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Dynamics of a self-gravitating lightlike matter shell: A gauge-invariant Lagrangian
and Hamiltonian description
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A complete Lagrangian and Hamiltonian description of the theory of self-gravitating lightlike matter shells
is given in terms of gauge-independent geometric quantities. For this purpose the notion of an extrinsic
curvature for a null-like hypersurface is discussed and the corresponding Gauss-Codazzi equations are proved.
These equations imply Bianchi identities for spacetimes with null-like, singular curvature. The energy-
momentum tensor density of a lightlike matter shell is unambiguously defined in terms of an invariant matter
Lagrangian density. The Noether identity and Belinfante-Rosenfeld theorem for such a tensor density are
proved. Finally, the Hamiltonian dynamics of the interacting ‘‘gravity1matter’’ system is derived from the
total Lagrangian, the latter being an invariant scalar density.
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I. INTRODUCTION

A self-gravitating matter shell@1,2# became an importan
laboratory for testing the global properties of a gravitatio
field interacting with matter. Models of a thin matter lay
allow us to construct useful minisuperspace examples.
models of quantum gravity, based on these examples,
give us a deeper insight into a possible future shape of
quantum theory of gravity@3#. Especially interesting are
null-like shells, carrying a self-gravitating lightlike matte
@4#. Classical equations of motion of such a shell have b
derived by Barrabe`s and Israel in their seminal paper@5#.

In the present paper we give a complete Lagrangian
Hamiltonian description of a physical system composed o
gravitational field interacting with a lightlike matter she
The paper contains two main results, which, in our opini
improve slightly the existing classical theory of a null-lik
shell and provide an appropriate background for its qu
tized version. The first result is the use of fully gaug
invariant, intrinsic geometric objects encoding the physi
properties of both the shell~as a null-like surface in space
time @6#! and the lightlike matter living on the shell. W
begin with a description of an ‘‘extrinsic curvature’’ of
null-like hypersurfaceS in terms of a mixed contravariant
covariant tensor densityQa

b—an appropriate null-like ana
logue of the Arnowitt-Deser-Misner~ADM ! momentum~cf.
@7#!. For a nondegenerate~timelike or spacelike! hypersur-
face, the extrinsic curvature may be described in ma
equivalent ways: by tensors or tensor densities, both of th
in the contravariant, covariant, or mixed version. In a nu
like case, the degenerate metric onS does not allow us to
convert tensors into tensor densities and vice versa. Also
are not allowed to raise covariant indices, whereas lowe
the contravariant indices is not an invertible operator a
leads to information loss. It turns out that only the mix
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tensor densityQa
b has the appropriate null-like limit and

enables us to formulate the theory of a null-like shell in f
analogy with the nondegenerate case. We prove the Ga
Codazzi equations for the extrinsic curvature described
this tensor density. In particular, the above notion of an
trinsic curvature may be applied to analyze the structure
nonexpanding horizons@8#.

The quantityQa
b defined in Sec. III enables us to con

sider spacetimes with singular~distributionlike! curvature
confined to a null-like hypersurface, and to prove that
Bianchi identities~understood in the sense of distribution!
are necessarily satisfied in this case. Such spacetimes
natural arena for the theory of a null-like matter shell.

The second main result consists in treating the lightl
matter in a fully dynamical~and notphenomenological! way.
All the properties of the matter are encoded in a matter
grangian, which is an invariant scalar density onS ~no in-
variant scalar Lagrangian exists at all for such matter,
cause conversion from scalar densities to scalars and
versa is impossible!. The Lagrangian gives rise to a gaug
invariant energy-momentum tensor densityTa

b , which
later—due to Einstein equations—arises as a source of g
ity. Both Noether and Belinfante-Rosenfeld identities for t
quantity Ta

b are proved: they are necessary for the cons
tence of the theory. We stress that the contravariant symm
ric energy-momentum tensorTab cannot be defined unam
biguously, whereas the covariant tensorTab , obtained by
lowering the index with the help of a degenerate metric onS,
loses partial information contained inTa

b . On the contrary,
the mixed contravariant-covariant tensor densityTa

b is un-
ambiguously defined and contains—as in the nondegene
case—the entire dynamical information about the underly
matter.

In Sec. VI we use a method of variation of the tot
(gravity1matter) Lagrangian proposed in Ref.@9# and de-
©2002 The American Physical Society36-1
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rive in this way the Barrabe`s-Israel equations for gravity
together with the dynamical equations for the matter degr
of freedom. In Sec. VII we show how to organize the gra
tational and matter degrees of freedom into a constrai
Hamiltonian system, with the ADM mass at infinity playin
the role of the total (gravity1matter) Hamiltonian. Finally,
the structure of constraints is analyzed in Sec. VIII.
clarify the exposition of geometric and physical ideas so
of the technical proofs have been shifted to the Appendix

II. INTRINSIC GEOMETRY OF A NULL HYPERSURFACE

A null hypersurface in a Lorentzian spacetimeM is a
three-dimensional submanifoldS,M such that the restric
tion gab of the spacetime metricsgmn to S is degenerate. We
shall often use adapted coordinates, where coordinatex3 is
constant onS. Space coordinates will be labeled byk, l
51,2,3; coordinates onS will be labeled bya, b50,1,2;
finally, coordinates onStªVtùS ~whereVt is a Cauchy sur-
face corresponding to a constant value of the coordinatex0

5t! will be labeled byA, B51,2. Spacetime coordinates wi
be labeled by Greek charactersa, b, m, n.

We always assume in the following thatx0 is a timelike
coordinate in the four-dimensional sense, i.e., that the
lowing inequality holds: (dx0)25g00,0 ~see Appendix A
for the properties of the metric in a neighborhood ofS!. We
stress that a coordinate defined only onS cannot be called
‘‘timelike’’ or ‘‘spacelike’’ because the metricgab on S can-
not be inverted, and consequently, there is no way to de
the square of its differential. Our assumption about the tim
like character of x0 applies, therefore, to the four
dimensional coordinate and not to its three-dimensional
striction to the surfaceS.

The nondegeneracy of the spacetime metric implies
the metricgab induced onS from the spacetime metricgmn

has a signature~0, 1, 1!. This means that there is a nonv
nishing null-like vector fieldXa on S, such that its four-
dimensional embeddingXm to M ~in adapted coordinate
X350! is orthogonal toS. Hence, the covectorXn5Xmgmn

5Xagan vanishes on vectors tangent toS, and therefore the
following identity holds:

Xagab[0. ~1!

It is easy to prove@10# that integral curves ofXa, after a
suitable reparametrization, are geodesic curves of the sp
time metric gmn . Moreover, any null hypersurfaceS may
always be embedded in a one-parameter congruence of
hypersurfaces.

We assume that topologically we haveS5R13S2. Since
our considerations are purely local, we fix the orientation
the R1 component and assume that null-like vectorsX de-
scribing degeneracy of the metricgab of S will be always
compatible with this orientation. Moreover, we shall alwa
use coordinates such that the coordinatex0 increases in the
direction of X, i.e., the inequalityX(x0)5X0.0 holds. In
these coordinates degeneracy fields are of the formX
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5f(]02nA]A), where f .0, nA5g0A , and we raise indices
with the help of the two-dimensional matrixg5 AB, inverse to
gAB .

If by l we denote the two-dimensional volume form o
each surfacex05const,

lªAdetgAB, ~2!

then, for any degeneracy fieldX of gab , the following object

vXª
l

X~x0!

is a scalar density onS. Its definition does not depend on th
coordinate system (xa) used in the above definition. To
prove this statement it is sufficient to show that the value
vX gets multiplied by the determinant of the Jacobi mat
when we pass from one coordinate system to another. T
means that vXªvXdx0∧dx1∧dx2 is a coordinate-
independent differential three-form onS. However,vX de-
pends upon the choice of the fieldX.

It follows immediately from the above definition that th
following object,

L5vXX,

is a well defined~i.e., coordinate-independent! vector density
on S. Obviously, itdoes not dependupon any choice of the
field X:

L5l~]02nA]A!. ~3!

Hence, it is an intrinsic property of the internal geometrygab
of S. The same is true for the divergence]aLa, which is
therefore an invariant,X-independent, scalar density onS.
Mathematically~in terms of differential forms!, the quantity
L represents the two-form

LªLa~]acdx0∧dx1∧dx2!,

whereas the divergence represents its exterior derivativ~a
three-form!: dLª(]aLa)dx0∧dx1∧dx2. In particular, a null
surface with vanishingdL is called anonexpanding horizon
@8#.

Both objectsL and vX may be defined geometrically
without any use of coordinates. For this purpose we note
at each pointxPS, the tangent spaceTxS may be quotiented
with respect to the degeneracy subspace spanned byX. The
quotient space carries a nondegenerate Riemannian m
and therefore is equipped with a volume formv ~its coordi-
nate expression would bev5ldx1∧dx2!. The two-formL
is equal to the pull-back ofv from the quotient space toTxS.
The three-formvX may be defined as a product,vX5a∧L ,
wherea is any one-form onS, such that̂ X,a&[1.

The degenerate metricgab on S does not allow us to de
fine via the compatibility condition¹g50, any natural con-
nection, which could apply to generic tensor fields onS.
Nevertheless, there is one exception: we are going to s
that the degenerate metric definesuniquelya certain covari-
ant, first-order differential operator that will be extensive
used in our paper. The operator may be applied only
6-2
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mixed ~contravariant-covariant! tensor-density fieldsHa
b ,

satisfying the following algebraic identities:

Ha
bXb50, ~4!

Hab5Hba , ~5!

where HabªgacH
c
b . Its definition cannot be extended t

other tensorial fields onS. Fortunately, as will be seen, th
extrinsic curvature of a null-like surface and the energ
momentum tensor of a null-like shell are described by ten
densities of this type.

The operator, which we denote by¹̄aHa
b , could be de-

fined by means of the four-dimensional metric connection
the ambient spacetimeM in the following way. GivenHa

b ,
take any of its extensionsHmn to a four-dimensional, sym
metric tensor density, ‘‘orthogonal’’ toS, i.e., satisfying
H'n50 ~' denotes the component transversal toS!. Define

¹̄aHa
b as the restriction toS of the four-dimensional covari

ant divergence¹mHm
n . As will be seen in the following,

ambiguities that arise when extending the three-dimensio
object Ha

b on S to the four-dimensional one finally cance
and the result is unambiguously defined as a covector den
on S. It turns out, however, that this result does not depe
upon the spacetime geometry and may be defined intri
cally on S. This is why we first give this intrinsic definition
in terms of the degenerate metric.

