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Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields
of arbitrary-moving and spinning bodies
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The propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary
velocities is discussed. The gravitational field is assumed to be “weak” everywhere. The equations of motion
of a light ray are solved in the first post-Minkowskian approximation which is linear with respect to the
universal gravitational constaf® We do not restrict ourselves to the approximation of a gravitational lens so
that the solution of light geodesics is applicable for arbitrary locations of the source of light and the observer.
This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the
rotation of the pulsar and its companion. We also derive the correction to the light deflection angle caused by
the rotation of gravitating bodies in the solar syst€®un, planetsor a gravitational lens. The gravitational
shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is
analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of
polarization of electromagnetic wavéSkrotskii effeci. This formula is valid for arbitrary translational and
rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we
discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The
theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space
astrometry and developing corresponding algorithms for data processing in space astrometric missions such as
FAME, SIM, and GAIA.
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[. INTRODUCTION account for such translational motions. Indeed, nonstationary
sources emit gravitational waves that weakly perturb the
The influence of gravitation on the propagation of electro-propagation of electromagnetic signals. The cumulative ef-
magnetic rays has been treated by many authors since Eifect of such gravitational waves may be quite large and, in
stein first calculated the relativistic deflection of light by a Principle, could be detectable.2]. It is necessary to know
Spherica”y Symmetric maig_] Current'y there is much in- hOW. Iarge thIS |nﬂuence IS a.nd Whether Qne can neglect It or
terest in several space missions dedicated to measuring dQt in current and/or planned astrometric observations and
trometric positions, parallaxes, and proper motions of star§*Perimental tests of general relativity. When considering the
and quasars with an accuracy approaching larc seg[2].  Propagation of light in the field of moving bodies it is also
Thus progress in observational techniques has made it ne@’—Orth ke_:eplng in mind th_at gfaV'_ta“O’.‘a' Interaction propa-
essary to take into account the fact that electromagnetic ra ates with t.he speed of .I|ght In _Ilneanzed_ general relativity
. o 3,14. This retarded interaction has important conse-
are deflected not only by the monopole gravitoelectric fiel ; : . ;
of light-deflecting bodies but also by their spin- quences and can play g'cr.umal role in the theoretlcgl predic-
. . ) . tion of secondary relativistic effects in time delay, light de-
gravitomagnetic and quadrupolar gravitoelectric fields

. o ) o . flection, polarization of light, etc.
Propagation of light in the stationary gravitational fields of The first crucial step in solving the problem of propaga-

rotating oblate bodies with their centers of mass at rest igip, of electromagnetic rays in the retarded gravitational field
well known (see, e.g.[3-6], and references thergirQuite  f arhitrary-moving bodies has been taken recently1is].
recently significant progress has been achieved in solving thepe new formalism allows one to obtain a detailed descrip-
problem of propagation of light rays in the field of an iso- tion of the light-ray trajectory for unrestricted locations of
lated sourcésuch as a binary stathat has a time-dependent the source of light and observer and to make unambiguous
quadrupole moment and emits quadrupolar gravitationapredictions for possible relativistic effects. An important fea-
waves[ 7]. However, the translational motion of the source ofture of the formalism is that it is based on the post-
gravitational waves was not taken into account[#; in Minkowskian solution[16—19 of the linearized Einstein
effect, the source was assumed to be at rest. field equations. Thus the amplitude of the gravitational po-
We would like to emphasize the point that most gravita-tentials is assumed to be small compared to unity, but there
tional sources are not in general static and move with respeeire noa priori restrictions on the velocities, accelerations,
to the observer in a variety of ways. As revealed by approxietc., of the light-deflecting bodies. In this way the retarded
mate estimateg8], the precision of planned astrometric character of the gravitational field is taken into account in the
space missiong2], binary pulsar timing tests of general rela- linear approximation. This is in contrast with the post-
tivity [9], very long baseline interferometf{0,11, etc., ne- Newtonian approximation schenjg0—-23, which assumes
cessitate the development of more general methods of intehat the velocities of light-deflecting bodies must be small
gration of the equations of light propagation that couldwith respect to the speed of light. Such a treatment destroys
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the causal character of a gravitational null cone and makethe coordinate time and spatial coordinates of the underlying
the gravitational interaction appear to propagate instantanertial coordinate system. In the case of several spinning
neously at each step of the iteration procedure. As proved ibodies the total tensor of energy-momentum is a linear sum
[15], this is the reason why the post-Newtonian metric givesof tensors of the fornfl) corresponding to each body. There-
correct answers for the time delay and light deflection angldore, in the linear approximation under consideration in this
only for a very restricted number of physical situations. As apaper, the net gravitational field is simply a linear superpo-
rule, more subtlgsecondary effects in the propagation of sition of the fields due to individual bodies.
light rays in time-dependent gravitational fields are not genu- In Eq. (1), T,’f,,ﬂ andT‘S“B are defined in terms of the Dirac
inely covered in the post-Newtonian approach, whereas thg function[34—36 as follows[37—-39:
post-Minkowskian light-propagation formalism gives unique
and unambiguous answers. @ I 12 0
In the present paper, we extend the light-propagation for M ()= J',x, pUuf (= g) M8t 2°(1) S(x—2(m))d,
malism developed ifil5] in order to be able to include the 2
relativistic effects related to the gravitomagnetic field pro-
duced by the translational velocity-dependent terms in the
metric tensor as well as the spin-dependent terms due tb
light-deflecting bodies. We shall start from the consideration
of the energy-momentum tensor of moving and spinning X 8(x—2z(7n))dn, (3
bodies(Sec. I). Then we solve the Einstein field equations in
terms of the retardetiénard-Wiechertpotentials(Sec. 1l), ~ Wherez is the proper time along the world-line of the body’s
describe the light-ray trajectory in the field of these poten-center of massz(z) are spatial coordinates of the body’s
tials (Sec. IV), and then calculate the deflection angle andcenter of mass at proper timg, u“(n)=u’(1y') is the
time delay in the propagation of electromagnetic raysfour-velocity of the bodyu®(7)=(1-v?) Y2 (v')=Vv(7)
through the system of arbitrary-moving and spinning paris the three-velocity of the body in spacp;(7) is the
ticles (Sec. \J. We pay particular attention to the calculation body’s linear momentunfin the approximation neglecting
of gravitomagnetic effects in ray propagation in pulsar tim-rotation of bodiesp“(#)=mu®, wherem is the invariant
ing and astrometrySec. V). Moreover, we discuss the rela- mass of the body S*#(#) is an antisymmetric tensor repre-
tivistic effect of the rotation of the plane of polarization of senting the body’s spin angular momentum attached to the
electromagnetic rayéSkrotskii effect{24—26) in the gravi- body’s center of massy, denotes covariant differentiation
tomagnetic field of the above-mentioned system of massiviith respect to the metric tensgy,z, andg=det(g,g) is the
bodies(Sec. VII). This effect may be important for a proper determinant of the metric tensor.
interpretation of the number of astrophysical phenomena that The definition ofS*# is arbitrary up to the choice of a
take place in the accretion process of x-ray binar&%s-29 spin supplementary condition that is chosen as follows:
and/or supermassive black holes that may exist in active ga-
lactic nuclei. Finally, we derive an exact expression for the Sa'guﬁzo? (4)
rotation of the plane of polarization of light caused by the
quadrupolar gravitational waves emitted by localized source
(Sec. VIII). The treatment of the Skrotskii effect given in the
final section may be important for understanding the effect
of cosmological gravitational waves on the anisotropy of
cosmic microwave backgroun®€MB) radiation at different af_ . aByd
. . . S Y Uy85, (5)
scaled 30—32. Details related to the calculation of integrals
along the light-ray trajectory are relegated to the Appendicesyhere 7*#7? is the Levi-Civitatensor related to the com-
pletely antisymmetric Minkowskian tensey,,,; [42] as fol-

II. ENERGY-MOMENTUM TENSOR OF SPINNING BODY lows:

tx=-v, f f:sy(“um(—g)*l’za(t—z% 7))

gwis constraint is consistent with neglecting the internal struc-
ure of the bodies involved, so that we deal in effect with

ointlike spinning particlef40,41]. We introduce a spin vec-
or S* which is related to the spin tensor by

We consider an ensemble Nfself-gravitating bodies pos- P=— (=) Veupys.  Mapys=(—9) eupys,
sessing mass and spin; higher-order multipole moments are
neglected for the sake of simplicity; for their influence on ] )
light propagation via the mathematical techniques of theVhere éq1,5=+1. The spin vector is orthogonal ta* by
present paper sg@3]. Propagation of light in the gravita- definition so that the identity
tional field of arbitrary-moving pointlike masses has been

studied in[15]. The energy-momentum tensbf? of a spin- STU.=0 @
ning body is given by is always valid; this fixes the one remaining degree of free-
g > i~ dom S°. Hence, the four-vecto®® has only three indepen-
TO2(t,x) =Ty (1.x) +Tg"(t,x), (1) dent spatial components.

