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A renormalization group flow equation with a scale-dependent transformation of field variables gives a
unified description of fundamental and composite degrees of freedom. In the context of the effective average
action, we study the renormalization flow of scalar bound states which are formed out of fundamental fermi-
ons. We use the gauged Nambu—Jona-Lasinio model at weak gauge coupling as an example. Thereby, the
notions of a bound state or fundamental particle become scale dependent, being classified by the fixed-point
structure of the flow of effective couplings.
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I. INTRODUCTION “spontaneous breaking of coloff3] with a successful phe-
nomenology of the spectrum and interactions of the light
Bound states, as opposed to fundamental particles, amseudoscalars, vector mesons and baryons. In order to verify
commonly thought of as derived quantities, in the sense thair falsify such a proposal and connect the parameters of an
the properties of positronium or atoms can be computed froneffective low-energy description to the fundamental param-
the known electromagnetic interactions of their constituentseters of QCD one needs a reliable connection between short
The conceptual separation between bound states and fundand long distance within the RG approach. In such a formal-
mental particles is, however, not always so obvious. As afism it is convenient to represent fundamental particles and
example, it has been proposed that the Higgs scalar can ligund states by fields on equal footing. For quark-antiquark
viewed as a top-quark—top-antiquark bound sfalewith a  bound states this can be achieved by partial bosonization. A
compositeness scale much above the characteristic scale fakt picture of the flow of bound states in the exact RG
electroweak symmetry breaking. The mass of the bound statgpproach has been developed4i. A shortcoming of these
(and therefore the scale of electroweak symmetry bregkingnitial proposals is the fact that the bosonization is typically
depends in this model on a free parameter characterizing thserformed at a fixed scale. In a RG picture it would seem
strength of a four-fermion interaction. For a bound-statemore appropriate that the relation between the fields for com-
mass or momentum near the compositeness scakl the  posite and fundamental particles becomes scale dependent.
usual properties of bound states are visible. If the Higgs boFurthermore, the simple observation that a typical bound-
son mass is substantially smaller thanhowever, the bound state behavior should not lead to the same relew@ninar-
state behaves like a fundamental particle for all practical asginal) parameters as in the case of fundamental particles has
pects relating to momentum scales sufficiently below thenot been very apparent so far.
compositeness scale. Depending on the momentum scale, then this paper we propose a modified exact renormalization
particle can therefore appear either as a typical bound state group equation which copes with these issues. The field vari-
a fundamental particle. The scale dependence of the physicables themselves depend on the renormalization &cdler
picture can be cast into the language of the renormalizatiothis purpose we usk-dependent nonlinear field transforma-
group (RG) by considering a scale-dependent effective actions [5,6]. As a consequence, partial bosonization can be
tion. It should be possible to understand the issues related fgerformed continuously for ak. This yields a description
bound states or composite fields in this context. In this papewhere explicit four-quark interactions which have the same
we demonstrate how the effective behavior as bound state atructure as those produced by the exchange of a bound state
“fundamental particle” in dependence on a parameter of theare absent for every scateThese interactions are then com-
model can be understood within the exact renormalizatiompletely accounted for by the exchange of composite fields.
group equation for the effective average actigh We will demonstrate this approach in a simple model,
In strong interactions, bound states or composite fieldsvhereas the more formal aspects can be found in the Appen-
play an essential role in the dynamics at low momenta. Irdixes. As a result, we conclude that “fundamental behavior”
particular, scalar quark-antiquark bound states are respots related to a flow governed by an infrared unstable fixed
sible for chiral symmetry breaking with the associated dy-point with the appropriate relevant parameters. For the typi-
namics of the pions. Furthermore, it has been proposed thatl “bound-state behavior” such a fixed point does not gov-
the condensation of a color octet composite field may lead tern the flow. The parameters characterizing the bound-state
mass and interactions are rather determined by an infrared
attractive(partia) fixed point and become therefore predict-
*Email address: Holger.Gies@cern.ch able as a function of the relevant or marginal parameters
TEmail address: C.Wetterich@thphys.uni-heidelberg.de characterizing masses and interactions of other “fundamental
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fields.” As a consequence, the notions of bound state or funparameter. In this paper we present a unified description of
damental particle become scale dependent, with a possibldl these different features in terms of flow equations for the
crossover from one behavior to another. effective average action.

As a simplified model sharing many features of elec-
troweak or strong interactions we consider the gauged

Nambu—Jona-Lasini¢NJL) model [7] (with one flavorNg Il. FLOW EQUATION FOR THE GAUGED NJL MODEL

=1), with the action Our starting point is the exact renormalization group
o - - equation for the scale-dependent effective acfignin the
SZJ d*X| i y*(9,+ieA,) i+ 2NN (rib) (YL ibr) form [2]
1
1 1 - (2) -1
N ==STHo;R(I',"+R . 4
+ZF#VFMV+Z(&MAM)2' (1) L= 5STHAR(T + R 7 4

We consider here a small gauge couplsgrhis model has The solutionT’, to this equation interpolates between its
two simple limits: For smalk y; we recover massless quan- boundary condition in the ultravioldt , , usually given by
tum electrodynamic$QED), whereas for large enougty;  the classical action, and the effective actlgn. o, represent-
one expects spontaneous chiral symmetry breaking. The rég the generating functional of the one particle irreducible
gion of validity of perturbative electrodynamics can be es-(1P)) Green’s functions. This flow is controlled by the to
tablished by comparing.y;,_ to the effective four-fermion some extent arbitrary positive functid(qg?) that regulates
interaction generated by box diagrams in the limit of vanish-the infrared fluctuations at a scéteand falls off quickly for

ing external momenta: g>>k2. Indeed, the insertiod;R, suppresses the contribu-
. tion of modes with momentg®>k?. The operatow, repre-
ALe=—ANo - sents a logarithmic derivativg =k(d/dk). The heart of the
5= 7 AN Ys) (V7 YsY) flow equation is the fluctuation matrik(?) that comprises

second functional derivatives &%, with respect to all fields,

and together withRy it corresponds to the exact inverse

propagator at a given scale The (supentrace runs over
2) momenta and all internal indices including momenta and

) ) ) . ) ) Frovides appropriate minus signs for the fermionic sector.
Since the box d|agrams are infrared d|Vergent in the chiral For our Study, we use the f0||owing Simp|e truncation for

limit of vanishing electron mass, we have introduced a scalg¢he gauged NJL model including the scalars arising from

by irr]nﬂ:&meming an infrared cutoff-k in the propagators posonizatio{10] (Hubbard-Stratonovich transformatjon
such t