In case of a nondegenerate metric, the covariant di
gence of a symmetric tensorH density may be calculated b
the following formula:

¹aHa
b5]aHa

b2Ha
cGab

c

5]aHa
b2 1

2 Hacgac,b , ~6!

with gac,bª]bgac . In the case of our degenerate metric, w
want to mimic the last formula, but here raising of indices
Ha

b makes no sense. Nevertheless, formula~6! may be given
a unique sense also in the degenerate case, if applied
tensor densityHa

b satisfying identities~4! and ~5!. Namely,
we take asHac anysymmetric tensor density that reproduc
Ha

b when lowering an index:

Ha
b5Hacgcb . ~7!

It is easily seen that such a tensor density always exists
to identities~4! and~5!, but reconstruction ofHac from Ha

b
is not unique, becauseHac1CXaXc also satisfies Eq.~7! if
Hac does. Conversely, two such symmetric tensorsHac sat-
isfying Eq. ~7! may differ only byCXaXc. This nonunique-
ness does not influence the value of Eq.~6!, because of the
following identity implied by Eq.~1!:

0[~XaXcgac! ,b

5XaXcgac,b12XagacX
c
b

5XaXcgac,b . ~8!

Hence, the following definition makes sense:
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¹̄aHa
bª]aHa

b2 1
2 Hacgac,b . ~9!

The right-hand side does not depend upon any choice
coordinates~i.e., transforms similar to a genuine covect
density under a change of coordinates!. The proof is straight-
forward and does not differ from the standard case of f
mula ~6!, when the metricgab is nondegenerate.

To express directly the result in terms of the original te
sor densityHa

b , we observe that it has five independe
components and may be uniquely reconstructed fromH0

A
~two independent components! and the symmetric two-
dimensional matrixHAB ~three independent components!. In-
deed, identities~4! and ~5! may be rewritten as follows:

HA
B5g5 ACHCB2nAH0

B , ~10!

H0
05H0

AnA, ~11!

HB
05~g5 BCHCA2nBH0

A!nA. ~12!

There is a one-to-one correspondence betweenHa
b and

(H0
A , HAB!.

To reconstructHab from Ha
b up to an arbitrary additive

termCXaXb, take the following, coordinate-dependent, sym
metric quantity:

FAB
ªg5 ACHCDg5 DB2nAH0

Cg5 CB2nBH0
Cg5 CA, ~13!

F0A
ªH0

Cg5 CA5..FA0, ~14!

F00
ª0. ~15!

It is easy to observe that anyHab satisfying Eq.~7! must be
of the form

Hab5Fab1H00XaXb. ~16!

The nonuniqueness in the reconstruction ofHab is therefore
completely described by the arbitrariness in the choice of
value ofH00. Using these results we finally obtain

¹̄aHa
bª]aHa

b2 1
2 Hacgac,b5]aHa

b2 1
2 Facgac,b

5]aHa
b2 1

2 ~2H0
AnA

,b2HACg5 AC
,b!. ~17!

The operator on the right-hand side of Eq.~17! may thus be
called the~three-dimensional! covariant derivative ofHa

b on
S with respect to its degenerate metricgab . We have just
proved that it is well defined~i.e., coordinate-independen!
for a tensor densityHa

b fulfilling conditions ~4! and ~5!.
Equation~9! suggests yet another definition of the cov

riant divergence operator. At a given pointxPS choose any
coordinate system such that derivatives of the metric com
nentsgac vanish atx, i.e., gac,b(x)50. Such a coordinate
system may be calledinertial. The covariant divergence ma
thus be defined as a partial divergence but calculated in

inertial system:¹̄aHa
bª]aHa

b . Ambiguities in the choice of
an inertial system do not allow us to extend this definition

a genuine covariant derivative¹̄cH
a

b . However, it may be
6-3
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easily checked that they are sufficiently mild for an una
biguous definition of the divergence~see the Remark at th
end of Sec. V!.

The above two equivalent definitions of the operator¹̄
use only the intrinsic metric ofS. We want to prove now tha
they coincide with the definition given in terms of the fou
dimensional spacetime metric connection. For that purp
observe that the only nonuniqueness in the reconstructio
the four-dimensional tensor density ofHmn is of the type
CXmXn. Indeed, any such reconstruction may be obtain
from a reconstruction ofHac by settingH3n50 in a coordi-
nate system adapted toS ~i.e., such that the coordinatex3

remains constant onS!. Now, calculate the four-dimensiona
covariant divergenceHnª¹mHm

n . Because of the geodes
character of integral curves of the fieldX, the only nonu-
niqueness that remains after this operation is of the t
C̃Xn . Hence, the restrictionHb of Hn to S is already unique.
Because of Eq.~6!, it equals

¹mHm
b5]mHm

b2 1
2 Hmlgml,b

5]aHa
b2 1

2 Hacgac,b5¹̄aHa
b . ~18!

III. EXTRINSIC GEOMETRY OF A NULL
HYPERSURFACE: GAUSS-CODAZZI EQUATIONS

To describe the exterior geometry ofS we begin with
covariant derivatives alongS of the orthogonal vectorX.
Consider the tensor¹aXm. Unlike in the nondegenerate cas
there is no unique ‘‘normalization’’ ofX, and therefore such
an object does depend upon a choice of the fieldX. The
length ofX is constant~because vanishes!. Hence, the tenso
is again orthogonal toS, i.e., the components correspondin
to m53 vanish identically in adapted coordinates. Th
means that¹aXb is a purely three-dimensional tensor situat
on S. For our purposes it is useful to use the ‘‘ADM-like
version of this object, defined in the following way:

Qa
b~X!ª2s$vX~¹bXa2db

a¹cX
c!1db

a]cL
c%, ~19!

where sªsgng03561. Because of the above conventio
the extrinsic curvatureQa

b(X) detects only theexternal ori-
entationof S and does not detect any internal orientation
the fieldX.

Remark. If S is a nonexpanding horizon, the last term in
the above definition vanishes.

The last term in Eq.~19! is X independent. It has bee
introduced in order to correct algebraic properties of
quantity vX (¹bXa2db

a¹cX
c): we prove in the Appendix A

@see the Remark after Eq.~A26!# thatQa
b satisfies identities

~4! and ~5! and, therefore its covariant divergence with r
spect to the degenerate metricgab on S is uniquely defined.
This divergence enters into the Gauss-Codazzi equations
we are going to formulate now. Gauss-Codazzi equati
relate the divergence ofQ with the transversal componentGb

'

of the Einstein tensor densityGm
n5Audetgu(Rm

n2dn
m 1

2R). The
transversal component of such a tensor density is a w
defined three-dimensional object situated onS. In a coordi-
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nate system adapted toS, i.e., such that the coordinatex3 is
constant onS, we haveG'

b5G3
b . Because of the fact thatG

is a tensor density, componentsG3
b does not changewith

changes of the coordinatex3, provided it remains constan
on S. These components describe, therefore, an intrinsic c
ector density situated onS.

Proposition 1. The following null-like surface version o
the Gauss-Codazzi equation is true:

¹̄aQa
b~X!1svX]bS ]cL

c

vX
D[2G'

b . ~20!

We remind the reader that the ratio between two sca
densities,]cL

c andvX , is a scalar function. Its gradient is
covector field. Finally, multiplied by the densityvX , it pro-
duces an intrinsic covector density onS. This proves that the
left-hand side also is a well-defined, geometric object s
ated onS.

To prove consistency of Eq.~20!, we must show that the
left-hand side does not depend upon a choice ofX. For this
purpose consider another degeneracy field:fX, wheref .0 is
a function onS. We have

2sQa
b~ f X!5v f X„¹b~ f Xa!2db

a¹c~ f Xc!…1db
a]cL

c

5
1

f
vX~ f ¹bXa1Xa]bf 2db

af ¹cX
c

2db
aXc]cf !1db

a]cL
c

52sQa
b~X!1Law ,b2db

aLcw ,c , ~21!

wherewª log f. It is easy to see that the tensor

qa
b~w!ªLaw ,b2db

aLcw ,c ~22!

satisfies identity~4!. Moreover, qab52gabL
cw ,c , which

proves Eq.~5!. On the other hand, we have

v f X]bS ]cL
c

v f X
D5vX]bS ]cL

c

vX
D1~]cL

c!w ,b ~23!

But, using formula~17! we immediately get

¹̄aqa
b~w!5~]cL

c!w ,b ,

which proves that the left-hand side of Eq.~20! does not
depend upon any choice of the fieldX. The complete proof of
the Gauss-Codazzi equation~20! is given in Appendix A.1

1In the nondegenerate case, there are four independent G
Codazzi equations: besides:G'

b , there is an additional equatio
relatingG'

' with the ~external and internal! geometry ofS. In the
degenerate case, the vector orthogonal toS is—at the same time—
tangent to it. Hence,G'

' is a combination of quantitiesG'
b and

there are only three independent Gauss-Codazzi equations.
6-4
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IV. BIANCHI IDENTITIES FOR SPACETIMES WITH
DISTRIBUTION VALUED CURVATURE

In this paper we consider a space-timeM with distribution
valued curvature tensor in the sense of Taub@11#. This means
that the metric tensor, although continuous, is not necess
smooth inC1 acrossS: we assume that the connection coe
ficients Gmn

l may have only step discontinuities~jumps!
acrossS. Formally, we may calculate the Riemann curvatu
tensor of such a spacetime, but derivatives of these disco
nuities with respect to the variablex3 produce ad-like, sin-
gular part ofR:

sing~R!l
mnk5~dn

3@Gmk
l #2dk

3@Gmn
l #!d ~x3!, ~24!

where by d we denote the Dirac distribution~in order to
distinguish it from the Kronecker symbold! and by @f# we
denote the jump of a discontinuous quantityf between the
two sides ofS. The formula above is invariant undersmooth
transformations of coordinates. There is, however, no se
in imposing such a smoothness acrossS. In fact, the smooth-
ness of spacetime is an independent condition on both s
of S. The only reasonable assumption imposed on the dif
entiable structure ofM is that the metric tensor—which i
smooth separately on both sides ofS—remains continuous2

acrossS. Admitting coordinate transformations preservin
the above condition, we lose some of the information c
tained in quantity~24!, which now becomes coordinate d
pendent. It turns out, however, that another part, namely
Einstein tensor density calculated from Eq.~24!, preserves
its geometric, intrinsic~i.e., coordinate-independent! mean-
ing. In the case of a nondegenerate geometry ofS, the fol-
lowing formula was used by many authors@1–3,12,13#:

sing~G!mn5Gmnd~x3!, ~25!

where the ‘‘transversal-to-S’’ part of Gmn vanishes identi-
cally:

G'n[0, ~26!

and the ‘‘tangent-to-S’’ part Gab equals the jump of the ADM
extrinsic curvatureQab of S between the two sides of th
surface:

Gab5@Qab#. ~27!

