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Numerical tests of evolution systems, gauge conditions, and boundary conditions
for 1D colliding gravitational plane waves

J. M. Bardeen
Physics Department, University of Washington, Seattle, Washington 98195

L. T. Buchman
Astronomy Department, University of Washington, Seattle, Washington 98195

~Received 17 October 2001; published 5 March 2002!

We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding plane
waves depends on choices of equation formulations, gauge conditions, boundary conditions, and numerical
methods, all in the context of a first-order 311 approach to the Einstein equations, with basic variables some
combination of first derivatives of the spatial metric and components of the extrinsic curvature tensor. Hyper-
bolic schemes, specifically variations on schemes proposed by Bona and Masso´ and Anderson and York, are
compared with variations of the Arnowitt-Deser-Misner formulation. Modifications of the three basic schemes
include raising one index in the metric derivative and extrinsic curvature variables and adding a multiple of the
energy constraint to the extrinsic curvature evolution equations. Redundant variables in the Bona-Masso´
formulation may be reset frequently or allowed to evolve freely. Gauge conditions which simplify the dynami-
cal structure of the system are imposed during each time step, but the lapse and shift are reset periodically to
control the evolution of the spacetime slicing and the longitudinal part of the metric. We show that physically
correct boundary conditions, satisfying the energy and momentum constraint equations, generically require the
presence of some ingoing eigenmodes of the characteristic matrix. Numerical methods are developed for the
hyperbolic systems based on decomposing flux differences into linear combinations of eigenvectors of the
characteristic matrix. These methods are shown to be second-order accurate, and in practice second-order
convergent, for smooth solutions, even when the eigenvectors and eigenvalues of the characteristic matrix are
spatially varying.
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I. INTRODUCTION

The goal of projects such as the ground-based Laser
terferometric Gravitational Wave Observatory~LIGO! and
the space-based Laser Interferometer Space Antenna~LISA!
is to detect gravitational waves, and to use them as a
observational window for relativistic astrophysics. A prima
source for these gravitational waves is the coalescenc
binary black holes@1#. The highly nonlinear and dynamica
merger phase of this coalescence process can only be c
lated by numerical relativity, and obtaining merger gravi
tional waveforms, both for theoretical understanding and
detection, is dependent on long-term stable and accurate
merical evolutions. A worldwide collaboration of numeric
relativists, physicists, mathematicians, and computer sc
tists has devoted considerable effort over the last 20 yea
develop 3D codes to calculate black hole merger grav
tional waveforms, and significant progress has been m
especially in the last few years. However, more groundw
is required before calculations of 3D binary black ho
merger templates for a variety of scenarios can be comple
Greater understanding of equation formulations, bound
conditions, and dynamic gauge conditions, and the use
advanced numerical methods, is essential to achieve
goal. We believe that an important foundation for this und
standing is extensive testing and analysis in 1D and
Choptuik’s discovery of black hole critical phenomena
spherically symmetric gravitational collapse@2# is an ex-
ample of the potential of careful numerical work in 1D.

This paper reports the methodology, results, and anal
0556-2821/2002/65~6!/064037~23!/$20.00 65 0640
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of calculations of 1D nonlinear colliding gravitational plan
wave spacetimes. We have chosen to investigate hyperb
formulations of the Einstein equations, as they are w
posed, they can be treated with advanced numerical meth
and they can help in the analysis of boundary conditio
@3,4#. We call a set of equationshyperbolicif the character-
istic matrix can be diagonalized with a complete set of eig
vectors and real eigenvalues, following LeVeque@5#. This is
calledstrongly hyperbolic@6# in much of the literature. The
lapse and the shift are evolved during each time step i
manner which is consistent with a simple hyperbolic schem
Between time steps, the lapse and the shift are reset acc
ing to conditions which are unconstrained by the need
preserve hyperbolicity. In this way, the evolution of the h
persurfaces and spatial coordinates can be controlled to
vent large gradients, coordinate pathologies, and instabilit
Some of the redundant variables of a hyperbolic formulat
can also be reset between time steps. This resetting can
positive or negative effects on accuracy and stability,
pending on the eigenmode structure of the reset system
nally, we find that boundary conditions should not be bas
naively on the eigenmodes of the hyperbolic decomposit
for two reasons:~a! satisfying the constraint equations at th
boundaries generically requires the presence of incom
eigenmodes, and~b! even whether the ‘‘physical’’ eigen
modes are purely outgoing at the boundaries is gauge de
dent.

Many ways of formulating evolution equations for th
spatial metric in Einstein’s theory of general relativity a
©2002 The American Physical Society37-1
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possible. The most thoroughly tested formulation in nume
cal relativity is the Arnowitt-Deser-Misner~ADM ! set of
equations@7#. The standard ADM equations in vacuum ar

~] t2Lb!hi j 522aKi j , ~1!

~] t2Lb!Ki j 52a u i j 1a@ (3)Ri j 1KKi j 22Ki
lKl j #,

~2!

~] t2Lb!Ki
j52a u i

u j
1a@ (3)Ri

j1KKi
j #. ~3!

In these equations,Ki j is the extrinsic curvature,K
5Kl

l , b i is the shift,a is the lapse,hi j is the 3-metric, and
(3)Ri j is the 3D Ricci tensor. The vertical bar represent
covariant derivative taken with respect to the 3-geome
Equation~3! evolves what we call the ‘‘mixed’’ form of the
extrinsic curvature tensor. The energy and momentum c
straint equations are, respectively,

E51/2@ (3)R2Ki
jKi

j1K2#50, ~4!

Mi5Ki
j
u j2K u i50. ~5!

While successful calculations using the ADM formulatio
have been done in 2D, 3D calculations generally crash a
just a few dynamical times.

Alternative formalisms include many versions of hype
bolic systems, which add redundant variables and/or c
straint terms to the equations to allow a complete set
eigenmodes describing evolution along the characteris
As indicated by Reula@6#, there are an infinite number o
hyperbolic formulations. We focus on variations of relative
simple schemes proposed by Bona-Masso´ ~BM! @8# and
Anderson-York~AY ! @9#, in which the characteristics propa
gate either at local light speed or along the hypersurf
normals, and in which the variables include first derivativ
of the metric.

Initial attempts at using hyperbolic methods in 3
were based on the BM formulation@4#, but did not use
numerical methods which take advantage of the eigenfi
of the system. These codes were not much more succe
than ADM. Nonhyperbolic Baumgarte-Shapiro-Shiba
Nakamura~BSSN! schemes@10,11#, based on conformal de
composition of the metric, have shown considerable succ
in improving the stability of 3D calculations for weak an
strong gravitational fields and a variety of spacetime slicin
@12#. Alcubierreet al. @13# report that a BSSN scheme, com
bined with excision and certain dynamic gauge conditio
allows accurate numerical evolutions of 3D distorted d
namic black holes up to hundreds of dynamical times.

In the context of considering only first derivative var
ables, a great variety of hyperbolic schemes have been
posed that involve adding constraint terms to the equat
@14–19#. Kidder, Scheel, and Teukolsky@19# examine a
rather general class of such schemes, which include the
@9# and Frittelli-Reula@14# formulations as special case
Among these schemes are some which allow for long-te
evolution of a Schwarschild black hole in 3D.

In this paper, we explore ways of using hyperbolic me
ods that combine superior accuracy with gauge conditi
06403
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which maintain stability at least for the limited dynamic
times we can explore with plane waves. Three basic fi
order systems are studied: BM, AY, and ADM. Hyperbolici
is obtained in our BM and AY formulations by adding mo
mentum constraint terms to the ADM equations, as in
standard formulations. The BM, AY, and ADM formulation
are modified by using ‘‘mixed’’ forms~with one index
raised! of the extrinsic curvature and metric derivatives
variables. The BM formulations are further modified by r
setting redundant variables, which gives an overall AD
like evolution. Further, all our formulations are varied b
adding a multiple of the energy constraint to the evoluti
equations for the extrinsic curvature. Specifical
2naEhi j /2 is added to Eq.~2!, and2naEd i

j /2 is added to
Eq. ~3!, wheren, the energy constraint coefficient, is an a
bitrary real number. The ADM formulation is actually hype
bolic as long as the longitudinal-transverse components
the metric and extrinsic curvature can be assumed to va
identically, andn,0 or 0,n,1. Comparisons of results
from our various ADM, BM, and AY calculations allow us t
identify and analyze aspects of equation formulation wh
significantly improve accuracy and/or stability. These a
mixed variables, a separation of the constraint error spe
from the other characteristic speeds of the system, and m
taining long-term effective hyperbolicity~taking into account
resetting of redundant variables, but ignoring deviation fro
strict hyperbolicity due to resetting the lapse and the shif!.

While the same energy constraint terms as specified ab
are present in the standard BM formulation, numeri
implementations have been carried out, as far as we
aware, only forn50 ~the Ricci evolution system! and n
51 ~the Einstein evolution system!. Adding these energy
constraint terms to the AY formulation is a special case of
more general Kidder, Scheel, and Teukolsky@19# schemes.
Shinkai and Yoneda@15–17# analyzed the stability and accu
racy properties of first order hyperbolic systems using A
tekar’s connection variables in plane-symmetric spacetim
and found that the addition of multiples of the constraints
the dynamical equations improved accuracy and stabi
These results have been extended to ADM systems of e
tions @18#.

Gauge choices in most previous implementations of
perbolic formulations have been limited in order to prese
the hyperbolicity of the system. Since no time derivatives
the lapse and the shift occur in the dynamical equations
the other variables, the lapse and the shift can be reset
trarily at any time during the numerical evolution, as point
out by Balakrishnaet al. @20#. Our gauge evolution main
tains strict hyperbolicity during each time step, but the lap
and shift are reset periodically between time steps in orde
control the long-term evolution of the coordinate syste
The resetting may be accomplished by imposing algeb
conditions, by solving elliptic equations, or by evolving th
lapse and/or shift through dynamical equations implemen
independently of the main hyperbolic system.

Poor boundary conditions can result in the introduction
instabilities or inaccuracies into the numerical grid. In n
merical relativity, boundary conditions have usually be
rather crudely implemented. Some sort of outgoing radiat
7-2
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conditions are imposed on all components of the metric
boundary conditions are based on an analytic exterior s
tion @12,21#. One attraction of hyperbolic methods has be
the possibility of basing boundary conditions on the eig
modes of the characteristic matrix. However, it is clear fro
our plane-wave calculations that, particularly for the ‘‘no
physical’’ eigenmodes involving the non-transverse-trace
parts of the metric, making the amplitudes of the incom
eigenmodes at the boundaries zero can lead to serious v
tions of the energy and momentum constraints. Furtherm
what constitutes an incoming eigenmode is dependent on
formulation of the equations as well as on gauge conditio
Even imposing purely outgoing boundary conditions on
‘‘physical’’ eigenmodes of the hyperbolic system is n
strictly correct, as nonlinear coupling between the ‘‘phy
cal’’ and ‘‘non-physical’’ eigenmodes in the source terms c
generate a gauge-dependent admixture of outgoing and
coming ‘‘physical’’ eigenmodes. Our boundary conditio
are based on quadratic extrapolation of the variables f
inside the grid to the first ghost cells on either side of
grid. The ghost cell values are then corrected to make s
the constraint equations are satisfied on the boundaries
1D plane waves, projection of the Weyl tensor onto a n
tetrad gives a gauge-independent measure of the left
right-going components of the gravitational radiation. O
numerical solutions for colliding plane waves show that
the wave packets leave the grid, the incoming componen
the Weyl tensor are in fact zero even though there are n
zero incoming ‘‘physical’’ eigenmodes of the characteris
matrix.

Our focus in applying hyperbolic methods to the Einste
equations is on achieving second order accuracy for sm
solutions, when the eigenvectors and eigenvalues of the
tem are a function of position. Finite difference metho
such as MacCormack, Lax-Wendroff, and staggered leap
@22#, which are often used in numerical relativity, give go
second order accuracy for smooth solutions, but stand
wave propagation algorithms for hyperbolic systems as p
sented by LeVeque@23# are not second order accurate wh
the eigenvectors and eigenvalues are spatially vary
LeVeque suggested a new wave propagation method@24# for
variable coefficient flux problems which we develop and a
ply to our 1D nonlinear gravitational plane-wave calcu
tions. We show in the Appendix that the new methods
formally second order accurate even with varying eigenv
tors and eigenvalues, and verify second order convergen
our numerical results.

