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Regular sources of the Kerr-Schild class for rotating and nonrotating black hole solutions
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A unified approach to regular interiors of black holes with smooth matter distributions in the core region is
given. The approach is based on a class of Kerr-Schild metrics representing minimal deformations of the
Kerr-Newman solution, and allows us to give a common treatment for~charged and uncharged! rotating and
nonrotating black holes. It is shown that the requirement of smoothness of the source constrains the structure
of the core region in many respects: in particular, for Schwarzschild holes a de Sitter core can be selected,
which is surrounded by a smooth shell giving a leading contribution to the total mass of the source. In the
rotating, noncharged case the source has a similar structure, taking the form of a~anisotropic and rotating! de
Sitter–like core surrounded by a rotating elliptic shell. The Kerr singular ring is regularized by anisotropic
matter rotating in the equatorial plane, so that the negative sheet of the Kerr geometry is absent. In the charged
case the sources take the form of ‘‘bags,’’ which can have de Sitter or anti–de Sitter interiors and a smooth
domain wall boundary, with a tangential stress providing charge confinement. The Arnowitt-Deser-Misner and
Tolman relations are used to calculate the total mass of the sources.
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I. INTRODUCTION

This paper is an attempt at a unification of two resea
lines on black hole solutions, which have been develo
~almost independently! for a long time. A first line of inves-
tigation has to do with the problem of the final state in gra
tational collapse, and stems from pioneering observation
Gliner @1# and Sakharov@2#, who suggested that matter
superhigh densities should have the equation of statp
52e, so that the the stress-energy tensor takes the ‘‘lam
term’’ form

Tik5Lgik ~1!

at the late stage of collapse. Further, Zel’dovich and Novik
proposed@3# such a stress-energy tensor to arise as the re
of gravitational interactions in a vacuum polarization pr
cess. These considerations led naturally to the hypoth
that an unlimited increase of spacetime curvature during
collapse process had to be halted by the formation of a c
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region with a constant, limiting value of the curvature det
mined by dominant effects of quantum fluctuations. The
sue received renewed attention over 20 years later, es
tially following the papers by Frolov, Markov and Mukhano
@4,5#. Their model consists of a de Sitter core inside
Schwarzschild black hole, matched with the external solut
via a thin transition layer. All investigations along this lin
have been restricted, so far, to the nonrotating case o
@6–17# ~see also@18–20# for the Reissner-Nordstro¨m case!.

Another open line of research is connected with the ana
sis of the structure of the singularity of the rotating~Kerr and
Kerr-Newman! black holes. As is well known, this singular
ity takes the form of a ring which is a branch line of th
space, leading to a two-sheeted topology. Going through
Kerr ring one obtains a second~‘‘negative’’! sheet of the
metric where the values of the mass and charge change
signs while fields change their directions. In this regi
closed timelike curves exist, so that causality violations
cur. This led to approaches which attempted to avoid
two-sheetedness with procedures meant to truncate the n
tive sheet. A procedure of this kind was first developed
Israel @21#, who used the surface of the disk spanned by
singular ring as the surface of truncation. The resulting m
ric has a finite jump of the first derivative on the disk, th
leading to a distributional matter source located on the s
face. In this way the Kerr solution is interpreted as being
field generated by a very exotic stress-energy tensor: a l
of negative mass rotating with superluminal velocities.

u-
e,
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The Israel interpretation was improved by Hamity@22#,
who noticed that the disk can be considered as being in r
relativistic rotation. In the co-rotating reference system,
stress-energy tensor takes a diagonal form, with zero en
density and a negative pressure, which, however, grows u
infinity on approaching the singular boundary of the disk

Another approach was given, for the Kerr-Newman so
tion, by López @23#, who constructed the source in the for
of a rigidly rotating ellipsoidal shell~bubble! covering the
singular ring. The singular ring is removed, since the inter
of the bubble is flat. A continuous matching of the flat int
rior with the external metric of the Kerr-Newman field ca
be obtained, however, only by a special choice of the s
‘‘radius’’ r shell5r e5e2/2m, wherer is the Kerr ellipsoidal
radial coordinate.

Actually, r e is the so called ‘‘classical size’’ of a particl
with chargee and massm, and indeed the problem of Kerr’
sources received attention also from the point of view
constructing classical models of the electron, after Cart
remark @24# that the Kerr-Newman solution possesses
same giromagnetic ratiog52 of the Dirac electron.1 Inter-
estingly enough, as far as models of spinning particles
concerned, the values of chargee and the rotation paramete
a5J/m are very high with respect to the massm so that the
horizons of the Kerr-Newman solution are absent and
Kerr singular ring is a naked singularity, visible also to fa
away observers.

In spite of the progress in understanding the structure
regular black hole solutions in both the aforementioned
proaches, there was still one common drawback conne
with the necessity of involving in the models a thin~or at
least infinitely thin! transition layer, while smooth models fo
the black hole~BH! interior would obviously be more satis
factory @9,30,31,15,12,18–20,32,28,29#. In many such at-
tempts, the treatment is based upon the Kerr-Schild clas
metrics@15,31,32,12,29#, which is obviously connected with
the fact that all stationary black holes~that is, all known
black holes! are particular cases of the Kerr-Schild geome
On the other hand, the de Sitter core region can be descr
in Kerr-Schild form, too. Therefore, it looks convenient
describe in this same form the transition region connec
the core and external geometry. A remarkable property of
Kerr-Schild class is that such a description can be perform
in a unique fashion for charged, uncharged, rotating, a
nonrotating BH solutions, by using a smooth function o
radial coordinatef (r ) to interpolate between the core and t
external field. This is the approach used in the present pa
Sources of BH solutions are constructed as smooth defor
tions of the electro-vacuum Kerr-Schild metrics retaining
main structure of this geometry, namely the double princi
null ~PN! congruence. In this way we obtain a class
sources which covers almost all previous models of non
tating sources @5,6,9,11,14,15,13,12,18–20# generalizing
them to the rotating case. It contains smooth analogue

1In this connection a series of works followed, on the models
spinning particle based on the Kerr-Newman solution@21,23,25–
29#.
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known shell-like models, in particular, the rotating and t
nonrotating shell ~bubble! models of charged source
@33,23,27#. Several new interesting features appear in t
way.

Throughout this work, latin indices run from 0 to 3. W
write Einstein’s equations in the form2Rab1(1/2)gabR
58pTab , where Rab is the Ricci tensor,Rab[Rabc

c , and
units are chosen so thatG51, c51. The Lorentz signature
is taken to be2111.

II. GENERALIZED KERR-NEWMAN SOLUTIONS

The Kerr-Newman solution in the Kerr-Schild form
@34#

gik5h ik12hei
3ek

3 . ~2!

