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A unified approach to regular interiors of black holes with smooth matter distributions in the core region is
given. The approach is based on a class of Kerr-Schild metrics representing minimal deformations of the
Kerr-Newman solution, and allows us to give a common treatmenfcfuairged and unchargetbtating and
nonrotating black holes. It is shown that the requirement of smoothness of the source constrains the structure
of the core region in many respects: in particular, for Schwarzschild holes a de Sitter core can be selected,
which is surrounded by a smooth shell giving a leading contribution to the total mass of the source. In the
rotating, noncharged case the source has a similar structure, taking the forfaméa@tropic and rotatingle
Sitter—like core surrounded by a rotating elliptic shell. The Kerr singular ring is regularized by anisotropic
matter rotating in the equatorial plane, so that the negative sheet of the Kerr geometry is absent. In the charged
case the sources take the form of “bags,” which can have de Sitter or anti—de Sitter interiors and a smooth
domain wall boundary, with a tangential stress providing charge confinement. The Arnowitt-Deser-Misner and
Tolman relations are used to calculate the total mass of the sources.
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[. INTRODUCTION region with a constant, limiting value of the curvature deter-
mined by dominant effects of quantum fluctuations. The is-
This paper is an attempt at a unification of two researclsue received renewed attention over 20 years later, essen-
lines on black hole solutions, which have been developedally following the papers by Frolov, Markov and Mukhanov
(almost independentlyfor a long time. A first line of inves- [4,5]. Their model consists of a de Sitter core inside a
tigation has to do with the problem of the final state in gravi-Schwarzschild black hole, matched with the external solution
tational collapse, and stems from pioneering observations byja a thin transition layer. All investigations along this line
Gliner [1] and Sakharo\2], who suggested that matter at have been restricted, so far, to the nonrotating case only
superhigh densities should have the equation of spate [6—17] (see alsd18-20 for the Reissner-Nordstno case.
= — ¢, So that the the stress-energy tensor takes the “lambda another open line of research is connected with the analy-
term” form sis of the structure of the singularity of the rotatigierr and
Kerr-Newman black holes. As is well known, this singular-
Tik=AGik (1) ity takes the form of a ring which is a branch line of the
space, leading to a two-sheeted topology. Going through the
at the late stage of collapse. Further, Zel'dovich and Novikowerr ring one obtains a secon@negative”) sheet of the
proposed 3] such a stress-energy tensor to arise as the resufhetric where the values of the mass and charge change their
of gravitational interactions in a vacuum polarization pro-signs while fields change their directions. In this region
cess. These considerations led naturally to the hypothesidosed timelike curves exist, so that causality violations oc-
that an unlimited increase of spacetime curvature during theur. This led to approaches which attempted to avoid the
collapse process had to be halted by the formation of a corevo-sheetedness with procedures meant to truncate the nega-
tive sheet. A procedure of this kind was first developed by
Israel[21], who used the surface of the disk spanned by the
*Email address: bur@ibrae.ac.ru singular ring as the surface of truncation. The resulting met-
"Presently on leave at the Department of Mathematics, Massachuic has a finite jump of the first derivative on the disk, thus
setts Institute of Technology, 77 Massachusetts Avenue, Cambridgégading to a distributional matter source located on the sur-
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*Email address: hildebrandt@ieec.fcr.es field generated by a very exotic stress-energy tensor: a layer
$Email address: magli@mate.polimi.it of negative mass rotating with superluminal velocities.
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The Israel interpretation was improved by Ham[B2], known shell-like models, in particular, the rotating and the
who noticed that the disk can be considered as being in rigicionrotating shell (bubble models of charged sources
relativistic rotation. In the co-rotating reference system, thd33,23,27. Several new interesting features appear in this
stress-energy tensor takes a diagonal form, with zero energyay.
density and a negative pressure, which, however, grows up to Throughout this work, latin indices run from 0 to 3. We
infinity on approaching the singular boundary of the disk. Write Einstein's equations in the form-Rap+(1/2)gapR

Another approach was given, for the Kerr-Newman solu-=87Tap, WhereRgy, is the Ricci tensorRa,=R3;,., and
tion, by Lopez[23], who constructed the source in the form units are chosen so th&=1, c=1. The Lorentz signature
of a rigidly rotating ellipsoidal shel(bubble covering the is taken to be—+++.
singular ring. The singular ring is removed, since the interior
of the bubble is flat. A continuous matching of the flat inte- Il. GENERALIZED KERR-NEWMAN SOLUTIONS
rior with the external metric of the Kerr-Newman field can L . .
be obtained, however, only by a special choice of the shelﬂ34§he Kerr-Newman solution in the Kerr-Schild form is
“radius” r¢he=re.=€%/2m, wherer is the Kerr ellipsoidal
radial coordinate. _ 3.3

Actually, r is the so called “classical size” of a particle Gik= 7+ 2here. @
with chargee and massn, and indeed the problem of Kerr's Here 5, =diag(~1,1,1,1), h is a scalar functionto be
sources received attention also from the point of view Ofspecified below and the null vector fielé? is tangent to the
constructing classical models of the eleqtron, after Carter'xerr PN congruence. The explicit form of the Kerr PN con-
remark [24] that the Kerr-Newman solution possesses theyrence is not essential for our analysis. We will assume that
same giromagnetic ratig=2 of the Dlrac_elgctroﬁ.lnter— in the generalization of the Kerr-Newman solution to the
estingly enough, as far as models of spinning particles argerior case, the Kerr PN congruence retains its form and
concerned, the va!ues c_)f chargand the rotation parameter 5i5q the properties of being geodesic and shear free.
a=J/m are very high with respect to the massso that the A simple way to generalize the Kerr-Newman solution—
horizons of the Kerr-Newman solution are absent and thgaining an interior solution which is still of the Kerr-Schild
Kerr singular ring is a naked singularity, visible also to far- type—is to replace the factdiy=mr—e?2 in the function
away observers. _ _ h with an arbitrary functiorf (r) [31]. This procedure can be

In spite of the progress in understanding the structure ofeen 45 the introduction of a smooth distribution for charges
regular black hole solutions in both the aforementioned apz 4 masses. This distribution is purely “radial” in that it
proaches, there was still one common drawback connectegbnends only on the coordinate, which is confocal to the
with the necessity of involving in the models a thior at  5qjar coordinate of an oblate ellipsoidal coordinate sys-

least infinitely thin transition layer, while smooth models for tem, and becomes the standard Schwarzschild radial coordi-
the black hole(BH) interior would obviously be more satis- nate if the oblateness goes to zésee, e.g.[35]).

factory [9,30,31,15,12,18-20,32,28 29n many such at- The Kerr-Schild metric takes a convenient form in a basis
tempts, the treatment is based upon the Kerr-Schild class Qfare the one-forne® is normalized in such a way that its

metrics[15,31,32,12,2P which is obviously connected with time component equals one. In this basis the fundtitakes
the fact that all stationary black holdthat is, all known the form

black hole$ are particular cases of the Kerr-Schild geometry.

