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A complete Lagrangian and Hamiltonian description of the theory of self-gravitating lightlike matter shells
is given in terms of gauge-independent geometric quantities. For this purpose the notion of an extrinsic
curvature for a null-like hypersurface is discussed and the corresponding Gauss-Codazzi equations are proved.
These equations imply Bianchi identities for spacetimes with null-like, singular curvature. The energy-
momentum tensor density of a lightlike matter shell is unambiguously defined in terms of an invariant matter
Lagrangian density. The Noether identity and Belinfante-Rosenfeld theorem for such a tensor density are
proved. Finally, the Hamiltonian dynamics of the interacting “gravityatter” system is derived from the
total Lagrangian, the latter being an invariant scalar density.
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I. INTRODUCTION tensor densityQ?, has the appropriate null-like limit and
enables us to formulate the theory of a null-like shell in full
A self-gravitating matter shelll,2] became an important analogy with the nondegenerate case. We prove the Gauss-
laboratory for testing the global properties of a gravitationalCodazzi equations for the extrinsic curvature described by
field interacting with matter. Models of a thin matter layer this tensor density. In particular, the above notion of an ex-
allow us to construct useful minisuperspace examples. Toyrinsic curvature may be applied to analyze the structure of
models of quantum gravity, based on these examples, mayonexpanding horizons].
give us a deeper insight into a possible future shape of the The quantityQ?, defined in Sec. Ill enables us to con-
qguantum theory of gravity3]. Especially interesting are sider spacetimes with singulddistributionlike curvature
null-like shells, carrying a self-gravitating lightlike matter confined to a null-like hypersurface, and to prove that the
[4]. Classical equations of motion of such a shell have beeBianchi identities(understood in the sense of distributipns
derived by Barrabeand Israel in their seminal papié]. are necessarily satisfied in this case. Such spacetimes are a
In the present paper we give a complete Lagrangian andatural arena for the theory of a null-like matter shell.
Hamiltonian description of a physical system composed of a The second main result consists in treating the lightlike
gravitational field interacting with a lightlike matter shell. matter in a fully dynamicaland notphenomenologicalay.
The paper contains two main results, which, in our opinionAll the properties of the matter are encoded in a matter La-
improve slightly the existing classical theory of a null-like grangian, which is an invariant scalar density $1no in-
shell and provide an appropriate background for its quanvariant scalar Lagrangian exists at all for such matter, be-
tized version. The first result is the use of fully gauge-cause conversion from scalar densities to scalars and vice
invariant, intrinsic geometric objects encoding the physicalersa is impossib)e The Lagrangian gives rise to a gauge-
properties of both the shefés a null-like surface in space- invariant energy-momentum tensor densify,, which
time [6]) and the lightlike matter living on the shell. We later—due to Einstein equations—arises as a source of grav-
begin with a description of an “extrinsic curvature” of a ity. Both Noether and Belinfante-Rosenfeld identities for the
null-like hypersurfaceS in terms of a mixed contravariant- quantity T%, are proved: they are necessary for the consis-
covariant tensor densit@Q®,—an appropriate null-like ana- tence of the theory. We stress that the contravariant symmet-
logue of the Arnowitt-Deser-MisndlADM) momentum(cf. ric energy-momentum tensdr?® cannot be defined unam-
[7]). For a nondegenerai@melike or spacelike hypersur-  biguously, whereas the covariant tensby,, obtained by
face, the extrinsic curvature may be described in manyowering the index with the help of a degenerate metriSpn
equivalent ways: by tensors or tensor densities, both of therioses partial information contained ¥f,. On the contrary,
in the contravariant, covariant, or mixed version. In a null-the mixed contravariant-covariant tensor dendify is un-
like case, the degenerate metric 8rdoes not allow us to ambiguously defined and contains—as in the nondegenerate
convert tensors into tensor densities and vice versa. Also, wease—the entire dynamical information about the underlying
are not allowed to raise covariant indices, whereas loweringnatter.
the contravariant indices is not an invertible operator and In Sec. VI we use a method of variation of the total
leads to information loss. It turns out that only the mixed (gravity+ matter) Lagrangian proposed in R¢8] and de-
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rive in this way the Barralslsrael equations for gravity, =f(d,—n"d,), wheref>0, n,=gos, and we raise indices
together with the dynamical equations for the matter degreewith the help of the two-dimensional matr§é', inverse to
of freedom. In Sec. VII we show how to organize the gravi-gag.

tational and matter degrees of freedom into a constrained If by X we denote the two-dimensional volume form on
Hamiltonian system, with the ADM mass at infinity playing each surface®=const,

the role of the total (gravity matter) Hamiltonian. Finally,

the structure of constraints is analyzed in Sec. VIII. To \:=ydetgag, 2
clarify the exposition of geometric and physical ideas some i i ,

of the technical proofs have been shifted to the Appendixedl€n. for any degeneracy fiekiof g,p, the following object

A
Uv'="""p_
II. INTRINSIC GEOMETRY OF ANULL HYPERSURFACE X X(XO)

A null hypersurface in a Lorentzian spacetink is a is a scalar density 08. Its definition does not depend on the
three-dimensional submanifoldCM such that the restric- coordinate systemxf) used in the above definition. To
tion g, Of the spacetime metriag,, to Sis degenerate. We prove this statement it is sufficient to show that the value of
shall often use adapted coordinates, where coordixaiis vy gets multiplied by the determinant of the Jacobi matrix
constant onS. Space coordinates will be labeled Hy | when we pass from one coordinate system to another. This
=1,2,3; coordinates o will be labeled bya, b=0,1,2; means that vy:=vxdx’Odx'0dx? is a coordinate-
finally, coordinates o1$,:=V;N S (whereV, is a Cauchy sur- independent differential three-form d& However,vy de-
face corresponding to a constant value of the coordir@te pends upon the choice of the fiexd

=t) will be labeled byA, B=1,2. Spacetime coordinates will It follows immediately from the above definition that the
be labeled by Greek characters B, u, v. following object,

We always assume in the following that is a timelike
coordinate in the four-dimensional sense, i.e., that the fol- A=vxX,

: H H . 0y2 _ ~00, i
]I(owl?]g mequatl_lty h}?',[?]s' dxt). =9 <0. (ﬁge ?ppen?{;\(/A is a well definedi.e., coordinate-independentector density
or thé properties ot the metric in a neighbor oodSpf We on S. Obviously, itdoes not dependpon any choice of the
stress that a coordinate defined only $rannot be called field X:

“timelike” or “spacelike” because the metrig,, on S can-

not be inverted, and consequently, there is no way to define A=N(dg—Nn"d,p). 3

the square of its differential. Our assumption about the time-

like character of x° applies, therefore, to the four- Hence, itis an intrinsic property of the internal geomeggy

dimensional coordinate and not to its three-dimensional reef S The same is true for the divergenégA?, which is

striction to the surfac&. therefore an invariantX-independent, scalar density @&
The nondegeneracy of the spacetime metric implies thavlathematically(in terms of differential formyg the quantity

the metricg,;, induced onS from the spacetime metrig,, A represents the two-form

has a signaturé0, +, +). This means that there is a nonva- a 0 1 )

nishing null-like vector fieldX? on S, such that its four- L := A%()dx"Ldx"0dx%),

dimensional embeddingt* to M (in adapted coordinates

X3=0) is orthogonal toS. Hence, the covectoX,=X*g,,,

= X&g,, vanishes on vectors tangent$pand therefore the

following identity holds:

whereas the divergence represents its exterior derivétive
three-form: dL :=(9,A?)dx°0dx*0dx2. In particular, a null
surface with vanishinglL is called anonexpanding horizon
[8].
Both objectsL and vy may be defined geometrically,
X2g,,=0. (1)  Wwithout any use of coordinates. For this purpose we note that
at each poink e S, the tangent spack,S may be quotiented
with respect to the degeneracy subspace spanned e
It is easy to prove10] that integral curves oK?®, after a quotient space carries a nondegenerate Riemannian metric
suitable reparametrization, are geodesic curves of the spacand therefore is equipped with a volume fowr(its coordi-
time metricg,,. Moreover, any null hypersurfacé may  nate expression would be=\dx'0dx?). The two-formL
always be embedded in a one-parameter congruence of nudl equal to the pull-back ab from the quotient space B, S.
hypersurfaces. The three-formvy may be defined as a produet= a[L,
We assume that topologically we ha8e- R'x S?. Since  wherea is any one-form onS, such thatX,a)=1.
our considerations are purely local, we fix the orientation of The degenerate metrig,, on S does not allow us to de-
the R* component and assume that null-like vectdrgle-  fine via the compatibility conditio’Vg=0, any natural con-
scribing degeneracy of the metrig,,, of S will be always nection, which could apply to generic tensor fields &n
compatible with this orientation. Moreover, we shall alwaysNevertheless, there is one exception: we are going to show
use coordinates such that the coordindténcreases in the that the degenerate metric defingsiquelya certain covari-
direction of X, i.e., the inequalityX(x®)=X°>0 holds. In  ant, first-order differential operator that will be extensively
these coordinates degeneracy fields are of the fofm wused in our paper. The operator may be applied only to
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mixed .(contravarian.t—covariahtt.enlsor—d.gns.ity fieldsH®,, V,Ha, =9, H3, — H3%G e (9)
satisfying the following algebraic identities:
The right-hand side does not depend upon any choice of

b_
H%X"=0, (4) coordinates(i.e., transforms similar to a genuine covector
density under a change of coordinatéhe proof is straight-
Hap=Hbpa, (5 forward and does not differ from the standard case of for-

mula (6), when the metriqg,, is nondegenerate.