This quantity is a purelythree-dimensional, symmetric ten-
sor density situated onS. When multiplied by theone-
dimensionaldensityd (x3) in the transversal direction, it pro
duces thefour-dimensionaltensor densityG according to
formula ~25!.

2Many authors insist in relaxing this condition and assuming o
the continuity of the three-dimensional intrinsic metric onS. We
stress that the~apparently stronger! continuity condition for the
four-dimensional metric does not lead to any loss of generality
may be treated as an additional, technical gauge imposednot upon
the physical systembut upon its mathematical parametrization. W
discuss thoroughly this issue in a Remark at the end of this sec
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Now, let us come back to the case of our degenerate
faceS. One of the goals of the present paper is to prove t
formulas ~25! and ~26! remain valid also in this case. In
particular, the latter formula means that the four-dimensio
quantityGmn reduces in fact to an intrinsic, three-dimension
quantity situated onS. However, formula~27! cannot be true,
because—as we have seen—there is no way to de
uniquely the objectQab for the degenerate metric onS. In-
stead, we are able to prove the following formula:

Ga
b5@Qa

b~X!#, ~28!

where the bracket denotes the jump ofQa
b(X) between the

two sides of the singular surface. Observe that this quan
does not depend upon any choice ofX. Indeed, formula~21!
shows thatQ changes identically on both sides ofSwhen we
changeX and, hence, these changes cancel. This proves
the singular part sing(G)a

b of the Einstein tensor is well de
fined.

Remark. Otherwise, as in the nondegenerate case, the c
travariant componentsGab in formula ~25! do not transform
as a tensor density onS. Hence, the quantity defined by thes
components would be coordinate dependent. According
Eq. ~28!, G becomes an intrinsic three-dimensional tens
density onSonly after lowering an index, i.e., in the versio
of Ga

b . This proves thatGmn may be reconstructed from
Ga

b up to an additive termCXmXn only. We stress that the
dynamics of the shell, which we discuss in the sequel
unambiguously expressed in terms of the gauge-invari
intrinsic quantityGa

b . Proofs of the above facts are given
the Appendix A.

We conclude that the total Einstein tensor of our spa
time is a sum of the regular part3 reg~G! and the singular par
sing ~G! above existing on the singularity surfaceS. Thus

Gm
n5reg~G!m

n1sing~G!m
n , ~29!

and the singular part is givenup to an additive term
CXmXnd (x3). Due to Eq. ~8!, the following four-
dimensionalcovariant divergence is unambiguously define

05¹mGm
c5]mGm

c2Gm
aGmc

a 5]mGm
c2 1

2 Gmlgml,c .
~30!

We are going to prove that this quantity vanishes identica
Indeed, the regular part of this divergence vanishes on b
sides ofS due to Bianchi identities: reg(¹mGm

c)[0. As a
next step we observe that the singular part is proportiona
d (x3), i.e., that the Diracd contained in sing~G! will not be
differentiated, when we apply the above covariant derivat
to the singular part~25!. This is true because sing(G)3

n50.
Hence, only the covariant divergence ofG along S @multi-
plied by d (x3)# remains. Anotherd-like term is obtained
from ]mGm

c , when applied to the~piecewise continuous!
y

d

n.

3The regular part is a smooth tensor density on both sides of
surfaceS ~calculated for the metricg separately! with a possible
step discontinuity acrossS.
6-5
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regular part of G. This way we obtain the term
@reg(G)'

c#d (x3). Finally, the total singular part of the Bian
chi identities reads

sing~¹mGm
c!5~@reg~G!'c#1¹̄aGa

b!d ~x3![0 ~31!

and vanishes identically due to the Gauss-Codazzi equa
~20!, when we calculate its jump acrossS. Hence, we have
proved that the Bianchi identity¹mGm

c[0 holds universally
~in the sense of distributions! for spacetimes with singular
lightlike curvature.

It is worthwhile to notice that the last term in definitio
~19! of the tensor densityQ of S is identical on its both sides
Hence, its jump acrossSvanishes identically. In this way th
singular part of the Einstein tensor density~28! reduces to:

Ga
b5@Qa

b#52svX~@¹bXa#2db
a@¹cX

c# !. ~32!

Remark. The possibility of defining the singular Einste
tensor and its divergence via the standard formulas of R
mannian geometry~but understood in the sense of distrib
tion! simplifies considerably the mathematical description
the theory. This techniques is based, however, on the co
nuity assumption for the four-dimensional metric. This is n
a geometric or physical condition imposed on the system,
only the coordinate~gauge! condition. Indeed, whenever th
three-dimensional, internal metric onS is continuous, also
the remaining four components of the total metric can
made continuous by a simple change of coordinates. In
new coordinate system we may use our techniques base
the theory of distributions and derive both the Lagrang
and the Hamiltonian version of the dynamics of the to
~‘‘gravity1shell’’! system. As will be seen in the following
the dynamics derived this way does not depend upon
gauge condition and is expressed in terms of equations
also apply to general coordinates. As an example of suc
equation consider formula~28! which—even if derived here
by technique of distributions under more restricti
conditions—remains valid universally. We stress that even
a smooth, vacuum spacetime~no shell at all! one can con-
sider nonsmooth coordinates, for which only the inter
metric gab on a given surface, say$x35C%, is continuous,
whereas the remaining four componentsg3m may have
jumps. The entire canonical gravity may be formulated
these coordinates. In particular, the Cauchy surfaces$x0

5const% would be allowed to be nonsmooth here. Nobo
uses such a formulation~even if it is fully legitimate! be-
cause of its relative complexity: the additional gauge con
tion imposing the continuity of the whole four-dimension
metric makes life much easier.

V. ENERGY-MOMENTUM TENSOR OF A LIGHTLIKE
MATTER: BELINFANTE-ROSENFELD IDENTITY

The goal of this paper is to describe the interaction
tween a thin lightlike matter shell and the gravitational fie
We derive all the properties of such a matter from its L
grangian densityL. It may depend upon~nonspecified! mat-
ter fields zK living on a null-like surfaceS, together with
their first derivativeszK

aª]azK and—of course—the~de-
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generate! metric tensorgab of S:

L5L~zK;zK
a ;gab!. ~33!

We assume thatL is an invariant scalar density onS. Simi-
larly as in the standard case of canonical field theory, inv
ance of the Lagrangian with respect to reparametrization
S implies important properties of the theory: the Belinfan
Rosenfeld identity and the Noether theorem, which will
discussed in this section. To get rid of some technicalit
we assume in this paper that the matter fieldszK are ‘‘space-
time scalars,’’ like, e.g., material variables of any thermom
chanical theory of continuous media~see, e.g., Refs
@12,14#!. This means that the Lie derivativeLYz of these
fields with respect to a vector fieldY on Scoincides with the
partial derivative:

~LYz!K5zK
aYa.

The following lemma characterizes Lagrangians that ful
the invariance condition.

Lemma V.1. The Lagrangian density~33! concentrated on
a null hypersurfaceS is invariant if and only if it is of the
form

L5vXf ~z;LXz;g!, ~34!

whereX is any degeneracy field of the metricgab on S and
f (•;•;•) is a scalar function and is homogeneous of degre
with respect to its second variable.

Proof of the Lemma and examples of invaria
Lagrangians for different lightlike matter fields are given
Appendix C.

Remark. Because of the homogeneity off with respect to
LXz, the above quantity does not depend upon a choice
the degeneracy fieldX.

Dynamical properties of such a matter are described by
canonical energy-momentum tensor density, defined i
standard way:

Ta
bª

]L

]zK
a

zK
b2da

bL. ~35!

It is ‘‘symmetric’’ in the following sense:
Proposition 2. The Canonical energy-momentum tenso

densityTa
b constructed from an invariant Lagrangian dens

fulfills identities ~4! and ~5!, i.e., the following holds:

Ta
bXb50 and Tab5Tba . ~36!

Proof. For a Lagrangian density of the form~34! we have

Ta
b5

]L

]zK
a

zK
b2da

bL

5vXS Xa
] f

]~zK
dXd!

zK
b2da

bf D , ~37!

whence

Tab5Tc
bgca52vXf gab5Tba . ~38!
6-6
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Homogeneity off with respect to the argument (zK
dXd) im-

plies

Ta
bXb5vXXaS ] f

]~zK
dXd!

~zK
bXb!2 f D50. ~39!

j

In the case of a nondegenerate geometry ofS, one consid-
ers also the symmetric energy-momentum tensor densitytab,
defined as follows:

tab
ª2

]L

]gab
. ~40!

In our case the degenerate metric fulfills the constra
detgab[0. Hence, the above quantityis notuniquely defined.
However, we may define it, but onlyup to an additive term
equal to the annihilator of this constraint. It is easy to see
the annihilator is of the formCXaXb. Hence, ambiguity in
the definition of the symmetric energy-momentum tenso
precisely equal to ambiguity in the definition ofTab, if we
want to reconstruct it from the well-defined objectTa

b . This
ambiguity is canceled when we lower an index. We sh
prove in the next theorem, that for field configurations sa
fying field equations, both the canonical and the symme
tensors coincide.4 This is an analog of the standar
Belinfante-Rosenfeld identity@16#. Moreover, the Noethe
theorem~vanishing of the divergence ofT! is true. We sum-
marize these facts in the following.

