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We study the stability of Freund-Rubin compactifications, fe®,, of (p+q)-dimensional gravity theo-
ries with ag-form field strength and no cosmological term. We show that the generg|>A8Svacuum is
classically stable against small fluctuations, in the sense that all modes satisfy the Breitenlohner-Freedman
bound. In particular, the compactifications used in the recent discussion of the proposed bosonic M theory are
perturbatively stable. Our analysis treats all modes arising from the graviton agddahma, and is completely
independent of supersymmetry. From the masses of the linearized perturbations, we obtain the dimensions of
some operators in possible holographic dual CFT’s. Solutions with more general compact Einstein spaces need
not be stable, and in particular AgSS"X S " is unstable folg<<9 but is stable fog=9. We also study the
AdS,x S® compactification of massive type IIA supergravity, which differs from the usual Freund-Rubin
compactification in that there is a cosmological term already in ten dimensions. This nonsupersymmetric
vacuum is unstable.

DOI: 10.1103/PhysRevD.65.064033 PACS nuni®er04.50+h
I. INTRODUCTION 27-dimensional theory which was hypothesized to appear as
the strong-coupling limit of the bosonic string. Its low energy
The discovery of the AdS/CFT correspondefite3] (for  limit is assumed to be gravity coupled to a four-form field

a review sed4]) has led to renewed interest in the stability strength, which admits solutions of the form AgSS?® and
of geometries of the form AdSX M, where AdS is anti-de ~ AdSy3x S*. It was suggested that with these boundary con-
Sitter spacetime and Mis an Einstein space with positive ditions, bosonic M theory might be holographically de-
Ricci tensor. Solutions of this type with g-form field scribed by a2+1)- or (21+1)-dimensional CFT. Thus, it is
strength on N] were first considered in higher dimensional important to determine whether these solutions are stable.
supergravity theories by Freund and Rub#j. Because of One argument for the stability of AdS S?® [11] and
the negative curvature of AdS, perturbative stability does notmore generally Ad$x S is that these backgrounds are the
require the absence of all tachyonic modes. Instead, asear-horizon geometries of extremal black branes. However
Breitenlohner and FreedmdBF) first showed, scalars with this is not completely satisfying for two reasons. First, al-
m?<0 may appear as long as their masses do not fall belowhough we expect extremal black branes to be stable, the
a bound set by the curvature scale of Ad$. The issue of appropriate positive mass theordstating roughlyM = Q)
stability is important for understanding a possible dual conhas never been provérSecond, as we will discuss later, one
formal field theory(CFT) description. For stable solutions, can construct extremal black brane solutions with unstable
the spectrum of masses directly yields the dimensions ofiear horizon geometry by placing branes at the apex of ap-
certain operators in such a CFT. Unstable solutions can stifpropriate cones. So, one needs to examine stability directly.
have a dual CFT descriptior7], but the physics is clearly In this paper, we study the stability of general solutions of
very different. the form Ad§XM, in a theory of gravity coupled to a

It is well known that for the standard ten and eleveng-form field strength. When one expands the field equations
dimensional maximally  supersymmetric  supergrav-to linear order, there are several types of modes. Some im-
ity (SUGRA) theories, 11D SUGRA on AdXS’ or  mediately decouple from the others, while the rest mix and
AdS;x S* and type 1IB SUGRA on AdSx S° are all stable. must be diagonalizedh priori, since the fundamental fields
However, these solutions are all supersymmet8tJSY), in p-+q dimensions are massless, and adding dependence on
and simple nonsupersymmetric vacua such as ,4d8, M, should increase the mass, one might expect that the
XM;_,, [8] and AdS x S?x S? [9] are known to be unstable. modes that do not mix should always be stable. Masses vio-
Furthermore, the SUSY examples have modes which eithdating the BF bound might be expected, however, to arise in
saturate the BF bound, or are very close to saturating it. Thidiagonalizing the coupled fluctuations—indeed, this is the
raises the question of the role that SUSY plays in ensuring
stability of vacua of this type(For earlier discussions of this
question see e.g.8—10].) This issue is of particular interest  linterestingly enough, if one tries to adapt Witten’s spinorial ap-
in light of the recent proposal of bosonic M thedid/l], a  proach, one succeeds only in the SUSY cd46%
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origin of the modes that saturate or come very near to satu- 1

rating the BF bound in the SUSY examples, so one might S=j dedqy\/—_g(R— FFé) (2.1

think that the absence of supersymmetry could push them @

over the edge. ) ] )
Surprisingly, this is not what we find. It turns out that for Which leads to the equations of motion

anyp andq and any Einstein space VI the coupled modes

are always stable. Moreover, fofl he lowest mass either P,y

saturatesd odd or almost saturategj(even the BF bound. RMN:MFMPZ "PqFN

This is not to say, however, that an arbitrary AdSMV,

background is stable. The dangerous mode turns out to be an (g—1) )

unmixed scalar coming from the transverse, traceless metric - MQMNF ' 2.2

perturbation on . This is the only mode which is sensitive

to the choice of Einstein manifold M If M is the round

sphere &, it is easy to show that this mode is stable. In

particular, the spacetimes of interest for bosonic M theory,

AdS,xS* and AdS$sxS', are stable. However, if M  This theory supports a Freund-Rubin solution with the prod-

=M,XMy_, and q<9, there is a mass violating the BF uct metric

bound, corresponding to a mode which makes one factor

grow while the other shrinks. This generalizes the instabili- ds?=dsiys +ds (2.4

ties of AdSXM,XxM,_,, and AdSXxS*xS?, but also % a

shows that this instability is limited to low dimensions. For o ) ) ) )

g=9, AdS,xS'XS" " can be shown to be stable. The de_zscrlblng a p_roduct_ op-dimensional anti-de Sitter space

significance of the critical dimensiagp=9 is not clear; it is  With an Einstein manifold:

sufficiently large that stable products cannot be realized in

superstring or M theory. (p—1)

The massive type IIA supergravity has a nonsupersym- Ru= 2 Gurs 2.9
metric vacuum of the form Ads< S° [13], whose stability,
to our knowledge, has never been investigated. We also study
this case and show that the solution is unstable, with two (9—1)
modes violating the BF bound. To our knowledge, this is the Rab’:?gab” (2.6
first example of a theory where the product of AdS and a
round sphere is unstable. The analysis is more involved here i
since there is a dilaton which mixes with some of the othe@nd @ background field strength on the compact space:

modes, further complicating the coupled sector. Instabilities

- Pq

d*Fq=0. (2.3

for more general AdS<Mg can arise in several ways, qucvoIMq. 2.7
but we show in particular that they do occur for

-n
AdS;x S™X S ", We useM,N, ... for indices on the fullD-dimensional

There is a vast literature on Kaluza-Klein theories, much : : o
of it in the context of higher dimensional supergravity, in- spa(_:et|_me, whilgs,v, . ... are _|nd|ces on AdS and, 3, . ...
cluding a comprehensive revief4]. Our treatment of the are indices orM,. The equations of mOt'O(Q'_Z)’ (2.3 re-
harmonic analysis of fluctuations about AgSM,, is most late the length scalels andR and the constart:
closely modeled of15-17, and we have also consultgsl]
and[18]. In Sec. Il we present the general ASM,, back- , 2(D—-2)(q—1)
ground solution. The harmonic expansions for fluctuations -~ (p—1R%*
and their linear equations of motion are discussed in Sec. Ill.
The mass spectra of the various fluctuations are analyzed in
Secs. IV=VIIIl. The more complicated case of massive type L= R. 2.9
lIA supergravity is discussed in Sec. IX. The Ad#&ass
spectra determine the dimensions of operators in hypotheti-
cal CFT,_; dual field theories, and this is discussed in Secin the following six sections we shall study fluctuations of
X. In Sec. XI, we show that for some of the unstable casesg,,  and F, around this background. Among other things,
the total energy(in the full nonlinear theoryis unbounded \ye will conclude that the background is stable against these
from below. We also speculate on the implications of ourg,ctyations when =S, for arbitraryp>2 andg>1. If
r_esults for the stability of certain extremgl black brane_ SolU-gne wishes to embed the actih 1) in a larger theory with
tions. Conventions and properties of various differential 0p-yygjtional fields, stability must be verified separately for the
erators are collected in the Appendix. new modes. However let us note that the most tachyonic

modes in the well-studied vacua of ten- and eleven-
dimensional supergravities generally come from precisely

We start by considering classicBl=p+ q dimensional the fields which support the solution. Thus, when these most
gravity theory coupled to g-form field strength. The action “dangerous” modes come out stable, it suggests that the
is given by background is probably stable against all fluctuations.

