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Stability of AdSpÃMq compactifications without supersymmetry
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We study the stability of Freund-Rubin compactifications, AdSp3Mq , of (p1q)-dimensional gravity theo-
ries with aq-form field strength and no cosmological term. We show that the general AdSp3Sq vacuum is
classically stable against small fluctuations, in the sense that all modes satisfy the Breitenlohner-Freedman
bound. In particular, the compactifications used in the recent discussion of the proposed bosonic M theory are
perturbatively stable. Our analysis treats all modes arising from the graviton and theq form, and is completely
independent of supersymmetry. From the masses of the linearized perturbations, we obtain the dimensions of
some operators in possible holographic dual CFT’s. Solutions with more general compact Einstein spaces need
not be stable, and in particular AdSp3Sn3Sq2n is unstable forq,9 but is stable forq>9. We also study the
AdS43S6 compactification of massive type IIA supergravity, which differs from the usual Freund-Rubin
compactification in that there is a cosmological term already in ten dimensions. This nonsupersymmetric
vacuum is unstable.
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I. INTRODUCTION

The discovery of the AdS/CFT correspondence@1–3# ~for
a review see@4#! has led to renewed interest in the stabil
of geometries of the form AdSp3Mq where AdSp is anti–de
Sitter spacetime and Mq is an Einstein space with positiv
Ricci tensor. Solutions of this type with aq-form field
strength on Mq were first considered in higher dimension
supergravity theories by Freund and Rubin@5#. Because of
the negative curvature of AdS, perturbative stability does
require the absence of all tachyonic modes. Instead
Breitenlohner and Freedman~BF! first showed, scalars with
m2,0 may appear as long as their masses do not fall be
a bound set by the curvature scale of AdS@6#. The issue of
stability is important for understanding a possible dual c
formal field theory~CFT! description. For stable solutions
the spectrum of masses directly yields the dimensions
certain operators in such a CFT. Unstable solutions can
have a dual CFT description@7#, but the physics is clearly
very different.

It is well known that for the standard ten and elev
dimensional maximally supersymmetric supergra
ity ~SUGRA! theories, 11D SUGRA on AdS43S7 or
AdS73S4 and type IIB SUGRA on AdS53S5 are all stable.
However, these solutions are all supersymmetric~SUSY!,
and simple nonsupersymmetric vacua such as AdS43Mn
3M72n @8# and AdS73S23S2 @9# are known to be unstable
Furthermore, the SUSY examples have modes which ei
saturate the BF bound, or are very close to saturating it. T
raises the question of the role that SUSY plays in ensu
stability of vacua of this type.~For earlier discussions of thi
question see e.g.,@8–10#.! This issue is of particular interes
in light of the recent proposal of bosonic M theory@11#, a
0556-2821/2002/65~6!/064033~16!/$20.00 65 0640
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27-dimensional theory which was hypothesized to appea
the strong-coupling limit of the bosonic string. Its low ener
limit is assumed to be gravity coupled to a four-form fie
strength, which admits solutions of the form AdS43S23 and
AdS233S4. It was suggested that with these boundary co
ditions, bosonic M theory might be holographically d
scribed by a~211!- or ~2111!-dimensional CFT. Thus, it is
important to determine whether these solutions are stabl

One argument for the stability of AdS43S23 @11# and
more generally AdSp3Sq is that these backgrounds are th
near-horizon geometries of extremal black branes. Howe
this is not completely satisfying for two reasons. First,
though we expect extremal black branes to be stable,
appropriate positive mass theorem~stating roughlyM>Q)
has never been proven.1 Second, as we will discuss later, on
can construct extremal black brane solutions with unsta
near horizon geometry by placing branes at the apex of
propriate cones. So, one needs to examine stability direc

In this paper, we study the stability of general solutions
the form AdSp3Mq in a theory of gravity coupled to a
q-form field strength. When one expands the field equati
to linear order, there are several types of modes. Some
mediately decouple from the others, while the rest mix a
must be diagonalized.A priori, since the fundamental field
in p1q dimensions are massless, and adding dependenc
Mq should increase the mass, one might expect that
modes that do not mix should always be stable. Masses
lating the BF bound might be expected, however, to arise
diagonalizing the coupled fluctuations—indeed, this is

1Interestingly enough, if one tries to adapt Witten’s spinorial a
proach, one succeeds only in the SUSY cases@12#.
©2002 The American Physical Society33-1
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origin of the modes that saturate or come very near to s
rating the BF bound in the SUSY examples, so one mi
think that the absence of supersymmetry could push th
over the edge.

Surprisingly, this is not what we find. It turns out that f
any p andq and any Einstein space Mq , the coupled modes
are always stable. Moreover, for Sq the lowest mass eithe
saturates (q odd! or almost saturates (q even! the BF bound.
This is not to say, however, that an arbitrary AdSp3Mq
background is stable. The dangerous mode turns out to b
unmixed scalar coming from the transverse, traceless m
perturbation on Mq . This is the only mode which is sensitiv
to the choice of Einstein manifold Mq . If M q is the round
sphere Sq, it is easy to show that this mode is stable.
particular, the spacetimes of interest for bosonic M theo
AdS43S23 and AdS233S4, are stable. However, if Mq
5Mn3Mq2n and q,9, there is a mass violating the B
bound, corresponding to a mode which makes one fa
grow while the other shrinks. This generalizes the instab
ties of AdS43Mn3M72n and AdS73S23S2, but also
shows that this instability is limited to low dimensions. F
q>9, AdSp3Sn3Sq2n can be shown to be stable. Th
significance of the critical dimensionq59 is not clear; it is
sufficiently large that stable products cannot be realized
superstring or M theory.

The massive type IIA supergravity has a nonsupersy
metric vacuum of the form AdS43S6 @13#, whose stability,
to our knowledge, has never been investigated. We also s
this case and show that the solution is unstable, with
modes violating the BF bound. To our knowledge, this is
first example of a theory where the product of AdS and
round sphere is unstable. The analysis is more involved h
since there is a dilaton which mixes with some of the ot
modes, further complicating the coupled sector. Instabili
for more general AdS43M6 can arise in several ways
but we show in particular that they do occur f
AdS43Sn3S62n.

There is a vast literature on Kaluza-Klein theories, mu
of it in the context of higher dimensional supergravity, i
cluding a comprehensive review@14#. Our treatment of the
harmonic analysis of fluctuations about AdSp3Mq is most
closely modeled on@15–17#, and we have also consulted@8#
and@18#. In Sec. II we present the general AdSp3Mq back-
ground solution. The harmonic expansions for fluctuatio
and their linear equations of motion are discussed in Sec
The mass spectra of the various fluctuations are analyze
Secs. IV–VIII. The more complicated case of massive ty
IIA supergravity is discussed in Sec. IX. The AdSp mass
spectra determine the dimensions of operators in hypoth
cal CFTp21 dual field theories, and this is discussed in S
X. In Sec. XI, we show that for some of the unstable cas
the total energy~in the full nonlinear theory! is unbounded
from below. We also speculate on the implications of o
results for the stability of certain extremal black brane so
tions. Conventions and properties of various differential o
erators are collected in the Appendix.

II. FREUND-RUBIN BACKGROUNDS

We start by considering classicalD5p1q dimensional
gravity theory coupled to aq-form field strength. The action
is given by
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S5E dpxdqyA2gS R2
1

2q!
Fq

2D , ~2.1!

which leads to the equations of motion

RMN5
1

2~q21!!
FM P2•••Pq

FN
P2•••Pq

2
~q21!

2~D22!q!
gMNFq

2 , ~2.2!

d* Fq50. ~2.3!

This theory supports a Freund-Rubin solution with the pro
uct metric

ds25dsAdSp

2 1dsMq

2 , ~2.4!

describing a product ofp-dimensional anti-de Sitter spac
with an Einstein manifold:

Rmn52
~p21!

L2
gmn , ~2.5!

Rab5
~q21!

R2
gab , ~2.6!

and a background field strength on the compact space:

Fq5cvolMq
. ~2.7!

We use M ,N, . . . for indices on the fullD-dimensional
spacetime, whilem,n, . . . are indices on AdS anda,b, . . .
are indices onMq . The equations of motion~2.2!, ~2.3! re-
late the length scalesL andR and the constantc:

c25
2~D22!~q21!

~p21!R2 , ~2.8!

L5
p21

q21
R. ~2.9!

