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Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields
of arbitrary-moving and spinning bodies

Sergei Kopeikin and Bahram Mashhoon
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The propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary
velocities is discussed. The gravitational field is assumed to be ‘‘weak’’ everywhere. The equations of motion
of a light ray are solved in the first post-Minkowskian approximation which is linear with respect to the
universal gravitational constantG. We do not restrict ourselves to the approximation of a gravitational lens so
that the solution of light geodesics is applicable for arbitrary locations of the source of light and the observer.
This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the
rotation of the pulsar and its companion. We also derive the correction to the light deflection angle caused by
the rotation of gravitating bodies in the solar system~Sun, planets! or a gravitational lens. The gravitational
shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is
analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of
polarization of electromagnetic waves~Skrotskii effect!. This formula is valid for arbitrary translational and
rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we
discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The
theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space
astrometry and developing corresponding algorithms for data processing in space astrometric missions such as
FAME, SIM, and GAIA.
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I. INTRODUCTION

The influence of gravitation on the propagation of elect
magnetic rays has been treated by many authors since
stein first calculated the relativistic deflection of light by
spherically symmetric mass@1#. Currently there is much in-
terest in several space missions dedicated to measurin
trometric positions, parallaxes, and proper motions of s
and quasars with an accuracy approaching 1m ~arc sec! @2#.
Thus progress in observational techniques has made it
essary to take into account the fact that electromagnetic
are deflected not only by the monopole gravitoelectric fi
of light-deflecting bodies but also by their spin
gravitomagnetic and quadrupolar gravitoelectric fiel
Propagation of light in the stationary gravitational fields
rotating oblate bodies with their centers of mass at res
well known ~see, e.g.,@3–6#, and references therein!. Quite
recently significant progress has been achieved in solving
problem of propagation of light rays in the field of an is
lated source~such as a binary star! that has a time-dependen
quadrupole moment and emits quadrupolar gravitatio
waves@7#. However, the translational motion of the source
gravitational waves was not taken into account in@7#; in
effect, the source was assumed to be at rest.

We would like to emphasize the point that most gravi
tional sources are not in general static and move with res
to the observer in a variety of ways. As revealed by appro
mate estimates@8#, the precision of planned astrometr
space missions@2#, binary pulsar timing tests of general rel
tivity @9#, very long baseline interferometry@10,11#, etc., ne-
cessitate the development of more general methods of
gration of the equations of light propagation that cou
0556-2821/2002/65~6!/064025~20!/$20.00 65 0640
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account for such translational motions. Indeed, nonstation
sources emit gravitational waves that weakly perturb
propagation of electromagnetic signals. The cumulative
fect of such gravitational waves may be quite large and
principle, could be detectable@12#. It is necessary to know
how large this influence is and whether one can neglect i
not in current and/or planned astrometric observations
experimental tests of general relativity. When considering
propagation of light in the field of moving bodies it is als
worth keeping in mind that gravitational interaction prop
gates with the speed of light in linearized general relativ
@13,14#. This retarded interaction has important cons
quences and can play a crucial role in the theoretical pre
tion of secondary relativistic effects in time delay, light d
flection, polarization of light, etc.

The first crucial step in solving the problem of propag
tion of electromagnetic rays in the retarded gravitational fi
of arbitrary-moving bodies has been taken recently in@15#.
The new formalism allows one to obtain a detailed desc
tion of the light-ray trajectory for unrestricted locations
the source of light and observer and to make unambigu
predictions for possible relativistic effects. An important fe
ture of the formalism is that it is based on the po
Minkowskian solution@16–19# of the linearized Einstein
field equations. Thus the amplitude of the gravitational p
tentials is assumed to be small compared to unity, but th
are noa priori restrictions on the velocities, acceleration
etc., of the light-deflecting bodies. In this way the retard
character of the gravitational field is taken into account in
linear approximation. This is in contrast with the pos
Newtonian approximation scheme@20–23#, which assumes
that the velocities of light-deflecting bodies must be sm
with respect to the speed of light. Such a treatment destr
©2002 The American Physical Society25-1
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the causal character of a gravitational null cone and ma
the gravitational interaction appear to propagate insta
neously at each step of the iteration procedure. As prove
@15#, this is the reason why the post-Newtonian metric giv
correct answers for the time delay and light deflection an
only for a very restricted number of physical situations. A
rule, more subtle~secondary! effects in the propagation o
light rays in time-dependent gravitational fields are not ge
inely covered in the post-Newtonian approach, whereas
post-Minkowskian light-propagation formalism gives uniq
and unambiguous answers.

In the present paper, we extend the light-propagation
malism developed in@15# in order to be able to include th
relativistic effects related to the gravitomagnetic field p
duced by the translational velocity-dependent terms in
metric tensor as well as the spin-dependent terms du
light-deflecting bodies. We shall start from the considerat
of the energy-momentum tensor of moving and spinn
bodies~Sec. II!. Then we solve the Einstein field equations
terms of the retardedLiénard-Wiechertpotentials~Sec. III!,
describe the light-ray trajectory in the field of these pote
tials ~Sec. IV!, and then calculate the deflection angle a
time delay in the propagation of electromagnetic ra
through the system of arbitrary-moving and spinning p
ticles ~Sec. V!. We pay particular attention to the calculatio
of gravitomagnetic effects in ray propagation in pulsar ti
ing and astrometry~Sec. VI!. Moreover, we discuss the rela
tivistic effect of the rotation of the plane of polarization
electromagnetic rays~Skrotskii effect@24–26#! in the gravi-
tomagnetic field of the above-mentioned system of mas
bodies~Sec. VII!. This effect may be important for a prope
interpretation of the number of astrophysical phenomena
take place in the accretion process of x-ray binaries@27–29#
and/or supermassive black holes that may exist in active
lactic nuclei. Finally, we derive an exact expression for
rotation of the plane of polarization of light caused by t
quadrupolar gravitational waves emitted by localized sour
~Sec. VIII!. The treatment of the Skrotskii effect given in th
final section may be important for understanding the effe
of cosmological gravitational waves on the anisotropy
cosmic microwave background~CMB! radiation at different
scales@30–32#. Details related to the calculation of integra
along the light-ray trajectory are relegated to the Appendic

II. ENERGY-MOMENTUM TENSOR OF SPINNING BODY

We consider an ensemble ofN self-gravitating bodies pos
sessing mass and spin; higher-order multipole moments
neglected for the sake of simplicity; for their influence
light propagation via the mathematical techniques of
present paper see@33#. Propagation of light in the gravita
tional field of arbitrary-moving pointlike masses has be
studied in@15#. The energy-momentum tensorTab of a spin-
ning body is given by

Tab~ t,x!5TM
ab~ t,x!1TS

ab~ t,x!, ~1!

where TM
ab and TS

ab are pieces of the tensor generated
respectively, the mass and spin of the body, andt andx are
06402
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the coordinate time and spatial coordinates of the underly
inertial coordinate system. In the case of several spinn
bodies the total tensor of energy-momentum is a linear s
of tensors of the form~1! corresponding to each body. Ther
fore, in the linear approximation under consideration in t
paper, the net gravitational field is simply a linear superp
sition of the fields due to individual bodies.

In Eq. ~1!, TM
ab andTS

ab are defined in terms of the Dira
d function @34–36# as follows@37–39#:

TM
ab~ t,x!5E

2`

1`

p(aub)~2g!21/2d„t2z0~h!…d„x2z~h!…dh,

~2!

TS
ab~ t,x!52¹gE

2`

1`

Sg(aub)~2g!21/2d„t2z0~h!…

3d„x2z~h!…dh, ~3!

whereh is the proper time along the world-line of the body
center of mass,z(h) are spatial coordinates of the body
center of mass at proper timeh, ua(h)5u0(1,v i) is the
four-velocity of the body,u0(h)5(12v2)21/2, (v i)[v(h)
is the three-velocity of the body in space,pa(h) is the
body’s linear momentum@in the approximation neglecting
rotation of bodiespa(h)5mua, where m is the invariant
mass of the body#, Sab(h) is an antisymmetric tensor repre
senting the body’s spin angular momentum attached to
body’s center of mass,¹g denotes covariant differentiatio
with respect to the metric tensorgab , andg5det(gab) is the
determinant of the metric tensor.

The definition ofSab is arbitrary up to the choice of a
spin supplementary condition that is chosen as follows:

Sabub50; ~4!

this constraint is consistent with neglecting the internal str
ture of the bodies involved, so that we deal in effect w
pointlike spinning particles@40,41#. We introduce a spin vec
tor Sa which is related to the spin tensor by

Sab5habgdugSd , ~5!

where habgd is the Levi-Cività tensor related to the com
pletely antisymmetric Minkowskian tensoreabgd @42# as fol-
lows:

habgd52~2g!21/2eabgd , habgd5~2g!1/2eabgd ,
~6!

where e0123511. The spin vector is orthogonal toua by
definition so that the identity

Saua[0 ~7!

is always valid; this fixes the one remaining degree of fr
dom S0. Hence, the four-vectorSa has only three indepen
dent spatial components.

The dynamical law¹bTab50, applied to Eqs.~1!–~3!,
leads to the equations of motion of a spinning particle in
gravitational field. Indeed, using a theorem of Schwartz t
5-2
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a distribution with a simple point as support is a linear co
bination of Dirac’s delta function and a finite number of
derivatives, one can develop the theory of the motion
pointlike test bodies with multipole moments in general re
tivity @43#. In this way, it can be shown in particular that, fo
the ‘‘pole-dipole’’ particle under consideration in this pape
one is led uniquely@43# to the Mathisson-Papapetrou equ
tions with the Pirani supplementary condition~4!.

In what follows, we focus only on effects that are pr
duced by the spin and are linear with respect to the spin
Newton’s gravitational constant~the first post-Minkowskian
approximation! in the underlying asymptotically inertial glo
bal coordinate system. The effects produced by the u
point-particle piece of the energy-momentum tensor have
ready been studied in@15#. Let us in what follows denote the
components of the spin vector in the frame comoving w
the body asJ a5(0,J). In this frame the temporal compo
nent of the spin vector vanishes as a consequence of Eq~7!
and, after making a Lorentz transformation from the com
ing frame to the underlying ‘‘inertial’’ frame, we have in th
post-Minkowskian approximation

S05g~v•J!, Si5J i1
g21

v2
~v•J!v i , ~8!

where g[(12v2)21/2 and v5(v i) is the velocity of the
body with respect to the frame at rest.