On the other hand, the de Sitter core region can be described f(r) £(r)
in Kerr-Schild form, too. Therefore, it looks convenient to h= N T2 2 3
describe in this same form the transition region connecting r?+a’cosg

the core and external geometry. A remarkable property of the , ) ) )
Kerr-Schild class is that such a description can be performeff©" regularf(r), this function can be singular only in the
in a unique fashion for charged, uncharged, rotating, angeduatorial planeg=m/2, atr=0. ”; this case the behavior
nonrotating BH solutions, by using a smooth function of an€&rr =0 is of the formh~f(r)/r%, as in the nonrotating
radial coordinaté (r) to interpolate between the core and the €@s€(when a=0). This allows us to apply the same ap-
external field. This is the approach used in the present papdifoach to the regularization of the metrics, both for the non-
Sources of BH solutions are constructed as smooth deforma2tating and for the rotating cases.

tions of the electro-vacuum Kerr-Schild metrics retaining the BY Using the ansaté) and the machinery of the Debney-
main structure of this geometry, namely the double principal<€r-Schild approacti34], we obtain the following tetrad
null (PN) congruence. In this way we obtain a class of Compeonents for the Ricci tensor:

sources which covers almost all previous models of nonro-

tating sources|[5,6,9,11,14,15,13,12,18—-P0generalizing Ri=~2G, )

them to the rotating case. It contains smooth analogues of R,=D+2G, ©)
1n this connection a series of works followed, on the models of R~ Ry=—(D+4G), (6)

spinning particle based on the Kerr-Newman solutiat,23,25— ,

29]. R23=(D+4G)(r,,—Py), )
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Riz=(D+4G)(r,;—Py), (8)
Ré3:_2(D+4G)(r11_PY)(r12_P?)! (9)
where
B fII
D__f' (10
f'r—f
G= 52 (11

[here f'=¢,f(r), and Py=dyP=2"Y2Y, Py=4/P

=271y, ,azeia&i are the tetrad derivations, and the corre-

sponding tetrad is given in Appendix A, Eq#32)—(A35)].

This expression allows us to write the stress-energy tens
[Appendix A, Eq.(A37)], which acquires a very transparent

form if an orthonormal tetradu,l,m,n} (C10 connected
with Boyer-Lindquist coordinates is usédppendix O:

Ti=(87) Y (D+2G)gy— (D+4G) (Il —ujuy)].
(12

In the above formulay' is a timelike vector field given by

. 1
u'=——=(r?+a%0,0a),

VAS

whereA=r?+a-2f(r) .
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lll. INTERIORS FOR THE KERR-SCHILD CLASS
OF BH SOLUTIONS

A. The nonrotating case

We shall consider in this section the nonrotating case from
a unifying viewpoint, before moving to the rotating case.

1. Core region

We follow here a somewhat classical approach, motivated
by well known (and expectedproperties of the strong field
regime of gravitation(see, e.g.[5]). We thus consider the
center of the core region as a spacetime of constant curva-
ture. Therefore, we have to use for this region a regularizing
function f(r)="fo(r)=ar? where a=8wA/6. This pro-
vides smoothness of the metric up to the second derivative

Ozarnd removes the singularity at=0. The scalar curvature

invariantR=2D = — 2f3/r“= —24a is constant, as well as
the densityp=(1/8m)A.

2. Exterior region

As is obvious, the exterior is determined unambiguously
by the Birkhoff-Israel theorem. Thus the functibmust co-
incide with fy=mr—e?/2.

3. Transition region

We assume a de Sitter-like behavior of the spacetime only
near the center“core” region). Therefore, between the
boundary of the source—assumed to lie in the region of
trapped surfaces—and the de Sitter core, a “transition re-

In this expression one immediately recognizes that if thegion” can exist, which interpolates between the core and the
matter of the source is thought of as being separated int9acyum in such a way that the resulting metric is regular
ellipsoidal layers corresponding to constant values of the cOgyerywhere. Due to the assumed symmetries, different kinds

ordinater, each layer rotates with angular velocity(r)

=u?/u®=a/(a®+r?). This rotation becomes rigid only in

the thin shell approximation=r. The linear velocity of the
matter with respect to the auxiliary Minkowski spacevis
=asing/\a?+r?, so that on the equatorial plare= /2,
for small values ofr (r<a), one hasv~1, which corre-
sponds to an oblate, relativistically rotating disk. _

The energy density of the material satisfies td’Lu"
=—pu' and is, therefore, given by

1
p=5—2G.

= (13

of transitions correspond to different choices of the function
f(r). Calculating the second fundamental form of the
=const surfaces, it is easy to check that, to avoid the pres-
ence of singular(shell-like) distributions of matter on the
inner (de Sitter transition and on the outertransition-
vacuum matching hypersurfaces, the functibmust beC?.
Further, one can ask the transition region to be “thin” in the
sense that the thicknessis much smaller than the radial
position of the transitional layar, which would correspond

to a cusp at the intersection of the plotsfgfr) andf(r).

As a result of these assumptions the position of the transition
layer can be easily estimated analytically. It is, however,
more transparent the use of a graphical representation of the

There are only two distinct spacelike eigenvalues, corregifferent kinds of situations which may occur.
sponding to the radial and tangential pressures of the nonro- ag 3 result of these assumptions the position of the tran-

tating case, namely,

1
Prad=— 526= —p, (14)
L (D+2G)=p+ 1
Pran= g (D+ )—P+g- (15

Singularities can arise only at=0 on the equatorial plane,
so that the regularity properties of the stress-energy tensor

sition layer can be easily estimated as a mqpbf the equa-
tion fo(rq) =frn(ro). We shall see that this relation turns out

a necessary condition for consistency of the source models
with respect to the Tolman and Arnowitt-Deser-Misner
(ADS) mass relations. It is, however, more transparent the
use of a graphical representation.