II. EVOLUTION EQUATIONS

The most general spatial metric for a nonlinear 1D pla
wave traveling in thex-direction is

ds25hxxdx21hyydy21hzzdz212hyzdydz, ~6!

in which hxx , hyy , hzz, andhyz are functions ofx alone.
We will restrict our discussion to a diagonal metric in th
paper.

The standard ADM evolution equations are first order
time and second order in space. Most hyperbolic formalis
06403
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are first order in space and time, and incorporate first der
tives of the spatial metric as additional variables. The deri
tive variables as defined by BM are

Dki j5
1

2
]khi j . ~7!

In our applications with a diagonal metric, we find th
switching to the ‘‘mixed’’ variables

Dki
j5

1

2
~]khil !h

l j , Ki
j5Kil h

l j ~8!

from the ‘‘lowered’’ variables,Dki j andKi j , improves accu-
racy significantly without other complications. Howeve
with a non-diagonal metric,Dki

j andKi
j are not symmetric

in i and j, and the evolution equations forDki
j acquire com-

plicated source terms.
Below, we present the first order evolution equations

1D plane waves travelling along thex-direction and de-
scribed by a diagonal spatial metric, using our mixed va
ables. The equations withDki j andKi j as variables are given
in the BM papers@8#. A few points need to be made abo
notation. First, since our 1D problem involves derivativ
only in thex-direction, we simplify our notationDxi

j→Di
j .

Second, a prime indicates a spatial derivative with respec
x. Third, our symbol for the shift is simplyb instead ofb i .
We suppress the index on the shift because there is only
non-zero component in this 1D case.

The evolution equations forhi j are obtained from the
definition of the extrinsic curvature of the hypersurfaces, E
~1!, and are

] thxx52hxx@bDx
x1b82aKx

x#, ~9!

] thyy52hyy@bDy
y2aKy

y#,

] thzz52hzz@bDz
z2aKz

z#. ~10!

The evolution equations forDi
j are obtained by taking the

time derivative ofDki
j in Eq. ~8!, and interchanging spac

and time derivatives. The resulting equations are

] tDx
x1]x@2bDx

x2b81aKx
x#50, ~11!

] tDy
y1]x@2bDy

y1aKy
y#50,

] tDz
z1]x@2bDz

z1aKz
z#50. ~12!

TheKi
j variables are evolved from the Einstein equatio

Eq. ~3!. We include the addition of an arbitrary multiple,n,
of the energy constraint in these equations. After organ
tion into a conservation law form, theKi

j evolution equa-
tions are
7-3



x

te
lic
b

th
in
.
in
ra
uh

u

b

e

es

in a

-

t, in
r

in

e at
re-
al.
tant

in a

ad-

fied
e
do
y-
ary
and
ver-
and

me
ing
olic
vent
the
ility
ces
he

J. M. BARDEEN AND L. T. BUCHMAN PHYSICAL REVIEW D65 064037
] tKx
x1]xF2bKx

x1
a

hxx
S a8

a
1Dy

y1Dz
zD G

52b8Kx
x1aH Kx

xKl
l1

1

hxx
Fa8

a
~Dy

y1Dz
z!2Dy

yDy
y

2Dz
zDz

z2Dx
xS a8

a
1Dy

y1Dz
zD G J 2

n

2
aE, ~13!

] tKy
y1]xF2bKy

y1
a

hxx
Dy

yG
52b8Ky

y1aFKy
yKl

l2
Dy

yDl
l

hxx
G2

n

2
aE, ~14a!

] tKz
z1]xF2bKz

z1
a

hxx
Dz

zG
52b8Kz

z1aFKz
zKl

l2
Dz

zDl
l

hxx
G2

n

2
aE, ~14b!

where we writeaE so that the division between the flu
terms and the source terms is apparent:

aE52]xF a

hxx
~Dy

y1Dz
z!G1a@Kx

x~Ky
y1Kz

z!1Ky
yKz

z#

1
a

hxx
F S a8

a
2Dx

xD ~Dy
y1Dz

z!

2~Dy
yDy

y1Dy
yDz

z1Dz
zDz

z!G . ~15!

III. GAUGE EVOLUTION

We let the lapse and the shift evolve during each time s
according to a prescription which simplifies the hyperbo
system, and we periodically reset the lapse and the shift
tween time steps to control the longer term evolution of
coordinates and to keep gauge pathologies from develop
We defer discussion of resetting gauge conditions to Sec
Here, we discuss how the gauge evolves between resett

For a hyperbolic formulation of the equations, the natu
choice for the lapse between resettings is the Choquet-Br
algebraic gauge condition@25,26#, because it simplifies the
fluxes and source terms in the hyperbolic system of eq
tions considerably. This gauge condition is

a5QAdet~hi j !, ~16!

whereQ is a specified function ofx,t.
We vary the Choquet-Bruhat algebraic gauge condition

making Q and Q8 ~which equals]xQ) variables in the hy-
perbolic system, rather than specified functions ofx,t. We
chooseQ andQ8 as variables so thatQ8 can be included in
the flux of Kx

x as part of the hyperbolic system. Otherwis
Q9 would have to be considered part of the source ofKx

x,
and evaluatingQ9 from the lapse involves second derivativ
of the metric. By advectingQ andQ8 along the hypersurface
06403
p

e-
e
g.
V.
gs.
l
at

a-

y

,

normals, we incorporate them into the hyperbolic system
consistent way. Our advection equations are

] tQ2bQ850, ] tDQ2]x@bDQ#50, ~17!

whereDQ5Q8/Q. Our advection ofQ corresponds to har
monic slicing@25#.

There is a danger with resetting the lapse and the shif
that fluctuations inb8 andDQ can feed back on one anothe
through the evolution equations forDx

x andKx
x. The reset-

ting gauge conditions of Sec. V imply that a fluctuation
Kx

x is balanced by a fluctuation inb8, and a fluctuation in
Dx

x is balanced by a fluctuation inDQ . For certain time
intervals between resetting, if these fluctuations propagat
different speeds, they may drift in such a way that they
inforce rather than cancel over much of the time interv
Although the standard procedure is to keep the shift cons
in hyperbolic schemes, we find that if we advectDQ with b8
constant, such a positive feedback can occur, resulting
runaway instability. However, if we advect bothDQ andb8
along hypersurface normals, the evolution is stable. Our
vection equations forb andb8 are

] tb2bb850, ] tb82]x@bb8#50. ~18!

IV. CONSTRAINT EQUATIONS

The energy and momentum constraints must be satis
by the initial conditions and throughout the evolution. W
use these constraints to obtain the initial conditions. We
not impose the constraints during the evolution of the d
namical equations. However, we do insure that the bound
conditions are consistent with the constraint equations,
we use the constraints to check for accuracy and con
gence as the numerical evolution proceeds. The energy
momentum constraint equations are, respectively,

E52]xF 1

hxx
~Dy

y1Dz
z!G

2
1

hxx
@Dy

yDy
y1Dy

yDz
z1Dz

zDz
z1Dx

x~Dy
y1Dz

z!#

1Kx
x~Ky

y1Kz
z!1Ky

yKz
z

50, ~19!

Mx52]x~Ky
y1Kz

z!2Dy
yKy

y2Dz
zKz

z1~Dy
y1Dz

z!Kx
x

50. ~20!

V. RESETTING GAUGE CONDITIONS

The lapse and shift are periodically reset between ti
steps in order to implement a dynamic spacetime slic
which is unconstrained by the need to maintain a hyperb
system. Our resetting gauge conditions are chosen to pre
pathologies and/or strong gradients from developing in
hypersurfaces and spatial coordinates, and to help stab
properties at the boundaries of the grid. Resetting introdu
discontinuities into the time evolution of the lapse and t
shift at a given spatial location. However, in the 311 for-
7-4
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malism, no time derivatives of the lapse and the shift app
in the equations. Resetting has no effect on the dynam
state of the system or on the gauge at a given time; it
affects how the coordinates evolve after the resetting.

Changes in spacetime slicing which maintain the expl
planar symmetry only directly impactKx

x. Nonlinear source
terms in the evolution equation forKx

x have the potential to
generate runaway growth ofKx

x when Kx
x is positive. Our

lapse resetting condition drivesKx
x toward a small negative

value to insure against this. In addition, a negativeKx
x im-

plies that the proper distance between hypersurface nor
displaced in thex-direction increases with time. Togethe
with our shift resetting condition, which keepshxx roughly
constant, this results in hypersurface normals which po
outward at the boundaries of the computational doma
Some features inKx

x and Dx
x potentially associated with

instability advect along hypersurface normals~see Sec. IX!,
and are then advected out of the grid before they can
much harm.

The equation for the lapse is derived by imposing
condition at the time of resetting

] tKx
x2b]xKx

x52G@Kx
x2~Kx

x!T#, ~21!

where (Kx
x)T is a specified ‘‘target’’ value, andG is a damp-

ing constant, which is chosen to be comparable to the c
acteristic frequency of the waves we are propagating. Sub
tuting this condition into the evolution equation forKx

x @Eq.
~13!# and simplifying using the energy constraint, we obta
our lapse resetting condition,

]xS a8

hxx
D5aFG@Kx

x2~Kx
x!T#1Kx

xKx
x2Ky

yKz
z1

Dy
yDz

z

hxx
G

2Dx
xS a8

hxx
D . ~22!

To limit initial transients in the lapse, given our initial con
dition Kx

x50, the target value is made proportional to
2e2Gt/4).

In our colliding wave calculations, Eq.~22! as it stands
can cause the lapse to become negative at the edges o
grid, if the second derivative of the lapse becomes too ne
tive. To prevent this, we replaceS, the expression in squar
brackets in Eq.~22!, by

S→ S
A11~S/Sl im!2

~23!

whenS is negative, soS.2uSl imu. A side effect of the lim-
iter is to allowKx

x to become more negative than its targ
value.

We choose an equation for the shift so that at the time
resetting,hxx is advected along hypersurface normals:

] thxx2b]xhxx50. ~24!
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Substituting this requirement into the evolution equation
hxx @Eq. ~9!#, we obtain the shift resetting condition,

]xb5aKx
x. ~25!

VI. HYPERBOLIC SYSTEMS

The evolution equations presented in Sec. II have b
cast in a first order, flux-conservative form, represented
the following set ofl equations

] tq1]x@F~q!#5S~q!, ~26!

whereq is a vector ofl variables. The flux vector is given b

F~q!5A~x!q, ~27!

where thel 3 l characteristic matrixA(x) is the flux Jaco-
bian,]q@F(q)#. The system is hyperbolic ifA(x) has a com-
plete set of eigenvectors and real eigenvalues.

A. Modified Bona-Massóformulation

The standard BM formulation@8# creates a hyperbolic
scheme by introducing the redundant variablesVi , which are
defined as

Vi5Dik
k2Dk

ki⇒Vx5Dy
y1Dz

z. ~28!

The momentum constraint is used to evolveVx :

] tVx1]x@2bVx#5a@Dy
yKy

y1Dz
zKz

z2~Dy
y1Dz

z!Kx
x

2~a8/a!~Ky
y1Kz

z!#. ~29!

We densitize the lapse according to the Choquet-Bru
algebraic condition~see Sec. III!, which simplifies the stan-
dard BM system of equations considerably. Witha
→QAdet(hi j ) and (Ax5]x ln a)→DQ1Dx

x1Dy
y1Dz

z, the
fluxes forKi

j reduce to

F~Kx
x!52bKx

x1
a

hxx
FDQ1Dx

x1S 22
n

2DVxG , ~30!

F~Ky
y!52bKy

y1
a

hxx
S Dy

y2
n

2
VxD ,

F~Kz
z!52bKz

z1
a

hxx
S Dz

z2
n

2
VxD . ~31!

Our advection ofQ and DQ , as described in Sec. III
corresponds to harmonic slicing, a special case of the s
dard BM lapse evolution equation. We also advectb andb8,
whereas the standard BM formulation specifies the shift a
known function ofx and t.

B. Modified Anderson-York formulation

The AY formulation differs from the BM scheme in how
the momentum constraint is used to make the system hy
bolic. The AY scheme eliminates the need for the BM redu
7-5
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dant variablesVi by incorporating the momentum constrai
into the evolution equation for thef ki j variables, which are
defined as

f ki j5Dki j1hkiVj1hk jVi . ~32!

The Vi variables in this equation are not separate variab
but rather denote the combinations of theD ’s given in Eq.
~28!.