To express directly the result in terms of the original ten-
sor densityH?,, we observe that it has five independent
components and may be uniquely reconstructed ftéfp

where H,p:=g,H% . Its definition cannot be extended to
other tensorial fields 0% Fortunately, as will be seen, the
extrinsic curvature of a null-like surface and the energy-

momentum tensor of a null-like shell are described by tenSO(tWO independent componeptand the symmetric two-

densities of this type. dimensional matridH 5g (three independent components-

The operator, which we denote B%H?,, could be de- deed, identitieg4) and (5) may be rewritten as follows:
fined by means of the four-dimensional metric connection in

the ambient spacetimid in the following way. GivenH?,, HAg=§"“Hcg—n"H%, (10
take any of its extensiond*” to a four-dimensional, sym-

metric tensor density, “orthogonal” tcS, i.e., satisfying HO%=H%n", (12)
H1”=0 (L denotes the component transversaBtoDefine

— B _ /&/BC ByO0 A

V,H?, as the restriction t& of the four-dimensional covari- H%=(§""Hca—n"H"4)N". (12

ant ingrgenceVMH.“,,. As will be seen in the fol!owing., There is a one-to-one correspondence betwke@p and
ambiguities that arise when extending the three-d|men3|onaz 0 Ha) P b
A AB/-

objectH?, on S to the four-dimensional one finally cancel, . .
) b y To reconstrucH?? from H2, up to an arbitrary additive

and the result is unambiguously defined as a covector densit CXaxP take the followi dinate-d dent
on S It turns out, however, that this result does not depen rm , lake the following, coordinate-dependent, sym-
fnetric quantity:

upon the spacetime geometry and may be defined intrins

cally on S This is why we first give this intrinsic definition AB._ SAC sDB_ A0 SCB_ B140 &CA

in terms of the degenerate metric. F*:=0""Hcpd " —n"H e "—n"H'cg~", (13
In case of a nondegenerate metric, the covariant diver-

gence of a symmetric tensbt density may be calculated by

the following formula:

FOA:ZHOCgCA::FAO, (14)

F%:=0. (15)
VaHab:é’aHab_Hacl_‘;b . b L
It is easy to observe that amy?® satisfying Eq.(7) must be
=9,H%~ 3H*acp » (6)  of the form

With gacp=dpJac- IN the case of our degenerate metric, we Hab= Fab4 H00xaxb, (16)
want to mimic the last formula, but here raising of indices of

H2, makes no sense. Nevertheless, form@)amay be given  The nonuniqueness in the reconstructiorH3P is therefore

a unique sense also in the degenerate case, if applied tocampletely described by the arbitrariness in the choice of the
tensor densityH?, satisfying identitieg4) and (5). Namely,  value ofH%. Using these results we finally obtain

we take agH?® any symmetric tensor density that reproduces o

H?, when lowering an index: VaH?p:=9,H?, — 5H?°gac b= daH? — 3 F*°Qac b

H3 =H?%g,.y,. (7 = 9aH%—3(2H%AN" p—HacG"C p). 17

It is easily seen that such a tensor density always exists duEhe operator on the right-hand side of Efj7) may thus be
to identities(4) and (5), but reconstruction of?¢ from H?, called the(three-dimensionalcovariant derivative oH?, on

is not unique, becaudd?°+ CX?X°® also satisfies Eq(7) if S with respect to its degenerate metdg,. We have just
Ha¢ does. Conversely, two such symmetric tendaf§ sat-  proved that it is well definedi.e., coordinate-independent
isfying Eq. (7) may differ only byCX3X®. This nonunique- for a tensor density4?, fulfilling conditions (4) and (5).

ness does not influence the value of E), because of the Equation(9) suggests yet another definition of the cova-

following identity implied by Eq.(1): riant divergence operator. At a given poi S choose any
coordinate system such that derivatives of the metric compo-
0=(X*XGac) b nentsg,. vanish atx, i.e., gacp(x)=0. Such a coordinate
system may be calleidertial. The covariant divergence may
=X*XGac bt 2X¥GacX% thus be defined as a partial divergence but calculated in an
= XX°Gcp - ®) inertial :_systemeaHab: d;H?, . Ambiguities in the choice of
' an inertial system do not allow us to extend this definition to
Hence, the following definition makes sense: a genuine covariant derivativé.H?,. However, it may be
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easily checked that they are sufficiently mild for an unam-nate system adapted ® i.e., such that the coordinat€ is
biguous definition of the divergendsee the Remark at the constant or§, we haveG-,=G%,. Because of the fact thgt
end of Sec. V. is a tensor density, componerds, does not changevith

The above two equivalent definitions of the operafor changes of the coordinat€’, provided it remains constant
use only the intrinsic metric d& We want to prove now that ©nS These components describe, therefore, an intrinsic cov-
they coincide with the definition given in terms of the four- €ctor density situated o . .
dimensional spacetime metric connection. For that purpose Proposition 1 The following null-like surface version of
observe that the only nonuniqueness in the reconstruction ¢he Gauss-Codazzi equation is true:
the four-dimensional tensor density &f*” is of the type
CX#X”. Indeed, any such reconstruction may be obtained
from a reconstruction ofi3¢ by settingH3"=0 in a coordi-
nate system adapted ® (i.e., such that the coordinate’
remains constant o8). Now, calculate the four-dimensional

covariant divergencél,:=V,H", . Because of the geodesic yqngities 5 A° anduy, is a scalar function. Its gradient is a
character of integral curves of the fieki the only nonu- o6 ctor field. Finally, multiplied by the density, it pro-
niqueness that remains after this operation is of the typg,ces an intrinsic covector density 8nThis proves that the
CX, . Hence, the restrictiohl,, of H, to Sis already unique. |eft-hand side also is a well-defined, geometric object situ-

C

JA
) =— QJ‘ b- (20)

Ux

€aQab(x) +Svxdy

We remind the reader that the ratio between two scalar

Because of Eq(6), it equals ated onS.
To prove consistency of E§20), we must show that the
V, H*,=a,HM, = 3HMA left-hand side does not depend upon a choic&.dfor this
4 1iiac e purpose consider another degeneracy fi{dwheref>0 is
=dqH%—2H*Gac = VaH% . (18  a function onS We have
IIl. EXTRINSIC GEOMETRY OF A NULL —sQP(FX) =vix(Vp(FX®) = 85VL(F X))+ 859 A°
HYPERSURFACE: GAUSS-CODAZZI EQUATIONS 1
To describe the exterior geometry & we begin with = 7 ux(FWX%+ X2 — 5pf VeX©

covariant derivatives alon@ of the orthogonal vectoiX.
Consider the tensdv,X*. Unlike in the nondegenerate case, — 5pX%a.f )+ Spa.A°
there is no unique “normalization” oK, and therefore such
an object does depend upon a choice of the fXldThe =—sQ(X)+ A% p— A e ¢, (21)

length of X is constant{because vanishgsHence, the tensor

is again orthogonal t&, i.e., the components corresponding where ¢:=logf. It is easy to see that the tensor

to x=3 vanish identically in adapted coordinates. This

means thaV,X" is a purely three-dimensional terlsor sm_Jathd 9( @) =A@ ,— 52A°e (22)
on S For our purposes it is useful to use the “ADM-like

version of this object, defined in the following way: satisfies identity(4). Moreover, gay= —gapA ¢ o, Which

Q%(X) = — S{ox(VXA— S2V.XE) + 629A}, (19 proves Eq(5). On the other hand, we have

Cc Cc
where s:=sgng®®= = 1. Because of the above convention, vfxab(‘?CA ):Uxab(aCA +(3A% e (23)
Ux '

the extrinsic curvatur€?,(X) detects only thexternal ori- Ufx
entationof S and does not detect any internal orientation of
the field X. But, using formula(17) we immediately get

Remark If Sis anonexpanding horizgrthe last term in
the above definition vanishes.

The last term in Eq(19) is X independent. It has been
introduced in order to correct algebraic properties of the )
quantity vy (VpX2— 82V,X%): we prove in the Appendix A which proves that the Ieft-hanq side of E@O0) does not
[see the Remark after EGA26)] that Q?, satisfies identities depend upon any choice of the fieldThe complete PrO?f of
(4) and (5) and, therefore its covariant divergence with re-the Gauss-Codazzi equati¢20) is given in Appendix A.
spect to the degenerate metgg, on Sis uniquely defined.
This divergence enters into the Gauss-Codazzi equations that )
we are going to formulate now. Gauss-Codazzi equations In the nondegenerate case, there are four independent Gauss-

. . Codazzi equations: beside§',, there is an additional equation
relate the divergence @ with the transversal compone@ relating G-, with the (external and internalgeometry ofS. In the

of the Einstein tensor density, = \/|detg|(R*,— %%R): The  degenerate case, the vector orthogondad te—at the same time—
transversal component of such a tensor density is a welkangent to it. Henceg", is a combination of quantitie§", and
defined three-dimensional object situated®nn a coordi-  there are only three independent Gauss-Codazzi equations.