(2.9

©
|
=

o
|
=

Il. FREUND-RUBIN BACKGROUNDS
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IIl. LINEARIZED EQUATIONS OF MOTION a
Bi- Bnbn+1bg-1
A. Fluctuations _ M@z agoy v
We are interested in studying the stability of linearized By Bn @172 q-nkin+1-He-1
fluctuations around the backgrouf@l4), (2.7). As we have +Bharm _ 3.7
discussed, anti—de Sitter space is stable even in the presence Pr--Boknraka-1

of tachyonic spalar fields, as long as their masses do NQjnen the compact space is afl ®ere are no nontrivial
violate the Breitenlohner-Freedman bound: harmonic forms, but they can appear for otheg.Mn a
(p—1)2 compact notation, we may write Eq8.6) and (3.7) as

2] 2— __
m-L-= 7 (3.2

dg*qa=0—a=*,db+p"am, (3.8

The possibility that some tachyons could be acceptable iwhered, and*, are the exterior derivative and Hodge dual
AdS, was first pointed out by Breitenlohner and Freedmarwith respect to thel; space only.
[6], and extended to AdSoy [19]. See als$20,21] for early With these gauge choices, we may expand the fluctuations
developments of this idea. in spherical harmonics as

We consider the linearized fluctuations

1 Hun (%)= 20 Hiuy (Y (),
5gMV:h,U«V:HMV_EgMth’ (32)
H(xy) =20 H(0Y'(y), (3.9

Bg,u.a:h,ua! 5gaﬁ:haﬁr " |
SA,_1=a4_1, OF,;=f,=da, 4, 3.3
q—1 aq 1 q q aq 1 ( ) h(a/g)(X,Y):Z ¢I(X)Y|(a,8)(y)’

where we have defined a standard linearized Weyl shift on
h,, in Eq. (3.2, andF =dA,_;. It will be useful to decom-

poseH ,, andh, into trace and traceless parts: hg(x,y)=§|: 7 (X)Y(y), (3.10
1 ) 1 y
Hur=Hun® 50wty Nas=Nan+ g8ashs. ha(y) = BLOOYL(Y), (3.10
(3.4 !
whereg#*H ,,,,=9*?h(,z=0. To (mostly) fix the internal ag, g, 122 bl(x)faﬁl...ﬁq 1Vay'(y), (3.12
T _

diffeomorphisms and gauge freedom, we impose the de
Donder-type gauge conditions

_ [ ap I
Veh(up=Vh,,=0, @9 Bt o™ 2 U0 g YY)
as well as the Lorentz-type conditions h ap h
+ }h) Bux¥)ePs, g Yiap. (313
Vaaa,BZ .. .Bq_lzvaaaﬁz .. -Bq_zl‘«: e :Vaaa/.tz N
=0. (3.6
— |
A generic gauge potential, . o .., .., ,» Viewed as an T Z by, .. _,qul(X)Y'(Y), (3.19

n-form on M, with additional Ad$ indices, can be expanded

as the sum of an exact, a co-exact and a harmonic form owhere | in each case is a generic label running over the

M, by the Hodge decomposition theorem. The Lorentz conpossible spherical harmonics of the appropriate tensor type,

ditions (3.6), which state that the form is co-exact, requireandh=1 ...b"(Mg) runs over the harmonie-forms on M,

the exact form in the decomposition to vanish, and hence thtor the gauge field withif—1) AdS, indices. We have not

potentials can be expanded as co-exact formsls) and  included a term3(x) in Eq. (3.12) since compact Riemann-

harmonic forms: ian Einstein spaces with positive curvature cannot possess
harmonic one-forms; this is proved in the Appendix. We will
also find it convenient to define

2In addition to unfixedp-dimensional diffeomorphisms and gauge

transformations, extra conformal diffeomorphisms remain 8n S 1y \)=> pl(x)Y! b (xv=> b (x)Y
These are related to the elimination oka 1 mode in the coupled (xy) E| (YY) Bualxy) E| w0V olY)

scalar sector, as in Sec. IV, for a discussion, [S&5. (3.15
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B. Einstein equations and coupled form equations

We now consider the Einstein equations to linear order in

PHYSICAL REVIEW [B5 064033

1
- E[(DX+ OyHu+ V. V,H =V, VPH =V, VPH |

fluctuations, as well as the form equations that mix with the

graviton; the uncoupled form equations will be treated in

Sec. VII. We use the following notatior],=g*"V,V,,
0,=9**V,V;, and maB,=0,B,~V"'V,B, is the Max-
well operator acting on vectors on AgSAdditionally, A,

=—(didq+dyd}) is the Laplaciah acting on differential

q
forms on My; for vectors, the explicit form isA,Y,

=0,Y,—R,Y4. Furtherf-e=f, .. g€ gL,

— 2R, H?—R,PH,,—R,"H,,, ]

g (OO hr— @D°
2(p—2) o YT gy Rz ey

mpov

(a-1)° q-1
(p-DR2w T D29

+ 0,cb=0. (3.19

For convenience, we present the linearized Ricci tensor ifror linearizedR,,,, we find

our conventions:

1

L0+ 0y)hyn+ Vi Whi = Yy Ve

~ WV ey —2Ryponh” 0= Ry Phyp—Ryhie].
(3.19

1
R

We employ Einstein’s equations in their Ricci forRy,y
:TMN W|th TMNETMN—'_gMNTE/(Z_D)' FOf R/-“’ we f|nd

R (1)=—E[(D +D)(H —ig h’)
wv 2 X y 224 p_2 MYy

2

+VMVV( HZ— p—2h$>
p 1 Y
_VMV Hpv_ﬁgpvhy
p ! Y
-V,V Hpﬂ_ﬁgpﬂhﬂ/
po 1 pPoRHY
~2Ryp00| H _p__zg hy

1
B RMP< Hp— ﬁgpvhz)

1
_RVP Hpﬂ_ﬁgpﬂhz) s (317)
which must be equal to
—y_ ca-1) _q(q—l)czg (o)
my 2(b-2) #* 2(D-2)q! 7#*"
cy, €(@—1)

Xéah...yq€B72 Ya— D-2) 9u(f-e),

(3.18

resulting in the equation

3The negative sign is standard in the Kaluza-Klein literature.

RO=— 2(Oh,.— V.V~ R, "ot 0,0~ Rh
- 2[ xMua " va w va y'ua a ''Bu

na
(3.20
~V,Vh,,+ VMVC,( M= 55 h;) ~V, V8],
(3.21
which is sourced by
c c’(q—1)
=) _ BoBq_
Tia=2(q=1)1 #82 Aea 2(D—2) e
(3.22
c c c(g—1)
i hd _RPp Y
5 VN 5 (0,0, RPb,p) — 55—
(3.23

For R,; we have
1
1)_ 5
RGA= = 5| (Bx+ Oyhiep = 2Ra56h "I =R, hi

» 1 y 2 2
_Rﬁ h(ya)"r aga'B(DX+ Dy)hy— a-i- —p_2

XV, Vh!+V,VeHE—V,V#h, 5~ VeV Eh,,,

(3.29
while on the right-hand side, we find

c

?(altgzz(q—l)! (Fary g€ "l g™ )
N %(_ hya)eay%_ "HqE,B(‘;‘HS. -6,
- %( Niap) agaﬁhz) - %gaﬁ(f €
= g;_]z-gaBDbe+ q;zlh(aﬁ)_ (qq_Rjz-)ZQ‘”th’

(3.29
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and f

g

where we have
:(f'E)Eal--~aq:Ea1

used f(e)=0yb
a yb.
q

q

We see that the modes of the graviton mix with the form
. To solve the coupled systems, we must
From the

modesb and b,
consider certain form equations as well.