. 1 — —
=AM 2(YyR) (Yrib) + 7 Py (Pyudh)

d* F=Jd4:_'¢9+2f_ Y PRt Z gk, d* 0
an=6et | Sl o)) e (@) R M G U
— - — 1
9 e4 +mi¢*¢+hk(¢R¢L¢_¢L¢R¢*)+ZFquMV
T 162 K2 9 L
_ 2_ady
(The second equality holds for the particular cutoff functions +2a(ﬁ“A”) eWMp]' ®

rg,rg described in Appendix E.As long as perturbation
theory remains validsmall €), and Ay; <A\, we do not This truncation is sufficient for our purposes. For quantita-
expect the four-fermion interaction Ay to disturb sub- tive estimates some of the simplifications could be improved
stantially the physics of massless QHI this case\y;_is  in future work. This concerns, in particular: setting the fer-
an irrelevant parameter in the renormalization gr¢R®) mion and gauge-field wave function renormalization con-
language). stants to 1, reducing ampriori arbitrary scalar potential to a
The spontaneous breaking of the chiral symmetry forpure mass term, skipping all vector, axialvector, etc. channels
Ma>> N has been studied by a variety of methdds-10..  of the four-fermion interaction as well as all higher-order
For strong four-fermion interactions the dominant physicsoperators, neglecting the running of the gauge couiagd
can be described by a Yukawa interaction with an effectivedropping all higher-order derivative terms. Especially the
composite scalar field. The phase transition g, =\.is of = gauge sector is treated insufficiently, although this is appro-
second order. In the vicinity of this transition the compositepriate for smalle; for simplicity, we use Feynman gauge,
scalar has all the properties usually attributed to a fundamer~= 1. The running of the scalar wave function renormalization
tal field. In particular, its mass is governed by a relevantZ, , will also not be studied explicitly; sincg , is zero for
the bosonization of a point-like four-fermion interaction, we
shall assume that it remains small in the region of interest.
e note thatA\ does not depend on the gauge-fixing parameter Nevertheless, the essential points of how fermionic inter-
a. actions may be translated into the scalar sector can be studied
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in this simple truncation. Of course, the truncation is other- 1 1 1 1 _/1 \2

wise not supposed to reveal all properties of the system everﬁtrk—ESTfﬂt In(P+F)= STF(%(P ) _ZSTr(9I<7_yF)

qualitatively; in particular, the interesting aspects of the

gauged NJL model at strong couplingl-13 cannot be - 3 ~ (1

covered unless the scalar potential is generalized. + ESTrat(T)f) - gSTr5t<7—3
The truncation(5) is related to the bosonized gauged NJL

model, if we impose the relation

4
+oe (10

The ellipsis denotes field-independent terms and terms be-
yond our truncation. For our purposes it suffices to take the

1 Fﬁ fields constant in space.
7\NJL==§ a—i (6) The corresponding powers of @Y can be computed by

simple matrix multiplication and thésuperjtraces can be
taken straightforwardly. This results in the following flow

as a boundary condition at the bosonization scaleand equations for the desired couplings:

Aea=0, Z,2=0; it is this bosonization scald that we
consider as the ultraviolet starting point of the flow. In fact, 2 _al2, (P4 R2
. . ) . dymi= B,=8kv,l 0)h;,
the action(1) can be recovered by solving the field equation (M= B val1 ™ (0)
of ¢ as functional ofi, and reinserting the solution into _ _
Eq. (5). gt = Br=— 16k%0 1§40\, yhy
Using the truncation5), the flow equation(4) can be

boiled down to first-order coupled differential equations for —1& |(FB)4(0'0)ezhk' 1D
the couplingsm?, h, andX,,, . For this, we rewrite Eq(4) B
in the form I\ =By, = — 24 20,1 177%(0,0€*
1 —320,1 240,02,
= 5STra (T + Ry), (7) _
m _
+su4z |<FB)4( 0— Z)Hﬁxmk
where the symbob, specifies a formal derivative that acts k ZyiK
only on thek dependence of the cutoff f_unctidﬂ. Let us _8k204|(1F)4(O)X2 ’
specify the elements of E§4) more precisely: o
2
A +#|(1F28)4(0 T )h“,
A Z4K?

> <

o o

)api=—=T ) ——, , wherev,=1/(327?). The threshold functions fall off for
sOI " oDy

¢
(r@ P*
" large arguments and describe the decoupling of particles with
T

o=
mass larger thak. They are defined if10]; explicit ex-
amples are given in Appendix E. At this point, it is important
(8) to stress that all vectdiv) and axial-vectofA) four-fermion
OT=(AT. ¢ &% 4T ) couplings on the right-hand side of the flow equation have
SSRGS been brought into the forniV) and (V+A), and then the
(V+A) terms have been Fierz transformed into the chirally
Here A=A, is understood as a column vector, ahli de-  invariant scalar four-fermion couplingS¢- P) used in our
notes its Lorentz transposed row vector. For Splnors the SL{TUﬂC&tIOﬂ[Cf Eq. (2)] The pure vector Coup“ng is omitted
perscript T characterizes transposed quantities in Diracfor the time being and will be discussed in Sec. VI. It should
space. The complex scalagsand ¢* as well as the fermi- also be mentioned that no tensor four-fermion coupling is
ons ¢ and ¢ are considered as independent, but transposegenerated on the right-hand side of the flow equation.

quantities are not: e.gd and®' carry the same informa- Incidentally, the mass equation coincides with the results

tion. of [10]; we find agreement of the third equation with the
Performing the functional differentiation, the fluctuation results of[12] where the same model was investigated in a

matrix can be decomposed as nonbosonized versichWe note that the last term By,

) which is ~Ff<‘, is suppressed by the threshold function as
& Re=P+ 7, © long ast/(Z¢k2) remains large. For simplicity of the dis-
where F contains all the field dependence a@Rdhe propa-

gaFors includi_ng the cutoff functions. Th_eir explic?t represen- 2Remaining numerical differences arise from wave function renor-
tations are given in Appendix B. Inserting E(@) into Eq.  malization which was included ifil2], but is neglected here for
(7), we can perform an expansion in the number of fields: simplicity.

065001-3



HOLGER GIES AND CHRISTOF WETTERICH PHYSICAL REVIEW B5 065001

cussion we will first omit it and comment on its quantitative h2 h2 o
impact later on. The inclusion of this term does not change 9 :kz =0 = + 29\ o p2 m2. (17
the qualitative behavior. k M5 K
IIl. FERMION-BOSON TRANSLATION BY HAND More explicitly, we can write
As mentioned above, the boundary conditions for the flow m?2 -, m: my
equation are such that the four-fermion interaction vanishes = =h——219tmk|fmk—2h% athk|>\_0’k_2ﬁ‘9t)\o,ku
at the bosonization scalg,, ,=0. But loweringk a bit in- K K K K (19
troduces the four-fermion interaction again according to Eq.
(1D: with aﬁﬂ;ﬂ, I, o d\o given by Eq.(11) with the
ﬁtyzr,kh(:A: — 2402, (1525)4(0'0)84¢0_ (12) replacemenh , «—0 on the right-hand sides. One obtains
m2 m2
In Eq. (5), we may again solve the field equations fhras a o, %( =v, 8I(1F)4(0)k2+ 32 (1F18)4(0,0)ez%(
functional of ¢, and find in Fourier space hi hi
4 [ 2\2
ho(dn ol & - (FB)4 e | Mk
hi (4 Yr) () . he(rip)(—Q) +4817%0,0 | = | |- (19)
HN==—7 D= ’ ke \ hg
mi+Z4 9 mi+Z4 9
13 The characteristics of this flow can be understood best in
) ) ] ] . terms of the dimensionless quantity
Inserting this result intd", yields the “total” four-fermion
interaction[ f =/ (dq/2m)*] .o
§==—. (20
w2 S
_ e _ _
fq( ok mE+Z¢’kq2) (Wrd) (=) (vR)(@) It obeys the flow equation
(14 - 5
diex=Be=—2e+v,[817%(0)+ 32 P*0,0€%¢,
The local componentfor g>=0) contains a direct contribu- )
o . . . +48 40,0 e%€]
tion ~2\,  (one-particle irreducible in the bosonized ver- 12 k
sion) and a scalar exchange contributi@me-particle reduc- 1 1 9
ible in the bosonized versionFrom the point of view of the =2+ —+ _zezgk+_ze4g 2, (22)