Va0P(0) = (3cA% @,
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IV. BIANCHI IDENTITIES FOR SPACETIMES WITH Now, let us come back to the case of our degenerate sur-
DISTRIBUTION VALUED CURVATURE faceS One of the goals of the present paper is to prove that
formulas (25 and (26) remain valid also in this case. In
particular, the latter formula means that the four-dimensional
uantityG*” reduces in fact to an intrinsic, three-dimensional
uantity situated o®s. However, formuld27) cannot be true,
because—as we have seen—there is no way to define

In this paper we consider a space-tiMewith distribution
valued curvature tensor in the sense of TELH. This means
that the metric tensor, although continuous, is not necessaril
smooth inC! acrossS we assume that the connection coef-
f|C|entSsSI‘£V mallly have only Istelpt d;ﬁcogltmwtle@umpst uniquely the objecQ?” for the degenerate metric & In-
acros ormaily, we may caiculate the Riemann curvallir€qa oy \ve are able to prove the following formula:
tensor of such a spacetime, but derivatives of these disconti-
nuities with respect to the variabi€ produce as-like, sin-

P P % =[Q%(X)], (28)
gular part ofR:
singR)*

MVK

— (ST 1= 83T 1 a(x® 24 where the bracket denotes the jumpQ@f,(X) between the
(ST ]= 0T, e(x), (24 two sides of the singular surface. Observe that this quantity
where by & we denote the Dirac distributiofin order to ~ does not depend upon any choiceXofindeed, formuld21)
distinguish it from the Kronecker symbd) and by[f] we  Shows thaQ changes identically on both sides®fvhen we
denote the jump of a discontinuous quantitpetween the CchangeX and, hence, these changes cancel. This proves that
two sides ofS The formula above is invariant undemooth  the singular part sing)®, of the Einstein tensor is well de-

transformations of coordinates. There is, however, no sendined. . ]
in imposing such a smoothness acr8st fact, the smooth- Remark Otherwise, as in the nondegenerate case, the con-

ness of spacetime is an independent condition on both siddgvariant components° in formula (25) do not transform

of S The only reasonable assumption imposed on the differas & tensor density d& Hence, the quantity defined by these
entiable structure oM is that the metric tensor—which is components would be coordinate dependent. According to
smooth separately on both sides$fremains continuods Ed. (28), G becomes an intrinsic three-dimensional tensor
acrossS. Admitting coordinate transformations preserving density onSonly after lowering an index, i.e., in the version
the above condition, we lose some of the information con®f G%. This proves thalG*” may be reconstructed from
tained in quantity(24), which now becomes coordinate de- G% Up to an additive tern€X*X" only. We stress that the
pendent. It turns out, however, that another part, namely theynamics of the shell, which we discuss in the sequel, is
Einstein tensor density calculated from H@4), preserves Unambiguously expressed in terms of the gauge-invariant,
its geometric, intrinsidi.e., coordinate-independennean-  intrinsic quantityG®, . Proofs of the above facts are given in
ing. In the case of a nondegenerate geometri dhe fol-  the Appendix A.

lowing formula was used by many authdfis-3,12,13: We conclude that the total Einstein tensor of our space-
time is a sum of the regular pareg(G) and the singular part
sing G)*"=GH*"&x3), (25) sing (G) above existing on the singularity surfaBeThus
where the “transversal-t§& part of G*” vanishes identi- Gk, =reg G)*,+sing G)*,, (29
cally:

P and the singular part is givemp to an additive term
G "=0, (260 cxex,8(x%). Due to Eq. (8), the following four-

and the “tangent-tc' part G equals the jump of the ADM dimensionalcovariant divergence is unambiguously defined:

extrinsic curvatureQ®® of S between the two sides of the @
surface: 0=V, G"c=0,0"—G" I} c=0,G"— %gm\gm\,c ) (30

Gab: ab ) 2
[Q™ @7 We are going to prove that this quantity vanishes identically.

This quantity is a purelyhree-dimensionalsymmetric ten- Indeed, the regular part of this divergence vanishes on both
sor density situated ors. When multiplied by theone-  sides ofS due to Bianchi identities: re§{,G*:)=0. As a
dimensionatensity8(x%) in the transversal direction, it pro- Next step we observe that the singular part is proportional to

duces thefour-dimensionaltensor densityg according to ~ #(x°), i.e., that the Dirad5 contained in singg) will not be
formula (25). differentiated, when we apply the above covariant derivative

to the singular par25). This is true because sing®,=0.
Hence, only the covariant divergence @falong S [multi-

2Many authors insist in relaxing this condition and assuming onlyPlied by 5(x%)] remains. Anotheré-like term is obtained
the continuity of the three-dimensional intrinsic metric 8nwe  from d,G*., when applied to thepiecewise continuous
stress that thdapparently strongércontinuity condition for the
four-dimensional metric does not lead to any loss of generality and
may be treated as an additional, technical gauge imposedpon 3The regular part is a smooth tensor density on both sides of the
the physical systerut upon its mathematical parametrization. We surfaceS (calculated for the metrig separately with a possible
discuss thoroughly this issue in a Remark at the end of this sectiorstep discontinuity acrosS
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regular part of G. This way we obtain the term generatgmetric tensom,, of S
[reg(@)*.16(x%). Finally, the total singular part of the Bian-
chi identities reads L=L(ZZ%,;0ap)- (33

Singvﬂguc):([regg)Lc]Jr@Gab)g(x?))Eo (31)  We assume thdt is an invariant scalar density d& Simi-
larly as in the standard case of canonical field theory, invari-
and vanishes identically due to the Gauss-Codazzi equatiagince of the Lagrangian with respect to reparametrizations of
(20), when we calculate its jump acroSs Hence, we have Simplies important properties of the theory: the Belinfante-
proved that the Bianchi identity,G“.=0 holds universally ~Rosenfeld identity and the Noether theorem, which will be
(in the sense of distributiongor spacetimes with singular, discussed in this section. To get rid of some technicalities,
lightlike curvature. we assume in this paper that the matter fiefisre “space-

It is worthwhile to notice that the last term in definition time scalars,” like, e.g., material variables of any thermome-
(19) of the tensor densit® of Sis identical on its both sides. chanical theory of continuous mediésee, e.g., Refs.
Hence, its jump acrosSvanishes identically. In this way the [12,14]). This means that the Lie derivativé,z of these
singular part of the Einstein tensor densigg) reduces to:  fields with respect to a vector fielon S coincides with the

a a1 a . partial derivative:
b=[Q%]= —svx([ WuX*]— & VeX°]). (32)
. . . . (Ly2) =2",Y2
Remark The possibility of defining the singular Einstein
tensor and its divergence via the standard formulas of RieThe following lemma characterizes Lagrangians that fulfill
mannian geometrybut understood in the sense of distribu- the invariance condition.
tion) simplifies considerably the mathematical description of Lemma V.1The Lagrangian densit{83) concentrated on
the theory. This techniques is based, however, on the conta null hypersurface is invariant if and only if it is of the
nuity assumption for the four-dimensional metric. This is notform
a geometric or physical condition imposed on the system, but
only the coordinatégauge condition. Indeed, whenever the L=vxf(z;Lxz;9), (34)
three-dimensional, internal metric dhis continuous, also . i .
the remaining four components of the total metric can bevhereXis any degeneracy field of the metudg, on S and
made continuous by a simple change of coordinates. In thi§(-:-:-) is a scalar function and is homogeneous of degree 1
new coordinate system we may use our techniques based ¥ith respect to its second variable. S
the theory of distributions and derive both the Lagrangian Proof of the Lemma and examples of invariant
and the Hamiltonian version of the dynamics of the tota|Lagrang_|ans for different lightlike matter fields are given in
(“gravity +shell”) system. As will be seen in the following, APpendix C. _ _
the dynamics derived this way does not depend upon our Reémark Because of the homogeneity Divith respect to
gauge condition and is expressed in terms of equations th4txZ: the above quantity does not depend upon a choice of
also apply to general coordinates. As an example of such i€ degeneracy field. _ _
equation consider formulé28) which—even if derived here Dynamical properties of such a matter are described by its
by technique of distributions under more restrictive c@nonical energy-momentum tensor density, defined in a
conditions—remains valid universally. We stress that even irstandard way:
a smooth, vacuum spacetinfeo shell at all one can con- L
sider nonsmooth coordinates, for which only the internal T2y i=— 2Ky — %L (35)
metric g,, on a given surface, sajx®=C}, is continuous, 9274
whereas the remaining four componergs, may have
jumps. The entire canonical gravity may be formulated in
these coordinates. In particular, the Cauchy surfaods
=cons} would be allowed to be nonsmooth here. Nobody
uses such a formulatioteven if it is fully legitimate be-

It is “symmetric” in the following sense:

Proposition 2 The Canonical energy-momentum tensor-
densityT?, constructed from an invariant Lagrangian density
fulfills identities (4) and(5), i.e., the following holds:

cause of its relative complexity: the additional gauge condi- TaXP=0 and T.p=Tpa. (36)
tion imposing the continuity of the whole four-dimensional a é
metric makes life much easier. Proof. For a Lagrangian density of the for(84) we have
V. ENERGY-MOMENTUM TENSOR OF A LIGHTLIKE Ta — oL K sl
MATTER: BELINFANTE-ROSENFELD IDENTITY b 8ZKa b b
The goal of this paper is to describe the interaction be- of K
tween a thin lightlike matter shell and the gravitational field. =Ux Xamz b— %f |, (37

We derive all the properties of such a matter from its La-

grangian density.. It may depend upofnonspecifiedmat-  \whence

ter fields zX living on a null-like surfaceS, together with

their first derivativesz®,:=9,z and—of course—thdde- Tab=T%9ca= —UxTGab=Tha- (38
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Homogeneity off with respect to the argument{;X%) im-
plies