V'\"FMB2 B equatiort we find the expression
M _ (1) _ s 6(1)
\Y% fMBz"',Bq Cg'U“VFZV E'}’ﬁz ﬁq ng F'yrs EH,Bz"'Bq
1
—c(q=1)9"T 5 espp,. 5, =0, (326

where we use the linearized Christoffel symbol,

1
TR =35 (Vuhi+ Wahi = V). (3.27)

Contracting with the epsilon tensor ongMEQq. (3.26 be-
comes

(q—l)( [(D +0,)b+ H"— (p_l)h;}

-2

+V“[Dybw—R§bM;—chW]> = (3.28
Finally, from theVMF .z, 8, €quation,
am o(1 _
VMfM,uB?,“'ﬁq_ng F72)6“5B3"‘ﬁq_0’ (329

which reduces to

(q-1)

(q—Z)l DX+Dy _2_>V[ab,8]p, \A4Y) V[abﬁ]

—CcViaBgu T 2R V,Ps

_(q_z)!Dﬂsta "quaﬁﬂg'-ﬂq

V'v,B,)=0.

uvBy -

(=21 (0B~ (3.30

PHYSICAL REVIEW D 65 064033

2(D—2)

m#l ) V(QVB)YI = 0, (332

(E3 (H'—

(F) V,|On'+0 b'+EH'—M "y'=0
A C R I
(3.33
H I .
Equations for coupled vectobiﬂ, B,:
I ' L Achb' 2(q—1)2 RV
(E2) MaxB#+AyBM+ be#—mbM Y,=0,
(3.34
(F2) Vi (Maxb),+Abl, —cBl)Y}=0,
(3.35
(F1) (V*b,A,—cV*B})Y,=0,
(3.36
(E3) (V#B,)V(,Yp)=0,
(3.37

where Max is the Maxwell operator. Equations for symmet-
ric tensorsH),,

(E1) (R(l)(H D= =0 H! + (-
2 WMt Rz e
1 (9—1)?
+mgw(ﬂx+ﬂy)ﬂ'—mgwﬂl
((g_z))gwm b')Y' (3.39
-2

(E2) —V”H',,MJrVMH'—%VMw'vLVMCb' v,Y'
=0. (3.39

Note that in Eq/(3.38, R{) is the linearized Ricci tensor for
AdS, only, evaluated on the field . . Finally, there remain
a few decoupled equations:

We now expand these fields in spherical harmonics and col-

lect like terms. Below we present the results, collecting re-

lated equations and indicating the origin of each expression

as follows:(E1), (E2) and (E3) for the AdS, mixed and Ml
Einstein equations, an@F1) and(F2) for the form equations
(3.28 and(3.30, respectively.

Equations for the coupled scala$, b', andH':

_ 2
(E3) (DX+Dy—2(—qR2£w'
2(D-2) 2q(p—1)
+|:|y H'— W I) WDbeI}Y_
(3.32

(E3) [(Oe+0y)8285-2R,"514'Y(,5=0,  (3.40
(F2) (Maxg))Y[,n=0, (3.41)
(F2) (V"D )Vi.VqY'=0. (3.42

Notice that in passing from Eq3.30 to Eg. (3.395, we
commuted thell, through the covariant derivativ¥,,
which not only produced precisely the LaplaciAg acting
on vectors, but also canceled all terms in E30 involv-
ing the Riemann tensor.

It is worth remarking that as a result, the properties gf M
enter into almost all these formulas only through the dimen-
sionq and the radiu®k. Consequently we will be able to treat
these equations in a completely unified way, and prove that
for generic Ad§X M, backgrounds, all the corresponding
modes satisfy the Breitenlohner-Freedman bound and cannot
destabilize the background. The sole exception is the equa-

40One may avoid explicit manipulation of Christoffel symbols by tion (3.40 for the scalars coming from graviton modes on

linearizing the equivalent equatiafy —gF"N2"Na=0,

the compact space, which explicitly involves the Riemann
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tensor on M. There is thus no guarantee that the moges Since the positive branch leads to manifestly positive
will possess the uniform stability properties for different masses, we have proven there can be no unstable modes in
choices of M. Indeed, we will find that for =S" these  this sector, at least for modes associated to generic spherical
modes are harmlessly positive mass forcplivhile for any  harmonics. We shall complete the proof by treating the spe-
product M;=M,XM_, with q<9 they contain an instabil- cial cases momentarily.
ity. Although the spectrum4.3) always saturates the BF
bound as a smooth function af there need not be physical
IV. COUPLED SCALARS states at the minimum, since only discrete values appear
) ) ) for given M, . If M,=S, then the eigenvalues of the spheri-
In this section, we consider the system of modes associg| harmonics ara =k(k+q—1), for integerk=0, and the

ated with the coupled scalars', b', andH', Egs.(3.31),  mass formulas for the two branches take on the form
(3.32, and(3.33.

For certain low-lying scalar spherical harmoni¢s some 2,5 (P~ 1)2
or all of their derivatives appearing in the equations of Sec. m-L =(q_—1)2k(k—q+1),
[Il B may vanish. Let us first treat the generic case where all
derivatives ofY' in Egs.(3.31), (3.32, and(3.33 are non- 5 (p—1)2
zero and hence the coefficients must vanish. Equ&8@39) m’. Lz:(q_ 1)2[k+ 2(g—1)l(k+gq-1). (4.7
then gives us a constraint which may be used to elimikiate
in favor of '. Substituting into Eq(3.33, we find The minimum(4.5) occurs for 8 atk=(q—1)/2 in the mi-
nus branch. We notice that whenegs odd, there will be a
((Dx+ Dy)b' _C(q—l) +1Y'=0, (4.1) mo_de with precise[y the Breitenlohner—Freedman mass,
while for g even the lightest-mass states from this sector will

appear just above the bound. This is consistent with what is
while the second term in parentheses vanishes iNEgJ). already known about Ad S’ and AdS x S [18,15,17.
We obtain from Egs(3.31) and(4.1) the coupled system Let us now examine the special cases. kerl on &,
\! R2 V(QVB)Y'=0 and we cannot use E.32); this only occurs
for maximally symmetric spaces, and hence is not a concern
5 b'/c | (a- 1) a(g—1) for other M,, where nonconstant' can be treated as above.
LD 4 |=(p~ 4g\! A Following [17] we may deal with this in one of two ways:
G-DR? (q—1)2+2 either using a residual gauge invariance to impose the con-
straint anyway, or explicitly evaluating the remaining equa-
b'/c) tions and showing that one linear combination drops out. We

X (4.2 shall do the latter; for a discussion of the former, E&gl.
We now consider Eq(3.33 as a constraint to eliminate
H' in favor of 7' and b'. The remaining equatioxi3.31)

becomes

77_I

whered,Y'= —\'Y!'/R?; that\'=0 is straightforward and
is shown in the Appendix. On diagonalizing this matrix we

obtain the mass spectrum 3q-2 2(q—1)2
1 Ot =g~ By g )77'
mZLZ:(p_ )2[)\+(q—1)(q—lt\/4)\+(q—1)2)]. 5
(q-1) R%*(p—1) 2q(q—1)
43 “rno-2| T TR
We now wish to analyze the spectry3) to check stability. X Oyc b=0. 4.9

Extrema of Eq.(4.3) occur for

B In the case of the spherg], = —q/R? and we find an equa-
1+2(q—1)(@\+(gq—1)%) " "*=0. (44 tion for a single mode, ’

To satisfy Eq.(4.4) we must choose the negative sign, and ( q(gq_l))( | q(p—1) |
= T b
< |

we find a minimum at R mc =0,

4.9

3
— _(—1)2
A 4(q b (4.5 which has the same mass as one would obtain from naively

substitutingk=1 into the positive branch of Ed4.7).
Substituting into Eq(4.3), we find the elegant result that the For constanty' on any M,, all derivatives ofY' vanish
minimum mass of the negative branch exactly saturates thgnd the only nontrivial equation is E¢B.31), which reduces
Breitenlohner-Freedman bound independenp ahdq: to