The dynamical IavWﬁT”‘ﬁzo, applied to Eqgs(1)—(3),
where Ty and T&# are pieces of the tensor generated by,leads to the equations of motion of a spinning particle in a
respectively, the mass and spin of the body, aaddx are  gravitational field. Indeed, using a theorem of Schwartz that
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a distribution with a simple point as support is a linear com- s+|x—z(s)|=t, (12
bination of Dirac’s delta function and a finite number of its
derivatives, one can develop the theory of the motion ofwhich has a vertex at the space-time poibtx) and de-
pointlike test bodies with multipole moments in general rela-scribes the propagation of the gravitational figdd] on the
tivity [43]. In this way, it can be shown in particular that, for unperturbed Minkowski space-time. The solution of this
the “pole-dipole” particle under consideration in this paper, equation gives the retarded timas a function of coordinate
one is led uniquely43] to the Mathisson-Papapetrou equa-time t and spatial coordinates that is,s=s(t,x).
tions with the Pirani supplementary conditi¢f). As for h&? | it can be found by solving the field equations
In what follows, we focus only on effects that are pro- which are given in the first post-Minkowskian approximation
duced by the spin and are linear with respect to the spin angdnd in the harmonic gaudé5] as follows:
Newton’s gravitational constarithe first post-Minkowskian
approximation in the underlying asymptotically inertial glo-
bal coordinate system. The effects produced by the usual
point-particle piece of the energy-momentum tensor have al-
ready been studied {15]. Let us in what follows denote the Taking into account the orthogonality conditiof), the field
components of the spin vector in the frame comoving withequationg13) assume the form
the body as7*=(0,J). In this frame the temporal compo-
nent of the spin vector vanishes as a consequence af7Eq.
and, after making a Lorentz transformation from the comov-
ing frame to the underlying “inertial” frame, we have in the
post-Minkowskian approximation X 8(t—2%(n)) 8(x—z(n))]1, (14

1
Oh&A(t,x) = — 167 Tgﬂ(t,x)—inaﬁTg(t,x) . (13

+ o0
OhgP(t,x) = 1677(9yf d[ S"(7)uf) ()

o y—1 _ where we have replaced the covariant derivaWewith a
SL=y(v-J), S=T+ — (V- v, (8)  simple partial derivative),=d/dx” andu®=y(1p'), where

v y=(1—v?) "2 is the Lorentz factor. The solution of these
equations is given by thkiénard-Wiechertspin-dependent

—(1_,2y-12 =(p") i i
where y=(1—0v2) and v=(v') is the velocity of the potentials

body with respect to the frame at rest.
SV(“(S) u'B)(S)
r(s)—v(s)-r(s)

If we restricted ourselves to the linear approximation of
general relativity, the sources under consideration here would
have to be treated as a collection of free noninteracting spin-

ap(t,X)= 70+ Nap(t,X), (99  hing test particles each moving with arbitrary constant speed

with its spin axis pointing in an arbitrary fixed direction. This

where 5, z=diag(~ 1,+1,+1,+1) is the Minkowski metric ~ simply follows from the Mathisson-Papapetrou equations in
of flat space-time and the metric perturbatiogy(t,x) is a the underlying inertial coordinate system. Thus, in such a
function of time and spatial coordinat¢36]. We split the  case carrying out the differentiation in E3.5), we arrive at
metric perturbation into two piecesy and h2? that are
linearly independent in the first post-Minkowskian approxi-
mation; that is,

. (15

Ill. GRAVITATIONAL FIELD EQUATIONS hgf(t,x)=—44,
AND METRIC TENSOR

The metric tensor in the linear approximation can be writ-
ten as

rySV(“uﬁ)
[r(s)—v-r(s)]®’

wherev and S*# are treated as constants and we defifie

) , =(r,r). However, we may consider E(P) as expressing the

Thus, 'the.solut|on fgr each piece can be found from theTirst two terms in a post-Minkowskian perturbation series;

Einstein field equations with the corresponding eNergyinat is. at some “initial” time we turn on the gravitational

momentum tensor. up , interaction between the particles and keep track of terms in
The point-particle piecéy” of the metric tensor has al- o\yers of the gravitational constant only, without making a

h&A(t,x)=4(1—-v?) (16)

h*f=hf+heh, (10)

ready been discussed [ih5] and is given by Taylor expansion with respect to the ratio of the magnitudes
1 of the characteristic velocities of bodies to the speed of light.
u(s)uf(s)+ =n°F The development of such a perturbative scheme involves

many specific difficulties as discussed [ih6—19. In this
approach one may relax the restrictions on the body’s veloc-
ity and spin and think o and S*# in Eq. (16) as arbitrary
wherer (s)=|r(s)|, r(s)=x—2z(s), and both the coordinates functions of time. In this paper as well g55], we limit our

z and velocityv of the body are assumed to be time depen-considerations to the first-order equatiofi®), (11), and
dent and calculated at the retarded moment of tidefined  (16); however, in theapplicationof these results to the prob-
by the light-cone equation lem of ray propagation, we lat and S*# in the final results

hy?=4my1—v?(s)

r(s)—v(s)-r(s) '’ (11)
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based on Eqg11) and(16) be time dependent as required in  In what follows it is useful to introduce a local orthonor-
the specific astrophysical situation under considerationmal reference frame based on a restricted set of observers
Therefore, the consistency of the final physical results withthat all see the electromagnetic wave traveling in the
the requirements of our approximation scheme must belirection; i.e., the observers use a tetrad fraa@ﬁ such that
checked in every instance.

The metric tensor given by Eq610), (11), and (16) can eloy=U"  efy=(—1.um) 1+ uP)u], (22
be used to solve the problem of propagation of light rays in
the gravitational field of arbitrary-moving and spinning bod-and e{y,,e(;, are two unit spacelike vectors orthogonal to

ies. each other as well as to bo#f, ande3, [51,52. The vec-
tors e(}, ande(y, play a significant role in the discussion of
IV. PROPAGATION LAWS FOR ELECTROMAGNETIC polarized radiation. In fact, the connection between the null
RADIATION tetrad and the framee(s is given by [“=— (I, u”) (e,

a a_ _ 1 o a a_n—1/2( j P
The general formalism describing the behavior of electro-" @) N tl_lzi(lyuy_)(s(o)_e(:‘))' m*=2 N (e(l)+;e(2))'
magnetic radiation in an arbitrary gravitational field is well @1d m*=2""%(eq)—ie(;). The vectorse(;, and () are
known [46]. A high-frequency electromagnetic wave is de- d_efmed up to an .arbltra.ry rotation in space; their more spe-
fined as an approximate solution of the Maxwell equations ofific definitions will be given in Sec. VII.
the form Vectors of the null tetradl ¢,n“,m®,m%) and those o0&,
are parallel transported along the null geodesics. Thus, from
Fap=RelA zexpio)}, (170 the definition(21) and Eq.(20) it follows that the amplitude

. . . . , of the electromagnetic wave propagates according to the law
whereA ,; is a slowly varying function of position and is

a rapidly varying phase of the electromagnetic wave. From dod

Eq. (17) and Maxwell’s equations one derives the following gy Hoe=0, G-+6v=0. (23
results(for more details se¢47,48 and Appendix A. The

electromagnetic wave vectdi,=de/dx* is real and null, |f 4 is the area of the cross section of a congruence of light

that is, g“BIaIB=O. The curvesx®=x*(\) that havel®  rays then
=dx*/d\ as a tangent vector are null geodesics orthogonal
to the surfaces of constant electromagnetic plasehe null dA
vector|“ is parallel transported along itself according to the KZZGA- (24)
null geodesic equation
5 Thus, A|®|? and A|¥|? remain constant along the congru-
1PVgl“=0. (18 ence of light rayd“.

The equation of the parallel transpéti8) can be expressed '€ null tetrad framel(’,n®,m% m®) and the associated

as orthonormal tetrad frame(s) are not unique. In the JWKB
(or geometric opticsapproximation, the null ray follows a
dl« geodesic with tangent vectdt=dx®/d\, where\ is an af-
an +ng|’3| 7=0, (19 fine parameter. This parameter is defined up to a linear trans-

formation A\’ =\/A+const, whereA is a nonzero constant,
where \ is an affine parameter. The electromagnetic fieldso that I'“=dx*/d\’=Al*. The null tetrad is then
tensorF 4 is a null field satisfying:aﬁlﬁzo whose propa-  (1'%,n’* m®* m®) with n’*=A"1n?; this affine transforma-

gation law in an arbitrary empty space-time is tion leaves the associated tetrag}, unchanged. Moreover,
D dx we note that at each event the tetrad fraeflg is defined up
D)Fus+ 6F ,5=0, D, - v, (200 to alLorentz transformation. We are interested, however, in a

DN dA subgroup of the Lorentz group that leayé&sinvariant, i.e.,
o o . A%B=1¢This subgroup, which is thiétle group of the null
whereg=;V,l® is the expansion of the null ccmgruerige veBctorI“, is isomorphic to the Euclidean group in the plane.

Let us now construct a null tetrad(n“,m®,m®), where  This consists of translations plus a rotation. The translation
the overbar indicates complex conjugation, and“=—1  part is a two-dimensional Abelian subgroup given by
andm,m*=+1 are the only nonvanishing products among o
the tetrad vectors. Then the electromagnetic terfspg n’*=n%+Bm*+Bm*+|B|?¢, (25
=Re(F,p) can be written agsee, e.g.[49,50) -

_ m’*=m*+Bl“. (26)
faﬁzq)l[amﬁ]-i-\lfl[amm y (21)

Let us note that this transformation leaves the electromag-
where ® and ¥ are complex scalar functions. In the rest netic tensoF 4 given in Eq.(21) invariant; hence, this is the
frame of an observer with four-velocity® the components gauge subgroupf the little group of 1¢.
of the electric and magnetic field vectors are definedE&s The rotation part of the subgroup under discussion is sim-
=F*Pugz andH*=(—1/2)e*P7°F suz, respectively. ply given by n’*=n® and m'*=Cm® where C
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=exp(—i®). This corresponds to a simple rotation by a con-cal value of the momert is constant for a chosen trajectory

stant angled in the (efy,,e(3)) plane, i.e., of light ray and depends only on the space-time coordinates
of the point of emission of the photon and the point of its
e(1)=cosOe(},+sinOes,, (27)  observation. Thus, we find the relationship
€(2)= —SinOe(;)+cosOe, . (28 r=t—t*, (35)
Finally, we note that anull rotation is an element of the
four-parameter group Of transformations given by Wh|Ch reVealS that the dif‘fel’entia| |dent|m:d7' iS Valid
and, for this reason, the integration along the light ray’s path
|"*=Al“, (290  with respect to time can always be replaced by integration
L with respect tor with a corresponding shift in the limits of
n’'*=A"1n®+ Bm*+Bm*+|B|?Al*, (30) integration.
Making use of the parameter the equation of the unper-
m/azc(ma+§A|a). (31) turbed trajectory of the light ray can be represented as

A null rotation is the most general transformation of the local
null tetrad frame that leaves the spatitilection of the null
vector|® invariant.