B. Graphical analysis

1. Casea>0: de Sitter interior, uncharged source

can be studied together in both the rotating and the nonrotat- Figure 1 shows that there is only one intersection between

ing casedenergy conditions will be dealt with in Sec)V

fo(r)=ar* and fy(r)=mr. Therefore, the position of the

064039-3



BURINSKII, ELIZALDE, HILDEBRANDT, AND MAGLI PHYSICAL REVIEW D 65 064039

f f
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0.5 1 1.5 2 b ' ’ :
FIG. 1. Position of phase transitiog as an intersection of plots FIG. 3. Choice off o, as point of phase transition.

fo(r) andfyyn(r). Uncharged sourcey>0, arbitrary units.

. . . . 4. Casea=<0: flat and anti—de Sitter interior, charged source
transition layer will ber,=(m/a) 2. As seen in the pic- g

ture, the second derivative of the corresponding interpolating In this case a matching of the interior and the exterior
function will be negative at this point, yielding an extra con-regions can be reached via an intermediate shell, having a
tribution to the positive tangential pressure in the transitiorP0sitive second derivative and leading to a positive tangen-
region. Solutions of this class can be constructed in such #al stress of the shell confining the charge of the source. This
way that the weak energy condition is satisflede Sec. Y~ graphical analysigFig. 6) provides a classification of the
simplest possible matching of AdS and dS interiors of the
2. Casea>0: de Sitter interior, charged source source with the exterior black hole solutions via a smooth

Figure 2 shows that for charged sources there are twi termed|at§ layer. 'dOf c(;)urshe, mtc;]re comp:jlc:teq ttr.anS'tf'c;R
intersectionsyo; andrg,, of the functionsfy(r)=ar* and ayers can be considered, where the second derivative of the

fKN(r)=mr—e2/2. The rootr, , corresponds to a negative interpolating functionf(r) changes sign several times.

second derivative of the functioi(r) and leads to a picture
similar to that for the uncharged source with the intermediate C. The rotating case

shell with pressurgFig. 3. However, the smaller roty; A remarkable property of the Kerr-Schild class is that the

corresponds to a source of smaller size and has a positivg,,e treatment is easily extensible to the rotating case. In

second derivative leading to an intermediate shell with a tanfact, the functiorf is, also in this case, a function ofonly,

gential stress. Thus, this source resembles a bubble with a dg,§ the Kerr and Kerr-Newman solutions are obtained with

Sitter (dS) interior and a domain wall boundary confining the he samefunctions that correspond to the Schwarzschild and

charge of the sourceFig. 4). to the Reissner-Nordstno solutions, respectively. Of course,

the definition of the coordinateis now completely different,

since the surfacess=const are ellipsoidal, and described by
In this case matching the interior and exterior regionsthe equation

turns out to be impossible for the usual black hole solutions.

However, there is an exotic case of a black hole solution with x2+y? 72

negative mass. Graphical analysis shakig. 5 that there is - 5T 5=1 (16)

a solution with a positive second derivative of the interpolat- retat o

ing function f(r) leading to a shell with tangential stress. ) )

This exotic source resembles an AdS bubble with a domaid N€ relations for the metric and stress-energy tensor are char-

wall boundary and negative total mass, like those occurring?‘Ct‘zerizezd by a more complicated form of the functilin
in supergravity36]. =r?+a%cog. As a result, the components of the metric and

stress-energy tensor increase when approaching the equato-

3. Casea<0: anti—de Sitter interior, uncharged source

f
4 fry f
2 Yo,2 0.01

fo Yo,1
1 0.3250.320.3350.340.3450.35
7~

o 1 -0.01 -

0.5 1 1.5 2 2.5 3 7% -

r -0.02¢

FIG. 2. Two possible positions for a point of phase transition FIG. 4. Strongly scaled section of Fig. 1 corresponding to a
roiandrg, for a charged source ane>0. phase transition at poimt ;.
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f horizon replacing the vacuum orgthe event horizon obvi-
r ously remains in the vacuum region
Case Il For large enough values of the angular momen-
tum, no intersection exists. The Cauchy horizon remains the
original (vacuum) one, and there is no horizon present in the
matter filled region.

V. LOCAL ENERGY CONDITIONS AND
INTERPRETATION

The physical reasonability of a classical solution of the
FIG. 5. Nonstable case corresponding 460 and negative Einstein equations relies on the fulfillment of the energy con-
mass. ditions, which are a common tool for getting insight into
some energetic properties of any spacetime. However, and in

rial plane co®=0, where they take the same form as in thespite of the fact that a quantum theory of gravity is not avail-
nonrotating case. The singularity of the Kerr solution can beable yet, increasing evidence, both experimental and theoret-
suppressed by analyzing the metric and the stress-energy tea! (see, e.g[37-39, the recent account if¥0] and refer-
sor near the Kerr singular ring~cosf~0. As we have al- ences thereinshows that quantum effects—specially those
ready seen, the condition on the behavior of the function @ssociated with the quantum vacuum—may lead to a general
whenr—0 remains the same as for the nonrotating case. Violation of some or eveall of such conditions. Therefore,
The intermediate shell, which matches the interior of thedS We aim at describing nonsingular black holes which are
source and the external geometry, is foliated on the rotatin@nly likely to be understood via quantum effects, we should
ellipsoidal layers. The thin shell is characterized by an in-Not expect all the energy conditions to be satisfiactually,
creasing of the tangential stregsr pressureand can be the strong and the dominant energy conditions have to be
considered as a rigidly rotating boundary of the disk-likeViolated somewhere, already on classical groufids). In

source, similarly as in the lpez singular shell mod¢R3]. any case, energy conditions are a useful tool which may still
serve to assess whether a classically dominated field is the

source responsible for the spacetime considered, or, on the
IV. CAUSAL STRUCTURE contrary, that such a possibility is banned and one should

The causal structure of nonrotating black hole interiors iS€€ for @ quantum origin of the source. This remark is im-
well known [16,13. It closely resembles that of the RN portant because, otherwise, energy conditions might impel us

spacetime, with the key difference that the singularity is reto disregard some spacetimes that may well fit with the cur-

placed by the matter-filied region. From the topological point™€Nt knowledge of the interface between quantum physics

of view, it was shown by Borde that a change of topology@Nd gravitation. Let us begin now with the study lotal
occurs, making it possible for regular solutions to existe"€r9Y conditions. In the following section we will implicitly
[16,17. consider someaveraged—or “extended”—energy condi-

The case of a rotating black hole interior will now be 10nS- R
analyzed. This is best visualized, again, with the use of a LetV be any 4-velocity vector field and &t be any null
two-dimensional plot in the equatorial plane. Horizons of thevector field. We shall denot8, , T T# by Sy for any (sym-
spacetime, if any, are defined By=0, that is, by the equa- metric) rank-two tensor fields, and any vector field .
tion f(r)=r2+a2. Plotting the parabola and taking into ac- (i) Strong energy conditiofSEQ: a system satisfies the
count the properties of the functidnone realizes that two SEC if and only if
different situations may occur.
~ Case | The parabola®+a® and the external functiof — Ry Tyy+(12T=0, WV, (17)
intersect at one point, which corresponds to a new Cauchy

whereR, , is the Ricci tensor and, , is the stress-energy
t tensor(being T its trace. Fulfillment of SEC is a “corner-