(39
]

T3 XP=p X2 ot (25, XP)—f |=0

In the case of a nondegenerate geometr§ ahe consid-
ers also the symmetric energy-momentum tensor dendy
defined as follows:

ab,_p o (40)
7= .
agab

In our case the degenerate metric fulfills the constraint

detg,,=0. Hence, the above quantiynotuniquely defined.
However, we may define it, but onlyp to an additive term

PHYSICAL REVIEW D 65 064036

means that transporting the argumerztsig;g) of L alongyY
gives the same result as transporting directly the value of the
scalar density- on S

JL £opK aL LopK JL
—x (Ly2)*+ 2)K .+
ﬁZK( Y ) &ZKa( Y ) a J ac

(L£yQ)ac=LyL.
(44)

Take for simplicityY=a/dx® (or Y2= 6%,). Hence, we have
(Ly2)*,=2¢,a=2",p. Applying this and rearranging terms
in the above expression, we obtain
aL aL dL K _ s
——2Z "y 6%L
ﬁZKa b b

JL
+';r__'gaqb=:0-

ac (45)

ZKb+ aa

——0
K a _K
0z 97",

Because of the Euler-Lagrangian equati¢s$) and to the

equal to the annihilator of this constraint. It is easy to see tha€finitions(35) and (40) of both the energy-momentum ten-

the annihilator is of the fornCX®X®. Hence, ambiguity in

the definition of the symmetric energy-momentum tensor is

precisely equal to ambiguity in the definition ®f°, if we
want to reconstruct it from the well-defined obj&&, . This

sors, the formula above reduces to the following statement:
%T%+%ﬁhmbza (46)

Our proof of this formula is valid in any coordinate system.

ambiguity is canceled when we lower an index. We shallin particular, we may use such a system for which all partial
prove in the next theorem, that for field configurations satisgerivatives of the metric vanish at a given point S. In this
fying field equations, both the canonical and the symmetrigarticular coordinate system we have

tensors coincidé. This is an analog of the standard
Belinfante-Rosenfeld identity16]. Moreover, the Noether

theorem(vanishing of the divergence @ is true. We sum-
marize these facts in the following.

VaT%(X) = d,T2,(X) =0.

But iTab(x)zo is a coordinate-independent statement:

_ Proposition 31f L is an invariant Lagrangian and if the ‘once proved in one coordinate system, it remains valid in any
field configurationz™ satisfies Euler-Lagrange equations de-gther system. Repeating this for all pointe S separately,

rived fromL,

JL
EVA

JL

dy——=0, (41
aﬁZKa

then the following statements are true.

(1) Belinfante-Rosenfeld identity: the canonical energy-
momentum tensoil?, coincides with(minus—because of

we prove the Noether theore@3). Subtracting now Eq.
(46) from Eq.(43) we obtain the following identity:

ab — ab
T Gab,c™ — 7 UYabec>

which must be true in any coordinate system. Here, Béth
and 72° are defined only up to an additive term of the form
CX@XP, which vanishes when multiplied bYapc. In the

the convention usédsymmetric energy-momentum tensor standard Riemannian or Lorentzian geometry of a nondegen-

7ab;
T%=—71"cp, (42
(2) Noether theorem:

V.T3,=0. (43)

erate metric, the derivativeg,, . may be freely chosen at
each point separately, which immediately implies the
Belinfante-Rosenfeld identitf = — 7. In our case, the free-
dom in the choice of these derivatives is restricted by the
constraint. This is the only restriction. Hence, the Belinfante-
Rosenfeld identity is true only up to the annihilator of these
constraints, i.e., only in the form of E42). |
Remark In a nondegenerate geometry, the vanishing of

Proof Invariance of the Lagrangian with respect to Space_derivatives of the metric tensor at a pointmiquely defines

time diffeomorphisms generated by a vector filddon S

“In our convention, energy is described by the formHla T°,
=p°Z—L=0, analogous ttH=pg—L in mechanics and well

a local “inertial system” atx. If two coordinate systems, say
(x®) and (y?), fulfill this condition atx, then second deriva-
tives ofx* with respect toy° vanishidentically at this point.
The covariant derivative may thus be defined as a partial
derivative, but calculated with respect to an inertial system,

adapted for Hamiltonian purposes. This convention differs from thé-€., to any coordinate system of this class. In our degenerate

one used in Ref[15], where energy is given bfy,. To keep

case, vanishing of derivatives of the metric does not fix

standard conventions for Einstein equations, we take the standaténiquely the inertial system. There are different coordinate

definition of thesymmetricenergy-momentum tensef,. This is
why the Belinfante-Rosenfeld theorem takes forfg=—T?,.

systems x%) and ?), for whichg,, . vanishes ax, but we
have
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52y We begin with varying the regular parf:3, of the gravi-
IxPaxt (x)#0. tational action. There are many ways to calculate variation of

the Hilbert Lagrangian. Here, we use a method proposed by

This is why any attempt to define a covariant derivative forone of us[9]. It is based on the following, simple observa-
an arbitrary tensor of$ fails. This ambiguity is, however, tion:

canceled by algebraic properties of our energy-momentum

tensor, namely, by identitie®) and (5). This enables us to 5(i\/ﬂg’“’R )
define unambiguously the covariant divergence of “energy- 167 wy
momentum-like” tensor densities using formu).

1
—— MV

1 14
+ 75 lolg"*oR,,,, (51
VI. DYNAMICS OF THE TOTAL GRAVITY +SHELL

SYSTEM: LAGRANGIAN VERSION
where
In this paper we consider dynamics of a lightlike matter-

shell discussed in the preceding section, interacting with GHVi= \/@( RY— 1gH'R). (52)
gravitational field. We present here a method of derivation of
the dynamical equations of the system, which applies also tg is a matter of a simple algebra to show that the last term of

a massive shell and follows the ideas of Ré]. Eq. (51) is a complete divergence. Namely, the following
The dynamics of the gravityshell system will be derived formula may be checked by inspection:

from the action principles.A= 0, where

. TSR, =3, (ST ), (53
A= -Arge;gv"' Azlrr;%"' Amatter (47) a .

is the sum of the gravitational action and the matter action\.Nhere we denote

Gravitational action, defined as an integral of the Hilbert 1

Lagrangian, splits into regular and singular parts, according L — \/@gw, (54)

to decomposition of the curvature: 16m

1 1 | RS S — S, (59
Loav= 765 VIOIR= 75— VIglregR) +singR)
o “in and F/’;,, are notindependent quantities but the Christoffel
=L gravt Lgrav (48)  symbols, i.e., combinations of the metric componegys
] ) and their derivatives. In the above calculations we use that
Using formulas(25)—(28), we express the singular partBf  fact that the covariant derivativér of  with respect tol’

in terms of the singular part of the Einstein tensor: vanishes identically, i.e., that the following identity holds:
\/Hsinq R) = —singg) = G’”gw&(x3). (49) &KW)\’”KE Wa”VKFfK_ W)\QVKFgK_ W)\MQKFZK. (56)

As analyzed in Sec. IV, an additive, coordinate-depende
ambiguity CX#X" in the definition ofG*” is irrelevant, be-
cause it is canceled when contracted vy, :

nIt-|ence, for the regular part of the curvature we obtain

1 1
| — _ _____(Mmv MVK A

(57)
For the matter Lagrangiah e, We assume that it has
properties discussed in the preceding section. Finally, the toMVe shall integrate the above equation over both plris
tal action is the sum of three integrals: andD ™~ of D, resulting from cuttingd® with the surfaces. In
this way we obtain

G,uvg;“}: Gabgab: Gaa .

a- g [ | e G0 :
5Lgrgv: B E regg)”“”égw+ reg(d,( WA”VK5F,U«V))'

where D is a four-dimensional region with boundary in (58
spacetimeM, which is possibly cut by a lightlike three-

dimensional surfac8 (actually, because of the Diratfac- Now, we are going to prove that the analogous formula is
tor, the second term reduce to integration obens). Varia-  Valid also for the singular part of the gravitational Lagrang-
tion is taken with respect to the spacetime metric tegggr ~ 1an, i.e., that the following formula holds:

and to the matter fieldg situated onS. The lightlike char- 1

acter of the matter considered here implies the lightlike char-  sing_ , " . vi oA

acter ofS (i.e., degeneracy of the induced metric dgg=0) SLgrav=~ Tz SNIG)"" 89, + SINGI(m " AT,)).

as an additional constraint imposed g@n (59
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To prove this formula, we calculate the singular part of thewhere both terms are composed of the regular and singular
divergencea,((m““‘él“i‘w). Because all these quantities are parts®

invariant, geometric objectsI" is a tensoy, we may calcu- Now, we calculate the variation of the matter pag,ier

late them in an arbitrary coordinate system. Hence, we magf the action onS

use our adapted coordinate system described in previous sec-

tions, where the coordinate® is constant orS This way, AL matter Il matter _y L matter K

using Eq.(55), we obtain: OL matter= 99 09apt — k07" F o 920z

. 1 aL aL
sing(d,(m*"*6T )= 803) m** 5(T,,] = ETab5gab+ (;;ﬁner 9y a;(atter oz¢
a
— 3 nrv3 A
5(X )7T)\ 5[Flu,v] + aa(pKa5ZK)5 (67)