The AY formulation replaces the BMDki j with f ki j ,
which are simply the spatial metric derivative terms in t
Ki j fluxes of the BM formulation. Using this as a guide, w
generalize the AY scheme~whose original form is restricted
to Ricci evolution,n50) to allow for non-zero energy con
straint contributions. This leads to

f ki j5Dki j1hkiVj1hk jVi2
n

2
Vkhi j . ~33!

The generalization in Eq.~33! works as long as the invers
transformation fromf ki j to Dki j exists, which is the case fo
nÞ1. An evolution equation is obtained forf ki j from Eq.
~33! by using the momentum constraint to eliminate the ti
derivative of theVi variables. For our modified AY scheme
we then raise one index so thatf ki

j5 f kilh
l j are our basic

variables. A hyperbolic system results without the need
the BM redundantvariables Vi .

For the diagonal metric plane-wave case under consi
ation, Eq.~33! reduces to

f x
x5Dx

x1S 22
n

2DVx , ~34!

f y
y5Dy

y2
n

2
Vx , f z

z5Dz
z2

n

2
Vx . ~35!

We have simplified our notation in thatf ki
j→ f i

j for this 1D
problem. Notice thatf yx

y5Vx and f zx
z5Vx , which contrib-

ute to fluxes in they andz directions, are not zero. Howeve
with planar symmetry the divergence of these flux com
nents vanishes identically.

The evolution equations forf i
j are

] t f x
x1]x@2b f x

x2b81aKx
x#5S 22

n

2DaC, ~36!

] t f y
y1]x@2b f y

y1aKy
y#52

n

2
aC,

] t f z
z1]x@2b f z

z1aKz
z#52

n

2
aC, ~37!

where

C5@Dy
yKy

y1Dz
zKz

z2~Dy
y1Dz

z!Kx
x

2~a8/a!~Ky
y1Kz

z!#. ~38!

The D ’s in Eq. ~38! are not separate variables, but denote
06403
s,

e

r

r-

-

Dx
x5 f x

x2S 22
n

2

12n
D @ f y

y1 f z
z#, ~39!

Dy
y5

1

2~12n!
@~22n! f y

y1n fz
z#,

Dz
z5

1

2~12n!
@~22n! f z

z1n fy
y#. ~40!

These relations are the inverse transformation of the sys
of Eqs.~34! and~35!. One can see thatn51 is not allowed.

The Ki
j evolution equations are the same as in our mo

fied BM scheme, with the understanding again that theD ’s in
the source terms are not separate variables, but the a
linear combinations off ’s @Eqs. ~39! and ~40!#. The fluxes
are defined so thef i

j variables can replace the expressio
involving Di

j in the fluxes of our modified BM scheme. Th
following fluxes result:

F~Kx
x!52bKx

x1
a

hxx
~DQ1 f x

x!, ~41!

F~Ky
y!52bKy

y1
a

hxx
f y

y,

F~Kz
z!52bKz

z1
a

hxx
f z

z. ~42!

The AY formalism imposes the Choquet-Bruhat algebr
condition on the lapse, as we did in our modified B
scheme. The evolution of the lapse and the shift betw
gauge resettings is treated in exactly the same way as in
modified BM formalism.

C. Modified Arnowitt-Deser-Misner formulation

The simplest of the hyperbolic schemes we present is
modified ADM formulation, which consists of Eqs.~9! to
~14!, ~17!, and ~18!, with a5QAdet(hi j ) and a8/a5DQ
1Dx

x1Dy
y1Dz

z. This system is hyperbolic when the me
ric is diagonal ifn,0 or 0,n,1. The fluxes forKi

j are

F~Kx
x!52bKx

x1
a

hxx
FDQ1Dx

x1S 22
n

2D ~Dy
y1Dz

z!G ,
~43!

F~Ky
y!52bKy

y1
a

hxx
F S 12

n

2DDy
y2

n

2
Dz

zG ,
~44!

F~Kz
z!52bKz

z1
a

hxx
F S 12

n

2DDz
z2

n

2
Dy

yG .
The hyperbolicity of our modified ADM system of equa

tions breaks down forn50 andn>1. Although our ADM
formulation atn50 is non-hyperbolic, it is stable. Atn51,
however, the system is both non-hyperbolic and on the ve
7-6
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of being unstable. Forn.1, the equations have comple
eigenvalues, giving unstable exponential growth of errors

D. Wave modes

1. BM

The hyperbolic system of equations obtained from
modified BM formulation described in Sec. VI A is

] tq1]x@A~x!q#5S~q!, ~45!

where
ble
r-

d
ea

e
in

u
e

06403
e
q51

Dx
x

Dy
y

Dz
z

Kx
x

Ky
y

Kz
z

Vx

DQ

b8

2 , ~46!

and
A~x!5

¨

2b 0 0 a 0 0 0 0 21

0 2b 0 0 a 0 0 0 0

0 0 2b 0 0 a 0 0 0

a

hxx
0 0 2b 0 0

a

hxx
S 22

n

2D a

hxx
0

0
a

hxx
0 0 2b 0 2

a

hxx
S n

2D 0 0

0 0
a

hxx
0 0 2b 2

a

hxx
S n

2D 0 0

0 0 0 0 0 0 2b 0 0

0 0 0 0 0 0 0 2b 0

0 0 0 0 0 0 0 0 2b

©
. ~47!

The nine eigenmodes of the homogeneous system are obtained from the characteristic matrix,A(x). Six of the eigenmodes
travel along the light cones. They are

1

Ahxx

FDx
x1DQ1S 22

n

2
DVxG6FKx

x2
b8

a
G ,

1

Ahxx

FDy
y2

n

2
VxG6Ky

y,
1

Ahxx

FDz
z2

n

2
VxG6Kz

z6 speeds52b6
a

Ahxx

. ~48!
es
e
d
lu-
to

ap-
ave

as
aint
The remaining three eigenmodes are simply the varia
Vx , DQ , andb8, which travel along the hypersurface no
mals, with speeds2b.

The eigenmodes of the characteristic matrix, however,
not necessarily describe how solutions of the full nonlin
system of equations propagate. It is a special property
plane-wave systems that eigenmodes of the full nonlin
system of equations exist which consist of purely right-go
waves withKy

y6Kz
z5(Dy

y6Dz
z)/Ahxx, purely left-going

waves with Ky
y6Kz

z52(Dy
y6Dz

z)/Ahxx, and Dx
x5Kx

x

50. These are solutions of the Einstein equations in a ga
with a51 andb850. In our nonlinear colliding plane wav
s

o
r
of
ar
g

ge

calculations, our initial conditions are such that the wav
have this form. The right-going wave is in the left half of th
grid, the left-going wave is in the right half of the grid, an
they are just at the point of colliding. When discussing so
tions of the full nonlinear system of equations, we refer
the transverse-traceless quantities (Dy

y2Dz
z)/Ahxx and

(Ky
y2Kz

z), the constraint quantities (Dy
y1Dz

z)/Ahxx and
(Ky

y1Kz
z), and the longitudinal variablesDx

x/Ahxx and
Kx

x. After the waves pass through each other, it is only
proximately true that the transverse-traceless quantities h
the form of purely right-going and purely left-going waves
described above and it is not at all true that the constr
quantities have this form.
7-7
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The characteristic speeds apply to small amplitude, s
wavelength perturbations in the variables, so that the pri
pal terms~which are first derivative terms! dominate over the
source terms. The disturbances in the constraint quant
which propagate along the characteristics will generally
constraint-violating because the constraints explicitly tie
principal terms to the nonlinear source terms, and req
that they cancel. The longitudinal variables,Dx

x/Ahxx and
Kx

x, are not eigenmodes of the homogeneous system. In
full nonlinear system,Dx

x/Ahxx andKx
x have some feature

which propagate along the light cones, and some feat
which propagate along the hypersurface normals. The pro
gation of the longitudinal variables is strongly dependent
the choice of gauge.

2. AY

There is a complete set of eight eigenmodes of the m
fied AY homogeneous system of equations. The six eig
modes which travel along the light cones are
ne

s

de
’

lly
th
te
id
m
ill
ar

06403
rt
i-

es
e
e
re

he

es
a-
n

i-
n-

1

Ahxx

~ f x
x1DQ!6S Kx

x2
b8

a
D ,

f y
y

Ahxx

6Ky
y,

f z
z

Ahxx

6Kz
z 6 speeds52b6

a

Ahxx

.

~49!

The remaining two eigenmodes are the variablesDQ andb8,
which travel along the hypersurface normals, with spee
2b.

3. ADM

For the modified ADM homogeneous system, the eig
modes, which form a complete hyperbolic system forn,0
or 0,n,1, consist of ‘‘longitudinal’’ and ‘‘physical’’ eigen-
modes propagating along the light cone,
1

Ahxx

FnDx
x1nDQ1S 22

n

2
D ~Dy

y1Dz
z!G6FnKx

x2
nb8

a
1S 22

n

2
D ~Ky

y1Kz
z!G ,

1

Ahxx

@Dy
y2Dz

z#6@Ky
y2Kz

z# 6 speeds52b6
a

Ahxx

, ~50a!
M,
t
in-
unt
e-
ions
is

e

t in
n
se
t a

de-
‘‘constraint’’ eigenmodes propagating inside the light co
for 0,n,1,

A12n

hxx
@Dy

y1Dz
z#6@Ky

y1Kz
z#J speeds

52b6
a

Ahxx

A12n, ~50b!

and theDQ andb8 eigenmodes with speeds2b. Hyperbo-
licity fails for n50 because the ‘‘longitudinal’’ eigenmode
are not independent of the ‘‘constraint’’ eigenmodes, forn
51 because the two ‘‘constraint’’ eigenmodes are not in
pendent of each other, and forn.1 because the ‘‘constraint’
eigenvalues are complex.

VII. BOUNDARY CONDITIONS

Since in numerical relativity, computations are usua
performed on a limited grid within a much larger space,
boundary conditions should be designed to be consis
with how waves propagate while they are still inside the gr
Even more important, since the evolution equations ad
constraint-violating solutions, constraint violations w
propagate into the grid unless boundary conditions are c
fully designed to suppress them.

Consider the ‘‘constraint’’ eigenmodes. They are@Dy
y

1Dz
z2nVx#/Ahxx6@Ky

y1Kz
z# in BM and AY ~though ex-
-

e
nt
.
it

e-

pressed in terms of different variables!, and A12n@Dy
y

1Dz
z#/Ahxx6@Ky

y1Kz
z# in ADM. Even for the same value

of the energy constraint coefficientn, what is outgoing in
BM and AY is different from what is outgoing in ADM.
Furthermore, for a given solution, the amplitudes of the B
AY, and ADM modes depend onn. Whatever the correc
boundary condition, its effect on the solution should be
dependent of the equation formulation. The relative amo
of right and left-going ‘‘constraint’’ modes is also gauge d
pendent, in the sense that the choice of boundary condit
in solving the constraint equations in the initial conditions
a gauge choice, and this affects the relative values of (Dy

y

1Dz
z) and (Ky

y1Kz
z) at all later times. The initial condi-

tions symmetric about the midpoint of the grid atx510 give
purely incoming ‘‘constraint’’ modes for n50 (@Dy

y

1Dz
z#/Ahxx56@Ky

y1Kz
z# on the left/right edges of the

grid! initially and at all times until the effects of the wav
collision reach the boundaries.

The ‘‘longitudinal’’ eigenmodes involvingDx
x and Kx

x

are also formulation dependent, since they are differen
ADM from what they are in BM and AY, and they depend o
n in all three formulations. There is gauge freedom to po
any boundary conditions one likes on these modes, bu
poor choice might give rise to singularities inDx

x or Kx
x

inside the grid.
The ‘‘physical’’ eigenmodes @Dy

y2Dz
z#/Ahxx6@Ky

y

2Kz
z# are the same in all three formulations, and are in
7-8
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pendent of n. However, their time evolution is gauge
dependent because the nonlinear source terms in their e
tion equations involve the gauge-dependent constr
quantities. With our choice of initial gauge, the amplitudes
(Dy

y2Dz
z)/Ahxx and (Ky

y2Kz
z) differ by about 3% after

the wave collision, so there is typically a 3% admixture
the incoming ‘‘physical’’ eigenmode as the outgoing wav
approach the boundaries.