Proposition 3. If L is an invariant Lagrangian and if th
field configurationzK satisfies Euler-Lagrange equations d
rived from L,

]L

]zK2]a

]L

]zK
a

50, ~41!

then the following statements are true.
~1! Belinfante-Rosenfeld identity: the canonical energ

momentum tensorTa
b coincides with~minus—because o

the convention used! symmetric energy-momentum tens
tab:

Ta
b52tacgcb , ~42!

~2! Noether theorem:

¹̄aTa
b50. ~43!

Proof. Invariance of the Lagrangian with respect to spa
time diffeomorphisms generated by a vector fieldY on S

4In our convention, energy is described by the formulaH5T0
0

5pK
0żK2L>0, analogous toH5pq̇2L in mechanics and wel

adapted for Hamiltonian purposes. This convention differs from
one used in Ref.@15#, where energy is given byT00. To keep
standard conventions for Einstein equations, we take the stan
definition of thesymmetricenergy-momentum tensorta

b . This is
why the Belinfante-Rosenfeld theorem takes formta

b52Ta
b .
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means that transporting the arguments (z;]z;g) of L alongY
gives the same result as transporting directly the value of
scalar densityL on S:

]L

]zK ~LYz!K1
]L

]zK
a

~LYz!K
a1

]L

]gac
~LYg!ac5LYL.

~44!

Take for simplicityY5]/]xb ~or Ya5da
b!. Hence, we have

(LYz)K
a5zK

ba5zK
ab . Applying this and rearranging term

in the above expression, we obtain

S ]L

]zK2]a

]L

]zK
a
D zK

b1]aS ]L

]zK
a

zK
b2da

bL D 1
]L

]gac
gac,b50.

~45!

Because of the Euler-Lagrangian equations~41! and to the
definitions~35! and ~40! of both the energy-momentum ten
sors, the formula above reduces to the following stateme

]aTa
b1 1

2 tacgac,b50. ~46!

Our proof of this formula is valid in any coordinate system
In particular, we may use such a system for which all par
derivatives of the metric vanish at a given pointxPS. In this
particular coordinate system we have

¹̄aTa
b~x!5]aTa

b~x!50.

But ¹̄aTa
b(x)50 is a coordinate-independent stateme

once proved in one coordinate system, it remains valid in
other system. Repeating this for all pointsxPS separately,
we prove the Noether theorem~43!. Subtracting now Eq.
~46! from Eq. ~43! we obtain the following identity:

Tabgab,c52tabgab,c ,

which must be true in any coordinate system. Here, bothTab

andtab are defined only up to an additive term of the for
CXaXb, which vanishes when multiplied bygab,c . In the
standard Riemannian or Lorentzian geometry of a nondeg
erate metric, the derivativesgab,c may be freely chosen a
each point separately, which immediately implies t
Belinfante-Rosenfeld identityT52t. In our case, the free
dom in the choice of these derivatives is restricted by
constraint. This is the only restriction. Hence, the Belinfan
Rosenfeld identity is true only up to the annihilator of the
constraints, i.e., only in the form of Eq.~42!. j

Remark. In a nondegenerate geometry, the vanishing
derivatives of the metric tensor at a pointx uniquely defines
a local ‘‘inertial system’’ atx. If two coordinate systems, sa
(xa) and (ya), fulfill this condition atx, then second deriva
tives ofxa with respect toyb vanishidentically at this point.
The covariant derivative may thus be defined as a pa
derivative, but calculated with respect to an inertial syste
i.e., to any coordinate system of this class. In our degene
case, vanishing of derivatives of the metric does not
uniquely the inertial system. There are different coordin
systems (xa) and (ya), for which gab,c vanishes atx, but we
have

e

rd
6-7
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]2ya

]xb]xc ~x!Þ0.

This is why any attempt to define a covariant derivative
an arbitrary tensor onS fails. This ambiguity is, however
canceled by algebraic properties of our energy-momen
tensor, namely, by identities~4! and ~5!. This enables us to
define unambiguously the covariant divergence of ‘‘ener
momentum-like’’ tensor densities using formula~9!.

VI. DYNAMICS OF THE TOTAL GRAVITY ¿SHELL
SYSTEM: LAGRANGIAN VERSION

In this paper we consider dynamics of a lightlike matt
shell discussed in the preceding section, interacting w
gravitational field. We present here a method of derivation
the dynamical equations of the system, which applies als
a massive shell and follows the ideas of Ref.@12#.

The dynamics of the gravity1shell system will be derived
from the action principledA50, where

A5Agrav
reg 1Agrav

sing1Amatter ~47!

is the sum of the gravitational action and the matter acti
Gravitational action, defined as an integral of the Hilb
Lagrangian, splits into regular and singular parts, accord
to decomposition of the curvature:

Lgrav5
1

16p
AuguR5

1

16p
Augu„reg~R!1sing~R!…

5Lgrav
reg 1Lgrav

sing. ~48!

Using formulas~25!–~28!, we express the singular part ofR
in terms of the singular part of the Einstein tensor:

Augusing~R!52sing~G!52Gmngmnd ~x3!. ~49!

As analyzed in Sec. IV, an additive, coordinate-depend
ambiguityCXmXn in the definition ofGmn is irrelevant, be-
cause it is canceled when contracted withgmn :

Gmngmn5Gabgab5Ga
a .

For the matter LagrangianLmatter, we assume that it ha
properties discussed in the preceding section. Finally, the
tal action is the sum of three integrals:

A5E
D

Lgrav
reg 1E

D
Lgrav

sing1E
DùS

Lmatter, ~50!

where D is a four-dimensional region with boundary
spacetimeM, which is possibly cut by a lightlike three
dimensional surfaceS ~actually, because of the Diracd fac-
tor, the second term reduce to integration overDùS!. Varia-
tion is taken with respect to the spacetime metric tensorgmn

and to the matter fieldszK situated onS. The lightlike char-
acter of the matter considered here implies the lightlike ch
acter ofS ~i.e., degeneracy of the induced metric detgab50!
as an additional constraint imposed ong.
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We begin with varying the regular partLgrav
reg of the gravi-

tational action. There are many ways to calculate variation
the Hilbert Lagrangian. Here, we use a method proposed
one of us@9#. It is based on the following, simple observ
tion:

dS 1

16p
AugugmnRmnD52

1

16p
Gmndgmn

1
1

16p
AugugmndRmn , ~51!

where

Gmn
ªAugu~Rmn2 1

2 gmnR!. ~52!

It is a matter of a simple algebra to show that the last term
Eq. ~51! is a complete divergence. Namely, the followin
formula may be checked by inspection:

pmndRmn5]k~pl
mnkdGmn

l !, ~53!

where we denote

pmn
ª

1

16p
Augugmn, ~54!

pl
mnk

ªpmndl
k2pk(ndl

m) , ~55!

and Gmn
l are not independent quantities but the Christoff

symbols, i.e., combinations of the metric componentsgmn

and their derivatives. In the above calculations we use
fact that the covariant derivative¹p of p with respect toG
vanishes identically, i.e., that the following identity holds:

]kpl
mnk[pa

mnkGlk
a 2pl

ankGak
m 2pl

makGak
n . ~56!

Hence, for the regular part of the curvature we obtain

dS 1

16p
AuguRD52

1

16p
Gmndgmn1]k~pl

mnkdGmn
l !.

~57!

We shall integrate the above equation over both partsD1

andD2 of D, resulting from cuttingD with the surfaceS. In
this way we obtain

dLgrav
reg 52

1

16p
reg~G!mndgmn1reg„]k~pl

mnkdGmn
l !….

~58!

Now, we are going to prove that the analogous formula
valid also for the singular part of the gravitational Lagran
ian, i.e., that the following formula holds:

dLgrav
sing52

1

16p
sing~G!mndgmn1sing„]k~pl

mnkdGmn
l !….

~59!
6-8
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To prove this formula, we calculate the singular part of t
divergence]k(pl

mnkdGmn
l ). Because all these quantities a

invariant, geometric objects~dG is a tensor!, we may calcu-
late them in an arbitrary coordinate system. Hence, we m
use our adapted coordinate system described in previous
tions, where the coordinatex3 is constant onS. This way,
using Eq.~55!, we obtain:

sing„]k~pl
mnkdGmn

l !…5d ~x3!pl
mn'd @Gmn

l #

5d ~x3!pl
mn3d @Gmn

l #

5d ~x3!pmnd @Amn
3 #, ~60!

where byA we denote

Amn
l
ªGmn

l 2d (m
l Gn)k

k . ~61!

~Do not try to attribute any sophisticated geometric interp
tation toAmn

l ; it is merely a combination of the Christoffe
symbols, which arises frequently in our calculations. It h
been introduced for technical reasons only.! The following
combination of the connection coefficients will also be u
ful in the following:

Q̃mn
ªAugu~gmagnb2 1

2 gmngab!Aab
3 . ~62!

It may be immediately checked that

pmndAmn
3 52

1

16p
gmndQ̃mn. ~63!

In Appendix A we analyze in detail the structure of quant
Q̃. As a combination of the connection coefficients, itdoes
not define any tensor density. But it differs from the extern
curvatureQ(X) of S introduced in Sec. III, only by terms
containing metric components and their derivativesalong S.
Jumps of these terms acrossS vanish identically. Hence, the
following is true:

@Q̃mn#d ~x3!5@Qmn#d ~x3!5sing~G!mn. ~64!

Consequently, formulas~60!, ~63!, and~49! imply

d ~x3!pl
mn'd@Gmn

l #52
1

16p
gmnd sing~G!mn

5Lgrav
sing1

1

16p
sing~G!mndgmn ,

~65!

which ends the proof of Eq.~59!. Summing up Eqs.~58! and
~59!, we obtain

dLgrav52
1

16p
Gmndgmn1]k~pl

mnkdGmn
l !, ~66!
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where both terms are composed of the regular and sing
parts.5

Now, we calculate the variation of the matter partLmatter
of the action onS,

dLmatter5
]Lmatter

]gab
dgab1

]Lmatter

]zK dzK1
]Lmatter

]zK
a

]adzK

5
1

2
tabdgab1S ]Lmatter

]zK 2]a

]Lmatter

]zK
a

D dzK

1]a~pK
adzK!, ~67!

where we used definition~40! and have introduced the mo
mentum canonically conjugate to the matter variablezK:

pK
a
ª

]Lmatter

]zK
a

. ~68!