1 stone” in singularity theorems and must be violated in the
case where the spacetime is nonsingular. It can be shown
0.5 Txn also that the dominant energy conditiol’{/" non-space-
like for any non-space-lik&) is violated in this case.
W 15 5 T (i) Weak energy conditiofWEC): a system satisfies the
WEC if and only if
0.5 - Yo
. _ )
< Tyw=0, VV. (18
-1
FIG. 6. Class of stable states for charged sourcesaand (flat ~ 11€S€ are clearly connected with the sign of the energy den-
or AdS interior and ,<e?/2m). sity measured by an observer with 4-velocity
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(iii) Null energy conditionfNEC): a system satisfies NEC wherep’=4,p. It follows that(i) the SEC is satisfied if and
if and only if only if pan=0 andp’=<0 in the region of study(ii) The
. WEC is satisfied if and only ib=0 andp’<0 in the region
Tan=0, VN. (19 of study.
) . i - Notice thatp’ plays an essential role in both cases, be-
This last energy condition may be viewed as a limiting Casiges the more natural quantitigs,, and p. We can now

g(f)rgg Jg;qu::gﬁ{ eljg\e/:jst;c aoc:t()astﬁrrw\(/eesr&suliﬁs:sag)rl;tiﬁ d'gcél:ggrs analyze what happens in each region. The exterior field has
y P ; " fen(r)=mr—e?/2. Therefore, p=pn=€%/32. Whence,

The physical validity of(i) has been objected to many . .
times and on different grounds, and violation of the SEC jone haszpt.an>0 andp’<0. SEC and WE.C are thus obvi-
nowadays well understood. On the other haiidlis usually oysly sansﬂed. For the rest' of the analysis, it is worth con-
considered as a necessary condition for a gravitational sysidering first the nonrotating case, wheye=6a, pian
tem to be acceptable. While this is certainly right for classi-= — 6@ andp’=0. Therefore, fora>0 (de Sittej WEC is
cal matter, it becomes doubtful in the case when quanturgatisfied whereas SEC is not and the singularity is avoided.

effects p|ay a relevant role. For «a<0 (anti—de SlttE)' WEC is Clearly violated and the
It is useful to represer¥ as singularity is again avoided.
As long as we aim at describing general properties, it is
V=AU+Bl+Cm+En worth keeping the freedom of choice 6tr) in the shell

region. The main conclusion is that only for a de Sitter core
where{ﬁ,F,rﬁ,ﬁ} is any basis of the tangential space. In par_(a>0) plus an exterior electromagnetic field satisfying

4,2 C
ticular we will choose therthonormalbasis given in Appen- 6471/€7>1 (which includes the uncharged caseay the

dix C, which corresponds to a comoving observer, because WEC be satisfied throughout the whole system. The reason is

, . . . . : > as follows: if 6ari/e?<1 then po(=6a) is smaller than
gives raise to simpler expressions in this case. Swvds or at 0 . .
timelike one has pexi(= pxn=¢€7/r7) atr,. Therefore, the functiof(r) in the

transition region—which is at lea§t! in that region—must

A2=1+B2+C2+E2 be increasing in some open interval.
In fact the restriction @rij/e*>1 is satisfied in most
From Eq.(12) one can get previous attemptq5,6,8,9,11,13,1p Surprisingly, in the
models[19,20, one can easily see that the WEC and SEC
87 Tyy=—(D+2G)—(D+4G)(B*~A?) are found to be violated. For this it suffices to compute the
_ 2, 2 density p in these models. In the models pf9] one has
=2G+(D+4G)(C+EY, f(r)=[mr*(r?+e?)%?|exp(—€’2mr) and thereforegrecall
and that these examples are nonrotating solutior&mp
=2G =2 (f'r—f)/r* = [er(r?+e?)%?] [6mr/(r?+e?)
87 T=2D, + 1]exp(—€?*2mr)]. For the models inf20] one hasf(r)
=mr{1—tanhg¥2mr)] and 8mp=e?/[r*cosH(e/2mr)].
whence Now, in both cases one hap(r—0")—0" and p(r
—+2)—07. Consequently, there are open regions where
Tyy+(1/2T=(D+2G)+(D+4G)(C*+E?). is an increasing function and therefore SEC and WEC are

) ) . . violated. This adds new examples of SEC and/or WEC vio-
We can get a more direct expression, since a direct compyations(see, e.g.[40] for a recent review due in this case to
tation shows that non-linear electrodynamics, and also is a warning about the
actual relevance of their fulfillment.
D+4G=— EGr_ (20) Finally, let us consider the rotating case. In the core one
r has p=6ar*/3?, pun=—6ar?(r’+2a%cog6)/>? and p’
=12aa’r3cogd/3. For >0, it is clear that both SEC and
Finally, this can be written in terms of the pressure, stresgyec (because’>0) are violated. Forr<0, it is clear that
gnd energy density measured by the comoving observer UgyeC s violated, although the SEC is satisfied.
Ing The main conclusion is that the WEC and SEC are—
unavoidably—violated in the rotating case, except at the
equatorial plane, which follows the pattern of the nonrotating
case, already explained above. For the case of NEC, similar
computations bring to the conclusion that it is fulfilled if and
s only if p’<0 and therefore, previous considerations show
Tw=p— =—p'(C?>+E?), that it is again genericallyiolatedinside the object.
2r At first sight, this might be considered as a drawback of
these models. However, the whole thing is sayimdy that
the models cannot account forciassicalinterior of a Kerr-
Newman spacetime, so that the nature of the source should

8mp=2G, 8mPag=—p, 87Pian=(D+2G).

