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We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding plane
waves depends on choices of equation formulations, gauge conditions, boundary conditions, and numerical
methods, all in the context of a first-orde#3 approach to the Einstein equations, with basic variables some
combination of first derivatives of the spatial metric and components of the extrinsic curvature tensor. Hyper-
bolic schemes, specifically variations on schemes proposed by Bona and Massmderson and York, are
compared with variations of the Arnowitt-Deser-Misner formulation. Modifications of the three basic schemes
include raising one index in the metric derivative and extrinsic curvature variables and adding a multiple of the
energy constraint to the extrinsic curvature evolution equations. Redundant variables in the Boha-Masso
formulation may be reset frequently or allowed to evolve freely. Gauge conditions which simplify the dynami-
cal structure of the system are imposed during each time step, but the lapse and shift are reset periodically to
control the evolution of the spacetime slicing and the longitudinal part of the metric. We show that physically
correct boundary conditions, satisfying the energy and momentum constraint equations, generically require the
presence of some ingoing eigenmodes of the characteristic matrix. Numerical methods are developed for the
hyperbolic systems based on decomposing flux differences into linear combinations of eigenvectors of the
characteristic matrix. These methods are shown to be second-order accurate, and in practice second-order
convergent, for smooth solutions, even when the eigenvectors and eigenvalues of the characteristic matrix are
spatially varying.
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[. INTRODUCTION of calculations of 1D nonlinear colliding gravitational plane-

The goal of projects such as the ground-based Laser Inwave spacetimes. We have chosen to investigate hyperbolic
terferometric Gravitational Wave ObservatofiylGO) and  formulations of the Einstein equations, as they are well-
the space-based Laser Interferometer Space Ant@ri8a) posed, they can be treated with advanced numerical methods,
is to detect gravitational waves, and to use them as a neand they can help in the analysis of boundary conditions
observational window for relativistic astrophysics. A primary [3,4]. We call a set of equatiorntsyperbolicif the character-
source for these gravitational waves is the coalescence ddtic matrix can be diagonalized with a complete set of eigen-
binary black holeg1]. The highly nonlinear and dynamical vectors and real eigenvalues, following LeVed6é This is
merger phase of this coalescence process can only be calatelled strongly hyperbolid 6] in much of the literature. The
lated by numerical relativity, and obtaining merger gravita-lapse and the shift are evolved during each time step in a
tional waveforms, both for theoretical understanding and fomanner which is consistent with a simple hyperbolic scheme.
detection, is dependent on long-term stable and accurate nBetween time steps, the lapse and the shift are reset accord-
merical evolutions. A worldwide collaboration of numerical ing to conditions which are unconstrained by the need to
relativists, physicists, mathematicians, and computer scierpreserve hyperbolicity. In this way, the evolution of the hy-
tists has devoted considerable effort over the last 20 years foersurfaces and spatial coordinates can be controlled to pre-
develop 3D codes to calculate black hole merger gravitavent large gradients, coordinate pathologies, and instabilities.
tional waveforms, and significant progress has been mad&ome of the redundant variables of a hyperbolic formulation
especially in the last few years. However, more groundworkcan also be reset between time steps. This resetting can have
is required before calculations of 3D binary black holepositive or negative effects on accuracy and stability, de-
merger templates for a variety of scenarios can be completegending on the eigenmode structure of the reset system. Fi-
Greater understanding of equation formulations, boundaryally, we find that boundary conditions should not be based
conditions, and dynamic gauge conditions, and the use afaively on the eigenmodes of the hyperbolic decomposition
advanced numerical methods, is essential to achieve thfer two reasons(a) satisfying the constraint equations at the
goal. We believe that an important foundation for this underboundaries generically requires the presence of incoming
standing is extensive testing and analysis in 1D and 2Deigenmodes, andb) even whether the “physical” eigen-
Choptuik’'s discovery of black hole critical phenomena in modes are purely outgoing at the boundaries is gauge depen-
spherically symmetric gravitational collap$g] is an ex- dent.
ample of the potential of careful numerical work in 1D. Many ways of formulating evolution equations for the

This paper reports the methodology, results, and analysispatial metric in Einstein’s theory of general relativity are
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possible. The most thoroughly tested formulation in numeriwhich maintain stability at least for the limited dynamical
cal relativity is the Arnowitt-Deser-Misne(ADM) set of  times we can explore with plane waves. Three basic first
equationg 7]. The standard ADM equations in vacuum are order systems are studied: BM, AY, and ADM. Hyperbolicity
is obtained in our BM and AY formulations by adding mo-
i (1) mentum constraint terms to the ADM equations, as in the
standard formulations. The BM, AY, and ADM formulations
@) are modified by _us_ing “mixed” forms(wit_h one ir!dex
raised of the extrinsic curvature and metric derivatives as
(00— L K = —aliy a[(s)Ri_+KKi_]_ 3) varigbles. The BM for_mulations are fqrther modified by re-
A 5 ! ! setting redundant variables, which gives an overall ADM-
; ; o like evolution. Further, all our formulations are varied b
In these equationsK;; is the extrinsic curvaturek adding a multiple of the energy constraint to the evolutign

=K'/, p'is the shift,a is the lapseh;; is the 3-metric, and b p N 1Y Specificall
(3)Rij is the 3D Ricci tensor. The vertical bar represents gquations  for the extrinsic curvature. pecitically,

covariant derivative taken with respect to the 3—ge0metryE nach;;/ i is added to Eq(2), and _.n“wli/ 2 is ad<_jed to
Equation(3) evolves what we call the “mixed” form of the ~=d- (3), wheren, the energy constraint coefficient, is an ar-

extrinsic curvature tensor. The energy and momentum Corﬁitr_ary real number. The A!I)M_formulation is actually hyper-
straint equations are, respectively olic as long as the longitudinal-transverse components of

the metric and extrinsic curvature can be assumed to vanish

(ﬁt_‘cﬁ’)hij: _ZC(Ki

(= LKij= = aj+ al DRy + KK —2K{'K 1,

&= 1/2[(3)R—KiiKij+K2]=O, (4) identically, andn<0 or 0<n<1. Comparisons of results
from our various ADM, BM, and AY calculations allow us to
MiZKij”—K“:O. (5) identify and analyze aspects of equation formulation which

significantly improve accuracy and/or stability. These are
While successful calculations using the ADM formulation mixed variables, a separation of the constraint error speeds
have been done in 2D, 3D calculations generally crash afteirom the other characteristic speeds of the system, and main-
just a few dynamical times. taining long-term effective hyperbolicitffaking into account
Alternative formalisms include many versions of hyper-resetting of redundant variables, but ignoring deviation from
bolic systems, which add redundant variables and/or constrict hyperbolicity due to resetting the lapse and the kshift
straint terms to the equations to allow a complete set of While the same energy constraint terms as specified above
eigenmodes describing evolution along the characteristicaire present in the standard BM formulation, numerical
As indicated by Reuld6], there are an infinite number of implementations have been carried out, as far as we are
hyperbolic formulations. We focus on variations of relatively aware, only forn=0 (the Ricci evolution systejnand n
simple schemes proposed by Bona-Ma¢Bd) [8] and =1 (the Einstein evolution systemAdding these energy
Anderson-York(AY) [9], in which the characteristics propa- constraint terms to the AY formulation is a special case of the
gate either at local light speed or along the hypersurfacenore general Kidder, Scheel, and Teukol$k®| schemes.
normals, and in which the variables include first derivativesShinkai and Yonedfl5-17 analyzed the stability and accu-
of the metric. racy properties of first order hyperbolic systems using Ash-
Initial attempts at using hyperbolic methods in 3D tekar’'s connection variables in plane-symmetric spacetimes,
were based on the BM formulatiof#], but did not use and found that the addition of multiples of the constraints to
numerical methods which take advantage of the eigenfieldthe dynamical equations improved accuracy and stability.
of the system. These codes were not much more successflihese results have been extended to ADM systems of equa-
than ADM. Nonhyperbolic Baumgarte-Shapiro-Shibata-tions[18].
Nakamura(BSSN scheme$10,11], based on conformal de- Gauge choices in most previous implementations of hy-
composition of the metric, have shown considerable succegserbolic formulations have been limited in order to preserve
in improving the stability of 3D calculations for weak and the hyperbolicity of the system. Since no time derivatives of
strong gravitational fields and a variety of spacetime slicingshe lapse and the shift occur in the dynamical equations for
[12]. Alcubierreet al.[13] report that a BSSN scheme, com- the other variables, the lapse and the shift can be reset arbi-
bined with excision and certain dynamic gauge conditionstrarily at any time during the numerical evolution, as pointed
allows accurate numerical evolutions of 3D distorted dy-out by Balakrishnaet al. [20]. Our gauge evolution main-
namic black holes up to hundreds of dynamical times. tains strict hyperbolicity during each time step, but the lapse
In the context of considering only first derivative vari- and shift are reset periodically between time steps in order to
ables, a great variety of hyperbolic schemes have been pre@ontrol the long-term evolution of the coordinate system.
posed that involve adding constraint terms to the equation¥he resetting may be accomplished by imposing algebraic
[14-19. Kidder, Scheel, and Teukolskj19] examine a conditions, by solving elliptic equations, or by evolving the
rather general class of such schemes, which include the A¥apse and/or shift through dynamical equations implemented
[9] and Frittelli-Reula[14] formulations as special cases. independently of the main hyperbolic system.
Among these schemes are some which allow for long-term Poor boundary conditions can result in the introduction of
evolution of a Schwarschild black hole in 3D. instabilities or inaccuracies into the numerical grid. In nu-
In this paper, we explore ways of using hyperbolic meth-merical relativity, boundary conditions have usually been
ods that combine superior accuracy with gauge conditionsather crudely implemented. Some sort of outgoing radiation
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conditions are imposed on all components of the metric, oare first order in space and time, and incorporate first deriva-

boundary conditions are based on an analytic exterior soluives of the spatial metric as additional variables. The deriva-

tion [12,21]. One attraction of hyperbolic methods has beentive variables as defined by BM are

the possibility of basing boundary conditions on the eigen-

modes of the characteristic matrix. However, it is clear from 1

our plane-wave calculations that, particularly for the “non- Dkijzzakhij . (7)

physical” eigenmodes involving the non-transverse-traceless

parts of the metric, making the amplitudes of the incoming

eigenmodes at the boundaries zero can lead to serious violt? our applications with a diagonal metric, we find that

tions of the energy and momentum constraints. Furthermorewitching to the “mixed” variables

what constitutes an incoming eigenmode is dependent on the

formulation of the equations as well as on gauge conditions. 1 ‘ , '

Even imposing purely outgoing boundary conditions on the DkiJzz(&kh”)h”, K,J=K;h' (8)

“physical” eigenmodes of the hyperbolic system is not

strictly correct, as nonlinear coupling between the “physi-

cal” and “non-physical” eigenmodes in the source terms canfrom the “lowered” variablesD,;; andK;; , improves accu-

generate a gauge-dependent admixture of outgoing and iiacy significantly without other complications. However,

coming “physical” eigenmodes. Our boundary conditions with a non-diagonal metrid), ;! andK;! are not symmetric

are based on quadratic extrapolation of the variables fronin i andj, and the evolution equations fax,;! acquire com-

inside the grid to the first ghost cells on either side of theplicated source terms.

grid. The ghost cell values are then corrected to make sure Below, we present the first order evolution equations for

the constraint equations are satisfied on the boundaries. F&P plane waves travelling along thedirection and de-