=6(x3) 7 S[AS,], (60)
where we used definitiofd0) and have introduced the mo-

where byA we denote mentum canonically conjugate to the matter variatiie
A Y A JL
AMV::FMV_ (u :)K' (61) pi:= &;nKatter. (68)
a

(Do not try to attribute any sophisticated geometric interpre-
tation toA;‘w; it is mere|y a combination of the Christoffel Finally, we obtain the foIIowing formula for the variation of

symbols, which arises frequently in our calculations. It haghe total (mattetgravity) Lagrangian:
been introduced for technical reasons onlyhe following

combination of the connection coefficients will also be use- , 1 ) a [ ILmater Il matter
ful in the following: OL= " 7, 109900, ()| k= da az<,

~ 1

Q i=1lgl(g# g~ 39"'g"*) Al (62 X 62— 6(x%) 75— (G~ 8m7%) g
It may be immediately checked that +0,(mHOT, )+ 8(X3) da(p®6Z°). (69)

5 1 - In this section we assume that batg,,, and 6z vanish in
TR = T Ta7 JurOQM (63 a neighborhood of the bounda#p of the spacetime region
D (this assumption will be later relaxed, when deriving

In Appendix A we analyze in detail the structure of quantity Hamiltonian structure of the thearyHence, the last two
~ o . - . boundary terms of the above formula vanish when integrated
Q. As a combination of the connection coefficientsddites

. . g overD. Vanishing of the variatio®.A=0 with fixed bound-
not define any tensor density. But it differs from the externalar values implies. therefore. the Euler-Laarange equations
curvatureQ(X) of Sintroduced in Sec. lll, only by terms y plies, ' grange eq

. K . . - _
containing metric components and their derivatiaésng S (41) for the matter fieldz", together with the Einstein equa

Jumps of these terms acrdSwanish identically. Hence, the tions for gravitational field. The regular part of Einstein
> } equations,
following is true:

_ regg)*"=0,
[Q*16(%) =[Q*"]86(x*) =sing §)»". (64)
must be satisfied outside &and the singular part must be
Consequently, formula&0), (63), and(49) imply fulfiled on S To avoid irrelevant ambiguities of the type
CX3XP, we write it in the following form, equivalent to the
Barrabe-Israel equation:

S0 m 8T, 1= = 72— 0., sing 9+
o 16 G%=8mr?,. (70)
. 1
=Lgmt Esinqg)’“’ég,w, Summing up singular and regular parts of the above quanti-
ties we may write the total Einstein equations in the follow-
(65) ing way:
which ends the proof of Eq59). Summing up Eq958) and
(59), we obtain %In Ref.[9] the formula(66) was proved for regular spacetimes. In
1 Ref. [12] its validity was extended to spacetimes with a three-
Sl =— 1Y S 40 mvK SN 66 dimensional, nondegenerate curvature singularity. Here, we have
gav 16w G700+ 9. ) (66) shown that it is also valid for a lightlike curvature singularity.
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In the present paper we consider the case of an asymptoti-
cally flat spacetime and assume that also leave®f our
(3+1) decomposition are asymptotically flat at infinity. To

L matter

1 d
_ wv __ wv 3
SL= 15— (G —87T*)8g,,+ ()| —x

Il matter) .y v ATA keep control over two-dimensional surface integrals at spa-
— g P 0z + 39, (mH ol ) tial infinity, we first consider the dynamics of our matter
+gravity system in a finite world tub&, whose boundary
+ 6(x%) d5(pk?6Z). (7))  carries a nondegenerate metric of signature+, +). At the

end of our calculations, we shift the boundaty of the tube
Here, we have defined the four-dimensional energyto space infinity. We assume that the tube contains the sur-
momentum tensor7*”:=§(x%) ¥ with 73"=0. Since73®  face Stogether with our lightlike matter traveling over it.
was defined up to an additive ter@X2XP, this ambiguity Denoting byV:=14/N%, the portion of3; which is con-
remains and’™” is defined up taCX*X"&(x%), similarly as  tained in the tubé/, we thus integrate Eq74) over the finite
the quantityG*”. This ambiguity is annihilated when con- volume VCZ, and keep surface integrals on the boundary

tracted withég,,,, . dV of V. They will produce the ADM mass as the Hamil-
tonian of the total matter gravity system at the end of our
VIl. DYNAMICS OF THE GRAVITY +SHELL TOTAL calculations when we pass to infinity with/=23;NdJl{. Be-
SYSTEM: HAMILTONIAN DESCRIPTION cause our approach is geometric and does not depend upon

the choice of coordinate system, we may further simplify our
Field equations of the theorfEuler-Lagrange equations calculations using the coordinaté adapted to boti and to
for matter and Einstein equations—both singular anche boundarydi/ of the tube. We thus assume thet is
regular—for gravity may thus be written in the following constant on both these surfaces.
way: It is worthwhile to stress at this point that there is no
contradiction in the fact that the surfape’=C} has differ-
SL=0,(m»oT%,,) + 8(x*) da(pk*62). (72 ent geometric character for different values of the parameter
C: it is null-like for C=0 and timelike forC—oo (cf. prop-
Indeed, field equations are equivalent to the fact that therties of the coordinaté:=r?>—t2 in Minkowski space
volume terms(71) in the variation of the Lagrangian must  |ntegrating Eq(74) over the volumeV we thus obtain
vanish identically. Hence, the entire dynamics of the theory
of the mattetgravity system is equivalent to the require- _ v S pK 3 a oK
ment that variation of the Lagrangian is equal to boundary 5JVL_ JV’;K(T’ OALL) T fvﬁ(x )da(Pk*6Z")
terms only. Similarly, as in Eq.60), we may use definition

of m#"* and express it in terms of the contravariant density _ b0\ enl 0 K
of metric *. In this way we obtain = V(WM oA,,) + WT’M oA, VQS(PK 6z"),
m o), = U OAY,. (73 (75)

where by a dot we denote the time derivative. In the above
formula we have skipped the two-dimensional divergencies
that vanish when integrated over surfagdandVNS.

To further simplify our formalism, we denote bgy

. :=p? the timelike component of the momentum canonically
As soon as we choose at3) decomposition of the space- ¢qnjygate to the field variable¢ and perform the Legendre
time M, our field theory will be converted into a Hamiltonian ,onsformation:

system with the space of Cauchy data on each of the three-

dimensional surfaces playing role of an infinite-dimensional (PK 8Z) = py 62K — 2% Spy + (P Z9). (76)
phase space. Let us choose a coordinate system adapted to

this (3+ 1) decomposition. This means that the time variableThe last term, put on the left-hand side of E@5), satisfies
t=x° is constant on three-dimensional surfaces of this foliathe matter Lagrangian and produces the matter Hamiltonian
tion. We assume that these surfaces are spacelike. To obtawith minus sign, according to the formula

the Hamiltonian formulation of our theory we shall simply

integrate Eq(72) [or—equivalently—Eq/(74)] over such a Lmatter~ PkZ = Lmater~ P°Z0= —T%=7%. (77
Cauchy surfac&,CM and then perform a Legendre trans-

formation between time derivatives and corresponding moJo perform also Legendre transformation in gravitational de-
menta. grees of freedom we follow here method proposed by one of

us[9]. For this purpose we first observe that, due to metricity
of the connectiorl’, the gravitational counterpaﬁ“”BAzy
; K .
SFormula (72) is analogous to the formulal(q,q)=(pdgy  ©f the canonical one-formy 62" reduces as follows:
=pdg+pdg in mechanics, which contains both the dynamical
equatioqp=(9L/aq qnd the defjnition pf the canonical momentum 7_F,W5Aolj: _ 1 9k|5pk|+f9k
p=4dL/3q. For detailed analysis of this structure see R@f. » 167

Hence, field equations may be written in the following way:

SL=3,(m""8A% )+ 8(X) da(pk2Z"). (74)

7008

71_Ok
). s
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whereP! denotes the external curvature Dfwritten in the 1 ! _
ADM form. Similarly, the boundary terma*sA,, f (9 P™) + —f N

= w“”&Afw reduces as follows:
1 J 1
3a == | VIgIR%+ = J’ (Q*8gas—2%%00),
335(%) ) (79 87 Jv 167 Jov

(84)

v SAS =—ig 50249, w
wv 167 ab a

where Q2° denotes the external curvature of the tui¢  Then, we have

written in the ADM form. A simple proof of these formulas

is given in Appendix D 1. I PR
Using these results and skipping the two-dimensional di- 164 VLgraV 87 )y lgIR T8 V\/|9|(2R R%)

vergencies that vanish after integration, we may rewrite

gravitational part of Eq(75) in the following way: 1 o
f (WW5AO vaf”b‘AiV Splitting the componerg®, of the Einstein tensor into regu-
lar and singular parts, we obtain
=- if (9 oPH) — if Uapd QP 1 1 1
167 167 _ S — 0y — | g 0
v N o jvgoo e fvregg °)+87r Lsmqg o). (86)
77_03 30
+fv 005( + w388 )) : (80)  The regular part of Einstein tensor density 1€¢() vanishes
! due to field equations. The singular part
The last integral may be rewritten in terms of the hyperbolic sing G%y) = 6(x%)GY%, (87
angle « between surfacesY and di/, defined asa
=arcsinh@), where satisfies the matter Hamiltoniar?, [see formula(77)] and
becomes annihilated due to Einstein equations:
g30
4= s> (81 1 0 a0 \_
|900933| . Vms(G 0—8m7y)=0. (88)

and the two-dimensional volume fori= /detgyg on dV, Finally, we obtain the following generating formulél:
in the following way:

if(Pk'ﬁg -9 5Pk')+if (N Sa—ad\)
703 167 Jv k- Skl 167 Jov

77_30
005( + 7335 )——)\551/. (82
- 8

: : 1
+f (DOK5ZK—ZK5DOK)—FI Japd Q™
For the proof of this formula see Appendix D 2. Hence, we vns T Jav

have
* 16m 5J (Q*gnp— 0%g00)- (89
f (A ,) + f HYOA,
v N Using results of Ref.9] it may be easily shown that push-
1 1 ing the boundaryV to infinity and handling in a proper way
= (gk|5pkl) - f 0ap0Q%° the above three surface integrals owsf, one obtains in the
- 16w asymptotically flat case the standard Hamiltonian formula for