III. GRAVITATIONAL FIELD EQUATIONS
AND METRIC TENSOR

The metric tensor in the linear approximation can be w
ten as

gab~ t,x!5hab1hab~ t,x!, ~9!

wherehab5diag(21,11,11,11) is the Minkowski metric
of flat space-time and the metric perturbationhab(t,x) is a
function of time and spatial coordinates@36#. We split the
metric perturbation into two pieceshM

ab and hS
ab that are

linearly independent in the first post-Minkowskian appro
mation; that is,

hab5hM
ab1hS

ab . ~10!

Thus, the solution for each piece can be found from
Einstein field equations with the corresponding ener
momentum tensor.

The point-particle piecehM
ab of the metric tensor has al

ready been discussed in@15# and is given by

hM
ab54mA12v2~s!

ua~s!ub~s!1
1

2
hab

r ~s!2v~s!•r ~s!
, ~11!

wherer (s)5ur (s)u, r (s)5x2z(s), and both the coordinate
z and velocityv of the body are assumed to be time depe
dent and calculated at the retarded moment of times defined
by the light-cone equation
06402
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s1ux2z~s!u5t, ~12!

which has a vertex at the space-time point (t,x) and de-
scribes the propagation of the gravitational field@44# on the
unperturbed Minkowski space-time. The solution of th
equation gives the retarded times as a function of coordinate
time t and spatial coordinatesx, that is,s5s(t,x).

As for hS
ab , it can be found by solving the field equation

which are given in the first post-Minkowskian approximatio
and in the harmonic gauge@45# as follows:

hhS
ab~ t,x!5216pFTS

ab~ t,x!2
1

2
habTSl

l ~ t,x!G . ~13!

Taking into account the orthogonality condition~4!, the field
equations~13! assume the form

hhS
ab~ t,x!516p]gE

2`

1`

dh@Sg(a~h!ub)~h!

3d~ t2z0~h!!d~x2z~h!!#, ~14!

where we have replaced the covariant derivative¹g with a
simple partial derivative]g5]/]xg andua5g(1,v i), where
g5(12v2)21/2 is the Lorentz factor. The solution of thes
equations is given by theLiénard-Wiechertspin-dependent
potentials

hS
ab~ t,x!524]gF Sg(a~s!ub)~s!

r ~s!2v~s!•r ~s!G . ~15!

If we restricted ourselves to the linear approximation
general relativity, the sources under consideration here wo
have to be treated as a collection of free noninteracting s
ning test particles each moving with arbitrary constant sp
with its spin axis pointing in an arbitrary fixed direction. Th
simply follows from the Mathisson-Papapetrou equations
the underlying inertial coordinate system. Thus, in such
case carrying out the differentiation in Eq.~15!, we arrive at

hS
ab~ t,x!54~12v2!

r gSg(aub)

@r ~s!2v•r ~s!#3
, ~16!

wherev and Sab are treated as constants and we definer a

5(r ,r ). However, we may consider Eq.~9! as expressing the
first two terms in a post-Minkowskian perturbation serie
that is, at some ‘‘initial’’ time we turn on the gravitationa
interaction between the particles and keep track of term
powers of the gravitational constant only, without making
Taylor expansion with respect to the ratio of the magnitud
of the characteristic velocities of bodies to the speed of lig
The development of such a perturbative scheme invol
many specific difficulties as discussed in@16–19#. In this
approach one may relax the restrictions on the body’s ve
ity and spin and think ofv andSab in Eq. ~16! as arbitrary
functions of time. In this paper as well as@15#, we limit our
considerations to the first-order equations~10!, ~11!, and
~16!; however, in theapplicationof these results to the prob
lem of ray propagation, we letv andSab in the final results
5-3
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SERGEI KOPEIKIN AND BAHRAM MASHHOON PHYSICAL REVIEW D65 064025
based on Eqs.~11! and~16! be time dependent as required
the specific astrophysical situation under considerat
Therefore, the consistency of the final physical results w
the requirements of our approximation scheme must
checked in every instance.

The metric tensor given by Eqs.~10!, ~11!, and ~16! can
be used to solve the problem of propagation of light rays
the gravitational field of arbitrary-moving and spinning bo
ies.

IV. PROPAGATION LAWS FOR ELECTROMAGNETIC
RADIATION

The general formalism describing the behavior of elect
magnetic radiation in an arbitrary gravitational field is w
known @46#. A high-frequency electromagnetic wave is d
fined as an approximate solution of the Maxwell equations
the form

Fab5Re$Aab exp~ iw!%, ~17!

whereAab is a slowly varying function of position andw is
a rapidly varying phase of the electromagnetic wave. Fr
Eq. ~17! and Maxwell’s equations one derives the followin
results~for more details see@47,48# and Appendix A!. The
electromagnetic wave vectorl a5]w/]xa is real and null,
that is, gabl al b50. The curvesxa5xa(l) that have l a

5dxa/dl as a tangent vector are null geodesics orthogo
to the surfaces of constant electromagnetic phasew. The null
vector l a is parallel transported along itself according to t
null geodesic equation

l b¹bl a50. ~18!

The equation of the parallel transport~18! can be expresse
as

dla

dl
1Gbg

a l bl g50, ~19!

where l is an affine parameter. The electromagnetic fi
tensorFab is a null field satisfyingFabl b50 whose propa-
gation law in an arbitrary empty space-time is

DlFab1uFab50, Dl[
D

Dl
5

dxa

dl
¹a , ~20!

whereu5 1
2 ¹al a is the expansion of the null congruencel a .

Let us now construct a null tetrad (l a,na,ma,m̄a), where
the overbar indicates complex conjugation, andnal a521
andmam̄a511 are the only nonvanishing products amo
the tetrad vectors. Then the electromagnetic tensorFab
5Re(Fab) can be written as~see, e.g.,@49,50#!

Fab5F l [amb]1C l [am̄b] , ~21!

where F and C are complex scalar functions. In the re
frame of an observer with four-velocityua the components
of the electric and magnetic field vectors are defined asEa

5Fabub andHa5(21/2)eabgdFgdub , respectively.
06402
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In what follows it is useful to introduce a local orthono
mal reference frame based on a restricted set of obser
that all see the electromagnetic wave traveling in the1z
direction; i.e., the observers use a tetrad framee(b)

a such that

e(0)
a 5ua, e(3)

a 5~2 l aua!21@ l a1~ l bub!ua#, ~22!

and e(1)
a ,e(2)

a are two unit spacelike vectors orthogonal
each other as well as to bothe(0)

a ande(3)
a @51,52#. The vec-

tors e(1)
a ande(2)

a play a significant role in the discussion o
polarized radiation. In fact, the connection between the n
tetrad and the framee(b)

a is given by l a52( l gug)(e(0)
a

1e(3)
a ), na52 1

2 ( l gug)(e(0)
a 2e(3)

a ), ma5221/2(e(1)
a 1 ie(2)

a ),

and m̄a5221/2(e(1)
a 2 ie(2)

a ). The vectorse(1)
a and e(2)

a are
defined up to an arbitrary rotation in space; their more s
cific definitions will be given in Sec. VII.

Vectors of the null tetrad (l a,na,ma,m̄a) and those ofe(b)
a

are parallel transported along the null geodesics. Thus, f
the definition~21! and Eq.~20! it follows that the amplitude
of the electromagnetic wave propagates according to the

dF

dl
1uF50,

dC

dl
1uC50. ~23!

If A is the area of the cross section of a congruence of li
rays, then

dA
dl

52uA. ~24!

Thus,AuFu2 andAuCu2 remain constant along the congru
ence of light raysl a.

The null tetrad frame (l a,na,ma,m̄a) and the associated
orthonormal tetrad framee(b)

a are not unique. In the JWKB
~or geometric optics! approximation, the null ray follows a
geodesic with tangent vectorl a5dxa/dl, wherel is an af-
fine parameter. This parameter is defined up to a linear tra
formation l85l/A1const, whereA is a nonzero constant
so that l 8a5dxa/dl85Ala. The null tetrad is then
( l 8a,n8a,ma,m̄a) with n8a5A21na; this affine transforma-
tion leaves the associated tetrade(b)

a unchanged. Moreover
we note that at each event the tetrad framee(b)

a is defined up
to a Lorentz transformation. We are interested, however,
subgroup of the Lorentz group that leavesl a invariant, i.e.,
Lb

al b5 l a. This subgroup, which is thelittle group of the null
vector l a, is isomorphic to the Euclidean group in the plan
This consists of translations plus a rotation. The translat
part is a two-dimensional Abelian subgroup given by

n8a5na1Bma1B̄m̄a1uBu2l a, ~25!

m8a5ma1B̄l a. ~26!

Let us note that this transformation leaves the electrom
netic tensorFab given in Eq.~21! invariant; hence, this is the
gauge subgroupof the little group of l a.

The rotation part of the subgroup under discussion is s
ply given by n8a5na and m8a5Cma, where C
5-4
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5exp(2iQ). This corresponds to a simple rotation by a co
stant angleQ in the (e(1)

a ,e(2)
a ) plane, i.e.,

e~1!8a 5cosQe(1)
a 1sinQe(2)

a , ~27!

e~2!8a 52sinQe(1)
a 1cosQe(2)

a . ~28!

Finally, we note that anull rotation is an element of the
four-parameter group of transformations given by

l 8a5Ala, ~29!

n8a5A21na1Bma1B̄m̄a1uBu2Ala, ~30!

m8a5C~ma1B̄Ala!. ~31!

A null rotation is the most general transformation of the lo
null tetrad frame that leaves the spatialdirection of the null
vector l a invariant.

V. EQUATIONS OF LIGHT GEODESICS
AND THEIR SOLUTIONS

We consider the motion of a light particle~‘‘photon’’ ! in
the background gravitational field described by the me
~9!. No back action of the photon on the gravitational field
assumed. Hence, we are allowed to use the equations of
geodesics~19! with l a5dxa/dl directly applying the metric
tensor in question. Let the motion of the photon be defin
by fixing the mixed initial-boundary conditions

x~ t0!5x0 ,
dx

dt
~2`!5k, ~32!

where uku251 and, henceforth, the spatial components
vectors are denoted by bold letters. These conditions de
the coordinatesx0 of the photon at the moment of emissio
of light, t0, and its velocity at the infinite past and infinit
distance from the origin of the spatial coordinates~that is, at
the so-called past null infinity denoted byJ2 @47#!.