1D plane waves, projection of the Weyl tensor onto a nullscribed by a diagonal spatial metric, using our mixed vari-

tetrad gives a gauge-independent measure of the left argbles. The equations wilh;; andK;; as variables are given

right-going components of the gravitational radiation. Ourin the BM paperg8]. A few points need to be made about

numerical solutions for colliding plane waves show that ashotation. First, since our 1D problem involves derivatives

the wave packets leave the grid, the incoming components afnly in the x-direction, we simplify our notatiom, —D;.

the Weyl tensor are in fact zero even though there are norSecond, a prime indicates a spatial derivative with respect to

zero incoming “physical” eigenmodes of the characteristicx. Third, our symbol for the shift is simply instead ofg'.

matrix. We suppress the index on the shift because there is only one
Our focus in applying hyperbolic methods to the Einsteinnon-zero component in this 1D case.

equations is on achieving second order accuracy for smooth The evolution equations foh;; are obtained from the

solutions, when the eigenvectors and eigenvalues of the sygefinition of the extrinsic curvature of the hypersurfaces, Eq.

tem are a function of position. Finite difference methods(1), and are

such as MacCormack, Lax-Wendroff, and staggered leapfrog

[22], which are often used in numerical relativity, give good dho=2h [ BD X+ B’ — aK ], 9)

second order accuracy for smooth solutions, but standard

wave propagation algorithms for hyperbolic systems as pre-

sented by LeVequE23] are not second order accurate when dihyy=2hy,[ 8DV~ aK],
the eigenvectors and eigenvalues are spatially varying.
LeVeque suggested a new wave propagation meft@dpifor dh,=2h,J BD2— aK7]. (10)

variable coefficient flux problems which we develop and ap-
ply to our 1D nonlinear gravitational plane-wave calcula-
tions. We show in the Appendix that the new methods are
formally second order accurate even with varying eigenvec-
tors and eigenvalues, and verify second order convergence
our numerical results.

The evolution equations fd; I are obtained by taking the
time derivative ofD,;! in Eq. (8) and interchanging space
gnd time derivatives. The resulting equations are

D+ a0, — BD =B’ + aK,X]=0, (11
Il. EVOLUTION EQUATIONS
The most general spatial metric for a nonlinear 1D plane Dy’ +d,{ — BDy'+ aK,/]=0,
wave traveling in thex-direction is

Z+ _ Z+ Z1 — .
d=h,,dx+ hy,dy?+h,.d72+ 2h, dydz  (6) D"+ &l = D al’]=0 (12
in which hy,, hy,, h,,, andhy, are functions ofx alone. TheK; variables are evolved from the Einstein equations,
We will restrict our discussion to a diagonal metric in this Eq. (3). We include the addition of an arbitrary multiple,
paper. of the energy constraint in these equations. After organiza-

The standard ADM evolution equations are first order intion into a conservation law form, thi€;! evolution equa-
time and second order in space. Most hyperbolic formalismsions are
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a la normals, we incorporate them into the hyperbolic system in a
K+ dy —ﬁKxX+h—(;+ D,/+D, } consistent way. Our advection equations are
XX
1o #Q—pBQ"'=0, dDq—dBDql=0, 7
=— B K+ af KXK'+ h—{—(Dyy+ D,)-D,'D,’ , _
xx| & whereDo=Q’/Q. Our advection ofQ corresponds to har-
o N monic slicing[25].
~D/DA~ D —+Dy+ Dzz) H — —af, (13) There is a danger with resetting the lapse and the shift, in
a 2 that fluctuations in3" andDg, can feed back on one another
through the evolution equations fér,* andK,*. The reset-
IR Y+ 0y — K+ hiDyy} ':l(ﬂg gauge conditions of Sec_. \% _im,ply that a quctu_atio_n in
X +. Is balanced by a fluctuation iB8’, and a fluctuation in
5D D, is balanced by a fluctuation iDq. For certain time
, i n intervals between resetting, if these fluctuations propagate at
== B'Ky+a KK~ | 226, (143 jiferent speeds, they may drift in such a way that they re-
inforce rather than cancel over much of the time interval.
@ Although the standard procedure is to keep the shift constant
K+ dy| — B+ h—DzZ} in hyperbolic schemes, we find that if we advBgj with 8’
> constant, such a positive feedback can occur, resulting in a
D,’D,'] n runaway instability. However, if we advect bolh, and 8’
=—B' KA+ al KK~ h - Ea& (14b  along hypersurface normals, the evolution is stable. Our ad-
XX

vection equations fog and 3’ are

aB—BB' =0, 4B —d{BB"]=0. (18

where we writea& so that the division between the flux
terms and the source terms is apparent:

IV. CONSTRAINT EQUATIONS

o
af=—39—(D,Y+D,5) |+ o[ KK+ KH+KIKA
X hxx( y #D2) | +al KK G K The energy and momentum constraints must be satisfied
, by the initial conditions and throughout the evolution. We
+ (——DXX)(Dnyr D,%) use these constraints to obtain the initial conditions. We do
hux| | @ not impose the constraints during the evolution of the dy-

namical equations. However, we do insure that the boundary
_(Dnyyy+ DnyzZ+ DzZDzZ)] (15) conditions are consi_stent with the constraint equations, and
we use the constraints to check for accuracy and conver-
gence as the numerical evolution proceeds. The energy and

Il. GAUGE EVOLUTION momentum constraint equations are, respectively,

We let the lapse and the shift evolve during each time step 1
according to a prescription which simplifies the hyperbolic €= —(9x[h—(Dyy+ D,
system, and we periodically reset the lapse and the shift be- >
tween time steps to control the longer term evolution of the 1 Yy 2 - Xy ,
coordinates and to keep gauge pathologies from developing. - h_xx[Dy D,’+D,'D;"+ D, D, + D, (Dy’+D;)]
We defer discussion of resetting gauge conditions to Sec. V.
Here, we discuss how the gauge evolves between resettings.  + K/ (K +K;5)+KYK,*

For a hyperbolic formulation of the equations, the natural _o (19
choice for the lapse between resettings is the Choquet-Bruhat — -
algebraic gauge conditiof25,26], because it simplifies the __ y DN MYk Y_P 2K 2 y 7\ X
fluxes and source terms in the hyperbolic system of equa/—\/lx K+ K =Dy K =D (D DOK,

tions considerably. This gauge condition is =0. (20
a=Qydeth;), (16) V. RESETTING GAUGE CONDITIONS
whereQ is a specified function oX,t. The lapse and shift are periodically reset between time

We vary the Choquet-Bruhat algebraic gauge condition bysteps in order to implement a dynamic spacetime slicing
makingQ andQ’ (which equalss,Q) variables in the hy- which is unconstrained by the need to maintain a hyperbolic
perbolic system, rather than specified functionsxdgf We  system. Our resetting gauge conditions are chosen to prevent
chooseQ andQ’ as variables so th&' can be included in  pathologies and/or strong gradients from developing in the
the flux of K,* as part of the hyperbolic system. Otherwise, hypersurfaces and spatial coordinates, and to help stability
Q" would have to be considered part of the sourceKgf, properties at the boundaries of the grid. Resetting introduces
and evaluatin@” from the lapse involves second derivatives discontinuities into the time evolution of the lapse and the
of the metric. By advectin@ andQ’ along the hypersurface shift at a given spatial location. However, in the-3 for-
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malism, no time derivatives of the lapse and the shift appeaBubstituting this requirement into the evolution equation for
in the equations. Resetting has no effect on the dynamicdl,, [Eqg. (9)], we obtain the shift resetting condition,
state of the system or on the gauge at a given time; it just

affects how the coordinates evolve after the resetting. B=aKX. (29
Changes in spacetime slicing which maintain the explicit

planar symmetry only directly impaét,*. Nonlinear source VI. HYPERBOLIC SYSTEMS

terms in the evolution equation fét,* have the potential to . ) )

generate runaway growth &,* whenK X is positive. Our The evolution equations presented in Sec. Il have been

lapse resetting condition drivég* toward a small negative Cast in a _first order, qux-qonservative form, represented by
value to insure against this. In addition, a negatig im-  the following set ofl equations

plies that the proper distance between hypersurface normals B
displaced in thex-direction increases with time. Together da+ o Fa)]=Sa),
with our shift resetting condition, which keeps, roughly
constant, this results in hypersurface normals which poin
outward at the_bogndarles Xof the computational domain. F(q)=A(X)q, (27)
Some features irK,* and D,* potentially associated with

instability advect along hypersurface normédse Sec. IX  where thel x| characteristic matriA(x) is the flux Jaco-
and are then advected out of the grid before they can dbian,o?q[F(q)]. The system is hyperbolic &(x) has a com-

much harm. plete set of eigenvectors and real eigenvalues.
The equation for the lapse is derived by imposing the
condition at the time of resetting

(26)

¥vhereq is a vector ofl variables. The flux vector is given by

A. Modified Bona-Massoformulation

The standard BM formulatioh8] creates a hyperbolic
scheme by introducing the redundant variableswhich are
defined as

athx_ﬁaxKxX:_F[Kxx_(KxX)T]a (21)

where K,X)t is a specified “target” value, anll is a damp-

ing constant, which is chosen to be comparable to the char- V,=D; K- DK;=V,= D,/Y+D,%. (28)

acteristic frequency of the waves we are propagating. Substi- o

tuting this condition into the evolution equation fi§g* [Eq. ~ The momentum constraint is used to evolg:

(13)] and simplifying using the energy constraint, we obtain

our lapse resetting condition, IVt ax[ = BVx]=a[ DK+ DK = (D)) + DK,
—(a'la)(KY+ KA. (29

D,'D, . .
FIK = (K 7]+ KKK = KPYK A+ ——— We densitize the lapse according to the Choquet-Bruhat
hx algebraic conditior(see Sec. I, which simplifies the stan-

a' dard BM system of equations considerably. Wit

h_) (22 —Qydet(h;j) and (A =dyIn @)—Dg+D+DY+D/, the

xx fluxes forK;! reduce to

a' B
é’xh—xx =«

_DXX

To limit initial transients in the lapse, given our initial con- a
dition K, X=0, the target value is made proportional to (1 F(K)=—BK+ o
—T't/4 XX
—e ).
In our colliding wave calculations, Eq22) as it stands
can cause the lapse to become negative at the edges of the F(Kyy): —3Kyy+
grid, if the second derivative of the lapse becomes too nega-
tive. To prevent this, we replacg the expression in square
i (64
brackets in Eq(22), by F(K2) = — BK A+ —
XX

Do+ D+

n
Z—E)V } (30)

(%

hXX

y n
Dy~ 5 Vi),

n
D,*— va). (31)

SH# (23 Our advection ofQ and Dy, as described in Sec. lll,
V1+(S/Sim)? corresponds to harmonic slicing, a special case of the stan-

dard BM lapse evolution equation. We also advyeendg’,
whens is negative, s&> —|S;i|. A side effect of the lim- whereas the standard BM formulation specifies the shift as a

iter is to allowK X to become more negative than its targetKnoWn function ofx andt.

value.
We choose an equation for the shift so that at the time of B. Modified Anderson-York formulation
resetting,hy, is advected along hypersurface normals: The AY formulation differs from the BM scheme in how
the momentum constraint is used to make the system hyper-
dthyy— Bhy=0. (29 bolic. The AY scheme eliminates the need for the BM redun-
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dant variabled/; by incorporating the momentum constraint n
into the evolution equation for thf;; variables, which are 2— >
defined as D=1\ 1= / [y + 171, (39
fkij:Dkij+hkiVj+hiji . (32)
The V; variables in this equation are not separate variables, D,'= 2(1-n) [(2=mfy+nf7],
but rather denote the combinations of thés given in Eg.
(28).
The AY formulation replaces the BMD,;; with f;, Dzz=m[(2—n)fzz+nfy>’]. (40

which are simply the spatial metric derivative terms in the
Kj; fluxes of the BM formulation. Using this as a guide, we
generalize the AY schem@vhose original form is restricted
to Ricci evolution,n=0) to allow for non-zero energy con-
straint contributions. This leads to

These relations are the inverse transformation of the system
of Egs.(34) and(35). One can see that=1 is not allowed.