The result is

1 2 ’ 2 2
Tyy+ Esztan_ ZP (C°+E%), (21
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be sought within quantum field theory. But this, in turn, is s
often considered to be the natural framework to work in MADM:jﬂdX V=0Tu, (27)
(e.g., assuming interior models suggested by supergravity or

string theory. where u is the timelike vector of the Kerr tetrad, i.@

=e* —(1/2)e* using the notation of Appendixes A and B.
VI. CONTRIBUTIONS TO THE TOTAL MASS COMING The corresponding observer is at rest with respect to the
FROM DIFFERENT REGIONS OF THE REGULARIZED asymptotically flat region. From these expressions, one sees
SOURCES that the positivity of the Tolman mass is related with an

There are basically two ways to study the energy contri2veraged form of the strong energy condition, while the
butions from different parts of the source. One consists if\DM mass is(obviously connected with the weak energy
evaluating the contributions coming from both the energycondition. As we shall see, the fact that our models are non-
density and from the pressures of the system, whereas tﬁéngl_JIar and therefore that the strong energy cond|'t|on must
other takes into account the contribution of the energy denbe violated(at least close to the cor@ill be reflected in the
sity only. The first is called th@olman masf the system negative values of the Tolman mass in some regions.
and the latter, thé DM mass In order for these quantities to Ve will describe the main properties of the sources com-
be well defined it is necessary that the system be stationafd from an analysis of the Tolman and ADM masses for
and asymptotically flatsee, e.g.[41,35). Our models do e'a.ch of the three regions of. the mode]: mterﬁoor.e, tran-
fulfill such a requirement. These masses are computed for afition (shel) and exterior region. We will also estimate their
observer at rest with respect to the asymptotically flat regionrelative contributions.

The tetrad corresponding to such an observer is explicitly

given in Appendixes A and B in terms of the Kerr tetrad A. Noncharged, nonrotating sources
forms and the Kerr coordinates. _ _ It is instructive to consider first the simplest case of regu-
Given the previous conditions, the Tolman mass is defineghizeq sources for nonrotating, neutral black hole solutions.
by In this case the treatment is very transparent and, moreover,
it exhibits the main peculiarities common to all the models.
MTol:f A V—g(TH+T2+T3-T9) (22)  In particular, there is an unexpectedly large contribution to
Q the total mass coming from the thin shell on the boundary of
the source.

(numerical values of the indexes refer to asymptotically Car- Let us start with the Tolman mass. Settiag e=0 in the
tesian componenisit explicitly takes into account the con- ; '

N o i relation (23), we get
tributions to the gravitational mass coming from the energy

density and the pressure of the matter forming the source _
[42,41] (O is a region of the sourgeNow, using the expres- M =(87T)_lf dﬂf d¢f dr2(D+2G)r?sing (28
sions for the Kerr tetrad forms and the stress energy tensor
given in Appendixes A and B, we get which, in terms of the functiori(r), takes the form
1 ™ 2m Ty T 2w My
M= (87) . de . de r dr (877)*11 def dd)f dr2(2f'r—2f—r2f")r ?sing
a 0 0 ra
X 2[D+2G+(D+4G)a’sirt /313 siné. frb , ,
X 2f'r=2f—r<f")r ~=dr
(23 ra( )
On the other hand, and given the aforementioned conditions, =[2(f/r)—f']'. (29)
ADM mass is defined by fa
In this case the model is composed of three regions
Maom=— | dxV—g T} 24
ADM Lz 9T 24 fin=ar®, O0<r,,
and can be expressed as follows: f(r)=y fsnelr),  ro<r=<ro(1+4), (30
fem=mr,  ro(l+6)<r.
B T 2 My
M apm = (877) lfo defo dd’ﬁ dr For the interior region we obtain
X[2G+ (D +4G)a%sirfo/S]3 sind. (25 Min= —[2ar?]°=—2arg. (31
Another way of writting these quantities is Consider the case of positive (de Sitter corgand assume
the shell to be thin, i.e6<1, the position of the shell is
M1q= _(47)711 dxCV=gR,,, (26) determained, to first order i, by equationmry~arj, i.e.
Q m~arg, and consequently
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M=~ — 2m. (32)

Therefore, we obtain a remarkable result: the de Sitter core

gives anegativecontribution —2m to the total mass of the

source. Since the total mass is determined by the paramet
m, this means that the shell on the boundary of the core ha

to give a contribution+ 3m to the total mass. Indeed, calcu-
lating Eq.(28) for the region withf (r) = f ¢, @nd assuming
again the shell to be thin, we obtain

M shel™ — fe,}xt|r:r0(l+ 8) + fi,nt| r:ro+ O(6)~3m, (33)

providing the balance of the total malsk,+ Mgne=m (the
exterior contribution being zero in this casé®ne should

note that here the shell is assumed to be sufficiently thin but
not necessarily infinitely thin. Besides, the exact form of the
function g, and consequently the matter distribution on

the shell, are not essential, giving a contribution of order
Irrespectively of the value ob, the contribution from the

PHYSICAL REVIEW D 65 064039

[f(r) (@®+r?) "

1o/=1 —— + ————arctarfa/r)[f(r)/r—f'(r)]

r ar v,
(36)

ence, the Tolman mass of a layer of the source may be
obtained as the difference between the boundary values of a
suitablepotential function(the function between curly brack-
ets abovg for any fixed value of the angular momentum
(including of course the nonrotating cade

Let us now consider the contributions to the Tolman mass
coming from each regionin the sequel we omit the tag
“Tol” in the masses. We have

internal de Sitter core is always negative. We could say that

the energetic properties of the core account for the avoidance

of the singularity.
Let us now compare the result with the ADM mass (
=e=0)

T 2w r
MADM=(8w)*1f daJ dqsf "dr2Gr2sino=[f/r]".
0 0 fa a
(34

It is clear that the ADM mass does not take into account the
pressure components of the stress-energy tensor, and conse-

quently, it “does not feel” the shell region, i.eM ppwm shell

ar, 0=ry,
f(r)=1 fsner), rosrsry, (37)
mr—e®2, ri<r.
For the core region, we get
3 a Iy a
Mcore= af gl 1—3| —+ —Jarctan — (39)
ro a ro

In the limit a/ry<<1, e.g. low rotating black holes and fixed
ro, including the nonrotating limit, one gets

6

a

—2ard 1+ (a%r3)—(a*/5r3)+ 0O 5
0

M core=
—2ard, a=o0.

(39

=O(8). However, the ADM mass obviously yields the right In the limitro/a<1, e.g. rapidly rotating black holes or very

value for the total mass of the souB\p int+ shei= M. The

small core “radius”r, with respect to the size of the re-

solution of this apparent contradiction can be found in thatmoved singular ring—a typical case for parameters of spin-
at least for the regularized sources with a thin shell, the conbing particles—we have

tribution of the pressure components to the total mass can be

viewed as representing a gravitational “dipole™@m,
+3m) which forms the bubble.