In the underlying inertial frame of the background fl
space-time the unperturbed trajectory of the light ray i
straight line

xi~ t !5xN
i ~ t !5x0

i 1ki~ t2t0!,

wheret0 , x0
i , and (ki)5k have been defined in Eq.~32!. It

is convenient to introduce a new independent paramett
along the photon’s trajectory according to the rule@7#

t5k•xN~ t !5t2t01k•x0 . ~33!

The time t0 of the light signal’s emission corresponds tot
5t0, wheret05k•x0, andt50 corresponds to the coord
nate timet5t* , where

t* 5t02k•x0 . ~34!

This is the time of the closest approach of the unpertur
trajectory of the photon to the origin of an asymptotically fl
harmonic coordinate system. We emphasize that the num
06402
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cal value of the momentt* is constant for a chosen trajector
of light ray and depends only on the space-time coordina
of the point of emission of the photon and the point of
observation. Thus, we find the relationship

t[t2t* , ~35!

which reveals that the differential identitydt5dt is valid
and, for this reason, the integration along the light ray’s p
with respect to timet can always be replaced by integratio
with respect tot with a corresponding shift in the limits o
integration.

Making use of the parametert, the equation of the unper
turbed trajectory of the light ray can be represented as

xi~t!5xN
i ~t!5kit1j i . ~36!

The constant vector (j i)5j5k3(x03k) is called the im-
pact parameter of the unperturbed trajectory of the light
with respect to the origin of the coordinates;d5uju is the
length of the impact parameter. We note that the vectorj is
transverse to the vectork and directed from the origin of the
coordinate system toward the point of the closest approac
the unperturbed path of the light ray to the origin as depic
in Fig. 1.

The equations of light geodesics can be expressed in
first post-Minkowskian approximation as follows~for more
details, see@7#!:

ẍi~t!5
1

2
kakb]̂ ih

ab~t,j!2 ]̂ tFkaha i~t,j!1
1

2
kih00~t,j!

2
1

2
kikpkqhpq~t,j!G , ~37!

where an overdot denotes differentiation with respect
time, ]̂ t[]/]t, ]̂ i[Pi j ]/]j j , ka5(1,ki), ka5(21,ki), ki

5ki , Pi j 5d i j 2kikj is the operator of projection onto th
plane orthogonal to the vectork, and hab(t,j) is simply
hab(t,x) with t5t1t* andx5kt1j. For a given null ray,
all quantities on the right side of Eq.~37! depend on the
running parametert and the parameterj which is assumed
to be constant. Hence, Eq.~37! should be considered as a
ordinary second-order differential equation in the variablet.

Perturbations of the trajectory of the photon are found
straightforward integration of the equations of light geod
sics ~37!. Performing the calculations we find

ẋi~t!5ki1J̇ i~t!, ~38!

xi~t!5xN
i ~t!1J i~t!2J i~t0!, ~39!

wheret5t2t* andt05t02t* correspond, respectively, t
the moments of observation and emission of the photon.
functionsJ̇ i(t) andJ i(t) are given as follows:
5-5
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FIG. 1. Astronomical coordi-
nate system used for the calcula
tions. The origin of the coordinate
system is at an arbitrary point in
space. The unperturbed trajecto
of a light ray is defined by the uni
vector k directed from the source
of light towards the observer. The
impact parameter of the light ray
is defined by the vectorj which is
orthogonal tok. Gravitating bod-
ies with spin move along arbitrary
world lines.
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J̇ i~t!5
1

2
kakb]̂ iB

ab~t!2kaha i~t!2
1

2
kih00~t!

1
1

2
kikpkqhpq~t!, ~40!

J i~t!5
1

2
kakb]̂ iD

ab~t!2kaBa i~t!2
1

2
kiB00~t!

1
1

2
kikpkqBpq~t!, ~41!

where it is implicitly assumed thathab(2`)50, and the
integralsBab(t) andDab(t) are given by

Bab~t!5BM
ab~t!1BS

ab~t!, BM
ab~t!5E

2`

t

hM
ab~s,j!ds,

BS
ab~t!5E

2`

t

hS
ab~s,j!ds, ~42!

Dab~t!5DM
ab~t!1DS

ab~t!,

DM
ab~t!5E

2`

t

BM
ab~s,j!ds,

DS
ab~t!5E

2`

t

BS
ab~s,j!ds. ~43!

The integrals~42! and ~43! and their derivatives are calcu
lated in Appendix C by extending a method developed in@7#
and @15#. It is important to emphasize, however, that in t
case where the body moves along a straight line with c
stant velocity and spin one can obtain the same results
direct computation without employing the methods used
Appendix C.

Equation ~39! can be used for the formulation of th
boundary-value problem for the equation of light geodes
06402
-
by
n
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where the initial positionx05x(t0) and final positionx
5x(t) of the photon are prescribed for finding the solution
the light trajectory. This is in contrast to our origina
boundary-value problem, where the initial positionx0 of the
photon and the direction of light propagationk given at the
past null infinity were specified. All that we need for th
solution of the new boundary-value problem is the relatio
ship between the unit vectork and the unit vector

K52
x2x0

ux2x0u
, ~44!

which defines the geometric~coordinate! direction of the
light propagation from the observer to the source of light
if the space-time were flat. The formulas~39! and~41! yield

ki52Ki2b i~t,j!1b i~t0 ,j!, ~45!

where the relativistic corrections to the vectorKi are given
by

b i~t,j!5

1

2
kakb]̂ iD

ab~t!2kaPi j B
a j~t!

ux~t!2x0u
. ~46!

We emphasize that the vectors (b i)[b(t,j) and (b0
i )

[b(t0 ,j) are orthogonal tok and are evaluated at the poin
of observation and emission of the photon, respectively. T
relationships obtained in this section are used for the disc
sion of observable relativistic effects in the following se
tions.

VI. GRAVITOMAGNETIC EFFECTS IN PULSAR TIMING,
ASTROMETRY, AND DOPPLER TRACKING

A. Shapiro time delay in binary pulsars

We shall give in this paragraph the relativistic time del
formula for the case of the propagation of light through t
nonstationarygravitational field of an arbitrary-moving an
5-6
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rotating body. The total time of propagation of an elect
magnetic signal from the pointx0 to the pointx is derived
from Eqs.~39! and~41!. First, we use Eq.~39! to express the
differencex2x0 via the other terms of this equation. The
we find the total coordinate time of propagation of lightt
2t0, from

t2t05ux2x0u1DM~ t,t0!1DS~ t,t0!, ~47!

where ux2x0u is the usual Euclidean distance between
points of emission,x0, and observation,x, of the photon,
DM(t,t0) is the Shapiro time delay produced by the gravi
electric field of a pointlike massive body, andDS(t,t0) is the
Shapiro time delay produced by the gravitomagnetic field
the spinning source. The termDM(t,t0) is discussed in detai
in @53#. The new termDS(t,t0) is given by@cf. Eq. ~C16! of
Appendix C#

DS~ t,t0!5BS~t!2BS~t0!, ~48!

BS~t![
1

2
kakbBS

ab~t!52
12k•v

A12v2

kar bSab

~r 2v•r !~r 2k•r !
,

~49!

BS~t0![
1

2
kakbBS

ab~t0!

52
12k•v0

A12v0
2

kar 0bS0
ab

~r 02v0•r0!~r 02k•r0!
, ~50!

where the timest5t2t* and t05t02t* are related to the
retarded timess and s0 via Eq. ~12!, Sab5Sab(s) , S0

ab

5Sab(s0) , r5x2z, r05x02z0 , r 05ur0u, x5x(t), x0
5x(t0), z5z(s), z05z(s0), v5v(s), and v05v(s0). It is
worthwhile to note that in the approximation where one c
neglect relativistic terms in the relationship~45! between the
vectorsk and2K , the expression forr is given by

r5Dk1x02z~s!, ~51!

whereD5ux2x0u. In the case of a binary pulsar, the distan
D between the pulsar and the solar system is much la
than that between the point of emission of the radio pulse,x0,
and the pulsar or its companion,z(s). Hence,

r2kr 5k3@k3~x02z!#2
@k3~x02z!#2

2D
k, ~52!

where terms of higher order in the ratioux02zu/D are ne-
glected.

The result~48! can be used, for example, to find the sp
dependent relativistic correctionDS to the timing formula of
binary pulsars. The binary pulsar consists of two bodies—
pulsar itself~index ‘‘p’’ ! and its companion~index ‘‘c’’ !; in
what follows we let r p5x2zp(s), r c5x2zc(s), r0p5x0
2zp(s0), and r0c5x02zc(s0), wherezp and zc are coordi-
nates of the pulsar and its companion, respectively. Acco
ing to @15#, the difference between the instants of times and
s0 , s and t0, ands0 and t0 for binary pulsars is of the orde
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of the time required for light to cross the system, that is,
the order of a few seconds. Thus, we can expand all qua
ties depending on time in the neighborhood of the instant0
and make use of the approximationsr p5x2zp(t0)[rp , r c
5x2zc(t0)[rc , r0p5x02zp(t0)[r0p , r0c5x02zc(t0)
[r0c , Jp5J0p , andJc5J0c . The next approximation
used in the calculations is

x05zp~ t0!1kX, ~53!

whereX is the distance from the pulsar’s center of mass
the point of emission of radio pulses@54#. One can also see
that r0c5R1kX, whereR5zp(t0)2zc(t0), i.e., the radius
vector of the pulsar with respect to the companion. Tak
these approximations into account, the following equalit
hold:

rc2krc5k3~R3k!2
~k3R!2

2D
k, ~54!

rp2krp50. ~55!

Moreover, it follows from Eq.~54! with rc'D that

rc2k•rc5
r0c

2 2~k•r0c!
2

2rc
5

R22~k•R!2

2rc
. ~56!

