squared at one loop in the n
tral lf4 model:

P1~m0!5
l

2
T(

n
E d3k

~2p!3

1

vn
21vk

2

5
l

2E d3k

~2p!3

1

vk~m0! FnB~v!1
1

2G , ~1!

where m0 is the vacuum mass,vn are the Matsubara fre
quencies, defined asvn52npT for bosons,nB(x)51/(ebx

21) is the usual Bose-Einstein distribution andvk(m), the
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relativistic energy, is given byAk21m2. The first term in the
integral is the finite temperature contribution, which is fr
from UV divergences. The last term in the integral is the ze
temperature part~at this stage! and is divergent. By the use
of some nonperturbative method like the Hartree approxim
tion, one getsM2(T)5m0

21P1(M ), with M being the
dressed mass. If the mass running in the loop is the vacu
mass~i.e., as in conventional perturbation theory!, then the
theory can also be renormalized at finite temperature,1 but if
some resummation approximation is naively used as in
example above, the theory is nonrenormalizable at finite te
perature since one cannot absorb in theoriginal Lagrangian

the infinity term, l@M2(T)/(4p)2#1/ẽ ~obtained using di-
mensional regularization@10#!. The nonobservance of thi
‘‘incompatibility’’ is one of the reasons for the failure in
finding appropriate renormalization conditions for a theory
study. The difficulty in obtaining renormalization prescri
tions in a theory treated by a self-consistent approximat
method at finite temperature is also manifested in other th
ries such as the linear sigma model@11–14#. Being aware of
these problems, the authors of@11,9,14# proposed to treat the
linear sigma model as an effective model, with the undesi
result that the theory and its predictions are sensitive to
value of the finite momentum cutoffL. In fact, it was known
more than 20 years ago that these approximations requ
temperature-dependent counterterms@15#. Then one con-
cludes that in order to achieve renormalization in se
consistent approximation methods, the counterterms n
also to receive the benefits of resummation@16–18,21#. Of
course it is not necessary to resum the counterterms if
employs ordinary perturbation theory at finite temperature
leading order in the perturbative expansion@19,20# since fi-
nite temperature does not introduce any new UV diverge
to the theory@7#. In a recent paper@21# we presented a modi
fied self-consistent resummation~MSCR! which resums
higher-order terms in a nonperturbative way and cures
problem of breakdown of the perturbative expansion. Sin
this method is developed in steps, it has the essential feat

1We consider that the theory under investigation is renormaliza
at zero temperature. In the case of thelf4 model one has to also
consider the ‘‘triviality’’ behavior of the theory@9#.
©2002 The American Physical Society05-1
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that allow the absorption of UV divergences, the avoidan
of overcounting diagrams and the identification of regions
validity @21#. The main difference between the methods us
in @16–18# and MSCR are that in@16# and @18# a mass pa-
rameter was introduced in the beginning to be determi
later by some criteria and in@17# a known mass paramete
was added~having in both cases the subtracted term trea
as a new two-point interaction!, whereas MSCR keep th
same fundamental theory in the recalculation of the s
energy@21#. It is important to point out that, although on
has, in principle, the freedom of adding and subtracting m
parameters to a Lagrangian,2 one must be careful. For in
stance, in the case of@18# ~where a resummation was applie
in the linear sigma model at one-loop order in the pertur
tive expansion!, this operation provided the pion and th
sigma dressed masses with the same corrections. This i
correct, since the self-energy for these fields are differen
least at one-loop order. It is worth remarking that even
they had added different~and correct! contributions to the
sigma and pion fields, neither theO(4) linear s model
would be renormalizable nor would Goldstone’s theorem
satisfied in the region of intermediate temperatures~around
Tc , the critical temperature! @21#. This is because in tha
temperature region, quantum fluctuation may need a m
detailed description and certainly, more than one loop in
perturbative expansion@22#. In this paper we investigate th
neutral scalarlf4 model at finite temperature. We app
MSCR, and use imaginary time formalism to calculate
self-energy up to two-loop order in the perturbative exp
sion. Some previous works describing two-loop calculatio
may be found in@17,23# and more recently in@24#. We fol-
low the conventions of Ref.@21#. The reader who is unfamil
iar with FTFT may consult@7# and the more recent publica
tions @25,26#.

This paper is organized as follows. In Sec. II we calcul
the self-energy of thelf4 model up to two-loop order and
isolate the divergent and finite temperature contributions
order to proceed with the resummation and renormalizat
In Sec. III we briefly note MSCR which will execute thi
resummation. We conclude in Sec. IV.