In the following six sections we shall study fluctuations
gMN and Fq around this background. Among other thing
we will conclude that the background is stable against th
fluctuations when Mq5Sq, for arbitrary p.2 andq.1. If
one wishes to embed the action~2.1! in a larger theory with
additional fields, stability must be verified separately for t
new modes. However let us note that the most tachyo
modes in the well-studied vacua of ten- and eleve
dimensional supergravities generally come from precis
the fields which support the solution. Thus, when these m
‘‘dangerous’’ modes come out stable, it suggests that
background is probably stable against all fluctuations.
3-2
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STABILITY OF AdSp3Mq COMPACTIFICATIONS . . . PHYSICAL REVIEW D 65 064033
III. LINEARIZED EQUATIONS OF MOTION

A. Fluctuations

We are interested in studying the stability of lineariz
fluctuations around the background~2.4!, ~2.7!. As we have
discussed, anti–de Sitter space is stable even in the pres
of tachyonic scalar fields, as long as their masses do
violate the Breitenlohner-Freedman bound:

m2L2>2
~p21!2

4
. ~3.1!

The possibility that some tachyons could be acceptable
AdS4 was first pointed out by Breitenlohner and Freedm
@6#, and extended to AdSp by @19#. See also@20,21# for early
developments of this idea.

We consider the linearized fluctuations

dgmn5hmn5Hmn2
1

p22
gmnha

a , ~3.2!

dgma5hma , dgab5hab ,

dAq215aq21 , dFq[ f q5daq21 , ~3.3!

where we have defined a standard linearized Weyl shift
hmn in Eq. ~3.2!, andFq5dAq21. It will be useful to decom-
poseHmn andhab into trace and traceless parts:

Hmn5H (mn)1
1

p
gmnHr

r , hab5h(ab)1
1

q
gabhg

g ,

~3.4!

wheregmnH (mn)5gabh(ab)50. To ~mostly2! fix the internal
diffeomorphisms and gauge freedom, we impose the
Donder-type gauge conditions

¹ah(ab)5¹aham50, ~3.5!

as well as the Lorentz-type conditions

¹aaab2 . . . bq21
5¹aaab2 . . . bq22m5•••5¹aaam2 . . . mq21

50. ~3.6!

A generic gauge potentialaa1 . . . anmn11 . . . mq21
, viewed as an

n-form on Mq with additional AdSp indices, can be expande
as the sum of an exact, a co-exact and a harmonic form
Mq by the Hodge decomposition theorem. The Lorentz c
ditions ~3.6!, which state that the form is co-exact, requ
the exact form in the decomposition to vanish, and hence
potentials can be expanded as co-exact forms~curls! and
harmonic forms:

2In addition to unfixedp-dimensional diffeomorphisms and gaug
transformations, extra conformal diffeomorphisms remain onq.
These are related to the elimination of ak51 mode in the coupled
scalar sector, as in Sec. IV; for a discussion, see@16#.
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ab1 . . . bnmn11mq21

5e b1 . . . bn

a1a2 . . . aq2n ¹a1
ba2 . . . aq2nmn11 . . . mq21

1bb1 . . . bnmn11mq21

harm . ~3.7!

When the compact space is an Sq there are no nontrivial
harmonic forms, but they can appear for other Mq . In a
compact notation, we may write Eqs.~3.6! and ~3.7! as

dq* qa50→a5* qdqb1bharm, ~3.8!

wheredq and* q are the exterior derivative and Hodge du
with respect to theMq space only.

With these gauge choices, we may expand the fluctuat
in spherical harmonics as

H (mn)~x,y!5(
I

H (mn)
I ~x!YI~y!,

Hm
m~x,y!5(

I
HI~x!YI~y!, ~3.9!

h(ab)~x,y!5(
I

f I~x!Y(ab)
I ~y!,

ha
a~x,y!5(

I
p I~x!YI~y!, ~3.10!

hma~x,y!5(
I

Bm
I ~x!Ya

I ~y!, ~3.11!

ab1 . . . bq21
5(

I
bI~x!e b1 . . . bq21

a ¹aYI~y!, ~3.12!

amb2 . . . bq21
5(

I
bm

I ~x!e b2 . . . bq21

ab ¹[aYb]
I ~y!

1(
h

bm
h ~x!e b2 . . . bq21

ab Y[ab]
h , ~3.13!

]

am1 . . . mq21
5(

I
bm1 . . . mq21

I ~x!YI~y!, ~3.14!

where I in each case is a generic label running over
possible spherical harmonics of the appropriate tensor ty
andh51 . . .bn(Mq) runs over the harmonicn-forms on Mq
for the gauge field with (n21) AdSp indices. We have not
included a termb(x) in Eq. ~3.12! since compact Riemann
ian Einstein spaces with positive curvature cannot poss
harmonic one-forms; this is proved in the Appendix. We w
also find it convenient to define

b~x,y![(
I

bI~x!YI~y!, bma~x,y![(
I

bm
I ~x!Ya

I ~y!.

~3.15!
3-3
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B. Einstein equations and coupled form equations

We now consider the Einstein equations to linear orde
fluctuations, as well as the form equations that mix with
graviton; the uncoupled form equations will be treated
Sec. VII. We use the following notation:hx[gmn¹m¹n ,
hy[gab¹a¹b , and maxBm[hxBm2¹n¹mBn is the Max-
well operator acting on vectors on AdSq . Additionally, Dy

[2(dq
†dq1dqdq

†) is the Laplacian3 acting on differential
forms on Mq ; for vectors, the explicit form isDyYa

[hyYa2Ra
bYb . Further,f •e[ f a1•••aq

ea1•••aq/q!.
For convenience, we present the linearized Ricci tenso

our conventions:

RMN
(1) 52

1

2
@~hx1hy!hMN1¹M¹NhP

P2¹M¹PhPN

2¹N¹PhPM22RM PQNhPQ2RM
PhNP2RN

PhM P#.

~3.16!

We employ Einstein’s equations in their Ricci form,RMN

5T̄MN with T̄MN[TMN1gMNTP
P/(22D). For Rmn we find

Rmn
(1)52

1

2 F ~hx1hy!S Hmn2
1

p22
gmnhg

gD
1¹m¹nS Hr

r2
2

p22
hg

gD
2¹m¹rS Hrn2

1

p22
grnhg

gD
2¹n¹rS Hrm2

1

p22
grmhg

gD
22RmrsnS Hrs2

1

p22
grshg

gD
2Rm

rS Hrn2
1

p22
grnhg

gD
2Rn

rS Hrm2
1

p22
grmhg

gD G , ~3.17!

which must be equal to

T̄mn
(1)52

c2~q21!

2~D22!
hmn2

q~q21!c2

2~D22!q!
gmn~2hab!

3eag2•••gq
eb

g2•••gq2
c~q21!

~D22!
gmn~ f •e!,

~3.18!

resulting in the equation

3The negative sign is standard in the Kaluza-Klein literature.
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2
@~hx1hy!Hmn1¹m¹nHr

r2¹m¹rHrn2¹n¹rHrm

22RmrsnHrs2Rm
rHrn2Rn

rHrm#

1
1

2~p22!
gmn~hx1hy!hg

g2
~q21!2

~p22!R2 gmnhg
g

1
~q21!2

~p21!R2 Hmn1
q21

D22
gmnhycb50. ~3.19!

For linearizedRma , we find

Rma
(1)52

1

2
@hxhma2¹m¹nhna2Rm

nhna1hyhma2Ra
bhbm

~3.20!

2¹a¹nhnm1¹m¹aS Hr
r2

2

p22
hg

gD2¹m¹bhba],

~3.21!

which is sourced by

T̄ma
(1)5

c

2~q21!!
f mb2•••bq

ea
b2•••bq2

c2~q21!

2~D22!
hma

~3.22!

5
c

2
¹m¹ab1

c

2
~hybma2Ra

bbmb!2
c2~q21!

2~D22!
hma .

~3.23!

For Rab we have

Rab
(1)52

1

2 F ~hx1hy!h(ab)22Ragdbh(gd)2Ra
gh(gb)

2Rb
gh(ga)1

1

q
gab~hx1hy!hg

g2S 2

q
1

2

p22D
3¹a¹bhg

g1¹a¹bHm
m2¹a¹mhmb2¹b¹mhmaG ,

~3.24!

while on the right-hand side, we find

T̄ab
(1)5

c

2~q21!!
~ f ag2•••gq

eb
g2•••gq1 f bg2•••gq

ea
g2•••gq!

1
c2~q21!

2~q21!!
~2hgd!eagu3•••uq

ebd
u3•••uq

2
c2~q21!

2~D22! S h(ab)1
1

q
gabhg

gD2
c~q21!

~D22!
gab~ f •e!