A gauge-independent measure of the amplitudes of
and right-going gravitational waves can be obtained by p
jecting the Weyl tensor onto a complex null tetrad, as in
Newman-Penrose spin coefficient formalism@27#,

C6
0 5R(t)(y)(t)(y)2R(t)(z)(t)(z)1R(x)(y)(x)(y)2R(x)(z)(x)(z)

72@R(t)(y)(x)(y)2R(t)(z)(x)(z)# ~51!

for right/left propagation. A purely right-going wave woul
have C2

0 50. Our numerical results indicate that plan
waves after a collision are indeed purely outgoing by t
standard. As an outgoing wave boundary condition, using
evolution equations to evaluate the time derivatives of
extrinsic curvature in the Riemann tensor, this becomes

S ]xF ~Dy
y2Dz

z!

Ahxx

7~Ky
y2Kz

z!G D 1

Ahxx

1
1

2

~Dy
y2Dz

z!

Ahxx
F ~Dy

y1Dz
z!

Ahxx

7~Ky
y1Kz

z!G
1

1

2

~Dy
y1Dz

z!

Ahxx
F ~Dy

y2Dz
z!

Ahxx

7~Ky
y2Kz

z!G50

~52!

at the right/left boundaries. This expression is consistent w
@Dy

y2Dz
z#/Ahxx56@Ky

y2Kz
z# if and only if @Dy

y

1Dz
z#/Ahxx56@Ky

y1Kz
z#.

Since conventional outgoing wave boundary conditio
are not appropriate, our boundary conditions are based
smooth second order extrapolation of the variables, whic
corrected to make sure the energy and momentum const
equations are satisfied on the boundaries. Equation~52!
could also be imposed at the boundaries to further impr
the extrapolation, but we have not tried this. Our proced
is detailed further in Sec. VIII B 3.

In addition to the eigenmodes discussed above, there
eigenmodes propagating along the hypersurface norm
which can be incoming or outgoing, depending on the sign
the shift on the boundaries. It seems to be important
stability that the hypersurface normals do not point into
grid ~see Secs. IX C and IX D!.

Our results show that quadratic extrapolation without c
rection for the energy and momentum constraints produc
significant but not dominant error~see Sec. IX D!. However,
errors from imposing outgoing boundary conditions on
‘‘constraint’’ eigenmodes, or from using standard const
extrapolation, would swamp all other errors as they pro
gate into the grid. Standard constant extrapolation, wh
06403
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gives the same values for the variables, and therefore
fluxes, in the ghost cell and adjoining physical cell, al
eliminates the incoming ‘‘constraint’’ eigenmodes.

VIII. NUMERICAL METHODS

A. Strang splitting

As described in Sec. VI, all of the formulations we teste
both hyperbolic and non-hyperbolic, are in first order, fl
conservative form. We solve all these systems of equati
using a Strang-split method@22#. In this method, the homo
geneous transport part of Eq.~26! and the contributions from
the source terms are treated separately. In particular, the
lowing straightforward system of ordinary differential equ
tions is first solved over half a time step

] tq5S~q!. ~53!

Then, the transport part of Eq.~26!, which contains the flux
terms, is solved over a full time step

] tq1]x@F~q!#50. ~54!

Our methods for solving the transport step are discusse
Sec. VIII B below. The calculation is completed by aga
solving Eq.~53! over half a time step.

We choose to use the Strang-split method because
simpler in the context of how we are handling bounda
conditions. An iterative scheme such as the MacCorm
method@28# requires repeated implementation of the boun
ary conditions each time step. However, in the Strang-s
scheme, the boundary conditions are imposed only once
ing each time step. The fewer applications of the bound
conditions in the Strang-split method is advantageous
cause we are using quadratic extrapolation to obtain gh
cell values. Quadratic extrapolation amplifies any jitter at
boundaries, and the frequent application of quadratic
trapolation in iterative schemes such as MacCormack co
easily lead to an instability.

B. Transport step

In the transport step, we solve Eq.~54! both with a finite
difference method and with a wave propagation approa
which takes advantage of the eigenfields of a diagonaliza
hyperbolic system. Advanced numerical methods for dia
nalizable hyperbolic systems introduce limiter functions
resolve sharp discontinuities that typically arise in hydrod
namics problems. A smooth problem can be solved jus
accurately and more efficiently with a finite differenc
method. In vacuum general relativity, discontinuities may
may not arise, depending on the gauge conditions. C
monly used gauge conditions lead to steep gradients
black hole horizons. One can deal with these gradients
using high resolution methods requiring diagonalizable
perbolic formulations; or, one can dynamically adjust t
gauge conditions so as to avoid the steep gradients altoge
@29#.

Whether one uses a finite difference method or a sop
ticated hyperbolic technique, it is important to have a n
7-9
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merical scheme which is fully second order accurate
smooth solutions and generalizable to black hole spaceti
and higher dimensions. It is straightforward to devise a fin
difference scheme based on a Taylor series expansion w
is formally second order accurate. High resolution Riema
based wave propagation algorithms introduced by LeVe
@23#, which decomposeDq across a grid cell interface into
linear combination of eigenvectors of theA(x) matrix, are
applicable to a wide variety of diagonalizable hyperbo
problems. Flux differences are calculated from theDq de-
composition. We refer to these algorithms as ‘‘standard w
decomposition’’ methods. However, the standard wave
composition methods are not second order accurate
smooth solutions when the characteristic matrixA(x) is a
function of position, because the changes inA(x) across cell
boundaries as well asDq’s must be accounted for in flux
differences. In numerical relativity problems,A(x) depends
on the lapse, the shift, and the spatial metric, and can h
gradients comparable with the gradients ofq.

LeVeque has suggested a wave propagation approac
solving variable coefficient flux problems based on splitti
up the jump inF(q) rather than the jump inq @24#. We refer
to this approach as ‘‘flux-based wave decomposition.’’ W
develop and apply this method to solve the Einstein eq
tions for 1D nonlinear plane waves as described below
Sec. VIII B 1. We show in the Appendix that flux-base
wave decomposition methods are formally second order
curate for sufficiently smooth solutions for arbitrary smoo
variations of the eigenvalues and eigenvectors~see also Bale
et al. @30#!. For further discussion and analysis of flux-bas
wave decomposition methods, in the context of more gen
approximate Riemann solvers, see@31#. While it is difficult
to formally prove second order convergence for numer
methods since this also requires proving stability, our
merical tests of these methods, and those of Ref.@30#, typi-
cally exhibit second order convergence.

1. Flux-based wave decomposition

Using Eq.~54! to update average grid cell values of th
variablesq requires knowing flux values at grid cell inte
faces. The interface flux values are found by solving
following equation, obtained by multiplying Eq.~54! by
A(x) on the left hand side:

] t@F~q!#1A~x!]x@F~q!#50. ~55!

The time derivative ofA(x) vanishes because the variabl
on which A(x) depends~the lapse, the shift, and the long
tudinal part of the spatial metric! have no fluxes, and are no
updated during the transport step. Using Eq.~55! to compute
the interface fluxes was originally described by Bonaet al.
@8#. However, it is not clear from@8# how they handled prob
lems in whichA(x) varies from cell to cell.

Equation~55! is a linear advection equation for the flu
vector, F(q). As such, flux values at cell interfaces can
updated by solving Riemann problems based on decom
ing flux differences between adjacent grid cells into eig
vector expansions~see@5# for a discussion of solving Rie
mann problems for the advection equation!, and including
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correction terms to give second order accuracy. We deve
two wave propagation methods based on this idea which
call methodsI and II . A wave in this approach is defined a
a discontinuity in theflux associated with a certain eigen
mode across the characteristic corresponding to that ei
mode.

We explicitly deal with the fact that the eigenvalues a
eigenvectors of the characteristic matrix are varying acr
the grid. The magnitudes of the eigenvalues give the w
speeds and the signs of the eigenvalues give the wave d
tions. In the flux decomposition for methodI , we need to
decide if a wave is left-going or right-going at a given ce
interface. This is determined by the sign of the average of
eigenvalues obtained from the characteristic matrices on
ther side of the interface. If the average eigenvalue fo
particular eigenmode is negative, then the corresponding
genvector is evaluated in the cell to the left of the interfa
If the average eigenvalue is positive, then the eigenvecto
evaluated in the cell to the right of the interface. In meth
II , the eigenvalues and eigenvectors at a cell interface
obtained from the characteristic matrix at the interface, c
culated as an average from the adjacent cells. For both m
ods, waves with zero interface speed still contribute to
flux difference. We can include these contributions in eith
the left- or right-going waves of methodI , as long as we do
so consistently.

In methodI , the flux difference decomposition takes th
following form at the interface between cellsi and i 21:

F~qi !2F~qi 21!5A iqi2A i 21qi 21

5 (
L51

m

g i 2(1/2)
L r i 21

L 1 (
R5m11

M

g i 2(1/2)
R r i

R ,

~56!

where r are right eigenvectors of the characteristic matr
and M is the total number of eigenmodes. We denote
left-going waves at this interface asW i 2(1/2)

L 5g i 2(1/2)
L r i 21

L ,
where 1<L<m. The right-going waves are given b
W i 2(1/2)

R 5g i 2(1/2)
R r i

R , wherem11<R<M . The number of
left-going waves,m, can vary from interface to interfac
since the sign of the average eigenvalue can change from
to cell. The eigenvectorsr i 21 are evaluated in celli 21.
Likewise, r i are evaluated in celli. The coefficientsg i 2(1/2)
are obtained by solving Eq.~56!; the subscriptsi 2 1

2 indicate
interface values. In methodII , the flux difference decompo
sition at a given interface between cellsi and i 21 is the
same as Eq.~56!, except the eigenvectorsr i 2(1/2) of the av-
eraged characteristic matrixA i 2(1/2)5(A i 211A i)/2 replace
both r i 21 and r i .

MethodI is implemented in the context of theCLAWPACK

software package@32#. The first order wave propagation an
second order corrections in both methodsI andII are analo-
gous to Eqs.~18! and ~19! of LeVeque’s paper on standar
wave decomposition methods@23#. The updated value ofqi
is given by
7-10
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q̄i5qi2
Dt

DxS (R W i 2(1/2)
R 1(

L
W i 1(1/2)

L D
2

Dt

Dx
~ F̃i 1(1/2)2F̃i 2(1/2)!. ~57!

F̃i 6(1/2) are flux correction terms which can be reduced n
discontinuities by introducing limiter functions. Limiters pre
vent the oscillatory behavior around discontinuities seen w
finite difference methods. In the absence of limiting, the fl
corrections are

F̃i 6(1/2)5
1

2 S (
R

W i 6(1/2)
R 2(

L
W i 6(1/2)

L D
2

1

2

Dt

Dx (
p51

M

l i 6(1/2)
p W i 6(1/2)

p , ~58!

wherel i 6(1/2)
p denote cell-interface speeds.

Both flux-based wave decomposition methodsI andII are
successful in giving second order convergent results in
numerical calculations.

2. Finite difference method

To solve Eq.~54! using a Lax-Wendroff finite difference
method, we first perform a second order Taylor expansion
q aroundt:

q~x,t1Dt !5q~x,t !1Dt] tq~x,t !1
1

2
Dt2] t

2q~x,t !.

~59!

Observe that

] tq52]x@A~x!q#, ~60!

and, taking another time derivative,

] t
2q52]x@A~x!~] tq!#5]x@A~x!]x„A~x!q…#. ~61!

Note that the time derivative ofA(x) vanishes as in Eq.~55!.
Plugging these expressions for] tq and ] t

2q into Eq. ~59!
gives

q~x,t1Dt !5q~x,t !2Dt]x@A~x!q~x,t !#

1
1

2
Dt2]x@A~x!]x„A~x!q~x,t !…#. ~62!

Making the centered finite difference approximation to t
derivatives in Eq.~62!, the updated value ofqi is given by

q̄i5qi2
Dt

Dx
~A i 11qi 112A iqi !1

1

4 S Dt

DxD 2

3@~A i1A i 11!~A i 11qi 112A iqi !2~A i 211A i !

3~A iqi2A i 21qi 21!#. ~63!
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3. Boundary conditions

Our numerical methods only require values in one gh
cell at each boundary. We obtain values for all variables
the ghost cell by quadratic extrapolation from the three
jacent physical cells. Numerical integration of the constra
equations from the last physical cell to the ghost cell by
trapezoidal rule is used to correct the constraint quanti
(Dy

y1Dz
z)/Ahxx and (Ky

y1Kz
z) in the ghost cell, with it-

eration to convergence.

IX. RESULTS

A. Initial conditions

The initial conditions must satisfy the constraint equ
tions, Eqs.~19! and ~20!. Since the constraint equations a
differential equations, they require boundary conditions
their solutions. Different choices of boundary conditions c
respond to different gauge conditions. We choose symme
boundary conditions which give flat space between t
waves. This means that we choose (Dy

y1Dz
z) and (Ky

y

1Kz
z) to vanish initially between the waves.