(1) =xy(1)=K 7+ ¢. (36)

The constant vectorg() = &=k X (xoXk) is called the im-
V. EQUATIONS OF LIGHT GEODESICS pact parameter of the unperturbed trajectory of the light ray

AND THEIR SOLUTIONS with respect to the origin of the coordinatet:=|g is the

length of the impact parameter. We note that the vegtisr

We consider the motion of a light particiéphoton”) in  transverse to the vectérand directed from the origin of the
the background gravitational field described by the metriccoordinate system toward the point of the closest approach of
(9). No back action of the photon on the gravitational field isthe unperturbed path of the light ray to the origin as depicted
assumed. Hence, we are allowed to use the equations of light Fig. 1.

geodesic$19) with [“=dx*/d\ directly applying the metric The equations of light geodesics can be expressed in the
tensor in question. Let the motion of the photon be definedirst post-Minkowskian approximation as followgr more
by fixing the mixed initial-boundary conditions details, se¢7]):
() =%, o (—#)=k 32 1 1
X(tg)=Xg, —7(—»)=k, R R _ .
VTt X(7)= 5 Kakgdih™(7,8) - a{ ken(7.6)+ 5Kh*(7.8)

where |k|2=1 and, henceforth, the spatial components of
vectors are denoted by bold letters. These conditions define — Ekik k.hP9( 7, &)
the coordinates, of the photon at the moment of emission 27
of light, ty, and its velocity at the infinite past and infinite
distance from the origin of the spatial coordinatt®at is, at  where an overdot denotes differentiation with respect to
the so-called past null |nf|n|ty denoted by_ [47]) time, 3 =4/dT, b|EP|a/a§], ka:(l,ki), k :(_l!ki)1 ki

In the underlying inertial frame of the background flat _ " PTi-=5i-—kik- is the operator of prc?}ection onto the
space-time the unperturbed trajectory of the light ray is ayane othhogJonaI to the vectdr, and h*#(r.£) is simply
straight line he#(t,x) with t=r+t* andx=kr+ £ For a given null ray,
all quantities on the right side of E¢37) depend on the
running parameter and the parametef which is assumed
wheret,, Xio, and )=k have been defined in E¢32). It to be constant. Hence, E(B7) should be considered as an

is convenient to introduce a new independent parameter ordinary second-order differential equation in the variable

; ; ; Perturbations of the trajectory of the photon are found by
along the photon's trajectory according to the riiig straightforward integration of the equations of light geode-

: (37

X (1) =x\(1)=x5+K (t—tg),

r=k-xpy(t)=t—to+k-Xg. (33 sics (37). Performing the calculations we find
The timet, of the light signal’s emission corresponds to il i
=75, Wherery=Kk- Xy, and =0 corresponds to the coordi- X(r)=K+E(7), (38)
nate timet=t*, where . . _ .
X' (r)=x\(7)+E'(7)—E'(70), (39

t*:to_k'XO. (34)

This is the time of the closest approach of the unperturbedVherer=t—t* andr,=to—t* correspond, respectively, to
trajectory of the photon to the origin of an asymptotically flatthe moments of observation and emission of the photon. The
harmonic coordinate system. We emphasize that the numeritinctionsZ'(7) andE'(7) are given as follows:
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Initial position of photon: x,

o~

ﬁi(f):ik kgdiB*A(1)—k h“i(T)—lkihoo(T)
i 2 a BYi a 2

1
+ Ek'kpkthq( 7), (40)
=i L 5.DaB ai 1 iR00
E'(7)=5KaKpaiD*H(7) KB (7) — 5 KB™(7)
1.
+ Ek kpqupq( 7), (41

where it is implicitly assumed that“#(—=)=0, and the
integralsB*#(7) andD () are given by

B(r) =B +BL(, Bif(n= [ hifio.pdo,
8(n)= | hef(o. 5o, @2
D(7)=Dyf(n)+ D5 (7),
D;’AB(T):IT B (o, &)dor,
0er)- | 80,50 (43)

The integrals(42) and (43) and their derivatives are calcu-

lated in Appendix C by extending a method developefin

PHYSICAL REVIEW D65 064025

Current position of photon: x FIG. 1. Astronomical coordi-

g nate system used for the calcula-

tions. The origin of the coordinate
system is at an arbitrary point in
space. The unperturbed trajectory
of a light ray is defined by the unit
vectork directed from the source
of light towards the observer. The
y impact parameter of the light ray
is defined by the vectaf which is
orthogonal tok. Gravitating bod-
ies with spin move along arbitrary
world lines.

where the initial positionxa=xX(ty) and final positionx
=X(t) of the photon are prescribed for finding the solution of
the light trajectory. This is in contrast to our original
boundary-value problem, where the initial positianof the
photon and the direction of light propagati&ngiven at the
past null infinity were specified. All that we need for the
solution of the new boundary-value problem is the relation-
ship between the unit vectér and the unit vector

X=X

K:_ [
|X—Xol

(44)

which defines the geometricoordinaté direction of the
light propagation from the observer to the source of light as
if the space-time were flat. The formulé9) and (41) yield

K'==K'=g(7,+B (0,8, (45)

where the relativistic corrections to the vectr are given
by

1 5 ap :
Ekakﬁ&iDa (T)_kapijBaJ(T)

B(7,8)= (46)

|X(7) = Xo

We emphasize that the vectorg'|=pg(r,£&) and Bo)

= B(7q,§) are orthogonal té& and are evaluated at the points
of observation and emission of the photon, respectively. The
relationships obtained in this section are used for the discus-
sion of observable relativistic effects in the following sec-
tions.

and[15]. It is important to emphasize, however, that in the VI. GRAVITOMAGNETIC EFFECTS IN PULSAR TIMING,

case where the body moves along a straight line with con-
stant velocity and spin one can obtain the same results by
direct computation without employing the methods used in
Appendix C. We shall give in this paragraph the relativistic time delay
Equation (39 can be used for the formulation of the formula for the case of the propagation of light through the
boundary-value problem for the equation of light geodesicsionstationarygravitational field of an arbitrary-moving and

ASTROMETRY, AND DOPPLER TRACKING

A. Shapiro time delay in binary pulsars
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rotating body. The total time of propagation of an electro-of the time required for light to cross the system, that is, of
magnetic signal from the poing, to the pointx is derived the order of a few seconds. Thus, we can expand all quanti-
from Egs.(39) and(41). First, we use Eq39) to express the ties depending on time in the neighborhood of the instgnt
differencex—x, via the other terms of this equation. Then, and make use of the approximations=x—z,(to)=p,, rc

we find the total coordinate time of propagation of light, =x—2z(tg)=pc, Trop=Xo=Zy(t0)=pPop, Toc=Xo—Z(to)

—tp, from =poc, Jp=Top, and J.=TJy.. The next approximation

used in the calculations is
t—to=|X—Xo| + An(t,t0) + Ag(t, o), (47)
where|x—x,| is the usual Euclidean distance between the
points of emissionx,, and observationx, of the photon, whereX is the distance from the pulsar’s center of mass to
An(t,tp) is the Shapiro time delay produced by the gravito-the point of emission of radio puls¢S4]. One can also see
electric field of a pointlike massive body, ad(t,ty) is the  that po.=R+kX, where R=z,(t;) —z:(to), i.e., the radius
Shapiro time delay produced by the gravitomagnetic field ofvector of the pulsar with respect to the companion. Taking
the spinning source. The terfy, (t,ty) is discussed in detail these approximations into account, the following equalities

in [53]. The new termA «(t,t,) is given by[cf. Eqg. (C16) of
Appendix J

Ag(t,tg) =Bg(7) —Bg(70), (48)
1 up 1-k-v K,r zS*°
Bs(m) = kakaBSN =2 = v =k

(49)
1 B
Bl TO)Ezkak,BBS (7o)
1_k‘V0 kal’oﬁsgﬁ
=2 (50)

V1—02 (ro=Vo:ro)(ro—k-ro)’

where the timeg=t—t* and rp=t,—t* are related to the
retarded timess and s, via Eq. (12), S*#=S%(s), S§#
=S*(sy), r=x—12z, rg=Xo—Zy, Fo=|rol, x=x(t), Xo
=X(tg), z=2(S), zo=2(Sp), Vv=V(S), and vo=V(sp). It is

worthwhile to note that in the approximation where one can =S™

neglect relativistic terms in the relationshb) between the
vectorsk and — K, the expression for is given by

r=Dk+xy—2z(S), (51

hold:

(kXR)?
pe—Kpe=kX (RXK)— ¢ (54)
2D
Po—Kp,=0. (55
Moreover, it follows from Eq(54) with p.~D that

2 2 2 2

poc— (K poc)? R*—(k-R)
pc—k-pc= : == . (56)

2pc 2pc

The primary contribution to the functioAg(t,ty) is ob-
tained after expansion of the expressionsBér) andB( )
in powers ofv/c and picking up all velocity-independent
terms. Taking account of Eq&54)—(56) and (D3) this pro-
cedure gives the time delay correctidn to the standard
timing formula as follows:

2Ty (kXrp) 2T (kX1o)  2T0p- (KXTgp)
Fp(fp=k-rp)  re(re—k-re)  rop(rop—K-rop)
_ ZJOC'(erOC)

rOc(rOC_k'rOC).