2
q~q21!c2

2~D22!q!
gab~2hgd!egu2•••uq

ed
u2•••uq

5
p21

D22
gabhycb1

q21

R2 h(ab)2
~q21!2

qR2 gabhg
g ,

~3.25!
3-4
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where we have used (f •e)5hyb and f a1•••aq

5( f •e)ea1•••aq
5ea1•••aq

hyb.
We see that the modes of the graviton mix with the fo

modesb and bm . To solve the coupled systems, we mu
consider certain form equations as well. From t
¹MFMb2 . . . bq

equation,4 we find the expression

¹M f Mb2•••bq
2cgmnGmn

g(1)egb2•••bq
2cggdGgd

u(1)eub2•••bq

2c~q21!ggdGgb2

u(1)edub3•••bq
50, ~3.26!

where we use the linearized Christoffel symbol,

GMN
P(1)5

1

2
~¹MhN

P1¹NhM
P 2¹PhMN!. ~3.27!

Contracting with the epsilon tensor on Mq , Eq. ~3.26! be-
comes

~q21!! S ¹aF ~hx1hy!b1
c

2
Hm

m2
c~p21!

p22
hg

gG
1¹m@hybma2Ra

bbmb2chma# D50. ~3.28!

Finally, from the¹MFMmb3 . . . bq
equation,

¹M f Mmb3•••bq
2cggaGgm

d(1)eadb3•••bq
50, ~3.29!

which reduces to

~q22!! F S hx1hy2
2~q21!

R2 D¹[abb]m2¹n¹m¹[abb]n

2c¹[aBb]m12Ra
g

b
d ¹[gbd]mG

2~q22!!Db3
Dnamnb4•••bq

eab
b3•••bq

1~q22!! ~hxbm2¹n¹mbn!50. ~3.30!

We now expand these fields in spherical harmonics and
lect like terms. Below we present the results, collecting
lated equations and indicating the origin of each express
as follows:~E1!, ~E2! and ~E3! for the AdS, mixed and Mq
Einstein equations, and~F1! and~F2! for the form equations
~3.28! and ~3.30!, respectively.

Equations for the coupled scalarsp I , bI , andHI :

~E3! F S hx1hy2
2~q21!2

R2 Dp I

1hyS HI2
2~D22!

q~p22!
p I D1

2q~p21!

~D22!
hycbI GYI50,

~3.31!

4One may avoid explicit manipulation of Christoffel symbols b
linearizing the equivalent equation]MA2gFMN2•••Nq50.
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~E3! S HI2
2~D22!

q~p22!
p I D¹(a¹b)Y

I50, ~3.32!

~F1! ¹aS hxb
I1hyb

I1
c

2
HI2

c~p21!

~p22!
p I DYI50.

~3.33!

Equations for coupled vectorsbm
I , Bm

I :

~E2! S MaxBm
I 1DyBm

I 1Dycbm
I 2

2~q21!2

~p21!R2 bm
I DYa

I 50,

~3.34!

~F2! ¹[a~Maxbm
I 1Dybm

I 2cBm
I !Yb]

I 50,
~3.35!

~F1! ~¹mbm
I Dy2c¹mBm

I !Ya
I 50,

~3.36!

~E3! ~¹mBm
I !¹(aYb)

I 50,
~3.37!

where Max is the Maxwell operator. Equations for symm
ric tensorsHmn

I :

~E1! S Rmn
(1)~Hrs

I !2
1

2
hyHmn

I 1
~q21!2

~p21!R2 Hmn
I

1
1

2~p22!
gmn~hx1hy!p I2

~q21!2

~p22!R2 gmnp I

1
~q21!

~D22!
gmnhycbI DYI50, ~3.38!

~E2! S 2¹nHnm
I 1¹mHI2

~p1q22!

q~p22!
¹mp I1¹mcbI D¹aYI

50. ~3.39!

Note that in Eq.~3.38!, Rmn
(1) is the linearized Ricci tensor fo

AdSp only, evaluated on the fieldHrs . Finally, there remain
a few decoupled equations:

~E3! @~hx1hy!da
gdb

d 22Ra
gd

b#f IY(gd)
I 50, ~3.40!

~F2! ~Maxbm
h !Y[ab]

h 50, ~3.41!

~F2! ~¹nbnm
I !¹[a¹b]Y

I50. ~3.42!

Notice that in passing from Eq.~3.30! to Eq. ~3.35!, we
commuted thehy through the covariant derivative¹a ,
which not only produced precisely the LaplacianDy acting
on vectors, but also canceled all terms in Eq.~3.30! involv-
ing the Riemann tensor.

It is worth remarking that as a result, the properties of Mq
enter into almost all these formulas only through the dim
sionq and the radiusR. Consequently we will be able to trea
these equations in a completely unified way, and prove
for generic AdSp3Mq backgrounds, all the correspondin
modes satisfy the Breitenlohner-Freedman bound and ca
destabilize the background. The sole exception is the eq
tion ~3.40! for the scalars coming from graviton modes o
the compact space, which explicitly involves the Riema
3-5
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tensor on Mq . There is thus no guarantee that the modesf I

will possess the uniform stability properties for differe
choices of Mq . Indeed, we will find that for Mq5Sq these
modes are harmlessly positive mass for allq, while for any
product Mq5Mn3Mq2n with q,9 they contain an instabil
ity.

IV. COUPLED SCALARS

In this section, we consider the system of modes ass
ated with the coupled scalarsp I , bI , and HI , Eqs. ~3.31!,
~3.32!, and~3.33!.

For certain low-lying scalar spherical harmonicsYI , some
or all of their derivatives appearing in the equations of S
III B may vanish. Let us first treat the generic case where
derivatives ofYI in Eqs. ~3.31!, ~3.32!, and ~3.33! are non-
zero and hence the coefficients must vanish. Equation~3.32!
then gives us a constraint which may be used to eliminateHI

in favor of p I . Substituting into Eq.~3.33!, we find

S ~hx1hy!bI2c
~q21!

q
p I DYI50, ~4.1!

while the second term in parentheses vanishes in Eq.~3.31!.
We obtain from Eqs.~3.31! and ~4.1! the coupled system

L2hxS bI /c

p I D 5~p21!2S l I

~q21!2

R2

q~q21!

4ql I

~q21!R2

l I

~q21!212
D

3S bI /c

p I D , ~4.2!

wherehyY
I52l IYI /R2; that l I>0 is straightforward and

is shown in the Appendix. On diagonalizing this matrix w
obtain the mass spectrum

m2L25
~p21!2

~q21!2 @l1~q21!„q216A4l1~q21!2
…#.

~4.3!

We now wish to analyze the spectrum~4.3! to check stability.
Extrema of Eq.~4.3! occur for

162~q21!„4l1~q21!2
…

21/250. ~4.4!

To satisfy Eq.~4.4! we must choose the negative sign, a
we find a minimum at

l5
3

4
~q21!2. ~4.5!

Substituting into Eq.~4.3!, we find the elegant result that th
minimum mass of the negative branch exactly saturates
Breitenlohner-Freedman bound independent ofp andq:

mmin
2 L252

1

4
~p21!25mBF

2 L2. ~4.6!
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Since the positive branch leads to manifestly posit
masses, we have proven there can be no unstable mod
this sector, at least for modes associated to generic sphe
harmonics. We shall complete the proof by treating the s
cial cases momentarily.

Although the spectrum~4.3! always saturates the BF
bound as a smooth function ofl, there need not be physica
states at the minimum, since only discrete values ofl appear
for given Mq . If M q5Sq, then the eigenvalues of the sphe
cal harmonics arel5k(k1q21), for integerk>0, and the
mass formulas for the two branches take on the form

m2
2 L25

~p21!2

~q21!2 k~k2q11!,

m1
2 L25

~p21!2

~q21!2 @k12~q21!#~k1q21!. ~4.7!

The minimum~4.5! occurs for Sq at k5(q21)/2 in the mi-
nus branch. We notice that wheneverq is odd, there will be a
mode with precisely the Breitenlohner-Freedman ma
while for q even the lightest-mass states from this sector w
appear just above the bound. This is consistent with wha
already known about AdS43S7 and AdS73S4 @18,15,17#.

Let us now examine the special cases. Fork51 on Sq,
¹(a¹b)Y

I50 and we cannot use Eq.~3.32!; this only occurs
for maximally symmetric spaces, and hence is not a conc
for other Mq , where nonconstantYI can be treated as above
Following @17# we may deal with this in one of two ways
either using a residual gauge invariance to impose the c
straint anyway, or explicitly evaluating the remaining equ
tions and showing that one linear combination drops out.
shall do the latter; for a discussion of the former, see@16#.