Finally, we obtain the following formula for the variation o
the total (matter1gravity) Lagrangian:

dL52
1

16p
reg~G!mndgmn1d ~x3!S ]Lmatter

]zK 2]a

]Lmatter

]zK
a

D
3dzK2d ~x3!

1

16p
~Gab28ptab!dgab

1]k~pl
mnkdGmn

l !1d ~x3!]a~pK
adzK!. ~69!

In this section we assume that bothdgmn anddzK vanish in
a neighborhood of the boundary]D of the spacetime region
D ~this assumption will be later relaxed, when derivin
Hamiltonian structure of the theory!. Hence, the last two
boundary terms of the above formula vanish when integra
over D. Vanishing of the variationdA50 with fixed bound-
ary values implies, therefore, the Euler-Lagrange equati
~41! for the matter fieldzK, together with the Einstein equa
tions for gravitational field. The regular part of Einste
equations,

reg~G!mn50,

must be satisfied outside ofS and the singular part must b
fulfilled on S. To avoid irrelevant ambiguities of the typ
CXaXb, we write it in the following form, equivalent to the
Barrabès-Israel equation:

Ga
b58pta

b . ~70!

Summing up singular and regular parts of the above qua
ties we may write the total Einstein equations in the follo
ing way:

5In Ref. @9# the formula~66! was proved for regular spacetimes.
Ref. @12# its validity was extended to spacetimes with a thre
dimensional, nondegenerate curvature singularity. Here, we h
shown that it is also valid for a lightlike curvature singularity.
6-9
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dL5
1

16p
~Gmn28pT mn!dgmn1d ~x3!S ]Lmatter

]zK

2]a

]Lmatter

]zK
a

D dzK1]k~pl
mnkdGmn

l !

1d ~x3!]a~pK
adzK!. ~71!

Here, we have defined the four-dimensional ener
momentum tensor,T mn

ªd (x3)tmn with t3n[0. Sincet ab

was defined up to an additive termCXaXb, this ambiguity
remains andT mn is defined up toCXmXnd (x3), similarly as
the quantityGmn. This ambiguity is annihilated when con
tracted withdgmn .

VII. DYNAMICS OF THE GRAVITY ¿SHELL TOTAL
SYSTEM: HAMILTONIAN DESCRIPTION

Field equations of the theory~Euler-Lagrange equation
for matter and Einstein equations—both singular a
regular—for gravity! may thus be written in the following
way:6

dL5]k~pl
mnkdGmn

l !1d ~x3!]a~pK
adzK!. ~72!

Indeed, field equations are equivalent to the fact that
volume terms~71! in the variation of the Lagrangian mus
vanish identically. Hence, the entire dynamics of the the
of the matter1gravity system is equivalent to the requir
ment that variation of the Lagrangian is equal to bound
terms only. Similarly, as in Eq.~60!, we may use definition
of pl

mnk and express it in terms of the contravariant dens
of metric pmn. In this way we obtain

pl
mnkdGmn

l 5pmndAmn
k . ~73!

Hence, field equations may be written in the following wa

dL5]k~pmndAmn
k !1d ~x3!]a~pK

adzK!. ~74!

As soon as we choose a (311) decomposition of the space
time M, our field theory will be converted into a Hamiltonia
system with the space of Cauchy data on each of the th
dimensional surfaces playing role of an infinite-dimensio
phase space. Let us choose a coordinate system adapt
this (311) decomposition. This means that the time varia
t5x0 is constant on three-dimensional surfaces of this fo
tion. We assume that these surfaces are spacelike. To o
the Hamiltonian formulation of our theory we shall simp
integrate Eq.~72! @or—equivalently—Eq.~74!# over such a
Cauchy surfaceS t,M and then perform a Legendre tran
formation between time derivatives and corresponding m
menta.

6Formula ~72! is analogous to the formuladL(q,q̇)5(pdq)•

5 ṗdq1pdq̇ in mechanics, which contains both the dynamic
equationṗ5]L/]q and the definition of the canonical momentu
p5]L/]q̇. For detailed analysis of this structure see Ref.@9#.
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In the present paper we consider the case of an asymp
cally flat spacetime and assume that also leavesS t of our
(311) decomposition are asymptotically flat at infinity. T
keep control over two-dimensional surface integrals at s
tial infinity, we first consider the dynamics of our matt
1gravity system in a finite world tubeU, whose boundary
carries a nondegenerate metric of signature~2, 1, 1!. At the
end of our calculations, we shift the boundary]U of the tube
to space infinity. We assume that the tube contains the
faceS together with our lightlike matter traveling over it.

Denoting byVªUùS t the portion ofS t which is con-
tained in the tubeU, we thus integrate Eq.~74! over the finite
volume V,S t and keep surface integrals on the bounda
]V of V. They will produce the ADM mass as the Hami
tonian of the total matter1gravity system at the end of ou
calculations when we pass to infinity with]V5S tù]U. Be-
cause our approach is geometric and does not depend
the choice of coordinate system, we may further simplify o
calculations using the coordinatex3 adapted to bothSand to
the boundary]U of the tube. We thus assume thatx3 is
constant on both these surfaces.

It is worthwhile to stress at this point that there is n
contradiction in the fact that the surface$x35C% has differ-
ent geometric character for different values of the param
C: it is null-like for C50 and timelike forC→` ~cf. prop-
erties of the coordinatejªr 22t2 in Minkowski space!.

Integrating Eq.~74! over the volumeV we thus obtain

dE
V
L5E

V
]k~pmndAmn

k !1E
V

d ~x3!]a~pK
adzK!

5E
V
~pmndAmn

0 ! .1E
]V

pmndAmn
' 1E

VùS
~pK

0dzK!,

~75!

where by a dot we denote the time derivative. In the abo
formula we have skipped the two-dimensional divergenc
that vanish when integrated over surfaces]V andVùS.

To further simplify our formalism, we denote bypK
ªpK

0 the timelike component of the momentum canonica
conjugate to the field variablezK and perform the Legendre
transformation:

~pKdzK! .5 ṗKdzK2 żKdpK1d~pKżK!. ~76!

The last term, put on the left-hand side of Eq.~75!, satisfies
the matter Lagrangian and produces the matter Hamilton
~with minus sign!, according to the formula

Lmatter2pKżK5Lmatter2pK
0zK

052T0
05t0

0 . ~77!

To perform also Legendre transformation in gravitational d
grees of freedom we follow here method proposed by one
us@9#. For this purpose we first observe that, due to metric
of the connectionG, the gravitational counterpartpmndAmn

0

of the canonical one-formpKdzK reduces as follows:

pmndAmn
0 52

1

16p
gkldPkl1]kS p00dS p0k

p00D D , ~78!

l
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wherePkl denotes the external curvature ofS written in the
ADM form. Similarly, the boundary termpmndAmn

'

5pmndAmn
3 reduces as follows:

pmndAmn
3 52

1

16p
gabdQab1]aS p33dS p3a

p33D D , ~79!

where Qab denotes the external curvature of the tube]U
written in the ADM form. A simple proof of these formula
is given in Appendix D 1.

Using these results and skipping the two-dimensional
vergencies that vanish after integration, we may rew
gravitational part of Eq.~75! in the following way:

E
V
~pmndAmn

0 !•1E
]V

pmndAmn
'

52
1

16p E
V
~gkldPkl! .2

1

16p E
]V

gabdQab

1E
]V

S p00dS p03

p00D1p33dS p30

p33D D .

. ~80!

The last integral may be rewritten in terms of the hyperbo
angle a between surfacesS and ]U, defined as a
5arcsinh(q), where

q5
g30

Aug00g33u
, ~81!

and the two-dimensional volume forml5AdetgAB on ]V,
in the following way:

p00dS p03

p00D1p33dS p30

p33D5
1

8p
lda. ~82!

For the proof of this formula see Appendix D 2. Hence,
have

E
V
~pmndAmn

0 !•1E
]V

pmndAmn
'

52
1

16p E
V
~gkldPkl!•2

1

16p E
]V

gabdQab

1
1

8p E
]V

~lda! . ~83!

Now we perform the Legendre transformation both in t
volume:

~gkldPkl!•5~ ġkldPkl2 Ṗkldgkl!1d~gklṖ
kl!

and on the boundary, (lda)•5(l̇da2ȧdl)1d(lȧ).
In Appendix D 3 we prove the following formula:
06403
i-
e

c

2
1

16p E
V
~gklṖ

kl!1
1

8p E
]V

lȧ

5
1

8p E
V
AuguR0

01
1

16p E
]V

~QABgAB2Q00g00!,

~84!

Then, we have

1

16p E
V
Lgrav2

1

8p E
V
AuguR0

05
1

8p E
V
Augu~ 1

2 R2R0
0!

52
1

8p E
V
G0

0 . ~85!

Splitting the componentG0
0 of the Einstein tensor into regu

lar and singular parts, we obtain

1

8p E
V
G0

05
1

8p E
V
reg~G0

0!1
1

8p E
V
sing~G0

0!. ~86!

The regular part of Einstein tensor density reg(Gmn) vanishes
due to field equations. The singular part

sing~G0
0!5d ~x3!G0

0 , ~87!

satisfies the matter Hamiltoniant0
0 @see formula~77!# and

becomes annihilated due to Einstein equations:

1

8p E
VùS

~G0
028pt0

0!50. ~88!

Finally, we obtain the following generating formula@9#:

05
1

16p E
V
~ Ṗkldgkl2ġkldPkl!1

1

16p E
]V

~ l̇da2ȧdl!

1E
VùS

~ ṗ0
KdzK2 żKdp0

K!2
1

16p E
]V

gabdQab

1
1

16p
dE

]V
~QABgAB2Q00g00!. ~89!