TheK;! evolution equations are the same as in our modi-
fied BM scheme, with the understanding again thatDfsein
n the source terms are not separate variables, but the above
fiij=Duij T hiiVj+hyVi— Evkh” . (33)  linear combinations of’s [Egs. (39) and (40)]. The fluxes

are defined so thé variables can replace the expressions

involving D;! in the fluxes of our modified BM scheme. The

The generalization in Eq33) works as long as the inverse .
9 q33) g following fluxes result:

transformation fronf,;; to Dy;; exists, which is the case for
n#1. An evolution equation is obtained fdk;; from Eq. w
(33) by using the momentum constraint to eliminate the time F(KY) == BK, X+ — (Do + ), (41)
derivative of theV; variables. For our modified AY scheme, P
we then raise one index so thit!=f,;h'! are our basic
variables. A hyperbolic system results without the need for
the BM redundanvariables V.

For the diagonal metric plane-wave case under consider-
ation, Eq.(33) reduces to @

F(K,Y)=— BKY+ hifyy,
XX

F(K,)=—BK + —1f /2 (42
n hXX
X_— X
he=b+| 2 Z)VX’ (349 The AY formalism imposes the Choquet-Bruhat algebraic
condition on the lapse, as we did in our modified BM
n n scheme. The evolution of the lapse and the shift between
fy’=Dy’~ §Vx’ f,*=D,~ §Vx- (35 gauge resettings is treated in exactly the same way as in our

modified BM formalism.

We have simplified our notation in thég! — f,} for this 1D
problem. Notice thaf,,/=V, andf,’=V,, which contrib- C. Modified Arnowitt-Deser-Misner formulation
ute to fluxes in they andz directions, are not zero. However,
with planar symmetry the divergence of these flux compo
nents vanishes identically.

The evolution equations fdr! are

The simplest of the hyperbolic schemes we present is our
‘modified ADM formulation, which consists of Eq$9) to
(14), (17), and (18), with a=Q+/det(h;;) and a'/a@=Dqg
+D,*+ D+ D" This system is hyperbolic when the met-

n ric is diagonal ifn<0 or 0<n<1. The fluxes foK;' are
&tfxx+dx[—ﬂfxx—,8’+aKXX]=<2—E) aC,  (36) ol N
h_xx DQ+ DXX+ 5

n
oI+ o — BT+ aKyY]= - S aC, (43

2—

F(K)=—BK+ )(Dyy+ D,

a

n n
o PR (15050,

n
&tfzz+ ﬁX[_BfZZ_FaKZZ]: - Eaca (44)

a n
where F(K;)=—BKZZ+—[(1——)DZZ—§DyV

—ID.YK.Y K z_ (DY 7K X
C=[Dy"Ky"+ DK = (Dy+ DK, The hyperbolicity of our modified ADM system of equa-
—(a'la)(KY+KA)]. (38)  tions breaks down fon=0 andn=1. Although our ADM
formulation atn=0 is non-hyperbolic, it is stable. At=1,
TheD’s in Eq. (38) are not separate variables, but denote however, the system is both non-hyperbolic and on the verge
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of being unstable. Fon>1, the equations have complex D
eigenvalues, giving unstable exponential growth of errors. D,
D,?

D. Wave modes K, X

1. BM q= Kyy ' (46)

The hyperbolic system of equations obtained from the K,?
modified BM formulation described in Sec. VI A is V,
Do

g+ [ A(X)a]=5(q), (49) B’

where and
|

-8B 0 0 a 0o -1

0O -8B O 0 a 0 0

0 0O -8B O 0 a 0 0 0

o o n o
e 0 0O -8B O 0 h_xx( 2— 5) e 0
A= 0 X 0o o - o0 _ﬁ(ﬂ> 0 o @)
hXX hXX 2
o 0o £ o o - -Z% ( E) 0o o0
hXX hXX 2

0 0 0 0 0 0 -B 0 0

0 0 0 0 0 0 0 -8B 0
0 0 0 0 0 0 0 0 -pB

The nine eigenmodes of the homogeneous system are obtained from the characteristicAfgtri®jx of the eigenmodes
travel along the light cones. They are

R
2— — |V || KJ=—
2 a

Vh

D+ Dqg+

speeds — B+

a

(48)

The remaining three eigenmodes are simply the variablesalculations, our initial conditions are such that the waves
Vy, Dqg, andp’, which travel along the hypersurface nor- ha_ve this form. _The right-go_ing wave is in the left haI]c of the
mals, with speeds- 3. grid, the left-going wave is in the right half of the grid, and
The eigenmodes of the characteristic matrix, however, dghey are just at the point of colliding. When discussing solu-
not necessarily describe how solutions of the full nonlineafions Of the full nonlinear system of equatl(z)ns, we refer to
system of equations propagate. It is a special property o eytranfverse-tracelegs quant_lt_|e©y3(y— D, 1/\/h_xx and
plane-wave systems that eigenmodes of the full nonlineaf<y’, ~Kz)). the constraint quantities,” + D, )/ hy and

y z H H H X[/
system of equations exist which consist of purely right-going Ky’+K;), and the longitudinal variable®,/vhy, and

y i,
. . K,”. After the waves pass through each other, it is only ap-
y z_ y z _ x ! ! .
waves WithK, = K,*=(Dy’= D,/ Vhyy, purely left-going oo imately true that the transverse-traceless quantities have

waves withK Y+ K,*=—(D,’*=D;)/Vhy, and D,*=K,*  the form of purely right-going and purely left-going waves as
=0. These are solutions of the Einstein equations in a gauggescribed above and it is not at all true that the constraint
with «=1 andB’=0. In our nonlinear colliding plane wave quantities have this form.
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The characteristic speeds apply to small amplitude, short 1 B’
wavelength perturbations in the variables, so that the princi- —(f*+Dg) *| K,*— —],
pal terms(which are first derivative termslominate over the vh @ a

speeds — B+ ——

_\/h_xx.

(49

(f

XX

source terms. The disturbances in the constraint quantities  f Y f2
which propagate along the characteristics will generally be — K, =K
constraint-violating because the constraints explicitly tie the \/h_xx \/h_xx
principal terms to the nonlinear source terms, and require

that they cancel. The longitudinal variablé3,*/h,, and

KX, are not eigenmodes of the homogeneous system. In the . , i ,
full nonlinear systemD,*/ Vh,, andK,* have some features | '€ 'emaining two eigenmodes are the variallgsand 3’
which propagate along the light cones, and some featuredhich travel along the hypersurface normals, with speeds
which propagate along the hypersurface normals. The propa- B

gation of the longitudinal variables is strongly dependent on

the choice of gauge. 3. ADM

2. AY For the modified ADM homogeneous system, the eigen-
There is a complete set of eight eigenmodes of the modimodes, which form a complete hyperbolic systemrier0
fied AY homogeneous system of equations. The six eigener 0<n<(1, consist of “longitudinal” and “physical” eigen-
modes which travel along the light cones are modes propagating along the light cone,

!

2— NK X~ — +
o

(D)Y+ D})}r 2—2)(Kyy+KZZ)}

N| S

1
——|nD*+nDqg+
hXX @
1 speeds: —,Bt\/—_, (508
_[Dyy_DzZ]i[Kyy_Kzz] hxx

Vh

‘constraint” eigenmodes propagating inside the light conepressed in terms of different variabljesand y1—n[D,”

for 0<n<1, +D,4/\hy=[KY+K,7] in ADM. Even for the same value
of the energy constraint coefficiemt what is outgoing in
. ll_n[D Y+ D,F]+[KY+K,?] | speeds BM and AY is different from_what is outgoing in ADM.

hex =7 Y Furthermore, for a given solution, the amplitudes of the BM,

AY, and ADM modes depend on. Whatever the correct
—B+——1-n, (50p ~ boundary condition, its effect on the solution should be in-
\/h_XX dependent of the equation formulation. The relative amount
o ) of right and left-going “constraint” modes is also gauge de-
and theDq and 8’ eigenmodes "“"'th s.pee.dsé. Hyperbo-  pendent, in the sense that the choice of boundary conditions
licity fa|l_s for n=0 because Ehe Iongltlidlr)al eigenmodes i, solving the constraint equations in the initial conditions is
are not independent ?f the clon“str.alnt eigenmodes, rﬁ_or a gauge choice, and this affects the relative valuesDg¥ (
=1 because the two “constraint elgenmodes“are not_ln:je-+DZz) and (K,’+K,?) at all later times. The initial condi-
p_endent of each other, and 011 because the “constraint tions symmetric about the midpoint of the gridxat 10 give
eigenvalues are complex. . T -
purely incoming “constraint” modes for n=0 ([D,”
+DA/\hy==[K,Y+K,*] on the leftright edges of the
grid) initially and at all times until the effects of the wave
Since in numerical relativity, computations are usuallycollision reach the boundaries.
performed on a limited grid within a much larger space, the The “longitudinal” eigenmodes involvindD,* and K,*
boundary conditions should be designed to be consisterdre also formulation dependent, since they are different in
with how waves propagate while they are still inside the grid. ADM from what they are in BM and AY, and they depend on
Even more important, since the evolution equations admit in all three formulations. There is gauge freedom to pose
constraint-violating solutions, constraint violations will any boundary conditions one likes on these modes, but a
propagate into the grid unless boundary conditions are cargsoor choice might give rise to singularities D,* or K,*

VII. BOUNDARY CONDITIONS

fully designed to suppress them. inside the grid.
Consider the “constraint” eigenmodes. They g’ The “physical” eigenmodes[D,’—D,*]/Vh*[K,”
+ D/ —nV,]/Vh*[KY+ K, ] in BM and AY (though ex- —K,’] are the same in all three formulations, and are inde-
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pendent ofn. However, their time evolution is gauge- gives the same values for the variables, and therefore the

dependent because the nonlinear source terms in their evolfiuxes, in the ghost cell and adjoining physical cell, also

tion equations involve the gauge-dependent constraingliminates the incoming “constraint” eigenmodes.

guantities. With our choice of initial gauge, the amplitudes of

(DyY— DA /\hy and K,Y—K,? differ by about 3% after VIIl. NUMERICAL METHODS

the wave collision, so there is typically a 3% admixture of

the incoming “physical” eigenmode as the outgoing waves

approach the boundaries. As described in Sec. VI, all of the formulations we tested,
A gauge-independent measure of the amplitudes of lefhoth hyperbolic and non-hyperbolic, are in first order, flux

and right-going gravitational waves can be obtained by proconservative form. We solve all these systems of equations

jecting the Weyl tensor onto a complex null tetrad, as in theusing a Strang-split methd@2]. In this method, the homo-

A. Strang splitting

Newman-Penrose spin coefficient formali$a], geneous transport part of E@6) and the contributions from
0 the source terms are treated separately. In particular, the fol-
V= =Ruymmw ~Roone T Romewey ~Reoowe lowing straightforward system of ordinary differential equa-

tions is first solved over half a time step

for right/left propagation. A purely right-going wave would Hq=Sa). ®3
have ¥ =0. Our numerical results indicate that plane Then, the transport part of ER6), which contains the flux
waves after a collision are indeed purely outgoing by thisterms, is solved over a full time step

standard. As an outgoing wave boundary condition, using the

evolution equations to evaluate the time derivatives of the aq+dy[F(q)]=0. (54)
extrinsic curvature in the Riemann tensor, this becomes

+ 2[Ry yom ~ Ro@me] (51)

Our methods for solving the transport step are discussed in

(DyY—D;9) _ 1 Sec. VIII B below. The calculation is completed by again
N T\/_+(Kyy— K/ \/? solving Eq.(53) over half a time step.
XX XX We choose to use the Strang-split method because it is
1(D.Y-D[(DY+D,? simpler in the context of how we are handling boundary
42 z y 2T (KY+KD) conditions. An iterative scheme such as the MacCormack
2 \/h_XX \/h_XX y method[ 28] requires repeated implementation of the bound-
ary conditions each time step. However, in the Strang-split
. 1(by'+D;)|(Dy’~D;) £ (KJ—K5 =0 scheme, the boundary conditions are imposed only once dur-
2 \/h_xx \/h_xx y z ing each time step. The fewer applications of the boundary

conditions in the Strang-split method is advantageous be-
(52 cause we are using quadratic extrapolation to obtain ghost
. . . L . .. cell values. ratic extrapolation amplifi ny jitter at th
at tk;e ngf;t/left boundarl;as. Tf:ls expression is co_nS|stenyt ngc)gung;?;s,(?:ﬁdd 3} : l?reqiz(r)]taa% pl?caEOneZ fanI/J ii dfatflc ! f.
[Dy Z_Dz 1Vho==[K, Z_Kz] if ‘and only if [Dy"  {rapolation in iterative schemes such as MacCormack could
+D, 1/ Vhyo= K KA _easily lead to an instability.