Here h ik5diag(21,1,1,1), h is a scalar function~to be
specified below!, and the null vector fieldei

3 is tangent to the
Kerr PN congruence. The explicit form of the Kerr PN co
gruence is not essential for our analysis. We will assume
in the generalization of the Kerr-Newman solution to t
interior case, the Kerr PN congruence retains its form a
also the properties of being geodesic and shear free.

A simple way to generalize the Kerr-Newman solution
obtaining an interior solution which is still of the Kerr-Schil
type—is to replace the factorf KN5mr2e2/2 in the function
h with an arbitrary functionf (r ) @31#. This procedure can be
seen as the introduction of a smooth distribution for char
and masses. This distribution is purely ‘‘radial’’ in that
depends only on ther coordinate, which is confocal to th
angular coordinateu of an oblate ellipsoidal coordinate sys
tem, and becomes the standard Schwarzschild radial coo
nate if the oblateness goes to zero~see, e.g.,@35#!.

The Kerr-Schild metric takes a convenient form in a ba
where the one-forme3 is normalized in such a way that it
time component equals one. In this basis the functionh takes
the form

h5
f ~r !

S
5

f ~r !

r 21a2cos2u
. ~3!

For regular f (r ), this function can be singular only in th
equatorial planeu5p/2, at r 50. In this case the behavio
near r 50 is of the formh; f (r )/r 2, as in the nonrotating
case~when a50). This allows us to apply the same a
proach to the regularization of the metrics, both for the no
rotating and for the rotating cases.

By using the ansatz~3! and the machinery of the Debney
Kerr-Schild approach@34#, we obtain the following tetrad
components for the Ricci tensor:

R128 522G, ~4!

R348 5D12G, ~5!

R128 2R348 52~D14G!, ~6!

R238 5~D14G!~r ,22PȲ!, ~7!

f
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REGULAR SOURCES OF THE KERR-SCHILD CLASS . . . PHYSICAL REVIEW D 65 064039
R138 5~D14G!~r ,12PY!, ~8!

R338 522~D14G!~r ,12PY!~r ,22PȲ!, ~9!

where

D52
f 9

S
, ~10!

G5
f 8r 2 f

S2
~11!

@here f 85] r f (r ), and PȲ5] ȲP5221/2Y, PY5]YP

5221/2Ȳ; ,a5ea
i ] i are the tetrad derivations, and the corr

sponding tetrad is given in Appendix A, Eqs.~A32!–~A35!#.
This expression allows us to write the stress-energy ten
@Appendix A, Eq.~A37!#, which acquires a very transpare
form if an orthonormal tetrad$u,l ,m,n% ~C10! connected
with Boyer-Lindquist coordinates is used~Appendix C!:

Tik5~8p!21@~D12G!gik2~D14G!~ l i l k2uiuk!#.
~12!

In the above formula,ui is a timelike vector field given by

ui5
1

ADS
~r 21a2,0,0,a!,

whereD5r 21a222 f (r ) .
In this expression one immediately recognizes that if

matter of the source is thought of as being separated
ellipsoidal layers corresponding to constant values of the
ordinate r, each layer rotates with angular velocityv(r )
5uf/u05a/(a21r 2). This rotation becomes rigid only in
the thin shell approximationr 5r 0. The linear velocity of the
matter with respect to the auxiliary Minkowski space isv
5a sinu/Aa21r 2, so that on the equatorial planeu5p/2,
for small values ofr (r !a), one hasv'1, which corre-
sponds to an oblate, relativistically rotating disk.

The energy densityr of the material satisfies toTk
i uk

52rui and is, therefore, given by

r5
1

8p
2G. ~13!

There are only two distinct spacelike eigenvalues, co
sponding to the radial and tangential pressures of the no
tating case, namely,

prad52
1

8p
2G52r, ~14!

ptan5
1

8p
~D12G!5r1

D

8p
. ~15!

Singularities can arise only atr 50 on the equatorial plane
so that the regularity properties of the stress-energy te
can be studied together in both the rotating and the nonro
ing cases~energy conditions will be dealt with in Sec. V!.
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III. INTERIORS FOR THE KERR-SCHILD CLASS
OF BH SOLUTIONS

A. The nonrotating case

We shall consider in this section the nonrotating case fr
a unifying viewpoint, before moving to the rotating case.

1. Core region

We follow here a somewhat classical approach, motiva
by well known ~and expected! properties of the strong field
regime of gravitation~see, e.g.,@5#!. We thus consider the
center of the core region as a spacetime of constant cu
ture. Therefore, we have to use for this region a regulariz
function f (r )5 f 0(r )5ar 4, where a58pL/6. This pro-
vides smoothness of the metric up to the second deriva
and removes the singularity atr 50. The scalar curvature
invariant R52D522 f 09/r

25224a is constant, as well as
the densityr5(1/8p)L.

2. Exterior region

As is obvious, the exterior is determined unambiguou
by the Birkhoff-Israel theorem. Thus the functionf must co-
incide with f KN5mr2e2/2.

3. Transition region

We assume a de Sitter-like behavior of the spacetime o
near the center~‘‘core’’ region!. Therefore, between the
boundary of the source—assumed to lie in the region
trapped surfaces—and the de Sitter core, a ‘‘transition
gion’’ can exist, which interpolates between the core and
vacuum in such a way that the resulting metric is regu
everywhere. Due to the assumed symmetries, different k
of transitions correspond to different choices of the funct
f (r ). Calculating the second fundamental form of ther
5const surfaces, it is easy to check that, to avoid the p
ence of singular~shell-like! distributions of matter on the
inner ~de Sitter transition! and on the outer~transition-
vacuum! matching hypersurfaces, the functionf must beC1.
Further, one can ask the transition region to be ‘‘thin’’ in th
sense that the thicknessd is much smaller than the radia
position of the transitional layerr 0 which would correspond
to a cusp at the intersection of the plots off 0(r ) and f KN(r ).
As a result of these assumptions the position of the transi
layer can be easily estimated analytically. It is, howev
more transparent the use of a graphical representation o
different kinds of situations which may occur.

As a result of these assumptions the position of the tr
sition layer can be easily estimated as a rootr 0 of the equa-
tion f 0(r 0)5 f KN(r 0). We shall see that this relation turns o
a necessary condition for consistency of the source mo
with respect to the Tolman and Arnowitt-Deser-Misn
~ADS! mass relations. It is, however, more transparent
use of a graphical representation.

B. Graphical analysis

1. CaseaÌ0: de Sitter interior, uncharged source

Figure 1 shows that there is only one intersection betw
f 0(r )5ar 4 and f KN(r )5mr. Therefore, the position of the
9-3
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transition layer will ber 05(m/a)21/3. As seen in the pic-
ture, the second derivative of the corresponding interpola
function will be negative at this point, yielding an extra co
tribution to the positive tangential pressure in the transit
region. Solutions of this class can be constructed in suc
way that the weak energy condition is satisfied~see Sec. V!.