B. General case. Charged and rotating source

)
? .
(40

As in the case considered previously, for a de Sitter core the

M o= — (3marial2)| 1— (8rq/3ma)+(rjla)+ O

In the general charged and/or rotating case, it is worthyontripution of the core itself to the Tolman mass of the

writing all the expressions in terms of the functibri-or the
Tolman mass, we get

Yb
dy

1
MTOI:J dX
0 Ya

2(yfy—f)(y?+2-x2) = (x> +y?)(1+Yy?)
X 2)2 !
(395

where we have put=cos¢ andy=r/a [f;=df(y)/dy, ]

a(x®+y

object is negative, for any value of anda, and satisfies
Mcores—Zarg. For an anti—de Sitter core the situation is
opposite, that isM ¢o;=2|a|r3.
The Tolman mass of the exterior region comes from the
electromagnetic field and is
e? r, a a
—+—|arctan —
I r

1+ (41)

M exterior= 2r,

Now the limits a<r; (including the nonrotating casend
r;<a yield

Edf{,/dy]. This change makes the integrand dimensionless————

and allows one to have control on the limiting casesr or

2From this result it is easy to see that our matching condition

a>r. After some integrations, we get the remarkable resulf(r) e C* turns out to be necessary and sufficient for the consis-

that

tency of the Tolman mass.
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6
(€%/ry)| 1+ (a%/3r2)—(a*/15)) + O r‘f) , a<r,
M exterio™ (ezlrl)’ a=0 (42
2 2 242 3 3 ri
(me“aldry)| 1+ (ri/a®)—(4r7/3wa’)+ O 5| ry<a.

We now have to consider the contribution from the shell. case the core gives a negative contribution to the Tolman
mass, whereas the shell yields a positive one—bigger in ab-
1. Thin shell solute value than the core mass.

The first situation we will deal with is the thin shell ap-
proach. The thickness of the shéllmust satisfy the condi- 3. Strongly charged sources: particle-like solutions
tion 8lrg=r,/ry—1<1 (but not necessarilyy=0). In this
case only the continuity of the interpolating functibfr) is
necessary, when dismissing all terms of ordeor higher.
The (only) matching condition is then

Let us first note that, classically, the electromagnetic mass
of a charged sphere of radiug, is given by M _on
=e?/2r,. Therefore, the parametgr can be expressed as
=Mg_em/M. The case y~1 corresponds to strongly
Feord To) = Foxteriof o). (43) charged sources, where an egsen;ia_tl part of the mass is
coré.” 077 "exteriof. -0 thought to be of electromagnetic origin, as for example in

vious ones involving the assumption of singular distributionscore and the shell depends on the valug fi this cas€. In

both for the stationary and for the static cases. particular, fory=1 the core does not yield any contribution
The Tolman mass is, in this case, to the mass. This result comes from E43), since ar3
=m—My¢_en=0. Thereforeo=0 and the core is flat in this
, 2, o [t dx case. On the other hand, the thin shell contribution to the
Minin shei= —[fol[1+(rg/a)] o X2 (rgla)? mass is negative
fp 2400 ”ﬁa (44) a r a
=— — +—|arctan —|, 0
[ O] o a lo Mthin shelE —M E‘f‘_ arCtarﬁa . (46)
where [f(l)]Eféxterior(rO)_f(,:oréro):m_4arg:_3m

+2€?/ry and we have used the matching conditiet8).
First, we note that théotal Tolman mass of the model is,
as expected. That isy&e?/2mry),

For nonrotating sources, settigg=0 one obtaindM y,n sher

=—m and M qeio=2M. In this case one can show that
M exierior SPlits into a pure electromagnetic contribution
M- em= M and a gravitational contribution to the mass com-

M core™ Mitnin sheir™ M exteri . A ,
core n shells Textenor ing from the electromagnetic fieM g4, em=m, and provid-

a rg a ing the balanc® My sheirt Mciem™ Mgray-em=m. In the
= m(l_X)[ 1-3 E+ a arctaréa } limit of a singular shell, this case corresponds to the classical
model of a charged particle considered by Cohen and Cohen
a rg a [33], which is a maodification of the known Dirac classical
+m(3—4x) E+E arctaréa model for an extended electrda3].
For x>1, it follows from Eq.(43) that ar3=m—M gyem
M, a a =m(1— ), and consequentlyy<0. Thus, there must be an
mx| 1+ a * ri arctar( rq anti—de Sitter space in the core. Graphical analysis immedi-

ately shows that in this case the characteristic radjus
=m. (45 smaller than the classical one. The relation between the con-
tributions of the core and of the shell is found to be 4/3
<|Mhin shell M cord =2, Where now the core yields a positive
contribution to the total Tolman mass, and the shell a nega-
tive one. Notice that, except for the caseyct 3/4, the Tol-

We next consider the relative contribution of each part.
These will clearly depend on the ratio

2. Astrophysical sources

One can see that for the case of astrophydicautral or
weakly chargeplsources, wherg =0 or y<1 the thin shell 3This situation occurs also in the case[#8—20, in which solu-
gives the major contribution to the total mass 1 tions for nonrotating regularized black holes are given.
<|Min shel! M cord <3/2, for any value of, anda. In this 4Similarly to the models i123,27.
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man mass of the object undergoes a sudden change wheecting the source with an external black hole geometry. In
passing the shell. This is because, except for that caséhe case of rotating BHs this shell acquires an ellipsoidal
Minin shei” 0 and 6~0. form (a disk of radius\/a?+rZ and thickness). For a thin
shell, the rotation can be considered as rigid, with angular
C. Comparison with the ADM expression for the total mass velocity given byw=a/(a?+ rg)_ For large angular momen-

From expression&5), one can see that, contrary to what tum, a>r, the rotation is relativistic and disklike sources
happens in the nonrotating case, the tebndoes give a are highly oblate. The curvature is not strictly constant in the
contribution, due to a Lorentz effect associated with the rointerior of the disk and it is concentrated in a tube-like neigh-
tation of the source. Performing the integrations in analogyorhood of the former Kerr singular ring near the border of
with previous calculations, one can obtain the result that thehe disk(the expressions for the curvature and stress-energy
ADM mass may also be interpreted as coming fropogen-  tensor for this general case are given in Sec. Il, and a com-

tial function The expression is plete description is given in the Appendixe3his class of
1(f (a2+12 'y sources includes previous models I{#€6,9,15,18-2Pgen-
ADMz_(_+fr+ ———arctaa/r)[ f/r _f/]J ) eralizing them to the rotating case, and contains the smooth
2|r ar r analogs of known shell-like rotating and nonrotating models