1 both gravitational and matter degrees of freedom, with the
+ _f (NSa) (83) ADM mass(given by the resulting surface integral at infin-
” ity) playing role of the total Hamiltonian. More precisely,
denoting the matter momenta by
Now we perform the Legendre transformation both in the

volume: m=p°k 8(x3), (90

" . W okl .kl the final formula foroV—cc reads
(9K OP*) = (9 6P =P 89y)) + 8(9i P*)

1 .
- —0H=—| (P¥5g,—gyoP¥ +f m 02— 2K 5y ),
and on the boundary\@a)’ = (A Sa— ad\) + S(\ ). M= Tom fv( 9= GudPT)+ | (mcdz"—20omy)
In Appendix D 3 we prove the following formula: (92
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whereH is the total Hamiltonian, equal to the ADM mass at P|k|k=[P|3]5(X3)- (94)
spatial infinity”
Components of the ADM momentu¥' are regular; hence
VIIl. CONSTRAINTS the singular part of the termP'P,,— 3P?) vanishes. The
singular part of the three-dimensional scalar curvature con-
Consider Cauchy dataP{,gy,m«,Z<) on a three- sists of derivatives in the direction of® of the (three-

dimensional spacelike surfabg and denote bg' the three-  dimensional connection coefficients:

dimensional metric inverse tg(g). Moreover, we use the (3) . .

. . ~ M
following notation: y:=+/detgy, R is the three-dimensional SINgR) =sing(d5(I@™ ~ I'mi@™))
scalar curvature ofg,, P:=PXg,, and | is the three- =503 [T3gk - g*, (95)
dimensional covariant derivative with respectgg.

We are going to prove that these data must fulfill con-and expression in the square brackets may be reduced to the
straints implied by Gauss-Codazzi equations for the compofollowing term:
nentsQOM of the Einstein tensor density. Standard decompo-

sition of ¢°, into the spatial(tangent toV,) part and the AT -TRE* 1=~ 28 d5(7\8¥)]
timelike (normal toV,) part gives us, respectively, 5
=253 =
@=-Pk, (92 g ‘9k< L“_g33) , (96
and because derivatives tangent$are continuous. But the ex-
3) 1 pression in square brackets is equal to the external curvature
2G° n#=— yR+( PP, —1P?) —. (93  scalark for the two-dimensional surfacgCV,:
Y
,yg3k
Here byn we have denoted the future orthonormal vector to yk=— <9k< _3) _ (97
Cauchy surface/, : 3
o~ So we get
nkt=— ——.
[~ g% 3

singy R)=27+G%Tk]8(x*) =2[Ak]5(x%)
Vacuum Einstein equations outside and insideSoimply .
vanishing of the regular part ¢°, . Hence, the regular part and finally
of the vector constraint reads: 3) 1
R—(PXPy—3P2) —=2[Ak]8(x3). 98
reg P10 =0, yR—( K™ 32 )y [AKk]O(x) (99)

whereas the regular part of the scalar constraint reduces tdEquationg94) and(98) give a generalizatiofin the sense of
distributions of the usual vacuum constraintsector and

(3) 1 scalar, respectively
reg yR—(PX'P,—3P?) —|=0. Now, we will show how the distributional matter located
Y on S, determines the four surface quantitjd®’,] and[\k],

entering into the singular part of the constraints. The tangent
(to 9 part onOM splits into the two-dimensional part tangent
{0 S; and the transversal pagalong null rays.

The tangent toS; part of Einstein equations gives the
following,

The singular part of constraints, with support on the intersec
tion sphereS;=V;NS, can be derived as follows.

The singular part of the three-dimensional derivatives o
the ADM momentumP,; consists of derivatives in the direc-
tion of x3:

0 _ 3\ .0
sing P\ =sing(d5P,%) = 8(C)[P°], GA=8mo(X7) T 4, (99
which, due to Eqs(92) and(94), implies the following two

so the full vector constraint has the form ;
constraints:

. _ _ [P33]=—8m7%. (100
Formula (91) is analogous to the formula-dH(q,p)=pdq
—qdp in mechanics. In a nonconstrained case this formula isThe remaining null tangent part of Einstein equations reads
equivalent to the definition of the Hamiltonian vector field, &)
via Hamilton equation$=—dH/dq, and q=dH/dp. We stress, G Xr=8md(x%) 0, X =0, (101
however, that the formula is much more general and is valid also for
constrained systems, when the field is not unique, but given onl)k)ecauseroﬂX’L:O. In Appendix E we show that this equa-
“up to a gauge.” For detailed analysis of this structure see faf.  tion reduces to the following constraint:
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p33 to the regular part of the Ricci tensor. The singular part of the
—=55 T AK|=0. (102  Riccitensor is obtained from the transversal derivatives only.
V§® In our adapted coordinate system, whefds constant ors,
. : we obtain
We remind the reader that the singular partg8 cannot
be defined in any intrinsic way. Consequently, we have only Sianw):%Afw: 5(x3)[Afw], (A4)

three constraints for the singular pati92 and(100). The
fourth constraintin a nondegenerate cades been replaced |\ here bys we denote the Diraé distribution and by square

here by the degeneracy condition dgffor the metric onS. yrackets we denote the jump of the value of the correspond-
Equationg100 and(102) together with(94) and(98) are the  jg expression between the two sidesSoConsequently, the

initial value constraints. singular part of Einstein tensor density reads:
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G*,=lgl(80g* "~ 3 849" [A%1=[Q",].  (A®)
APPENDIX A: STRUCTURE OF THE SINGULAR

EINSTEIN TENSOR We shall prove that the contravariant version of this quantity:

We rewrite the Ricci tensor, sing §)“*=[Q*"18(x%),

R, =D, =3, Lo +T5I%,~T), %, (Al) s coordinate dependent and therefore does not define any
geometric object. For this purpose we are going to relate the
coordinate-dependent quanti@*” with the external curva-
ture Q?, of S We use the form of the metric introduced in

in terms of the following combinations of Christoffel sym-
bols[cf. Eqg. (61) in Sec. V:

A TN _ o\ 1K Ref.[10]:
AL =T% =80T . (A2)  Ref.[10]
We have n*na Na sM+mfn,
R AALIA AT a3 Gem| ™ e M| A

sM+m?n, my  (M/N)2+mPm,
Terms quadratic irA’s may have only steplike disconti-
nuities. The derivatives alongare thus bounded and belong and

—(1IN)? nA/N?—sm/M s/M
g#'=| nYN?=snf/M  §*B—n*nB/NZ+s(n*mB+m*nB)/M  —sm/M | (A8)
s/M —sm/M 0

where M>0, s:=sgng®®==+1, gag is the induced two- Hence, the contravariant metri&8) may be rewritten as
metric on surface$x’=constx®=cons}, and§”E is its in-  follows:
verse(contravariant metric. Bothg”® and g,g are used to
raise and lower indices, B=1, 2 of the two-vectora” and b sab 1 b S b b
mA g*=g§%"— 5 XOX°— — (m*X°+mP°X®),  (A9)
. o N M
Formula(A7) implies: J|detg,, |[=\M. Moreover, the ob-
ject A® defined by formula(3), takes the formA2=\X?,
where \ is given by formula(2) and X:=dy—n”d,. This
means that we have chosen the following degeneracy field: S
X#=(1,—n"0). g3“=mX"“.
For calculational purposes it is useful to rewrite the two-

dimensional inverse metrig"® in three-dimensional nota- .
tion, settingg®®:=0. This object satisfies the obvious iden- It may be ea'S|Iy.checkedsee', e.g., Refl10], p. 409 that
tity: covariant derivatives of the field along Sare equal to:

wherem?:=§28mg, so thatm®:=0, and

gacgcb: 6ab_ xa‘Sob . VaX= —wX— Iabgbcam (A10)

064036-13



JACEK JEZIERSKI, JERZY KIJOWSKI, AND EWA CZUCHRY

where

Wai=—XATD (A11)
and
—9(dp,VaX)=09(Vadp , X) =X, T’ (A12)

ab—

Since X is orthogonal toS we haveX,=0. Because of Eq.