1 2(q-1)?
m?anzz—Z(p—l)zzmgFLz. (4.6) (DX—T 7'=0, (4.10

064033-6
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where again the mass matches what one obtains by substitut- VI. GRAVITON AND TENSOR FIELDS
ing k=X =0 into the positive branch of Ed4.3. Thus we We now establish the existence of tiedimensional
learn that a proper treatment extends the positive branch of _ . -~

graviton and demonstrate the stability of the tower of mas-

Eq. (4.3 down tok=0, while the negative branch truncates sive symmetric two-index tensors. The graviton comes from
atk=2 for S' andk=1 for other M,. y ' 9

I . .
The only remaining scalar fields associated to modes oﬁ‘he constanty” mode of Eq.(3.3. Using Eq.(4.10, this

the graviton are the', which obey the uncoupled equation feduces to
(3.40. These shall turn out to be the modes that can threaten p—1
stability. We shall return to these in Sec. VIII. RO(H! )+ T_THIMVZO’ (6.2)

14

V. COUPLED VECTORS which is the correct fluctuation equation for a linearized

We now consider the graviphotdd), and the form mode ~graviton in Ad%i o
b, with which it mixes. We expect to find a massless vector For genericY’, the trace and longitudinal parts of Eq.
for each Killing vector on I as well as a tower of massive (3.38 are redundant given Eq¢3.31), (3.32, (3.33, and
fields, and indeed this is what we obtain. An additional(3-39. Which express the trace and divergencetyf, in
bz(Mq) massless vectors arise from the gauge potentiaFermS of7r andb. One can use these equations to reduce Eq.
WherebZ(Mq) is the second Betti number. (3.38 to

The relevant equations are E3.34), (3.35, (3.36, and
(3.37. One readily sees that E(B.36) can be obtained from
the divergence of Eq(3.35. We obtain the following
coupled system from Eq$3.34) and(3.35:

2
| —
Oyt Oyt 2| Hiuy =2V Vneb' | Y'=0. - (6.2

A massive tensor field of mass? is described by a field
K' 2(D—-2) ®(uv) Which satisfies the wave equation and transversality
chb' (q-12 (p—1)(q-1) constraints
L2Max( B,“) =(p-1)? | | ) ,
M K K 4 (Dx_m )(P(,uv)zov (63)
(9-1)* (g-1)° p-1

X (5.7

ch'

y23
BL ) To bring Eq.(6.2) to this form, we follow[17]. Define,,,)
in terms ofH,,) by

whereA,Y!,= — «'Y}/R% The masses that result are

( )2 H(;/,V):¢(MV)+V(;LVV)(Ub+U7T)Y (65)
p—1
mzLZZWWF(D—l) whereu andv are constants which can be determined by the
following procedure, which we outline without full detail.
p—1 The first step is to substitute E@¢6.5 into Eq. (6.2 and
x| 1= 1+2w(D—2)K - (52 require thate,, satisfy Eq.(6.3) with massm{=\'/R?

—2/L2, where—\'/R? is as usual the eigenvalue of, on

On a general Einstein space, we may derive the badnd Y'- The remaining terms are required to cancel which gives
=2(q—1), with equality whenY', is a Killing vector, by ~ ©ne condition to determine andv. The second condition is
consideringquysaﬁsaﬁao with S,z=V,Y;+V,Y, (see obtalned' by applyingv# to Eq. (6.5). The left side is ex-
the Appendiy. For these Killing modes, the masses on thePressed in terms df and using Eqs(3.32) and(3.39, and
negative branch of E5.2) vanish. Hence we do indeed find ON€ imposes Eq(6.4). After commuting covariant deriva-

a massless vector for each isometry of the compact Spaéé/es, one finds two scalar conditions. Both contain the term

M. For Kiling modes(3.37 is trivially satisfied and does Hx(Ub+uv) which may be eliminated between them. The
not constrain the vector fields. constantsu andv may then be obtained by requiring that

The positive branch fox=2(q—1) vields a positive Coefficients of the independent field¢x) and(x) vanish.
mass, and one can show that for both brandBbed mono-  The results are
tonically increases withe for k=2(q—1). Thus all vector

modes are either massless or have positive mass. For the 2¢(D=2)(p—-2)
non-Killing modes (3.36 and (3.37) provide the usual p—2

) o . . 2
divergence-free condition for massive vectors, while for the Q-D e~ 2
massive modes associated to the Killing vect@s86 ac-
complishes this by itself.

When the cohomologyH?(M,) is nontrivial, harmonic __ b-2

2-forms Y|,z give rise tob“(M;) additional massless vec- (p—1) )\__ -
tors ), , as we see from Eq3.41). atp R L?
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Strictly speaking the argument above does not apply to the

k=1 graviton mode on since it uses the constrai(8.32) ASNJ Aq-1/\(Fg)", (7.7

which no longer follows from the Einstein equations. The

simplest way to extend the argument is to use the unfixedvhere the wedge product is understood. Naturally, this is

conformal diffeomorphisms discussed|iti7] to impose the only possible whem is even, and when an integersatisfy-

constraint fork=1. The argument then goes through un-ing ng=p+1 can be found(For p=23,g=4, one may add

changed. a CS term withn=6.) Notice that such a term breaks the
The apparent tensor mam§ is not positive for all geom-  duality symmetry between a theory wikh,, which we have

etries Ad§XM,. However[17] one can examinRE}V) in used, and a dudt; results for the rest of this paper would

Eg. (6.1) to see that the graviton itself has an apparent maske identical had we usell,, but not in this instance. The

—2/L2. When this is subtracted one sees that higher tensonodified action(7.7) leaves Einstein’s equations unchanged,

modes have positive mass$/R?. These modes transform in and modifies the form equation to

unitary representations of the Ag&ometry group, and we

have gtabpi)lity. & Y 9o dxFq=7(Fq)", (7.8

for some constanty. In supersymmetric theories like 11-
VIl. UNCOUPLED FORM FLUCTUATIONS dimensional supergravity, the constantis fixed by super-

As we saw, the gauge potentials with zero and one indiceSYMMetry. Absent supersymmetry or some other guiding

on AdS, mix with the graviton scalars and vectors. The re-Principle, there is no preferred choice ¢f For n=2 our
maining form fields are decoupled. It is easiest to treat thengo!ution(2.4), (2.7) is still valid sinceF/\F 4 vanishes(For
using a differential form notation. Thanks to the gauge con= 1, on the other hand, the Freund-Rubin background is not
dition (3.8), these may be written a solution) Becausé-,/\F, vanishes, Eq(7.8) will begin to

differ from Eq.(2.3) only at then—1 order in perturbations.
| | . N Hence, our linearized analysis will only be affectedhif 2.
a(X,Y):Z b'(x)* qdqY (W*‘; B )Y(y). (7.1 Furthermore, forf,/\F, to be nonzero, the fluctuatiof,
must be polarized entirely along AgSHence, the addition
The linearized equation of motion is simply of the term(7.7) can affect our analysis for only the single
mode(3.14). We find the equation
d~da=0. 7.2
73 (Ay+Ay—2cy*,dy)b'Y'=0. (7.9
Consider first the formY'(y) with n=2 indices on
My; the field b' then hasn indices on Adg. Evaluating
Eq. (7.2 and wusing the identities*(A,(X)B,(y))
=(—1)"P™x (A)*(B,) andd+Y'=0, we arrive at the (oo my) (* g+ Mp)b' Y =0, (7.10
equations

We notice that{pdp)zz A, [for dimensions where Eq7.7)
is possiblé. We can thus factorize E@7.9) into

* [ L (—1\% % p I_ m;+my=—2cy, mm,=—«/R?
(dp* pdpb')dgY'+ (=)™ (* jb)dgA Y'=0, (7.3
with the solution

K K
T4 m=—cy+ Ve tge me=—cy— /e’y 4o

(dp*pb")A,Y'=0.