2. CaseaÌ0: de Sitter interior, charged source

Figure 2 shows that for charged sources there are
intersections,r 0,1 and r 0,2, of the functionsf 0(r )5ar 4 and
f KN(r )5mr2e2/2. The rootr 0,2 corresponds to a negativ
second derivative of the functionf (r ) and leads to a picture
similar to that for the uncharged source with the intermed
shell with pressure~Fig. 3!. However, the smaller rootr 0,1
corresponds to a source of smaller size and has a pos
second derivative leading to an intermediate shell with a t
gential stress. Thus, this source resembles a bubble with
Sitter~dS! interior and a domain wall boundary confining th
charge of the source~Fig. 4!.

3. CaseaË0: anti–de Sitter interior, uncharged source

In this case matching the interior and exterior regio
turns out to be impossible for the usual black hole solutio
However, there is an exotic case of a black hole solution w
negative mass. Graphical analysis shows~Fig. 5! that there is
a solution with a positive second derivative of the interpol
ing function f (r ) leading to a shell with tangential stres
This exotic source resembles an AdS bubble with a dom
wall boundary and negative total mass, like those occurr
in supergravity@36#.

FIG. 1. Position of phase transitionr 0 as an intersection of plots
f 0(r ) and f KN(r ). Uncharged source,a.0, arbitrary units.

FIG. 2. Two possible positions for a point of phase transit
r 0,1 and r 0,2 for a charged source anda.0.
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4. CaseaÏ0: flat and anti–de Sitter interior, charged source

In this case a matching of the interior and the exter
regions can be reached via an intermediate shell, havin
positive second derivative and leading to a positive tang
tial stress of the shell confining the charge of the source. T
graphical analysis~Fig. 6! provides a classification of the
simplest possible matching of AdS and dS interiors of
source with the exterior black hole solutions via a smo
intermediate layer. Of course, more complicated transit
layers can be considered, where the second derivative o
interpolating functionf (r ) changes sign several times.

C. The rotating case

A remarkable property of the Kerr-Schild class is that t
above treatment is easily extensible to the rotating case
fact, the functionf is, also in this case, a function ofr only,
and the Kerr and Kerr-Newman solutions are obtained w
thesamefunctions that correspond to the Schwarzschild a
to the Reissner-Nordstro¨m solutions, respectively. Of course
the definition of the coordinater is now completely different,
since the surfacesr 5const are ellipsoidal, and described b
the equation

x21y2

r 21a2
1

z2

r 2
51. ~16!

The relations for the metric and stress-energy tensor are c
acterized by a more complicated form of the functionS
5r 21a2cos2u. As a result, the components of the metric a
stress-energy tensor increase when approaching the eq

FIG. 3. Choice ofr 0,2 as point of phase transition.

FIG. 4. Strongly scaled section of Fig. 1 corresponding to
phase transition at pointr 0,1.
9-4
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REGULAR SOURCES OF THE KERR-SCHILD CLASS . . . PHYSICAL REVIEW D 65 064039
rial plane cosu50, where they take the same form as in t
nonrotating case. The singularity of the Kerr solution can
suppressed by analyzing the metric and the stress-energy
sor near the Kerr singular ringr'cosu'0. As we have al-
ready seen, the condition on the behavior of the functiof
when r→0 remains the same as for the nonrotating case

The intermediate shell, which matches the interior of
source and the external geometry, is foliated on the rota
ellipsoidal layers. The thin shell is characterized by an
creasing of the tangential stress~or pressure! and can be
considered as a rigidly rotating boundary of the disk-li
source, similarly as in the Lo´pez singular shell model@23#.

IV. CAUSAL STRUCTURE

The causal structure of nonrotating black hole interiors
well known @16,13#. It closely resembles that of the RN
spacetime, with the key difference that the singularity is
placed by the matter-filled region. From the topological po
of view, it was shown by Borde that a change of topolo
occurs, making it possible for regular solutions to ex
@16,17#.

The case of a rotating black hole interior will now b
analyzed. This is best visualized, again, with the use o
two-dimensional plot in the equatorial plane. Horizons of t
spacetime, if any, are defined byD50, that is, by the equa
tion f (r )5r 21a2. Plotting the parabola and taking into a
count the properties of the functionf, one realizes that two
different situations may occur.

Case I. The parabolar 21a2 and the external functionf
intersect at one point, which corresponds to a new Cau

FIG. 5. Nonstable case corresponding toa,0 and negative
mass.

FIG. 6. Class of stable states for charged sources anda<0 ~flat
or AdS interior andr 0<e2/2m).
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horizon replacing the vacuum one~the event horizon obvi-
ously remains in the vacuum region!.

Case II. For large enough values of the angular mome
tum, no intersection exists. The Cauchy horizon remains
original ~vacuum! one, and there is no horizon present in t
matter filled region.

V. LOCAL ENERGY CONDITIONS AND
INTERPRETATION

The physical reasonability of a classical solution of t
Einstein equations relies on the fulfillment of the energy co
ditions, which are a common tool for getting insight in
some energetic properties of any spacetime. However, an
spite of the fact that a quantum theory of gravity is not ava
able yet, increasing evidence, both experimental and theo
ical ~see, e.g.@37–39#, the recent account in@40# and refer-
ences therein! shows that quantum effects—specially tho
associated with the quantum vacuum—may lead to a gen
violation of some or evenall of such conditions. Therefore
as we aim at describing nonsingular black holes which
only likely to be understood via quantum effects, we sho
not expect all the energy conditions to be satisfied~actually,
the strong and the dominant energy conditions have to
violated somewhere, already on classical grounds@13#!. In
any case, energy conditions are a useful tool which may
serve to assess whether a classically dominated field is
source responsible for the spacetime considered, or, on
contrary, that such a possibility is banned and one sho
seek for a quantum origin of the source. This remark is i
portant because, otherwise, energy conditions might impe
to disregard some spacetimes that may well fit with the c
rent knowledge of the interface between quantum phys
and gravitation. Let us begin now with the study oflocal
energy conditions. In the following section we will implicitly
consider someaveraged—or ‘‘extended’’—energy condi-
tions.

Let VW be any 4-velocity vector field and letNW be any null
vector field. We shall denoteSlmTlTm by STT for any ~sym-
metric! rank-two tensor fieldS, and any vector fieldTW .

~i! Strong energy condition~SEC!: a system satisfies th
SEC if and only if

2RVV}TVV1~1/2!T>0, ;VW , ~17!

whereRlm is the Ricci tensor andTlm is the stress-energy
tensor~being T its trace!. Fulfillment of SEC is a ‘‘corner-
stone’’ in singularity theorems and must be violated in t
case where the spacetime is nonsingular. It can be sh
also that the dominant energy condition (Tn

mVn non-space-
like for any non-space-likeV) is violated in this case.