The variableshxx , Kx
x, and the combinations (Dy

y

2Dz
z) and (Ky

y2Kz
z) are freely specifiable. We normall

takehxx51, Kx
x50, and

0.25 lnS hyy

hzz
D5(

i 51

2

Ai cos2F 2

p

~x2x0i !

wi
Gsin@ki~x2x0i !1d i #,

~64!

for 2wi,(x2x0i),wi , and zero outside that range. Thex
derivative of Eq.~64! gives (Dy

y2Dz
z)/2. In our standard

initial conditions for colliding plane waves, one wave is in
tially on the left and moving to the right, with@Ky

y2Kz
z#1

5@(Dy
y2Dz

z)/Ahxx#1. The other wave is initially on the
right and moving to the left, with@Ky

y2Kz
z#252@(Dy

y

2Dz
z)/Ahxx#2. The parameters for 0<x<20 are wi

54.0, ki51.6, Ai50.08, x0156.0, x02514.0, d150, and
d25p. These initial conditions, depending on the variabl
are symmetric~or antisymmetric! aboutx510, and symme-
try ~or antisymmetry! is preserved throughout the evolutio
Hence, our figures only show the range 0<x<10. Since the
initial plane waves do not overlap, and (Dy

y1Dz
z) and

(Ky
y1Kz

z) vanish atx50, the initial conditions are two
analytic single plane waves of the type described by Misn
Thorne, and Wheeler@33#.

Our initial conditions produce large amplitude, nonline
colliding gravitational plane waves. Our measure of ‘‘lar
amplitude’’ is that hyy and hzz are substantially differen
from 1 by the time the waves have traversed the grid. I
known that nonlinear plane-wave spacetimes develop a
gularity behind the wave@34,35#. For a single plane wave
this is only a coordinate singularity, while for colliding plan
waves, a physical singularity also develops. The values
take for our wave amplitudes are about as large as poss
without allowing a singularity to develop during the crossi
time of the waves. One can get a feel for this value by ask
at what amplitude does a singularity develop at the left e
of the grid for a single plane wave exiting the right edge? F
7-11
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a single wave as given by Eq.~64! with the shape specified
by our values forwi and ki , and a flat metric ahead of th
wave, the answer is approximately 0.11. This is an up
limit, however, because the effects of colliding waves a
together in a way which is hard to estimate. The initial co
ditions for (Dy

y6Dz
z) are shown in Fig. 1.

B. Comparing evolution systems

1. Testing for the optimal system

We experiment with several different formulations of t
Einstein equations to determine the factors involved in
proving the global accuracy of 1D colliding gravitation
plane wave calculations. The basic formalisms we test
the modified BM, AY, and ADM schemes of Sec. VI. In all o
these schemes, using mixed variables rather than low
variables improves accuracy significantly. We also comp
alternative ways of handling the redundant variableVx in the
BM schemes.Vx can be left to evolve independently~no-
reset BM!, or it can be reset periodically to enforce the co
straint thatVx5Dy

y1Dz
z ~reset BM!. Results have been ca

culated for a range of values of the coefficientn of the
energy constraint term in the extrinsic curvature evolut
equations, from about20.4 to 1.0, and in some cases f
values ofn.1. For the ADM and reset BM schemes, th
results near 0 and 1 reflect the breakdown of hyperbolicit
these values ofn. Results are primarily shown fort512
since this is the latest time at which the physical waves
largely within the grid.

Figure 2 shows the evolution of linear combinations
metric derivatives appearing in the eigenmodes fromt58 to
t512, after the physical waves have finished colliding.
these high resolution~4000 cell! calculations, the numerica
errors are negligible on the scale of the graph, and we h
verified that all the different formulations seem to be co
verging to the same solution. The quantity (Dy

y

2Dz
z)/(2Ahxx) is shown in Fig. 2~a!. The coordinate spee

of propagation can be read off the graph: it is roughly t

FIG. 1. Initial conditions for derivatives of the transverse metr
The solid line is (Dy

y2Dz
z)/(2Ahxx) and the dashed line is

2(Dy
y1Dz

z)/Ahxx. Note thatx510 is the center of the grid.
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units in x for every two units of time until aroundt512,
when the coordinate speed of light starts to differ sign
cantly from 1. Over the same range of times, the quan
(Ky

y2Kz
z)/2 is within about 3% of2(Dy

y2Dz
z)/(2Ahxx),

close to but not identical to what is expected from the le
propagating ‘‘physical’’ eigenmode. In Fig. 2~b!, we see that

.

FIG. 2. Evolution of the metric derivatives. The solid line is
t58, the dashed line att510, and the dotted line att512. ~a!
(Dy

y2Dz
z)/(2Ahxx), ~b! (Dy

y1Dz
z)/(2Ahxx), and~c! Dx

x/Ahxx.
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the steps in (Dy
y1Dz

z)/(2Ahxx) are associated with extrem
of (Dy

y2Dz
z)/(2Ahxx). At these times, (Ky

y1Kz
z)/2

5(Dy
y1Dz

z)/(2Ahxx) to the left of the physical wave. In
the vicinity of the physical wave, (Ky

y1Kz
z)/2 has step-like

features associated with steps in (Dy
y1Dz

z)/(2Ahxx), but
ascending to the right. In the region between the wav
(Ky

y1Kz
z)/2 is much larger than (Dy

y1Dz
z)/(2Ahxx) and

increases with time. Figure 2~c! shows the evolution of
Dx

x/Ahxx. The prominent feature in this figure is a sma
residual effect~note that the scale of the graph is 1024) of
the prominent feature inKx

x shown in Fig. 9 which survives
the near cancellation ofKx

x in the evolution equation ofDx
x

from our shift resetting condition@Eq. ~25!#. Since aKx
x

2b850 each time the shift is reset, this feature inDx
x/Ahxx

tends to advect along the hypersurface normals. The gen
tion and modification of features inDx

x/Ahxx is due to the
different evolutions ofaKx

x and b8 between gauge rese
tings. The feature inKx

x results from our lapse resettin
condition, Eqs.~22! and ~23!, when a strong imbalance be
tween the transverseD ’s and K ’s occurs near the center o
the grid as the waves collide, creating negative values foS.
This in turn causes the limiter to take effect, which allow
Kx

x to dip in the negative direction.
To compare the overall accuracies of different formu

tions, we present 1-norms of the energy constraint error
Fig. 3 and 1-norms of errors inDx

x/Ahxx in Fig. 4 at t512
for 500 cell grids. The constraint errors are predominan
errors in the derivatives of the constraint quantities, and
insensitive to errors in the longitudinal variables. For ea
scheme, the 1-norm errors are plotted for a number of va
of the energy constraint coefficient, ranging from20.25 to
0.95 at 0.05 increments. Since our ADM scheme is not
perbolic for n50, the transport steps of the ADM calcula
tions are solved with the finite difference numerical meth
whereas the transport steps of the BM and AY calculati

FIG. 3. One-norm errors of the energy constraint plotted aga
the energy constraint coefficient,n, for several different formula-
tions of the Einstein equations. Evaluated att512 with a grid reso-
lution of 500 cells. Note that the largest value ofn plotted is 0.95.
Point A is the formulation closest to the standard BM scheme@4#.
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use our flux-based wave decomposition methods. The ch
of numerical method makes little difference to the results

Figure 3 identifies factors which affect accuracy as m
sured by 1-norm energy constraint errors. It is apparent
using mixed variables improves accuracy significantly in
BM formulation. Similar improvements occur in the AY an
ADM formulations. The 1-norm energy constraint errors f
ADM and the ADM-like reset BM schemes are almost ide
tical, differing by only 1–2 % over the range20.25<n
<0.85, and are minimized for 0.25<n<0.80. Point ‘‘A’’ in
Fig. 3 is the formulation closest to the BM scheme as imp
mented in Ref.@4#. The identical formulation using mixed
instead of lowered variables decreases the 1-norm en
constraint error 3.1 times. If the mixed BM system of equ
tions is transformed into an ADM-like scheme by frequen
resettingVx , and an energy constraint coefficient of 0.5
used, a 9.3-fold decrease in the 1-norm energy constr
error compared to point ‘‘A’’ is obtained. Both the ADM an
the reset BM error curves peak atn50, and increase rapidly
as n→1, though the increase asn→1 for mixed reset BM
occurs too close ton51 to be apparent in Fig. 3. The rise i
energy constraint errors atn50 andn51 reflects in part the
breakdown of hyperbolicity in ADM at these values ofn.
The effects of this breakdown are more severe atn51 than
at n50 because ADM is unstable forn.1. Momentum con-
straint errors are similar to or smaller than the energy c
straint errors.

The 1-norm energy constraint errors in the no-reset B
schemes vary slowly for alln. These schemes are wel
behaved forn>1, and the errors for the mixed version co
tinue to decrease. Despite the breakdown in the AY sche
at n51, the constraint errors do not increase strongly untn

st FIG. 4. One-norm errors ofDx
x/Ahxx plotted against the energ

constraint coefficient,n, for several different formulations of the
Einstein equations. Evaluated att512 with a grid resolution of 500
cells. Errors are estimated from comparisons with 1000 cell ca
lations, assuming quadratic convergence. Note that the largest v
of n plotted is 0.95. The legend is the same as in Fig. 3exceptthat
the AY mixed values are multiplied by 0.045.
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gets close to 1. The AY formulation is well-behaved forn
.1.

Since the true value ofDx
x/Ahxx is not known exactly, we

must extrapolate to estimate the true value and calculate
1-norm errors shown in Fig. 4. Assuming quadratic conv
gence, the error estimate at each grid cell of a 500 cell
culation is 4

3 times the difference between the 500 and 10
cell results. ForDx

x/Ahxx at time t512, the 500 cell errors
deviate from quadratic scaling in the region 8,x,10, where
the feature inDx

x/Ahxx associated with the spike inKx
x is

located. Here, our standard extrapolation underestimates
errors for the ADM and no-reset BM formulations, and ov
estimates the errors for the reset BM formulations, but
effects on Fig. 4 are not very significant.

Figure 4 shows that the same factors which decrease
1-norm energy constraint errors also decrease the 1-n
errors in Dx

x/Ahxx. Specifically, using mixed variables in
stead of lowered variables in the no-reset BM formulation
n50 decreases the 1-norm error inDx

x/Ahxx 1.5 times. The
shapes of the curves fall into the same two classes as
scribed above for Fig. 3. If one frequently resetsVx and sets
n50.5 in mixed BM, the 1-norm error decreases 6-fold fro
point ‘‘A.’’ The errors in Dx

x/Ahxx in the ADM and reset BM
schemes peak atn50 and increase rapidly asn→1, again
reflecting, in part, the failure of hyperbolicity at these valu
of n.

The fact that Fig. 4 is at all similar to Fig. 3 is because
Dx

x/Ahxx errors and the constraint errors behave similarly
the region of the physical wave~this is described in detail in
Sec. IX B 2!. However, there are several differences betwe
these two figures. First, the ADM curve in Fig. 4 is we
above the reset BM curve. Second, the reset BM curves h
smaller drop-offs fromn50 in Fig. 4. Third, the decreasin
slopes of the no-reset BM curves are bigger in Fig. 4 than
Fig. 3. These differences are due to relatively lar
formulation-dependent numerical errors inDx

x/Ahxx in the
region 8,x,10, which contribute to the 1-norms. Reca
that the evolution of the feature inDx

x/Ahxx in this region
depends mainly on the evolutions ofKx

x and b8 between
gauge resettings. We expect the numerical errors forKx

x to
differ from those forb8, since these two variables evolve b
quite different equations. Further, we expect these nume
errors to be larger whereKx

x ~andb8) vary rapidly~see Fig.
9!. Small differences in these numerical errors among
different formulations result in large differences in numeric
errors forDx

x/Ahxx in this region. For example, the errors
Dx

x/Ahxx for 8,x,10 are larger atn50 than atn50.5 for
the mixed no-reset BM scheme, explaining the decreas
slopes in Fig. 4, and are larger for ADM than for reset B
explaining the displacement between the mixed ADM a
mixed reset BM curves.