(470 as well. In particular, for a special choice of parametegs,
o =e?/2m, the model acquires a flat interior and turns into the
Therefore, the ADM mass of the core region is Lopez model of the Kerr-Newman souri28]. However, we
1/la 1, have shown that, in the general case, the bubble interior can
3——|—+— (48) have both a positive or a negative scalar curvature. The
2\r matching condition(43) permits up to connect the param-

0
The ADM mass for the exterior region comes from the pureSters Of the sources,, & mand a=A/6, and to select the

electromagnetic part and is twice smaller than the TolmarfCUrces which are consistent with respect to the mass-energy
one (since it does not take into account the gravitationalP@lance. Indeed, the balance relatierg + €%/2r = m shows

contribution of the electromagnetic pressufEhe expression  that uncharged black hole solutions have positivecorre-
is therefore sponding to the de Sitter interior of the core region, while
the sources acquire a negatiwe yielding an anti—de Sitter
(49 spacetime in the core. Such anti—de Sitter regions are also
Finally, the ADM contribution from the thin shell is Analysis and comparison of the Tolman and ADM mass
relations allows one to determine contributions to the total
a a
. arctar{r— : sions give the correct result at spacelike infinity. However,

_ 3
M apm, core™ @ o

a
arctan —
)

2
mAom _° {1+

exterior Ar 1

otherwise for charged, “small” black holes witf/2r ,>m,
r{ a a
E+ o arcta o
! ! predicted for strong gravitational fields in supergravity.
ry N mass going from diverse regions of the source. Both expres-
a r 1

M ApM, thin sheII:([f(I)]/z)[ —1-
the ADM expressiorM ppy does not take into account the
gravitational contribution to the total mass coming from the

One can see that in the case when the position of the thistrong tensior(or pressurgof the thin transition shell. This
shell is determined by the matching conditigt8), the bal-  contribution can be estimated by using the Tolman relation
ance of the total ADM mass is also attainglde general case and shows a new, interesting feature of these models. Indeed,

being also fulfilled from expressio@#7) andf e Ct), i.e. we prove that the contribution to the total mass coming from
ADM ADM ADM the thin shell can be extremely large, but it is anyway can-
Moore T Mtnin sheit Mext =M. celed by the contribution from the core. Therefore, it repre-

. , sents a very strong gravitational “polarization” of the space-
Finally, let us notice that the ADM and Tolman masses ar§jme in the form of a bubble with a sharp and very strong

related through a simple expression, namely, boundary. This phenomenon could very likely have observa-
Cerrnth tional manifestations.
2M ppy — Mo = f (r)]ra' (5D In spite of the successful description here presented of

virtually all the nonrotating models and of their extension to
rotating(i.e. Kerr-Newmah models, the Kerr-Schild class of
metrics might turn out to be too restrictive in order to be able

We have here considered a wide class of smooth sources describe some self-consistent field models. In particular,
for black holes, which includes virtually all the models con- the Casimir effect for a superdense state in the core can be
sidered previously in the literature and extends them to thessentia[37,38,28. To construct a field matter model lead-
rotating case, thus obtaining a unified framework for arbi-ing to a tangential stress of the shell, scalar fields can be
trary values of the charge and angular momentum. For norinvolved [29] in the formation of an object similar to a do-
rotating BH solutions the sources contain a core region repmain wall boundary of the bubble. However, the Kerr-Schild
resenting a spacetime with a constant curvatirégrm) and  class(in four dimensiongis hardly compatible with simple
a thin (but finite) transitional region(spherical shell con-  models of classical scalar fields, which can be seen from the

VIl. CONCLUSIONS
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relation T e3'e3*=T%>=0 (which is one of the conditions Rs=D+2G (A7)
in the derivation of the Kerr-Schild class of metric34].)

This argument can also be expressed in terms of quantum Ri>—R3,=—(D+4G) (A8)
corrections and the conformal anomaly for scalar fi¢lds.

This means that either the Kerr-Schild class of ¢B#l inte- Ry3s=(D+4G)r,,/P (A9)
rior) source models has to be modified, to take into account

these and other features of the “desired” source, or this has Riz=(D+4G)r,,/P (A10)
to be done with the field model. In particular, the following )

close generalizations can be suggested for future work in this Rag=—2r,1r,2(D+4G)/P7, (A1)
field: (i) conformal Kerr-Schild metricéone of whose repre- h

sentatives is the Nariai solutigd4]); (ii) inclusion of dilaton where

and axion fieldsyiii) field models in supergravitj29] and D=—f"/(r2+a%co<0), (A12)
low energy string theory45]; and (iv) extension to higher

dimensions, in particular based on the AdS/conformal field G=(f'r—f)/(r?+a2cog0)2. (A13)
theory (CFT) correspondencé 46|, see also the recent re-

view [47]). This expressiotiA11) can be transformed into another, more

Note addedAfter this paper was finished, we were in- convenient tetradEgs. (6.1) of Debney, Kerr, and Schild
formed that the advantages of the Kerr coordinates in theDKS) [34]] e?’, which is connected with the Kerr angular
analysis of rotating black holes had also been considered igoordinates I(,t, 6, ¢) determined by the relations
the papers by J. Ibanez, P. Papadopoulos and J. [B8ht

and that a close problem was investigated, in the nonrotating x+iy=(r+ia)e'?sine, (A14)
case, in the paper by A. DeBenedicgsal. [49]. We are
thankful to J. Font and A. DeBenedictis for bringing these z=r cos¥, (A15)
works to our attention and for their comments.
p=r-+t. (A16)
ACKNOWLEDGMENTS The reverse of th§(6.1) of the DKS papefrelations are
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APPENDIX A: STRESS-ENERGY TENSOR Y Yoo 3o o
FOR THE GENERALIZED KERR-SCHILD METRICS e'=P [e" —Pye" —Pye” —e” PyPy].  (A20)
Starting from the following general form of the function They yield a new expression for the Ricci tensor

h: ,
R12=Ru2, (A21)

h="f(r)/(2P?), (A1) :
R3,=Ray, (A22)

and the Kerr-Schild null tetrad )
R23= PRast Py(R12— Ray), (A23)

el=d{—Ydv (A2) ,
Ri3= PR3+ Py(R1>—R3y), (A24)

, =
e“=d{—Ydv A3 ,
¢ (3) Riz= P?Rag+ 2P(PyRya+ PyRig) + 2PyPY(Ri,— R3y).
e=du+Ydz+YdZ— YYdo (A4) (A25)
As a result,
‘=dv+he® A5
e =dvrhe, AS) R.,=—2G, (A26)
we obtain, using the machinery of the Kerr-Schild formalism .
[34], the following tetrad components of the Ricci tersor Rgy=D+2G, (A27)
Ry=—2G (A6) Ri;~R3=—(D+4G), (A28)
Ry;=(D+4G)(r,,—Py), (A29)
SThese calculations are very tedious and use the extra relations ,

given in Appendix B. Ri3=(D+4G)(r,1—Py), (A30)
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Rig= —2(D+4G)(r,;—Py)(r,,—Py).  (A31)

The primed tetradEgs.(6.5—(6.6) of the DKS papeftakes
the form

el'=2"Y%%(r +ia cosh)(do+isinodg), (A32)
e?' =27 Y2%~14(r —ja cosh)(df—i sinfde), (A33)

e3' =dr+dt—asirtode, (A34)

r 1 ’
et =dr—asin20d¢+§(2h—l)e3. (A35)

PHYSICAL REVIEW D 65 064039

This expression for the energy-momentum tensor coincides
with the result obtained by Gses and Grsey.