We now consider Eq.~3.33! as a constraint to eliminate
HI in favor of p I and bI . The remaining equation~3.31!
becomes

S hx1
3q22

q
hy2

2~q21!2

R2 Dp I

2
R2~p21!

~q21!~D22! S hx1hy2
2q~q21!

R2 D
3hycbI50. ~4.8!

In the case of the sphere,hy52q/R2 and we find an equa
tion for a single mode,

S hx2
q~2q21!

R2 D S p I1
q~p21!

~q21!~D22!
cbI D50,

~4.9!

which has the same mass as one would obtain from nai
substitutingk51 into the positive branch of Eq.~4.7!.

For constantYI on any Mq , all derivatives ofYI vanish
and the only nontrivial equation is Eq.~3.31!, which reduces
to

S hx2
2~q21!2

R2 Dp I50, ~4.10!
3-6
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where again the mass matches what one obtains by subs
ing k5l50 into the positive branch of Eq.~4.3!. Thus we
learn that a proper treatment extends the positive branc
Eq. ~4.3! down tok50, while the negative branch truncate
at k52 for Sq andk51 for other Mq .

The only remaining scalar fields associated to modes
the graviton are thef I , which obey the uncoupled equatio
~3.40!. These shall turn out to be the modes that can threa
stability. We shall return to these in Sec. VIII.

V. COUPLED VECTORS

We now consider the graviphotonBm and the form mode
bm with which it mixes. We expect to find a massless vec
for each Killing vector on Mq as well as a tower of massiv
fields, and indeed this is what we obtain. An addition
b2(Mq) massless vectors arise from the gauge poten
whereb2(Mq) is the second Betti number.

The relevant equations are Eqs.~3.34!, ~3.35!, ~3.36!, and
~3.37!. One readily sees that Eq.~3.36! can be obtained from
the divergence of Eq.~3.35!. We obtain the following
coupled system from Eqs.~3.34! and ~3.35!:

L2 MaxS cbm
I

Bm
I D 5~p21!2S k I

~q21!2

2~D22!

~p21!~q21!

k I

~q21!2

k I

~q21!2 1
2

p21

D
3S cbm

I

Bm
I D , ~5.1!

whereDyYa
I 52k IYa

I /R2. The masses that result are

m2L25
~p21!2

~q21!2 k1~p21!

3S 16A112
p21

~q21!3 ~D22!k D . ~5.2!

On a general Einstein space, we may derive the boundk I

>2(q21), with equality whenYa
I is a Killing vector, by

considering*dqySabSab>0 with Sab[¹aYb1¹bYa ~see
the Appendix!. For these Killing modes, the masses on t
negative branch of Eq.~5.2! vanish. Hence we do indeed fin
a massless vector for each isometry of the compact sp
Mq . For Killing modes~3.37! is trivially satisfied and does
not constrain the vector fields.

The positive branch fork52(q21) yields a positive
mass, and one can show that for both branches~5.2! mono-
tonically increases withk for k>2(q21). Thus all vector
modes are either massless or have positive mass. Fo
non-Killing modes ~3.36! and ~3.37! provide the usual
divergence-free condition for massive vectors, while for
massive modes associated to the Killing vectors~3.36! ac-
complishes this by itself.

When the cohomologyH2(Mq) is nontrivial, harmonic
2-forms Y[ab]

h give rise tob2(Mq) additional massless vec
tors bm

h , as we see from Eq.~3.41!.
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VI. GRAVITON AND TENSOR FIELDS

We now establish the existence of thep-dimensional
graviton and demonstrate the stability of the tower of m
sive symmetric two-index tensors. The graviton comes fr
the constantYI mode of Eq.~3.38!. Using Eq.~4.10!, this
reduces to

Rmn
(1)~Hrs

I !1
p21

L2 Hmn
I 50, ~6.1!

which is the correct fluctuation equation for a lineariz
graviton in AdSp .

For genericYI , the trace and longitudinal parts of Eq
~3.38! are redundant given Eqs.~3.31!, ~3.32!, ~3.33!, and
~3.39!, which express the trace and divergence ofHmn in
terms ofp andb. One can use these equations to reduce
~3.38! to

F S hx1hy1
2

L2DH (mn)
I 22¹(m¹n)cbI GYI50. ~6.2!

A massive tensor field of massm2 is described by a field
f (mn) which satisfies the wave equation and transversa
constraints

~hx2m2!w (mn)50, ~6.3!

¹mw (mn)50. ~6.4!

To bring Eq.~6.2! to this form, we follow@17#. Definef (mn)
in terms ofH (mn) by

H (mn)5f (mn)1¹(m¹n)~ub1vp!, ~6.5!

whereu andv are constants which can be determined by
following procedure, which we outline without full detai
The first step is to substitute Eq.~6.5! into Eq. ~6.2! and
require thatf (mn) satisfy Eq. ~6.3! with massmI

25l I /R2

22/L2, where2l I /R2 is as usual the eigenvalue ofhy on
YI . The remaining terms are required to cancel which giv
one condition to determineu andv. The second condition is
obtained by applying¹m to Eq. ~6.5!. The left side is ex-
pressed in terms ofb andp using Eqs.~3.32! and~3.39!, and
one imposes Eq.~6.4!. After commuting covariant deriva
tives, one finds two scalar conditions. Both contain the te
hx(ub1vp) which may be eliminated between them. Th
constantsu and v may then be obtained by requiring th
coefficients of the independent fieldsb(x) andp(x) vanish.
The results are

u5
2c~D22!~p22!

~q21!L2S l I

R2 2
p22

L2 D ~6.6!

v52
D22

q~p21!S l I

R2 2
p22

L2 D . ~6.7!
3-7
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Strictly speaking the argument above does not apply to
k51 graviton mode on Sq since it uses the constraint~3.32!
which no longer follows from the Einstein equations. T
simplest way to extend the argument is to use the unfi
conformal diffeomorphisms discussed in@17# to impose the
constraint fork51. The argument then goes through u
changed.

The apparent tensor massmI
2 is not positive for all geom-

etries AdSp3Mq . However @17# one can examineRmn
(1) in

Eq. ~6.1! to see that the graviton itself has an apparent m
22/L2. When this is subtracted one sees that higher ten
modes have positive massl I /R2. These modes transform i
unitary representations of the AdSp isometry group, and we
have stability.

VII. UNCOUPLED FORM FLUCTUATIONS

As we saw, the gauge potentials with zero and one ind
on AdSp mix with the graviton scalars and vectors. The r
maining form fields are decoupled. It is easiest to treat th
using a differential form notation. Thanks to the gauge c
dition ~3.8!, these may be written

a~x,y!5(
I

bI~x!* qdqYI~y!1(
h

bh~x!Yh~y!. ~7.1!

The linearized equation of motion is simply

d* da50. ~7.2!

Consider first the formYI(y) with n>2 indices on
Mq ; the field bI then hasn indices on AdSp . Evaluating
Eq. ~7.2! and using the identities * „Am(x)Bn(y)…
5(21)n(p2m)* p(Am)* q(Bn) andd* qYI50, we arrive at the
equations

~dp* pdpbI !dqYI1~21!n2
~* pbI !dqDyY

I50, ~7.3!

~dp* pbI !DyY
I50.

~7.4!

Equation~7.4! already appeared for the form with 2 indice
on AdSp as Eq.~3.42!. It follows from Eq. ~7.4! that Eq.
~7.3! reduces to

S Dx2
k I

R2DbI50, ~7.5!

whereDx is the Laplacian on AdSp andDyY
I52k IYI /R2 is

the eigenvalue of the Laplacian on Mq , as before. Thus thes
are standard positive-mass modes resulting from the dim
sional reduction.

The harmonic modes are even simpler; we find

~dp* pbh!Yh50. ~7.6!

Thus we have a massless form of appropriate rank for e
cohomology class, as expected.

One potential modification of the action~2.1! is the addi-
tion of a Chern-Simons~CS! term
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DS;E Aq21`~Fq!n, ~7.7!

where the wedge product is understood. Naturally, this
only possible whenq is even, and when an integern satisfy-
ing nq5p11 can be found.~For p523, q54, one may add
a CS term withn56.! Notice that such a term breaks th
duality symmetry between a theory withFq , which we have
used, and a dualFp ; results for the rest of this paper woul
be identical had we usedFp , but not in this instance. The
modified action~7.7! leaves Einstein’s equations unchange
and modifies the form equation to

d* Fq5g~Fq!n, ~7.8!

for some constantg. In supersymmetric theories like 11
dimensional supergravity, the constantg is fixed by super-
symmetry. Absent supersymmetry or some other guid
principle, there is no preferred choice ofg. For n>2 our
solution~2.4!, ~2.7! is still valid sinceFq`Fq vanishes.~For
n51, on the other hand, the Freund-Rubin background is
a solution.! BecauseFq`Fq vanishes, Eq.~7.8! will begin to
differ from Eq.~2.3! only at then21 order in perturbations
Hence, our linearized analysis will only be affected ifn52.
Furthermore, forf q`Fq to be nonzero, the fluctuationf q
must be polarized entirely along AdSp . Hence, the addition
of the term~7.7! can affect our analysis for only the sing
mode~3.14!. We find the equation

~Dx1Dy22cg* pdp!bIYI50. ~7.9!