~ii ! Weak energy condition~WEC!: a system satisfies th
WEC if and only if

TVV>0, ;VW . ~18!

These are clearly connected with the sign of the energy d
sity measured by an observer with 4-velocityVW .
9-5
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BURINSKII, ELIZALDE, HILDEBRANDT, AND MAGLI PHYSICAL REVIEW D 65 064039
~iii ! Null energy condition~NEC!: a system satisfies NEC
if and only if

TNN>0, ;NW . ~19!

This last energy condition may be viewed as a limiting ca
of ~ii ! for ultrarelativistic observers. Basically, it include
some commonly used spacetimes, such as anti–de Sitte

The physical validity of~i! has been objected to man
times and on different grounds, and violation of the SEC
nowadays well understood. On the other hand,~ii ! is usually
considered as a necessary condition for a gravitational
tem to be acceptable. While this is certainly right for clas
cal matter, it becomes doubtful in the case when quan
effects play a relevant role.

It is useful to representVW as

VW 5AuW 1B lW1CmW 1EnW

where$uW , lW,mW ,nW % is any basis of the tangential space. In p
ticular we will choose theorthonormalbasis given in Appen-
dix C, which corresponds to a comoving observer, becau
gives raise to simpler expressions in this case. SinceVW is
timelike one has

A2511B21C21E2.

From Eq.~12! one can get

8pTVV52~D12G!2~D14G!~B22A2!

52G1~D14G!~C21E2!,

and

8pT52D,

whence

TVV1~1/2!T5~D12G!1~D14G!~C21E2!.

We can get a more direct expression, since a direct com
tation shows that

D14G52
S

r
G8. ~20!

Finally, this can be written in terms of the pressure, str
and energy density measured by the comoving observer
ing

8pr52G, 8pprad52r, 8pptan5~D12G!.

The result is

TVV5r2
S

2r
r8~C21E2!,

TVV1
1

2
T5ptan2

S

2r
r8~C21E2!, ~21!
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wherer85] rr. It follows that ~i! the SEC is satisfied if and
only if ptan>0 andr8<0 in the region of study.~ii ! The
WEC is satisfied if and only ifr>0 andr8<0 in the region
of study.

Notice thatr8 plays an essential role in both cases, b
sides the more natural quantitiesptan and r. We can now
analyze what happens in each region. The exterior field
f KN(r )5mr2e2/2. Therefore, r5ptan5e2/S2. Whence,
one hasr,ptan.0 andr8,0. SEC and WEC are thus obv
ously satisfied. For the rest of the analysis, it is worth co
sidering first the nonrotating case, wherer56a, ptan

526a andr850. Therefore, fora.0 ~de Sitter! WEC is
satisfied whereas SEC is not and the singularity is avoid
For a,0 ~anti–de Sitter! WEC is clearly violated and the
singularity is again avoided.

As long as we aim at describing general properties, i
worth keeping the freedom of choice off (r ) in the shell
region. The main conclusion is that only for a de Sitter co
(a.0) plus an exterior electromagnetic field satisfyin
6ar 1

4/e2.1 ~which includes the uncharged case! may the
WEC be satisfied throughout the whole system. The reaso
as follows: if 6ar 1

4/e2,1 then r0(56a) is smaller than
rext(5rKN5e2/r 1

4) at r 1. Therefore, the functionf (r ) in the
transition region—which is at leastC1 in that region—must
be increasing in some open interval.

In fact the restriction 6ar 1
4/e2.1 is satisfied in most

previous attempts@5,6,8,9,11,13,15#. Surprisingly, in the
models@19,20#, one can easily see that the WEC and SE
are found to be violated. For this it suffices to compute
density r in these models. In the models of@19# one has
f (r )5@mr4/(r 21e2)3/2#exp(2e2/2mr) and therefore~recall
that these examples are nonrotating solutions! 8pr
52G 52 ( f 8r 2 f )/r 4 5 @e2/r (r 21e2)3/2# @6mr/(r 21e2)
11#exp(2e2/2mr)]. For the models in@20# one hasf (r )
5mr@12tanh(e2/2mr)# and 8pr5e2/@r 4cosh2(e2/2mr)#.
Now, in both cases one hasr(r→01)→01 and r(r
→1`)→01. Consequently, there are open regions wherr
is an increasing function and therefore SEC and WEC
violated. This adds new examples of SEC and/or WEC v
lations~see, e.g.,@40# for a recent review!, due in this case to
non-linear electrodynamics, and also is a warning about
actual relevance of their fulfillment.

Finally, let us consider the rotating case. In the core o
has r56ar 4/S2, ptan526ar 2(r 212a2cos2u)/S2 and r8
512aa2r 3cos2u/S3. For a.0, it is clear that both SEC and
WEC ~becauser8.0) are violated. Fora,0, it is clear that
WEC is violated, although the SEC is satisfied.

The main conclusion is that the WEC and SEC are
unavoidably—violated in the rotating case, except at
equatorial plane, which follows the pattern of the nonrotat
case, already explained above. For the case of NEC, sim
computations bring to the conclusion that it is fulfilled if an
only if r8,0 and therefore, previous considerations sh
that it is again genericallyviolated inside the object.

At first sight, this might be considered as a drawback
these models. However, the whole thing is sayingonly that
the models cannot account for aclassicalinterior of a Kerr-
Newman spacetime, so that the nature of the source sh
9-6
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be sought within quantum field theory. But this, in turn,
often considered to be the natural framework to work
~e.g., assuming interior models suggested by supergravit
string theory!.

VI. CONTRIBUTIONS TO THE TOTAL MASS COMING
FROM DIFFERENT REGIONS OF THE REGULARIZED

SOURCES

There are basically two ways to study the energy con
butions from different parts of the source. One consists
evaluating the contributions coming from both the ene
density and from the pressures of the system, whereas
other takes into account the contribution of the energy d
sity only. The first is called theTolman massof the system
and the latter, theADM mass. In order for these quantities t
be well defined it is necessary that the system be statio
and asymptotically flat~see, e.g.,@41,35#!. Our models do
fulfill such a requirement. These masses are computed fo
observer at rest with respect to the asymptotically flat reg
The tetrad corresponding to such an observer is explic
given in Appendixes A and B in terms of the Kerr tetra
forms and the Kerr coordinates.

Given the previous conditions, the Tolman mass is defi
by

MTol5E
V

dx3 A2g~T1
11T2

21T3
32T0

0! ~22!