Since conventional outgoing wave boundary conditions
are not appropriate, our boundary conditions are based on a
smooth second order extrapolation of the variables, which is
corrected to make sure the energy and momentum constraint In the transport step, we solve E&4) both with a finite
equations are satisfied on the boundaries. Equatify  difference method and with a wave propagation approach,
could also be imposed at the boundaries to further improvavhich takes advantage of the eigenfields of a diagonalizable
the extrapolation, but we have not tried this. Our procedurédayperbolic system. Advanced numerical methods for diago-
is detailed further in Sec. VIII B 3. nalizable hyperbolic systems introduce limiter functions to

In addition to the eigenmodes discussed above, there aresolve sharp discontinuities that typically arise in hydrody-
eigenmodes propagating along the hypersurface normalsamics problems. A smooth problem can be solved just as
which can be incoming or outgoing, depending on the sign oficcurately and more efficiently with a finite difference
the shift on the boundaries. It seems to be important fomethod. In vacuum general relativity, discontinuities may or
stability that the hypersurface normals do not point into themay not arise, depending on the gauge conditions. Com-
grid (see Secs. IXC and IXD monly used gauge conditions lead to steep gradients near

Our results show that quadratic extrapolation without corblack hole horizons. One can deal with these gradients by
rection for the energy and momentum constraints produces @sing high resolution methods requiring diagonalizable hy-
significant but not dominant errgsee Sec. IX . However, perbolic formulations; or, one can dynamically adjust the
errors from imposing outgoing boundary conditions on thegauge conditions so as to avoid the steep gradients altogether
“constraint” eigenmodes, or from using standard constan{29].
extrapolation, would swamp all other errors as they propa- Whether one uses a finite difference method or a sophis-
gate into the grid. Standard constant extrapolation, whichticated hyperbolic technique, it is important to have a nu-

B. Transport step
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merical scheme which is fully second order accurate forcorrection terms to give second order accuracy. We develop
smooth solutions and generalizable to black hole spacetimeso wave propagation methods based on this idea which we
and higher dimensions. It is straightforward to devise a finitecall methodd andll . A wave in this approach is defined as
difference scheme based on a Taylor series expansion which discontinuity in theflux associated with a certain eigen-
is formally second order accurate. High resolution Riemannmode across the characteristic corresponding to that eigen-
based wave propagation algorithms introduced by LeVequghode.
[23], which decomposaq across a grid cell interface into a e explicitly deal with the fact that the eigenvalues and
linear combination of eigenvectors of thgx) matrix, are  gjgenvectors of the characteristic matrix are varying across
applicable to a wide variety of diagonalizable hyperbolicthe grid. The magnitudes of the eigenvalues give the wave
problems. Flux differences are calculated from the de-  speeds and the signs of the eigenvalues give the wave direc-
composition. We refer to these algorithms as “standard wavgons. In the flux decomposition for methdd we need to
decomposition" methods. HOWeVer, the standard wave dedecide if a wave is |eft_g0ing or right_going at a given Ce”
composition methods are not second order accurate fqpterface. This is determined by the sign of the average of the
smooth solutions when the characteristic matitx) is @  ejgenvalues obtained from the characteristic matrices on ei-
function of position, because the change#\(ix) across cell  ther side of the interface. If the average eigenvalue for a
boundaries as well adg's must be accounted for in flux particular eigenmode is negative, then the corresponding ei-
differences. In numerical relativity problem&(x) depends genvector is evaluated in the cell to the left of the interface.
on the lapse, the shift, and the spatial metric, and can havg the average eigenvalue is positive, then the eigenvector is
gradients comparable with the gradientsgof evaluated in the cell to the right of the interface. In method
LeVeque has suggested a wave propagation approach f@r, the eigenvalues and eigenvectors at a cell interface are
solving variable coefficient flux problems based on splittingobtained from the characteristic matrix at the interface, cal-
up the jump inF(q) rather than the jump iq [24]. We refer  culated as an average from the adjacent cells. For both meth-
to this approach as “flux-based wave decomposition.” Weods, waves with zero interface speed still contribute to the
develop and apply this method to solve the Einstein equafiux difference. We can include these contributions in either
tions for 1D nonlinear plane waves as described below inhe left- or right-going waves of methdd as long as we do
Sec. VIIIB 1. We show in the Appendix that flux-based so consistently.
wave decomposition methods are formally second order ac- |n methodl, the flux difference decomposition takes the
curate for sufficiently smooth solutions for arbitrary smoothfollowing form at the interface between cellandi—1:
variations of the eigenvalues and eigenvec{eee also Bale
et al.[30]). For further discussion and analysis of flux-based

wave decomposition methods, in the context of more general F(q,)—F(q;_,)=A;q—A;_10;_1

approximate Riemann solvers, de¥]. While it is difficult

to formally prove second order convergence for numerical m L L M R R
methods since this also requires proving stability, our nu- :Zl 'yif(1/2)rifl+R:%+l Yi—@)li
merical tests of these methods, and those of R3], typi-

cally exhibit second order convergence. (56)

1. Flux-based wave decomposition
wherer are right eigenvectors of the characteristic matrix,

variablesqg requires knowing flux values at grid cell inter- and M is the total number of eigenmodes. We denote the

: FP L _ L L
faces. The interface flux values are found by solving theleft—gomg<wzi/es at this interface &8 (112)= ¥i- (w2 i-1-
following equation, obtained by multiplying Eq54) by ~ Where IsL<m. The right-going waves are given by

Using Eq.(54) to update average grid cell values of the

A(x) on the left hand side: W (1= ¥ f . wherem+1<R<M. The number of
left-going waves,m, can vary from interface to interface
[F(Q)]+AX)a,[F(q)]=0. (55) since the sign of the average eigenvalue can change from cell

to cell. The eigenvectors;_; are evaluated in celi—1.
The time derivative ofA(x) vanishes because the variablesLikewise, r; are evaluated in cell The coefficientsy; (1,
on whichA(x) dependdthe lapse, the shift, and the longi- are obtained by solving E¢56); the subscripts— 3 indicate
tudinal part of the spatial metjidiave no fluxes, and are not interface values. In methdd, the flux difference decompo-
updated during the transport step. Using Ep) to compute  sition at a given interface between cell&ndi—1 is the
the interface fluxes was originally described by Barial.  same as Eq56), except the eigenvectors._ ;) of the av-
[8]. However, it is not clear fromi8] how they handled prob- eraged characteristic matri; _ 1= (Aj_1+A;)/2 replace
lems in whichA(x) varies from cell to cell. bothr,_; andr;.

Equation(55) is a linear advection equation for the flux ~ Methodl is implemented in the context of the AWPACK
vector, F(q). As such, flux values at cell interfaces can besoftware packagf32]. The first order wave propagation and
updated by solving Riemann problems based on decomposecond order corrections in both methddmdll are analo-
ing flux differences between adjacent grid cells into eigen-gous to Eqs(18) and (19) of LeVeque's paper on standard
vector expansiongsee[5] for a discussion of solving Rie- wave decomposition methodi23]. The updated value dj
mann problems for the advection equajioand including is given by
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_ At 3. Boundary conditions
G=ai 2 Wi (1’2)+2 Wi (1) Our numerical methods only require values in one ghost
cell at each boundary. We obtain values for all variables in
At o ~ the ghost cell by quadratic extrapolation from the three ad-
T Ax i) Fiewz): (57) jacent physical cells. Numerical integration of the constraint

equations from the last physical cell to the ghost cell by the

E. (1/2) are flux correction terms which can be reduced neafrapezoidal rule is used to correct the constraint quantities
discontinuities by introducing limiter functions. Limiters pre- (DyY+D;)/\hy and K,Y+K;?) in the ghost cell, with it-
vent the oscillatory behavior around discontinuities seen W|tH?ra'“0n t0 convergence.

finite difference methods. In the absence of limiting, the flux

corrections are IX. RESULTS

A. Initial conditions

= R L
Fiza2=3 ER: Wii(l/Z)_EL: Wit The initial conditions must satisfy the constraint equa-
tions, Eqgs.(19) and(20). Since the constraint equations are
M differential equations, they require boundary conditions for
2 .+(1/2)W.+(1/2), (58) their solutions. Different choices of boundary conditions cor-
- respond to different gauge conditions. We choose symmetric
boundary conditions which give flat space between two
waves This means that we choose,{+D,”) and K’
K,?) to vanish initially between the waves.
The variablesh,,, K,*, and the combinations O{*
—D;%) and K,’—K,*) are freely specifiable. We normally
takeh,,=1, K,*=0, and

I\)I =
=l=

where\, 1/, denote cell-interface speeds.

Both flux-based wave decomposition methbdsdll are
successful in giving second order convergent results in our
numerical calculations.