II. THE LABORATORY MODEL

Consider the following Lagrangian density describing t
self-interactinglf4 theory:

L5L0~f!1L int~f!1L ct~f,l!, ~2!

where

L05
1

2
]mf]mf2

m2

2
f2, ~3!

the interaction LagrangianL int(f) is given by

2In the classical level this procedure changes nothing. Howeve
finite order in perturbation theory it has consequences@1#.
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L int52
l

4!
f4, ~4!

and the counterterm LagrangianL ct(f,l) is expressed as

L ct~f,l!5
1

2
A~l!]mf]mf2

1

2
B~l!m2f22

1

4!
C~l!f4.

~5!

As we shall see next, up to two-loop level the coefficient
the counterterms are@10,17#

A~l!52
l2

~4p!4

1

24ẽ
,

B~l!5
l

~4p!2

1

2ẽ
1

l2

~4p!4 S 1

2ẽ2
2

1

4ẽ
D , ~6!

C~l!5
l2

~4p!2

3

2ẽ
1

l3

~4p!4 S 9

4ẽ2
2

3

2ẽ
D ,

where we use the modified minimal subtraction (MS)
scheme. Through out this paper, we employ dimensio
regularization, but we omit, for notational simplicity the fa
tor m2e which multipliesl. In thelf4 model, only the self-
energy has to be resumed@6,17#. So, the coupling constantl
can be treated as the expansion parameter without the ne
sity of resummation. This allows us to make the calculatio
in terms of the renormalizedl.

Let us now compute the one- and two-loop contribution
the self-energy off. The only contribution to the self-energ
at one loop comes from the diagram in Fig. 1 and it is giv
by Eq. ~1!. One obtains the self-energy in the usual fash
@7#,

P1~m0!5P1
0~m0!1P1

b~m0! ~7!

5
lm0

2

2~4p!2 F2
1

ẽ
211 lnS m0

2

m2D G
1

l

2E0

`dp p2

2p2

nB~vp!

vp~m0!
,

with 1/ẽ[@2/(42d)#2g1 ln(4p), whereg is the Euler con-
stant andm is the renormalization scale. The divergent co
tribution of this graph comes only fromP1

0(m0) and will be
defined as

P1
div~m0![2

l m0
2

2~4p!2

1

ẽ
, ~8!to

FIG. 1. The one-loop contribution to the self-energy.
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while the finite temperature contribution is given by

P1
b~m0!5

l

2E0

`dp p2

2p2

nB~v!

vp~m0!
. ~9!

The mass and vertex counterterm generated two extra
grams to one-loop order@10# which are drawn in Fig. 2.

These diagrams, defined asP1
extra1

andP1
extra2

, will be nec-
essary to cancel the infinities formed with the mixing ofT
50 andTÞ0 pieces of Fig. 3 and are easily calculated
give

P1
extra1

52
l2 m0

2

4~4p!2

1

ẽ
H 1

~4p!2 F1

ẽ
2 lnS m0

2

m2D G
1

1

2m0

]

]m0
@ I b

e ~m0!#J , ~10!

P1
extra2

52
3l2 m0

2

4~4p!4 H 1

ẽ2
1

1

ẽ
F12 lnS m0

2

m2D G J
2

3l2

4~4p!2

1

ẽ
I b

e ~m0!, ~11!

with

I b
e ~m0!5m4eE dq322e

~2p!322e

nB~vq!

vq~m0!
. ~12!

At two-loop order there are two contributionsP2,1(m0) and
P2,2(m0 ,K) that are depicted in Fig. 3. We note here th
only the second two-loop contribution depends onKm

5(k0,kW ), the external four-momentum. The ‘‘double scoo
diagram is

P2,1~m0!5P2,1
0 ~m0!1P2,1

b ~m0!1P2,1
0,b~m0!, ~13!

where

FIG. 2. The ‘‘extra’’ one-loop diagrams:~a! the mass counter
term diagram and~b! the vertex counterterm diagram.

FIG. 3. Two-loop contribution to the self-energy:~c! the
‘‘double scoop’’ diagram and~d! the ‘‘setting sun’’ diagram.
06500
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t

P2,1
0 ~m0!5

l2 m0
2

4~4p!4 H 1

ẽ2
1

1

ẽ
F122 lnS m0

2

m2D G J 1finite terms,

~14!

P2,1
b ~m0!52

l2 I b
e ~m0!

4 F 1

2m0

]

]m0
@ I b

e ~m0!#1 lnS m0
2

m2D G ,

~15!