original fermionic theory, there is no distinction between the 8w

two contributions(both are 1Pl in the purely fermionic lan- ) ) )

guage_ Th|s ShOWS a redundancy in our parametrization,Where N the |ast I|ne we .ha..Ve |nserted the Values Of the

since we may changg, ., h, and Hﬁ while keeping the threshol_d functions for optlmlze_d cutoffd 4] dlscussed_ln

effective coupling - Appendlx_ E. Neglectlng the running of the gauge co_upbng
we note in Fig. 1 the appearance of two fixed points. For

2 gauge couplings of order 1 or smaller and to leading order in
2)\?,ﬁ(q)=2fo_,k+ = k , (15) e, these two fixed points are given by
my+Z4 k4 5

~e_ 1 2 22y s 8T 2
_ = = — €1=—— TO@E/(16m%)%), & =—,+0(1l).
fixed. Indeed, a choica, ,, h,, m;’ leads to the same 16 9e

\ef(0) if it obeys (22)
- h2 2’ The smaller fixed poink? is infrared unstable, whereas
L E Akt = = (16)  the larger fixed point; is infrared stable. Therefore, starting
g 2 2 2

with an initial value of 6<e,<e} , the flow of the scalar
) ) o — mass-to-Yukawa-coupling ratio will be dominated by the first
In particular, we will choose a parametrization wherg, two terms in the modified flow e . e

. . o . — quatiofi21) 2¢€
vanishes for alk. In this parametrization, any increas®, 4 1/(8«2). This is nothing but the flow of a theory involving
according to Eq.(11) is compensated for by a change of 5 “tyndamental” scalar with Yukawa coupling to a fermion
1d(hZ/mZ) of the same size. An increase i, is mapped  sector. Moreover, we will end in a phase wittlynamica)
into an increase irﬁﬁ/(Zmﬁ). In this parametrization, the chiral symmetry breaking, sinceis driven to negative val-
four-fermion coupling remains zero, whereas the flow ofues.(Higher order terms in the scalar potential need to be

h2/m? receives an additional contribution included oncee becomes zero or negatiyelhis all agrees
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O,€x The incorporation of the flow of the momentum-
10 independent part of, , into the flow ofh, and mﬁ affects
only the ratiom2/hZ. At this point, it does not differentiate
- " which part of the correction appears in the separate flow
€1 €2 equations formﬁ andh,, respectively. This degenera_cy can
10 20 30 40 be lifted if we include information about the flow of,
€k for two different values of the external momenta. Let us
define N, (s) as Ngk(P1,P2,P3,P4) With p;=p3

10 =(1/2)({/s,/5,0,0), p,=p.=(1/2)(\/s,—/s,0,0), where
s=(p;+pP,)?=(p3+ps)? is the square of the exchanged

-15 momentum in thes channel5]. The couplingﬂ,,k appearing
on the ﬂght-hand side of Eq17) corresponds in this nota-
tion to A, (s=0). We can now achieve the simultaneous

FIG. 1. Fixed-point structure of the, flow equation after vanishing of\, (s=0) andx, W(s= k2) if we redefineﬁﬁ
fermion-boson translation by hand. The graph is plotted for the ' '

threshold functions discussed in Appendix E with 1. Note that andh, such that they obey in addition
E’{ is small but different from zergcf. Eq. (22)]. Arrows indicate

the flow towards the infrare&k— 0. Hﬁ Hﬁ _ )
|\ = - 2|~ %= 35 32 +2(9t)\a,k(5=k ).
mi+2Z, K M+ 2y K"/ —

with the common knowledge that the low-energy degrees of Nk
freedom of the strongly coupled NJL model do@mposité (24
scalars which nevertheless behave as fundamental particles.

On the other hand, if we start with an initia), value that Incorporation of this effect should improve a truncation
is larger than the firsinfrared unstablefixed point, the flow ~ Where the 1Pl four-fermion coupling is neglected subse-
will necessarily be attracted towards the second fixed poinfuently, since we realize now a matching at two different

~ . . . momenta.
€5 ; there, the flow will stop. This flow does not at all remind o . i
us of the flow of a fundamental scalar. Moreover, there will The combination of Eqs17) and (24) specifies the evo

be no dynamical symmetry breaking, since the mass remairgtion of my andhy,
positive. The effective four-fermion interaction correspond-

ing to the second fixed point reads _ 2mi(me+2Z, K3 [m2+Z, kK _
atmizﬁmh_mk_i_ : kﬁz 2 ( kz izk AN, k
N - K Pk
o 2 21,2"

2ke;  16mk + Iy (5=0) |, (25)
It coincides with the perturbative valii8) of massless QED.
We conclude that the second fixed point characterizes mass- —, 5
less QED. The scalar field shows a typical bound-state be- — 2mM+Z,,k" —
havior with mass and couplings expressedetgndk. [The = Balx, K—at)\o,k(s_ 0)
guestion as to whether the bound state behaves like a propa- K
gating particle(i.e., “positronium”) depends on the exis- (EEJFZ(,; K2
tence of an appropriate pole in the scalar propagator. At least t = ANk, (26)
for massive QED one would expect such a pole with renor- Zy,kkhy
malized mass corresponding to the “rest mass” of scalar pos-
itronium.] where we have used

From a different viewpoint, the fixed poirﬁ’{ corre-

sponds directly to the critical coupling of the NJL model, ANy =Ny (5=K?) =\, (s=0). 27

which distinguishes between the symmetric and the broken
phase. As long as the flow is governed by the vicinity of this | ot s finally comment on the influence of the last term
fixed point, the scalar behaves like a fundamental particle,

o . .
with mass given by the relevant parameter characterizing the hic of Eq. (11), omitted up to now, on the flow equation

flow away from this fixed point. (21) for ‘¢ the contribution of this term to Eq21) is

Our interpretation is that the “range of relevance” of ~(mg/Z,k?)2{4(0,mé/Z , k?). For large MZ/Z,4k?),
these two fixed points tell us whether the scalar appears asthis term approaches a constant, so that a slight vertical shift
“fundamental” or a “composite” particle, corresponding to of the parabola of Fig. 1 is induced. We observe that this

the state of the system being governed?@yor?; , respec- shift leaves the position of the second fixed pé}'iz‘itunaf—
tively. fected to lowest order ie. This justifies the omission of the
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~Ff<‘ term in the preceding discussion. The influence of the 5ta§=3ta§|¢k &
— . ) L Pk
hy term on the first fixed point is discussed at the end of the
next section. dth= athqusk by + (mﬁ+z¢,qu)5tak(Q), (31
IV. FLOW WITH CONTINUOUS FERMION-BOSON I\ g = &tf,,yku,k' o+ — M (a).
TRANSLATION v