The primary contribution to the functionDS(t,t0) is ob-
tained after expansion of the expressions forB(t) andB(t0)
in powers ofv/c and picking up all velocity-independen
terms. Taking account of Eqs.~54!–~56! and ~D3! this pro-
cedure gives the time delay correctionDS to the standard
timing formula as follows:

DS5
2Jp•~k3r p!

r p~r p2k•r p!
1

2Jc•~k3r c!

r c~r c2k•r c!
2

2J0p•~k3r0p!

r 0p~r 0p2k•r0p!

2
2J0c•~k3r0c!

r 0c~r 0c2k•r0c!
. ~57!

By means of Eqs.~53! and ~55! we find that the first and
third terms in Eq.~57! drop out. Neglecting terms of orde
X/R we can see thatr0c5R, which bringsDS into the form

DS52J0c•~k3R!F 1

rc~rc2k•rc!
2

1

R~R2k•R!G .
~58!

Making use of Eq.~56! transforms expression~58! to the
simpler form

DS5
2J0c•~k3R!

R~R1k•R!
52

2J0c•~K3R!

R~R2K•R!
, ~59!

where the unit vectorK is defined in Eq.~44!.
Formula~59! coincides exactly with that obtained on th

basis of the post-Newtonian expansion of the metric ten
and subsequent integration of the light-ray propagation in
static gravitational field of the pulsar companion@55#. In
principle, the additional time delay caused by the spin of
5-7
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companion might be used for testing whether the compan
is a black hole or not@56#. However, as shown in@55#, the
time delay due to the spin is not separable from the de
caused by the bending of light rays in the gravitational fi
of the companion@57#. For this reason, the delay caused
the spin is not a directly measurable quantity and canno
effectively used for testing the presence of the black h
companion of the pulsar@55#.

B. Deflection of light in gravitational lenses
and by the solar system

Let us assume that the observer is at rest at an event
space-time coordinates (t,x). The observed directions to the
source of light has been derived in@7# and is given by

s5K1a1b2b01g, ~60!

where the unit vectorK is given in Eq.~44!, the relativistic
correctionsb andb0 are defined in Eq.~46!, a describes the
overall effect of deflection of the light-ray trajectory in th
plane of the sky, andg is related to the distortion of the loca
coordinate system of the observer with respect to the un
lying global coordinate system used for the calculation of
propagation of light rays.

More precisely, the quantitya can be expressed as

a i5aM
i 1aS

i , aM
i 52 ]̂ iBM~t!1kaPj

i hM
a j~t!,

aS
i 52 ]̂ iBS~t!1kaPj

i hS
a j~t!, ~61!

the quantitiesb5bM1bS andb05b0M1b0S are defined by
Eq. ~46!, and

g i5gM
i 1gS

i , gM
i 52

1

2
knPj

i hM
n j~t!,

gS
i 52

1

2
knPj

i hS
n j~t!. ~62!

In what follows, we neglect all terms depending on the
celeration of the light-ray-deflecting body and the time d
rivative of its spin. Light-ray deflections represented byaM

i ,
bM

i , andgM
i caused by the mass-monopole part of the stre

energy tensor~1! have been calculated in@15# and will not be
given here, as our primary interest in the present paper is
description of the spin-dependent gravitomagnetic effe
Using equation~49! for the function BS(t) and formula
~D6!, we obtain

]̂ iBS~t!522
12k•v

A12v2 F ~12v2!kar bSabPi j r
j

~r 2v•r !3~r 2k•r !

1
~12k•v!kar bSabPi j r

j

~r 2v•r !2~r 2k•r !2
2

kar bSabPi j v
j

~r 2v•r !2~r 2k•r !

2
Pi j kaSa j

~r 2v•r !~r 2k•r !G . ~63!
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In addition, making use of formula~C11! yields

1

2
kakb]̂ iDS

ab~t!522
12k•v

A12v2

Pi j r
j

r 2v•r

kar bSab

~r 2k•r !2

1
2

A12v2

kaPi j S
a j

r 2k•r
, ~64!

1

2
kakb]̂ iDS

ab~t0!522
12k•v0

A12v0
2

Pi j r 0
j

r 02v0•r0

kar 0bS0
ab

~r 02k•r0!2

1
2

A12v0
2

kaPi j S0
a j

r 02k•r0
. ~65!

The light deflection vector, i.e., the vector connecting t
undeflected image to the deflected image of the source
light, in the plane of the sky is defined in@15# and for the
purely spin-induced part can be calculated from the th
relation in Eq.~61!. In that relation the first term is given in
Eq. ~63! and the second one can be calculated from Eq.~15!,
which results in

Pi j kahS
a j522A12v2F ~12k•v!

Pi j r aSa j

~r 2v•r !3

2Pi j v
j
kar bSab

~r 2v•r !3G . ~66!

The most interesting physical application of the form
ism given in the present section is the gravitomagnetic
flection of light in gravitational lenses and by bodies in t
solar system. In both cases the impact parameterd of the
light ray is considered to be extremely small in comparis
with the distances from the body to the observer and
source of light. The gravitational lens approximation allow
us to use the following relationships~for more details see
Sec. VII B in @15#!:

r2kr 5z2
d2

2r
k, r01kr 05z0 , ~67!

wherez i5Pj
i (xj2zj (s)) andz0

i 5Pj
i (x0

j 2zj (s0)) are the im-
pact parameters of the light ray with respect to the lig
deflecting body evaluated at the moments of observation
emission of light. Assuming thatuzu[d!min@r,r0# and uz0u
[d0!min@r,r0#, wherer 5ux2z(s)u andr 05ux02z(s0)u are
the distances from the body to the observer and to the so
of light, respectively, one can derive the following approx
mations:

r 2k•r5
d2

2r
, r 02k•r052r 0 , ~68!

along with

r 2v•r5r ~12k•v!, r 02v0•r05r 0~11k•v0!. ~69!
5-8
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Hence, the relativistic spin-induced deflection of lightaS
i in

Eq. ~61! can be calculated from

aS
i 5

4

A12v2 F2kar bSabz i

d4
2

kaPi j S
a j

d2 G , ~70!

where we have neglected all residual terms ofO(d/r ). After
substituting the expressions given in Eqs.~D2! and ~D3! in
Eq. ~70!, one obtains the analytic representation of the re
tivistic deflection of light valid for the body having arbitrar
high speedv and spinJ:

aS
i 5

8g2

d4 FJ•~k3z!1J•~z3v!1
12g

gv2 ~v•J!~k3z!•vGz i

2
4g2

d2 FPi j ~v3J! j2~k3J! i2
12g

gv2 ~v•J!~k3v! i G .
~71!

In the case of slow motion, the Taylor expansion of Eq.~71!
with respect to the parameterv/c yields

aS
i 5

8J•~k3z!z i

d4
1

4~k3J! i

d2
, ~72!

which exactly coincides with the previously known formu
for a stationary rotating gravitational lens@see, e.g., the lead
ing terms of Eq.~6.28! in @58## derived using a differen
mathematical technique. One can also recast Eq.~72! in a
simpler gradient form:

aS
i 54

]cS

]z i , cS54~k3J! j] ln d/]z j , ~73!

where cS is a gravitomagnetic component of the gravit
tional lens potential@cf. the second term of Eq.~153! in
@15##.

C. Gravitational shift of frequency and Doppler tracking

The special relativistic treatment of the Doppler fr
quency shift in an inertial system of Cartesian coordinate
well known. It is based on two facts: proper time runs d
ferently for identical clocks moving with different speed
and electromagnetic waves propagate along straight line
such an inertial system in flat space-time~see@59# and @60#
for more details!. The general relativistic formulation of th
frequency shift in curved space-time is more involved.

Two definitions of the Doppler shift are used@61#—in
terms of energy~A! and in terms of frequency~B!:

~A!
n

n0
5

ual a

u0
al 0a

, ~B!
n

n0
5

dT0

dT
, ~74!

wheren0 andn are the emitted and observed electromagn
frequencies of light; here (T0 , u0

a) and (T, ua) are, respec-
tively, the proper time and four-velocity of the source of lig
and observer, andl 0a andl a are null four-vectors of the ligh
ray at the points of emission and observation, respectiv
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Despite the apparent difference in the two definitions, th
are identical as equalitiesua5dxa/dT andl a5]w/]xa hold.
In order to connect various physical quantities at the po
of emission and observation of light one has to integrate
equations of light propagation.

The integration of null geodesic equation in the case
space-times possessing symmetries has been known
long time and extensively used in astronomical practice~see,
e.g.,@62# and references therein!. However, interesting astro
nomical phenomena in the propagation of light rays
curved space-time are also caused by small time-depen
perturbations of the background geometry. Usually, the fi
post-Newtonian approximation in the relativisticN-body
problem with fixed or uniformly moving bodies has bee
applied in order to consider the effects of theN-body system
on electromagnetic signals@58#. Unfortunately, this approxi-
mation works properly if, and only if, the time of propag
tion of light is much shorter than the characteristic Kepler
time of theN-body problem. An adequate treatment of t
effects in the propagation of light must account for the ret
dation in the propagation of the gravitational field from t
light-deflecting body to the point of interaction of the fie
with the electromagnetic signal.

A theory of light propagation and Doppler shift that tak
account of such retardation effects has been constructe
the first post-Minkowskian approximation by Kopeikin an
Schäfer @15# and Kopeikin@63#. For the sake of brevity, we
do not reproduce the formalism here and restrict ourselve
consideration of the case of the gravitational lens only. So
details of this approximation have been given in the previo
section. Making use of either of the definitions~74!, we ob-
tain for the gravitational shift of frequency

S dn

n0
D

gr

5S 2v1
r 0

D
y1

r

D
y0D •~aM1aS!, ~75!

whereD5ux2x0u is the distance between the source of lig
and the observer,r 5ux2z(s)u is the distance between th
lens and observer,r 05ux02z(s0)u is the distance betwee
the lens and the source of light,y5dx(t)/dt is the velocity
of the observer,y05dx0(t0)/dt0 is the velocity of the source
of light, andaM andaS represent the vectors of the defle
tion of light by the gravitational lens given in Eq.~61!. For-
mula ~75! can be applied to the processing of Doppler trac
ing data from spacecrafts in deep space. In the case
superior conjunction of such a spacecraft with the Sun o
planet, the result shown in Eq.~75! should be doubled since
the light passes the light-deflecting body twice—the fi
time on its way from the emitter to the spacecraft and
second time on its way back to the receiver. The Dopp
tracking formula after subtracting the special relativistic c
rections~for details see@15# and@63#! assumes the following
form:

S dn

n0
D

gr

5S 8GM

c3d2 1
16G~k3J!•z

c4d4 D S v2
r 0

D
y2

r

D
y0D •z

2
8G

c4d2S v2
r 0

D
y2

r

D
y0D •~k3J!. ~76!
5-9
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Only terms proportional to the massM of the deflector were
known previously~see, e.g.,@15# and @64#!. With the math-
ematical techniques of the present paper general relativ
corrections due to the intrinsic rotation of the gravitation
lens can now be calculated. For the light ray grazing the li
of the light-ray-deflecting body, the gravitomagnetic Dopp
shift due to the body’s rotation is smaller than the effe
produced by the body’s mass by terms of orderv rotL/c,
wherev rot is the body’s angular frequency andL is its char-
acteristic radius. In the case of the Sun, the effect reach
magnitude of about 0.8310214, which is measurable in prac
tice taking into account the current stability and accuracy
atomic time and frequency standards (;10216, cf. @65# and
@66#!. For Jupiter, the corresponding estimate of the grav
magnetic Doppler shift is 0.7310215, which is also, in prin-
ciple, measurable.