P2,1
0,b~m0!5

l2

4~4p!2

1

ẽ
F I b

e ~m0!1
m0

2

]

]m0
@ I b

e ~m0!#G .
~16!

The ‘‘setting sun’’ diagram gives the following contribution

ReP2,2~m0 ,K !5P2,2
0 ~m0 ,K !1P2,2

b ~m0 ,K !1P2,2
0,b~m0 ,K !,

~17!

where we have definedP2,2
0 (m0 ,K), P2,2

b (m0 ,K) and

P2,2
0,b(m0 ,K) as the real parts of the functionsG0(K0 ,KW ),

G2(K0 ,KW ) and G1(K0 ,KW ), respectively, since, accordingl
with the notation of@17#, P2,2(m0 ,K)5G01G11G2. These
real retarded parts have been obtained after the neces
analytic continuationk0→2 iV1e, with e→01 andV.0.
Now, with K25V21kW2, one has

P2,2
0 ~m0,K2!5

l2 m0
2

4~4p!4 H 1

ẽ2
1

1

ẽ
F322g22 lnS m0

2

m2D G J
1

l2

~4p!4

K2

24ẽ
1finite terms, ~18!

P2,2
b ~m0 ,iV,kW50!52

l2

8~2p!4E0

`

dp p
nB~vp!

vp~m0!

3E
0

`

dq q
nB~q!

vq~m0!
lnUY1

Y2
U, ~19!

where

Y65@V22~vp1vq1vp6q!2#@V22~vq2vp1vp6q!2#

3@V22~vp2vq1vp6q!2#

3@V22~vq1vp2vp6q!2#, ~20!

P2,2
0,b~m0 ,iV,kW50!52

l2 I b
e ~m0!

2~4p!2 F1

ẽ
2 lnS m0

2

m2D 12G
1F~V2!, ~21!

whereF(V2) is
5-3
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F~V2!52
l2

8~2p!4E0

`

dk k
nB~vk!

vk~m0!

3E
0

` dq

vq~m0! Fq lnUX1

X2
U24kG , ~22!

with

X6~V2!5@V22~vp1vq1vp6q!2#

3@V22~vq2vp1vp6q!2#. ~23!

In Eqs.~16! and~21!, P2,1
0,b(m0) andP2,2

0,b(m0) contain the
mixed temperature-dependent divergent contributions fr
the T50 part from one loop with theTÞ0 from the second
loop in each graph of Fig. 3. When the extra diagrams
taken into account, these spurious~not absorbable by coun
terterms! temperature-dependent divergences fortuna
cancel as the reader can easily check combining Eqs.~16!
and~21! with Eq. ~11!. In addition, the reader can see that t
term ln(m0

2/m2) in the simple pole has been also cance
@10#.

Thus, the divergent contribution to the mass at two-lo
order after the cancellation of the divergences from the e
diagrams with the ones fromP2,1(m0) and P2,2(m0 ,K) is
given by

P2
div~m0!52

l2 m0
2

~4p!4 S 1

2ẽ2
2

1

4ẽ
D . ~24!

The term@l2/(4p)4#(K2/24ẽ) in Eq. ~18! is canceled by
the usual two-loop wave function renormalization count
term whose coefficient is given byA(l) in Eq. ~6!. The
complete divergent contribution up to two-loop order to t
squared mass is then expressed as

Pdiv~m0![P1
div~m0!1P2

div~m0!

52
l

2~4p!2

m0
2

ẽ
2

l2

~4p!4
m0

2S 1

2ẽ2
2

1

4ẽ
D ,

~25!

which justifiesB(l) in Eq. ~6!. An important remark is now
in order. As we shall see in the next section, with MSCR
counterterms that remove divergences in the self-energ
zero temperature also remove the divergences at finite
perature. The only difference is that the recalculation of
self-energy changes the vacuum mass by a thermal m
However, the cancellation of the temperature-dependen
finities is still guaranteed due to the consistency of
MSCR method.

The temperature-dependent part of the self-energy at
and two-loop order at zero three-momentum is given by
06500
m

e
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d

p
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-
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ss.
n-
e

e-

Pb~m0 ,iV,kW50![P1
b~m0!1P2,1

b ~m0!

1P2,2
b ~m0 ,iV,kW50!

2
l2 I b

e ~m0!

2~4p!2 F22 lnS m0
2

m2D G1F~V2!,

~26!

where the two terms in the third line of Eq.~26! come from
P2,2

0,b(m0 ,iV,kW50).