Another difference between Figs. 3 and 4 is that
1-norm errors ofDx

x/Ahxx are one to two orders of magn
tude higher for AY than for the other formulations, where
the 1-norm energy constraint errors for AY and the oth
formulations are comparable. For example, the 1-norm e
in Dx

x/Ahxx at n50.5 is about 70 times higher for the mixe
AY formulation than for the mixed no-reset BM formulation
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whereas the 1-norm AY energy constraint error is about
times higher. The subtraction of two numbers with large
rors in Eq.~39! gives a large error forDx

x/Ahxx in the AY
formulation. When we introduce substantial variations inhxx
in the initial conditions, so thatDx

x is much larger than
(Dy

y1Dz
z), and hxx is substantially different from 1, then

equally large errors are introduced into all the formulatio
In our particular calculations, the errors already presen
the AY scheme fortuitously cancel the introduced errors,
sulting in Dx

x/Ahxx errors for mixed AY and mixed no-rese
BM which are within a factor of 2.

These results demonstrate our ability to significantly
crease the accuracy of 1D highly nonlinear colliding gra
tational plane wave calculations through equation formu
tion. In particular, the choice of a mixed set of indic
improves the accuracy of the formulations for all values
the energy constraint coefficient tested. ResettingVx in the
BM formulations creates ADM-like schemes. This is an a
vantage for 0.25<n<0.80, where ADM is hyperbolic, and a
disadvantage forn50 or n51, where ADM is not hyper-
bolic.

2. Error propagation

In order to understand the variations in accuracy amo
the formulations, it is instructive to look at how errors va
with position, and how they propagate over time. We foc
on the energy constraint errors and the errors inDx

x/Ahxx,
since they are representative of errors in the transverse
longitudinal parts of the metric, respectively. Momentu
constraint errors are comparable to or less than the en
constraint errors.

Since the principal parts of the energy and moment
constraints are the derivatives of the constraint quantities,
constraint errors propagate with the same speeds as
‘‘constraint’’ eigenmodes~which are given in Sec. VI D for
BM, AY, and ADM!. The constraint error propagation ca
also be obtained from the evolution equations for the ene
and momentum constraints, which form their own closed
perbolic system. The constraint errors propagate along
light cones for the no-reset BM and AY formulations. F
ADM, the constraint errors propagate at

vADM52b6
a

Ahxx

A12n. ~65!

We expect the constraint errors to also propagate atvADM for
the reset BM scheme. Note that forn,0 or 0,n,1, vADM
is different from any of the other characteristic speeds of
system. We find that a separation of the constraint e
speeds from the other characteristic speeds improves a
racy.

Figure 5~a! shows the energy constraint error propagat
for reset BM andn50. First, notice that the constraint erro
are large where the physical wave is present, and that
given location, the error decreases almost to zero when
physical wave has passed. However, there is a rapid incr
in the energy constraint errors propagating with the phys
wave. Second, from the graph we see that the waveform
7-14
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FIG. 5. Energy constraint error propagation using our mix
BM formulation. The solid line is att58, the dashed line att
510, and the dotted line att512. Evaluated with a grid resolution
of 500 cells, for~a! n50, with Vx resetting,~b! n50.5, with Vx

resetting,~c! n50.5, with no Vx resetting.
06403
the energy constraint errors propagates at roughly unit c
dinate speed, which, over the times we are considering
approximately coordinate light speed. The energy constr
errors are predominantly errors in the derivatives of (Dy

y

1Dz
z)/Ahxx. Errors in the propagation of (Dy

y1Dz
z)/Ahxx

are largest where its second derivative is largest, at the
ners of the steps visible in Fig. 2~b!. From the energy con-
straint equation, the steps in (Dy

y1Dz
z)/Ahxx are associated

with large values of the physical quantities (Dy
y

2Dz
z)/Ahxx and (Ky

y2Kz
z). These physical quantitie

propagate at light speed, and constraint errors, once ge
ated, propagate with the velocity of the ‘‘constraint’’ eige
modes, which is also light speed for reset BM withn50.
Since new errors remain in phase with the propagating
errors, the constraint errors are continuously reinforc
Careful comparison of Fig. 2~b! with Fig. 5~a! shows that the
constraint error peaks are coincident with the corners of
steps in (Dy

y1Dz
z)/Ahxx at all three times shown.

The same argument applies to AY and no-reset BM, si
these formulations also have ‘‘constraint’’ mode erro
propagating at light speed, but Fig. 3 shows larger errors
ADM and reset BM atn50 than for AY and no-reset BM.
We attribute the larger ADM and reset BM errors to t
breakdown of hyperbolicity in ADM atn50, so that the
‘‘constraint’’ eigenmodes, which propagate at light spe
with constant amplitude, interact with the ‘‘longitudinal
eigenmodes through the constraint quantities. Asn→0, any
errors in the constraint quantities tend to produce amplifi
errors in the longitudinal variables, becausen(Dx

x1DQ) and
n(Kx

x2b8/a) are the same order of magnitude as the c
straint quantities in the ADM ‘‘longitudinal’’ eigenmodes
The errors inDx

x and Kx
x then feed back to the constrain

quantities through the source terms of the evolution equa
for (Ky

y1Kz
z).

Figure 5~b! shows a dramatic decrease in both the ene
constraint errors and the growth rate of the errors in
mixed reset BM formulation whenn50.5. Furthermore, the
full waveform of the energy constraint errors does not ma
tain its shape as it propagates, as does the waveform in
5~a!. By tracking the rightmost bump in this figure, one c
determine the speed of the errors to be approximately
times light speed, which agrees with the value predicted
Eq. ~65!. Because the energy constraint errors lag behind
source of the errors, namely, the steps in (Dy

y1Dz
z)/Ahxx,

there is not constant reinforcement and rapid growth of
errors in the region of the physical wave. This results
greater overall accuracy for reset BM than for no-reset BM
n50.5, as seen in Fig. 3.

Figure 5~c! shows the energy constraint error propagat
for mixed no-reset BM atn50.5. In contrast to Fig. 5~b!, the
waveform is maintained reasonably well, and the errors gr
more rapidly in time. This is because the constraint err
travel at light speed; so, as in Fig. 5~a!, there is a continuous
reinforcement of the errors. For no-reset BM atn50, the
curve is practically the same as what we show here an
50.5. The error waveform has a smaller growth rate th
that for reset BM atn50, presumably because of the hype
bolicity of the no-reset formulation, as discussed earlier.
have also looked at the AY constraint error propagation a

d
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confirm that errors propagate at light speed for all values
n. Because the constraint errors travel with the phys
waves for alln in these formulations, their 1-norm erro
vary slowly with n in Fig. 3.

The errors inDx
x/Ahxx versusx at t512 for the reset BM

formulations are shown in Fig. 6, for energy constraint co
ficients of~a! 0 and~b! 0.5. Figure 6~a! shows a localization
of the errors in the region of the physical wave (0<x<6).
Figure 6~b! shows the dramatic decrease in the errors fo
<x<6 whenn50.5. The mixed no-reset errors in this r
gion at n50.5 are larger by a factor of about 2 than t
mixed reset errors atn50.5, and only slightly smaller than
the mixed no-reset errors atn50. The fact that there is a
similar reduction in constraint errors andDx

x/Ahxx errors
when going from no-reset BM to reset BM atn50.5 sug-
gests that the constraint errors are a major source of e
for Dx

x/Ahxx. From the failure of hyperbolicity in ADM at
n50, one expects the errors inDx

x/Ahxx to increase more
rapidly for reset BM than the constraint errors, but we do
see clear evidence for this. The increase in errors is abou

FIG. 6. Errors inDx
x/Ahxx versusx for our BM mixed and

lowered formulations, withVx resetting. Evaluated att512 with a
grid resolution of 500 cells. Errors are estimated from comparis
with 1000 cell calculations, assuming quadratic convergence, fo~a!
n50, and~b! n50.5.
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same going from t58 to t512, perhaps because th
Dx

x/Ahxx errors have not yet reached their asymptotic lim
The spiky errors at approximately 8.7<x<10 in both Figs.
6~a! and 6~b! are discussed in Sec. IX B 1.

The ADM and ADM-like reset BM systems show rap
increases in errors asn→1 in Figs. 3 and 4. The breakdow
of hyperbolicity at n51 results in errors in (Dy

y

1Dz
z)/Ahxx becoming large compared to errors in (Ky

y

1Kz
z). The contribution to the energy constraint errors fro

errors in the derivatives of (Dy
y1Dz

z)/Ahxx increases cor-
respondingly. Since the ‘‘constraint’’ eigenmodes propag
along the hypersurface normals atn51, the errors in (Dy

y

1Dz
z)/Ahxx also reinforce errors in variables which prop

gate along the hypersurface normals, namely,Dx
x/Ahxx, b8,

andDQ .
Figure 7 shows the errors in (Dy

y2Dz
z)/(2Ahxx) as a

function of x for three formulations at ann of 0.5. The am-
plitudes and shapes of the errors for the different formu
tions are roughly the same, because the evolution equat
for (Dy

y2Dz
z)/(2Ahxx) are similar for the different formal-

isms. The curve shapes do not change significantly when
usesn50 instead ofn50.5 becausen does not enter into the
evolution equations for (Dy

y2Dz
z)/(2Ahxx). The entire

graph shown in Fig. 7 converges quadratically except for
bump aroundx56, which converges linearly. This bump
near the trailing edge of the physical wave, where the ini
conditions are not smooth enough to give second order
curacy. The errors for the formulations which are not sho
are similar.

Calculations of the distribution and propagation of ener
constraint errors and errors inDx

x/Ahxx have illuminated
how resettingVx in the BM formulations to create overa
ADM-like evolutions increases or decreases accuracy
stability, depending on the value ofn. Intermediate values o
n separate constraint error speeds from the other charact
tic speeds of the system, resulting in significant improv

s

FIG. 7. Errors in (Dy
y2Dz

z)/(2Ahxx) versusx for different
formulations. Evaluated att512 with a grid resolution of 500 cells
Errors are estimated from comparisons with 1000 cell calculatio
assuming quadratic convergence, forn50.5.
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ments in accuracy. Values ofn for which ADM hyperbolicity
fails result in rapid increases in errors.

The higher accuracy of reset BM compared to the ot
formulations when 0.25<n<0.80 is seen whenhxx51 and
Dx

x50 in our initial conditions. When we introduce substa
tial variations inhxx in the initial conditions, so thatDx

x is at
least as large as (Dy

y1Dz
z), andAhxx varies by a factor of 2

to 3, the accuracy results are dominated by the errors dire
associated with the variations inhxx . These errors depen
primarily on the amplitude ofDx

x/Ahxx, and are larges
where the derivative ofDx

x/Ahxx is largest. They are simila
in all the formulations and are independent ofn; thus, they
tend to equalize the results from the different formulation

C. Gauge conditions

Our gauge conditions involve both a periodic resetting
the lapse and the shift, and an evolution of the lapse and
shift between resettings. The lapse and shift are reset acc
ing to Eqs.~22! and ~25!, with G51, and (Kx

x)T520.02.
They are reset at constant time intervals rather than aft
specific number of time steps, to give resolution-independ
results. Between resettings,b, b8, Q, andDQ are advected
along hypersurface normals.

Figure 8 shows how the lapse and the shift at the
boundary of the grid vary with time. The resetting interval
Dt50.02, while the graph is drawn from values calculated
intervals of 0.2 int; hence, the graph contains no informatio
about the evolution of the lapse and the shift between re
tings. The lapse and the shift are fixed at zero at the g
center,x510, and are more or less monotonic between
center and the edge, so the variations at intermediate va
of x have a similar form, but smaller amplitude.

In Fig. 8, the lapse oscillates at the grid edge until ab
t56. Fromt56 to t512, ln(a) becomes increasingly nega
tive until it starts leveling off aroundt512. The lapse is
determined by Eq.~22!. Since we set the lapse to one and
first derivative to zero at the center of the grid, whether

FIG. 8. The shift,b, and the logarithm of the lapse, ln(a), at the
left grid edge plotted against time at intervalsDt50.2. The values
of b and ln(a) are fixed at zero at the grid center.
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lapse is greater than or less than one at the edge is d
mined by the sign of the second derivative of the lapse w
respect to proper distance, the quantityS in Eq. ~22!. The
large terms inS are typically 2Ky

yKz
z and Dy

yDz
z/hxx .