Equation(7.4) already appeared for the form with 2 indices (7.11)
on AdS, as Eq.(3.42. It follows from Eq. (7.4) that Eq. '
(7.3 reduces to There will be two towers, one annihilated by each of the

| factors in Eq.(7.10. The second-order equations are

Ay~ @)blzo’ (7.9 (A,—md)b'Y'=0, (7.12

whereA, is the Laplacian on AanndAyY'z—Kl\('/R2 is for i=1,2, and we see thami2 are non-tachyonic masses
the eigenvalue of the Laplacian oryMas before. Thus these regardless ofy.

are standard positive-mass modes resulting from the dimen-

sional reduction. VIIl. METRIC PERTURBATIONS ON M AND STABILITY

The harmonic modes are even simpler; we find )
All the modes we have considered thus far have masses

(dp* pﬂh)yh:o_ (7.6)  within the bounds for stability; moreover, we were able to
show this for Ad§XM, where M, is an arbitrary
Thus we have a massless form of appropriate rank for eactrdimensional Einstein manifold. The only fields we have

cohomology class, as expected. not considered as yet come from the traceless modes of the
One potential modification of the actid@.1) is the addi-  graviton on M,, and satisfy Eq(3.40, which we repeat
tion of a Chern-Simon$CS) term here:

064033-8



STABILITY OF AdS, XM, COMPACTIFICATIONS. . .. PHYSICAL REVIEW D 65 064033

[(O,+0,) 5Z5;Z—2RJ"B]¢'Y'( 5=0. 8.2 pends on the internal space only in that it is a product of
7 Einstein spaces that is itself Einstein with total dimengipn
It is possible to rewrite Eq8.1) in terms of the Lichnerow- in particular the relative dimension of the spaces is irrel-

icz operatorA, and the Ricci tensor: evant.
One may wonder about other fluctuations obeying Eg.
2(9—-1) (8.1, and whether they may place even more stringent con-
DAt R2 ¢ Y(aﬁ) 0, (8.2 straints on the requirements for stability. The fiecb) is the

lowest in a tower of modes that are traces on each individual
but sinceA does not obey a universal inequality[@s and  space in the product, but traceless overall. Higher excitations
Ay do, this form is not as useful. The presence of the Riewill have more positive masses from the, term. The re-
mann tensor indicates that E@.1) can have different prop- maining modes are traceless on eachavid M,_,, namely
erties depending on the particular choice of .MNe give  h,y, h¢j), andhy;. Forh,; we find the universal result
two examples, the sphere ™S and a product space M
=M,XM,_,, and show that the former contains only stable (Ox+0y)hg=0, (8.8

modes while the latter possesses an instabilitygfar. . , . .
For My=S, the Riemann tensor has the maximally Sym_whlch is obviously stable, while for either of the other two

metric form R /R2. Equation (8.1 we have effectively a copy of Eq8.1) but involving the
reduces to «y5= (9855~ Guslp) . ® Riemann tensor of just one of the spaces in the product

[(Oy+0,) 8585 — 2R,%%h(cq)=0 (8.9

2
(DX+Dy)—@}¢'Y'(aB)=O. (8.3 o _ _ _
and similar forh;y. This obviously depends on the details
All these modes are manifestly positive-mass. We thus com?® of My, . One observation we can make is that if Mself is a
plete our demonstration of the stability of the AXSS? pr oduct(and so the original compact spacg, i a product
background for alp andq of three or more manifoldsa mode analogous to E¢B.5
In [8] and[9] it was pointed out that AdS<M,xM,_, Wil have a massn2:2(n—1)/R§:2(q—1)/|‘\_’2, where the
and AdS x X S, respectively, were unstable to a pertur- last gquallty comes from_on8.4), and thus will be_unsta_blle
bation in which one compact space becomes uniformly largeP'€CiSely when Eq(8.9) is; and hence no new instability

and the other smaller keeping the total volume fixed. We novutomatically arises for products of three or more spaces
generalize this to an arbitrary product of Einstein space eyond that already generically present for a product of two.

My=MXMy_, with n=2. Leta,b denote indices on i
andi,j denote indices on WL, . If the radii of the spaces are IX. AdS, VACUA OF MASSIVE TYPE IIA
R; and R,, requiring that the total compact space is also

Einstein imposes the relation Massive type IIA supergravity has AdS Mg vacua[13]

which are non-supersymmetric and whose stability, to our
knowledge, has never been investigatétlen the existence

n—-1 _ q—n-1 _ q-1 8.4  of these solutions is non-trivial, since there is a potential

RZ R3 R* term for the dilaton which pushes it toward weak coupling.
What makes AdSX Mg vacua possible is that a uniform RR
Consider now the mode field strengthFF, or F¢ according to taste, pushes the dilaton
toward strong coupling, and there is an extremum of this
h _} B(x), hi= B(X), 8.5) total potential where the dilaton can be constant.
ab= [ Gan®(X), i == 7 Gij ' The extremum is in fact a maximum, but it does not make

sense to ask whether second derivative of the total dilaton
which satisfieshy=0 as well as the gauge conditidB.5  potential alone satisfies the BF bound, because the dilaton
and therefore obeys E(B.1). This perturbation increases the couples non-trivially to the form and to the graviton. This
radius of one of the Einstein spaces and decreases the radimixing means that the coupled scalars sector requires a more

of the other keeping the total volume constéotfirst ordej.  intricate analysis than before. The result will be that the ap-
Evaluating Eq.(8.1), we find parents-wave tachyon coming from a naive analysis of the
dilaton potential is completely erasdéffectively, it is a
{D N 2(q—1)}¢|:0 (8.6  9auge artifaot but for S there is ad-wave and arf-wave
X R? ' ' mode which violates the BF bound, rendering this vacuum

Thus this mode has the mass

2 SThere is also supersymmetriand necessarily stableacuum
m2L2= — 2(p—1) — 8 m2 .| 2 8.7 which is a fibration of Adg over $ with a non-trivial dilaton. It is
(q—1) g—1 °®F ' the near-horizon geometry of the D4-D8 systE8]. It would be
interesting to explore the properties of this background as well as
Consequently the Breitenlohner-Freedman boWBd) is  generalizations of it where*ds replaced by other manifolds, but
violated forq<<9. This result is independent @ and de-  we will not do so here.
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unstable! To our knowledge, this is the first time that a prod- fe=das,
uct of AdS and a round sphere is unstable. We also show that

for Mg=S"XS°"" the BF bound is violated within the The algebraic relatioh’;+h%=3zh¢ follows from the sym-
coupled scalar sector, as well as having the same purelyletric traceless part o#the Einstein equations, as before. It is
gravitational instability found earlier, where one factor Now possible to derive coupled second order equations relat-

he =, where ag==*4db. (9.9

shrinks while the other grows.

ing é¢, b, and 7 from the variations of theR, Einstein

The remaining modes, outside the coupled scalar sectogduation, the scalar equation, and the form equation, using

satisfy the same equations as in the generic Ad®, sys-

the algebraic relation when needed to eliminafein favor

tems we already considered. Thus the traceless graviton & hy. We use a form notation in this section for conve-
Mg joins the coupled scalars as a possible source of instabiRience.

ity. We do not analyze other Einstein manifolds; Mxplic-

itly, but we provide the tools needed for such an analysis. It

is still possible that there exist stable AdSMg vacua.

To make the discussion similar to our previous analysis,

The R}, equation is

R“zigﬂ% gg2F2+ Ea%a ¢ (9.5
“4L? g® 6 27 Them '

let us express the action for massive type IlIA in terms of &gjng Egs.(3.16, (9.3), and(9.4), we find

six-form field strength, which is essentially the Hodge dual

of the usual four-form:

1 1 1
S=5 f leX@[R—zwqb)Z— > &%F3

2

m
—?510} where ¢=e ¢4 (9.1

and we include a 1/6! in the definition &%, as in[24]. We
also include a factor of @/ in the inner product of forms,

wq-Z)q. The equations of motion are

2
m
RMN:a gy

1 £
o ImbIndt 5T

P.1P,P3P,P
XFmp,p,pap,p N 123745

5
_1—6529MNF2,

5 2
O¢p— 1—6m2§’1°+§—F§=0,

7 (9.2

d* £2Fg=0,

and there is an AdSXMg background with¢=0, Fgq
=cvoIM6. We readily derive the relations

, ., 5 , 10 25
c?=Fg=ym*=13= 0o, 9.3
wherel is the radius of curvature of AdSsuch thatR,,,
= —(3/L2)gw, andR is the radius of curvature of Msuch
thatR, 3= (5/R?) Q-

Just as for AdgX

My, we wish to linearize around the
background to obtain the mass spectrum. For the coupled

a 2 a 1 a 1 o a 1 a
6Ra: - Fha—E(DX‘F Dy)ha_EDy(hM+ ha)‘l‘gljyha

5
:_P5¢+ ZCDyb_Pha' (9.6)

where we have used the fact thaf,=*¢d*¢d acting onb.
The algebraic relation allows us to simplify this to

37 15 9
(DX+Dy)7T—— Tﬁd)'ﬁ‘ ECDyb:O' (9.7

202"

For the scalar, the equation of motion is

5 z
D¢—T§_1O+—F6=O.