VII. SKROTSKII EFFECT FOR ARBITRARY-MOVING
POLE-DIPOLE MASSIVE BODIES

A. Relativistic description of polarized radiation

The polarization properties of electromagnetic radiat
are defined in terms of the electric field measured by
observer. Let us start with a general electromagnetic ra
tion field Fab and define the complex fieldFab such that
Fab5Re(Fab) and Ea5Re(Ea), whereEa5F abub is the
complex electric field. In the rest frame of an observer w
four-velocity ua, the intensity and polarization properties
the radiation are describable in terms of the tensor

Jab5^EaĒb&, ~77!

where the angular brackets represent an ensemble ave
and Jabub50. The electromagnetic Stokes parameters
defined with respect to two of the four vectors of the tetr
e(b)

a , introduced in Eq.~22!, as follows~cf. @67# and @68#!:

S05Jab@e(1)
a e(1)

b 1e(2)
a e(2)

b #, ~78!

S15Jab@e(1)
a e(1)

b 2e(2)
a e(2)

b #, ~79!

S25Jab@e(1)
a e(2)

b 1e(2)
a e(1)

b #, ~80!

S35 iJab@e(1)
a e(2)

b 2e(2)
a e(1)

b #. ~81!

Using Eq.~77!, the Stokes parameters can be expresse
the standard way@67# in a linear polarization basis as

S05^uE(1)u21uE(2)u2&, ~82!

S15^uE(1)u22uE(2)u2&, ~83!

S25^E(1)Ē(2)1 Ē(1)E(2)&, ~84!

S35 i ^E(1)Ē(2)2 Ē(1)E(2)&, ~85!

whereE(n)5E ae(n)
a for n51,2. Under the gauge subgroup

the little group ofl a, the Stokes parameters remain invaria
However, for a constant rotation of angleQ in the
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(e(1)
a ,e(2)

a ) plane, S085S0 , S185S1 cos 2Q1S2 sin 2Q, S285

2S1 sin 2Q1S2 cos 2Q, andS385S3. This is what would be
expected for a spin-1 field. That is, under a duality rotat
of Q5p/2, one linear polarization state turns into the oth

For the null field~21! under consideration in this paper

Ea5
1

2
v~Fma1Cm̄a!, ~86!

wherev52 l aua is theconstantfrequency of the ray mea
sured by the observer with four-velocityua. Changing from
the circular polarization basis~86! with amplitudesvF/2
and vC/2 to the linear polarization basisE a5E(1)e(1)

a

1E(2)e(2)
a , we find that E(1)5v(F1C)/A8 and E(2)

5 iv(F2C)/A8. The variation of the Stokes paramete
along the ray are essentially given by Eq.~23!, since the
frequencyv is simply a constant parameter along the r
given byv5dt/dl5dt/dl.

The polarization vectorP and the degree of polarizatio
P5uPu can be defined in terms of the Stokes parame
(S0 ,S) by P5S/S0 and P5uSu/S0, respectively. Any par-
tially polarized wave may be thought of as an incoher
superposition of a completely polarized wave with Stok
parameters (PS0 ,S) and a completely unpolarized wave wit
Stokes parameters (S02PS0 ,0), so that (S0 ,S)5(PS0 ,S)
1(S02PS0 ,0). For completely polarized waves,P de-
scribes the surface of the unit sphere introduced by Poinc´.
The center of the Poincare´ sphere corresponds to unpolarize
radiation and the interior to partially polarized radiation. O
thogonally polarized waves represent any two conjug
points on the Poincare´ sphere; in particular,P1561 and
P3561 represent orthogonally polarized waves correspo
ing to the linear and circular polarization bases, respectiv

Any stationary or time-dependent axisymmetric gravi
tional field in general causes a relativistic effect of the ro
tion of the polarization plane of electromagnetic waves. T
effect was first discussed by Skrotskii@25# and later by many
other researchers~see, e.g.,@69# and @26# and references
therein!. We generalize the results of previous authors to
case of spinning bodies that can move arbitrarily fast.

B. Reference tetrad field

The rotation of the polarization plane is not conceivab
without an unambiguous definition of a local reference fra
~tetrad! constructed along the null geodesic. The null tetr
frame based on four null vectors (l a,na,ma,m̄a) introduced
in Sec. IV is a particular choice. As discussed in Sec. IV, t
null tetrad is intimately connected with the local fram
(e(0)

a ,e(1)
a ,e(2)

a ,e(3)
a ), where the vectorse(0)

a ande(3)
a are de-

fined in Eq.~22! and the spacelike vectorse(1)
a ande(2)

a are
directly related to the polarization of the electromagne
wave. Each vector of the tetrad (e(0)

a ,e(1)
a ,e(2)

a ,e(3)
a ) depends

upon time and is parallel transported along the null geode
defined by its tangent vectorl a. To characterize the variation
of e(b)

a along the ray, it is necessary to have access t
fiducial field of tetrad frames for reference purposes. To t
end, let us choose the reference frame based on the s
5-10
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static observers in the background space-time. Then, a
past null infinity, where according to our assumption t
space-time is asympotically flat, one has

e(0)
a ~2`!5~1,0,0,0!, e(1)

a ~2`!5~0,a1,a2,a3!,

e(2)
a ~2`!5~0,b1,b2,b3!, e(3)

a ~2`!5~0,k1,k2,k3!.
~87!

Here the spatial vectorsa5(a1,a2,a3), b5(b1,b2,b3), and
k5(k1,k2,k3) are orthonormal in the Euclidean sense a
the vectork defines the spatial direction of propagation
the light ray@see Eq.~32!#. At the same time, the four vector
~87! also form a basise(b)5e (b)

a ]/]xa of the global har-
monic coordinate system at each point of space-time, wh
e (b)

a 5e(b)
a (2`). However, it is worth noting that this coor

dinate basis is not orthonormal at an arbitrary point in spa
time. Nevertheless, it is possible to construct an orthonor
basisv (b)

a at each point by making use of a linear transfo
mationv (b)

a 5Lg
ae (b)

g such that the transformation matrix
given in the linear approximation by

L0
0511

1

2
h00, L i

05h0i ,

L0
i 50, L j

i 5d j
i 2

1

2
hi j . ~88!

A local orthonormal basisv (b)
a is then defined by

v (0)
a 5S 11

1

2
h00,0,0,0D , v (1)

a 5S h0 ja
j ,ai2

1

2
hi j a

j D ,

v (2)
a 5S h0 jb

j ,bi2
1

2
hi j b

j D , v (3)
a 5S h0 j k

j ,ki2
1

2
hi j k

j D .

~89!

By definition, the tetrad framee(b)
a is parallel transported

along the ray. The propagation equations for these vec
are thus obtained by applying the operatorDl of the parallel
transport@see Eq.~20!#. Hence,

de(m)
a

dl
1Gbg

a l be(m)
g 50, ~90!

wherel is an affine parameter along the light ray. Using t
definition of the Christoffel symbols~B1! and changing over
to the variablet with dxa/dt5ka1O(h), one can recas
Eq. ~90! in the form

d

dt S e(m)
a 1

1

2
hb

ae(m)
b D5

1

2
han~]nhgb2]ghnb!kbe(m)

g .

~91!

Equation~91! is the main equation for the discussion of t
Skrotskii effect.
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C. Skrotskii effect

We have chosen the null tetrad frame along the ray s
that att52` the tetrad has the property thate( i )

0 (2`)50.
It follows that in generale( i )

0 5O(h). The propagation equa
tion for the spatial componentse(m)

i is therefore given by

d

dt S e(m)
i 1

1

2
hi j e(m)

j D5
1

2
~] ihj b2] jhib!kbe(m)

j . ~92!

Furthermore, we are interested only in solving Eqs.~91! for
the vectorse(1)

a and e(2)
a that are used in the description o

the polarization of light; hence

d

dt S e(n)
i 1

1

2
hi j e(n)

j D1« i j l e(n)
j V l50 ~n51,2!,

~93!

where we have defined the quantityV i as

V i52« i j l ] j S 1

2
hlakaD . ~94!

Therefore,e(n)
i can be obtained from the integration of E

~93!. Moreover,l ae(n)
a 50 implies that

e(n)
0 5kie(n)

i 1h0ie(n)
i 1hi j k

ie(n)
j 1d i j J̇

ie(n)
j . ~95!

It is worth noting that, as a consequence of definitionl a

5v(1,ẋi) and Eq. ~38!, one hasl5v(k1J̇). Moreover,
from the condition l al a50, it follows that k•J̇5
2(1/2)habkakb.

Let us decomposeV i into components that are paralle
and perpendicular to the unit vectorki , i.e.,

V i5~k•V!ki1Pj
i V j . ~96!

Then, Eq.~93! can be expressed as

d

dt S e(n)
i 1

1

2
hi j e(n)

j D1~k•V!« i j l e(n)
j kl

1« i j l e(n)
j Pq

l Vq50 ~n51,2!. ~97!