2. Finite difference method

To solve Eq.(54) using a Lax-Wendroff finite difference hyy 2 2 (X—Xoi)
method, we first perform a second order Taylor expansion 0f-25| _21 sin k(X —Xo;) + 6],
q aroundt; 22l 1= ' 64)
1 .
a(x,t+ At =q(x,t) + Atad(x,t) + 5 AtPFq(x.b). for —w;<(x—xo)<w;, and zero outside that range. Tke
2 derivative of Eq.(64) gives ©,’—D,%)/2. In our standard

(59 initial conditions for colliding plane waves, one wave is ini-
tially on the left and moving to the right, withK ¥ —K,*];
Observe that =[(D,Y—D,)/\hy]s. The other wave is initially on the
B right and moving to the left, witfK,Y—K,*],=—[(D,’
Hq= = AC)dl, 60 p A 1hyl,. The parameters for Ox=20 are W
=4. O ki=1.6, A;=0.08, xp;=6.0, xp,=14.0, 6,=0, and
Sp= 1. These initial conditions, depending on the variables,
are symmetridor antisymmetrig aboutx= 10, and symme-
try (or antisymmetryis preserved throughout the evolution.
Hence, our figures only show the range®=<10. Since the
initial plane waves do not overlap, and{+D,?) and
(K,Y+K,?) vanish atx=0, the initial conditions are two
analytic single plane waves of the type described by Misner,
Thorne, and Wheeldi33].
Our initial conditions produce large amplitude, nonlinear
1 colliding gravitational plane waves. Our measure of “large
+5Atzf?x[A(X)(9x(A(X)Q(X7t))]- (62 amplitude” is thathy, and h,, are substantially different
from 1 by the time the waves have traversed the grid. It is
known that nonlinear plane-wave spacetimes develop a sin-
gularity behind the wav¢34,35. For a single plane wave,
this is only a coordinate singularity, while for colliding plane
At) waves, a physical singularity also develops. The values we

and, taking another time derivative,
9= — LA (3 A)]= HLAX) (A D)].  (61)

Note that the time derivative &(x) vanishes as in E455).
Plugging these expressions férg and ¢2q into Eq. (59)
gives

q(x,t+At)=q(x,t) —Atd, [ A(X)q(X,t)]

Making the centered finite difference approximation to the
derivatives in Eq(62), the updated value df; is given by

qi=ai— ix(AH—lch-%—l Aig)+ 7 take for our wave amplitudes are about as large as possible

Ax without allowing a singularity to develop during the crossing
LA, Ca A ) — (A _ time of the waves. One can get a feel for this value by asking
X[(Ai+Ai 1) (A A Ai_1+A
LA A D Aialiea = Ail) = (At A at what amplitude does a singularity develop at the left edge
X(Aqi—A_10i-1)]- (63 of the grid for a single plane wave exiting the right edge? For
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FIG. 1. Initial conditions for derivatives of the transverse metric.
The solid line is D,Y—D,)/(2yh,,) and the dashed line is
2(Dy’+D,%)/Vhyy. Note thatx=10 is the center of the grid. 0.04}-.

a single wave as given by E¢4) with the shape specified %%
by our values fow; andk;, and a flat metric ahead of the & 0.02f
wave, the answer is approximately 0.11. This is an upper“gN
limit, however, because the effects of colliding waves add +
together in a way which is hard to estimate. The initial con- Z»

ditions for (D,Y=D,*) are shown in Fig. 1.

0.

-0.02}
B. Comparing evolution systems
1. Testing for the optimal system -0.04o 5 2 é é N
We experiment with several different formulations of the X
Einstein equations to determine the factors involved in im- 8x1o“‘
proving the global accuracy of 1D colliding gravitational ©
plane wave calculations. The basic formalisms we test are 6
the modified BM, AY, and ADM schemes of Sec. VI. In all of
these schemes, using mixed variables rather than lowere 4r
variables improves accuracy significantly. We also compare ol
alternative ways of handling the redundant varialjen the 8y
BM schemesV, can be left to evolve independent{no- x'f 0

reset BM), or it can be reset periodically to enforce the con- 5
straint thatv,= DY+ D,* (reset BM. Results have been cal- -2r
culated for a range of values of the coefficiamtof the
energy constraint term in the extrinsic curvature evolution
equations, from about- 0.4 to 1.0, and in some cases for sl
values ofn>1. For the ADM and reset BM schemes, the
results near 0 and 1 reflect the breakdown of hyperbolicity at -8 P n 6 8 10
these values oh. Results are primarily shown far=12 x

since this is the latest time at which the physical waves are
largely within the grid.

Figure 2 shows the evolution of linear combinations of
metric derivatives appearing in the eigenmodes ften8 to
t=12, after the physical waves have finished colliding. In
these high resolutiof4000 cel) calculations, the numerical units in x for every two units of time until around=12,
errors are negligible on the scale of the graph, and we havehen the coordinate speed of light starts to differ signifi-
verified that all the different formulations seem to be con-cantly from 1. Over the same range of times, the quantity
verging to the same solution. The quantityD?  (K,Y—K,?)/2 is within about 3% of-(D,Y—D,?)/(2yhy0),
—D,)/(2hy,) is shown in Fig. 23). The coordinate speed close to but not identical to what is expected from the left-
of propagation can be read off the graph: it is roughly twopropagating “physical” eigenmode. In Fig(l®, we see that

FIG. 2. Evolution of the metric derivatives. The solid line is at
t=8, the dashed line at=10, and the dotted line at=12. (a)

(DyY—DA/(2\h,), (b) (D,Y+DA)/(2+hyy), and(c) D/ Vhy,.
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FIG. 3. One-norm errors of the energy constraint plotted against FIG. 4. One-norm errors dl)x"/\/h_xx plotted against the energy
the energy constraint coefficie, for several different formula- constraint coefficientn, for several different formulations of the
tions of the Einstein equations. Evaluatedatl2 with a grid reso-  Einstein equations. Evaluatedtat 12 with a grid resolution of 500
lution of 500 cells. Note that the largest valueroplotted is 0.95.  cells. Errors are estimated from comparisons with 1000 cell calcu-
Point A is the formulation closest to the standard BM schédje lations, assuming quadratic convergence. Note that the largest value

] , ) ) of n plotted is 0.95. The legend is the same as in Figx8eptthat
the steps inD,”+D,*)/(2+/h,,) are associated with extrema the AY mixed values are multiplied by 0.045.
of (DY—D,)/(2Vh,y). At these times, K,Y+K,)/2
=(Dy’+D;%)/(2Vhy,) to the left of the physical wave. In i . .
the vicinity of the physical wave K,+K,?)/2 has step-like use our flux-based wave decomposition methods. The choice

features associated with steps iD{+ D,))/(2hyy), but of rllymerlga! dmet.r;.od ;nakes “tt:]e. ﬂlff(:frence to the results.
ascending to the right. In the region between the wavesé |gubre1 Identifies factors w Ich & ect alcguracy as mer?-
(Ky+K,9)/2 is much larger thantl,’+D,?)/(2h,,) and ~ -oio0 B =10t gy constraint errors. It 'S_f_appalrem that
increases with time. Figure(® shows the evolution of using MIxea variabies improves accuracy sighi icantly in the
D,/ \hy. The prominent feature in this figure is a small BM formulat|o_n. Similar improvements occur m_the AY and
residual effectnote that the scale of the graph is 10 of ADM formulations. The 1-norm energy constraint errors for
the prominent feature iK,* shown in Fig. 9 which survives ADM and the ADM-like reset BM schemes are almost iden-
the near cancellation €, ¥ in the evolution equation db,*  tical. differing by only 1-29% over the range 0.25=n
from our shift resetting conditiofiEq. (25)]. Since aK,x ~ =0-85, and are minimized for 0.2en=<0.80. Point "A”in
— B’=0 each time the shift is reset, this featurd]';;f(/\/h_xx Fig. 3 is Fhe formulation plosgst to the BM_scheme as _|mple—
tends to advect along the hypersurface normals. The generH‘-ented in Ref[4]. The_|dent|cal formulation using mixed
tion and modification of features iBXX/\/h_XX is due to the mstead_of lowered yanables decr_eases the 1-norm energy
different evolutions ofwK,X and 8’ between gauge reset- c_onst_ramt error 3.1 t!mes. If the m_|xed BM system of equa-
tings. The feature irK, results from our lapse resetting tions is transformed into an ADM-like scheme by frequently
condition, Egs(22) and (23), when a strong imbalance be- resettingV,, and an energy constraint coefficient of 0.5 is
tween the transvers®’s andK’s occurs near the center of used, a 9.3-fold decrease in the 1-norm energy constraint
the grid as the waves collide, creating negative valuesSfor error compared to point “A”is obtained. Both the ADM and
This in turn causes the limiter to take effect, which allowsthe reset BM error curves peakrat0, and increase rapidly
K, to dip in the negative direction. asn—1, though the increase as—1 for mixed reset BM

To compare the overall accuracies of different formula-occurs too close ta=1 to be apparent in Fig. 3. The rise in
tions, we present 1-norms of the energy constraint errors iBnergy constraint errors at=0 andn=1 reflects in part the
Fig. 3 and 1-norms of errors iB,*/\/h,, in Fig. 4 att=12  breakdown of hyperbolicity in ADM at these values if
for 500 cell grids. The constraint errors are predominantlyThe effects of this breakdown are more severa=atl than
errors in the derivatives of the constraint quantities, and aratn=0 because ADM is unstable for>1. Momentum con-
insensitive to errors in the longitudinal variables. For eactstraint errors are similar to or smaller than the energy con-
scheme, the 1-norm errors are plotted for a number of valuestraint errors.
of the energy constraint coefficient, ranging frorn0.25 to The 1-norm energy constraint errors in the no-reset BM
0.95 at 0.05 increments. Since our ADM scheme is not hyschemes vary slowly for alh. These schemes are well-
perbolic forn=0, the transport steps of the ADM calcula- behaved fon=1, and the errors for the mixed version con-
tions are solved with the finite difference numerical methodtinue to decrease. Despite the breakdown in the AY scheme
whereas the transport steps of the BM and AY calculationsitn=1, the constraint errors do not increase strongly until
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gets close to 1. The AY formulation is well-behaved for whereas the 1-norm AY energy constraint error is about 2.5
>1. times higher. The subtraction of two numbers with large er-

Since the true value d,*/\/h, is not known exactly, we rors in Eq.(39) gives a large error foD,*/yhyy in the AY
must extrapolate to estimate the true value and calculate tfermulation. When we introduce substantial variation$ijn
1-norm errors shown in Fig. 4. Assuming quadratic converin the initial conditions, so thaD,* is much larger than

. . Z H H H

gence, the error estimate at each grid cell of a 500 cell caltDy’+D?), andhy, is substantially different from 1, then
culation is# times the difference between the 500 and 100cequally Iarge errors are |_ntroduced into all the formulat|on§.
cell results. FoD.*/Jh.. at timet=12. the 500 cell errors N our particular calculations, the errors already present in
deviate from quaératicxécaling in the régioﬁ8< 10 where the AY scheme fortuitously cancel the introduced errors, re-
the feature inD */h,, associated with the spike iK,* is sulting _in DXX/\/h_XX errors for mixed AY and mixed no-reset
located. Here, our standard extrapolation underestimates tfM which are within a factor of 2. o _
errors for the ADM and no-reset BM formulations, and over-  1hese results demonstrate our ability to significantly in-
estimates the errors for the reset BM formulations, but th&réase the accuracy of 1D highly nonlinear colliding gravi-
effects on Fig. 4 are not very significant. tational plane wave calculations through equation formula-

Figure 4 shows that the same factors which decrease tHN- In particular, the choice of a mixed set of indices
1-norm energy constraint errors also decrease the 1-norfff'Proves the accuracy of the formulations for all values of
errors inD,*/\/h,,. Specifically, using mixed variables in- th'a ?nergi/ qonstralnt COTIIDCI\I/?TIkteStid. Rese_;\r:@gp the q
stead of lowered variables in the no-reset BM formulation aBM formulations creates “lIKE schemes. 1NIS 1S an ad-
n=0 decreases the 1-norm errordy*/ Jh,, 1.5 times. The vqntage for 0.25n<0.80, where ADM is hyperbollc, and a
shapes of the curves fall into the same two classes as dgisadvantage fon=0 orn=1, where ADM is not hyper-

scribed above for Fig. 3. If one frequently res¥tsand sets olic.

n=0.5 in mixed BM, the 1-norm error decreases 6-fold from 2. Error propagation

point “A.” The errors in D,*/\/h,, in the ADM and reset BM '

schemes peak at=0 and increase rapidly as— 1, again In order to understand the variations in accuracy among
reflecting, in part, the failure of hyperbolicity at these valuesthe formulations, it is instructive to look at how errors vary
of n. with position, and how they propagate over time. We focus