We notice that (* pdp)25Dx @for dimensions where Eq.~7.7!
is possible#. We can thus factorize Eq.~7.9! into

~* pdp1m1!~* pdp1m2!bIYI50, ~7.10!

m11m2522cg, m1m252k/R2,

with the solution

m152cg1Ac2g21
k

R2, m252cg2Ac2g21
k

R2.

~7.11!

There will be two towers, one annihilated by each of t
factors in Eq.~7.10!. The second-order equations are

~Dx2mi
2!bIYI50, ~7.12!

for i 51,2, and we see thatmi
2 are non-tachyonic masse

regardless ofg.

VIII. METRIC PERTURBATIONS ON M q AND STABILITY

All the modes we have considered thus far have mas
within the bounds for stability; moreover, we were able
show this for AdSp3Mq where Mq is an arbitrary
q-dimensional Einstein manifold. The only fields we ha
not considered as yet come from the traceless modes o
graviton on Mq , and satisfy Eq.~3.40!, which we repeat
here:
3-8
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@~hx1hy!da
gdb

d 22Ra
gd

b#f IY(gd)
I 50. ~8.1!

It is possible to rewrite Eq.~8.1! in terms of the Lichnerow-
icz operatorDL and the Ricci tensor:

Fhx1DL1
2~q21!

R2 Gf IY(ab)
I 50, ~8.2!

but sinceDL does not obey a universal inequality ashy and
Dy do, this form is not as useful. The presence of the R
mann tensor indicates that Eq.~8.1! can have different prop
erties depending on the particular choice of Mq . We give
two examples, the sphere Mq5Sq and a product space Mq
5Mn3Mq2n , and show that the former contains only stab
modes while the latter possesses an instability forq,9.

For Mq5Sq, the Riemann tensor has the maximally sy
metric form Rabgd5(gaggbd2gadgbg)/R2. Equation~8.1!
reduces to

F ~hx1hy!2
2

R2Gf IY(ab)
I 50. ~8.3!

All these modes are manifestly positive-mass. We thus c
plete our demonstration of the stability of the AdSp3Sq

background for allp andq.
In @8# and @9# it was pointed out that AdS43Mn3M72n

and AdS73S23S2, respectively, were unstable to a pertu
bation in which one compact space becomes uniformly lar
and the other smaller keeping the total volume fixed. We n
generalize this to an arbitrary product of Einstein spa
Mq5Mn3Mq2n with n>2. Let a,b denote indices on Mn
andi , j denote indices on Mq2n . If the radii of the spaces ar
R1 and R2, requiring that the total compact space is a
Einstein imposes the relation

n21

R1
2

5
q2n21

R2
2

5
q21

R2 . ~8.4!

Consider now the mode

hab5
1

n
gabf~x!, hi j 52

1

q2n
gi j f~x!, ~8.5!

which satisfiesha
a50 as well as the gauge condition~3.5!

and therefore obeys Eq.~8.1!. This perturbation increases th
radius of one of the Einstein spaces and decreases the r
of the other keeping the total volume constant~to first order!.
Evaluating Eq.~8.1!, we find

Fhx1
2~q21!

R2 Gf I50. ~8.6!

Thus this mode has the mass

m2L252
2~p21!2

~q21!
5

8

q21
mBF

2 L2. ~8.7!

Consequently the Breitenlohner-Freedman bound~3.1! is
violated for q,9. This result is independent ofp, and de-
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pends on the internal space only in that it is a product
Einstein spaces that is itself Einstein with total dimensionq;
in particular the relative dimension of the spaces is irr
evant.

One may wonder about other fluctuations obeying E
~8.1!, and whether they may place even more stringent c
straints on the requirements for stability. The field~8.5! is the
lowest in a tower of modes that are traces on each individ
space in the product, but traceless overall. Higher excitati
will have more positive masses from thehy term. The re-
maining modes are traceless on each Mn and Mq2n , namely
h(ab) , h( i j ) , andhai . For hai we find the universal result

~hx1hy!hai50, ~8.8!

which is obviously stable, while for either of the other tw
we have effectively a copy of Eq.~8.1! but involving the
Riemann tensor of just one of the spaces in the product

@~hx1hy!da
cdb

d22Ra
cd

b#h(cd)50 ~8.9!

and similar forh( i j ) . This obviously depends on the detai
of Mn . One observation we can make is that if Mn itself is a
product~and so the original compact space Mq is a product
of three or more manifolds!, a mode analogous to Eq.~8.5!
will have a massm252(n21)/R1

252(q21)/R2, where the
last equality comes from Eq.~8.4!, and thus will be unstable
precisely when Eq.~8.5! is; and hence no new instabilit
automatically arises for products of three or more spa
beyond that already generically present for a product of tw

IX. AdS4 VACUA OF MASSIVE TYPE IIA

Massive type IIA supergravity has AdS43M6 vacua@13#
which are non-supersymmetric and whose stability, to
knowledge, has never been investigated.5 Even the existence
of these solutions is non-trivial, since there is a poten
term for the dilaton which pushes it toward weak couplin
What makes AdS43M6 vacua possible is that a uniform R
field strength,F4 or F6 according to taste, pushes the dilato
toward strong coupling, and there is an extremum of t
total potential where the dilaton can be constant.

The extremum is in fact a maximum, but it does not ma
sense to ask whether second derivative of the total dila
potential alone satisfies the BF bound, because the dila
couples non-trivially to the form and to the graviton. Th
mixing means that the coupled scalars sector requires a m
intricate analysis than before. The result will be that the
parents-wave tachyon coming from a naive analysis of t
dilaton potential is completely erased~effectively, it is a
gauge artifact!, but for S6 there is ad-wave and anf-wave
mode which violates the BF bound, rendering this vacu

5There is also asupersymmetric~and necessarily stable! vacuum
which is a fibration of AdS6 over S4 with a non-trivial dilaton. It is
the near-horizon geometry of the D4-D8 system@23#. It would be
interesting to explore the properties of this background as wel
generalizations of it where S4 is replaced by other manifolds, bu
we will not do so here.
3-9
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unstable! To our knowledge, this is the first time that a pro
uct of AdS and a round sphere is unstable. We also show
for M65Sn3S62n the BF bound is violated within the
coupled scalar sector, as well as having the same pu
gravitational instability found earlier, where one fact
shrinks while the other grows.

The remaining modes, outside the coupled scalar se
satisfy the same equations as in the generic AdSp3Mq sys-
tems we already considered. Thus the traceless gravito
M6 joins the coupled scalars as a possible source of insta
ity. We do not analyze other Einstein manifolds M6 explic-
itly, but we provide the tools needed for such an analysis
is still possible that there exist stable AdS43M6 vacua.

To make the discussion similar to our previous analy
let us express the action for massive type IIA in terms o
six-form field strength, which is essentially the Hodge du
of the usual four-form:

S5
1

2k2E d10xAgFR2
1

2
~]f!22

1

2
j2F6

2

2
m2

8
j210G where j5e2f/4, ~9.1!

and we include a 1/6! in the definition ofF6
2, as in@24#. We

also include a factor of 1/q! in the inner product of forms,
vq•ṽq . The equations of motion are

RMN5
m2

64
j210gMN

1
1

2
]Mf]Nf1

j2

235!

3FM P1P2P3P4P5
FN

P1P2P3P4P5

2
5

16
j2gMNF6

2 ,

hf2
5

16
m2j2101

j2

4
F6

250, ~9.2!

d* j2F650,

and there is an AdS43M6 background withf50, F6
5cvolM6

. We readily derive the relations

c25F6
25

5

4
m25

10

L2 5
25

R2 , ~9.3!

whereL is the radius of curvature of AdS4, such thatRmn

52(3/L2)gmn , andR is the radius of curvature of M6, such
that Rab5(5/R2)gab .