(57)

By means of Eqs(53) and (55 we find that the first and

whereD = [X—Xo|. In the case of a binary pulsar, the distancethird terms in Eq.(57) drop out. Neglecting terms of order
D between the pulsar and the solar system is much largeg/Rr we can see tha,.= R, which bringsA into the form

than that between the point of emission of the radio puge,
and the pulsar or its companior(s). Hence,

[kX (%—2)]?

r—kr=kXx[kX(xg—2)]— 5D

k, (52

where terms of higher order in the ratig,—z|/D are ne-
glected.

The result(48) can be used, for example, to find the spin-

dependent relativistic correctiakg to the timing formula of

1
po(p—k-p) R(R—Kk-R)|

AS: 2.700' (k>< R)
(58)

Making use of Eq.(56) transforms expressiofb8) to the
simpler form

_ZJOC'(kXR)_ ZJOC'(KXR)
ST R(R+k-R) ~  R(R-K-R) '’

(59

binary pulsars. The binary pulsar consists of two bodies—the

pulsar itself(index “p”) and its companiorindex “c”); in
what follows we letr,=x—2z,(s), re=x—2¢(S), rop=Xo
—Zp(Sp), andrgc=Xo—Z(Sp), wherez, andz; are coordi-

where the unit vectoK is defined in Eq(44).
Formula(59) coincides exactly with that obtained on the

basis of the post-Newtonian expansion of the metric tensor

nates of the pulsar and its companion, respectively. Accordand subsequent integration of the light-ray propagation in the

ing to[15], the difference between the instants of timend

static gravitational field of the pulsar compani@sb]. In

Sp, Sandty, andsy andtg for binary pulsars is of the order principle, the additional time delay caused by the spin of the
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companion might be used for testing whether the companioin addition, making use of formuléC11) yields

is a black hole or nof56]. However, as shown if565], the

time delay due to the spin is not separable from the delay lk 5 Dab 1—k-v pier karﬁsaﬁ
caused by the bending of light rays in the gravitational field 7Ka pdiDg"(1)=—2 A= 5
of the companion57]. For this reason, the delay caused by V1-v Vir(r=k-n

the spin is not a directly measurable quantity and cannot be 2 K.p.Su
effectively used for testing the presence of the black hole U= (64)
companion of the pulsdb5]. 1—-v2 r—ker
B. Deflection of light in gravitational lenses 1 - 1-k-v, Pyrl K, I 0gSE?
r!lnd by Ithe Isol?:lr :)I/sttlam _kakﬁaiDgﬁ( To)=—2 ﬁo Lo 5%
) ) 2 l_UO rO_VO'rO (I’O—k~r0)2
Let us assume that the observer is at rest at an event with )
space-time coordinates, k). The observed directiogito the 2 k,P;Sy
source of light has been derived [ifi] and is given by + J1—v2 o=k o (65)
s=K+a+ B— Byt 7, (60)

The light deflection vector, i.e., the vector connecting the
where the unit vectoK is given in Eq.(44), the relativistic ~undeflected image to the deflected image of the source of
correctionsB and B, are defined in Eq46), « describes the  light, in the plane of the sky is defined [115] and for the
overall effect of deflection of the light-ray trajectory in the Purély spin-induced part can be calculated from the third
plane of the sky, ang is related to the distortion of the local "elation in Eq.(61). In that relation the first term is given in
coordinate system of the observer with respect to the undeFd- (63) and the second one can be calculated from(ES),
lying global coordinate system used for the calculation of theVhich results in
propagation of light rays.

. . ) P.. rasaj
More precisely, the quantitg can be expressed as Pijkath: _2\/1_—1}2{(14(.\/)( ij s
o . . . o r—v-r
a'=aytas, ay=-0dBu(7)+k,Pihy(7),
_ o j Kor sS*°
als=—3iBs(7)+K,Pihg (), (61 P ) (69

the quantitiesB= By, + Bs and By= Bom + Bos are defined by

The most interesting physical application of the formal-
Eq. (46), and ! Ing pnysi pplicati

ism given in the present section is the gravitomagnetic de-
1 flection of light in gravitational lenses and by bodies in the
Y=y Y= Eknp}hr'\‘/ll(T), splar sygtem. In both cases the impact para_métef the'
light ray is considered to be extremely small in comparison
with the distances from the body to the observer and the
i Ek thnj(T) (62) source of light. The gravitational lens approximation allows
s 2 ns R us to use the following relationshiggor more details see

Sec. VIIB in[15]):
In what follows, we neglect all terms depending on the ac-

celeration of the light-ray-deflecting body and the time de- d?

rivative of its spin. Light-ray deflections representeddiy, r—kr=¢=>-k,  rotkro=4, (67)

Bwu » andy,, caused by the mass-monopole part of the stress-

energy tensofl) have been calculated ja5] and will notbe  where{'= p}(xj —7i(s)) andg})= p}(xg)_ Zi(sp)) are the im-
given here, as our primary interest in the present paper is thgact parameters of the light ray with respect to the light-
description of the spin-dependent gravitomagnetic effectsgeflecting body evaluated at the moments of observation and
Using equation(49) for the function Bg(7) and formula  emission of light. Assuming thag]=d<min[r,ry] and ||

(D6), we obtain =do<min[r,rq], wherer =|x—z(s)| andry=|x,—z(sp)| are
i the distances from the body to the observer and to the source
3 Be(7) 21—k~V (1=02)K,r gS*PPr) of light, respectively, one can derive the following approxi-
Bea(7) = — I
s M—02| (r—v-)3(r—k-r) mations:
— k. aBp. ] aBp. ] d?
LAk VKSR koS P K= roker=2ro 68

(r—=v-n)2(r—k-r)?  (r=v-r)2(r—k-r)

Pijkasaj along with
C(r=v-r)(r—k-n| 63

r—=v-r=r(l—Kk-v), rg—Vg-rg=ro(l+k-vg). (69
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Hence, the relativistic spin-induced deflection of lighy in Despite the apparent difference in the two definitions, they
Eq. (61) can be calculated from are identical as equalitieg*=dx*/d T andl ,= d¢/Ix* hold.
In order to connect various physical quantities at the points
2karBS“ﬁ§i kaPijSC’j of emission and observation of light one has to integrate the
g - q2 ' (70) equations of light propagation.

The integration of null geodesic equation in the case of
where we have neglected all residual term©gti/r). After ~ SPace-times possessing symmetries has been known for a
substituting the expressions given in E¢82) and (D3) in long time and extensively used in astronomical p_radm,
Eq. (70), one obtains the analytic representation of the rela&-9-[62] and references thergirHowever, interesting astro-

tivistic deflection of light valid for the body having arbitrary Nomical phenomena in the propagation of light rays in
high speeds and spinJ: curved space-time are also caused by small time-dependent

perturbations of the background geometry. Usually, the first
: post-Newtonian approximation in the relativistid-body
¢ problem with fixed or uniformly moving bodies has been
applied in order to consider the effects of théhody system
on electromagnetic signal§8]. Unfortunately, this approxi-
: mation works properly if, and only if, the time of propaga-
tion of light is much shorter than the characteristic Keplerian
(7D time of the N-body problem. An adequate treatment of the
effects in the propagation of light must account for the retar-
dation in the propagation of the gravitational field from the
light-deflecting body to the point of interaction of the field

1-v?

2 1_,)/

yv®

T (KX + T (&Xv)+

(v-J)(kXQ)-v

i o7
oSG

4~? . o l—y .
— 7 | Pii(vx I —(kx)' - W(v~.7)(k><v)'

In the case of slow mation, the Taylor expansion of Etl)
with respect to the parametefc yields

8T (kXO{  A(kx ) with the electromagnetic signal.
ag= n + PR (72 A theory of light propagation and Doppler shift that takes
d d account of such retardation effects has been constructed in

. L . . the first post-Minkowskian approximation by Kopeikin and
which exactly coincides with the previously known formula g0, [15] and Kopeikin[63]. For the sake of brevity, we
for a stationary rotating _grawtaﬂona] Iefmez €9, the lead- do not reproduce the formalism here and restrict ourselves to
ng terms.of Eq.(6.28) in [58]] derived using a dlfferent consideration of the case of the gravitational lens only. Some
mathematical technlq.ue. One can also recast(ER. in a details of this approximation have been given in the previous
simpler gradient form: section. Making use of either of the definitio(&), we ob-

A s A . tain for the gravitational shift of frequency
as=4—, PYs=MkxXTlaIndlaf, (73
Z4 Sv ro r
| =|vtpvtpw (ayt+ as), (75
where 5 is a gravitomagnetic component of the gravita- Yo/ g
tional lens potentialcf. the second term of Eq.153 in
[15]]. P ( 4159 whereD = |x— X,/ is the distance between the source of light

and the observer,=|x—z(s)| is the distance between the
lens and observer,,=|x,—z(sp)| is the distance between
the lens and the source of lighit=dx(t)/dt is the velocity