Using results of Ref.@9# it may be easily shown that push
ing the boundary]V to infinity and handling in a proper way
the above three surface integrals over]V, one obtains in the
asymptotically flat case the standard Hamiltonian formula
both gravitational and matter degrees of freedom, with
ADM mass~given by the resulting surface integral at infin
ity! playing role of the total Hamiltonian. More precisel
denoting the matter momenta by

pKªp0
Kd ~x3!, ~90!

the final formula for]V→` reads

2dH5
1

16p E
V
~ Ṗkldgkl2ġkldPkl!1E

V
~ṗKdzK2 żKdpK!,

~91!
6-11
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whereH is the total Hamiltonian, equal to the ADM mass
spatial infinity.7

VIII. CONSTRAINTS

Consider Cauchy data (Pkl,gkl ,pK ,zK) on a three-
dimensional spacelike surfaceVt and denote byg̃kl the three-
dimensional metric inverse togkl . Moreover, we use the

following notation:gªAdetgkl, R
(3)

is the three-dimensiona
scalar curvature ofgkl , PªPklgkl and u is the three-
dimensional covariant derivative with respect togkl .

We are going to prove that these data must fulfill co
straints implied by Gauss-Codazzi equations for the com
nentsG0

m of the Einstein tensor density. Standard decom
sition of G0

m into the spatial~tangent toVt! part and the
timelike ~normal toVt! part gives us, respectively,

G0
l52Pl

k
uk , ~92!

and

2G0
mnm52g R

~3!

1~PklPkl2
1
2 P2!

1

g
. ~93!

Here byn we have denoted the future orthonormal vector
Cauchy surfaceVt :

nm52
g0m

A2g00
.

Vacuum Einstein equations outside and inside ofS imply
vanishing of the regular part ofG0

m . Hence, the regular par
of the vector constraint reads:

reg~Pl
k
uk!50,

whereas the regular part of the scalar constraint reduces

regS g R
~3!

2~PklPkl2
1
2 P2!

1

g
D 50.

The singular part of constraints, with support on the inters
tion sphereSt5VtùS, can be derived as follows.

The singular part of the three-dimensional derivatives
the ADM momentumPkl consists of derivatives in the direc
tion of x3:

sing~Pl
k
uk!5sing~]3Pl

3!5d ~x3!@Pl
3#,

so the full vector constraint has the form

7Formula ~91! is analogous to the formula2dH(q,p)5 ṗdq
2q̇dp in mechanics. In a nonconstrained case this formula
equivalent to the definition of the Hamiltonian vector field (ṗ,q̇)
via Hamilton equationsṗ52]H/]q, and q̇5]H/]p. We stress,
however, that the formula is much more general and is valid also
constrained systems, when the field is not unique, but given o
‘‘up to a gauge.’’ For detailed analysis of this structure see Ref.@9#.
06403
-
o-
-

o

c-

f

Pl
k
uk5@Pl

3#d ~x3!. ~94!

Components of the ADM momentumPkl are regular; hence
the singular part of the term (PklPkl2

1
2 P2) vanishes. The

singular part of the three-dimensional scalar curvature c
sists of derivatives in the direction ofx3 of the ~three-
dimensional! connection coefficients:

sing~R!
~3!

5sing„]3~Gkl
3 g̃kl2Gml

m g̃3l !…

5d ~x3!@Gkl
3 g̃kl2Gml

m g̃3l #, ~95!

and expression in the square brackets may be reduced t
following term:

g@Gkl
3 g̃kl2Gml

m g̃3l #522Ag̃33@]3~gAg̃33!#

522Ag̃33F ]kS gg̃3k

Ag̃33D G , ~96!

because derivatives tangent toS are continuous. But the ex
pression in square brackets is equal to the external curva
scalark for the two-dimensional surfaceSt,Vt :

gk52]kS gg̃3k

Ag̃33D . ~97!

So we get

sing~g R
~3!

!52gAg̃33@k#d ~x3!52@lk#d ~x3!

and finally

g R
~3!

2~PklPkl2
1
2 P2!

1

g
52@lk#d ~x3!. ~98!

Equations~94! and~98! give a generalization~in the sense of
distributions! of the usual vacuum constraints~vector and
scalar, respectively!.

Now, we will show how the distributional matter locate
on St determines the four surface quantities@P3

k# and@lk#,
entering into the singular part of the constraints. The tang
~to S! part ofG0

m splits into the two-dimensional part tange
to St and the transversal part~along null rays!.

The tangent toSt part of Einstein equations gives th
following,

G0
A58pd ~x3!t0

A , ~99!

which, due to Eqs.~92! and ~94!, implies the following two
constraints:

@P3
B#528pt0

B . ~100!

The remaining null tangent part of Einstein equations rea

G0
mXm58pd ~x3!t0

mXm50, ~101!

becauset0
mXm50. In Appendix E we show that this equa

tion reduces to the following constraint:

s

r
ly
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F P33

Ag̃33
1lkG50. ~102!

We remind the reader that the singular part ofG0
3 cannot

be defined in any intrinsic way. Consequently, we have o
three constraints for the singular parts~102! and ~100!. The
fourth constraint~in a nondegenerate case! has been replace
here by the degeneracy condition detgab for the metric onS.
Equations~100! and~102! together with~94! and~98! are the
initial value constraints.
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APPENDIX A: STRUCTURE OF THE SINGULAR
EINSTEIN TENSOR

We rewrite the Ricci tensor,

Rmn5]lGmn
l 2]~mGn)l

l 1Gsl
l Gmn

s 2Gms
l Gnl

s , ~A1!

in terms of the following combinations of Christoffel sym
bols @cf. Eq. ~61! in Sec. V#:

Amn
l
ªGmn

l 2d~m
l Gn)k

k . ~A2!

We have

Rmn5]lAmn
l 2Ams

l Anl
s 1 1

3 Aml
l Ans

s . ~A3!

Terms quadratic inA’s may have only steplike disconti
nuities. The derivatives alongSare thus bounded and belon
el

o
-
n-

06403
y

-
.

to the regular part of the Ricci tensor. The singular part of
Ricci tensor is obtained from the transversal derivatives o
In our adapted coordinate system, wherex3 is constant onS,
we obtain

sing~Rmn!5]3Amn
3 5d ~x3!@Amn

3 #, ~A4!

where byd we denote the Diracd distribution and by square
brackets we denote the jump of the value of the correspo
ing expression between the two sides ofS. Consequently, the
singular part of Einstein tensor density reads:

sing~Gm
n!ªAugusing~Rm

n2 1
2 R!5d ~x3!Gm

n , ~A5!

where

Gm
nªAugu~dn

bgma2 1
2 dn

mgab!@Aab
3 #5@Q̃m

n#. ~A6!

We shall prove that the contravariant version of this quant

sing~G!mn5@Q̃mn#d ~x3!,

is coordinate dependent and therefore does not define
geometric object. For this purpose we are going to relate
coordinate-dependent quantityQ̃mn with the external curva-
ture Qa

b of S. We use the form of the metric introduced
Ref. @10#:

gmn5F nAnA nA sM1mAnA

nA gAB mA

sM1mAnA mA ~M /N!21mAmA

G , ~A7!

and
gmn5F 2~1/N!2 nA/N22smA/M s/M

nA/N22smA/M g5 AB2nAnB/N21s~nAmB1mAnB!/M 2snA/M

s/M 2snA/M 0
G , ~A8!
where M.0, sªsgng03561, gAB is the induced two-
metric on surfaces$x05const,x35const%, andg5 AB is its in-
verse~contravariant! metric. Bothg5 AB and gAB are used to
raise and lower indicesA, B51, 2 of the two-vectorsnA and
mA.

Formula~A7! implies:Audetgmn u5lM. Moreover, the ob-
ject La defined by formula~3!, takes the formLa5lXa,
where l is given by formula~2! and Xª]02nA]A . This
means that we have chosen the following degeneracy fi
Xm5(1,2nA,0).

For calculational purposes it is useful to rewrite the tw
dimensional inverse metricg5 AB in three-dimensional nota
tion, settingg5 0a

ª0. This object satisfies the obvious ide
tity:

g5 acgcb5da
b2Xad0

b .
d:

-

Hence, the contravariant metric~A8! may be rewritten as
follows:

gab5g5 ab2
1

N2 XaXb2
s

M
~maXb1mbXa!, ~A9!

wherema
ªg5 aBmB , so thatm0

ª0, and

g3m5
s

M
Xm.

It may be easily checked~see, e.g., Ref.@10#, p. 406! that
covariant derivatives of the fieldX along Sare equal to:

¹aX52waX2 l abg5
bc]c , ~A10!
6-13
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where

waª2XmGma
0 ~A11!

and

l abª2g~]b ,¹aX!5g~¹a]b ,X!5XmGab
m . ~A12!

SinceX is orthogonal toS, we haveXa50. Because of Eq
~A7!, the only nonvanishing component ofXm is equal to
X35sM. Hence, we havel ab5sMGab

3 5sMAab
3 and, conse-

quently,

AuguAab
3 5sl l ab . ~A13!

Because of the identity

Xal ab5XaXcGcab5
1

2
XcXagca,b[0, ~A14!

we also havel abX
b50 @10#. Now we are going to use th

metricity condition for the connectionG:

0[¹ap3a5]ap3a1p3mGma
a 1pmaGma

3 2p3aGam
m

5]ap3a1pabGab
3 5]ap3a1pabAab

3 . ~A15!

Consequently,

]cL
c5]c~sAugug3c!5sp3c

,c

52spabAab
3 52lgabl ab52lg5 abl ab52l l ,

~A16!

wherel 5g5 abl ab . Now, we want to calculate the compone
A3a

3 5G3a
3 2(1/2)Gma

m . Because

Gma
m 5]a lnAugu5]a ln~lM !,

it is sufficient to calculateG3a
3 according to the following

formula:

G3a
3 5g3cGc3a5

s

M
Xc~g3c,a2G3ca!

5
s

M
Xcg3c,a2Xcg0mGmca1Xcg0bGbca

5wa1
s

M
Xcg3c,a1

s

M
XbmcGbca2

s

M
Xcmbgbc,a

5wa1
s

M
mcl ca1

s

M
$~Xcg3c! ,a2X,a

c ~g3c2mbgbc!%

5wa1
s

M
mcl ca1

1

M
M ,a . ~A17!

Finally, we obtain the following identity:

A3a
3 5wa1xa1

s

M
mbl ba , ~A18!
06403
wherexaª
1
2 ]a ln(M/l).

To expressQ̃ in terms ofl ab andwa , we observe that

sQ̃a
b5l~gacl cb2 1

2 da
bl !1LaL3b

3 2da
bLcA3c

3 ,
~A19!

sQ̃3
352

1

2
l l , ~A20!

sQ̃3
a50. ~A21!