III. DRESSING THE MASS

We now begin our calculation of the dressed mass up
two-loop order in the perturbative expansion. The therm
mass is defined to be the real part of the pole of the corre
propagator at zero (kW ) momentum

D 215D 0
211P~m0 ,iV,kW50!50→

V25m0
21P~m0 ,iV,kW50!, ~27!

whereD0 is the tree-level propagator andP5P01Pb is the
self-energy at finite temperature up to a given number
loops at zero momentum. In this workP0 is given by Eq.
~25! andPb is given by Eq.~26!. Namely, the finite terms of
P1

0, P2,1
0 andP2,2

0 has been dropped.
However, as we have discussed earlier, the perturba

expansion breaks down in the temperature dependent pa
the self-energy mainly in two ways. The necessity of a co
sistent resummation is evident both at low and high tempe
tures. Of course this breakdown is also manifested in
lf4 model as well. The first necessity surges when there
symmetry breaking, and in this situation we would have
the shifted-lf4 model: m0

2→m25m0
21 1

2 ln2(T), where
n(T) is the thermal expectation value off defined inT50
asA26m0

2/l, with m0
2,0 to allow symmetry breaking. In

this case, the mass running in the loops become tachy
even belowTc sincen(T) decreases asT increases. The sec
ond necessity is due to the fact that higher order diagrams
larger than the lower ones at highT, even if the strength of
the coupling is small. For instance, consider the diagr
P2,1

b (m0). In the high temperature limit, it givesl2(T3/m0).
For a diagram withj bubbles attached, the power ofT/m0

becomes more severe, asl j (T2 j 21/m0
2 j 23). Thus, higher or-

der terms must be resummed to get sensible results at higT.
With MSCR, the resummation is consistently achieved

the recalculation of the self-energy. Let us now review o
procedure which resums higher loop diagrams in the tr
level propagators. The goal is to make renormalization p
sible when obtaining the pole of the effective propagat
The method consists of recalculating the self-energy,
steps, using in each step the mass obtained in the prev
one such thatMn

25(An11)Mn21
2 1P(Mn21), where n is

the order of the nonperturbative correction andAn is the
5-4
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coefficient of the appropriate counterterm. With this proc
dure it is easier to identify and absorb the divergent parts
the self-energy~since the masses which multiply the dive
gences are necessarily the same as in counterterms! in order
to have finite thermal masses.

Step 1: Start with the effective Lagrangian where th
mass is given by

M0
25m0

2 . ~28!

Step 2: Evaluate the one- and two-loop self-energy c
rections to this mass from Eqs.~25! and ~26! and define the
first order corrected mass as
n
ly

u

o
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e

e
es
ve
te
gy
a
ts

su
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M1
25M0

21P~m0 ,V,kW50!

5~A111!m0
21P~m0 ,M0 ,kW50!

5m0
21PRen~m0 ,M0 ,kW50!, ~29!

where A15@l/(4p)2#(1/2ẽ)1@l2/(4p)4#@(1/2ẽ2)
2(1/4ẽ)# is given by the second line of Eq.~6!.

Step 3: Now we take the mass computed in the previo
step and improve the results by defining a next-order non
turbative correction. With this we get a new effective L
grangian where the mass is given by
~30!
e
er,
the

tion

tive

l

his
od
whereA25A1. The coefficient of the temperature-depende
mass countertermB2 is fixed in a manner to cancel not on
the divergence proportional toP(m0 ,V,kW50), but also this
term together. Generalizing, at each stage of the proced
for n.1, in the expressions forMn , the self-energy
P(Mn22) have to be canceled to avoid the overcounting
diagrams. This implies thatB25A221. It is shown that this
first recalculation~iteration! corresponds to a daisy sum
@2,7,21#.

Step 4: Proceeding with the iteration, in the limitn→`
the massMn have formally the same expression as the m
Mn21 which is already renormalized. Thus, in this limit w
will have

Mn
25m0

21PRen~Mn ,kW50!. ~31!