Again, the first terms on the right-hand sides are nothing but

The ideas of the preceding section shall now be mad . ) . )
more rigorous by deriving the results directly from an appro—(?he right-hand sides of Eq11), i.e., the corresponding beta

priate exact flow equation. As a natural approach to this aimf,_unCt'onS_'B m.hAg: The further terms repr(_asent the mod|f_|ca-

we could search for B-dependent field transformation of the tions owing to the flow of the field variables, as obtained

scalars,p— &k[ ¢]. In terms of the new variables, the flow g%m()th:l twoel?;t }grhmas én Egg’gl.bg dlqﬁgrtmgth%cé‘((za?s}l o
equation(7) should then provide for the vanishing of the Viously, W u Ve g Iz Y

four-fermion coupling in the transformed effective action.the case of momentum-dependent couplitg below In

Indeed, we sketch this approach briefly in Appendix D. In-t.he. following, howeV(_ar, it suffices to study the point-like
stead, we propose here a somewhat different approach relg}m't’ which we associate tq=0. . . .

ing on a variant of the usual flow equation where the cutoff is we ex_p_I0|t the freedom n the choice of variables in Eq.
adapted td-dependent fields. The advantage is a very simpld29 by fixing ey= a(q=0) in such a way that the four-
structure of the resulting flow equations in coincidence withfermion coupling is not renormalized\ , x=0. This im-

those of the preceding section. plies the flow equation fory,,
The idea is to employ a flow equation for a scale- —
dependent effective actioR[ ¢,], where the field variable dray= By Ihy. (32

¢\ is allowed to vary during the flow; we derive this flow _ . )

equation in Appendix C. To be precise within the present/0gether with the boundary condition, ,=0, this guaran-
context, upon an infinitesimal renormalization group steptees a vanishing four-fermion coupling at all scal®g,
from a scalek to k—dk, the scalar field variables also un- =0. The(nonlineaj fields corresponding to this choice ob-
dergo an infinitesimal transformation of the tyfdle@ momen-  tain for everyk by integrating the flom32) for «y, with

tum spacg a,=0.
o Of course, imposing the conditid32) also influences the
Dr—a(AQ) = dr(qQ) + S () (LR () flow of the Yukawa coupling according to E1),
2
_ - — m
:¢k(q)+5ak(q)fp¢L(p)¢R(p+q)- (28) ane= B+ F_kﬂxg- (33

k

Including the corresponding transformation of the complex, consequence, the flow equation for the quantity of interest,
conjugate variable, the flow of the scalar fields is given by —,—
hi/mj, then reads

i o) = = (L) (@ (@), 2l
B (29) at(%) =at(%) +2B, . (34)
i (A) = (YripL) (— Q) dar(Q). M M/ | gy

The transformation parametes(q) is ana priori arbitrary  This coincides precisely with Eq17) where we have trans-
function, expressing a redundancy in the parametrization ofted the fermionic interaction into the scalar sector by hand.
the effective :::lCtIOh. As shown in E€CY), the effective ac- The flow equation of the dimensionless combinatiop
tion I , obeys the modified flow equation — . . . . .

L b ic ] obey d =mZ/k?h? is therefore identical to the one derived in Eq.

(21), so that the fixed-point structure described above is also
recovered in the more rigorous approach. The underlying
picture of this approach can be described as a permanent
translation of four-fermion interactions, arising during each
ol'y 2% (Q) (30 renormalization group step, into the scalar interactions.
Sy (q) il |, Thereby, bosonization takes place at any scale and not only
at a fixed initial one.
where the notation omits the remaining fermion and gauge One should note that the field transformation is not fixed
fields for simplicity. The first term on the right-hand side is uniquely by the vanishing ok, .. For instance, an addi-
nothing but the flow equation for fixed variables evaluated ational contribution in Eq.(28) ~ 88,(q) #«(q) can absorb
ok, ¢p instead ofp,p* =, , ¢} . The second term re- the momentum dependence of the Yukawa coupling by
flects the flow of the variable. Projecting E@Q0) onto our  modifying the scalar propagator. Similarly to the discussion
truncation(5), we arrive at modified flows for the couplings: in Sec. lll, this can be used in order to achieve simulta-

. . o'y
atrk[d)ki(ﬁk]:atrk[d)ki(ﬁk“(bk,(ﬁ:+fq mﬁtd’k(m

+
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neously the vanishing oimk(s) for all s and k and a mﬁ —

momentum-independeﬁt(. First, the variable change €k

_ ~ €k ~
= y hk=th J|'</2, €=, ak=akZl/2kk2
Z,y k2 > h? @

_ (38)
() = — (YLyr)(Q) dran(a) + Pi(d) 3 Bk(Q),
(35 in the symmetric phase. Inserting the specific threshold func-
(9t¢§(Q)=(JR¢L)(—Q)ﬁtak(Q)+ &% (9)3Bk(q) tions of Appendix E, we find the system of differential flow
equations

indeed ensures the vanishing af, ((s=0?) if da(q)

— — 2 4
—hy 13%,,(0?). This choice results in o Mk _edatl)9et M 3te
' 0t6k— 26k+ > 2 > > 3
o o ™ hi 47c 16w (1+¢€)
athk(q):&thk(Q)b\mk X[l+(l+6k)Qg],
Zyr@P+me (39
+ F—Ma,k(qz) e2
k ah=— Fhk
+hidiBi(a), a9 26+1+(1+€)%Q, 9¢*  hi  3+¢
—_ a h a2 2 3"
IZ 41 (Q) G+ Gymg = atmﬂfmk “ \8w* 320” (1+ €
+2(9t,8k(q)(z¢,kq2+ Hﬁ), The _resultin_g flow for ¢ is independent of Q,
_ EatA)\U,k/at)\o’,k(o):
wherehy(q) andZ, (q) d@end now omg?. Secondly, the
momentum dependence bi(q) can be absorbed by the - - 1 e’ 994~2
choice Or€=Be=— 26t —— + et —€
8w 4
Zgp0P+mg 1 3+e)
HBi(0) =~ —"=—— I\ (A7) + ke (40)
h? Z 4 kk?n2 1672 (1+€)°

X 24 m2)29\ , 1 (K2) —Mig, : I .
[(Zg "+ MiI"IN (K = Micdik o (0)] Here the last term reflects the last contributiongio in Eq.
(37) (11), which has been neglected in the preceding sedtifin
i ) Eqg. (21)]. We see that its influence is small faf <1,
The particular form of th_eq—lndepzendgnt part o8, was  \yhereas fore,>1 it reduces the constant term by a factor
selected in order to obtainZ , ,(q°=k) =0 such that our 1o
approximation of constant , is self-consi_stent. Eserting Note that, for a giverQ,, Egs.(39) form a closed set of
; ; ; 2 ~
Eq. (37) into the evolution equatiofB6) for h, andm, we  gquations. The same is true for the flowsepfand e, if we
recover Eqs(25) and(26). We also note that the evolution of expressh, in terms Of~ek and e, in the first line of Eq.(39).

e=mi/(hi(0)k?) is independent of the choice @(q). Ln order to obtaiQ,,, the flow of\, ,(s) has to be known;

It Is interesting to obserye that reinserting the c!as_sma owever, far less information is already sufficient for a quali-
equations of motion at a given scale in order to eliminate

auxiliary variables is equivalent to the here-proposed varianttiVe analysis. First, it is natural to expect thaj (s) is
of the flow equation with flowing variables. In contrast, the maximal fors=0, since\ ; \(s) will be suppressed for large
standard form of the flow equation in combination with as_owing to the external momenta. This implies
variable transformation, to be discussed in Appendix DA, /X, (s=0)<0. With the simplifying assumption that
I;];af_ds |tt0ta m(l)re complex structure, which is in general mor%fg,k/fmk(O):const, we also conclude that

ifficult to solve.