The missing componentQ̃a
3 is much more complicated,

Q̃a
35AugugabAb3

3 5lM ~g3aA33
3 1gabAb3

3 !

5sLaA33
3 1lM H g5 ab1

1

N2 XaXb

2
s

M
~maXb1mbXa!J Ab3

3 , ~A22!

and depends uponA33
3 ,

A33
3 5G33

3 2G3m
m 52G3a

a 5 1
2 ~gabgab,31ga3g33,a!

52]3 ln l1
s

M
maXbgab,32

1
2 ga3g33,a ,

~A23!

where we have used the identity

1
2 g5 abgab,35]3 ln l.

We are ready to prove the following.
Lemma A.2. The objectQ̃a

b is related toQa
b as follows:

sQ̃a
b5sQa

b2 1
2 l lda

b1Laxb2da
bLcxc , ~A24!

wherexcª(1/2)]c ln(M/l).
Proof. Using Eqs.~A19!, ~A18!, and~A9! we obtain:

sQ̃a
b5l~g5 acl cb2 1

2 da
bl !1Lawb2da

bLcwc1Laxb

2da
bLcxc . ~A25!

From definition~19! and property~A10!, one can check tha

sQa
b5lda

b¹cX
c2l¹bXa2da

b]cL
c

52lda
b~wcX

c1 l !1l~wbXa1g5 acl cb!1da
bl l

5lg5 acl cb1Lawb2da
bLcwc , ~A26!

and thus we obtain Eq.~A24!. j

Remark. Formula ~A26!, together with l abX
b50

5gabX
b, gives us the orthogonality conditionQa

bXb50 and
symmetry of the tensorQabªgacQ

c
b .

Now, we would like to examine the properties ofGmn

5@Q̃mn#. From continuity of the metric acrossS we obtain

@ l ab#5sM@Aab
3 #5sM@Gab

3 #5Xc@Gcab#50. ~A27!
6-14
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On the other hand, the jump ofA3m
3 is in general nonvanish

ing. From Eq.~A18! we have

@A3a
3 #5@wa#. ~A28!

Formulas~A19!–~A21! and ~A27! imply

s@Q̃a
b#5La@A3b

3 #2da
bLc@A3c

3 #

5La@wb#2da
bLc@wc#5s@Qa

b#, ~A29!

@Q̃3
m#50. ~A30!

Moreover, we have

@Q̃a
3#5sLaS @A33

3 #1s
M

N2 Xb@wb#2mb@wb# D
1~lMg5 ab2smaLb!@wb#. ~A31!

On the other hand the jump ofA33
3 may be obtained from Eq

~A23!:

@A33
3 #52@]3 ln l#12mb@wb#, ~A32!

where we have used

@wa#52Xbg03@G3ba#5
s

2M
Xb@gab,3#. ~A33!

However,

Xa@wa#5
s

2M
@XaXbgab,3#50. ~A34!

Hence

@Q̃a
3#5sLa$2@]3 ln l#1mb@wb#%1Mlg5 ab@wb#.

~A35!

Using these results we calculate components of@Q̃mn#
5Gmn. From Eq. ~A30! we can easily check the proper
~26!

G335@Q̃33#5g33@Q̃3
3#1g3b@Q̃3

b#50,

G3a5@Q̃3a#5g33@Q̃a
3#1g3b@Q̃a

b#52
s

M
@XbQa

b#50,

where we used the property@Q̃a
b#5@Qa

b#, which is crucial
for showing that the objectGa

b is a well-defined geometric
object onS. On the contrary, the objectGab is not a geomet-
ric object because depends on a choice of coordinates.
can be seen when we calculate the componentG00:
06403
his

G005@Q̃00#5g03@Q̃0
3#1g0b@Q̃0

b#

5
l

M
~2@]3 ln l#1mb@wb# !2sS 1

N2 Xb1
s

M
mbDl@wb#

52
1

M
@]3l#. ~A36!

It may be easily checked@10# that the quantity above trans
forms in a homogeneous way with respect to coordin
transformation onS. This proves that the componentsGab do
not define any tensor density onS. An independent argumen
for this statement may be produced as follows. Begin wit
coordinate system in which we haveX5]0 ~i.e., nA50! and
perform the following coordinate transformation:

x̃05x01bAxA, x̃A5xA, x̃35x3, ~A37!

wherebA are constant. According to Eq.~A8! we have

s

M̃
5g~dx̃0,dx̃3!5g~dx0,dx3!1bAg~dxA,dx3!

5
s

M
~12bAnA!5

s

M
, ~A38!

whence we getM̃5M . Moreover, the new tetrad (X̃,]̃ B̃ ,]̃ 3̃)
may be calculated as follows:

X̃5X, ~A39!

]̃ B̃5
]x0

] x̃B̃
]01

]xA

] x̃B̃
]A5d

B̃

A
]A2bB̃X, ~A40!

]̃35]3 . ~A41!

This impliesl̃5l, and, consequently,

G̃0̃0̃52
1

M̃
@] 3̃l̃ #52

1

M
@]3l#5G00. ~A42!

On the other hand, we havedx̃05dx01bAdxA and

det(]xa/]x̃b̃)51. Hence,

G̃0̃0̃2g005G~dx̃0,dx̃0!2G~dx0,dx0!

52bAG0A1GABbAbB ,

which does not need to vanish in a generic case.

APPENDIX B: GAUSS-CODAZZI EQUATIONS

We begin with the Lie derivative of a connectionG with
respect to a vector fieldW @17#:

LWGmn
l 5¹m¹nWl2WsRl

nms . ~B1!
6-15
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For the coordinate fieldW5]a ~i.e.,Wm5da
m!, Lie derivative

reduces to the partial derivative:LWGmn
l 5]aGmn

l . Hence,
taking appropriate traces of Eq.~B1! and denotingpmn

ªAugugmn, we obtain

pmn]aAmn
a 5~dl

apmn2dl
mpan!]aGmn

l

5~dl
apmn2dl

mpan!~¹m¹nWl2WsRl
nms!

5Augu$¹m~¹mWa2¹aWm!12Rs
aWs%

5]m$Augu~¹mWa2¹aWm!%12AuguRa
sWs.

We apply this formula fora53. In this way we have

pmn]aAmn
3 5]m$Augu~¹mW32¹3Wm!%12R3

a

5]b$Augu~¹bW32¹3Wb!%12R3
a , ~B2!

whereR3
aªAuguR3

a . But

¹mWn5Gam
n .

Hence

¹bW32¹3Wb5 1
2 ~gblg3m2g3lgbm!~gml,a1gma,l2gla,m!

5gblg3m~gma,l2gla,m!

52gblGla
3 2gblg3mgml,a

52gblAla
3 1gb3Gam

m 1gb3
,a ,

and, consequently,

Augu~¹bW32¹3Wb!52pblAla
3 1p3b

,a , ~B3!

Inserting this into Eq.~B2! we obtain

R3
a1]b$p

blAla
3 2 1

2 da
b~pmnAmn

3 2p3c
,c!%52

1

2
pmn

,aAmn
3 .

~B4!

However,

2pmn
,aAmn

3 52~gmn]aAugu1Augugmagnbgab,a!Amn
3

5~2 1
2 gabpmn1gampbn!Amn

3 gab,a

5Q̃abgab,a , ~B5!

where we used definition~62!, namely,

Q̃m
nªAugu~gmaAan

3 2 1
2 dm

ngabAab
3 !

5pmaAan
3 2 1

2 dm
npabAab

3 . ~B6!

Hence, we obtain the following identity:

G3
a1]b$Q̃

b
a1 1

2 db
ap3c

,c%2 1
2 Q̃abgab,a[0. ~B7!

To calculate the last term of Eq.~B7!, we use the following.
Lemma B.3. The following equality holds:
06403
sQ̃abgab,a5l~gbegcdl ed2
1
2 lgbc!gbc,a1~Lbgcd1Lcgbd

2Ldgcb!A3d
3 gbc,a12sQ̃3

3S ]a ln M

1
s

M
mBn,a

B D . ~B8!

Proof. From Eqs.~A20! and ~A21! we obtain

Q̃3350

and

Q̃3b5g3bQ̃3
3 ,

so

Q̃abgab,a52Q̃3
3g3bg3b,a1Q̃bcgbc,a .

Moreover, from Eqs.~A7! and ~A8! we have

g3bg3b,a5]a ln M1
s

M
mBn,a

B

and

Q̃ab5~da
cg

bd1gadg3bg3c!Q̃
c
d1

XaXb

M2 Q̃33.

Using Eq.~A19! and taking into account thatXaXbgab,c50
we get

sQ̃bcgbc,a5l~gbegcdl ed2
1
2 lgbc!gbc,a1LbA3d

3 gcd

1LcA3d
3 gbd2LdA3d

3 gcbgbc,a ~B9!

and finally

sQ̃abgab,a5l~gbegcdl ed2
1
2 lgbc!gbc,a1~Lbgcd1Lcgbd

2Ldgcb!A3d
3 gbc,a12sQ̃3

3S ]a ln M

1
s

M
mBn,a

B D . ~B10!

j

Now, the proof of Eq.~20! is roughly a straightforward
calculation starting from Eq.~B7! and a consequent reex
pression of all ingredients in terms of the connection obje
l ab , wa and the metric objectsM, mA, N, Xa, gab describing
the four-dimensional metricgmn . It turns out that the terms
containingM, N, andmA drop out. Inserting Eqs.~A24! and
~B8! into ~B7! and using Eqs.~A18!, ~A20!, and ~A9!, we
obtain
6-16
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sG3
a52s]b$Q̃

b
a1 1

2 db
ap3c

,c%1s1
2 Q̃abgab,a

5]b$2sQb
a1db

al l 2Laxb1da
bLcxc%

2 1
2 l l S ]a ln M1

s

M
mBn,a

B D
1 1

2 gbc,a~Lbgcd1Lcgbd2Ldgcb!S wd1xd

1
s

M
mBl BdD1 1

2 lgbc,a~gbegcdl ed2
1
2 lgbc!

52s]bQb
a1 1

2 sQbcgbc,a1l]al , ~B11!

where we have used the formula

sQab5lg5 acg5 bdl cd1~Lag5 bc1Lbg5 ac2g5 abLc!wc .