The fact that Fig. 4 is at all similar to Fig. 3 is because theon the energy constraint errors and the error® g/ vh,,
D,*/\/h,, errors and the constraint errors behave similarly insince they are representative of errors in the transverse and
the region of the physical waughis is described in detail in longitudinal parts of the metric, respectively. Momentum
Sec. IX B 2. However, there are several differences betweergonstraint errors are comparable to or less than the energy
these two figures. First, the ADM curve in Fig. 4 is well constraint errors.
above the reset BM curve. Second, the reset BM curves have Since the principal parts of the energy and momentum
smaller drop-offs froom=0 in Fig. 4. Third, the decreasing Constraints are the derivatives of the constraint quantities, the
slopes of the no-reset BM curves are bigger in Fig. 4 than irfonstraint errors propagate with the same speeds as the
Fig. 3. These differences are due to relatively large'constraint” eigenmodegwhich are given in Sec. VI D for
formulation-dependent numerical errors ¥/ \h,, in the ~ BM, AY, and ADM). The constraint error propagation can
region 8<x<10, which contribute to the 1-norms. Recall @lS0 be obtained from the evolution equations for the energy
that the evolution of the feature i,/ \h,, in this region and momentum constraints, w.h|ch form their own closed hy-
depends mainly on the evolutions X and 8’ between perbollc system. The constraint errors propagatg along the
gauge resettings. We expect the numerical error&fdrto light cones for tht_a no-reset BM and AY formulations. For
differ from those forg’, since these two variables evolve by ADM. the constraint errors propagate at
quite different equations. Further, we expect these numerical
errors to be larger whei¢,* (andg’) vary rapidly(see Fig. a Ji=n

— [+ —

. . . v =
9). Small differences in these numerical errors among the ADM hyx
different formulations result in large differences in numerical

errors forD,*/\Ih, in this region. For example, the errors in we expect the constraint errors to also propagateat, for

D,/ +/hy for 8<x<10 are larger ab=0 than an=0.5for  the reset BM scheme. Note that fior=0 or 0<n<1, v apy

the mixed no-reset BM scheme, explaining the decreasing different from any of the other characteristic speeds of the
slopes in Fig. 4, and are larger for ADM than for reset BM, system. We find that a separation of the constraint error
explaining the displacement between the mixed ADM andspeeds from the other characteristic speeds improves accu-
mixed reset BM curves. racy.

Another difference between Figs. 3 and 4 is that the Figure 5a) shows the energy constraint error propagation
1-norm errors oiDXX/\/h_XX are one to two orders of magni- for reset BM anch=0. First, notice that the constraint errors
tude higher for AY than for the other formulations, whereasare large where the physical wave is present, and that at a
the 1-norm energy constraint errors for AY and the othergiven location, the error decreases almost to zero when the
formulations are comparable. For example, the 1-norm errophysical wave has passed. However, there is a rapid increase
in D,*/\/h,, atn=0.5 is about 70 times higher for the mixed in the energy constraint errors propagating with the physical
AY formulation than for the mixed no-reset BM formulation, wave. Second, from the graph we see that the waveform of

(65
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the energy constraint errors propagates at roughly unit coor-
dinate speed, which, over the times we are considering, is
approximately coordinate light speed. The energy constraint
errors are predominantly errors in the derivatives DX
+D,%)/\Jh,,. Errors in the propagation of),Y+ D,/ vh,,

are largest where its second derivative is largest, at the cor-
ners of the steps visible in Fig(l®. From the energy con-
straint equation, the steps iD(¥+D,?)/\h,, are associated
with large values of the physical quantitiesDf
—DA)/hy and K,Y—K.). These physical quantities
propagate at light speed, and constraint errors, once gener-
ated, propagate with the velocity of the “constraint” eigen-
modes, which is also light speed for reset BM witk-0.
Since new errors remain in phase with the propagating old
errors, the constraint errors are continuously reinforced.
Careful comparison of Fig.(B) with Fig. 5a) shows that the
constraint error peaks are coincident with the corners of the
steps in DY+ D,?)//h, at all three times shown.

The same argument applies to AY and no-reset BM, since
these formulations also have “constraint” mode errors
propagating at light speed, but Fig. 3 shows larger errors for
ADM and reset BM an=0 than for AY and no-reset BM.
We attribute the larger ADM and reset BM errors to the
breakdown of hyperbolicity in ADM an=0, so that the
“constraint” eigenmodes, which propagate at light speed
with constant amplitude, interact with the “longitudinal”
eigenmodes through the constraint quantitiesnAsO, any
errors in the constraint quantities tend to produce amplified
errors in the longitudinal variables, becaug®,”+ D) and
n(K,*—B'/a) are the same order of magnitude as the con-
straint quantities in the ADM “longitudinal” eigenmodes.
The errors inD,* andK,* then feed back to the constraint
quantities through the source terms of the evolution equation
for (KyY+K;%).

Figure 3b) shows a dramatic decrease in both the energy
constraint errors and the growth rate of the errors in the
mixed reset BM formulation when=0.5. Furthermore, the
full waveform of the energy constraint errors does not main-
tain its shape as it propagates, as does the waveform in Fig.
5(a). By tracking the rightmost bump in this figure, one can
determine the speed of the errors to be approximately 0.7
times light speed, which agrees with the value predicted by
Eq. (65). Because the energy constraint errors lag behind the
source of the errors, namely, the steps Y+ D,?)/h,y,
there is not constant reinforcement and rapid growth of the
errors in the region of the physical wave. This results in
greater overall accuracy for reset BM than for no-reset BM at
n=0.5, as seen in Fig. 3.

Figure Hc) shows the energy constraint error propagation
for mixed no-reset BM ah=0.5. In contrast to Fig.(®), the
waveform is maintained reasonably well, and the errors grow
more rapidly in time. This is because the constraint errors
travel at light speed; so, as in Fig.a, there is a continuous
reinforcement of the errors. For no-reset BMret 0, the

FIG. 5. Energy constraint error propagation using our mixedCurve is practically the same as what we show her@e at

BM formulation. The solid line is at=8, the dashed line at

=0.5. The error waveform has a smaller growth rate than

=10, and the dotted line &t=12. Evaluated with a grid resolution that for reset BM ah=0, presumably because of the hyper-

of 500 cells, for(a) n=0, with V, resetting,(b) n=0.5, with V,
resetting,(c) n=0.5, with no V, resetting.

bolicity of the no-reset formulation, as discussed earlier. We
have also looked at the AY constraint error propagation and
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same going fromt=8 to t=12, perhaps because the
D,*/\/h,, errors have not yet reached their asymptotic limit.
The spiky errors at approximately 8&&=10 in both Figs.

Errorsin D%/ h'?
[=]

-0.4 6(a) and @b) are discussed in Sec. IXB 1.
The ADM and ADM:-like reset BM systems show rapid
-0.8r ) increases in errors as—1 in Figs. 3 and 4. The breakdown
1ol | of hyperbolicity at n=1 results in errors in B,
' +D,?)//hy, becoming large compared to errors i ¥
-1.6; s - . L 10 +K,%). The contribution to the energy constraint errors from
X errors in the derivatives offY,Y+D,?)/ h,, increases cor-

- ) respondingly. Since the “constraint” eigenmodes propagate
FIG. 6. Errors inD,*/\h,, versusx for our BM mixed and along the hypersurface normalsrat 1, the errors in D,”
lowered formulations, with/, resetting. Evaluated at=12 with a +D z)/\/h_ also reinforce errors in variables which p)r/opa—

grid resolution of 500 cells. Errors are estimated from comparisons atez alon X);he hypersurface normals, namly/ VR, §'
with 1000 cell calculations, assuming quadratic convergencéafor ) 9 ypersu ! o B
_ _ andDg.
n=0, and(b) n=0.5. -Q )
_ _ Figure 7 shows the errors irD(—D,*)/(2\/h,,) as a
confirm that errors propagate at light speed for all values ofunction of x for three formulations at an of 0.5. The am-
n. Because thg constraint errors travel wlth the physicaplitudes and shapes of the errors for the different formula-
waves for alln in these formulations, their 1-norm errors tions are roughly the same, because the evolution equations

vary slowly withn in Fig. 3. for (D,Y—D,%)/(2h,,) are similar for the different formal-
The errors inD,*/\/h,, versusx att=12 for the reset BM  isms. The curve shapes do not change significantly when one

formulations are shown in Fig. 6, for energy constraint coef-usesn=0 instead oh=0.5 becausa does not enter into the
ficients of(a) 0 and(b) 0.5. Figure €a) shows a localization evolution equations for [ny_Dzz)/(z\/h_xx)- The entire

of the errors in the region of the physical wave{®<6).  graph shown in Fig. 7 converges quadratically except for the
Figure 8b) shows the dramatic decrease in the errors for Obump aroundk=6, which converges linearly. This bump is
<x=<6 whenn=0.5. The mixed no-reset errors in this re- near the trailing edge of the physical wave, where the initial
gion atn=0.5 are larger by a factor of about 2 than the conditions are not smooth enough to give second order ac-
mixed reset errors at=0.5, and only slightly smaller than curacy. The errors for the formulations which are not shown
the mixed no-reset errors at=0. The fact that there is a are similar.

similar reduction in constraint errors ar[alxxl\/h_XX errors Calculations of the distribution and propagation of energy
when going from no-reset BM to reset BM at=0.5 sug-  constraint errors and errors iB,*/+\/h,, have illuminated
gests that the constraint errors are a major source of errofow resettingV, in the BM formulations to create overall
for D,*/\hy,. From the failure of hyperbolicity in ADM at ADM-like evolutions increases or decreases accuracy and
n=0, one expects the errors M,*/\/h, to increase more stability, depending on the value of Intermediate values of
rapidly for reset BM than the constraint errors, but we do not separate constraint error speeds from the other characteris-
see clear evidence for this. The increase in errors is about tH& speeds of the system, resulting in significant improve-
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tme FIG. 9. K,* versusx at the times indicated in the legerid,* is

FIG. 8. The shift,3, and the logarithm of the lapse, #( atthe  driven to a target value of 0.02 by our lapse resetting condition.
left grid edge plotted against time at intervals=0.2. The values  The spike ax~9 develops as the waves collide, due to the limiter
of 8 and In() are fixed at zero at the grid center. in the equation for the lapse. The effects of the limiter are felt over

a wider range ok att=12.

ments in accuracy. Values aoffor which ADM hyperbolicity
fails result in rapid increases in errors. lapse is greater than or less than one at the edge is deter-