Integrating this equation from2` to t taking into account
the initial conditions~87! and equalities« i j l a

jkl52bi and
« i j l b

jkl5ai , we obtain

e(1)
i 5ai2

1

2
hi j a

j1S E
2`

t

k•Vds D bi2« i j l a
j Pq

l E
2`

t

Vqds,

~98!

e(2)
i 5bi2

1

2
hi j b

j2S E
2`

t

k•Vds D ai2« i j l b
j Pq

l E
2`

t

Vqds.

~99!

To interpret these results properly, let us note that a ro
tion in the (v (1)

i ,v (2)
i ) plane by an anglef at timet leads to
5-11



y

n

of
r

tio
a
e

se

al

ith

us,
i-
l
Sk-
of

etic

the

o-
-

ravi-
of

ith
dix

he
us-

at

ar-
n
re-
raic

SERGEI KOPEIKIN AND BAHRAM MASHHOON PHYSICAL REVIEW D65 064025
v (1)
i 5S ai2

1

2
hi j a

j D cosf1S bi2
1

2
hi j b

j D sinf,

~100!

v (2)
i 52S ai2

1

2
hi j a

j D sinf1S bi2
1

2
hi j b

j D cosf,

~101!

so that if the anglef5O(h) then we have

v (1)
i 5ai2

1

2
hi j a

j1fbi , v (2)
i 5bi2

1

2
hi j b

j2fai .

~102!

Comparing these vectors with Eqs.~98! and~99!, we recog-
nize that as vectorse(1) ande(2) propagate along the light ra
they are rotating with an angle

f~t!5E
2`

t

k•Vds ~103!

aboutk in the local (v(1) ,v(2)) plane. Moreover,e(1) and
e(2) rotate toO(h) toward the direction of light propagatio
k @see the very last terms on the right-hand sides of Eqs.~98!
and ~99!#.

We are mostly interested in finding the rotational anglef
in the plane perpendicular tok. It is worth noting that the
Euclidean dot productk•V can be expressed in terms
partial differentiation with respect to the impact parametej i

only. This can be done by making use of Eq.~C4! and noting
that « i jpkjkp[0, so that

k•V5
1

2
kaki« i p̂ q̂]̂qha p̂ , ~104!

where the caret over spatial indices denotes the projec
onto the plane orthogonal to the propagation of the light r
for instance,Aî[Pj

i Aj . Hence, the transport equation for th
anglef assumes the form

df

dt
5 k•V

1

2
kaki« i p̂ q̂]̂qha p̂ , ~105!

which is useful for integration. Formula~105! constitutes a
significant generalization of a result that was first discus
by Skrotskii ~ @25# and @70#! and bears his name.

For a stationary ‘‘pole-dipole’’ source of the gravitation
field at rest at the origin of the coordinates, Eqs.~10!, ~11!,
and ~16! for the metric perturbations imply that

h005
2m

r
, h0i52

2~J3r ! i

r 3
, hi j 5

2m

r
d i j . ~106!

It follows from Eq. ~94! that in this case

V5Bg2
m~k3r !

r 3
, ~107!
06402
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whereBg is the dipolar gravitomagnetic field associated w
the source

Bg5“3SJ3r

r 3 D 5
J
r 3

@3~ r̂•Ĵ! r̂2Ĵ#, ~108!

where r̂5r /r and Ĵ5J/J are unit vectors, andJ is the
magnitude of the angular momentum of the source. Th
k•V5k•Bg , and, in this way, we recover Skrotskii’s orig
nal resultdf/dt5k•Bg , which is the natural gravitationa
analogue of the Faraday effect in electrodynamics. The
rotskii effect has a simple physical interpretation in terms
the gravitational Larmor theorem@71#. We note that in the
particular case under consideration here, the gravitomagn
field can be expressed asBg52“(J•r /r 3) for rÞ0. Thus
for radiation propagating in the space-time exterior to
source,f52J•r /r 31const. In particular, it follows from
this result that the net angle of rotation of the plane of p
larization from2` to 1` is zero. This conclusion is con
firmed later in Eq.~114! as well.

In the general case, where the bodies generating the g
tational field are both moving and rotating, the integration
Eq. ~105! is also straightforward and is accomplished w
the help of a mathematical technique described in Appen
B. The result is

f~t!5f01df~t!2df~t0!,

df~t!5
1

2
kaki« i p̂ q̂]̂qBa p̂~t,j!, ~109!

wheref0 is a constant angle defining the orientation of t
polarization plane of the electromagnetic wave under disc
sion att0 , df(t) anddf(t0) are relativistic rotations of the
polarization plane with respect to its orientation at infinity
the moments of observation,t, and emission of light,t0,
respectively, and the functionBab is defined in Eq.~42!.

We note that according to the definition~42! the tensor
function Bab consists of two parts, the first of which,BM

ab ,
relates to the action of the mass-monopole field of the p
ticles and the second one,BS

ab , describes the action of spi
dipole fields on the rotation of the polarization plane. The
fore, the angle of rotation can be represented as an algeb
sum of two components

df5dfM1dfS , ~110!

where the monopole part can be calculated using Eq.~C10!,

dfM5
1

2
kaki«

i p̂ q̂]̂qBM
a p̂52m

12k•v

A12v2

k•~v3j!

~r 2k•r !~r 2v•r !
.

~111!

The spin part is given by

dfS5
1

2
kaki«

i p̂ q̂]̂qBS
a p̂ , ~112!
5-12
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and has a rather complicated form if written explicitly b
making use of the partial derivative of the functionBS

ab

given in Eq. ~C9!. In the gravitational lens approximatio
when light goes from2` to 1`, Eqs.~111! and~112! sim-
plify and assume the form

dfM~1`!52
4Gm

c3d2 k•~j3v!, ~113!

dfS~1`!5
4G

c3d2 F ~k•J!1
~k3j!•~j3J!

d2 G[0.

~114!

Equations~113! and~114! make it evident that in the cas
of gravitational lensing the integrated effect discussed by
rotskii @25# is due only to the translational motion of the len
There is no contribution to the effect caused by spin of
body and proportional to 1/d2, whered is the impact param-
eter of the light ray with respect to the body. This rath
remarkable fact was first noted by Kobzarev and Seliva
@72# who criticized the final conclusions of the papers
Skrotskii @25# and others~see@73# and@74#!. We would like
to stress, however, that all the results of the paper by
rotskii @25# are correct, since the final formulas of his pap
relate to the situation where light is emitted from or near
surface of the rotating body. Such a case obviously is
reduced to that of a gravitational lens. Thus, the angle
rotation of the polarization plane does not equal zero as
rectly shown by Skrotskii.

The absence of the Skrotskii effect for electromagne
radiation propagating from2` to 1` in the case of a sta
tionary rotating body reveals that the coupling of the pol
ization vector of the photon with the spin of the rotatin
body cannot be amplified by the presence of a gravitatio
lens.

VIII. SKROTSKII EFFECT BY QUADRUPOLAR
GRAVITATIONAL WAVES FROM LOCALIZED SOURCES

A. Quadrupolar gravitational wave formalism

We shall consider in this section the Skrotskii effect as
ciated with the emission of gravitational waves from a loc
ized astronomical system like a binary star, supernova ex
sion, etc. For simplicity we shall restrict our consideration
the quadrupole approximation only. The direct way to tac
the problem would be to use the Taylor expansion of
formula for the Skrotskii effect given in the previous sectio
However, it is instructive to make use of an approach o
lined in @7# that is based on the multipole expansion of t
radiative gravitational field of a localized astronomic
source@75#.

To this end, let us consider the propagation of a light
taking place always outside a source~with its center of mass
at rest! that emits gravitational waves. The metric perturb
tion hmn can be split into a canonical parthmn

can. , which con-
tains symmetric trace-free~STF! tensors only~for more de-
tails on STF tensors see@76#!, and a gauge part, i.e.,hmn

5hmn
can.1]mwn1]nwm . In the case of mass-monopole, spi
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dipole, and mass-quadrupole source moments and in the
monic gauge the canonical part of the metric perturbation
given by

h00
can.5

2M
r

1]pqFIpq~ t2r !

r G , ~115!

h0i
can.52

2« ipqJpxq

r 3
12] jF İi j ~ t2r !

r
G ,

~116!

hi j
can.5d i j h00

can.1
2

r
Ïi j ~ t2r !. ~117!

Here the massM and spinJ i of the source are constant
whereas its quadrupole momentIi j is a function of the re-
tarded timet2r . Dependence of the mass and spin on tim
would be caused by the process of emission of energy
angular momentum which are then carried away from
source by gravitational waves. If necessary, the time dep
dence of mass and spin can be treated in the framewor
the same calculational scheme as applied in the presen
per. Moreover, it is assumed in Eqs.~115!–~117! that the
center of mass of the source of gravitational waves is at
origin of the coordinate system and does not move. Hen
the radial coordinater is the distance from the center of ma
to the field point in space.

The explicit expressions for the gauge functionswm relat-
ing hmn

can. to hmn are chosen in the form@7#

w05
1

2
¹k¹lF (21)Ikl~ t2r !

r G , ~118!

wi5
1

2
¹i¹k¹lF (22)Ikl~ t2r !

r G22¹kFIki~ t2r !

r G ,
~119!

where we have introduced the definitions of time integrals
the quadrupole moment

(21)Ii j ~ t ![E
2`

t

dyIi j ~y!,

(22)Ii j ~ t ![E
2`

t

dy (21)Ii j ~y!. ~120!

The gauge functions~118! and ~119! make space-time coor
dinates satisfy both harmonic and Arnowitt-Deser-Misn
~ADM ! gauge conditions simultaneously@7#. The harmonic-
ADM coordinates are especially useful for integrating equ
tions of light propagation and for description of the motio
of a free falling source of light and observer. It turns out th
the source of light and the observer do not ‘‘experience’’ t
influence of gravitational waves in ADM coordinates a
move only under the action of the stationary part of t
gravitational field created by the mass and spin of the sou
5-13
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of the gravitational waves~for more details concerning th
construction of the harmonic ADM coordinates see@7#!.

The rotation of the polarization plane is described by E
~105!, where the rotation frequencyV is defined in Eq.~94!.
Using expressions~115!–~117! together with the gauge free
dom, the angular velocity is given by

k•V5 ]̂ tS 2
J ix

i

r 3 D1ki« i p̂ q̂]̂q jF İjp~ t2r !

r
G

1ki« i p̂ q̂]̂qtFkj İjp~ t2r !

r
G2 ]̂ tF1

2
k•~“3w!G ,

~121!

where w[(wi) is given by Eq.~119!, r 5At21d2, and d
5uju is the impact parameter of the light ray.