~numerical values of the indexes refer to asymptotically C
tesian components!. It explicitly takes into account the con
tributions to the gravitational mass coming from the ene
density and the pressure of the matter forming the sou
@42,41# (V is a region of the source!. Now, using the expres
sions for the Kerr tetrad forms and the stress energy te
given in Appendixes A and B, we get

MTol5~8p!21E
0

p

duE
0

2p

dfE
r a

r b
dr

32@D12G1~D14G!a2sin2u/S#S sinu.

~23!

On the other hand, and given the aforementioned conditi
ADM mass is defined by

MADM52E
V

dx3A2g T0
0 ~24!

and can be expressed as follows:

MADM5~8p!21E
0

p

duE
0

2p

dfE
r a

r b
dr

3@2G1~D14G!a2sin2u/S#S sinu. ~25!

Another way of writting these quantities is

MTol52~4p!21E
V

dx3A2gRuu , ~26!
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MADM5E
V

dx3A2gTuu , ~27!

where u is the timelike vector of the Kerr tetrad, i.e.u
5e482(1/2)e38 using the notation of Appendixes A and B
The corresponding observer is at rest with respect to
asymptotically flat region. From these expressions, one s
that the positivity of the Tolman mass is related with
averaged form of the strong energy condition, while t
ADM mass is~obviously! connected with the weak energ
condition. As we shall see, the fact that our models are n
singular and therefore that the strong energy condition m
be violated~at least close to the core! will be reflected in the
negative values of the Tolman mass in some regions.

We will describe the main properties of the sources co
ing from an analysis of the Tolman and ADM masses
each of the three regions of the model: interior~core!, tran-
sition ~shell! and exterior region. We will also estimate the
relative contributions.

A. Noncharged, nonrotating sources

It is instructive to consider first the simplest case of reg
larized sources for nonrotating, neutral black hole solutio
In this case the treatment is very transparent and, moreo
it exhibits the main peculiarities common to all the mode
In particular, there is an unexpectedly large contribution
the total mass coming from the thin shell on the boundary
the source.

Let us start with the Tolman mass. Settinga5e50 in the
relation ~23!, we get

M5~8p!21E duE dfE dr2~D12G!r 2sinu ~28!

which, in terms of the functionf (r ), takes the form

~8p!21E
0

p

duE
0

2p

dfE
r a

r b
dr2~2 f 8r 22 f 2r 2f 9!r 22sinu

3E
r a

r b
~2 f 8r 22 f 2r 2f 9!r 22dr

5@2~ f /r !2 f 8# r a

r b. ~29!

In this case the model is composed of three regions

f ~r !5H f int5ar 4, 0<r 0 ,

f shell~r !, r 0<r<r 0~11d!,

f ext5mr, r 0~11d!<r .

~30!

For the interior region we obtain

M int52@2ar 3#0
r 0522ar 0

3 . ~31!

Consider the case of positivea ~de Sitter core! and assume
the shell to be thin, i.e.d!1, the position of the shell is
determined, to first order ind, by equationmr0'ar 0

4, i.e.
m'ar 0

3, and consequently
9-7
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Mint'22m. ~32!

Therefore, we obtain a remarkable result: the de Sitter c
gives anegativecontribution22m to the total mass of the
source. Since the total mass is determined by the param
m, this means that the shell on the boundary of the core
to give a contribution13m to the total mass. Indeed, calcu
lating Eq.~28! for the region withf (r )5 f shell, and assuming
again the shell to be thin, we obtain

M shell52 f ext8 ur 5r 0(11d)1 f int8 ur 5r 0
1O~d!'3m, ~33!

providing the balance of the total massM int1M shell5m ~the
exterior contribution being zero in this case!. One should
note that here the shell is assumed to be sufficiently thin
not necessarily infinitely thin. Besides, the exact form of
function f shell, and consequently the matter distribution
the shell, are not essential, giving a contribution of orderd.
Irrespectively of the value ofd, the contribution from the
internal de Sitter core is always negative. We could say
the energetic properties of the core account for the avoida
of the singularity.

Let us now compare the result with the ADM massa
5e50)

MADM5~8p!21E
0

p

duE
0

2p

dfE
r a

r b
dr2Gr2sinu5@ f /r # r a

r b.

~34!

It is clear that the ADM mass does not take into account
pressure components of the stress-energy tensor, and c
quently, it ‘‘does not feel’’ the shell region, i.e.MADM,shell
5O(d). However, the ADM mass obviously yields the rig
value for the total mass of the sourceMADM,int1shell5m. The
solution of this apparent contradiction can be found in th
at least for the regularized sources with a thin shell, the c
tribution of the pressure components to the total mass ca
viewed as representing a gravitational ‘‘dipole’’ (23m,
13m) which forms the bubble.

B. General case. Charged and rotating source

In the general charged and/or rotating case, it is wo
writing all the expressions in terms of the functionf. For the
Tolman mass, we get

MTol5E
0

1

dxE
ya

yb
dy

3
2~y fy82 f !~y2122x2!2 f y9~x21y2!~11y2!

a~x21y2!2
,

~35!

where we have putx[cosu andy[r /a @ f y8[d f(y)/dy, f y9
[d fy8/dy#. This change makes the integrand dimensionl
and allows one to have control on the limiting casesa!r or
a@r . After some integrations, we get the remarkable res
that
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MTol5H f ~r !

r
1

~a21r 2!

ar
arctan~a/r !@ f ~r !/r 2 f 8~r !#J

ya

yb

.

~36!

Hence, the Tolman mass of a layer of the source may
obtained as the difference between the boundary values
suitablepotential function~the function between curly brack
ets above! for any fixed value of the angular momentu
~including of course the nonrotating case!.2

Let us now consider the contributions to the Tolman m
coming from each region~in the sequel we omit the tag
‘‘Tol’’ in the masses!. We have

f ~r !5H ar 4, 0<r 0 ,

f shell~r !, r 0<r<r 1 ,

mr2e2/2, r 1<r .

~37!

For the core region, we get

M core5ar 0
3F123S a

r 0
1

r 0

a DarctanS a

r 0
D G . ~38!

In the limit a/r 0!1, e.g. low rotating black holes and fixe
r 0, including the nonrotating limit, one gets

M core5H 22ar 0
3F11~a2/r 0

2!2~a4/5r 0
4!1OS a6

r 0
6 D G ,

22ar 0
3 , a50.

~39!

In the limit r 0 /a!1, e.g. rapidly rotating black holes or ver
small core ‘‘radius’’ r 0 with respect to the size of the re
moved singular ring—a typical case for parameters of sp
ning particles—we have

M core52~3par 0
2a/2!F12~8r 0 /3pa!1~r 0

2/a2!1OS r 0
3

a3D G .
~40!