Q,<0. (41)
V. BETWEEN MASSLESS QED AND SPONTANEOUS

CHIRAL SYMMETRY BREAKING For a qualitative solution of the flow equations, we assume

In this section, we briefly present some quantitative redQo| to be of order 1 or smaller.
sults for the flow in the gauged NJL model. Despite our We next need initial values, , €, for solving the system
rough approximation, they represent the characteristic physf differential equations. We note that the initial valeg
ics. We concentrate on the flow of the dimensionless renordiverges for the pure NJL model, sin&g, ,=0. For large
malized couplings €k, one has
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FIG. 2. Flows ofey, hy, € anday in the symmetric phase according to E¢39), (40) and (46) for the initial valuese,=10°, ¢,
=0.17=1/(6€?), e=1, Q,=—0.1. For a better visualizatior&k has been multiplied by a factor of 100. The pIothfon the right panel
exhibits the crossover behavior between the fixed paifitat smallt to e} for t— —oo,

1 9e%e, 1 values are independent of the initial values and’e, , so
drex=| =2+ ——=+(|Q,]ex—1) > ~ T~ ||€&: that the system has “lost its memory.”
87 ey 4 167°€, . ~ . ) -
42) Finally, the parametet, governing the field redefinition

obeys the flow equation
and we find thak, decreases rapidly for

~ ~ 9e4 hﬁ 3+ (S
&tak= 2ak—

+ . 46
(43 8m?h, 327 (1+¢)° (49

1
E\N>—.
A 6e?
(In a more complete treatment, it decreases rapidly for arbiA numerical solution is plotted in Fig. 2, right panel. Aleg
trary e, owing to the generation of a nonvanishigg , by approaches a constant for smallTherefore, the transforma-

the fluctuations. In the present truncation, the qualitative betion parametey,~ a, /k? increases for smak.

havior of the flow will depend on the details &, if €, does '€ Pphysical picture of the fixed poin®S) is quite
not satisfy this bound.We confine our discussion to initial SIMPle. We may first translate back to an effective four-
values satisfying Eq(43), which can always be accom- fermion interaction by solving the scalar field equations:
plished without fine-tuning.

In Fig. 2 we present a numerical solution for largg _ 5 (h*)? 9e? 1
(small nonzerZ,, ), Q,= —0.1, ande slightly above the Ao () = 2 (q2+ €*K2) - 82 (1Q,1q%+2k2) (47)
bound given by Eq(43) for e=1; these initial conditions
correspond to the symmetric phase. We observe thathoth
and ¢, approach constant values in the infrared. This corre

« . ) e 3
ipg ”Ef(gga) tgecoggé r;c: St?rtﬁ Iif;);e?hai)c:;]né rgﬂg;r.naﬁ;e q =3e?/(27|Q,]). Indeed, if we switch on the electron mass
—om ¢ 5 K2 d €k pk2 i th tric oh m., we expect that the running of the positronium mass term
Mass termm = e k= decreases-k=in the Symmetric phase. stops aikzzmg. In consequence, the positronium state will

The precise value of .the Yukawa coupling at the fixed pomtvauire amass-m,, which is, in principle, calculable by an
depends ore and|Q,|:

improved truncation within our framework.

In the limit k—0, this mimics the exchange of a massless
positronium-like state with effective couplingh*

On the other hand, starting with small enough, one
8 * *+1 1_ *+1 . ; 1 . ’
(h*)?=16m2€* — € (e J1=1Qu(e 5 )]e2_ will observe chiral symmetry breaking as we have already
[26" +1—]Q,|(e* +1)7] argued in Sec. Ill. Quantitative accuracy should include at

(44) least the flow of the scalar wave function renormalization in
N . . . . this case. Near the boundary between the two phases, the
If €*>1 sill holds, the fixed-point values can be given moreinfareq physics is described by a renormalizable theory for
explicitly: QED with a neutral scalar coupled to the fermion.

2 3e?
€ =—, h*=—rr—. (45) V1. MODIFIED GAUGE FIELDS
1Qql 2m|Q,]

The possibility ofk-dependent field redefinitions is not
Note thate*>1 is equivalent tdQ,|<1; numerically, we restricted to composite fields. We demonstrate this here by a
find that Eqs(45) describe the fixed-point values reasonablytransformation of the gauge field, which becomes a
well already for|Q,|=0.1. We observe that the fixed-point k-dependent nonlinear combination according to
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A = — vl — 0.8 d,F,, can modify theB-function for the “composite gauge field”
Au(®) 7@ = 2 9F,.,)(a) as compared to the original one. This modification is the
= (9,9,A,)(d). (48)  counterpart of the elimination of the effective vertices

o lah i iseei i
This transformation can absorb the vector channel in th% Tk Tk '(.W € note that no corrections ariseaits defined
four-fermion interaction. Indeed, we may enlarge our truncaPy the effective electromagnetic vertex at very small momen-

tion (2) by a term tum.)
(V) = NN o
(or a corresponding generalization with momentum- It is an ihnheren_t f‘?atléfe of qulagtum fie|dft?'30fc)j/ that a
o : — system with certain fundamental degrees of freedom at a
dependent coupling, ). The flow equation fon,, reads “microscopic” scale can exhibit completely different degrees
&I = — 6k 20,1 FB%(0,0e* of freedom at a “macroscopic” scale, which appear to be
v,k 1,2 ’

equivalently “fundamental” in an operational sense. A
. prominent example are the pions in a low-momentum effec-
hi+ ed, yi tive theory for strong interactions. These different faces of
one and the same system are related by the action of the
renormalization group. In the present work, we realize this
formal concept with the aid of a renormalization group flow
) ) ) — equation for the effective average action whose field vari-
In the following, we again omit the termhy, whose con-  gples are allowed to change continuously under the flow
tributions are subdor_mnant once -the scalars have decoupleghm one scale to another. In particular, this generally non-
from the flow. Choosingy, according to linear transformation of variables is suitable for studying the
renormalization flow of bound states.