7 9.9
Linear variation around the background gives
25 1 , 1
(DX+ Dy)5¢— mﬁ(]ﬁ— §5¢F6+ §F6' f6
1 aB Y b 1
_Zh Fan---ysF,B 1 5a=0, (99)

which upon simplification and use &% fg=cl1 b becomes

15 1 5
(Oy+ Dy)5d>— 2—5¢+ ECDyb_ Tﬂzo.

LZ
(9.10
The variation of the form equation is
1
d(5*)F6—d*§5¢F6—l—d*f6=0, (9.1)

where §* indicates the variation in the Hodge dual. After
some algebra this becomes

scalar sector, we wish to focus on perturbations of the formynq 5o, using the algebraic relation, we obtain

gwun—gun+hwy with h,,=%g,,h} and ha,B:%gthz'
Also let ¢ be the perturbation iy and letfg be the per-
turbation inFg, where, as before, we write

c
Ed(hﬁ— hg—d¢)/\vol,+d(Cy+Oy)bAvol,=0,
(9.12
5c c
(DX+Dy)b—€w—§5¢=O. (9.13
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Instabilities can occur in the coupled scalar sector of other
My as well. As an example, considergMS"x 5", For
product spherical harmonics on the two spheres labeled by
(kq,k;), we find several unstable modes in the interval
(9.17: (1,2), (0,2), and (1,2) fon=2, and (1,1), (2,0), and
(0,2) forn=3.

As in Sec. IV, the constraint relatirty, andhg no longer

Gathering everything together, settibg=cL?B for con-
venience, and recalling thaf=10/2, one obtains the fol-
lowing system of equations:

5
(Dx+ Dy)B— 6—L27T—I25¢):O

15 obtains for thek=1 case on § so a more careful analysis
(DXJFDV)W_TW_T&{’JF%DVB:O 914 must be performed. Without imposing the algebraic con-
straint, the dilaton equatiof®.10 is unmodified, while Egs.
5 15 (9.6) and(9.12 become
(DX+Dy)5¢—TW—T5¢+5DyB=O. . s
This results in (DX+Dy)7T+Dy(H+7T)—§Dy7T—Iz’ﬂ— Iz5¢
2 5 1 9
— — — + -cO,b=0, 9.1
5}\ 6 2 7y (9.19
B B
2 15
VO 7 = 18 gy 3 Tl 0,4+ 0)b— =+ SH— < 56=0 9.2
5 2 15
2\ = A+ = 5 . .
2 5 2 For k=1, we havell,=—12/9.° The dilaton equation
(9.19  (9.10 then becomes

where as before-R?0J,Y'=\Y'. We find the mass eigen-

values

2
21225 4
m-L 5)\ 6,

2
and g)\+ 10— 225+ 4\.

2
5

N+10+ 225+ 4N\,

(9.16

The Breitenlohner-Freedman bound fpr=4 is m?L?=

—9/4. We see that the

first two towers in E®.16 are

harmlesq(in fact they are not even tachyohidut the third

tower will violate the BF
the interval

155 5
N unstableE ? -5 Ea

bound if some value af falls in

155 5\/g 11.47,27.2
?-F E ~( . y . 8

(9.17

For &, we have \=k(k+5), for which k=2,3 gives
values in the interva(9.17). Thus for bothd- andf-waves,

the eigen-combinations d8, =, and 6¢ corresponding to
the third eigenvalue in EJ9.16 are unstable modes of the

AdS,x S° solution. They have the common masgL?=

—12/5.

It is interesting that in fact all values @h?L? that occur

for AdS,x S° in the coupled scalar sector are rational: upon

substitutingh =k(k+5) into Eq.(9.16), we obtain

2k?
m2L2:?+2k+6,

However the corresponding dimensions of operators in a hy-

2k +6k+20
5 ’ 5

2 2
and — —2k.

(9.18

pothetical three-dimensional CFT are not rational.

O 99 5 5 6 b
x"1002) 9% 2™ 5 2C

99 5
= DX_F‘LZ 5(1)_?0:0, (92])

which defineso= 7+ 32cb. Next, using Eq(9.20 we can
show that

12 12
DXW+DyH:DXU—¥U—Wﬁ¢, (9.22
which allows us to write Eq(9.19 as
249 99 Sh—0 9.2
T 1027 12270 23

As in the examples without a coupled dilaton, one linear
combination of fields has dropped out of tke1l system.
We can now diagonalize Eq®.21) and(9.23. We discover
the mass eigenvalues

132
21 2_
m<L 5

(9.29

42
21 2_
m-“L 5

which coincide with thek=1 masses in the first two towers
of Eq. (9.18.

The constant! sector is straightforward for all M The
form equation no longer obtains, and themode does not
exist, leaving only the equations

37 15
DX’ITZ Zz’ZT‘F Iz5¢,

(9.2
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as the dimension of the operator, because only then can one

Dx0¢= 51200+ 5=, (9.26  compute correlators by straightforwardly imposing a bound-
ary condition on the larger of the two linearly independent

with corresponding positive-mass eigenvalues solutions of the scalar. IA_ is chosen as the dimension,
then to obtain field theory correlators one must make a Leg-

m’L?=6, m’L?=20. (9.27  endre transform of thé\, results. These points were dis-

. _ cussed i25], where also a particular example was exhibited
These are exactly the masses obtained from the first tWhare theA  dimension was needed. In this example, the
towers in Eq(9.16 with k=A=0. Thus the general “rule of fie|q theory was supersymmetric, and the operator was a chi-
thumb” (valid in all cases we have considered, as well as in5| primary, so its anomalous dimension could be worked out
the familiar supersymmetric exampless that one simply 5 rely on field theory grounds as the sum of the anomalous
drops the most tachyonic mode from the first two partialgimensions of its factors. The computation is rigorous be-

waves in the coupled scalar sector. , cause all the dimensions are dictated byJél)g current
It is not hard to see that the remaining equations of Moy hich is obviously additive.

tion are basically unmodified from the analysis of previous The mass eigenvalues of coupled scalars of general

sections. The dilaton fluctuatioA¢ cannot appear in the AdS,x ' compactifications are given in Eq4.7). Since
other polarizations of the form equation, where the back-, .2

. . m:. >0, the operator duals of positive branch scalars have
ground field strength.vam.shes. Hgnce thse are unchang«agié unique dimension assignments
from before. In the Einstein equations, it is straightforward
that ¢ does not appear in tHe,,, equation or in parts of the p—1
R,z equation other than those treated already by considering A= 2
the trace. Owing to the relation®.3) arising from the re-
quirement that the compact space is Einstein, these equatioFsr the negative branch of the scalar mass spectrum, there
are identical to those we already studied once written imare the two possibilities
terms ofL. The dilaton fluctuation and the other scalars do
appear in theR,,, equation, analogous to the appearance of
m, b, andH in Eq. (3.38, but this leads only to a scalar
expression linearly dependent on the ones we have consid- ) ) o )
ered earlier. In accord with the discussion in the previous paragraph the

Consequently, we can employ the work we have already?€gative root is a possible choice in the range

done wholesale. In particular, we again have the potential
source of instability from the set of scalag8, obeying Eq.
(8.1). Hence we learn that general product spaces are again

unstable against having one factor shrink while the othekocql thatk indicates theSO(q+1) representation formed
grows. from k factors of the vector, then symmetrized with the trace
removed.
X. POSSIBLE CFT DUALS For the purposes of orientation, let us recall a familiar