As in the case considered previously, for a de Sitter core
contribution of the core itself to the Tolman mass of t
object is negative, for any value ofr 0 and a, and satisfies
M core<22ar 0

3. For an anti–de Sitter core the situation
opposite, that is,M core>2uaur 0

3.
The Tolman mass of the exterior region comes from

electromagnetic field and is

Mexterior5
e2

2r 1
F11S r 1

a
1

a

r 1
DarctanS a

r 1
D G . ~41!

Now the limits a!r 1 ~including the nonrotating case! and
r 1!a yield

2From this result it is easy to see that our matching condit
f (r )PC1 turns out to be necessary and sufficient for the con
tency of the Tolman mass.
9-8
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Mexterior55
~e2/r 1!F11~a2/3r 1

2!2~a4/15r 1
4!1OS a6

r 1
6 D G , a!r 1

~e2/r 1!, a50

~pe2a/4r 1
2!F11~r 1

2/a2!2~4r 1
3/3pa3!1OS r 1

5

a5D G , r 1!a.

~42!
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We now have to consider the contribution from the shell.

1. Thin shell

The first situation we will deal with is the thin shell ap
proach. The thickness of the shelld must satisfy the condi-
tion d/r 0[r 1 /r 021!1 ~but not necessarilyd50). In this
case only the continuity of the interpolating functionf (r ) is
necessary, when dismissing all terms of orderd or higher.
The ~only! matching condition is then

f core~r 0!5 f exterior~r 0!. ~43!

This approach allows us to recover from our models the p
vious ones involving the assumption of singular distributio
both for the stationary and for the static cases.

The Tolman mass is, in this case,

M thin shell52@ f 08#@11~r 0
2/a2!#E

0

1 dx

x21~r 0 /a!2

52@ f 08#S a

r 0
1

r 0

a DarctanS a

r 0
D , ~44!

where @ f 08#[ f exterior8 (r 0)2 f core8 (r 0)5m24ar 0
3523m

12e2/r 0 and we have used the matching condition~43!.
First, we note that thetotal Tolman mass of the model ism,
as expected. That is, (x[e2/2mr0),

M core1M thin shell1Mexterior

5m~12x!F123S a

r 0
1

r 0

a DarctanS a

r 0
D G

1m~324x!S a

r 0
1

r 0

a DarctanS a

r 0
D

1mxF11S r 1

a
1

a

r 1
DarctanS a

r 1
D G

5m. ~45!

We next consider the relative contribution of each pa
These will clearly depend on the ratiox.

2. Astrophysical sources

One can see that for the case of astrophysical~neutral or
weakly charged! sources, wherex50 or x!1 the thin shell
gives the major contribution to the total mass
<uM thin shell/M coreu<3/2, for any value ofr 0 and a. In this
06403
-
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case the core gives a negative contribution to the Tolm
mass, whereas the shell yields a positive one—bigger in
solute value than the core mass.

3. Strongly charged sources: particle-like solutions

Let us first note that, classically, the electromagnetic m
of a charged sphere of radiusr 0 is given by M cl2em
5e2/2r 0. Therefore, the parameterx can be expressed asx
5M cl2em/m. The case x;1 corresponds to strongly
charged sources, where an essential part of the mas
thought to be of electromagnetic origin, as for example
classical models of the electron. The relation between
core and the shell depends on the value ofx in this case.3 In
particular, forx51 the core does not yield any contributio
to the mass. This result comes from Eq.~43!, since ar 0

3

5m2M cl2em50. Therefore,a50 and the core is flat in this
case. On the other hand, the thin shell contribution to
mass is negative

M thin shell52mS a

r 0
1

r 0

a DarctanS a

r 0
D . ~46!

For nonrotating sources, settinga50 one obtainsM thin shell
52m and Mexterior52m. In this case one can show tha
Mexterior splits into a pure electromagnetic contributio
M cl2em5m and a gravitational contribution to the mass co
ing from the electromagnetic fieldMgrav2em5m, and provid-
ing the balance4 M thin shell1M clem1Mgrav2em5m. In the
limit of a singular shell, this case corresponds to the class
model of a charged particle considered by Cohen and Co
@33#, which is a modification of the known Dirac classic
model for an extended electron@43#.

For x.1, it follows from Eq. ~43! that ar 0
35m2M clem

5m(12x), and consequently,a,0. Thus, there must be a
anti–de Sitter space in the core. Graphical analysis imm
ately shows that in this case the characteristic radiusr 0 is
smaller than the classical one. The relation between the c
tributions of the core and of the shell is found to be 4
<uM thin shell/M coreu<2, where now the core yields a positiv
contribution to the total Tolman mass, and the shell a ne
tive one. Notice that, except for the case ofx53/4, the Tol-

3This situation occurs also in the case of@18–20#, in which solu-
tions for nonrotating regularized black holes are given.

4Similarly to the models in@23,27#.
9-9
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man mass of the object undergoes a sudden change w
passing the shell. This is because, except for that c
M thin shellÞ0 andd'0.

C. Comparison with the ADM expression for the total mass

From expressions~25!, one can see that, contrary to wh
happens in the nonrotating case, the termD does give a
contribution, due to a Lorentz effect associated with the
tation of the source. Performing the integrations in analo
with previous calculations, one can obtain the result that
ADM mass may also be interpreted as coming from apoten-
tial function. The expression is

MADM5
1

2H f

r
1 f 81

~a21r 2!

ar
arctan~a/r !@ f /r 2 f 8#J

r a

r b

.

~47!

Therefore, the ADM mass of the core region is

MADM, core5ar 0
3F32

1

2 S a

r 0
1

r 0

a DarctanS a

r 0
D G . ~48!

The ADM mass for the exterior region comes from the pu
electromagnetic part and is twice smaller than the Tolm
one ~since it does not take into account the gravitatio
contribution of the electromagnetic pressure!. The expression
is therefore

Mexterior
ADM 5

e2

4r 1
F11S r 1

a
1

a

r 1
DarctanS a

r 1
D G . ~49!

Finally, the ADM contribution from the thin shell is

MADM, thin shell5~@ f 08#/2!F212S r 1

a
1

a

r 1
DarctanS a

r 1
D G .

~50!

One can see that in the case when the position of the
shell is determined by the matching condition~43!, the bal-
ance of the total ADM mass is also attained~the general case
being also fulfilled from expression~47! and f PC1), i.e.

M core
ADM1M thin shell

ADM 1Mext
ADM5m.

Finally, let us notice that the ADM and Tolman masses
related through a simple expression, namely,

2MADM2MTol5@ f 8~r !# r a

r b. ~51!