We illustrate these ideas by way of example by consider-
) L = ) ing the gauged NJL model at weak gauge coupling. Our flow
we can obtain a vanishing of, for all k. This procedure  gquations can clearly identify the phase transition to sponta-
introduces additional terms-o(d,F,,) ¥y, with o,  neous chiral symmetry breaking. In our picture, the interac-
obeying tion between the fermions, representing the fundamental de-

_ grees of freedom at high momentum scales, gives rise to a

o=~ dyykted St -, (52)  pairing into scalar degrees of freedom. These so-formed
o ) bound states may still appear effectively as composite ob-
where the dots correspond to contributions froffi at fixed  jects at lower scales or rather as fundamental degrees of free-
fields. Adjustingd, permits us to enforce,,=0. As aresult, dom, depending on the strength of the initial interaction. As
only the gauge field propagator gets modified by higher dethe criterion that distinguishes between these two cases, we
rivative terms. We note that the modified gauge field has thelassify the renormalization flow of the scalar bound states:
same gauge transformation properties as the original fieldfundamental behavior” is governed by a typical infrared
only for £,=0. In fact, the gauge fixing becomes dependentunstable fixed point with the relevant parameter correspond-
on the fermions by a terrﬂgf)ZyﬂwﬂayAv according to ing to the mass of the scalar. Contrary to this, “bound-state
behavior” is related to an infrared attractiypartial) fixed
point that is governed by the relevant and marginal param-
eters of the “fundamental” fermion and photon—massless
QED in our case. The flow may show a crossover from one
Again, we can enforce a vanishing{?” for all k by an 10 the other characteristic behavior. This physical picture is
appropriate choice of,. The contribution to the evolution obtglned from the continuous transformation o_f thg field
of the gauge field propagator resulting from the field redeﬁ_\{anab.les under the flow that translates the fermion interac-
nition (48) is tions into the parameters of the scalgr sector. In the case of
spontaneous chiral symmetry breaking, the scalars always
appear as “fundamental” on scales characteristic for the
phase transition and the order parameter.

From a different perspective, we propose a technique for
performing a bosonization of self-interactions of fundamen-
tal fermion fields permanently at all scales during the renor-
With 9, y,~€>, d;8~e? . {x~€* a we see that the field malization flow. Provided that appropriate low-energy de-
redefinitions lead to a modification of the kinetic tefor a  grees of freedom of a quantum system are known, our
momentum-dependent wave function renormalization of thenodified flow equation for the average effective action is
gauge field already in leading order e2. Depending on the capable of describing the crossover from one set of variables
precise definition of the renormalized gauge coupling thigo another during the flow in a well-controlled manner.

1 1 m2
+ Ek_zv“Tlg-',:ZBM( 0,—k2
Zd)vk Zq_f,’kk

+ O\ gk Ny ) (50)

drve= 6k 2v,1{3)%(0,0€°, (51)

1
ﬁt;(kgf)=;ﬂm+ef9t£k+ R (53

atF(AZ) == at 5k( avF,u,V) ( apF,u,p)

1
+ ;o"@k(ﬁﬂévAy)(ﬁﬂé’pAp)+ s (59
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Thereby, the notions of fundamental particle or bound state  {y, ,y,}=25,,, ?’M:(VM)Tv
become scale dependent.
For the translation from fermion bilinears to scalars, the

) i
gauge field acts rather as a spectator, permanently catalyzing YuYv= w100y 0u =5V v, (A1)
the generation of four-fermion interactions under the flow. In
the vector channel, however, the gauge field can also partici- Y5=Y1Y2Y3Y0-

pate in the field transformation. Hereby, a four-fermion inter-

action ~ (y*4)? is absorbed at the expense of a modified
photon kinetic term, which can lead to a change in the bet®efining Os=1, Oy=vy,,, Or=(1/y2)a,,, Oa=iv,¥s,
function 3, of an appropriately defined effective gauge cou-Op= ¥s, We obtain the Fierz identities in the form

pling. We expect this type of transformation to be particu-

larly useful in the strong-gauge-coupling sector of the — — — —

gauged NJL model. Here it is known that the four-fermion (‘/’aox‘/’b)(‘/fcoﬂbd)zg Cxv(#a0viha) (YcOv ),
interaction can acquire an anomalous scaling dimension of 4 (A2)
(instead of 6[11], so that it mixes with the gauge interaction

(in a renormalization-group sepsanyway. It should be WwhereX,Y=SV,TA,P and

worthwhile to employ this transformation for a search for the
existence of ultraviolet stable fixed points in tAg function,

to be expected for a large number of fermion speblie$9].

|
Bl
|
Bl
|
ENTN
|
ENTN
|
ENTN

In view of the motivating cases of top quark condensation -1 0 -1 1
in the Higgs sector and color octet condensation in low-
energy QCD, we now have an important tool at our disposal Cyv= -3 O 3 0o -3 (A3)
which allows for a nonperturbative study of the transition N N
from the underlying theory to the condensing degrees of -1 - 0 2 1
freedom. Particularly in the case of “spontaneous breaking N S

of color,” a quantitatively reliable calculation of the potential
for the quark-antiquark degrees of freedom seems possible.
Analogously to the gauged NJL model, the effective quar vy 2_ (e 2 e ; i
self-interactions, being induced by the exchange of gluonk;—he ?tructu.re ¢Ov¥) _('/’OAZ'/’) 1S |nva2r|ant under Fierz
and instantons, have to be translated into the scalar boung@nsformations, -and YOy )+ (#Oay)" can be com-
state sector. The renormalization flow of the latter and théjle'{ely transformed intgpseudojscalar channels:
symmetry properties of their corresponding potential shall oy 2., T 2 _ o[ (T 2 2

finally adjudicate on “spontaneous breaking of color.” (yOvh)“+ (yOnt) 2[(Osth) = (4Opth) ].(A4)
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APPENDIX A: DIRAC ALGEBRA AND FIERZ (VYY) (WY 5YpYalh) = 10y, )2 = 6(Yy, vs1h)2.
TRANSFORMATIONS

b — — — APPENDIX B: DETAILS OF THE FLUCTUATION MATRIX
We work in a chiral basisy= ( ¢;), = (YR, ¥), Where
¢ andy are anticommuting Grassmann variables and should In Eq. (9), we decompose the fluctuation matrix irfd
be considered as independeri,=3(1+ ys)#. The Dirac  andZF, the latter containing the field dependence. The inverse
algebra for 4-dimensional Euclidean spacetime is given by propagator is diagonal in momentum space,

g*(1+rg)
0 Z4xq%(1+1g)+m;
P= Zy Q2 (1+rg)+m? 0 : (B1)
0 —47(1+rp)
—4(1+rp) 0
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It involves the dimensionless cutoff functiomg and rg, SW[j]
being related to the components Rf by p= 3i =¢y, (CY

A_ 2 b_ 2 W _

Rc=07e, Ri=ZyidTs, R=—dre. (B2 o6 q explicitk dependence is contained in the cutoff
Of course, these cutoff functions are supposed to satisfy thgePendence oW, the generating functional for connected
usual requirements of cutting of the infrared and suppressing'een’s functions. The last identity in E¢C1) symbolizes
the ultraviolet sufficiently strongly. The conventions for the @t no explicitk dependence occurs for this classical field,