As discussed in the Introduction, this investigation Wasres(ﬁ“t for (A‘)d%xss' Here the chiral primary operators are
motivated by the proposdlll] that the cas®=p+q=27 UX'*--X¥ in N=4 super-Yang-Mills theory, where
with a 4-form field is the low-energy limit of a “bosonic M (I .1 indicates the symmetric tracel_ess combmanon.
theory,” and that its Ad$x S* compactification has a CRT Their Ad$ duals are the couplgd fluctuations of the metric
dual in the framework of the AdS/CFT correspondence@nd the five-form on the negative branch that leads to Eq.
Since an Ad$x S compactification has been shown to be (10-3. The dimensions ara(k)=k=2.345..., and one
stable, it is interesting to speculate in general about possib@Ways chooses\ . The anomalous dimensions vanish:
CFT, duals(with d=p—1). We give a very heuristic discus- A(K)=k is t.he free-field result. A similar story holds for
sion which emphasizes the pattern of operator dimensions.AdSsX S', with A(k) =k/2, except that one must choose

For scalar operators the basic AdS/CFT relatibgA for k=2. Some of these operators are thought of as coming
—d)=m2L2 admits the two roots from trX('1. . . X'¥ on coincident D2-branes, and for the oth-

ers one must dualize the vector boson into an eighth scalar.
d 1 Free field counting still applies, and it can be backed up by a
Ar=3 ti\/d2+4m2L2. (10.D  supersymmetry argument as for the AdSS® case. Lastly,
for AdS,x S*, the dimensions ar& (k) =2k, and one always
If the mass satisfies the inequalitg’L?=—d?/4+1, then choosesA . . A free field understanding is lacking in this
only the assignmenA . obeys the unitarity bound=d/2  mysterious (2,0) theory, but as before a link can be estab-
— 1. (This bound is saturated for a free massless scalar fieltished between thd&R symmetry and the dimension which
in d dimensions. But for —d%4<m?L2<—d?/4+1, both  guarantees thak(k) is linear ink.
A, and A_ are,a priori, consistent choices for the scale Let us begin the discussion of the spectra for genpral
dimension of the dual operator. On general grounds it seemsndq by observing that it is doubly remarkable that both the
most natural to choose the larger of the two dimensidns, quadratic equation for scalar masses and the equat{dn

a-1
2

2 ( 3(
1+ k+
q—1

(10.2

1+ 2 k

_p-1

q—1|
Ae=—

2 |

(10.3

k— ——|<——. (10.9
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—d)=m2L2 have rational roots in the general case. This islf this inequality fails, as in the case Ag8S*® then some
an aesthetically pleasing point for a putative CFT dual, bupperators of lon5O(q+ 1) charge will have a larger dimen-
unfortunately it is the end of the good news. sion than operators of high&0O(q+ 1) charge, which we
Focusing on the negative branch0.3 makes sense, may view as a failure of the free-field intuition that singlet
since these were the simplest operators in cases which wsperators are built from fundamental fields whose dimen-
understand. Starting with our free field prejudices, we mighkions add. It does not mean, however, that there cannot be a
suspect that thek'th operator would be expressible as CFT dual: for instance, it is consistent with the unitarity
trX('1...X"W, and that its dimensiom\(k) is linear ink.  pound to choosd . uniformly, which produces a spectrum
Then we arrive at\(k)=[(p—1)/(q—1)]k. For example, A (k) with a kink aboutk=(q—1)/2. More arcane choices
A(k)=5;k for AdS,XS*. This does not make sense be- may also be imagined. In the absence of supersymmetry or

_ . _ 3 l . .
causek=2 givesA =13 <3, the free scalar dimension. That some input from field theory, we have no way of deciding
is, we tried to choosé _ in a range where onlA, was  panween the alternatives.

possible. The general result is that a linear spectrum of di- | ot s now discuss the spectra of coupled vectors for

mensionsA (k) is permitted provided general AdgxS' compactifications. Inserting the eigen-
4(p—1) value formulax= (k+ 1) (k+q—2) for vector spherical har-
< (10.5 monics in Eq.(5.2), we find the masses

=

p—3
|
—1)2 -1
2L2=Ez_1;z(k+1)(k+q—2)+(p—1)(1i\/1+2(qp_—1)3(p+q—2)(k+1)(k+q—2)- (10.6

These mass eigenvalues are generically irratidalhough  the brane instability reduces to the violations of the BF
they are rational for the supersymmetric compactificationsdhound that we have observéd.

AdS,x S', AdS;xS*, and Ad$x S°). Irrationality persists Finally, let us extend some remarks on thermodynamics
for vector scale dimensiongexcept for Killing vectors, made in[11] for the AdS,x S?® and AdS;XS* cases. An
wherem?=0): obvious measure of the number of degrees of freedom in a

CFT in p—1 dimensions is the ratiogerme= S/ (VTP 1). In
the (p+q)-dimensional theory, there are solutions with both
A= l[d+ J(d=2)2+4m2]. (10.7  magnetic and electric charge under the field strefigihso
2 there is flux quantization, and we can ask howm, scales
with N, the number of flux quanta through the compact
) 03 o ) space. For Adg< %, we can reason out this scaling by re-
In particular, AdgX S™ has irrational masses and dimen- c4jling that in an asymptotically flat solution, the number of

S|0|n§ for mafssllve vectokrsbl hat th | dual hi Ibranes enters the harmonic function in the metridHas1
tis certainly remarkable that the scalars dual to ¢ 'ra+c1N(IP|/r)q*1, wherec; is some dimensionless constant.

. . 5

A= I . tion, the Bekenstein-Hawking entropy scales as
sions for genergb andgq. If Eq. (10.5 is violated and a linear L/1o)P+a-2 wh the Hawking t ¢ d i
spectrum of dimensions is impossible for scalars, then i{ ) o whereas the Hawking temperature does no
seems difficult to imagine a concise understanding based orra€ Withlp at all. Putting everything together, one finds
a Lagrangian. The fact that massive vector modes generically
have irrational dimensions also makes it seem less likely that Fq-2)(g-1)
a purely field theoretic formulation of the putative dual CFT Cinermg~ NP* . (10.8
will be accessible in the near future.

The AdS,x S° compactification presents an even less rosy

picture, in that the BF bound is violated. Obvious candidatedhis specializes to the odd resultsyems~N**%* for
for a brane realization of this vacu@volving D2-branes  AdS;X S and Cermg~ N2 for AdS,3x S*. These peculiar
and D8-branesseem also to be unstable, only the instability fractions do not bring any known CFT’s to mind, but at least
is usually in the form of a tadpole instead of a tachyon. Itthey represent something to shoot for in constructing puta-
would be very interesting if a stable Ag&Mg vacuum tive duals of Ad§X M.
could be found for appropriate ¢ corresponding to some
analyzable type'lbrane configuration. It would also be sat-
isfying if one could start with some unstable D2-D8 con- ®we thank O. Bergman and A. Brandhuber for discussions on
struction and show that in an appropriate near-horizon limithese and related points.
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XI. IMPLICATIONS FOR EXTREMAL BLACK BRANES given any spacelike curve on the event horizon, if one

AND NEGATIVE ENERGY evolves the curve along the null geodesic generators, its

As mentioned above, th@ondilatonig theories of grav- !gngth cannot gr? t(f) zerc; n f;}nltg.aﬁlne par:t mheter.”The basic
ity (2.1) all contain charged black brane solutions, where thdd€@ IS to use the fact that the divergerief the null geo-

charge is obtained by integrating Bver an $9 surrounding desic generatorsof the event horizon cannot become nega-

the brane(For the general solution, s¢&2].) In particular, tive. This means that if part of the horizon is contracting, the
there are extremal black branes, with metric orthogonal directions must be expanding. But this introduces

a lot of sheawr), in the null geodesic congruence. One now
ds?=H"2P*(—dt?+dy- dy) +H?O D(dr?+r2dQ,) uses the Raychaudhuri equation