The higher accuracy of reset BM compared to the othemined by the sign of the second derivative of the lapse with
formulations when 0.25n<0.80 is seen wheh,,=1 and respect to proper distance, the quantityin Eq. (22). The
D,*=0 in our initial conditions. When we introduce substan-large terms inS are typically —K,’K,* and D,YD,*/h,.
tial variations inh,, in the initial conditions, so thdd,*isat ~ These nearly cancel wheb’, D, K/, and K,* are
least as large a€),Y+ D,?), and+/h,, varies by a factor of 2 dominated by a single propagating “physical” wave pulse.
to 3, the accuracy results are dominated by the errors directif\s two such pulses collide, constructive interferenc®ii
associated with the variations . These errors depend andD,” implies destructive interference K, andK,* and
primarily on the amplitude oD,/ \/K and are largest Vice versa, which causes rather large oscillations in the value
where the derivative o,/ \h,, is largest. They are similar Of the lapse at the edge of the grid. Note that-a#l, there is
in all the formulations and are independentrpfthus, they =~ Maximum constructive interference &f,* and D,”. Once

tend to equalize the results from the different formulations. the waves have largely passed through each other (
>6), K,¥ andK,” are large, and,” andD,” are small in

the region between the separating waves, so the second de-
rivative of the lapse is strongly negative, and becomes more
Our gauge conditions involve both a periodic resetting ofstrongly negative ak ,” andK,” become steadily larger. By
the lapse and the shift, and an evolution of the lapse and thie= 12, the limiter in Eq.(22), which is necessary to prevent
shift between resettings. The lapse and shift are reset accorthe lapse from becoming negative at the edge of the grid,
ing to Egs.(22) and (25), with I'=1, and K,)r=—0.02. largely stops further decrease of the lapse at the edge.
They are reset at constant time intervals rather than after a The behavior of the shift in Fig. 8 reflects the behavior of
specific number of time steps, to give resolution-independeri,* in Fig. 9, sinceB’ is proportional toK,* by Eq. (25).
results. Between resetting8, B’, Q, andDg are advected The resetting of the lapse keekig* near its target value of
along hypersurface normals. —0.02 untilt>10, when the limiter in Eq(22) takes hold,
Figure 8 shows how the lapse and the shift at the lefallowing K,* to become steadily more negative. Since the
boundary of the grid vary with time. The resetting interval is derivative of the shift is proportional t,*, and the shift is
At=0.02, while the graph is drawn from values calculated aclamped to zero at the center of the grid, the shift at the left
intervals of 0.2 irt; hence, the graph contains no information edge of the grid is positive and starts getting steadily larger
about the evolution of the lapse and the shift between resefer t>10.
tings. The lapse and the shift are fixed at zero at the grid Recall that a negativ&,*, in combination with our shift
center,x=10, and are more or less monotonic between theesetting condition, causes the hypersurface normals to point
center and the edge, so the variations at intermediate valuesvay from the computational grid at the boundafsse Sec.
of x have a similar form, but smaller amplitude. V). These resetting gauge conditions are designed sdhat
In Fig. 8, the lapse oscillates at the grid edge until aboutind 8 are advected out of the grid, in order to suppress the
t=6. Fromt=6 tot=12, In(@) becomes increasingly nega- development of instabilities associated with extrapolation at
tive until it starts leveling off around=12. The lapse is the grid edge. As long a(*)<0, the shift is positive at
determined by Eq(22). Since we set the lapse to one and itsthe left edge of the grid and the advection velocity is nega-
first derivative to zero at the center of the grid, whether thetive. However, Fig. 10 shows that wheK ()r=+0.02, so

C. Gauge conditions
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FIG. 10. Development of an instabilty at the left boundary in FIG. 11. Energy constraint error for our standard boundary con-

.  — " . .
the evolution oD,/ yhy, when thek,” target value ist 0.02 in our dition, which corrects quadratic extrapolation of the variables at the

lapse resetting condition. The instability is substantially stronger, . . . AT
h ) . . . boundaries using the constraint equatidsslid line), versus qua-
with the higher resolution grid. Note that the physical wave reaches, .. : . o .

the left edge at=10 dratic extrapolation onlydashed ling Evaluated at=8 with a
' grid resolution of 500 cells using our mixed BM formulation with

that the shift is negative at the left edge, the solution be-VX resetting anch=0.5.

comes unstable at the grid edge once the physical wave

E. Numerical methods
reaches the edge.

We compare convergence results from our two flux-based
wave decomposition schemes with those from the traditional
finite difference approach. Tables | and Il show quadratic

Figure 11 compares two methods for implementingconvergence for errors in the metric derivative variables and
boundary conditions: quadratic extrapolation of all the vari-in the momentum and energy constraintg=atl2 using our
ables with and without correcting the extrapolated values Obpnmaj evolution scheme and flux-based wave decomposi_
(D, +D,A)/hy and K,Y+K,?) to insure that the energy tion methodl. Quadratic convergence for the metric deriva-
and momentum constraint equations are satisfied at thgve variables is tested by comparing 1-norms of differences
boundaries. Failure to strictly enforce the constraints at th@etween results evaluated at 500 and 1000 cell resolutions,
edges of the grid results in significant constraint errorsi000 and 2000 cell resolutions, and 2000 and 4000 cell reso-
propagating over much of the grid thy-8. lutions. Convergence is calculated in this way because true

The jitter at the left edge of Fig. 6, which graphs thevalues are unavailable for the metric derivative variables.
errors inD,*/\Jh,, versusx, is due to numerical errors and Constraint errors can be calculated directly so quadratic con-
the use of quadratic extrapolation in our boundary condivergence is determined simply by taking the ratios of results
tions. It is most prominent when the physical wave is crossfrom grid resolutions that differ by a factor of 2. There is
ing the boundary, but it is not unstable as long as the hyperery little difference in the results of the three numerical
surface normal at the boundary does not point into the grigdnethods tested. Further, the 1-norm results from the three
(see Sec. Y. We will explore ways of reducing this jitter numerical methods all converge to the same answer.
either through the use of limiters near the boundary and/or Tables | and Il show that our flux-based wave decompo-
improved extrapolation methods. sition methods are second order convergent when the char-

D. Boundary conditions

TABLE |. Convergence results for errors in the metric derivative variables. Evaluated1& using our
mixed BM formalism, resettiny, , with n=0.5, and flux-based wave decomposition method

1{(Dy-D}) 1/ (DyY+D;) D,

2[ Vhy 2] Vhy Vhx
(500— 1000/ (1000 2000)2 3.98 3.99 5.09
(1000~ 2000/(2000- 4000)" 3.97 3.99 4.38

aThe 1-norm of the difference between the 500 and 1000 cell calculations is divided by the 1-norm of the
difference between the 1000 and 2000 cell calculations.
®The 1-norm of the difference between the 1000 and 2000 cell calculations is divided by the 1-norm of the
difference between the 2000 and 4000 cell calculations.
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TABLE II. Convergence results for the energy and momentumated with the derivatives db,*/\/h,, dominate the overall
constraint errors. Evaluated &t 12 using our mixed BM formal-  grrors for 0.25n<0.80.

ism, resetting/, , with n=0.5, and flux-based wave decomposition Third, we find that when hyperbolicity fails in ADM, for

method!, values of the energy constraint coefficient equal to O or 1,
: — the constraint errors and errors ./ \/h,, increase much
E M ) . Xx ,
nergy constraint ememtum constraint more quickly in both ADM and reset BM than they do in
500/100C% 4.02 3.97 no-reset BM. Atn=0, the “constraint” and “longitudinal”
1000/2000° 4.00 3.98 eigenmodes are no longer independent, causing a rapid
2000/4000° 3.99 3.99 growth of errors which travel with the physical waves. These

errors decrease and stabilize, however, when the waves exit
#The 1-norm of the 500 cell calculation is divided by the 1-norm of the grid. Atn=1, the two “constraint” eigenmodes are not
the 1000 cell calculation. independent, causing errors iD '+ D,?)//h, to increase
®The 1-norm of the 1009 cell calculation is divided by the 1-norm rapidly. This results in large errors in the energy constraint
of the 2000 cell calculation. and in variables which propagate along the hypersurface nor-
“The 1-norm of the 2000 cell calculation is divided by the 1-norm mals.
of the 4000 cell calculation. The key to our approach to dynamic gauge conditions for
- ) o ) . hyperbolic calculations is to maintain a simple diagonaliz-
acteristic matrixA(x) has significant spatial variation, be- gpje hyperbolic evolution during each time step, while allow-
cause of the spatial dependence of the lapse and thes#eft 4 heriodic, flexible resetting of the lapse and the shift be-
Eq. (47) and Fig. §. However, in these calculations the yyeen time steps. By resetting the lapse and the shift, we can
eigenvectors ofA(x), which depend only onyhy,, are  control the coordinate system in a dynamic @ndprinciple)
roughly constant. We have tested convergence of both oWpjtrary way, unconstrained by the need to maintain hyper-
flux-based wave decomposition methods when the eigenvegyjicity. Our gauge resetting conditions control the longitu-
tors of A(x) vary rapidly, by introducing a 3-fold variation ginal components of the extrinsic curvature and the spatial

in Vhy,. Our results are still second order convergent. metric so as to prevent pathologies and strong gradients from
developing in the hypersurfaces and spatial coordinates. Fur-
X. DISCUSSION ther, our gauge resetting conditions cause the hypersurface

normals to point away from the grid at the edges. This helps
to suppress the development of instabilities at the boundaries
We have identified ways of improving the accuracy andwhich are associated with features advecting along the hy-
stability of 1D nonlinear colliding gravitational plane wave persurface normals.
calculations through an in-depth study of equation formula- A careful study of boundary conditions has led us to the
tions, dynamic gauge conditions, boundary conditions, andonclusion that it is incorrect to impose outgoing wave
numerical methods. Three issues stand out in our study dfoundary conditions based on the eigenmodes of the hyper-
equation formulations. The first issue which improves thebolic decomposition. A substantial contribution from the in-
accuracy of all the formulations tested is raising an index incoming “constraint” eigenmodes is necessary to satisfy the
the metric derivative and extrinsic curvature variables. Theconstraint equations at the boundaries. In the presence of
separation of constraint and physical behavior in our calcunonlinearities, the interaction of the “physical” eigenmodes
lations is much simpler with mixed variables than with low- with the incoming “constraint” eigenmodes generates an ad-
ered variables. Since the dominant feature of plane wavenixture of incoming and outgoing “physical” eigenmodes.
solutions is the physical wave, and since the mixed variableFhe right and left-going gravitational wave amplitudes can
have a simple linear relation to the “physical” eigenmodes,be determined by projecting the Weyl tensor onto a null tet-
the mixed form gives an advantage in accuracy. In additionrad, and our numerical results indicate that the gravitational
the variables in the source terms of the evolution equationgiaves after the collision are purely outgoing according to
are in mixed form, so a cleaner system of equations resultshis definition. Our boundary condition procedure consists of
Second, it is advantageous if the “constraint” eigen-an accurate calculation of the incoming eigenmodes of the
modes, which are constraint violating, propagate at differengharacteristic matrix at the boundaries by quadratic extrapo-
speeds from other features in the solution, so that nothing ifation of all the variables, and correction of the ghost cell
the actual solution is constantly in step with the constrainvalues using the energy and momentum constraint equations.
errors. Our gauge conditions result in features which propaThis procedure, in combination with our lapse and shift re-
gate on the hypersurface normals as well as on the lighgetting conditions which insure that the hypersurface normals
cones. With a multiple between 0.25 and 0.80 of the energwt the boundaries do not point into the grid, has given stable,
constraint equation added to the evolution equations for thaccurate, and second order convergent results.
extrinsic curvature in the ADM and reset BM schemes, the Finally, we have developed flux splitting numerical meth-
“constraint” eigenmodes propagate neither on the lightods for solving hyperbolic formulations of the Einstein equa-
cones, nor on the hypersurface normals, and the growth ratéi®ns which are second order accurate for smooth solutions,
of constraint errors and errors B,/ \/h,, significantly de- even when the eigenvalues and eigenvectors of the charac-
crease. However, when the amplitudedf* is large com- teristic matrix are spatially varying. These methods are based
pared to DY+ D,?), formulation-independent errors associ- on decomposing flux differences between adjacent grid cells

A. Summary
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into linear combinations of the eigenvectors of the characterK;;’s perpendicular to and into the constaditsurfaces. The
istic matrix. We show that these methods are formally secon@igenvectors can be constructed explicitly.
order accurate and, in practice, second order convergent. Using the mixed coordinate componeilg; andK; as
variables when the metric is not diagonal gives complicated
B. Relevance of results and future directions source terms in thd®,;) evolution equations, because the