Just as for AdSp3Mq , we wish to linearize around th
background to obtain the mass spectrum. For the cou
scalar sector, we wish to focus on perturbations of the fo
gMN→gMN1hMN with hmn5 1

4 gmnhl
l and hab5 1

6 gabhg
g .

Also let df be the perturbation inf and let f 6 be the per-
turbation inF6, where, as before, we write
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ha
a5p, f 65da5 , where a55* 6db. ~9.4!

The algebraic relationhm
m1ha

a5 1
3 ha

a follows from the sym-
metric traceless part of the Einstein equations, as before.
now possible to derive coupled second order equations re
ing df, b, and p from the variations of theRa

a Einstein
equation, the scalar equation, and the form equation, u
the algebraic relation when needed to eliminatehm

m in favor
of ha

a . We use a form notation in this section for conv
nience.

The Ra
a equation is

Ra
a5

3

4L2 j2101
9

8
j2F6

21
1

2
]af]af. ~9.5!

Using Eqs.~3.16!, ~9.3!, and~9.4!, we find

dRa
a52

2

L2 ha
a2

1

2
~hx1hy!ha

a2
1

2
hy~hm

m1ha
a!1

1

6
hyha

a

52
15

4L2 df1
9

4
chyb2

45

4L2 ha
a , ~9.6!

where we have used the fact thathy5* 6d* 6d acting onb.
The algebraic relation allows us to simplify this to

~hx1hy!p2
37

2L2 p2
15

2L2 df1
9

2
chyb50. ~9.7!

For the scalar, the equation of motion is

hf2
5

2L2 j2101
j2

4
F6

250. ~9.8!

Linear variation around the background gives

~hx1hy!df2
25

4L2 df2
1

8
dfF6

21
1

2
F6• f 6

2
1

4
habFag1 . . . g5

Fb
g1 . . . g5

1

5!
50, ~9.9!

which upon simplification and use ofF6• f 65chyb becomes

~hx1hy!df2
15

2L2 df1
1

2
chyb2

5

2L2 p50.

~9.10!

The variation of the form equation is

d~d* !F62d*
1

2
dfF61d* f 650, ~9.11!

where d* indicates the variation in the Hodge dual. Afte
some algebra this becomes

c

2
d~hm

m2ha
a2df!`vol41d~hx1hy!b`vol450,

~9.12!

and so, using the algebraic relation, we obtain

~hx1hy!b2
5c

6
p2

c

2
df50. ~9.13!
3-10
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Gathering everything together, settingb5cL2B for con-
venience, and recalling thatc2510/L2, one obtains the fol-
lowing system of equations:

~hx1hy!B2
5

6L2 p2
1

2L2 df50

~hx1hy!p2
37

2L2 p2
15

2L2 df145hyB50 ~9.14!

~hx1hy!df2
5

2L2 p2
15

2L2 df15hyB50.

This results in

L2hxS B

p

df
D 5S 2

5
l

5

6

1

2

18l
2

5
l1

37

2

15

2

2l
5

2

2

5
l1

15

2

D S B

p

df
D ,

~9.15!

where as before2R2hyY
I5lYI . We find the mass eigen

values

m2L25
2

5
l16,

2

5
l11012A2514l,

and
2

5
l11022A2514l. ~9.16!

The Breitenlohner-Freedman bound forp54 is m2L2>
29/4. We see that the first two towers in Eq.~9.16! are
harmless~in fact they are not even tachyonic!, but the third
tower will violate the BF bound if some value ofl falls in
the interval

lunstablePS 155

8
25A5

2
,
155

8
15A5

2D'~11.47,27.28!.

~9.17!

For S6, we have l5k(k15), for which k52,3 gives
values in the interval~9.17!. Thus for bothd- and f-waves,
the eigen-combinations ofB, p, and df corresponding to
the third eigenvalue in Eq.~9.16! are unstable modes of th
AdS43S6 solution. They have the common massm2L25
212/5.

It is interesting that in fact all values ofm2L2 that occur
for AdS43S6 in the coupled scalar sector are rational: up
substitutingl5k(k15) into Eq.~9.16!, we obtain

m2L25
2k2

5
12k16,

2k2

5
16k120, and

2k2

5
22k.

~9.18!

However the corresponding dimensions of operators in a
pothetical three-dimensional CFT are not rational.
06403
y-

Instabilities can occur in the coupled scalar sector of ot
Mq as well. As an example, consider M65Sn3S62n. For
product spherical harmonics on the two spheres labeled
(k1 ,k2), we find several unstable modes in the interv
~9.17!: (1,1), (0,2), and (1,2) forn52, and (1,1), (2,0), and
(0,2) for n53.

As in Sec. IV, the constraint relatinghm
m andha

a no longer
obtains for thek51 case on S6, so a more careful analysi
must be performed. Without imposing the algebraic co
straint, the dilaton equation~9.10! is unmodified, while Eqs.
~9.6! and ~9.12! become

~hx1hy!p1hy~H1p!2
1

3
hyp2

37

2L2 p2
15

2L2df

1
9

2
chyb50, ~9.19!

~hx1hy!b2
c

2
p1

c

2
H2

c

2
df50. ~9.20!

For k51, we havehy5212/5L2. The dilaton equation
~9.10! then becomes

S hx2
99

10L2D df2
5

2L2 p2
6

5L2 cb

5S hx2
99

10L2D df2
5

2L2 s50, ~9.21!

which definess[p1 12
25 cb. Next, using Eq.~9.20! we can

show that

hxp1hyH5hxs2
12

5L2 s2
12

5L2 df, ~9.22!

which allows us to write Eq.~9.19! as

hxs2
249

10L2 s2
99

10L2df50. ~9.23!

As in the examples without a coupled dilaton, one line
combination of fields has dropped out of thek51 system.
We can now diagonalize Eqs.~9.21! and~9.23!. We discover
the mass eigenvalues

m2L25
42

5
, m2L25

132

5
, ~9.24!

which coincide with thek51 masses in the first two tower
of Eq. ~9.18!.

The constantYI sector is straightforward for all M6. The
form equation no longer obtains, and theb mode does not
exist, leaving only the equations

hxp5
37

2L2 p1
15

2L2 df, ~9.25!
3-11
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hxdf5
15

2L2 df1
5

2L2 p, ~9.26!

with corresponding positive-mass eigenvalues

m2L256, m2L2520. ~9.27!

These are exactly the masses obtained from the first
towers in Eq.~9.16! with k5l50. Thus the general ‘‘rule of
thumb’’ ~valid in all cases we have considered, as well as
the familiar supersymmetric examples! is that one simply
drops the most tachyonic mode from the first two par
waves in the coupled scalar sector.

It is not hard to see that the remaining equations of m
tion are basically unmodified from the analysis of previo
sections. The dilaton fluctuationdf cannot appear in the
other polarizations of the form equation, where the ba
ground field strength vanishes. Hence these are uncha
from before. In the Einstein equations, it is straightforwa
thatdf does not appear in theRma equation or in parts of the
Rab equation other than those treated already by conside
the trace. Owing to the relations~9.3! arising from the re-
quirement that the compact space is Einstein, these equa
are identical to those we already studied once written
terms ofL. The dilaton fluctuation and the other scalars
appear in theRmn equation, analogous to the appearance
p, b, and H in Eq. ~3.38!, but this leads only to a scala
expression linearly dependent on the ones we have con
ered earlier.

Consequently, we can employ the work we have alre
done wholesale. In particular, we again have the poten
source of instability from the set of scalarsf I , obeying Eq.
~8.1!. Hence we learn that general product spaces are a
unstable against having one factor shrink while the ot
grows.

X. POSSIBLE CFT DUALS

As discussed in the Introduction, this investigation w
motivated by the proposal@11# that the caseD5p1q527
with a 4-form field is the low-energy limit of a ‘‘bosonic M
theory,’’ and that its AdS43S23 compactification has a CFT3
dual in the framework of the AdS/CFT corresponden
Since an AdSp3Sq compactification has been shown to
stable, it is interesting to speculate in general about poss
CFTd duals~with d5p21). We give a very heuristic discus
sion which emphasizes the pattern of operator dimensio

For scalar operators the basic AdS/CFT relationD(D
2d)5m2L2 admits the two roots

D65
d

2
6

1

2
Ad214m2L2. ~10.1!

If the mass satisfies the inequalitym2L2>2d2/411, then
only the assignmentD1 obeys the unitarity boundD>d/2
21. ~This bound is saturated for a free massless scalar
in d dimensions.! But for 2d2/4<m2L2<2d2/411, both
D1 and D2 are, a priori, consistent choices for the sca
dimension of the dual operator. On general grounds it se
most natural to choose the larger of the two dimensions,D1 ,
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as the dimension of the operator, because only then can
compute correlators by straightforwardly imposing a boun
ary condition on the larger of the two linearly independe
solutions of the scalar. IfD2 is chosen as the dimension
then to obtain field theory correlators one must make a L
endre transform of theD1 results. These points were dis
cussed in@25#, where also a particular example was exhibit
where theD2 dimension was needed. In this example, t
field theory was supersymmetric, and the operator was a
ral primary, so its anomalous dimension could be worked
purely on field theory grounds as the sum of the anomal
dimensions of its factors. The computation is rigorous b
cause all the dimensions are dictated by aU(1)R current
which is obviously additive.