(11.1
whereH is the harmonic functiod (r)=1+c,;N(Ip/r)9 1. de 62
The near horizon limit is just AdsS< . So the stability we - "D=3" ouneN =Ry IMIN (11.3

have found for Adgx S* for all p andq is consistent with
the expected stability of extremal solutions. However, we

have also seen that AgS My XM, is unstable, wher where\ is an affine parameter along the null geodesics and
<9 and M,, M,_, are Einstein spaces. These can also P g 9

arise as the near horizon limit of a type of extremal bIackg_ IS th_e totglfgpdacitlme r(illmhenzlond If_the Wea_\k egefr_gy con-
brane as follows. Consider the cone ovephMg_, ition is satisfied, the right hand side is negative definite, so

when the shear becomes largedecreases rapidly. One can

d?=dr?+r?(dod;, +dogy ). (11.2  show that if part of the horizon shrinks to zero size in finite

" an affine parametery must become negative which is a contra-
This space is Ricci flat, and has a curvature singularity at théiction. So the solution must settle down to a new static
apexr =0. (Even though the curvature goes to zero for largeconfiguration. I 22], this result was discussed in the context
r, this space is not asymptotically flat in the usual sense sincef the Gregory-Laflamme instability afonextremalblack
the curvature only falls off like ~2.) Suppose one places a branes. In that case, the horizon starts to shrink in some
stack of branes at the apex of the cone, extended in thglaces and expand in others, and it was widely believed that
orthogonal directions. The resulting exact solution is ob-the horizon would eventually pinch off and form separate
tained by simply replacing the flat transverse metric in Eqplack holes. However this cannot happen. Instead, the solu-
(11.1) with the cone metri¢11.2. tion must settle down to a new static black brane solution
One might have expected this new solution to be stableyithout translational symmetry along the brane.

sinpe it is the extremal limit of a family_of black brane so-  Tpe instability we are discussing can be viewed as an
lutions. However it is easy to see that it is rat least for o, remal analog of the Gregory-Laflamme instability. Since
q<9). The near horizon limit is now AGXMyXMq_n 4y theory satisfies the weak energy condition, and the result
which is unstable to a perturbatigizq. (8.5] that goes to in [22] does not require that the horizon is nonextremal, it

zero asymptotically in Ads. So a similar perturbation with can also be applied to our case. Thus, 84nnot shrink to
support very close to the horizon of the extremal black brane

: . S zero size, and there must be another static solution whose
will also grow exponentially. This is independent of the . . 8
change in boundary conditions at infinity since, in the Poin-"€ r_]onzon gepmetry IS not Ag.g M".X Mq‘“'
carecoordinates appropriate to the near horizon geometry of St_”CtIY speaking, the near horizon limit qf the black brane
AdS,, a scalar field near the horizon has a unique evolutiorpo!ution includes only part of AdS(the region covered by
inside a spacetime region that includes infinite Poingane.  the Poincareoordinates Suppose we now consider the glo-
One might object that extremal black branes are always urf@l solution AdgxXM,xM,_, and ask what happens if we
stable in the sense that add|ng a small amount of energperturb it in the unstable direction. As a first Step toward
causes them to become nonextrefmand the horizon moves answering this question, we show that there are solutions in
from an infinite distance to a finite distan¢m spacelike the full nonlinear theory which are asymptotically
directions. However, as we will see, our perturbation is very AdS,XM,XM,_,, and have arbitrarily negative energy
different in that it can actually decrease the mass. (where, as usual, we measure energy relative to AdSince
A natural question to ask is what does this instability leadthe perturbation violates the BF bound, it is clear we can
to? As we have seen, the unstable mode causes one factfgwer the energy slightly by turning on this mode. To show
say M,, to shrink in size and the other to grow. So one mightthe energy can be arbitrarily negative, it suffices to construct
expect that in the full nonlinear evolution, Mimply shrinks  suitable initial data. Consider the spatial metric
to zero size. However this cannot happen. It has recently
been showrj22] that if the weak energy condition is satis-
fied, event horizons cannot have collapsing cycles. In fact, 8one might worry that there will be a problem applying the result
in [22] since the unstable extremal black brane is not asymptotically
flat in the usual sense. However, even though null infinity is not
"This is true for branes of finite extent. For infinite branes, onewell defined, one can still define the event horizon as the boundary
needs nonzero energy density to become nonextremal. of the past of a surface at largeand the result will still apply.
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mass is proportional tm(«). Notice that the volume of the

g-dimensional internal space is independenigofThis is a
nonlinear generalization of the perturbation we considered in APPENDIX
Sec. VIIl. We again set (F=cvol,v,q. If we set all time de-

rivatives to zero, the only constraint on this initial data is thedi
Hamiltonian constraint of general relativity which implies
that the scalar curvature of E(L1.4 must bec?/2 wherec?

is given by EQq.(2.8). This yields a first order differential
equation which can be used to solve fo(r) in terms of
¢(r). If we assumeg is everywhere small, this equation

Here we collect conventions and a few properties of the
fferential operators we employ. We work in a metric of
signature ¢+ + - - - +) and define the Ricci tensor in terms
of the Riemann tensor bRyn=RE ey

The Hodge—de Rham Laplaciah, = —(d'd+dd") is
negative-definite, but in the case of a compact Riemannian
Einstein space of positive curvature a more stringent bound

becomes can be derived for the case of one-forms. We use
—R2A,Y'=k'Y', and for the ordinary Laplaciar
’ 2 _1)\2 y ! y
L _m)| e 2P D =g*PV, V,, —R?0,Y'=\'Y'. For scalar spherical harmon-
=% 2t —=|(¢") z¢°. (115 —9  VYalp y oS .
rP2 | L rp-3 (q-1)L ics Y', O,=A,, and a vanishing eigenvalue always exists

corresponding tor'= const® For one-forms, we may con-
The right-hand side resembles the energy density of the linsider
earized unstable mod8.5) except that thep’ term involves
the corrected spatial metric. Since the term involvinfr)
on the right hand side only decreases the energy density we ng (VeY'A4 Vﬁyla)(valeJr VBYL)
can get an upper limit on the mass by dropping it. One can
now explicitly find ¢(r) so thatm(e) is arbitrarily negative.
For example, iig<9—(8/p), one can takep= ¢pe” "'2. The =2f VYV, Y+ V,Y,)
total mass is negative for large and goes to minus infinity

asa—, B 8 q-1| ,
If we start with AdS XM, XM _, and perturb it slightly, - —Zf YP Dy RZ Y
the energy will be only slightly negative. As we have just
seen, this is very far from the minimum energy solution. A _ 8 2(q—1)\
priori, one might expect Mto collapse down to zero size in - zf Y Ayt R2 Yg (A1)

finite time. This will produce a curvature singularity. It is
unlikely that this singularity is naked, since we don'’t expect
cosmic censorship to be violated so easily in the higher di | | e - |
mensional theory of gravity we are considering. It may form(VaY s+ VsY,)=0, which is the condition forY}; to be a
a black hole, or in light of the horizon results,,Nhay not Killing \{1ector. Addmonall)_/, the_ absence of hgrmonlc one-
collapse down at all. In the latter case, since we are usinfP'ms Y, on a compact Einstein space of positive curvature
reflecting boundary conditions at infinitappropriate for the May be proved as follows. Any harmonic one-form must
AdS-CFT correspondengehe solution may not settle down satisfy V*Yh=0=V,Y}—-V,Y", so
to any static configuration. It would be interesting to inves-
tigate this further.

We have not considered the massive type IIA theory in 0=J VYAV, YR V,Yh)
this section. It would also be interest;gg to investigate the
implications of the instability of AdSx S° for negative en- -1
ergies and extremal black branes in this theory. :f (VaYhBVaY?;+ qu Yh'BYZ , (A2)

proving «'=2(q—1); furthermore, equality occurs for
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Tensor harmonic A Range ofk
\4 k(k+q—1) k=0
' k(k+q—1)—1 k=1
Yial o] k(k+q—1)—n k=1
Y(ap) k(k+g—1)—2 k=2
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while for the Hodge—de Rham Laplacian acting on vectors,
we obtain

=

=

k'=(k+1)(k+q—2), k=1. (A3)
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