APPENDIX B: TETRAD FORMS AND REPRESENTATION
OF THE KERR-SCHILD CLASS OF METRICS
IN THE KERR AND BOYER-LINDQUIST ANGULAR
COORDINATES

The Kerr-Schild class of metrics has the form

gik= ik T 2hkiky, (B1)

Dropping the primes, we obtain the following expressions

for the energy-momentum tensor:

where 7, =diag(—1,1,1,1) is the metric of an auxiliary

1 Minkowski space with Cartesian coordinates,y,z. andh
87Tap=~Rap+ 5 0anR, (A36)  —f(r)/(r?+a%co26). The Kerr angular coordinates
(r,t,0,¢) are determined by the relations
877Tik:(D+2G)gik
—(D+4G)(efeg+efep), (A37) x+iy=(r+ia)e'%sing, (B2)
where
E4=e4+(r,1—PY)el+(r,2—Pv)ez Z=Tr COSH, (B3)
—(r,1=Py)(r,,—Py)e®
1 2 2f—a’sinfe p=r+t (B4)
=§[dr—(dt—a5| 0d¢)]+Te .
(A38) In these coordinates, the metric tensor has the form
|
2h—1 2h 0 —2hasirfe
2h 1+2h 0 —(1+2h)asirfe
O(kern)ik= 0 0 s 0 , (B5)
—2hasirfd —(1+2h)asifd 0 (r?+a?+2ha’sirf6)sirfé
|
where2 2=r2+azco§0. The determinant is defer e =2~ 12~i%(1 _ia cosd)(dO—i sinfd ), (B8)
= —32sir, and the contravariant form of the metric is
—(1+2h) 2h O 0 e3 =dr+dt—asirfed, (B9)
" 2h AlYx 0 al>
g(Kerr): 0 0 15 0 ’ 1
4 4 A - _ 3’
0 s 0 (3sife)t et =dr asm26d¢+2(2h 1)ed. (B10)
(B6)
whereA=r?+a2—2f(r). The contravariant components are
The Kerr null tetrad Egs. (6.5 —(6.6) of the DKS paper
has the form oid
v (Ojasing,1,1/sing), (B1l)

el'=2"Y2%%(r +-ia cosh)(dO+i sinfde), (B7)

B J2(r —ia cosé)
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e i =dt+(2f/A)dr and dp=de+ (a/A)dr, where A=r2+a?

2/'_ . - . ~
et '= J2(r+ia cosd) (0,~iasing,1,1/sing), —2f(r). In Boyer-Lindquist coordinates, the tetradl takes
(B12) the form

3
e?'=(-1,1,0,0, (B13) - _ r’+a? _
el=2"Y%¢(r +ia cosh)| do+i sing 5 do
e4":E(1+2h 1-2h,0,0). (B14) iasing
2 ’ Y s dt|, (Cy
One can see that the expression for the stress-energy ten-

sor is simplified by the introduction of the null vectef _ _ 24592
=e* —Cel'~Ce? —CCe®, whereC=r ;—Py. The vec- e?=2""%e ¥(r-ia COS@)(dé’—i sinf—s—d

tor e* belongs to the null tetrad obtained froah by a “null o

rotation” [34] leaving e unchangede®=e®". The corre- + |asm0dﬁ’ (C2)
sponding null tetrad is completed as follows!=el’ 2

+Ce¥ ande?=e? +Ce* . This tetrad is connected with the

" : : ; D _ _
Boyer Lindquist representation of the Kgrr geclr?etry, in &= Zdr+ (dt-asirfedg), (3
which a symmetry between the null vecta? ande* ap- A
pears.
~, AZ — . —
APPENDIX C: KERR-SCHILD METRICS e’ = i Kdr—(dt—asmzﬁd(ﬁ) . (C9

IN BOYER-LINDQUIST COORDINATES

Boyer-Lindquist coordinates,r, 6, ¢ are connected with In Boyer-Lindquist coordinates, the metric tensor takes the
the Kerr angular coordinatesr,d,¢ by the relationsdt  form (bars are omitted everywhere

2f/12—-1 0 0 —2afsirfo/3
0 /A0 0
9BL)iKk™ 0 0 = 0 : (CH
2fa’sirte
—2afsirf9/S 0 0 r2+a2+% sirfe
The determinant is delg, = — 3 2sir?é.
The contravariant form of the metric is
r’+a%+(2f/3)a%sinte 0 0 2af
B A N
_ 0 AlY 0 0
gD = 0 o 1 o | (€6
2af 1-2f/
_cat o o %=
SA A sirte
|
The orthonormal tetrad in the Boyer-Lindquist coordinates S
has the form = Kdr, (C8
- \/K dt—asirtad c
u=-— g( —asinodg), (C7) n=3do, (9
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sing . The null vector forms® ande* can be expressed viaand
M= [adt=(rrandd], (€10 | as followse®= VS7A (I —u), ande*= 3 VA/S (1 +u).

whereu is the unit timelike vector anch the radial one. The

. " Some useful relations
correspondlng contravariant components are

The following relations are useful for the transition from

: 1 — the Kerr to the BL coordinate system:
u'= —=(r<+a<0,0a), (C1y
VA . ia(coso) iae' ?sing
r,,—Py=—ia(cosf),,=—,
) A 2y 2 \/f(r—ia cosf)
I'= 5(0,1,0,0, (C12
1 By=ia(coso) —iae '?%sing
. r,,—Py=ia(cosf),;=—=————,
n'=-—(0,0,1,0, (C13 vy ! J2(r +ia cosé)
v
R (r,1—Py)er+(r,,—Py)e*=asirfod¢,
m = ———(asirf6,0,0,1).
\/fsin 0
(C19 (r,1— Py)(r,,—Py)=a%sirt0/(23).
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