Integration of Eq.~105! with respect to time results in

df~t!52
J ix

i

r 3
2

1

2
k•~“3B!, ~122!

whereB[(Bi) with

Bi5
2j j İi j ~ t2r !

ry
1

2kj İi j ~ t2r !

r
22¹kFIki~ t2r !

r G
~123!

andy5t2r . Making use of formula~119! for wi and taking
partial derivatives brings Eq.~122! to the following more
explicit form:

df~t!52
J ix

i

r 3
1

~k3j! ij j

ry F2
İi j

ry
1

İi j

r 2
1

Ïi j

r G
1

~k3j! ixj

r 3 F Ïi j 1
3İi j

r
1

3I i j

r 2 G
1

~k3j! ikj

r 2 F Ïi j 1
İi j

r
G , ~124!

where the quadrupole momentsIi j are all evaluated at the
retarded times5t2r . It is straightforward to obtain the two
limiting instances of this formula related to the cases o
gravitational lens and a plane gravitational wave.

B. Gravitational lens approximation

In the event of gravitational lensing one has@7#

y[t2r 5Ar 22d22r 52
d2

2r
1•••, ~125!

so that

ry52
d2

2
, t2r 5t* 2

d2

2r
1•••, ~126!
06402
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wheret* is the instant of closest approach of the light ray
the center of mass of the gravitational lens. After making u
of the approximations shown above, Eq.~124! simplifies and
assumes the form

df~ t* !52
4İi j ~ t* !~k3j! ij j

d4
. ~127!

One can see that the first nonvanishing contribution to
Skrotskii effect comes from the time derivative of a mas
quadrupole moment and does not depend on the spin o
source of gravitational waves. It agrees with the conclusi
of Sec. VII. Formula~127! also shows that if the source o
gravitational waves is periodic, such as a binary star syst
the polarization plane of the electromagnetic wave will e
perience periodic changes of its orientation with a charac
istic frequency that is twice that of the source@72#.

Equation ~127! can be derived from Eq.~113! as well.
Indeed, let us assume that the gravitational lens is compr
of N point particles forming a self-gravitating body. ForN
point particles, Eq.~113! implies

dfM~1`!524(
a51

N
Gma

c3uj2jau2
k•@~j2ja!3va#,

~128!

where the point particles are enumerated by the indexa run-
ning from 1 toN, ma is the mass of theath particle,xa and
va are the coordinates and velocity of theath particle,ja

i

5Pj
i xa

j , andj i is the impact parameter of the light ray wit
respect to the origin of the coordinate system, which
assume coincides with the center of mass of the lens,I i ,
defined by the equation

I i~ t* !5 (
a51

N

maxa
i ~ t* !50. ~129!

As a consequence of Eq.~129!, we conclude that all the time
derivatives ofI i vanish identically. We also define the sp
of the lens and its tensor of inertia as follows

J i5 (
a51

N

ma~xa3va! i , Ii j ~ t* !5 (
a51

N

maxa
i ~ t* !xa

j ~ t* !.

~130!

The spin of the lens is conserved and does not depend
time, while the tensor of inertia is, in general, a function
time.

Let us expand the right-hand side of Eq.~128! in a power
series with respect to the parameterujau/uju which is pre-
sumed to be small. We find that
5-14
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dfM~1`!52
4G

c3d2 Fk•S j3 (
a51

N

mavaD
2k•(

a51

N

ma~ja3va!G2
8~k3j! i

d4

3 (
a51

N

mava
i ~ja•j!1OS va

ja

d D 2

, ~131!

whered5uju. Taking into account definitions of the center
mass, spin, tensor of inertia of the lens, as well as the iden

(
a51

N

2ma@~k3j!•va#~ja•j!5~k3j! i@ İi j j
j2~j3J! i #

~132!

together with formula~113!, we arrive at the result shown i
~127!. Comparing expression~127! with the corresponding
result derived by Kobzarev and Selivanov@ @72#, formulas
~11! and ~12!#, we conclude that the result given by the
authors@72# is misleading.

C. Plane gravitational wave approximation

In the limit of a plane gravitational wave, we assume th
the distanceD between the observer and source of light
much smaller thanr and r 0, their respective distances from
the deflector. The following exact equalities hold:

d5r sinq, y5t2r 5r ~cosq21!, ~133!

where q is the angle between the directions from the o
server to the source of light and the source of gravitatio
waves. Furthermore, we note that the vectorj, corresponding
to impact parameterd, can be represented as

j i5r ~Ni2ki cosq!, ~134!

whereNi5xi /r and uNu51. Making asymptotic expansion
up to leading terms of order 1/r and 1/r 0, and neglecting all
residual terms of order 1/r 2 and 1/r 0

2, would lead to the fol-
lowing result:

df~t!5
~k3N! i~Nj cosq2kj !Ïi j ~ t2r !

r ~cosq21!

5
~k3N! ikj Ïi j

TT~ t2r !

r ~12cosq!
, ~135!

where the definition of the ‘‘transverse-traceless’’ tensor@47#
with respect to the directionN is taken into account,

I i j
TT5Ii j 1

1

2
~d i j 1NiNj !NpNqIpq

2~d ipNjNq1d jpNiNq!Ipq , ~136!

and the projection is onto the plane orthogonal to the u
vector N. In terms of the transverse-traceless metric per
06402
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TT(t2r )/r , the angle of rotation of the polar
ization plane of the electromagnetic wave emitted at past
infinity is given by

df~t!5
1

2

~k3N! ikj

12cosq
hi j

TT~ t2r !. ~137!

In the case of an electromagnetic wave emitted at instant0
and at the distancer 0 from the source of the gravitationa
waves and received at instantt at the distancer, the overall
angle of rotation of the polarization plane is defined as
difference

df~t!2df~t0!5
1

2F ~k3N! ikj

12cosq
hi j

TT~ t2r !

2
~k3N0! ikj

12cosq0
hi j

TT~ t02r 0!G , ~138!

whereN0
i 5x0

i /r 0 andq0 is the angle between the vectorsk
andN0.

It is worthwhile to compare the results obtained in t
present section to the standard approach used for calcula
effects caused by plane gravitational waves. Ordinarily
such an approach a plane gravitational wave is assumed
monochromatic with the property that at infinity the spac
time remains asymptotically flat. Actually, this means th
one deals with a localized packet of waves with bounda
asymptotically approaching plus and minus null infinity un
formly. The metric tensor of such a plane gravitational wa
in the transverse-traceless gauge can be expressed as@47#

h005h0i50, hi j
TT5Re$âi j exp~ i p̂axa!%, ~139!

where the spatial tensorâi j is symmetric and traceless (âkk

50), p̂a5vgr(21,p̂) is the propagation four-vector of th
gravitational wave with constant frequencyvgr and constant
unit spatial propagation vectorp̂, andâi j p̂

j50 @77#. One can
easily see that such a localized plane gravitational wave d
not interact at all with an electromagnetic ray propagat
from minus to plus null infinity.

Indeed, the integration of the light ray equation~37! leads
to integrals involving the exponential function entering E
~139! along the unperturbed light ray path of the form

lim
T→`

E
2T

1T

eip̂akatdt52pd~ p̂aka!52pvgr
21d~k•p̂21!,

~140!

whered(x) is the Dirac delta function. Now, if the directio
of the propagation of electromagnetic ray does not coinc
with that of the gravitational wave (kÞp̂) the argument of
the delta function in Eq.~140! is not zero, i.e.,k•p̂,1, and
the result of integration along the light-ray trajectory va
ishes. On the other hand, ifk5p̂ there is again no effec
since the right side of Eq.~37! vanishes due to the transve
sality of hi j

TT , revealing that in the case under considerat

hi j
TTkj5hi j

TTp̂j50. This result has been proved by Damo
5-15
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and Esposito-Fare`se @78# who studied the deflection of ligh
and the integrated time delay caused by the time-depen
gravitational field generated by a localized material sou
lying close to the line of sight@79,80#.

The absence of the interaction of plane monochrom
gravitational waves with electromagnetic rays propagat
from minus to plus null infinity makes it evident that a
relativistic effects taking place in the gravitational lens a
proximation have little to do with gravitational waves—i.e
only the near-zone gravitational field of the lens contribu
to the overall effects. The other conclusion is that the pla
gravitational wave disturbs the propagation of electrom
netic signals if and only if the signals go to finite distanc
@81,82#. However, another limitation has to be kept in min
namely, as follows for instance from Eq.~138!, the standard
plane gravitational wave approximation~139! is applicable
only for gravitational waves with dominant wavelengt
lgr!min(r,r0). This remark is especially important for hav
ing a self-consistent analysis of such intricate problems
the detection of the solarg modes by interferometric gravi
tational wave detectors@83#, the theoretical prediction o
low-frequency pulsar timing noise~see, e.g.,@84–87#, and
references therein!, and the anisotropy of cosmic microwav
background radiation@88# caused by primordial gravitationa
waves.

APPENDIX A: GEOMETRIC OPTICS APPROXIMATION
FROM THE MAXWELL EQUATIONS

Here we give a brief derivation of the equations of t
geometric optics approximation, discussed in Sec. IV, fr
the Maxwell equations for electromagnetic waves propag
ing in empty space-time. The source-free Maxwell equati
are given by@67#

¹aFbg1¹bFga1¹gFab50, ~A1!

¹bFab50, ~A2!

where¹a denotes covariant differentiation@89#. Taking a co-
variant derivative from Eq.~A1! and using Eq.~A2!, we
obtain the covariant wave equation for the electromagn
field tensor

hgFab1RabgdFgd2RagFb
g1RbgRa

g50, ~A3!

wherehg[¹a¹a , Rabgd is the Riemann curvature tenso
andRab5Ragb

g is the Ricci tensor.
Let us now assume that the electromagnetic tensorFab

has the form shown in Eq.~17!. We introduce a dimension
less perturbation parameter« and assume an expansion
the field of the form

Fab5ReF ~aab1«bab1«2cab1¯ !expS iw

« D G ; ~A4!

see Ref.@48# for a critical examination of this procedure an
its underlying physical assumptions. Substituting the exp
sion ~A4! into Eq. ~A1!, taking into account the definition
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l a5]w/]xa, and arranging terms with similar powers of«
leads to the chain of equations

l aabg1 l baga1 l gaab50, ~A5!

i ~¹aabg1¹baga1¹gaab!5 l abbg1 l bbga1 l gbab ,
~A6!

etc., where we have assumed that the effects of curvature
negligibly small. Similarly, Eq.~A2! gives a chain of equa
tions

l baab50, ~A7!