(A7), the only nonvanishing component &f, is equal to

!,L

X3=sM. Hence, we have,,=sMI'3,=sMA], and, conse-
quently,

VIglAS =5\l ,p. (A13)
Because of the identity
1
X8 4p= XaXCI‘cabz—XCXagcaybE 0, (A14)

2

we also havd,,X°=0 [10]. Now we are going to use the

metricity condition for the connectioh:

— 3a__ 3a 3ura ar3d _,_3arwm
0=Vom™8=dqm>@+ moH "+ 7ol — TG,

= 0,7+ T3, = 9,32+ w2PA3 . (A15)
Consequently,
9N °=d.(s\]g[g3) =57
=—s7A3 = —Ng®l = — NGl o=\,
(A16)

wherel
Aga: Fga_ (1/2)Fﬁa

T4 =, In\[g[= daIN(AM),

it is sufficient to calculatd'3,
formula:

. Because

according to the following

S
rga: g3crc3azmxc(gsc,a_ [3ca)

S c c~Ou c~O0b
= MX ch,a_x g F,uca"_x 9" Thea

— S c S b cr S cmb
_Wa+ MX gSc,a+ MX m*l peca™ —X'm gbc,a

M
S c S c c b
=Wyt Mm Ica+ M{(X g3c),a_ X,a(QSC_m gbc)}
S . 1
=Wyt Mm |Ca+mM’a. (Al?)
Finally, we obtain the following identity:
A =W+ xat Mmbl bas (A18)

PHYSICAL REVIEW [B5 064036

where x,:=3d, IN(M/\).
To expresK) in terms ofl,, andw,, we observe that

sQp=N(g% p— 3 6% ) + ABAS, — 2, ACAT,
(A19)
SQ%=— —)\I (A20)
sQ*,=0. (A21)

The missing componer®?; is much more complicated,
Q%=1[g]g*A% =AM (g% A%+ g?AY,)

— ap3 sab 1 ayh
SAPAZ+HAM{ §70+ 15 XX

S b b 3
— o7 (mPX+mPX?) AT, (A22)

and depends upohgg,

A3=T 35— Iy, =-T3,= 5(9%°9ap s+ 9%g33,)

[ i ayb _1,a3
=~ dzInN+ - mM*XPGap 3~ 207 Gs3a;

(A23)
where we have used the identity

53%°gaps=dzIn\.

=§%"l,,. Now, we want to calculate the component We are ready to prove the following.

Lemma A.2The objectQ?, is related toQ?, as follows:
sQPp=5sQ—

where y.:=(1/2)d; In(M/\).
Proof. Using Eqs.(A19), (A18), and(A9) we obtain:

Sbab =

IN P+ APy, — % A%xc,  (A24)

N(G%Ucp— 3 8%1) + Alwy,—
- 5abACXC.

Sy AW+ APy
(A25)
From definition(19) and property(A10), one can check that
SQP =NV X = AVpX®— 6%y d.A°
= =N (WXCH ) + N (W X3+ G2 ) + SFpA I

:)\daclcb+ AaWb_ 5abACWC, (AZG)
and thus we obtain EqA24). |
Remark Formula (A26), together with |,,X°=0

=0.pX°, gives us the orthogonality conditi@®?,X°=0 and
symmetry of the tenso®,p:=9..Q% -
Now, we would like to examine the properties G#”

=[Q*"]. From continuity of the metric acroswe obtain

[lap]=SM[AZ]=SM[I' 3] =Xl cap] =0. (A27)
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On the other hand, the jump é@M is in general nonvanish- GO=[Q%] = g4 Q%]+ g°[ D, ]

ing. From Eq.(A18) we have

[AZa]=[Wal. (A28)
Formulas(A19)—(A21) and (A27) imply
S[Q%]= AT [AS]— 6% ATAS]

=A%wp]— AW ]=5[Q%],  (A29)

[Q%,]1=0. (A30)

Moreover, we have
Aa 1 a 3 M b b
[Q%]=sA%| [ASg]+ s X°TWp] — mP[w]
+(AMF2P—smPAP)[wy]. (A31)

On the other hand the jump él’ga may be obtained from Eq.
(A23):

[Ad]=—[d5InN]+2m°Tw,], (A32)
where we have used
[Wal= = X°g™ Tapal= 5or X0l (A33)
However,
XWal= 5o [XX°aal=0.  (A34)
Hence

[Q%]=sA{—[dsInN]+m°[wp]}+MN G2 wy].
(A35)

Using these results we calculate components|QF”]

=G*”. From Eq.(A30) we can easily check the property

26)
G¥=[3%]=g1Q%1+ g™ [Q%]=0,
G¥=[Q%]= g71Q%]+ g™ Q%)= — o [X°Q]=0,

where we used the propert®?,]=[Q?,], which is crucial
for showing that the objed&?, is a well-defined geometric
object onS On the contrary, the objeG? is not a geomet-

S

N mb))\[wb]

— A [ b 1 b
—M(—[ﬁg, nNA]+m°[wg])—s mx +

1
=— 37 [0sM] (A36)

It may be easily checkeldLO] that the quantity above trans-
forms in a homogeneous way with respect to coordinate
transformation or8. This proves that the componer@&® do

not define any tensor density &An independent argument
for this statement may be produced as follows. Begin with a
coordinate system in which we ha¥e= g, (i.e.,n*=0) and
perform the following coordinate transformation:

XO=xO+bxA, XA=xA, XE=x5, (A37)

whereb, are constant. According to E¢A8) we have

=g(dx?,d%®) = g(dx?,dx®) +bag(dx*,dx?)

<N

_ S (1—ban?)= ° (A38)
M A M’

whence we geM =M. Moreover, the new tetradX(dg , 3)
may be calculated as follows:

X=X, (A39)
- ox° axA
B=—=do+ —= Ip= 559p— DX, (A40)
J%B o%B
3= 103. (A41)
This impliesk =\, and, consequently,
=00 1.~ 1 00
GP=——[d\]=— —[d3\]=G"™. (A42)
M M

On the other hand, we haveX’=dx’+bdx* and
det@&)=1. Hence,

B0 99— (a0, d%°) — G(dx°,dx°)
= ZbAGOA+ GABbAbB y

which does not need to vanish in a generic case.

APPENDIX B: GAUSS-CODAZZI EQUATIONS

We begin with the Lie derivative of a connectidhwith
respect to a vector fieldv [17]:

ric object because depends on a choice of coordinates. This

can be seen when we calculate the compo@it

Lwl),, =V, VW —WR", . (B1)
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For the coordinate fieltV= 4, (i.e., W= %), Lie derivative
reduces to the partial derivativetyI”),,=d,I'},. Hence,
taking appropriate traces of E4B1) and denotingm*”
:=/|g[g*”, we obtain

T GaAG, = (S = S ) 9,I),,
= (&= & m ") (V, VW —WRY, )
= V[gl{V,( VAW~ VaWH) + 2REW7}
=3, 0V[g[(VAWe—VeWr) L+ 2 [g[Re,We.
We apply this formula fore=3. In this way we have
T A, = 3,49l (VWP - V3WH) L+ 2R3,
=3, {V]g[(V°W3-V3WP)} +2R3,, (B2)
whereR3,:=|g|R®%,. But
VW=TY, .
Hence
VPWP— VWP = 3(g” g%~ g% 0") (9 un a T Guan — Gra)
=g”9%(guar— ra )
=20" 3.~ 9" 0% 0,1 2
=2g" A}, + 94, +g%

and, consequently,

VIgl(VPWe—V3WP) =270 A3 + 7% . (B3)
Inserting this into Eq(B2) we obtain
R3 4 b)\A3 —lﬁb ,uVA3 _ . 3c — 1 a7 A3
a ﬁb{ﬂ. - a(ﬂ- wv w ,C)}_ 577 a e
(B4)

However,

— A= = (9" 09+ V[9]0407P 5 ) AS,

3
=(— 397"+ g™ 7P")A; bup.a

=Q%Gup.a (B5)
where we used definitiof62), namely,
Q~,=\lgl(g A%, — 3 8*,9"PAS )
=7heAd 5o, mPAL (B6)
Hence, we obtain the following identity:
GPat p{Q%at 368%™}~ Q%94 =0.  (B7)

To calculate the last term of E@B7), we use the following.

Lemma B.3The following equality holds:

PHYSICAL REVIEW B5 064036
SQY0p.a= N9 og— 319°%) gpc a+ (A PG+ AP

- Adng)Agdgbc,a+ 25633( aa InM

s
+ Mmsni). (B8)

Proof. From Eqgs.(A20) and(A21) we obtain
63320
and
Q=g3D?3,
o)
éaﬁgaﬁ,a: 263393bg3b,a+6bcgbc,a-
Moreover, from Eqs(A7) and (A8) we have

S

93bg3b,a: daInM + M

mgn’,

and
ayb

Q%=(6%.g"%+g?9%°g,.) Q%4+ WNst-

Using Eq.(A19) and taking into account tha¢X"g,, ;=0
we get

SQ%Ypea=M GG cg— 319°)gpc o+ APA %
+ACA§dgbd_AdA§dnggbc,a (Bg)

and finally
SQ™9,5a= M9 eg— 519°)Gpc o+ (APgEI+ A G

- Adng)Agdgbc,a"_ 25633( Ja InM

s
+ MmBni). (B10)

Now, the proof of Eq.(20) is roughly a straightforward
calculation starting from Eq(B7) and a consequent reex-

pression of all ingredients in terms of the connection objects

lap, W, and the metric objects!, m”, N, X3, g,;, describing
the four-dimensional metrig,,, . It turns out that the terms
containingM, N, andm” drop out. Inserting EqA24) and
(B8) into (B7) and using Eqs(A18), (A20), and (A9), we
obtain
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5G%= — 5p{Qa + 1 4m® o} + 5300, YO=x0= ext— e (o
= O] —SQPu+ 8N — Ay + 6% Ay} This implies that
1 S B J J d
— 1l ¢9aInM+MmBn,a WZWJFEAW_

Passing from X%) to (y?), the value ofz%, will be thus
replaced byz¥,+ e,z¥,, whereas the remaining variables of
the function(C4) (and also its valuewill remain unchanged.