The special relativistic treatment of the Doppler fre- of the observery,=dxy(t,)/dt, is the velocity of the source
quency shift in an inertial system of Cartesian coordinates isf light, and e, and a represent the vectors of the deflec-
well known. It is based on two facts: proper time runs dif- tion of light by the gravitational lens given in E¢61). For-
ferently for identical clocks moving with different speeds mula(75) can be applied to the processing of Doppler track-
and electromagnetic waves propagate along straight lines g data from spacecrafts in deep space. In the case of
such an inertial system in flat space-titsee[59] and[60]  superior conjunction of such a spacecraft with the Sun or a
for more details The general relativistic formulation of the planet, the result shown in E¢Z5) should be doubled since

C. Gravitational shift of frequency and Doppler tracking

frequency shift in curved space-time is more involved.  the light passes the light-deflecting body twice—the first
Two definitions of the Doppler shift are us¢@1}—in  time on its way from the emitter to the spacecraft and the
terms of energyA) and in terms of frequenc{B): second time on its way back to the receiver. The Doppler
tracking formula after subtracting the special relativistic cor-
vooufl, v dTp rections(for details se¢15] and[63]) assumes the following
Vo u0|0a Vo dT .

wherevy andv are the emitted and observed electromagnetic (ﬁ) _
frequencies of light; hereTg, ug) and (T, u®) are, respec- vol
tively, the proper time and four-velocity of the source of light
and observer, anlg, andl , are null four-vectors of the light 8G o r

ray at the points of emission and observation, respectively. - W(V_ DY p™

c3d? oAt DY 5"0) L

8GM 16@(k><.7)-§)< ro T

gr

(kX T). (76)
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Only terms proportional to the mas4 of the deflector were (efy).ef5) plane, Sh=S0, S;=S,cos M+S,sin20, S;=
known previously(see, e.g.[15] and[64]). With the math- —S,5in20+S,c0s M, and S,=S,. This is what would be
ematical techniques of the present paper general relativistig '

i que to the intrinsic rotat £1h itational xpected for a spin-1 field. That is, under a duality rotation
corrections due to thé Intnnsic rotation ot the gravitational ¢ ¢, _ /2, one linear polarization state turns into the other.

lens can now be calculated. For the light ray grazing the limb : . P
of the light-ray-deflecting body, the gravitomagnetic Doppler For the null field(21) under consideration in this paper,

shift due to the body’s rotation is smaller than the effect 1 o
produced by the body’'s mass by terms of ordegpl/c, 5a=§w(‘bma+ rm,), (86)
wherew, is the body’s angular frequency ahds its char-

acteristic radius. In the case of the Sun, the effect reaches a — _jey s th f fth
magnitude of about 03810™ 14, which is measurable in prac- Where®=—1%U, Is theconstantirequency of the ray mea-

tice taking into account the current stability and accuracy ofuréd by the observer with four-velocigf’. Changing from
atomic time and frequency standards 108, cf. [65] and the circular polarization basi€86) with amplitudesw®/2

[66]). For Jupiter, the corresponding estimate of the gravito@nd wg'/Z to the linear polarization basig “=&1)e()
magnetic Doppler shift is 057105, which is also, in prin-  +&@)€(), We find that £3)=w(®+W¥)/\8 and &j,

ciple, measurable. =iw(®—WV)/\/8. The variation of the Stokes parameters
along the ray are essentially given by HG3), since the
VII. SKROTSKII EEFECT EOR ARBITRARY-MOVING fr_equencyw is simply a constant parameter along the ray
POLE-DIPOLE MASSIVE BODIES given byo=dt/dA =dx/dA. o
The polarization vectoP and the degree of polarization
A. Relativistic description of polarized radiation P=|P| can be defined in terms of the Stokes parameters

The polarization properties of electromagnetic radiation(So,S) by P=S/Sy and P=|S|/S,, respectively. Any par-
are defined in terms of the electric field measured by adfially polarized wave may be thought of as an incoherent
observer. Let us start with a general electromagnetic radigsuperposition of a completely polarized wave with Stokes
tion field F,z and define the complex field,; such that ~ParametersRS;,S) and a completely unpolarized wave with
F.s=Re(F,z) andE,=Re(,), where&,=F ,zu” is the  Stokes parametersS{—P$,0), sothat (S,9)=(P%,9)
complex electric field. In the rest frame of an observer witht (So—P$,0). For completely polarized wavesP de-
four-ve|ocity ue, the intensity and po]arization properties of scribes the surface of the unit Sphere introduced by Poincare

the radiation are describable in terms of the tensor The center of the Poincasphere corresponds to unpolarized
- radiation and the interior to partially polarized radiation. Or-
Jop={EsEp), (77)  thogonally polarized waves represent any two conjugate

points on the Poincarsphere; in particularP,;==*1 and
where the angular brackets represent an ensemble averaBg= +1 represent orthogonally polarized waves correspond-
and Jaﬁu'3=0. The electromagnetic Stokes parameters aréng to the linear and circular polarization bases, respectively.
defined with respect to two of the four vectors of the tetrad Any stationary or time-dependent axisymmetric gravita-

e(g) » introduced in Eq(22), as follows(cf. [67] and[68]): tional field in general causes a relativistic effect of the rota-

tion of the polarization plane of electromagnetic waves. This

So=Jagle(yely+ efnel], (78)  effect was first discussed by Skrotska] and later by many
other researchergsee, e.g.[69] and [26] and references

Sl=Jaﬁ[eE*1)e(Bl)—ef“z)e(ﬁz)], (79)  therein. We generalize the results of previous authors to the
case of spinning bodies that can move arbitrarily fast.

So=Jaglefnely +elzel] (80)

) 5 5 B. Reference tetrad field
S3=1dupl€(1)82)~ €2)8(1)]- (81

The rotation of the polarization plane is not conceivable

Using Eq.(77), the Stokes parameters can be expressed iWithout an unambiguous definition of a local reference frame
the standard wa67] in a linear polarization basis as (tetrad constructed along the null geodesic. The null tetrad

frame based on four null vectori;“(n“,m“,ﬁ") introduced

So=(|En)12+ €)%, (820 in Sec. IV is a particular choice. As discussed in Sec. 1V, this
null tetrad is intimately connected with the local frame
Si=(I€w|*~[€)|?), (83 (efh).e(t) el efs), where the vectors(y, ande, are de-
L fined in EqQ.(22) and the spacelike vectoes;, andeg,, are
S:={Ené)t Enéen, (84) directly related to the polarization of the electromagnetic
o wave. Each vector of the tetrad, ,e(}),€(3),€(3,) depends
Ss=i(E1)€2)~ E1yéa)) (850  upon time and is parallel transported along the null geodesic

defined by its tangent vectof. To characterize the variation
where&(, = € .e(, for n=1,2. Under the gauge subgroup of of e(p along the ray, it is necessary to have access to a
the little group ofl *, the Stokes parameters remain invariant.fiducial field of tetrad frames for reference purposes. To this
However, for a constant rotation of angl® in the end, let us choose the reference frame based on the set of

064025-10



GRAVITOMAGNETIC EFFECTS IN THE PROPAGATION . .. PHYSICAL REVIEW B5 064025

static observers in the background space-time. Then, at the C. Skrotskii effect

past null infinity, where according to our assumption the \ye have chosen the null tetrad frame along the ray such

space-time is asympotically flat, one has that att= —« the tetrad has the property tm&)(—oo)=0.
efo)(—)=(1,0,0,0, ef“l)(—OO)z(O,al,aZ,a?’), It follows that in generaé?i)=0(h). The propagation equa-

tion for the spatial componeneﬁu) is therefore given by
(87 a7\ & T 5N | =5 (dihjg—dihip)ker,) . (92
Here the spatial vectora= (a!,a?,a®), b=(b? b?b%)), and . : .
k= (k!.k2,k%) are orthonormal in the Euclidean sense andFurthermore, we are interested only in solving E&4) for

the vectork defines the spatial direction of propagation of ;Eg Vﬁgﬁ;i%nagfdﬁﬁ{-tnitns;e used in the description of
the light ray[see Eq(32)]. At the same time, the four vectors P gnt,

(87) also form a basis:s(m:e?ﬁ)a/ﬁx“ of the global har- . 1 . ’
monic coordinate system at each point of space-time, where I e+ Ehijej(n) +eeln?'=0  (n=12,
€(5=€(p)(— ). However, it is worth noting that this coor- T 93)
dinate basis is not orthonormal at an arbitrary point in space-
time. Nevertheless, it is possible to construct an orthonormq}vhere we have defined the quantij as
basisw(s, at each point by making use of a linear transfor-
mation w(s = AJ€ls such that the transformation matrix is _ 1
. . . . . [ [
given in the linear approximation by O'= _Sijlaj<§hlak : (94)
A8:1+ lhom AiOZhOi , Therefore,ei(n) can be ob_tain_ed from the integration of Eq.
2 (93). Moreover,| e, =0 implies that
0 _ i i i Al =inl
Ao=0, A}=5}‘%hu. (88) GG MU G A
It is worth noting that, as a consequence of definitlén
A local orthonormal basis(5 is then defined by =w(1x) and Eq.(38), one hasl=w(k+E). Moreover,
from the condition 1, 1“=0, it follows that k-E=
N 1 N | 1 J. —(1/2)h , gk“K”. _
0(0)=| 1+ 5MN00.0,0,0],  w(y)=|hojd’,a—sh;al], Let us decompos€' into components that are parallel
and perpendicular to the unit vectk, i.e.,
A . o1 : : : D
w?z)z(hojb],bl_zhijbj>, wé):(hojkj,kl_zhijk]). le(kﬂ)kl_'—P]QJ (96)
(89