Our results suggest that hyperbolicity can be a usefqu‘j are no Ionger pure derivatives. Another possibility is tp
guide to picking equation formulations for numerical integra-take as the variables the components of an orthonormal triad

tion of the Einstein equations. When eigenvectors are incomz-ind the projection of the extrinsic curvature onto the tfd

. ) he Ashtekar variable§15-17). The triad formalism, be-
plete, or some elgenvectors_ are n_early linearly dep(_enden ‘ause the extrinsic curvature tensor projected on the triad is
some solutions to the equations will tend to grow withoutyy  ewric has fewer variables than the mixed coordinate
bound or by large factors. In 2D and 3D, the ADM and .,mnanent formalism. In neither case would the variables be
ADM-like equation formulations for non-diagonal metrics gimply related to the eigenvectors of the characteristic matrix
fail to have a complete set of characteristic eigenvectors fofyhen the metric is non-diagonal or the triad vectors are not
anyvalue of the energy constraint coefficient. This may be agjong the coordinate directions; thus, there is no obvious
the root of some of the instabilities seen in 3D ADM COdES.advantage to trying to genera"ze our mixed variables in 1D

However, hyperbolicity, which involves only the principal to generic 2D and 3D calculations. However, we plan to
terms in the equations, is not the whole story. The constraingxplore these questions further.
equations relate derivatives of some quantiftee constraint Our approach to dynamic gauge conditions, namely,
quantities to nonlinear terms involving additional quantities, implementing a simple hyperbolic evolution during each
so the actual evolution of the constraint quantities fortime step, then resetting the lapse and the shift between time
constraint-satisfying solutions may be very different from thesteps, is general. A hyperbolic evolution during each time
evolution implied by the “constraint” eigenmodes, which step allows the use of flux-based wave decomposition nu-
satisfy equations without source terms. It seems to be advamerical methods. A long-term strictly hyperbolic evolution,
tageous if the speeds of the short-wavelength errors in theowever, is destroyed in all our hyperbolic formulations
constraint quantities, which are the “constraint” mode eigen-when we reset the lapse and shift. Despite this, resetting the
values, differ substantially from the propagation speeds ofjauge can be used to increase the accuracy and stability of
the major features in the constraint quantities. In 1D, bothour 1D calculations. Achieving the same goal in 2D or 3D
the ADM and the no-reset BM formulations are safely hy-calculations will be more difficult. There is no one longitu-
perbolic forn~0.5, but the former is substantially more ac- dinal direction, and there is not enough gauge freedom to
curate because no-reset BM has the same speeds for tbentrol the longitudinal components of the metric and extrin-
“constraint” eigenmodes and the features in the constrainsic curvature for all directions. What gauge resetting condi-
quantities, whereas ADM has different speeds. How much ofions are most effective in 2D and 3D remains an open ques-
an advantage it is to have different speeds depends on thien.
dominant source of errors. In a gauge whieggis close to 1, Our boundary condition results indicate that simple out-
the dominant numerical errors in the constraint quantities argoing wave boundary conditions based on the eigenmodes of
associated with features in the same quantities, but in ¢he characteristic matrix are not valid in general and are in-
gauge where the dominant numerical errors are associatensistent with the constraint equations. On the other hand,
with features inh,,, it does not make much difference extrapolation(in particular, quadratic extrapolatiprs a nu-
whether the “constraint” eigenmodes and features in themerically dangerous procedure. Although one can use con-
constraint quantities have the same velocities. In generistraint extrapolation to constrain certain linear combinations
black hole spacetimes, it is probably not possible to find af the variables, this technique is likely to be less effective in
gauge where the physical waves dominate the metric; therdyigher dimensions than in 1D because the number of vari-
fore, the separation of speeds may not make much differencgbles increases more rapidly than the number of constraints.
in accuracy for 2D and 3D calculations of greatest physicalUsing an outgoing wave boundary condition based on the
interest. Weyl tensor to further constrain the variables is problematic

The eigenmode decomposition in higher dimensions dein the general case. While the peeling theorg86] in an
pends on a chosen direction of propagation, as do the conasymptotically flat spacetime does show that the incoming
binations of the actual variables which can be identified asvave projection of the Weyl tensor falls off much more rap-
“longitudinal,” “constraint,” and “physical” quantities. In  idly than the outgoing wave projection in the wave zone, one
addition, putting the equations into first-order form requires acannot assume that the outgoing wave dominates in 3D nu-
choice of derivative ordering, which has important effects onmerical relativity calculations, which typically have to be
the hyperbolicity of the system. A “directional splitting” ap- truncated at best in the inner part of the wave zone. The
proach to solving the transport steps, in whigfy+d,F¢  ingoing part of the Weyl tensor contains non-radiative quasi-
=0 is solved separately for each coordinate direction static quadrupole moment contributions which cannot be as-
does, at least for some choices of derivative ordering, allovsumed to vanish.
the identification of “longitudinal,” “constraint,” and The flux-based wave decomposition numerical methods
“physical” eigenmodes for one coordinate direction at awe have presented for hyperbolic formulations of the Ein-
time. The decomposition involves projecting tbg;;'s and  stein equations are completely generalizable, and should
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prove useful for calculations in black hole and Brill wave the1 1
spacetimes where the eigenvectors and eigenvalues have sig- J Fiedt=At Fl gt EAtzatFint(UZ)
nificant spatial variation. We hope to extend our exploration n

of hyperbolic methods to include the use of limiters and 1
upwind differencing. Limiters will be used to suppress short + 6
wavelength numerical instabilities. With upwind differenc-

ing, one does not need ghost cells at the apparent hOrzaR orger that™* ! be accurate to second order while neglect-
boundary of an excised black hole, where the eigenmodes afﬁg the last term in Eq(A2), 42F must be continuous iR
’ t "

purely ingoing. . .
In conclusion, we have developed basic methodologiegrom the evolution EqSS) for F, assuming the dependence

for hyperbolic formulations of the Einstein equations, WhichOf Fong is analytic, second order.con_tlnmty HﬁF 'S guar
improve accuracy and stability in 1D, and which we think @"t¢€d by second order continuity #fF. The resulting
merit further exploration in the context of numerical relativ- €4uation is

ity calculations of more substantial physical interest.

ABTF (13- (A2)

thea 1
ft Fi(dt=AtF 15— EAtzAi = w2 Pk (11)-
(A3)
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during the initial stages of this research. andF;_ (1), and change the same way whgérandF;, ; are

replaced byF(q;,x;) and F(q;i,1,X;+1), they cancel in the
difference of the flux integrals in E§A1) and can be omit-
APPENDIX: SECOND ORDER ACCURACY ted, if 92F is continuous.
OF FLUX-BASED WAVE DECOMPOSITION To obtain a second-order accurate contributiorqi“ﬂé’1

In the wave propagation stage of solving for the timefrom the second term in EGA3), it is sufficient thatA, .. (1)
evolution of a hyperbolic system, the equations being solve@nd (@xF){ (12 be accurate to first order. In methdd,
are exact conservation laygq. (54)]. The integral form of ~ Ai- (1) is approximated to first order by(A;+A;.q). A
the conservation law can be used to update the avefage  Taylor expansion of F);'. 1/ gives, to first order,
theith cell,

1 1
e (12~ E(Fin+ Fl1)— gAXZ(aiF)in

A F'ni 1/2
(P R (A5)

q_n+lE if qn+ldx
' AxJcell Flux-based wave decomposition consists of decomposing
1 the flux difference\F, ;5 into a sum over eigenvectors of
=q'- Ax the characteristic matrix, and similarly fm:{‘_(l,z). Differ-
ent versions evaluate these eigenvectors at different loca-
thi1 thit tions. From the point of view of smooth solutions, the pre-
J Fisdt— J Fi(l/Z)dt} (A1)  ferred location is to base the decompositiorAgf () at the
n n respective cell boundaries. The decompositiorAGﬂ“HUZ)

into a sum of right eigenvectors of the matAx, (1,7 can be
wherei =% denotes values on the cell boundaries. We baseyritten

our discussions of accuracy on Taylor series expansions in
botht andx, assuming that the cell sizex and the time step AF{‘+(1,2)= Riy @2l (AB)
At=t, . ,1—t, are the same order. Time and spatial deriva-
tives are related by the wave propagation equation(&4),  WhereR; 15, is a matrix whose columns are the right eigen-
andF is assumed to depend opandx. Second order accu- Vectorsrf, ), and the column vectoF (1, consists of
racy means that the error in one time stemfi * decreases the coefficients of the decompositiop, (1. Then
faster than At)? asAt andAx go to zero.

ExpandingF in a Taylor series in time, Ay w2AF 1= Riv@2Ai+aplicar, (A7)

X
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where Aj (17 is the diagonal matrix of eigenvalues of the eigenmode at that interfag@he second condition nor-
Aii(12)- Let NP, 2 be the pth eigenvalue, or wavespeed,mally follows from continuity ofd,A, but may fail if some

and 1etWP, (1=7s (ol s (112), Wherer P, ;) is the pth
eigenvector, i.e., the pth column & , (1,). Equation(A7)
can be written

A 2AF (12)= % A WP (112) - (A8)

Combining Egs. (A3)—(A5) and (A8), and noting that

AF, w2)=2 pWip+ (1/2) 1 gives

tht1 1
ft Fispdt=At Fin+§ Ep: WP, (112

n

1 At o )
2 Ax Ep A 2)Wie ) |» (A9)

and a similar expression for the flux integraliat3. In Eq.
(A1), these give forq'**
shown to be equivalent to the substitution of E(8) into
Eq. (57). Thus, we have shown that methdd of Sec.
VIII B 1 is second-order accurate fé¢F continuous.
Methodl is based on expressions similar to E49) for

the flux integrals, but the eigenvectors\, , (15, for in-

stance, are derived frow; for the left-going eigenmodes at

thei+ 3 interface and derived from, , ; for the right-going

eigenmodes. In the last term in EGA9), the eigenvalues
)\ip+(1/2) are approximated to first-order accuracy as the averThe result forg;

an expression which is easily

of the eigenmodes are nearly degenerate. With this qualifica-
tion, the first-order corrections in this term will cancel be-
tween the two interfaces, as long as the same eigenmodes are
left- and right-going at each interface. When the averaged
eigenvalues at the cell interfaces do change sign, continuity
of the first derivatives of the eigenvalues implied by conti-
nuity of 9,A means\l, ;) and\f_ 4, are both of order
AXx. The last term in Eq(A9), which becomes the last term

in Eq. (58), is then second-order accurate by itself. The terms
first-order inAt in Egs. (57) and (58) will differ in second
order from their values in methold, but combine by con-
struction to give

1
L R L
2 Wit 2 ; Wi+(1/2)_2 WP (112)

1 1
=2 EEAFH—(I/Z)

R L
; WP (172t ; WYL (112)

(A10)

and

1 1
; WiR—(llz)_ E[; WiR—(l/z)_g W:'(llz)}: §AFin—(1/2)-
(A11)

n*+1js the same as methdt through second

age of the eigenvalues associated with the adjacent cells, batder, as long as the eigenvectors are smooth as discussed
the W, (1 are only zeroth-order accurate. The first-orderabove. While eigenmodes are degenerate for many hyper-

corrections to the eigenvectors are the same at thk in-

bolic formulations of the Einstein equations, the eigenvectors

terfaces, if the same eigenmodes are left and right-going atan be chosen with the required smoothness.

each interface and the first derivatives of the eigenvectors are Both methods, when the smoothness conditions are satis-
continuous(Recall that in method, the sign of the averaged fied, are equivalent through second order to the Lax-
eigenvalue at a given interface determines the direction ofVendroff finite difference scheme presented in Sec. VIII B 2.
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