Fourier transformation employed here can be characterizegd thereby the field at any scale is identical to the one at
by the ultraviolet cutoffA. (The functional dependence ¢fon

j contains, of course, an implidit dependenceg.
dq . In the present work, we would like to study the flow of
4e"qxz,b(q) the effective action, now depending on a field variable that is
(2m) allowed to vary during the flow. For an infinitesimal change

d*g . _
w0= [ (Zﬂq)ﬁqxz,mq), so0= |

(B3) of k, ¢y also varies infinitesimally:
for the fermions. As a consequence, the Fourier modes of the B
field ® and ®" in Eq. (8) are then given by®d(q) b-a @)= A(Q) + SanQ)F[ by, - . 1), ©2
=[A(q),#(q),¢* (—a),4(q),¢'(—q)] (column vectoy = — daF L bes - - -1,

and  ®T(—q)=[AT(—0q),¢(—a),¢* ()" (—0),4(a)]

(row vectoy. Owing to the sign difference in the arguments where s, is infinitesimal andF denotes some functional of
of ¢ andy, the inverse propagatd® in Eq. (B1) is symmet-  possibly all fields of the system. The desired effective action
ric under transpositiodl. Concerning the field-dependent I'y[ ¢] is derived from a modified functionaV, :

part, the matrixF is also diagonal in momentum space for

confs_tant.“backgroqnd” fields and antisymmetric under trans- QWi - _]:J DxD(. .. )e S=ASdud +Tixict -

position in all fermion-related components: T '

_ T (C3
0 0 0 —edy, e o . .
_ — 5 The dots again indicate the contributions of further fields,
0 0 0 hepr  —hith suppressed in the following, and we assume the quantum
_ 0 0 0 I | field xy to be a real scalar for simplicity. In contrast to the
F . - . h_"l[/L O common formulation [2] the source j multiplies a
eyt —hak  hal H -F7 k-dependent nonlinear field combinatigq which obeys
oYY B —hide F H xk=— karGlx, - - - 1. (CH
(B4) We also modify the infrared cutoff
where 1
_ . : . AS{xkl= ff XkRix (CH)
H=—No oy —yspp ys], H' =—H,

i S, sraliiers o oTo o which ensures that the momentum modek of the actual
H==Noll & b= vs¥ dys], HI=—H, (85) field x, contribute to the flow at the scake regardless of its
different form at other scales. Furthermore, the cutoff form
= _ T T T of Eq. (C5) shall lead us to a simple form of the flow equa-
F=N(PLd=Prd™)+ Aol (4) = v5(¥ysh) tion. Thek-dependent classical field is given by

+ Y= ys b ys),

and ‘y; is understood as transposition in Lorentz and/or
Dirac space. The projecto3_ and Py are defined a® g _ o
=(1/2)(1* ys). In Eq. (B5), we have dropped tha,, de- and, as a consequence, the hl_gher derivatived/gf | are
pendence of the quantify which is not needed for our com- how related to correlation functions gf and no longer of

SW,
di=(x1) = 5—Jk (C6)

putation. XA - The desired effective action is finally defined in the
usual way via a Legendre transformation including a subtrac-
APPENDIX C: EXACT FLOW EQUATION FOR FLOWING tion of the cutoff:

FIELD VARIABLES

In the standard formulation of the flow equatif®], the 3Equation(C6) implies the relationF[ ¢y, .. .1=(G[xx, - . .1).
field variables of thé&-dependent effective actidn] ¢»] cor-  However, the definition of, is often not needed explicitly. For our
respond to the so-called classical field defined via purposes it suffices to defirfg ¢, . ..].
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_ _ APPENDIX D: FERMION-BOSON TRANSLATION BY
I dd=—Wi [ j[ dil]+ f I[Pkl P—AS L #i]. (C7) FIELD TRANSFORMATIONS WITH FIXED CUTOFF

Here, we shall present a third approach to fermion-boson
translation relying on the standard formulation of the flow
equation in addition to a finite field transformation. We in-
tend to identify a field transformation of the type

Its flow equation is obtained by taking a derivative with re-
spect to the RG scale

_ o[ ¢l A A — A —
I Al =Ll bl + T&Mﬁk b=+ o yr= = d— i YR,
“ (D1)
— 1 IR« e *_ 0 *_ Ok 0 0
= ETFW ¢* = ¢* — ari ¢ = ¢* + anihri
o[ &l . . .
- TﬁkFMK' .ok (CY) so that an appropriate choice of a finitg can transform the

four-fermion coupling to zero. For simplicity, we work in the
limit of a point-like interaction and dispense with an addi-
tional transformation of the type B¢, . Within these re-
gtrictions, we shall not find the physical infrared behavior
described in Secs. IV and V. The present study is intended

The first term of this flow equation is evaluated for fixegd

and hence leads to the form of the standard flow equatio
with ¢, replaced byg, ; the second term describes the con- - . :
tribution arising from the variation of the field variable under ©1Y for @ guantitative comparison of the different ap-
the flow. Some comments should be made: p_r(_)acht_as, which can be dong by restnctlng the field redefi-

(1) The variation(C2) of the field during the flow isa ~ Mitions in Sec. IV to Eq(28) with g-independenty.
priori arbitrary: therefore, Eq(C8) (together with some In contrast to the modified flow equation of Sec. IV an_d
boundary conditionsdetermined,[ ¢,] completely only if Appendix C the source term a_lnd the |r_1frared cutoff consid-
a, is fixed. ered here mvo!ve the orlglna[ fields. This apprpach therefore

(2) This redundancy can be used to arrive at a simple fomﬁ:prrequnds S|m_ply o a variable tra_nsformauon In a given
for '\ [ ] adapted to the problem under consideration. Ford'ﬁe“?nt""‘I equatlor(exact flow Qquatlc_))] The _transform.ed
example, one may determing, (andF[ &, . ..]) in such a effective acthn for the hatteg fields is obtained by simple
way that some unwanted coupling vanishes. insertion, I'i[ &,¢,Al:==T"[ ¢[ ¢],4,A]. Except for addi-

(3) This program can be genera”zed Straightforward|y totional deri\/.ative terms ariSing from the scalar kinetic term,
a whole set of transformations, for different fieldsi. Fur-  the two actions are formally equivalent, where the new “hat-
thermore, the whole functional dependence mag depen-  t€d” couplings read in terms of the original ones
dent by replacing, ¢, = — dya F' — — F .

(4) The generating functional @b, 1PI Green’s functions
I'i—ol[ #a] can be obtained fronh",_ o[ ¢r-q] by choosing
ay-o=0. In practice, however, it is often more convenient to
use “macroscopic degrees of freedorp_ different from o
the “microscopic” onesg¢, . Their respective relation then hy=h+ mﬁak, (D2)
needs the computation of the flow af;.