At each intermediate step, in the loops we setV25Mn21
2 in

the computation ofMn
2 . This ensures the cancellation of th

divergences in all stages of the process, since the mass
the counterterms will necessarily be the same as in the di
gences. In the end, in the resulting integral equation of in
est,V25M2 as it should. A part of the complete self-ener
diagrams in the superdaisy sum is shown in Fig. 4. As we
concerned only about finite temperature effec
PRen(Mn ,kW50) is given solely by Eq.~26!. Strictly speak-

FIG. 4. A part of the complete self-energy diagrams in the
perdaisy sum. The extra diagrams have been omitted.
t

re,

f

s

in
r-
r-

re
,

ing, M2 in Eq. ~31! should be obtained numerically sinc
PRen(M ) cannot be evaluated in a closed form. Howev
we can get a rough expression for the gap equation in
high temperature limit

M25m0
21

lT2

24 S 12
3M

pT D1
l2T

32pM S T2

12
2

MT

4p D
2

l2T2

12~4p!2 S 12
3M

pT D1
l2T2

24~4p!2 F lnS M

T D 2

15.0669 . . . G , ~32!

where the last term in the equation above is the computa
of P2,2

b (M )1F(M ) which we borrow from@17#. Thus, the
resummed thermal mass up to two-loop order is the posi
root of the equation

M32Fm0
21

lT2

24
1

l2T2

24~4p!2
lnS M

T D 2GM

1
lT

8p S 12
2l

~4p!2D M22
l2T3

384p
50. ~33!

We have shown that@21# to one-loop order the therma
mass of the masslesslf4 in the weak coupling limit (l
!1) at high temperature can be dressed algebraically. T
simple application exemplifies that, indeed, the meth
works very well. The main results are quoted here:

M050,
-

5-5
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M1
25M0

21P~M0!5
lT2

24
, ~34!

M2
25M1

21P~M1!5~A211!PRen~M0!1P~M1!

5
lT2

24 S 12
3M1

pT D
5

lT2

24 F123S l

24p2D 1/2G , ~35!

The mass dressed by the second iteration,M2, which was
obtained in our method evaluating Fig. 1 withM1 in that
loop can equivalently be achieved by summing an infinite
of ‘‘daisy’’ diagrams with M0 in the loops. In this case al
daisy type diagrams are IR divergent sinceM050, but their
sum is IR finite@7,17,21# Continuing the iterations,

M3
25M2

21P~M2!

5
lT2

24 F12
3M1

pT S 12
3M1

pT D 1/2G
5

lT2

24 F123S l

24p2D 1/2

1
9

2 S l

24p2D G , ~36!

and finally, for the nth iteration, we obtainMn
25(lT2/

24)$11( j 51
n (1/2j 21)@23(l/24p2)1/2# j%. The ‘‘superdaisy’’

sum ~which corresponds to the limitn→`) gives

M25
lT2

24 F 12
3

2 S l

24p2D 1/2

11
3

2 S l

24p2D 1/2G . ~37!

As one can see, the nonperturbative nature of the proce
leaves its signature in the nonanalyticity of the coupling c
stant in all stages of the process forn.1.
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IV. CONCLUDING REMARKS

In this paper we have computed the self-energy of
neutrallf4 model up to two-loop order at finite tempera
ture. We have used MSCR in order to overcome the pr
lems raised at finite temperature which demand resumma
and renormalization. Thus, the finite thermal mass has b
consistently dressed up to two-loop order in the perturba
expansion and infinitely many other diagrams nonpertur
tively. A comparison with other results in the recent literatu
may be done. In the second reference of@23# the self-energy
of a model having cubic and quartic interactions has b
calculated at two-loop order. The model was used to ill
trate the connection between multiloop self-energy diagra
and multiple scattering in a medium. The renormalizati
was discussed only for the first calculation of the self-ener
i.e., with the vacuum massm in the loops though the replace
ment ofm by a thermal massmT in the loops is considered
In @24# the 2PPI expansion has been used to compute
effective potential and the effective mass at the two-lo
order in thelf4 model. Although they obtain renormalize
quantities, there are mainly two differences. The first is t
the corrections the 2PPI expansion take into account are
the complete two-loop corrections. The double scoop d
gram is missing. As discussed in Ref.@7#, in order to respect
the symmetries of the Lagrangian, one must retain all d
grams to the given number of loops. The second differenc
that they calculated the setting sun diagram at zero fo
momentum. By definition this does not give the pole a
necessarily the physical mass. Our work is more closely
lated with Parwani’s resummed perturbative expansion@17#.
He was concerned in obtaining consistently the pole of
effective propagator up to orderg4 (l2) taking into account
temperature-dependent counterterms as we did. The b
difference between his work and this one is that he use
mass corrected only by the one-loop diagram@which corre-
sponds to ourM2

2, Eq. ~35!# in the calculation of the therma
mass up to two-loop order. However, this assured the c
putation of the thermal mass up to orderg3, as he intended

Although this model is very simple, the formalism applie
here ought to be used in more realistic theories since
interaction and characteristics present here may find a p
there. A next step could be the application of some proper
of MSCR in ~more involved! gauge theories.
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