Formula~B11! is equivalent to Eq.~20! if we use Eq.~A16!,
and keep in mind the ‘‘gauge’’ conditionX(x0)51, used
thoroughly in this proof.

APPENDIX C: PROOF OF LEMMA V.1 AND EXAMPLES
OF INVARIANT LAGRANGIANS

Since the matter Lagrangian~33! is an invariant scalar
density, its value may be calculated in any coordinate s
tem. For purposes of the proof let us restrict ourselves
local coordinate systems (xa) on S, which are compatible
with the degeneracy of the metric, i.e., such thatXª]0 is
null-like.

Suppose that (xa) and (ya) are two such local systems i
a neighborhood of a pointxPS. Suppose, moreover, tha
both vectors]0 coincide. It is easy to see that these con
tions imply the following form of the transformation be
tween the two systems:

yA5yA~xB!, ~C1!

y05x01c~xA!. ~C2!

A three-dimensional Jacobian of such a transformation
equal to the two-dimensional one: det(]yA/]xB). Observe that
the two-dimensional partgAB of the metricgab transforms
according to the same two-dimensional matrix and whe
its determinant l gets multiplied by the same two
dimensional Jacobian when transformed from (xa) to (ya).
So does the volumevX . This means that the function

fª
L

vX
~C3!

does not change value during such a transformation.A priori,
we could have:

f 5 f ~zK;zK
0 ;zK

A ;gab!, ~C4!

but we are going to prove that, in fact, it cannot depend u
derivativeszK

A . For this purpose consider new coordinate

yA5xA, ~C5!
06403
s-
to

-

is

e

n
:

y05x02e1x12e2x2. ~C6!

This implies that

]

]yA 5
]

]xA 1eA

]

]x0 .

Passing from (xa) to (ya), the value ofzK
A will be thus

replaced byzK
A1eAzK

0 , whereas the remaining variables
the function~C4! ~and also its value! will remain unchanged.
This implies the following identity:

f ~zK;zK
0 ;zK

A ;gab!5 f ~zK;zK
0 ;zK

A1eAzK
0 ;gab!,

~C7!

which must be valid for any configuration of the fieldzK.
Such a function cannot depend uponzK

A . But in our coor-
dinate system we havezK

05zK
aXa5LXzK. Thus, we have

proved that

f 5 f ~zK;LXzK;gab!. ~C8!

Relaxing condition~C2! and admitting arbitrary time coordi
natesy0, we easily see that the dependence of Eq.~C8! upon
its second variable must annihilate the~homogeneous of de
gree minus one! dependence of the densityvX upon the field
X in formula ~34!. This proves thatf must be homogeneou
of degree one inLXzK.

As an example of an invariant Lagrangian consider
theory of a lightlike ‘‘elastic media’’ described by materia
variableszA, A51, 2, considered as coordinates in a tw
dimensional material spaceZ, equipped with a Riemannian
‘‘material metric’’ gAB . Moreover, take a scalar fieldj. Then
for numbersa andb.0, satisfying identity 2a1b51, and
for any functionc of one variable, the following Lagrangia
density,

L5lc~j!S Xa
]zK

]xa Xb
]zL

]xb gKL~zA! D aS Xc
]j

]xcD b

, ~C9!

fulfills properties listed in Lemma V.1 and therefore is inva
ant. If c is constant, a possible physical interpretation of t
variablej as a ‘‘thermodynamical potential’’ may be found i
@14#.

APPENDIX D: REDUCTION OF THE GENERATING
FORMULA

1. Proof of formulas „78… and „79…

We reduce the generating formula with respect to c
straints implied by identities¹kp

0k50 and¹kp
0050. In fact,

expressing the left-hand sides in terms ofpmn and Amn
0 we

immediately get the following constraints:

A00
0 5

1

p00~]kp
0k1Akl

0 pkl!, ~D1!

A0k
0 52

1

2p00~]kp
0012Akl

0 p0l !.

~D2!
6-17
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It is easy to see that they imply the following formula:

pmndAmn
0 5pklAkl

0 12p0kdA0k
0 1p00dA00

0

52
1

16p
gkldPkl1]kS p00dS p0k

p00D D , ~D3!

where we have denoted

Pkl
ªAdetgmm~Kg̃kl2Kkl!,

~D4!

Kklª2
1

Aug00u
Gkl

0 52
1

Aug00u
Akl

0 ,

and g̃kl is the three-dimensional inverse with respect to
induced metricgkl on V.

Let us exchange now the role ofx3 andx0. Identities~D1!
and ~D2! become constraints on the boundary of the wor
tube]U:

A33
3 5

1

p33~]ap3a1Aab
3 pab!, ~D5!

A3a
3 52

1

2p33~]ap3312Aab
3 p3b!. ~D6!

They imply

pmndAmn
3 5pabdAab

3 12p3adA3a
3 1p33dA33

3

52
1

16p
gabdQkl1]aS p33dS p3a

p33D D , ~D7!

where we have denoted

Qab5Audetgcdu~Lg̃ab2Lab!, Lab52
1

Ag33
Gab

3 ,

~D8!

and g̃ab is the three-dimensional inverse with respect to
induced metricgab on the world-tube.

2. Proof of formula „82…

Write the right-hand side as follows:

p00dS p03

p00D1p33dS p30

p33D52Aup00p33ud
p30

Aup00p33u
~D9!

and

2Aup00p33u5
2

16p
AuguAug00g33u5

1

8p

AdetgAB

A11q2
.

~D10!

This automatically implies
06403
e

-

e

p00dS p03

p00D1p33dS p30

p33D5
l

8p

dq

A11q2
5

l

8p
da.

~D11!

3. Proof of formula „84…

To prove Eq.~84!, consider first the following identity

E
V
gklṖ

kl52E
V
D1E

V
]kS p00]0S p0k

p00D D , ~D12!

where we denote:

Dª2
1

16p
gklṖ

kl1]kS p00]0S p0k

p00D D
5pl

mn0]0Gmn
l 5pl

mn0LXGmn
l ,

with X5]/]x0, i.e.,Xm5d0
m andLX being the Lie derivative

with respect to the fieldX:

LXGmn
l 5¹m¹nXl2XsRl

nms

~due to Bianchi identities the right-hand side is automatica
symmetric with respect to lower indices!. Hence

Dª~dl
0pmn2dl

mp0n!~¹m¹nXl2XsRl
nms!

5
Augu
16p

$¹m~¹mX02¹0Xm!12R0
sXs%

5
1

16p
$]k„Augu~¹kX02¹0Xk!…12AuguR0

0%.

~D13!

The covariant derivative¹m has been replaced in the la
equation by the partial derivative]m , because they both co
incide when acting on antisymmetric, covariant bivector de
sities. We use also identity

¹mXn5gmlXsGsl
n 5gmlG0l

n . ~D14!

which finally implies:

E
V
D5

1

16p E
V
]n„Augu~gnmG0m

0 2g0mG0m
n !…

1
1

8p E
V
AuguR0

0 . ~D15!

D is regular, because singular expressions contained in
definition cancel out, as implied by Eq.~D12!. Hence, we
treatD as a regular expression, and there is no need to i
grate it in a distributional sense. Hence we have
6-18
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E
V
gklṖ

kl52
1

8p E
V
AuguR0

0

2
1

16p E
]V

AuguS g3mG0m
0 g0mG0m

3 2p00]0S p03

p00D D .

~D16!

From the definition ofa we also have:

lȧ58pS p00]0S p03

p00D1p33]0S p30

p33D D . ~D17!

Using the formula above we may write

2
1

16p E
V
~gklṖ

kl!1
1

8p E
]V

lȧ

5
1

8p E
V
AuguR0

01
1

16p E
]V

AuguS g3mG0m
0 2g0mG0m

3

1g33]0S p30

p33D D . ~D18!

The left-hand side of the equation above is regular, but
the right-hand side singular terms such as (1/8p)*VAuguR0

0

and (1/16p)*]VAugu(g3mG0m
0 2g0mG0m

3 ) arise. The latter
quantity, although it is a boundary term, originates from
volume term (1/16p)*V]n@Augu(gnmG0m

0 2g0mG0m
n )# via the

Stokes theorem. From derivatives in thex3 direction there
are singular terms that cancel out the singular part ofR0

0 ,
giving a regular expression as a final result.

We may rewrite expressions in Eq.~D18! in terms of the
quantityQab @defined by Eq.~D8!#:

1

16p E
]V

AuguS g3mGm0
0 2g0mGm0

3 1g33]0S p30

p33D D
5

1

16p E
]V

~QABgAB2Q00g00!, ~D19!

what completes the proof of formula~84!.

APPENDIX E: PROOF OF THE CONSTRAINT „102…

Using the decomposition~A7! and~A8! of the metric, one
can express the vectorn orthonormal toVt as follows:
06403
n

e

n5
1

N S ]02nA]A1s
N2

M
mA]A2s

N2

M
]3D .

ChoosingX5]02nA]A , we have

1

N
X5s

N

M
~]32mA]A!1n. ~E1!

Consequently, we can rewrite the left-hand side of Eq.~101!
as follows:

1

N
G0

mXm5s
N

M
G0

32s
N

M
mAG0

A1G0
mnm. ~E2!

ExpressingG0
m in terms of the canonical ADM momentum

Pkl @Eqs.~92! and ~93!#, Eq. ~101! takes the form

05
1

N
G0

mXm5s
N

M
~P3

k
uk2mAPA

k
uk!

1
1

2
S g R

~3!

2~PklPkl2
1
2 P2!

1

g
D . ~E3!

Equations~94! and ~98! give us the following result:

s
N

M
~@P3

3#2mA@PA
3# !1@lk#50. ~E4!

Due to Eq.~A7!, one can express the three-dimensional
verse metricg̃kl as follows:

g̃kl5S N

M D 2F F S M

N D 2

1mAmAGg5 AB 2mA

2mA 1
G . ~E5!

The above form ofg̃kl can be used to rewrite the canonic
momentum part of Eq.~E4!:

s
N

M
~@P3

3#2mA@PA
3# !5s

M

N
@P33#5

g

l
@P33#5F P33

Ag̃33G ,

~E6!

and finally we obtain the constraint~102!.
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@3# P. Hájı́ček, B. S. Kay, and K. V. Kucharˇ, Phys. Rev. D46, 5439

~1992!.
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