(5) The present definition of the average actlof ¢ ] is
different from the effective actioh,[ ¢,] that is obtained by Nok=Ngx— ha—3miad .

a field transformation of the flow equation with fixed fields

as described in Appendix D. More precisely, consider the

flow of the effective actio,[ ¢, ] for fixed ¢, and perform  Again, the transformation functioay is finally fixed by de-
a finite k-dependent field transformatiod,= ¢ [ #,];  manding that the beta functiop, for the hatted four-
then, even if the transformation was chosen in such a wa 7
that ¢, were identical withg, of the present method, these
effective actions would not coincide. The cutoff term acts
differently in the two cases. In the case of a field transfor-
mation, the cutoff involves), , which is subsequently ex-
pressed in terms of the new variables, whereas, in the present
case, the cutoff is readjusted at each scale and involyes _ _
Although this does not affect physical results for exact soluWith the boundary conditions\, x-,=0 and ay-,=0,
tions of the flow, this might lead to differences in approxi- Which express complete bosonizationAatthis also implies
mate solutions of the flow, even if the approximation isf\(,,sz:O). The new beta functions can now be determined
implemented in the same way in either case. from the standard flow equation, being subject to the field

Yermion couplingk , ¢ vanishes,

B, (Mg i N g i,y drap) =0, (D3)
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transformation. Following Appendix A d6], the basic equa-

L 1 ~
tion is (9t6k:_2€k+ F(hk_ Gka’k)z,
T
AL D] = 0l g | — P ]| T (] e 1
tl k = dtl klo— 0t e Lk ot o Lk d(h—ea)=| — — — — . (h— Le o
¢5¢* 8¢ t(hie— ecan) 52 a2 k(hk— 2 €k
1~ X (hy— eeary), D7
= SSTra (TP +Ry) (N exend ©7
A 8T, T 8T, 04 0 o 9 ¢ 1
- — = = |- a=~20y— —— T — ——-€°«a
k LR5¢ RL5¢* t&k K g2 he g2 Ok
1 ~ ei aﬁ ~
+ hk Zékak+_ [29%
Although there seems to be a formal resemblance to Eq. 1672 2 h
(30), there is an important difference: E@4) is equivalent
to the standard flow equation, whereas E2) is not; the 1 2+¢ 1 L~
latter is derived with a different cutoff term. Without resort- + 872 (1+€,)2 h_k(hk_ 2 €kak)
ing to the calculation of Sec. I, we can evaluate this equa- K
tion completely from the transformed truncatibl ¢, ¢, A] X (hy— exa) a

and the field transformation®1) according to
1 3+ €k 1

+ N —
3272 (1+ €)° 1

—eca)?,

(F(Z))T = d r d — d {I\)T o r i( Ai)
k /Jab™ 5(1)1' k5®b_ 5(DT i 5(’[\)1— k&(i) Jéd)b
a 2 ' ' where we have inserted the threshold-function values as
- S S ~ 5 given in Appendix E for illustrative purposes. These equa-
+(—1)®®) r— _Tq)‘T)’ (D5)  tions have to be read side by side with E¢®9) and (46).
50;)\ oy %o Contrary to the latter, the present flow equations are com-

pletely coupled; in particular, the flow fax, is not disen-

tangled as it is in the case of Eq89) and(46). In the flow
where @,,®,)=1 if fermionic components i, as well  equation for the mass, we again observe a critical mass-to-
as®, are considered, andb( ,®,,) =0 otherwise; the indi- Yukawa-coupling ratio at the bosonization scale, correspond-

cesa,b,i,j label the different field components df, . ing to the infrared unstable fixed poief mentioned in Eq.

From Eq.(D4), or equivalently Eq(D2), we deduce that (22): from a numerical solution, we find thak,]q
the desired hatted beta functions are related to the original ey /h2|=¢* is hardly influenced by thé? term. The

ones by actual initial value of this ratio at the bosonization scale with

respect toe, | r hence determines whether the system flows
R towards the phase with dynamical symmetry breaking or not.
0”tm55,3m:,3m, In order to compare the present method with the one em-
ployed in Sec. IV, we plot a numerical solution of E¢B7)
in Fig. 3 (solid lineg and compare it to a solution of the
corresponding equatiori89) and(46) (dashed lingswithout
those terms arising from the additional transformation
at;\mkzgh =By — aBn— % alBm—Nedray, ~ 0B, which is not considered in Eq&7). In this figure,
7 7 it becomes apparent that both methods do not only agree
qualitatively, but also quantitatively to a high degree—as

where the right-hand sides of EG6) have to be expressed they should. The minor differences in these approaches can
in terms of the hatted couplings by means of the relationde attributed to the different formulation of the cutoff, and

LA . - . thereby reflect the inherent cutoff dependence for approxi-
(B2). Now we determiney, by demanding thaﬁ*a vanishes mative solutions to the otherwise exact flow equation.

for vanishing\ .., so that no four-fermion coupling arises ~ The same conclusion can be drawn from the flow equa-
during the flow. Introducing dimensionless quantities for thetjon for the dimensionless combinatiap as defined in Eq.

; ~ 12 2 L —27-142 ~ ) !
hatted couplings, ay=k*Zg%ay, e=k *Z,imi, hi  (20). Although thee, flow equation derived from EqD7)
=Z;’}<’2hk, we end up with the flow equations is comparably extensivéwe shall not write it down heje

dih=Bn=Bn+ arBm+ Midray, (D6)

065001-13
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FIG. 3. Flows ofey, hy andak in the symmetric phasgh, =1, e=1, €,=1.16[ 1/(1672)]). The solid lines represent a solution to Egs.
(D7); the dashed lines correspond to the analogous flow employing the method of Sec. IV and AppédmndikoTt the ~ 9,8, trans-
formation. The plots are representative of a wide range of initial conditions.

and not identical to Eq(21), the fixed-point structure re- rB(y)z(E—l) o(1—y),
mains nevertheless the same, anddh#ow reduces exactly
to Eq.(21) for k— A, where all our approaches agree. More- p(Y)=y(L+rg(y)=y+(1—y)8(1—y),
over, the position of the infrared stable fixed poéjt also (ED)
remains the same in the infrared to leading ordes, iso that 1
the different approaches describe the same physics. rF(y)=(\/—§—1) 0(1-y),
To summarize, employing the method of field transforma-
tion in the flow equation for fixed cutoff, the same properties Pe(Y)=y(L+ry))>—p(y).

of the system can be derived with a similar numerical accu- o
. ; . . \)—|ere we have set the normalization constagtandce men-
racy in comparison to the flow equation proposed in Sec. |

) . tioned in[14] to the valuescg=1/2 andcg=1/4, so that
and Appendix C. However, the structure of the resulting flowte mionic and bosonic fluctuations are out off at the same

equations derived in this appendix appears to be more inyomentum scalg?=k2. This is natural in our case in order
volved, and we expect this to be a generic feature of fieldg avoid the situation in which fermionic modes which are
transformation in the flow equation for fixed cutoff—at least already integrated out are transformed into bosonic modes
within the usual approximation schemes. which still have to be integrated out or vice versa.
For these cutoff functions, the required threshold func-
tions evaluate to

2 1
APPENDIX E: CUTOFF FUNCTIONS (F)d — n)- ——
W)= (0ot M G s (E2)

For concrete computations, we have to specify the cutoff

functions. Here we shall use optimized cutoff functions as IFBY( . ) = E 1 N
proposed i 14], which furnish a fast convergence behavior M2 TR (14 o)1+ wy)"2| 1+ 01

and provide for simple analytical expressions. Employing the

nomenclature of10], we use the dimensionless cutoff func- n n2 _ (E3)
tions (y=q%k?) 1+ w,
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