VII. CONCLUSIONS

We have here considered a wide class of smooth sou
for black holes, which includes virtually all the models co
sidered previously in the literature and extends them to
rotating case, thus obtaining a unified framework for ar
trary values of the charge and angular momentum. For n
rotating BH solutions the sources contain a core region r
resenting a spacetime with a constant curvature (L term! and
a thin ~but finite! transitional region~spherical shell! con-
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necting the source with an external black hole geometry
the case of rotating BHs this shell acquires an ellipsoi
form ~a disk of radiusAa21r 0

2 and thicknessr 0). For a thin
shell, the rotation can be considered as rigid, with angu
velocity given byv5a/(a21r 0

2). For large angular momen
tum, a@r 0, the rotation is relativistic and disklike source
are highly oblate. The curvature is not strictly constant in
interior of the disk and it is concentrated in a tube-like neig
borhood of the former Kerr singular ring near the border
the disk~the expressions for the curvature and stress-ene
tensor for this general case are given in Sec. II, and a c
plete description is given in the Appendixes!. This class of
sources includes previous models like@5,6,9,15,18–20# gen-
eralizing them to the rotating case, and contains the smo
analogs of known shell-like rotating and nonrotating mod
as well. In particular, for a special choice of parameters,r 0

5e2/2m, the model acquires a flat interior and turns into t
López model of the Kerr-Newman source@23#. However, we
have shown that, in the general case, the bubble interior
have both a positive or a negative scalar curvature. T
matching condition~43! permits up to connect the param
eters of the sourcesr 0 , e, m anda5L/6, and to select the
sources which are consistent with respect to the mass-en
balance. Indeed, the balance relationar 0

31e2/2r 05m shows
that uncharged black hole solutions have positivea, corre-
sponding to the de Sitter interior of the core region, wh
otherwise for charged, ‘‘small’’ black holes withe2/2r 0.m,
the sources acquire a negativea, yielding an anti–de Sitter
spacetime in the core. Such anti–de Sitter regions are
predicted for strong gravitational fields in supergravity.

Analysis and comparison of the Tolman and ADM ma
relations allows one to determine contributions to the to
mass going from diverse regions of the source. Both exp
sions give the correct result at spacelike infinity. Howev
the ADM expressionMADM does not take into account th
gravitational contribution to the total mass coming from t
strong tension~or pressure! of the thin transition shell. This
contribution can be estimated by using the Tolman relat
and shows a new, interesting feature of these models. Ind
we prove that the contribution to the total mass coming fr
the thin shell can be extremely large, but it is anyway ca
celed by the contribution from the core. Therefore, it rep
sents a very strong gravitational ‘‘polarization’’ of the spac
time in the form of a bubble with a sharp and very stro
boundary. This phenomenon could very likely have obser
tional manifestations.

In spite of the successful description here presented
virtually all the nonrotating models and of their extension
rotating~i.e. Kerr-Newman! models, the Kerr-Schild class o
metrics might turn out to be too restrictive in order to be a
to describe some self-consistent field models. In particu
the Casimir effect for a superdense state in the core can
essential@37,38,28#. To construct a field matter model lead
ing to a tangential stress of the shell, scalar fields can
involved @29# in the formation of an object similar to a do
main wall boundary of the bubble. However, the Kerr-Sch
class~in four dimensions! is hardly compatible with simple
models of classical scalar fields, which can be seen from
9-10
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relationTik
KSe3ie3k5T44

KS50 ~which is one of the conditions
in the derivation of the Kerr-Schild class of metrics@34#.!
This argument can also be expressed in terms of quan
corrections and the conformal anomaly for scalar fields@15#.
This means that either the Kerr-Schild class of the~BH inte-
rior! source models has to be modified, to take into acco
these and other features of the ‘‘desired’’ source, or this
to be done with the field model. In particular, the followin
close generalizations can be suggested for future work in
field: ~i! conformal Kerr-Schild metrics~one of whose repre
sentatives is the Nariai solution@44#!; ~ii ! inclusion of dilaton
and axion fields;~iii ! field models in supergravity@29# and
low energy string theory@45#; and ~iv! extension to higher
dimensions, in particular based on the AdS/conformal fi
theory ~CFT! correspondence~@46#, see also the recent re
view @47#!.

Note added.After this paper was finished, we were in
formed that the advantages of the Kerr coordinates in
analysis of rotating black holes had also been considere
the papers by J. Ibanez, P. Papadopoulos and J. Font@48#,
and that a close problem was investigated, in the nonrota
case, in the paper by A. DeBenedictiset al. @49#. We are
thankful to J. Font and A. DeBenedictis for bringing the
works to our attention and for their comments.
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APPENDIX A: STRESS-ENERGY TENSOR
FOR THE GENERALIZED KERR-SCHILD METRICS

Starting from the following general form of the functio
h:

h5 f ~r !/~SP2!, ~A1!

and the Kerr-Schild null tetrad

e15dz2Ydv ~A2!

e25dz̄2Ȳdv ~A3!

e35du1Ȳdz1Ydz̄2YȲdv ~A4!

e45dv1he3, ~A5!

we obtain, using the machinery of the Kerr-Schild formalis
@34#, the following tetrad components of the Ricci tensor5

R12522G ~A6!

5These calculations are very tedious and use the extra rela
given in Appendix B.
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R345D12G ~A7!

R122R3452~D14G! ~A8!

R235~D14G!r ,2 /P ~A9!

R135~D14G!r ,1 /P ~A10!

R33522r ,1r ,2~D14G!/P2, ~A11!

where

D52 f 9/~r 21a2cos2u!, ~A12!

G5~ f 8r 2 f !/~r 21a2cos2u!2. ~A13!

This expression~A11! can be transformed into another, mo
convenient tetrad@Eqs. ~6.1! of Debney, Kerr, and Schild
~DKS! @34## ea8, which is connected with the Kerr angula
coordinates (r ,t,u,f) determined by the relations

x1 iy5~r 1 ia !eifsinu, ~A14!

z5r cosu, ~A15!

r5r 1t. ~A16!

The reverse of the@~6.1! of the DKS paper# relations are

e15e181PȲe38, ~A17!

e25e281PYe38, ~A18!

e35Pe38, ~A19!

e45P21@e482PYe182PȲe282e38PYPȲ#. ~A20!

They yield a new expression for the Ricci tensor

R128 5R12, ~A21!

R348 5R34, ~A22!

R238 5PR231PȲ~R122R34!, ~A23!

R138 5PR131PY~R122R34!, ~A24!

R338 5P2R3312P~PYR231PȲR13!12PYPȲ~R122R34!.

~A25!

As a result,

R128 522G, ~A26!

R348 5D12G, ~A27!

R128 2R348 52~D14G!, ~A28!

R238 5~D14G!~r ,22PȲ!, ~A29!

R138 5~D14G!~r ,12PY!, ~A30!
ns
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R338 522~D14G!~r ,12PY!~r ,22PȲ!. ~A31!