Then, EQ.(93) can be expressed as

By definition, the tetrad frame(, is parallel transported
along the ray. The propagation equations for these vectors -—

. 1 . .
ot gl + (Dl

are thus obtained by applying the operdigr of the parallel dr
transportsee Eq.{(20)]. Hence, +8ij|ej(n)P!qu:0 (n=1,2). (97)
def, Integrating this equation from- to 7 taking into account
W | e _ grating a g .
dn +Fﬁylf3e(7#)—0, 90 the initial conditions(87) and equalitie$ij|alk'=—b' and

eijblk'=a', we obtain
where\ is an affine parameter along the light ray. Using the
definition (_)f the Chlristoffel symbol&1) and changing over ol —gi— Ehijaﬂ— fr Ot bi—SijlajPI fr 0o,
to the variabler with dx*/dr=k“+0O(h), one can recast 2 — ) =
Eq. (90) in the form (98)

d 1 1 . 1 . 4 _ ) 4
E_(e&)-l— Ehze&))=En“”(&,,hyﬁ—(?yh,,ﬁ)kﬁe{m. e'(2)=b'—§hijbj—( J‘iwk'ﬂd(f al_8ij|b]P|ququd0'.
(91 (99

Equation(91) is the main equation for the discussion of the  To interpret these results properly, let us note that a rota-
Skrotskii effect. tion in the (w(1,w(,)) plane by an anglé at timer leads to
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, 1 _ 1 whereBy is the dipolar gravitomagnetic field associated with
(100 7 5
X e
. 1 1 Bg=V><( 3 )=—3[3(r-:7)r—.7], (109
a)'(z):— a—ihijal 5i”¢+(b'—§hijbl)cos¢, r

(10D wherer=r/r and J=J17 are unit vectors, and’ is the
magnitude of the angular momentum of the source. Thus,
k-Q=k-Bg, and, in this way, we recover Skrotskii's origi-

_ 1 _ . _ 1 A _ nal resultd¢/dr=k-Bgy, which is the natural gravitational

w'(l):a'— Ehija1+ ob', w'(z):b'— Ehijbl— pa'. analogue of the Faraday effect in electrodynamics. The Sk-

rotskii effect has a simple physical interpretation in terms of
(102 the gravitational Larmor theorefivl]. We note that in the
particular case under consideration here, the gravitomagnetic
field can be expressed &= —V(T-rir3) for r#0. Thus
for radiation propagating in the space-time exterior to the
source,¢p=— J-r/r3+const. In particular, it follows from
- this result that the net angle of rotation of the plane of po-
¢(r)=f k-Qdo (103 larization from—o to + is zero. This conclusion is con-
- firmed later in Eq(114) as well.

) In the general case, where the bodies generating the gravi-
aboutk in the local (1), () plane. Moreovergy) and  (4iiona| field are both moving and rotating, the integration of
€(z) rotate toO(h) toward the direction of light propagation gq (105 is also straightforward and is accomplished with
k [see the very last terms on the right-hand sides of .  the help of a mathematical technique described in Appendix

so that if the anglep=0O(h) then we have

Comparing these vectors with Eq98) and (99), we recog-
nize that as vectorg;, ande,, propagate along the light ray
they are rotating with an angle

and(99)]. , o , B. The result is
We are mostly interested in finding the rotational angle
in the plane perpendicular to. It is worth noting that the H(7)= o+ Sp(7)— (),

Euclidean dot produck- £ can be expressed in terms of
partial differentiation with respect to the impact parameter 1
only. This can be done by making use of EG4) and noting Sp(7)= Ek“k'si;)a??qBag,( 7,8, (109
thate;,k'kP=0, so that

1 where ¢ is a constant angle defining the orientation of the
k-Q= Ek“k'e,pq& Nop s (109 polarization plane of the electromagnetic wave under discus-
sion atry, 6¢(7) andS¢(7y) are relativistic rotations of the

R, ... polarization plane with respect to its orientation at infinity at
where the caret over spatial indices denotes the projectio ; o :
e moments of observatiorn, and emission of light;,

onto the plantle orthngonaI to the propagation of the light rayrespectively, and the functioB; is defined in Eq(42),
for instance A P Al. Hence, the transport equation for the  \ve note that according to the definitid?) the tensor

angle¢ assumes the form function B, consists of two parts, the first of whicBg{,
d relates to the action of the mass-monopole field of the par-
¢ — k. Q Kk 8|pq(9 hep (105 ticles and the second onBZ?, describes the action of spin
dr dipole fields on the rotation of the polarization plane. There-

o ) ) ) fore, the angle of rotation can be represented as an algebraic
which is useful for integration. Formuld05) constitutes a  gm of two components

significant generalization of a result that was first discussed
by Skrotskii( [25] and[70]) and bears his name. Sp=Sdy+ S, (110
For a stationary “pole-dipole” source of the gravitational

field at rest at the origin of the coordinates, EGH), (11),  \where the monopole part can be calculated using(Eg0),
and (16) for the metric perturbations imply that

2m Z(JXI‘)' 2m 5¢ :Ek kslﬁag Babzzml_kv k(ng)
hoo=—=» Noi=— 3 Mj=——9;. (108 M2 M Vi-v2 (r=k-n(r=v-r)’
r (111
It follows from Eq. (94) that in this case The spin part is given by
m(kXr) 1 e
Q=Bg=—3—, (107) Sbs=7kakis PIBE, (112
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and has a rather complicated form if written explicitly by dipole, and mass-quadrupole source moments and in the har-
making use of the partial derivative of the functicBgﬁ monic gauge the canonical part of the metric perturbation is
given in Eq.(C9). In the gravitational lens approximation given by
when light goes from-« to +«, Egs.(111) and(112 sim-

i 2M Tog(t—T)
plify and assume the form can._ : o - r } 115
Spm(+*) ok (Exv) (113
0)=— ——k- V), .
M C3d2 can. _ __ 28iqupxq z-Ij(t_r)
o I’3 il |
4G (kX&) - (EXT)| (116
5¢S(+m)=ﬁ (k'J)JrT =0.
114 2
. hicjan':5ijh88n'+rzij(t—r)- (117

Equationg113 and(114) make it evident that in the case
of gravitational lensing the integrated effect discussed by Sk|—_|
rotskii [25] is due only to the translational motion of the lens.

There is no contribution to the effect caused by spin of th

body and proportional to @7, whered is the impact param- Sarded timet—r. Dependence of the mass and spin on time
eter of the light ray with respect to the body. This ratherWOUId be caused by the process of emission of energy and

. angular momentum which are then carried away from the
Source by gravitational waves. If necessary, the time depen-
Y dence of mass and spin can be treated in the framework of
the same calculational scheme as applied in the present pa-
to stress, however, that all the results of the paper by S ber. Moreover, it is assumed in Eqe15—(117) that the

rotskii [25] are correct, since the final formulas of his PAPET e nter of mass of the source of gravitational waves is at the

relate to the situation where light is emitted from or near theFjrigin of the coordinate system and does not move. Hence,

ere the mass\ and spin.7' of the source are constants,
whereas its quadrupole momenj is a function of the re-

[72] who criticized the final conclusions of the papers b
Skrotskii[25] and othergsee[73] and[74]). We would like

f:(;tjacc: d Ot]:)ﬂt]r?atr o;?tgg rk;(\)/g;.tiosr?aclhlgwga'sriuosbvtlr?gsi% 'Sleng e radial coordinateis the distance from the center of mass
Y ' ' 9 o the field point in space.

rotation of the polarization plane does not equal zero as cor- The explicit expressions for the gauge functiovisrelat-

rectly shown by Skrotskii. . can. .
The absence of the Skrotskii effect for eIectromagneticIng hyy" 1o by, are chosen in the foriv]

radiation propagating from-oo to +o0 in the case of a sta-

-1
tionary rotating body reveals that the coupling of the polar- Wo:E —( )Ik'(t_r)} (118
ization vector of the photon with the spin of the rotating 2 r '
body cannot be amplified by the presence of a gravitational
lens. 1 A7 (t—r) Ti(t—r)
W'=§VinV|[—} —ZVk[f :
VIIl. SKROTSKII EFFECT BY QUADRUPOLAR (119

GRAVITATIONAL WAVES FROM LOCALIZED SOURCES
where we have introduced the definitions of time integrals of
the quadrupole moment
We shall consider in this section the Skrotskii effect asso-
ciated with the emission of gravitational waves from a local- . t
ized astronomical system like a binary star, supernova explo- ( )Iij(t)Ej dvZij(v),
sion, etc. For simplicity we shall restrict our consideration to o
the quadrupole approximation only. The direct way to tackle
the problem would be to use the Taylor expansion of the (*Z)I-(I)EJ't do\ DT (v). (120
formula for the Skrotskii effect given in the previous section. . —w !
However, it is instructive to make use of an approach out-
lined in [7] that is based on the multipole expansion of theThe gauge functiongl18 and (119 make space-time coor-
radiative gravitational field of a localized astronomical dinates satisfy both harmonic and Arnowitt-Deser-Misner
source[75]. (ADM) gauge conditions simultaneougly]. The harmonic-
To this end, let us consider the propagation of a light rayADM coordinates are especially useful for integrating equa-
taking place always outside a soul@éth its center of mass tions of light propagation and for description of the motions
at resj that emits gravitational waves. The metric perturba-of a free falling source of light and observer. It turns out that
tion h,,, can be split into a canonical paif™, which con-  the source of light and the observer do not “experience” the
tains symmetric trace-fre€STF) tensors only(for more de- influence of gravitational waves in ADM coordinates and
tails on STF tensors sgg6]), and a gauge part, i.eh,, move only under the action of the stationary part of the
= hff;"'Jr d,w,+d,w,. In the case of mass-monopole, spin- gravitational field created by the mass and spin of the source

A. Quadrupolar gravitational wave formalism
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of the gravitational waves¢for more details concerning the wheret* is the instant of closest approach of the light ray to

construction of the harmonic ADM coordinates $&§.

the center of mass of the gravitational lens. After making use

The rotation of the polarization plane is described by Eq.of the approximations shown above, E#24) simplifies and

(105), where the rotation frequend is defined in Eq(94).