The mass eigenvalues of coupled scalars of gen
AdSp3Sq compactifications are given in Eq.~4.7!. Since
m1

2 .0, the operator duals of positive branch scalars h
the unique dimension assignments

D5
p21

2 F11
2

q21 S k1
3~q21!

2 D G . ~10.2!

For the negative branch of the scalar mass spectrum, t
are the two possibilities

D65
p21

2 F16
2

q21 Uk2
q21

2 UG . ~10.3!

In accord with the discussion in the previous paragraph
negative root is a possible choice in the range

Uk2
q21

2 U< q21

d
. ~10.4!

Recall thatk indicates theSO(q11) representation formed
from k factors of the vector, then symmetrized with the tra
removed.

For the purposes of orientation, let us recall a famil
result for AdS53S5. Here the chiral primary operators ar
trX(I 1

•••XI k) in N54 super-Yang-Mills theory, where
(I 1 . . . I k) indicates the symmetric traceless combinatio
Their AdS duals are the coupled fluctuations of the me
and the five-form on the negative branch that leads to
~10.3!. The dimensions areD(k)5k52,3,4,5, . . . , and one
always choosesD1 . The anomalous dimensions vanis
D(k)5k is the free-field result. A similar story holds fo
AdS43S7, with D(k)5k/2, except that one must chooseD2

for k52. Some of these operators are thought of as com
from trX(I 1

•••XI k) on coincident D2-branes, and for the ot
ers one must dualize the vector boson into an eighth sc
Free field counting still applies, and it can be backed up b
supersymmetry argument as for the AdS53S5 case. Lastly,
for AdS73S4, the dimensions areD(k)52k, and one always
choosesD1 . A free field understanding is lacking in thi
mysterious (2,0) theory, but as before a link can be es
lished between theR symmetry and the dimension whic
guarantees thatD(k) is linear ink.

Let us begin the discussion of the spectra for generap
andq by observing that it is doubly remarkable that both t
quadratic equation for scalar masses and the equationD~D
3-12
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2d)5m2L2 have rational roots in the general case. This
an aesthetically pleasing point for a putative CFT dual,
unfortunately it is the end of the good news.

Focusing on the negative branch~10.3! makes sense
since these were the simplest operators in cases which
understand. Starting with our free field prejudices, we mi
suspect that thek’th operator would be expressible a
trX(I 1

•••XI k), and that its dimensionD(k) is linear in k.
Then we arrive atD(k)5@(p21)/(q21)#k. For example,
D(k)5 3

22 k for AdS43S23. This does not make sense b
causek52 givesD5 3

11 , 1
2 , the free scalar dimension. Tha

is, we tried to chooseD2 in a range where onlyD1 was
possible. The general result is that a linear spectrum of
mensionsD(k) is permitted provided

q21<
4~p21!

p23
. ~10.5!
n

n-

ira

-

d
a

th
T

s
te

ity
. I

t-
n-
m

06403
s
t

we
t

i-

If this inequality fails, as in the case AdS43S23, then some
operators of lowSO(q11) charge will have a larger dimen
sion than operators of higherSO(q11) charge, which we
may view as a failure of the free-field intuition that singl
operators are built from fundamental fields whose dim
sions add. It does not mean, however, that there cannot
CFT dual: for instance, it is consistent with the unitari
bound to chooseD1 uniformly, which produces a spectrum
D(k) with a kink aboutk5(q21)/2. More arcane choice
may also be imagined. In the absence of supersymmetr
some input from field theory, we have no way of decidi
between the alternatives.

Let us now discuss the spectra of coupled vectors
general AdSp3Sq compactifications. Inserting the eigen
value formulak5(k11)(k1q22) for vector spherical har-
monics in Eq.~5.2!, we find the masses
m2L25
~p21!2

~q21!2 ~k11!~k1q22!1~p21!S 16A112
p21

~q21!3 ~p1q22!~k11!~k1q22! D . ~10.6!
F

ics

in a

th

ct
e-
of

t.
-
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ot
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ta-

on
These mass eigenvalues are generically irrational~although
they are rational for the supersymmetric compactificatio
AdS43S7, AdS73S4, and AdS53S5!. Irrationality persists
for vector scale dimensions~except for Killing vectors,
wherem250):

D5
1

2
@d1A~d22!214m2#. ~10.7!

In particular, AdS43S23 has irrational masses and dime
sions for massive vectors.

It is certainly remarkable that the scalars dual to ch
primary operators in the well-understood AdS53S5,
AdS43S7, and AdS73S4 vacua still lead to rational dimen
sions for generalp andq. If Eq. ~10.5! is violated and a linear
spectrum of dimensions is impossible for scalars, then
seems difficult to imagine a concise understanding base
a Lagrangian. The fact that massive vector modes generic
have irrational dimensions also makes it seem less likely
a purely field theoretic formulation of the putative dual CF
will be accessible in the near future.

The AdS43S6 compactification presents an even less ro
picture, in that the BF bound is violated. Obvious candida
for a brane realization of this vacua~involving D2-branes
and D8-branes! seem also to be unstable, only the instabil
is usually in the form of a tadpole instead of a tachyon
would be very interesting if a stable AdS43M6 vacuum
could be found for appropriate M6, corresponding to some
analyzable type I8 brane configuration. It would also be sa
isfying if one could start with some unstable D2-D8 co
struction and show that in an appropriate near-horizon li
s

l

it
on
lly
at

y
s

t

it

the brane instability reduces to the violations of the B
bound that we have observed.6

Finally, let us extend some remarks on thermodynam
made in @11# for the AdS43S23 and AdS233S4 cases. An
obvious measure of the number of degrees of freedom
CFT in p21 dimensions is the ratiocthermo5S/(VTp21). In
the (p1q)-dimensional theory, there are solutions with bo
magnetic and electric charge under the field strengthFq , so
there is flux quantization, and we can ask howcthermo scales
with N, the number of flux quanta through the compa
space. For AdSp3Sq, we can reason out this scaling by r
calling that in an asymptotically flat solution, the number
branes enters the harmonic function in the metric asH51
1c1N( l Pl /r )q21, wherec1 is some dimensionless constan
ThusL andR scale asN1/(q21)l Pl . In a near-extremal solu
tion, the Bekenstein-Hawking entropy scales
(L/ l Pl)

p1q22, whereas the Hawking temperature does n
scale withl Pl at all. Putting everything together, one finds

cthermo;N(p1q22)/(q21). ~10.8!

This specializes to the odd resultscthermo;N25/22 for
AdS43S23 andcthermo;N25/3 for AdS233S4. These peculiar
fractions do not bring any known CFT’s to mind, but at lea
they represent something to shoot for in constructing pu
tive duals of AdSp3Mq .

6We thank O. Bergman and A. Brandhuber for discussions
these and related points.
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XI. IMPLICATIONS FOR EXTREMAL BLACK BRANES
AND NEGATIVE ENERGY

As mentioned above, the~nondilatonic! theories of grav-
ity ~2.1! all contain charged black brane solutions, where
charge is obtained by integrating Fq over an Sj q surrounding
the brane.~For the general solution, see@12#.! In particular,
there are extremal black branes, with metric

ds25H22/(p11)~2dt21dy•dy!1H2/(q21)~dr21r 2dVq!

~11.1!

whereH is the harmonic functionH(r )511c1N( l Pl /r )q21.
The near horizon limit is just AdSp3Sq. So the stability we
have found for AdSp3Sq for all p and q is consistent with
the expected stability of extremal solutions. However,
have also seen that AdSp3Mn3Mq2n is unstable, whenq
,9 and Mn , Mq2n are Einstein spaces. These can a
arise as the near horizon limit of a type of extremal bla
brane as follows. Consider the cone over Mn3Mq2n

ds25dr21r 2~dsMn

2 1dsMq2n

2 !. ~11.2!