The primed tetrad@Eqs.~6.5!–~6.6! of the DKS paper# takes
the form

e185221/2eif~r 1 ia cosu!~du1 i sinudf!, ~A32!

e285221/2e2 if~r 2 ia cosu!~du2 i sinudf!, ~A33!

e385dr1dt2a sin2udf, ~A34!

e485dr2a sin2udf1
1

2
~2h21!e38. ~A35!

Dropping the primes, we obtain the following expressio
for the energy-momentum tensor:

8pTab52Rab1
1

2
gabR, ~A36!

8pTik5~D12G!gik

2~D14G!~ei
3ẽk

41ẽi
4ek

3!, ~A37!

where

ẽ45e41~r ,12PY!e11~r ,22PȲ!e2

2~r ,12PY!~r ,22PȲ!e3

5
1

2
@dr2~dt2a sin2udf!#1

2 f 2a2sin2u

2S
e3.

~A38!
06403
s

This expression for the energy-momentum tensor coinci
with the result obtained by Gu¨rses and Gu¨rsey.

APPENDIX B: TETRAD FORMS AND REPRESENTATION
OF THE KERR-SCHILD CLASS OF METRICS

IN THE KERR AND BOYER-LINDQUIST ANGULAR
COORDINATES

The Kerr-Schild class of metrics has the form

gik5h ik12hkikk , ~B1!

where h ik5diag(21,1,1,1) is the metric of an auxiliary
Minkowski space with Cartesian coordinatest,x,y,z. andh
5 f (r )/(r 21a2cos2u). The Kerr angular coordinate
(r ,t,u,f) are determined by the relations

x1 iy5~r 1 ia !eifsinu, ~B2!

z5r cosu, ~B3!

r5r 1t. ~B4!

In these coordinates, the metric tensor has the form
g(Kerr) ik5S 2h21 2h 0 22ha sin2u

2h 112h 0 2~112h!a sin2u

0 0 S 0

22ha sin2u 2~112h!asin2u 0 ~r 21a212ha2sin2u!sin2u

D , ~B5!
where S5r 21a2cos2u. The determinant is detgKerr
52S2sin2u, and the contravariant form of the metric is

g(Kerr)
ik 5S 2~112h! 2h 0 0

2h D/S 0 a/S

0 0 1/S 0

0 a/S 0 ~S sin2u!21

D ,

~B6!

whereD5r 21a222 f (r ).
The Kerr null tetrad@Eqs.~6.5!–~6.6! of the DKS paper#

has the form

e185221/2eif~r 1 ia cosu!~du1 i sinudf!, ~B7!
e285221/2e2 if~r 2 ia cosu!~du2 i sinudf!, ~B8!

e385dr1dt2a sin2udf, ~B9!

e485dr2a sin2udf1
1

2
~2h21!e38. ~B10!

The contravariant components are

e18 i5
eif

A2~r 2 ia cosu!
~0,ia sinu,1,1/sinu!, ~B11!
9-12
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e28 i5
e2 if

A2~r 1 ia cosu!
~0,2 ia sinu,1,1/sinu!,

~B12!

e38 i5~21,1,0,0!, ~B13!

e48 i5
1

2
~112h,122h,0,0!. ~B14!

One can see that the expression for the stress-energy
sor is simplified by the introduction of the null vectorẽ4

5e482Ce182C̄e282CC̄e38, whereC5r ,12PY . The vec-
tor ẽ4 belongs to the null tetrad obtained fromea8 by a ‘‘null
rotation’’ @34# leaving e3 unchangedẽ35e38. The corre-
sponding null tetrad is completed as follows:ẽ15e18

1C̄e38 andẽ25e281Ce38. This tetrad is connected with th
Boyer-Lindquist representation of the Kerr geometry,
which a symmetry between the null vectorsẽ3 and ẽ4 ap-
pears.

APPENDIX C: KERR-SCHILD METRICS
IN BOYER-LINDQUIST COORDINATES

Boyer-Lindquist coordinatest̄ ,r ,u,f̄ are connected with
the Kerr angular coordinatest,r ,u,f by the relationsdt
te

06403
en-

5dt̄1(2f/D)dr and df5df̄1(a/D)dr, where D5r 21a2

22 f (r ). In Boyer-Lindquist coordinates, the tetradẽa takes
the form

ẽ15221/2eif~r 1 ia cosu!S du1 i sinu
r 21a2

S
df̄

2
ia sinu

S
d t̄ D , ~C1!

ẽ25221/2e2 if~r 2 ia cosu!S du2 i sinu
r 21a2

S
df̄

1
ia sinu

S
d t̄ D , ~C2!

ẽ35
S

D
dr1~d t̄2a sin2udf̄ !, ~C3!

ẽ45
D

2S FSD dr2~d t̄2a sin2udf̄ !G . ~C4!

In Boyer-Lindquist coordinates, the metric tensor takes
form ~bars are omitted everywhere!
g(BL) ik5S 2 f /S21 0 0 22a f sin2u/S

0 S/D 0 0

0 0 S 0

22a f sin2u/S 0 0 S r 21a21
2 f a2sin2u

S D sin2u
D . ~C5!

The determinant is detgBL52S2sin2u.
The contravariant form of the metric is

g(BL) ik5S 2
r 21a21~2 f /S!a2sin2u

D
0 0 2

2a f

SD

0 D/S 0 0

0 0 1/S 0

2
2a f

SD
0 0

122 f /S

D sin2u

D , ~C6!
The orthonormal tetrad in the Boyer-Lindquist coordina
has the form

u52AD

S
~dt2a sin2udf!, ~C7!
s
l 5AS

D
dr, ~C8!

n5ASdu, ~C9!
9-13
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m5
sinu

AS
@adt2~r 21a2!df#, ~C10!

whereu is the unit timelike vector andm the radial one. The
corresponding contravariant components are

ui5
1

ADS
~r 21a2,0,0,a!, ~C11!

l i5AD

S
~0,1,0,0!, ~C12!

ni5
1

AS
~0,0,1,0!, ~C13!

mi5
21

AS sinu
~a sin2u,0,0,1!.

~C14!
-
,

B

D

s.

3;

06403
The null vector formsẽ3 and ẽ4 can be expressed viau and
l as followsẽ35AS/D( l 2u), andẽ45 1

2 AD/S( l 1u).

Some useful relations

The following relations are useful for the transition fro
the Kerr to the BL coordinate system:

r ,22PȲ52 ia~cosu!,25
iaeifsinu

A2~r 2 ia cosu!
,

r ,12PY5 ia~cosu!,15
2 iae2 ifsinu

A2~r 1 ia cosu!
,

~r ,12PY!e11~r ,22PȲ!e25a sin2udf,

~r ,12PY!~r ,22PȲ!5a2sin2u/~2S!.
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