+30pca( APge+ A°gP— A99%°) | wy+ xq

L %mBle T I\ Gbea(07°0% g 21gP0) This implies the following identity:
f(22%0: 21 9an) = F(2 250 ZAt €aZ0: ),
== S(ngba'l' %SQngbc,a'l' )\aal ) (Bll) (C7)
where we have used the formula which must be valid for any configuration of the fiet.
b\ ~acabd asbe . «baac  sabxc Such a function cannot depend upgh, . But in our coor-
SQP=NGG" N cat (A°G°+ APG*— A ). dinate system we have‘,=zK,X3=£,z¥. Thus, we have

Formula(B11) is equivalent to Eq(20) if we use Eq.(A16), proved that

and keep i_n m?nd the “gauge” conditioiX(x%) =1, used f= (2 LxZ%: gap). (C8)
thoroughly in this proof.
Relaxing conditionC2) and admitting arbitrary time coordi-
APPENDIX C: PROOF OF LEMMA V.1 AND EXAMPLES natesy?, we easily see that the dependence of @) upon
OF INVARIANT LAGRANGIANS its second variable must annihilate tff@mogeneous of de-
gree minus onedependence of the density, upon the field

Since the matter Lagrangiai83) is an invariant scalar X in formula (34). This proves that must be homogeneous
density, its value may be calculated in any coordinate sys:

) of degree one inCyz".
tem. For purposes of the proof let us restrict ourselves t

local i hich bl O As an example of an invariant Lagrangian consider a
ocal coor inate systemsc}) on S’ which are compatible theory of a lightlike “elastic media” described by material
with the degeneracy of the metric, i.e., such tKatd, is

ull-like variablesz®, A=1, 2, considered as coordinates in a two-

o . dimensional material spacg equipped with a Riemannian

a

qupose thad(’) and (y ) are two such local systems in “material metric” y,g. Moreover, take a scalar field Then
a neighborhood of a point<S. Suppose, moreover, that ¢, mhersqy and 8>0, satisfying identity 2+ 8= 1, and
both vectorsd, coincide. It is easy to see that these condi-tq 5y functiony of one variable, the following Lagrangian
tions imply the following form of the transformation be- density.
tween the two systems: ’

K L

Jz Jz
yA=yi0d), (CY) L=X(§)| X2 a X (2

B

17, (9

X——
( Ix°©

0_y0 Ay
y =X g €2 fulfills properties listed in Lemma V.1 and therefore is invari-

A three-dimensional Jacobian of such a transformation ignt. If #7is constant, a possible physical interpretation of the
equal to the two-dimensional one: dafl/ax®). Observe that Vvariable¢ as a “thermodynamical potential” may be found in
the two-dimensional par,g of the metricg,, transforms ~ [14].

according to the same two-dimensional matrix and whence

its determinant\ gets multiplied by the same two- APPENDIX D: REDUCTION OF THE GENERATING
dimensional Jacobian when transformed froxd)(to (y¥). FORMULA

So does the volumey . This means that the function 1. Proof of formulas (78) and (79)

) L We reduce the generating formula with respect to con-
f':; €3 straints implied by identitie§,7°=0 andV, 7%= 0. In fact,
expressing the left-hand sides in terms#df” and Afw we

does not change value during such a transformafiquriori,  immediately get the following constraints:
we could have:

0 1 Ok 0 __kl
f=1(22%;2";9ab), (CH Ago= _ﬂ_oo(é’kﬂ' AT, (D1)
but we are going to prove that, in fact, it cannot depend upon 1
. . K . . . .
derivativesz", . For this purpose consider new coordinates: A8k= _ 27Too(akwooJr 2A(|2|7TO|).
yA=xA, (CH) (D2)
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It is easy to see that they imply the following formula:

7 SAD = m A+ 2% SAG + 05A,

Ok
o). o

1 K
=~ 1o7 OP | 7

where we have denoted

K= vaetgmm( ngl_ KK,
(D4)
1 1

K=~ —FEF - —A(k)I'
Vg™ 9%
andg~!
induced metriag,, on V.

Let us exchange now the role wt andx’. Identities(D1)

and (D2) become constraints on the boundary of the world-

tube JUf:
s 1
Azz= 33((9a77 A+ ASTD), (D5)
3 1 33 3 _3b
A3a=—ﬁ§3(aa’ﬂ +2Aab77 ) (D6)
They imply

ThSAD = mAPSAT + 2mRAT, + THOAT,
1 Sa
=~ 757 9ab9Q '+ ( 335( ) ) , (D7)

where we have denoted

Qabz |detgcd|(|—§ab_|—ab)a Lab= \/_3 aba
(D8)

is the three-dimensional inverse with respect to the

PHYSICAL REVIEW [B5 064036

03 ’7T30 N 5q A
700 33 - =
5( +ar 5(77 ) 87 (Irq? 87 oa.
(D11)

3. Proof of formula (84)
To prove EQq.(84), consider first the following identity

(0]¢
fvgk,Pk':—vaJrLak( wooao(%))), (D12)

where we denote:

1 Sk 00, [T
Di==75-9uP"+d| ™" do| 0
=090, =7 0Ly ),
with X=a/9x°, i.e.,X*= 8l and Ly being the Lie derivative

with respect to the fiel:
N o
Ly, = V.V XM= XR,,,

(due to Bianchi identities the right-hand side is automatically
symmetric with respect to lower indicedHence

Di=(&ymH" = &) (V, VX = XTR )

Tl

= o, Vu(VXO—VOXH) + 2R, X7}

1
= To- LA gl(V*X0= VOX¥) + 24[g[R%}.

(D13

The covariant derivativeV, has been replaced in the last
equation by the partial derivativg, , because they both co-

andG® is the three-dimensional inverse with respect to the'”c'de when acting on antisymmetric, covariant bivector den-

induced metriay,, on the world-tube.

2. Proof of formula (82)
Write the right-hand side as follows:

03 30 30
005( + 73 5( =2\| 707§ ——=
\/—m
(D9)
and
1 \/detgAB
00,33 _ 00, 33 _
2\/ 7T T 6 \/_\/g g =8 —
(D10)

This automatically implies

sities. We use also identity

VXY =gFXT Y, =gH T, . (D14
which finally implies:
[ D=5 [ 0.8l 8, g,
! f JIg|R® D15
tan y 19|R%. (D15

D is regular, because singular expressions contained in its
definition cancel out, as implied by E¢D12). Hence, we
treatD as a regular expression, and there is no need to inte-
grate it in a distributional sense. Hence we have

064036-18



DYNAMICS OF A SELF-GRAVITATING LIGHTLIKE.. ..
[ 9ubt=- = [ VaIre
el 87 )y 0

’7T03
16’7TJ \/_( 3”Fo#90“rgﬁ—wooﬁo(m>)-
(D16)

From the definition ofa we also have:

30
ar
+ 7% =3 |-
™ o(we,s))

Using the formula above we may write

167Tf(gk| k|)+—f Na

1 1
= — 0 R 3ur0 _ AOur3
8Wf\/\/|g|Ro+ 167TLV¢|9|(9 o, =9To,

03

T
)\('1=87T( %%, —w (D17)
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1 N?2 R N2
n= N do—NAdp+ smm Ipn— Svag

ChoosingX=dy—n”d,, we have

1 N A
NX=sm(a3—m da)+n. (ED

Consequently, we can rewrite the left-hand side of @§2J)
as follows:

1 N N
NS Xt =817 Pamsrmi@at ot (E2)

Expressinggoﬂ in terms of the canonical ADM momentum
P [Egs.(92) and(93)], Eq. (101) takes the form

1 N
0= 9°uX¥=s17 (Pa = m"*Paf)
730
+g33(90<—33 ) (D18) 1/ ® 1

T T3 YR_(PKIPH_%PZ); (EJ
The left-hand side of the equation above is regular, but on
the right-hand side singular terms such as /8,v]g][R%  Equations(94) and (98) give us the following result:
and (1/167)f \I0l(g®T9,—g%T3,) arise. The latter
quantity, although it is a boundary term, originates from the N 3 Ae 3
volume term (1/16") fa,[]gl(9"T5,—g°*T'y,)] via the sy ([Ps”]=m[PA"]) +[AK]=0. (E4

Stokes theorem. From derivatives in tk& dlrect|0n there
are singular terms that cancel out the singular pamRYy,
giving a regular expression as a final result.

We may rewrite expressions in E@P18) in terms of the
quantity 92° [defined by Eq(D8)]:

30
Tall g®+1° 0uT3 | ¢33 T
16’77 ©0 g ©0 g 0

= 16n f (Q*gas— 9"00), (D19)

what completes the proof of formul&84).

APPENDIX E: PROOF OF THE CONSTRAINT (102

Using the decompositiofA7) and(A8) of the metric, one
can express the vectarorthonormal toV, as follows:

Due to Eq.(A7), one can express the three-dimensional in-

verse metrig@¥' as follows:
M
N

The above form ofi*' can be used to rewrite the canonical
momentum part of Eq(E4):

2
+mhm,|§he —m?

(E9

—mA 1

P33
\/ri%

(E6)

S—([P33] mALPA%]) = S—[P33]— —[P33]

and finally we obtain the constraifit02).
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