This space is Ricci flat, and has a curvature singularity at
apexr 50. ~Even though the curvature goes to zero for lar
r, this space is not asymptotically flat in the usual sense s
the curvature only falls off liker 22.! Suppose one places
stack of branes at the apex of the cone, extended in
orthogonal directions. The resulting exact solution is o
tained by simply replacing the flat transverse metric in E
~11.1! with the cone metric~11.2!.

One might have expected this new solution to be sta
since it is the extremal limit of a family of black brane s
lutions. However it is easy to see that it is not~at least for
q,9). The near horizon limit is now AdSp3Mn3Mq2n
which is unstable to a perturbation@Eq. ~8.5!# that goes to
zero asymptotically in AdSp . So a similar perturbation with
support very close to the horizon of the extremal black br
will also grow exponentially. This is independent of th
change in boundary conditions at infinity since, in the Po
carécoordinates appropriate to the near horizon geometr
AdSp , a scalar field near the horizon has a unique evolut
inside a spacetime region that includes infinite Poincare´ time.
One might object that extremal black branes are always
stable in the sense that adding a small amount of ene
causes them to become nonextremal,7 and the horizon moves
from an infinite distance to a finite distance~in spacelike
directions!. However, as we will see, our perturbation is ve
different in that it can actually decrease the mass.

A natural question to ask is what does this instability le
to? As we have seen, the unstable mode causes one fa
say Mn , to shrink in size and the other to grow. So one mig
expect that in the full nonlinear evolution, Mn simply shrinks
to zero size. However this cannot happen. It has rece
been shown@22# that if the weak energy condition is sati
fied, event horizons cannot have collapsing cycles. In f

7This is true for branes of finite extent. For infinite branes, o
needs nonzero energy density to become nonextremal.
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given any spacelike curve on the event horizon, if o
evolves the curve along the null geodesic generators,
length cannot go to zero in finite affine parameter. The ba
idea is to use the fact that the divergenceu of the null geo-
desic generatorsl of the event horizon cannot become neg
tive. This means that if part of the horizon is contracting, t
orthogonal directions must be expanding. But this introdu
a lot of shearsMN in the null geodesic congruence. One no
uses the Raychaudhuri equation

du

dl
52

u2

D22
2sMNsMN2RMNl Ml N ~11.3!

wherel is an affine parameter along the null geodesics a
D is the total spacetime dimension. If the weak energy c
dition is satisfied, the right hand side is negative definite,
when the shear becomes large,u decreases rapidly. One ca
show that if part of the horizon shrinks to zero size in fin
affine parameter,u must become negative which is a contr
diction. So the solution must settle down to a new sta
configuration. In@22#, this result was discussed in the conte
of the Gregory-Laflamme instability ofnonextremalblack
branes. In that case, the horizon starts to shrink in so
places and expand in others, and it was widely believed
the horizon would eventually pinch off and form separa
black holes. However this cannot happen. Instead, the s
tion must settle down to a new static black brane solut
without translational symmetry along the brane.

The instability we are discussing can be viewed as
extremal analog of the Gregory-Laflamme instability. Sin
our theory satisfies the weak energy condition, and the re
in @22# does not require that the horizon is nonextremal
can also be applied to our case. Thus, Mn cannot shrink to
zero size, and there must be another static solution wh
near horizon geometry is not AdSp3Mn3Mq2n .8

Strictly speaking, the near horizon limit of the black bra
solution includes only part of AdSp ~the region covered by
the Poincare´ coordinates!. Suppose we now consider the glo
bal solution AdSp3Mn3Mq2n and ask what happens if w
perturb it in the unstable direction. As a first step towa
answering this question, we show that there are solution
the full nonlinear theory which are asymptotical
AdSp3Mn3Mq2n and have arbitrarily negative energ
~where, as usual, we measure energy relative to AdSp). Since
the perturbation violates the BF bound, it is clear we c
lower the energy slightly by turning on this mode. To sho
the energy can be arbitrarily negative, it suffices to constr
suitable initial data. Consider the spatial metric

e

8One might worry that there will be a problem applying the res
in @22# since the unstable extremal black brane is not asymptotic
flat in the usual sense. However, even though null infinity is
well defined, one can still define the event horizon as the bound
of the past of a surface at larger, and the result will still apply.
3-14
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ds25F r 2

L2 112
m~r !

r p23 G21

dr21r 2dVp221e(q2n)f(r )dsMn

1e2nf(r )dsMq2n
~11.4!

so m50,f50 corresponds to the metric on a static surfa
~in global coordinates! for AdSp3Mn3Mq2n . The total
mass is proportional tom(`). Notice that the volume of the
q-dimensional internal space is independent off. This is a
nonlinear generalization of the perturbation we considere
Sec. VIII. We again set Fq5c volMq

. If we set all time de-
rivatives to zero, the only constraint on this initial data is t
Hamiltonian constraint of general relativity which implie
that the scalar curvature of Eq.~11.4! must bec2/2 wherec2

is given by Eq.~2.8!. This yields a first order differentia
equation which can be used to solve form(r ) in terms of
f(r ). If we assumef is everywhere small, this equatio
becomes

m8

r p22
}F r 2

L2 112
m~r !

r p23 G ~f8!22
2~p21!2

~q21!L2 f2. ~11.5!

The right-hand side resembles the energy density of the
earized unstable mode~8.5! except that thef8 term involves
the corrected spatial metric. Since the term involvingm(r )
on the right hand side only decreases the energy density
can get an upper limit on the mass by dropping it. One
now explicitly findf(r ) so thatm(`) is arbitrarily negative.
For example, ifq,92(8/p), one can takef5f0e2r /a. The
total mass is negative for largea, and goes to minus infinity
asa→`.

If we start with AdSp3Mn3Mq2n and perturb it slightly,
the energy will be only slightly negative. As we have ju
seen, this is very far from the minimum energy solution.
priori, one might expect Mn to collapse down to zero size i
finite time. This will produce a curvature singularity. It
unlikely that this singularity is naked, since we don’t expe
cosmic censorship to be violated so easily in the higher
mensional theory of gravity we are considering. It may fo
a black hole, or in light of the horizon results, Mn may not
collapse down at all. In the latter case, since we are us
reflecting boundary conditions at infinity~appropriate for the
AdS-CFT correspondence!, the solution may not settle dow
to any static configuration. It would be interesting to inve
tigate this further.

We have not considered the massive type IIA theory
this section. It would also be interesting to investigate
implications of the instability of AdS43S6 for negative en-
ergies and extremal black branes in this theory.
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APPENDIX

Here we collect conventions and a few properties of
differential operators we employ. We work in a metric
signature (211•••1) and define the Ricci tensor in term
of the Riemann tensor byRMN[RM PN

P .
The Hodge–de Rham LaplacianDy52(d†d1dd†) is

negative-definite, but in the case of a compact Riemann
Einstein space of positive curvature a more stringent bo
can be derived for the case of one-forms. We u
2R2DyY

I[k IYI , and for the ordinary Laplacianhy
[gab¹a¹b , 2R2hyY

I[l IYI . For scalar spherical harmon
ics YI , hy5Dy , and a vanishing eigenvalue always exis
corresponding toYI5 const.9 For one-forms, we may con
sider

0<E ~¹aYIb1¹bYIa!~¹aYb
I 1¹bYa

I !

52E ¹aYIb~¹aYb
I 1¹bYa

I !

522E YIbS hy1
q21

R2 DYb
I

522E YIbS Dy1
2~q21!

R2 DYb
I , ~A1!

proving k I>2(q21); furthermore, equality occurs fo
(¹aYb

I 1¹bYa
I )50, which is the condition forYb

I to be a
Killing vector. Additionally, the absence of harmonic on
forms Ya

h on a compact Einstein space of positive curvatu
may be proved as follows. Any harmonic one-form mu
satisfy¹aYa

h505¹aYb
h2¹bYa

h , so

05E ¹aYhb~¹aYb
h2¹bYa

h !

5E S ¹aYhb¹aYb
h1

q21

R2 YhbYb
h D , ~A2!

which is impossible as the right-hand side is a sum o
nonnegative and a positive quantity.

For the case of Sq, the eigenvaluesl I of the ordinary
Laplacianhy for the various tensor harmonics are

9One can derive the boundl I>q for nonconstantYI @14#.
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Tensor harmonic l I Range ofk

YI k(k1q21) k>0
Ya

I k(k1q21)21 k>1
Y[a1•••an]

I k(k1q21)2n k>1
Y(ab)

I k(k1q21)22 k>2
tt

O

’’

ss

06403
while for the Hodge–de Rham Laplacian acting on vecto
we obtain

k I5~k11!~k1q22!, k>1. ~A3!
u-

ys.
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