Using expression&l15—(117) together with the gauge free-

dom, the angular velocity is given by

-~ jiX . ~
k'Qzﬁr( — 3| HKeipady;

'ij(t—r)}
-

+k

(121

wherew=(w') is given by Eq.(119), r=7+d?, andd
=14 is the impact parameter of the light ray.
Integration of Eq(105 with respect to time results in

ipq“qr r

- 1k
—(97.5 -(VXw)

Jx 1
5¢(T)_——3—§|(~(VXB), (122
whereB=(B') with
_28T(t=r) +2ki'zij(t—r) _ka{zki(t—r)
ry r r
(123

andy= r—r. Making use of formulg119 for w' and taking
partial derivatives brings Eq.122 to the following more
explicit form:

_ Tix' (kxg'g IIJ I.J Tij
A I A I A
+(k><§)ixj . ﬁ+%
3 ity r2
kx&K|. I
+% i+, (124

assumes the form

4T;(1*)(kx §)'é)

SP(t*)=— e

(127)

One can see that the first nonvanishing contribution to the
Skrotskii effect comes from the time derivative of a mass-
quadrupole moment and does not depend on the spin of the
source of gravitational waves. It agrees with the conclusions
of Sec. VII. Formula(127) also shows that if the source of
gravitational waves is periodic, such as a binary star system,
the polarization plane of the electromagnetic wave will ex-
perience periodic changes of its orientation with a character-
istic frequency that is twice that of the soulce].

Equation(127) can be derived from Eq(113 as well.
Indeed, let us assume that the gravitational lens is comprised
of N point particles forming a self-gravitating body. Fir
point particles, Eq(113 implies

N

ma
5¢M<+w>=—4a§1wk'[@—é)xva],
‘ (129

where the point particles are enumerated by the iradax-
ning from 1 toN, m, is the mass of thath particle,x, and

v, are the coordinates and velocity of ta¢h particle, £,
=Pjx}, and & is the impact parameter of the light ray with
respect to the origin of the coordinate system, which we
assume coincides with the center of mass of the Ighs,
defined by the equation

N

Ii(t*):azl max4(t*)=0. (129

where the quadrupole momerilg are all evaluated at the As a consequence of E(L29), we conclude that all the time

retarded times=t—r. It is straightforward to obtain the two derivatives ofZ' vanish identically. We also define the spin
limiting instances of this formula related to the cases of aof the lens and its tensor of inertia as follows

gravitational lens and a plane gravitational wave.

B. Gravitational lens approximation
In the event of gravitational lensing one Hag

2

d
VRPN - S

2r (129
so that
d2 2
—_——_ — —r = * _ “ e
ry > t—r=t T +e (126

N

ji: 2 ma(xaxva)i,

a=1

N
THE) = 2, maxg(t*)xy(t*).
(130

The spin of the lens is conserved and does not depend on
time, while the tensor of inertia is, in general, a function of
time.

Let us expand the right-hand side of E#§28) in a power
series with respect to the parametég|/|& which is pre-
sumed to be small. We find that
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N o LTT_ o5TT )
bationh;;'=2Z. '(t—r)/r, the angle of rotation of the polar-
K. §><E mava) 1 ] ( ) g p
a=1

ization plane of the electromagnetic wave emitted at past null
infinity is given by

4G
Spu(+2)=~ Z32

_8(k><§)l 1 (kXN)IkJ -
d* 5¢(T)=§mhij (t—=r). (137

N
—k- Zl ma(gaxva)

2

v é) (131) In the case of an electromagnetic wave emitted at ingtant

ad) and at the distance, from the source of the gravitational
waves and received at instanat the distance, the overall

whered=|&. Taking into account definitions of the center of angle of rotation of the polarization plane is defined as the
mass, spin, tensor of inertia of the lens, as well as the identityifference

N
X 2 mavy(£a§)+0

. o A 1[ (kXN)'K
2, 2mal (kX @) val(fa = (kX §'[ 18~ (6x T)'] 0p(7) = 6(70)= 5 T-gogg Mi (171
(132) (kx No)ikj hTT 138
together with formulg113), we arrive at the result shown in ~ 1-cosd, ! (to=ro)|, (139

(127). Comparing expressiofil27) with the corresponding _ )
result derived by Kobzarev and Selivanpy72], formulas ~ WhereNy=Xy/rq and 9, is the angle between the vectdes

(11) and (12)], we conclude that the result given by theseandNj.
authorg[72] is misleading. It is worthwhile to compare the results obtained in the

present section to the standard approach used for calculating
effects caused by plane gravitational waves. Ordinarily in
o o such an approach a plane gravitational wave is assumed to be
In the limit of a plane gravitational wave, we assume thatmonochromatic with the property that at infinity the space-
the distanceD between the observer and source of light istime remains asymptotically flat. Actually, this means that
much smaller tham andr, their respective distances from gne deals with a localized packet of waves with boundaries
the deflector. The following exact equalities hold: asymptotically approaching plus and minus null infinity uni-
. formly. The metric tensor of such a plane gravitational wave
d=rsind, y=r-r=r(cosd-1), 133 i thg transverse-traceless gauge cgn be g(Jaxpress[dtff]as

C. Plane gravitational wave approximation

where 9 is the angle between the directions from the ob-
server to the source of light and the source of gravitational
waves. Furthermore, we note that the veéarorresponding
to impact parameted, can be represented as

hoo=hoi=0, h{"=Refa; expip,x“)}, (139

where the spatial tensérij is symmetric and tracelessy
. e =0), p,=wq(—1p) is the propagation four-vector of the
E=r(N'—k' cosd), (134  gravitational wave with constant frequeney, and constant
o . . _ unit spatial propagation vectgr anda;; p'=0 [77]. One can
whereN'=x/r and|N|=1. Making asymptotic expansions easily see that such a localized plane gravitational wave does

up to leading terms of orderrlbmg 1fy, and neglecting all  not interact at all with an electromagnetic ray propagating
residual terms of order 17 and 1t3, would lead to the fol-  from minus to plus null infinity.

lowing result: Indeed, the integration of the light ray equati®7) leads
o L to integrals involving the exponential function entering Eq.
S(7)= (kXN)'(N! cosd—k!)Z;j(t—r) (139 along the unperturbed light ray path of the form
T r(cosd—1) -
(kX N)IKIZTT(t—r) lim f ] Pkl r=278(p k) = 27wy o(k-p—1),
_ 1] T—oowd —
~ r(l-cos®) ' (139 (140
where the definition of the “transverse-traceless” terjgfyi ~ Whered(x) is the Dirac delta function. Now, if the direction
with respect to the directioN is taken into account, of the propagation of electromagnetic ray does not coincide
with that of the gravitational wavek@ p) the argument of
1 on i ; e ko
T 7+ = (85 +N:NIN-N.T the delta func.t|on in Eq(l40) is not zero, i.e.k- p<1, and
1 g 2( i+ NiNjNp the result of integration along the light-ray trajectory van-
ishes. On the other hand, k=p there is again no effect
—(85-N-N.+ S:.-N: '
(9ipN;NqF 9ipNiNg) Zpa, (136 since the right side of Eq37) vanishes due to the transver-

. TT . . . .

vectorN. In terms of the transverse-traceless metric perturh;j'ki=h"p!=0. This result has been proved by Damour
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and Esposito-Fase[78] who studied the deflection of light |,=d¢/dx, and arranging terms with similar powers of
and the integrated time delay caused by the time-dependelgads to the chain of equations
gravitational field generated by a localized material source

lying close to the line of sighit79,80. l,ag,tlsa,,+1,8,5=0, (A5)
The absence of the interaction of plane monochromatic

gravitational waves with electromagnetic rays propagating  i(V,ag,+Vsa, o+ V,a,5) =1,05,7150,,+1,0,4,

from minus to plus null infinity makes it evident that all (AB)

relativistic effects taking place in the gravitational lens ap-

proximation have little to do with gravitational waves—i.e., €tc., where we have assumed that the effects of curvature are
only the near-zone gravitational field of the lens contributegiegligibly small. Similarly, Eq(A2) gives a chain of equa-

to the overall effects. The other conclusion is that the plandions

gravitational wave disturbs the propagation of electromag-

netic signals if and only if the signals go to finite distances | ga“#=0, (A7)
[81,82. However, another limitation has to be kept in mind,
namely, as follows for instance from E(.39), the standard Vea*P+il gb*$=0, (A8)

plane gravitational wave approximati@gt39 is applicable

only for gravitational waves with dominant wavelengthsand so on.