These nearly cancel whenDy
y, Dz

z, Ky
y, and Kz

z are
dominated by a single propagating ‘‘physical’’ wave puls
As two such pulses collide, constructive interference inDy

y

andDz
z implies destructive interference inKy

y andKz
z, and

vice versa, which causes rather large oscillations in the va
of the lapse at the edge of the grid. Note that att54, there is
maximum constructive interference ofDy

y and Dz
z. Once

the waves have largely passed through each othert
.6), Ky

y andKz
z are large, andDy

y andDz
z are small in

the region between the separating waves, so the second
rivative of the lapse is strongly negative, and becomes m
strongly negative asKy

y andKz
z become steadily larger. By

t512, the limiter in Eq.~22!, which is necessary to preven
the lapse from becoming negative at the edge of the g
largely stops further decrease of the lapse at the edge.

The behavior of the shift in Fig. 8 reflects the behavior
Kx

x in Fig. 9, sinceb8 is proportional toKx
x by Eq. ~25!.

The resetting of the lapse keepsKx
x near its target value o

20.02 until t.10, when the limiter in Eq.~22! takes hold,
allowing Kx

x to become steadily more negative. Since t
derivative of the shift is proportional toKx

x, and the shift is
clamped to zero at the center of the grid, the shift at the
edge of the grid is positive and starts getting steadily lar
for t.10.

Recall that a negativeKx
x, in combination with our shift

resetting condition, causes the hypersurface normals to p
away from the computational grid at the boundaries~see Sec.
V!. These resetting gauge conditions are designed so thQ
andb are advected out of the grid, in order to suppress
development of instabilities associated with extrapolation
the grid edge. As long as (Kx

x)T<0, the shift is positive at
the left edge of the grid and the advection velocity is ne
tive. However, Fig. 10 shows that when (Kx

x)T510.02, so

FIG. 9. Kx
x versusx at the times indicated in the legend.Kx

x is
driven to a target value of20.02 by our lapse resetting condition
The spike atx'9 develops as the waves collide, due to the limi
in the equation for the lapse. The effects of the limiter are felt o
a wider range ofx at t512.
7-17
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that the shift is negative at the left edge, the solution
comes unstable at the grid edge once the physical w
reaches the edge.

D. Boundary conditions

Figure 11 compares two methods for implementi
boundary conditions: quadratic extrapolation of all the va
ables with and without correcting the extrapolated values
(Dy

y1Dz
z)/Ahxx and (Ky

y1Kz
z) to insure that the energ

and momentum constraint equations are satisfied at
boundaries. Failure to strictly enforce the constraints at
edges of the grid results in significant constraint err
propagating over much of the grid byt58.

The jitter at the left edge of Fig. 6, which graphs t
errors inDx

x/Ahxx versusx, is due to numerical errors an
the use of quadratic extrapolation in our boundary con
tions. It is most prominent when the physical wave is cro
ing the boundary, but it is not unstable as long as the hy
surface normal at the boundary does not point into the g
~see Sec. V!. We will explore ways of reducing this jitte
either through the use of limiters near the boundary and
improved extrapolation methods.

FIG. 10. Development of an instability at the left boundary
the evolution ofDx

x/Ahxx when theKx
x target value is10.02 in our

lapse resetting condition. The instability is substantially stron
with the higher resolution grid. Note that the physical wave reac
the left edge att510.
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E. Numerical methods

We compare convergence results from our two flux-ba
wave decomposition schemes with those from the traditio
finite difference approach. Tables I and II show quadra
convergence for errors in the metric derivative variables a
in the momentum and energy constraints att512 using our
optimal evolution scheme and flux-based wave decomp
tion methodI . Quadratic convergence for the metric deriv
tive variables is tested by comparing 1-norms of differen
between results evaluated at 500 and 1000 cell resoluti
1000 and 2000 cell resolutions, and 2000 and 4000 cell re
lutions. Convergence is calculated in this way because
values are unavailable for the metric derivative variabl
Constraint errors can be calculated directly so quadratic c
vergence is determined simply by taking the ratios of res
from grid resolutions that differ by a factor of 2. There
very little difference in the results of the three numeric
methods tested. Further, the 1-norm results from the th
numerical methods all converge to the same answer.

Tables I and II show that our flux-based wave decom
sition methods are second order convergent when the c

FIG. 11. Energy constraint error for our standard boundary c
dition, which corrects quadratic extrapolation of the variables at
boundaries using the constraint equations~solid line!, versus qua-
dratic extrapolation only~dashed line!. Evaluated att58 with a
grid resolution of 500 cells using our mixed BM formulation wit
Vx resetting andn50.5.

r
s

of the

of the
TABLE I. Convergence results for errors in the metric derivative variables. Evaluated att512 using our
mixed BM formalism, resettingVx , with n50.5, and flux-based wave decomposition methodI .

1

2F~Dy
y2Dz

z!

Ahxx
G 1

2 F ~Dy
y1Dz

z!

Ahxx
G Dx

x

Ahxx

(50021000)/(100022000)a 3.98 3.99 5.09
(100022000)/(200024000)b 3.97 3.99 4.38

aThe 1-norm of the difference between the 500 and 1000 cell calculations is divided by the 1-norm
difference between the 1000 and 2000 cell calculations.
bThe 1-norm of the difference between the 1000 and 2000 cell calculations is divided by the 1-norm
difference between the 2000 and 4000 cell calculations.
7-18



-

e

o
ve

nd
e
la

an
y
th

i
h

lcu
-

av
le
s

ion
on
ult
n-
en
g
in
p
ig
rg
th

th
h
a

i-

1,

in

apid
se
exit
t

int
nor-

for
iz-
w-
e-
can

er-
u-
tial
rom
Fur-
face
lps
ries
hy-

he
ve
per-
n-
the
e of
es
ad-
s.
an
et-
nal
to
of

the
po-
ell
ons.
re-
als

ble,

h-
a-
ns,
rac-
sed
ells

um

n

o

rm

rm
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acteristic matrixA(x) has significant spatial variation, be
cause of the spatial dependence of the lapse and the shift@see
Eq. ~47! and Fig. 8#. However, in these calculations th
eigenvectors ofA(x), which depend only onAhxx, are
roughly constant. We have tested convergence of both
flux-based wave decomposition methods when the eigen
tors of A(x) vary rapidly, by introducing a 3-fold variation
in Ahxx. Our results are still second order convergent.

X. DISCUSSION

A. Summary

We have identified ways of improving the accuracy a
stability of 1D nonlinear colliding gravitational plane wav
calculations through an in-depth study of equation formu
tions, dynamic gauge conditions, boundary conditions,
numerical methods. Three issues stand out in our stud
equation formulations. The first issue which improves
accuracy of all the formulations tested is raising an index
the metric derivative and extrinsic curvature variables. T
separation of constraint and physical behavior in our ca
lations is much simpler with mixed variables than with low
ered variables. Since the dominant feature of plane w
solutions is the physical wave, and since the mixed variab
have a simple linear relation to the ‘‘physical’’ eigenmode
the mixed form gives an advantage in accuracy. In addit
the variables in the source terms of the evolution equati
are in mixed form, so a cleaner system of equations res

Second, it is advantageous if the ‘‘constraint’’ eige
modes, which are constraint violating, propagate at differ
speeds from other features in the solution, so that nothin
the actual solution is constantly in step with the constra
errors. Our gauge conditions result in features which pro
gate on the hypersurface normals as well as on the l
cones. With a multiple between 0.25 and 0.80 of the ene
constraint equation added to the evolution equations for
extrinsic curvature in the ADM and reset BM schemes,
‘‘constraint’’ eigenmodes propagate neither on the lig
cones, nor on the hypersurface normals, and the growth r
of constraint errors and errors inDx

x/Ahxx significantly de-
crease. However, when the amplitude ofDx

x is large com-
pared to (Dy

y1Dz
z), formulation-independent errors assoc

TABLE II. Convergence results for the energy and moment
constraint errors. Evaluated att512 using our mixed BM formal-
ism, resettingVx , with n50.5, and flux-based wave decompositio
methodI .

Energy constraint Momemtum constraint

500/1000a 4.02 3.97
1000/2000b 4.00 3.98
2000/4000c 3.99 3.99

aThe 1-norm of the 500 cell calculation is divided by the 1-norm
the 1000 cell calculation.
bThe 1-norm of the 1000 cell calculation is divided by the 1-no
of the 2000 cell calculation.
cThe 1-norm of the 2000 cell calculation is divided by the 1-no
of the 4000 cell calculation.
06403
ur
c-

-
d
of
e
n
e
-

e
s

,
,
s
s.

t
in
t

a-
ht
y
e

e
t
tes

ated with the derivatives ofDx
x/Ahxx dominate the overall

errors for 0.25<n<0.80.
Third, we find that when hyperbolicity fails in ADM, for

values of the energy constraint coefficient equal to 0 or
the constraint errors and errors inDx

x/Ahxx increase much
more quickly in both ADM and reset BM than they do
no-reset BM. Atn50, the ‘‘constraint’’ and ‘‘longitudinal’’
eigenmodes are no longer independent, causing a r
growth of errors which travel with the physical waves. The
errors decrease and stabilize, however, when the waves
the grid. At n51, the two ‘‘constraint’’ eigenmodes are no
independent, causing errors in (Dy

y1Dz
z)/Ahxx to increase

rapidly. This results in large errors in the energy constra
and in variables which propagate along the hypersurface
mals.

The key to our approach to dynamic gauge conditions
hyperbolic calculations is to maintain a simple diagonal
able hyperbolic evolution during each time step, while allo
ing periodic, flexible resetting of the lapse and the shift b
tween time steps. By resetting the lapse and the shift, we
control the coordinate system in a dynamic and~in principle!
arbitrary way, unconstrained by the need to maintain hyp
bolicity. Our gauge resetting conditions control the longit
dinal components of the extrinsic curvature and the spa
metric so as to prevent pathologies and strong gradients f
developing in the hypersurfaces and spatial coordinates.
ther, our gauge resetting conditions cause the hypersur
normals to point away from the grid at the edges. This he
to suppress the development of instabilities at the bounda
which are associated with features advecting along the
persurface normals.

A careful study of boundary conditions has led us to t
conclusion that it is incorrect to impose outgoing wa
boundary conditions based on the eigenmodes of the hy
bolic decomposition. A substantial contribution from the i
coming ‘‘constraint’’ eigenmodes is necessary to satisfy
constraint equations at the boundaries. In the presenc
nonlinearities, the interaction of the ‘‘physical’’ eigenmod
with the incoming ‘‘constraint’’ eigenmodes generates an
mixture of incoming and outgoing ‘‘physical’’ eigenmode
The right and left-going gravitational wave amplitudes c
be determined by projecting the Weyl tensor onto a null t
rad, and our numerical results indicate that the gravitatio
waves after the collision are purely outgoing according
this definition. Our boundary condition procedure consists
an accurate calculation of the incoming eigenmodes of
characteristic matrix at the boundaries by quadratic extra
lation of all the variables, and correction of the ghost c
values using the energy and momentum constraint equati
This procedure, in combination with our lapse and shift
setting conditions which insure that the hypersurface norm
at the boundaries do not point into the grid, has given sta
accurate, and second order convergent results.

Finally, we have developed flux splitting numerical met
ods for solving hyperbolic formulations of the Einstein equ
tions which are second order accurate for smooth solutio
even when the eigenvalues and eigenvectors of the cha
teristic matrix are spatially varying. These methods are ba
on decomposing flux differences between adjacent grid c

f
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into linear combinations of the eigenvectors of the charac
istic matrix. We show that these methods are formally sec
order accurate and, in practice, second order convergen

B. Relevance of results and future directions

Our results suggest that hyperbolicity can be a use
guide to picking equation formulations for numerical integ
tion of the Einstein equations. When eigenvectors are inc
plete, or some eigenvectors are nearly linearly depend
some solutions to the equations will tend to grow witho
bound or by large factors. In 2D and 3D, the ADM an
ADM-like equation formulations for non-diagonal metric
fail to have a complete set of characteristic eigenvectors
anyvalue of the energy constraint coefficient. This may be
the root of some of the instabilities seen in 3D ADM code

However, hyperbolicity, which involves only the princip
terms in the equations, is not the whole story. The constr
equations relate derivatives of some quantities~the constraint
quantities! to nonlinear terms involving additional quantitie
so the actual evolution of the constraint quantities
constraint-satisfying solutions may be very different from t
evolution implied by the ‘‘constraint’’ eigenmodes, whic
satisfy equations without source terms. It seems to be ad
tageous if the speeds of the short-wavelength errors in
constraint quantities, which are the ‘‘constraint’’ mode eige
values, differ substantially from the propagation speeds
the major features in the constraint quantities. In 1D, b
the ADM and the no-reset BM formulations are safely h
perbolic forn'0.5, but the former is substantially more a
curate because no-reset BM has the same speeds fo
‘‘constraint’’ eigenmodes and the features in the constra
quantities, whereas ADM has different speeds. How much
an advantage it is to have different speeds depends on
dominant source of errors. In a gauge wherehxx is close to 1,
the dominant numerical errors in the constraint quantities
associated with features in the same quantities, but i
gauge where the dominant numerical errors are assoc
with features inhxx , it does not make much differenc
whether the ‘‘constraint’’ eigenmodes and features in
constraint quantities have the same velocities. In gen
black hole spacetimes, it is probably not possible to fin
gauge where the physical waves dominate the metric; th
fore, the separation of speeds may not make much differe
in accuracy for 2D and 3D calculations of greatest phys
interest.