¹baab1 i l bbab50, ~A8!

and so on.
Equation~A7! implies that the electromagnetic field ten

sor is orthogonal in the four-dimensional sense to vectorl a .
Contracting Eq.~A5! with l a and taking into account Eq
~A7!, we find thatl a is null, l al a50. Taking the covariant
derivative of this equality and using the fact that¹[bl a]50
since l a5¹aw, one can show that the vectorl a obeys the
null geodesic Eq.~18!. Finally, equation~A3! can be used to
show that

¹g~aabl g!1 l g¹gaab50, ~A9!

which immediately leads to Eq.~20! of the propagation law
for the electromagnetic field tensor. In this way, one c
prove the validity of the equations of the geometric opt
approximation displayed in Sec. IV.

APPENDIX B: APPROXIMATE EXPRESSIONS
FOR THE CHRISTOFFEL SYMBOLS

Making use of the general definition of the Christoff
symbols@47#

Gbg
a 5

1

2
gad~]ggdb1]bgdg2]dgbg!, ]a[]/]xa,

~B1!

and applying the expansion of the metric tensor~9! results in
the approximate post-Minkowskian expressions

G00
0 52

1

2
] th00~ t,x!, ] t[

]

]t
, ~B2!

G0i
0 52

1

2
] ih00~ t,x!, ] i[

]

]xi , ~B3!

G i j
0 52

1

2
@] ih0 j~ t,x!1] jh0i~ t,x!2] thi j ~ t,x!#,

~B4!

G00
i 5] th0i~ t,x!2

1

2
] ih00~ t,x!, ~B5!
5-16



gh

th

e

th

th
a

p-
n

ec

,
ken
p-

-

t

we

ot
t

GRAVITOMAGNETIC EFFECTS IN THE PROPAGATION . . . PHYSICAL REVIEW D65 064025
G0 j
i 5

1

2
@] jh0i~ t,x!2] ih0 j~ t,x!1] thi j ~ t,x!#, ~B6!

G jp
i 5

1

2
@] jhip~ t,x!1]phi j ~ t,x!2] ihjp~ t,x!#. ~B7!

These expressions are used for the calculation of the ri
hand side of the null geodesic equation~19!.

APPENDIX C: CALCULATION OF INTEGRALS ALONG
THE LIGHT-RAY TRAJECTORY

In order to calculate the integrals~42! and~43!, it is useful
to change in the integrands the time arguments to the new
onez defined by the light-cone Eq.~12!, which after substi-
tuting the unperturbed light trajectory~36! for x can be ex-
pressed as follows:

s1t* 5z1uj1ks2z~z!u, ~C1!

wheret* , j, andk are considered as parameters such that
orthogonality conditionj ik

i50 holds. The differentiation of
Eq. ~C1! yields the partial derivatives of the retarded tim
with respect to the parameters

]z

]t*
5

r

r 2v•r
, Pi j

]z

]j j
52

Pi j r
j

r 2v•r
,

]z

]ki
52

sr i

r 2v•r
,

~C2!

and the relationship between the time differentials along
world line of the photon

ds5dz
r 2v•r

r 2k•r
. ~C3!

It is worth noting that in the formula~C2! one can write
Pi j r

j5(k3(r3k)) i[r i2ki(k•r ). Moreover, j i5Pi j j
j

sincePi j 5d i j 2kikj andkij
i50, i.e.,j i has only two inde-

pendent components.
Two principal differential identities applied to any smoo

function F(t,x) are used in calculations throughout the p
per, namely, as proved in@7#,

F ]F~ t,x!

]xi
1ki

]F~ t,x!

]t G
x5k(t2t0)1x0

5Pi j

]F~t1t* ,kt1j!

]j j
1ki

]F~t1t* ,kt1j!

]t

~C4!

and @15#

F]F~ t,x!

]t G
t5s1t* ;x5ks1j

5
]F~s1t* ,ks1j!

]t*
. ~C5!

The relationship~C4! allows one to change the order of o
erations of partial differentiation and substitution for the u
perturbed light-ray trajectory, while Eq.~C5! shows how to
change differentiation from the timet to the parametert*
making use of the reparametrization of the light-ray traj
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tory. The parametersj i and t* do not depend on time and
for this reason, derivatives with respect to them can be ta
out of the integrals along the light-ray trajectory. Hence, a
plying Eqs. ~C4! and ~C5! to the integral~42! and taking
account of Eq.~C3! we obtain

BS
ab~t,j!54

]

]t*
E

2`

s(t,t* )kgSg(aub)

r 2k•r
dz24

]

]j i

3E
2`

s Si (aub)

r 2k•r
dz24

kiS
i (aub)

r 2v•r
. ~C6!

where the expression

r 2k•r5t* 1k•z~z!2z ~C7!

is a function of the retarded argumentz and the~constant!
parametert* only. Differentiation with respect to the param
eterst* andj i in Eq. ~C6! results in

BS
ab~t,j!5

4r gSg(aub)

~r 2v•r !~r 2k•r !
24E

2`

s kgSg(aub)

~r 2k•r !2
dz,

~C8!

wherer a5(r ,r i) and r a5(2r ,r i). A useful formula is ob-
tained after differentiatingBS

ab with respect to the impac
parameter. Specifically, we have

]̂ iBS
ab5

4Pi j S
j (aub)

~r 2v•r !~r 2k•r !
1

4r gSg(aub)

r 2k•r

Pi j v
j

~r 2v•r !2

14Pi j r
jF kgSg(aub)

~r 2v•r !~r 2k•r !2
2

~12v2!r gSg(aub)

~r 2k•r !~r 2v•r !3

2
~12k•v!r gSg(aub)

~r 2v•r !2~r 2k•r !2G . ~C9!

For comparison, in the case of pure monopole particles
have@15#

]̂ iBM
ab~t!524m~12v2!1/2

uaub1
1

2
hab

r 2v•r

Pi j r
j

r 2k•r
.

~C10!

As for the integralDS
ab , one can see from Eqs.~40! and~41!

that in the calculation of the light-ray trajectory we do n
needDab directly but only its partial derivative with respec
to the parameterj i . Thus, using the definition ofDS

ab and the
expression forBS

ab given in Eq.~C8!, one can prove that

]̂ iDS
ab~t!524

Pi j r
j

r 2v•r

r gSg(aub)

~r 2k•r !2
14E

2`

s Pi j S
j (aub)

~r 2k•r !2

3dz18E
2`

s Pi j r
jkgSg(aub)

~r 2k•r !3
dz. ~C11!
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The remaining integrals in Eqs.~C8! and ~C11! have the
following form:

I~s!5E
2`

s 12k•v~z!

~r 2k•r !n
F~z!dz, ~n52,3!, ~C12!

whereF(z) is a smooth function of the four-velocity and/o
spin of the bodies at the retarded time. The integral~C12!
can be calculated by making use of the new variable@cf. Eq.
~125!#

y5k•r2r 5z2t* 2k•z~z!, dy5@12k•v~z!#dz,
~C13!

so that the above integral~C12! can be expressed as

I~s!5~21!nE
2`

y(s)F~y!dy

yn

5
~21!n11

n21 E
2`

y(s)

F~y!
d

dyS 1

yn21D dy. ~C14!

Integration by parts results in

I~s!5
1

n21

F~y~s!!

~r 2k•r !n21
2

1

n21E2`

s Ḟ~z!dz

~r 2k•r !n21
.

~C15!

The last integral in Eq.~C15! can be neglected under ord
nary circumstances for it includes the acceleration and/o
time derivative of the spin of the body. Omitting such term
in accordance with our general approximation scheme,
finally arrive at

BS
ab~t!5

4r gSg(aub)

~r 2v•r !~r 2k•r !
2

4

12k•v

kgSg(aub)

~r 2k•r !
,

~C16!

]̂ iDS
ab~t!52

4Pi j r
j

r 2v•r

r gSg(aub)

~r 2k•r !2
1

4Pi j r
j

12k•v

kgSg(aub)

~r 2k•r !2

1
4Pi j v

j

~12k•v!2

kgSg(aub)

~r 2k•r !

1
Pi j S

j (aub)

~12k•v!~r 2k•r !
. ~C17!
try

s
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APPENDIX D: AUXILIARY ALGEBRAIC
AND DIFFERENTIAL RELATIONSHIPS

In this Appendix we give several algebraic relationsh
that can be used for the calculation of observable effe
Making use of Eq.~8! and definition~5! we have

Si05g~v3J! i , ~D1!

Si j 5g« i jkJ k1
12g

v2
~v•J!« i jkvk, ~D2!

kar bSab5g@J•~k3r !1J•~~r2kr !3v!#

1
12g

v2
~v•J!~k3r !•v, ~D3!

whereg5(12v2)21/2 and« i jk[e0i jk @42#.
In addition, one has the following formulas of differentia

tion with respect to the impact parameterj i ~a dot over any
quantity denotes differentiation with respect to timet):

]̂ i r 5
Pi j r

j

r 2v•r
, ]̂ i[Pi j

]

]j j
, ~D4!

]̂ i r
j5Pi j 1

v j Pikr k

r 2v•r
, ~D5!

]̂ i~r bSab!5Pi j S
a j2

r bṠabPi j r
j

r 2v•r
, ~D6!

]̂ i S 1

r 2k•r D52
~12k•v!Pi j r

j

~r 2v•r !~r 2k•r !2
, ~D7!

]̂ i S 1

r 2v•r D52
~12v21a•r !Pi j r

j

~r 2v•r !3
1

Pi j v
j

~r 2v•r !2
,

~D8!

where a5 v̇ is the light-ray-deflecting body’s acceleratio
and it has been assumed thatr5x2z(s)5kt1j2z(s).
,

.
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06402
,

-

be constant. It falls off to zero as the distance from the sou
of the gravitational waves tends to infinity. However, one m
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