Ngr<min(r,ro). This remark is especially important for hav- Equation(A7) implies that the electromagnetic field ten-
ing a self-consistent analysis of such intricate problems asor is orthogonal in the four-dimensional sense to velgtor
the detection of the solay modes by interferometric gravi- Contracting Eq.(A5) with |, and taking into account Eq.
tational wave detector83], the theoretical prediction of (A7), we find thatl, is null, I ,|“=0. Taking the covariant
low-frequency pulsar timing noistsee, e.g.[84-87, and  derivative of this equality and using the fact thagl ;=0
references thereinand the anisotropy of cosmic microwave sincel,=V,¢, one can show that the vectby obeys the
background radiatiof88] caused by primordial gravitational null geodesic Eq(18). Finally, equation/A3) can be used to
waves. show that

APPENDIX A: GEOMETRIC OPTICS APPROXIMATION Vy(aupl ") +17V,a,5=0, (A9)

FROM THE MAXWELL EQUATIONS o ) _
which immediately leads to E¢20) of the propagation law

Here we give a brief derivation of the equations of thefor the electromagnetic field tensor. In this way, one can
geometric optics approximation, discussed in Sec. IV, fronprove the validity of the equations of the geometric optics
the Maxwell equations for electromagnetic waves propagatapproximation displayed in Sec. IV.
ing in empty space-time. The source-free Maxwell equations

are given by 67] APPENDIX B: APPROXIMATE EXPRESSIONS

FOR THE CHRISTOFFEL SYMBOLS

VeF gyt VgF 1ot V) F =0, (A1)
Making use of the general definition of the Christoffel
VgFeP=0, (A2)  symbols[47]
whereV, denotes covariant differentiati¢89]. Taking a co- R S B N
variant derivative from Eq(A1) and using Eq.(A2), we Isy=59"(9,858% 9595y~ 959py), 9=l 9X,
obtain the covariant wave equation for the electromagnetic (B1)
field tensor

and applying the expansion of the metric ten@rresults in
OgF apt RapysF 7°— R, F3+Rg,RI=0,  (A3)  the approximate post-Minkowskian expressions

whered,=V*V,, R,z,s is the Riemann curvature tensor,
andR,z=R,z is the Ricci tensor.

Let us now assume that the electromagnetic tersgy
has the form shown in Eq17). We introduce a dimension- 1 9
less perturbation parameterand assume an expansion of ng:— Eaihoo(t,x), f7i55r, (B3)
the field of the form

. 1 9
FOO:_E‘?thOO(taX): &IEE! (B2)

i 1
Falg:R%(aaﬁ-i-sbaB-l—szCaﬁ-f—’")exﬁ<l—¢) , (A4) r?J:_z[(?lhOJ(tix)—i_é’]hOI(tIX)_&thlj(tax)]a
&
(B4)
see Ref[48] for a critical examination of this procedure and 1
its underlying physical assumptions. Substituting the expan- i _ ' _
sion (A4) into Eq. (A1), taking into account the definition Too= dthoi(t.x) 2‘9'h°°(t’x)’ (B5)
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tory. The parameter§ andt* do not depend on time and,
5 L9hoi(t,X) = dihg;(t,X) + d¢hij (1, x)], (B6)  for this reason, derivatives with respect to them can be taken
out of the integrals along the light-ray trajectory. Hence, ap-
1 plying Egs. (C4) and (C5) to the integral(42) and taking
I‘;p=§[o’!jhip(t,x)+aphij(t,x)—aihjp(t,x)]. (B7)  account of Eq(C3) we obtain

These expressions are used for the calculation of the right- Bak( 4 s(rtt)k,S7@uP) 4 d
hand side of the null geodesic equatidr®). (r.§)=4—= r—k-r (- é,_gi
APPENDIX C: CALCULATION OF INTEGRALS ALONG s Seyh k;S'(eu®
THE LIGHT-RAY TRAJECTORY Xfﬁ T 4 €9

In order to calculate the integralé2) and(43), it is useful _
to change in the integrands the time argumertb the new  Where the expression
one{ defined by the light-cone E@12), which after substi- .
tuting the unperturbed light trajecto(®6) for x can be ex- r—kr=tt+k-z({)—¢ (C7)

ressed as follows: . .
P is a function of the retarded argumefitand the(constank

o+t ={+|E+ko—2(0)|, (Cy parametet™ only. Differentiation with respect to the param-

eterst* andé& in Eq. (C6) results in
wheret*, & andk are considered as parameters such that the

orthogonality conditior¢;k' =0 holds. The differentiation of
Eq. (C1) yields the partial derivatives of the retarded time BgB(T,g)z

Ar _S(eyB) s k.s(ayh)
Y _ Y d
e

with respect to the parameters (r=v-r)(r—k-r —o(r—k-r)2 '
. (C8)
74 r 74 PrJ 74 or' ] (1) and ( ). A useful s ob
— =, = T o wherer“=(r,r') andr,=(—r,r'). A useful formula is ob-
o v 43 vk v (rCZ) tained after differentiatingd&? with respect to the impact
parameter. Specifically, we have
and the relationship between the time differentials along the
world line of the photon 4P;. SJ(auB) 4r sreyh)  p; oyl
{BLP= z .
F—v-r (r—v- r)(r—k r) r=k-r (r—v.r)?
do=d{——. (€3

kysy(vzuﬁ) (1_02)ry57(au,8)
(r=v-r)(r=k-r? (r—=k-r)(r—v-r)3

ol
It is worth noting that in the formuldC2) one can write APy

Piri=(kx(rxk))'=r'—=k'(k-r). Moreover, &=P;é
smceP”—&” k'kl andk;&'=0, i.e.,& has only two inde- (1_k.v)ry37(au[>’)l
pendent components. - 5 51

Two principal differential identities applied to any smooth (r=v-nir—k-
function F(t,x) are used in calculations throughout the pa-
per, namely, as proved i],

(C9

For comparison, in the case of pure monopole particles we
have[15]

IF(t,x) K IF(t,x)

1
i [ a o
X ot (g g e , 1/zu ub+ 57 B Pijrj
By (1)=—4m(1—v"°) E— T
* *
~p, IF(T+t .,k7+§)+ki8F(7'+t K1+ §) (C10
9é) ar
As for the integraD 2#, one can see from Eq&t0) and(41)
(C4) that in the calculation of the light-ray trajectory we do not
and[15] needD“? directly but only its partial derivative with respect
to the parametef'. Thus, using the definition dﬁgﬁ and the
VF(LX) _IF(o+t* ko+§) c5) expression foB%? given in Eq.(C8), one can prove that
at t=o+t*;x=ko+§ at* . .
S s g Pirl r,s"eup) s P;Suh)
The relationshigC4) allows one to change the order of op- D ()= —4—— 5 4f 5
erations of partial differentiation and substitution for the un- F=vr(r-k.n —=(r—k-r)
perturbed light-ray trajectory, while EC5) shows how to s P.rik. sHayd
change differentiation from the timeto the parametet* ng+8] B A 1 (C1)
making use of the reparametrization of the light-ray trajec- —=  (r—k-r)?3
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The remaining integrals in Eq$§C8) and (C11) have the
following form:

I()f

whereF () is a smooth function of the four-velocity and/or
spin of the bodies at the retarded time. The integ@il2
can be calculated by making use of the new varigbleEq.

(125]
y=k-r—r=/{—-t*—

(C12

F(HdZ,  (n=23),

k)n

k-z(¢), dy=[1-k-v({)]d{,

(C13

so that the above integré&C12 can be expressed as

7i5)=(-1r [T
y
(=D v dl 1
Integration by parts results in
1 Fy(s) 1 f F(pdg
I(s)= — :
®) n=1(—k.r)"t n=1J «(r—k.r)n?

(C19

The last integral in Eq(C15 can be neglected under ordi-

nary circumstances for it includes the acceleration and/or

time derivative of the spin of the body. Omitting such terms
in accordance with our general approximation scheme, w
finally arrive at

BYB( 1) = 4I’787(01u5) 4 kySy(auﬁ)
S (T)_(I’_V-r)(r—k.r)_ 1—k-v (r_k-r) ,
(Cle
D28(7)= — 4Py;r! rySV(auﬁ) 4Pyr) kys’y(au,B)
S r—v-r (r—k-r)2 1_k'V(r—k-r)2
4P;v!  k,SMeUuP)
(1—k-v)? (r=k-r)
Sl(auﬁ)
(C17)

T k Wir—kn)
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APPENDIX D: AUXILIARY ALGEBRAIC
AND DIFFERENTIAL RELATIONSHIPS

In this Appendix we give several algebraic relationships
that can be used for the calculation of observable effects.
Making use of Eq(8) and definition(5) we have

SO9=y(vx ), (D1)
Si=ye, (V .7)8|ij , (D2)

Kol gS™=y[ T (kKX1)+ T ((r—kr)xv)]
(D3)

Where'yz (1_ U2)71/2 andsijkE €0ijk [42]

In addition, one has the following formulas of differentia-
tion with respect to the impact parametér(a dot over any
quantity denotes differentiation with respect to tib)e

~ Pijr] ~
5ir:r_v P |EPij -, (D4)
ip. ok
Griep, 4 Lo (D5)
a ! Woor—ver’
© geB j
A o 1SR
9i(r gS*P)=P;; S~ 'Br_—v_lrj’ (D)
1 (1—k-v)Pjr]
ai( — )=— — (D7)
r=K-r (r=v-r)(r=k-r)
;7( 1 )_ (1—02+.51-r)PijrjJr Pijv!
Hr=ver (r=v-r)3 (r—v-r)?’
(D8)

where a=v is the light-ray-deflecting body’s acceleration
and it has been assumed thatx—z(s)=k7+ &—z(s).
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