The eigenmode decomposition in higher dimensions
pends on a chosen direction of propagation, as do the c
binations of the actual variables which can be identified
‘‘longitudinal,’’ ‘‘constraint,’’ and ‘‘physical’’ quantities. In
addition, putting the equations into first-order form require
choice of derivative ordering, which has important effects
the hyperbolicity of the system. A ‘‘directional splitting’’ ap
proach to solving the transport steps, in which] tq1]kF

k

50 is solved separately for each coordinate directionk,
does, at least for some choices of derivative ordering, al
the identification of ‘‘longitudinal,’’ ‘‘constraint,’’ and
‘‘physical’’ eigenmodes for one coordinate direction at
time. The decomposition involves projecting theDki j ’s and
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Ki j ’s perpendicular to and into the constant-xk surfaces. The
eigenvectors can be constructed explicitly.

Using the mixed coordinate componentsDki
j and Ki

j as
variables when the metric is not diagonal gives complica
source terms in theDki

j evolution equations, because th
Dki

j are no longer pure derivatives. Another possibility is
take as the variables the components of an orthonormal t
and the projection of the extrinsic curvature onto the triad~or
the Ashtekar variables@15–17#!. The triad formalism, be-
cause the extrinsic curvature tensor projected on the tria
symmetric, has fewer variables than the mixed coordin
component formalism. In neither case would the variables
simply related to the eigenvectors of the characteristic ma
when the metric is non-diagonal or the triad vectors are
along the coordinate directions; thus, there is no obvio
advantage to trying to generalize our mixed variables in
to generic 2D and 3D calculations. However, we plan
explore these questions further.

Our approach to dynamic gauge conditions, name
implementing a simple hyperbolic evolution during ea
time step, then resetting the lapse and the shift between
steps, is general. A hyperbolic evolution during each ti
step allows the use of flux-based wave decomposition
merical methods. A long-term strictly hyperbolic evolutio
however, is destroyed in all our hyperbolic formulatio
when we reset the lapse and shift. Despite this, resetting
gauge can be used to increase the accuracy and stabili
our 1D calculations. Achieving the same goal in 2D or 3
calculations will be more difficult. There is no one longitu
dinal direction, and there is not enough gauge freedom
control the longitudinal components of the metric and extr
sic curvature for all directions. What gauge resetting con
tions are most effective in 2D and 3D remains an open qu
tion.

Our boundary condition results indicate that simple o
going wave boundary conditions based on the eigenmode
the characteristic matrix are not valid in general and are
consistent with the constraint equations. On the other ha
extrapolation~in particular, quadratic extrapolation! is a nu-
merically dangerous procedure. Although one can use c
straint extrapolation to constrain certain linear combinatio
of the variables, this technique is likely to be less effective
higher dimensions than in 1D because the number of v
ables increases more rapidly than the number of constra
Using an outgoing wave boundary condition based on
Weyl tensor to further constrain the variables is problema
in the general case. While the peeling theorem@36# in an
asymptotically flat spacetime does show that the incom
wave projection of the Weyl tensor falls off much more ra
idly than the outgoing wave projection in the wave zone, o
cannot assume that the outgoing wave dominates in 3D
merical relativity calculations, which typically have to b
truncated at best in the inner part of the wave zone. T
ingoing part of the Weyl tensor contains non-radiative qua
static quadrupole moment contributions which cannot be
sumed to vanish.

The flux-based wave decomposition numerical meth
we have presented for hyperbolic formulations of the E
stein equations are completely generalizable, and sho
7-20
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prove useful for calculations in black hole and Brill wav
spacetimes where the eigenvectors and eigenvalues hav
nificant spatial variation. We hope to extend our explorat
of hyperbolic methods to include the use of limiters a
upwind differencing. Limiters will be used to suppress sh
wavelength numerical instabilities. With upwind differen
ing, one does not need ghost cells at the apparent hor
boundary of an excised black hole, where the eigenmodes
purely ingoing.

In conclusion, we have developed basic methodolog
for hyperbolic formulations of the Einstein equations, whi
improve accuracy and stability in 1D, and which we thi
merit further exploration in the context of numerical relati
ity calculations of more substantial physical interest.
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APPENDIX: SECOND ORDER ACCURACY
OF FLUX-BASED WAVE DECOMPOSITION

In the wave propagation stage of solving for the tim
evolution of a hyperbolic system, the equations being sol
are exact conservation laws@Eq. ~54!#. The integral form of
the conservation law can be used to update the averageq’s in
the i th cell,

qi
n11[

1

DxEcell i
qn11dx

5qi
n2

1

Dx

3F E
tn

tn11
Fi 1(1/2)dt2E

tn

tn11
Fi 2(1/2)dtG , ~A1!

where i 6 1
2 denotes values on the cell boundaries. We b

our discussions of accuracy on Taylor series expansion
both t andx, assuming that the cell sizeDx and the time step
Dt5tn112tn are the same order. Time and spatial deriv
tives are related by the wave propagation equation, Eq.~54!,
andF is assumed to depend onq andx. Second order accu
racy means that the error in one time step inqi

n11 decreases
faster than (Dt)2 asDt andDx go to zero.

ExpandingF in a Taylor series in time,
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E
tn

tn11
Fi 6(1/2)dt'Dt Fi 6(1/2)

n 1
1

2
Dt2] tFi 6(1/2)

n

1
1

6
Dt3] t

2Fi 6(1/2)
n . ~A2!

In order thatqi
n11 be accurate to second order while negle

ing the last term in Eq.~A2!, ] t
2F must be continuous inx.

From the evolution Eq.~55! for F, assuming the dependenc
of F on q is analytic, second order continuity in] t

2F is guar-
anteed by second order continuity in]x

2F. The resulting
equation is

E
tn

tn11
Fi 6(1/2)dt'DtFi 6(1/2)

n 2
1

2
Dt2A i 6(1/2)~]xF! i 6(1/2)

n .

~A3!

Let Fi be the cell-centered values ofF, which differ from
F(qi ,xi) by a term of orderDx2]x

2Fi . Then expandingF in a
Taylor series inx about the cell-center value,

Fi 6(1/2)
n '

1

2
~Fi

n1Fi 61
n !2

1

8
Dx2~]x

2F! i
n

[Fi
n6

1

2
DFi 6(1/2)

n 2
1

8
Dx2~]x

2F! i
n . ~A4!

Since the second-order error terms are thesamefor Fi 1(1/2)
andFi 2(1/2) , and change the same way whenFi andFi 11 are
replaced byF(qi ,xi) and F(qi 11 ,xi 11), they cancel in the
difference of the flux integrals in Eq.~A1! and can be omit-
ted, if ]x

2F is continuous.
To obtain a second-order accurate contribution toqi

n11

from the second term in Eq.~A3!, it is sufficient thatA i 6(1/2)

and (]xF) i 6(1/2)
n be accurate to first order. In methodII ,

A i 6(1/2) is approximated to first order by12 (A i1A i 61). A
Taylor expansion of (]xF) i 6(1/2)

n gives, to first order,

~]xF! i 6(1/2)
n '

DFi 6(1/2)
n

Dx
. ~A5!

Flux-based wave decomposition consists of decompos
the flux differencesDFi 1(1/2)

n into a sum over eigenvectors o
the characteristic matrix, and similarly forDFi 2(1/2)

n . Differ-
ent versions evaluate these eigenvectors at different lo
tions. From the point of view of smooth solutions, the pr
ferred location is to base the decomposition ofA i 6(1/2) at the
respective cell boundaries. The decomposition ofDFi 1(1/2)

n

into a sum of right eigenvectors of the matrixA i 1(1/2) can be
written

DFi 1(1/2)
n 5Ri 1(1/2)Gi 1(1/2) , ~A6!

whereRi 1(1/2) is a matrix whose columns are the right eige
vectorsr i 1(1/2)

p , and the column vectorGi 1(1/2) consists of
the coefficients of the decomposition,g i 1(1/2)

p . Then

A i 1(1/2)DFi 1(1/2)
n 5Ri 1(1/2)Li 1(1/2)Gi 1(1/2) , ~A7!
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where Li 1(1/2) is the diagonal matrix of eigenvalues o
A i 1(1/2) . Let l i 1(1/2)

p be the pth eigenvalue, or wavespee
and letW i 1(1/2)

p [g i 1(1/2)
p r i 1(1/2)

p , wherer i 1(1/2)
p is the pth

eigenvector, i.e., the pth column ofRi 1(1/2) . Equation~A7!
can be written

A i 1(1/2)DFi 1(1/2)
n 5(

p
l i 1(1/2)

p W i 1(1/2)
p . ~A8!

Combining Eqs. ~A3!–~A5! and ~A8!, and noting that
DFi 1(1/2)

n 5(pW i 1(1/2)
p , gives

E
tn

tn11
Fi 1(1/2)dt'DtFFi

n1
1

2 (
p

W i 1(1/2)
p

2
1

2

Dt

Dx (
p

l i 1(1/2)
p W i 1(1/2)

p G , ~A9!

and a similar expression for the flux integral ati 2 1
2 . In Eq.

~A1!, these give forqi
n11 an expression which is easil

shown to be equivalent to the substitution of Eqs.~58! into
Eq. ~57!. Thus, we have shown that methodII of Sec.
VIII B 1 is second-order accurate for]x

2F continuous.
Method I is based on expressions similar to Eq.~A9! for

the flux integrals, but the eigenvectors inW i 1(1/2) , for in-
stance, are derived fromA i for the left-going eigenmodes a
the i 1 1

2 interface and derived fromA i 11 for the right-going
eigenmodes. In the last term in Eq.~A9!, the eigenvalues
l i 1(1/2)

p are approximated to first-order accuracy as the av
age of the eigenvalues associated with the adjacent cells
the W i 1(1/2) are only zeroth-order accurate. The first-ord
corrections to the eigenvectors are the same at thei 6 1

2 in-
terfaces, if the same eigenmodes are left and right-goin
each interface and the first derivatives of the eigenvectors
continuous.~Recall that in methodI , the sign of the average
eigenvalue at a given interface determines the direction
.
s

06403
,

r-
ut

r

at
re

of

the eigenmode at that interface.! The second condition nor
mally follows from continuity of]xA, but may fail if some
of the eigenmodes are nearly degenerate. With this qualifi
tion, the first-order corrections in this term will cancel b
tween the two interfaces, as long as the same eigenmode
left- and right-going at each interface. When the averag
eigenvalues at the cell interfaces do change sign, contin
of the first derivatives of the eigenvalues implied by con
nuity of ]xA meansl i 1(1/2)

p and l i 2(1/2)
p are both of order

Dx. The last term in Eq.~A9!, which becomes the last term
in Eq. ~58!, is then second-order accurate by itself. The ter
first-order inDt in Eqs. ~57! and ~58! will differ in second
order from their values in methodII , but combine by con-
struction to give

(
L

W i 1(1/2)
L 1

1

2 F(
R

W i 1(1/2)
R 2(

L
W i 1(1/2)

L G
5

1

2 F(
R

W i 1(1/2)
R 1(

L
W i 1(1/2)

L G[ 1

2
DFi 1(1/2)

n

~A10!

and

(
R

W i 2(1/2)
R 2

1

2 F(
R

W i 2(1/2)
R 2(

L
W i 2(1/2)

L G5
1

2
DFi 2(1/2)

n .

~A11!

The result forqi
n11 is the same as methodII through second

order, as long as the eigenvectors are smooth as discu
above. While eigenmodes are degenerate for many hy
bolic formulations of the Einstein equations, the eigenvect
can be chosen with the required smoothness.

Both methods, when the smoothness conditions are s
fied, are equivalent through second order to the L
Wendroff finite difference scheme presented in Sec. VIII B
.
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