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Quantum corrections for a Banados-Teitelboim-Zanelli black hole via the 2D reduced model
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The one-loop quantum corrections for a Bdos-Teitelboim-ZanelBTZ) black hole are considered using
a dimensionally reduced 2D model. Two cases are analyzed: minimally coupled and conformally coupled 3D
scalar matter. In the minimal case, Hartle-Hawking and Unruh vacuum states are defined and the corresponding
semiclassical corrections of the geometry are found. The calculations are done for the conformal case too, in
order to make a comparison with the exact results obtained previously for a spinless BTZ black hole. The exact
corrections for an Adsblack hole for the 2D minimally coupled scalar field in Hartle-Hawking and Boulware
states are found as a subcase.

DOI: 10.1103/PhysRevD.65.064022 PACS nuni®er04.70.Dy, 04.50+h

I. INTRODUCTION case, which offers the possibility of a straightforward defini-
tion of the Unruh state via nonsingularity of the energy-

For a long time it was believed that black hole solutionsmomentum tensofEMT) on the future event horizon.
do not exist in three dimensions, and therefore the discovery The other important point is to use the advantage of the
of BaTadOS, Teite]boim, and ZanemBTZ) [1’2] came as a low dimenSiona”ty of the BTZ solution in order to analyze
surprise. The BTZ black hole has many properties that théhe properties of the procedure of dimensional reduction.
familiar four-dimensional4D) black hole solutions do not This problem is of great heuristic importance, as dimensional
possess. First, as a BTZ black hole can be obtained by idefieduction is repeatedly done in different scenarios of string
tification of points in 3D anti—de SittefAdS) space it is and brane theories, whereas the mechanism is fully under-
locally AdS, which means that it has a constémégative stood only on the classical level. A study of the dimensional
curvature. Therefore its singularity is not a curvature singufeduction from four to two dimensions in the case of the
larity but a singularity in the causal structure. Also, the BTz Schwarzschild black hole was done previouidly-8|. There
black hole is not asymptotically flat but, because of the iden@re¢ also some new ideas in the literature such as the
tification mentioned, which breaks the symmetries of Adsdimensional-reduction anomal9]. However, the analysis is
space, the asymptotic region can be identified. The fact thd@r from complete. In order to be able to compare with the
the BTZ black hole is three dimensional simplifies manyresults obtained for the 3D BTZ10-12, we formulate a
computations which can be done only approximately in fourdimensionally reduced theory for conformally coupled mat-
dimensions; e.g., the thermal Green function of the conforier. We define the Hartle-Hawking vacuum and calculate the
mally coupled scalar field can be found. There are variou®ack reaction effects.
interesting dimensional reductions from the BTZ black hole Finally, for the sake of completeness, we discuss the most
to two-dimensional configurations, t¢8]. frequently used effective action, Polyakov-Liouville, for 2D

One of the most interesting questions in the analysis ofminimally coupled scalars. As a dimensionally reduced spin-
black holes is the Hawking radiation. Considerable work hadess BTZ black hole is, in fact, a two-dimensional black hole
been done in the last few years in an effort to find 2D effecWith constant negative curvature, as a subcase we include a
tive models that can describe the properties of 4D blacull discussion of the quantum corrections of the 2D AdS
holes and the corresponding radiated field. The main idea d¥lack hole. _ .
this approach is to consider the effective action obtained by The plan of the paper is the following. In Sec. Il we
functional integration of the scalar field as a semiclassicalntroduce the general framework of the problem. Section Il
correction to the gravitational action. Different variants of gives the analysis of the Unruh vacuum for the minimally
the 2D effective action are used in the literature, but in prin-coupled case, while conformal coupling is discussed in Sec.
ciple they describe the effects of tisemodes of the scalar V- Section V is devoted to the Polyakov-Liouville action
field to one-loop order. A similar approach has been use@nd the 2D anti—de Sitter black hole.
recently[4] for the BTZ black hole.

The purpose of this paper is twofold. Our first goal is to
define the Unruh vacuum by means of a dimensionally re- e start with the three-dimensional gravitational action
duced model. The definition of the Unruh vacuum still seemsyith negative cosmological constant-@A = —21~2<0)
to be an open question for the BTZ black hole. We use aroupled to the scalar fiel

analogy with the Schwarzschild and Reisner-Nordstro
1 2
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The caseté=0 describes the minimal coupling in 3D, while | v ) |22 ) 2
&=% is the conformal coupling. This action admits the Fg:%f dxV=g®|R-——F"+ 1z, (10
vacuum solutiorf =0. We consider the BTZ black hole so-
lution which is locally Adg space: while the part describing matteF,,, is
r2 | IZCI)Z
dshy)= —| 17— IM | d+ JIdtdo -+ r?d 62 :__“f 2 /"a 24 52| R 2
(3) | . 3G dxX—g®| (VF)*+£&f9| R 7
r2 212\ -1 20P
+(I—Z—|M+F) dr?. 2 X F2— T) (11)
If we construct the metric reduced from E@) to a two- | the following we will chooser such that a/8G=1. Also,
dimensionat,r hypersurface by the standard procedd),  jystead of the dilaton field we will use its logarithm:e
we obtain =log .
1 In order to analyze the vacuum fluctuations of the scalar
ds’=—gqdt?+ —dr?, ©) field f one has to integrate it out to first order #n Our
el approximation consists of the fact that we do the functional

integration off in the 2D action(11) and not in the full 3D
action. We use the methods developellifi]. The result that
r2 322 (r2—r2)(r2—r2) we obtain for the one-loop effective action is

gcu(r)=|—2—|M+ 72 .4

where the functiorg.(r) is given by

4r?

rF%f d?x\—g(12¢— 1)RéR
As show in[2], the quantitiesV andJ have the meaning of

mass and angular momentum. The second equality irf4xq. 1 1 1

holds whenMI=J; the caseM|=J is the extremal BTZ +gf dZX\/—_QHZ—%)RE(VGD)Z
black hole. One can see from the Penrose diagram that this

space shows a great resemblance to the Reisner-Nardstro 1 &2 1 b
black hole. The outer and inner horizons are given by +|5728|Re— Rz €7 F7. (12)
2
r?jzl_(wi IM212=32). (5)  Note that the effective actions for 2D dilaton models are
2 analyzed in various papef$5-17.

It is easier to use the local form of the action. The local

Inversely, form can be obtained by a suitable introduction of auxiliary

fields [7,4]; however, it differs for the three cases we are

(6) going to discuss. Therefore, we proceed with the minimal
case.

r2+r2 2r,r_
=T T

Achucarro and Ortiz showed {i8] that the 2D metrig3)
can be obtained from the dimensionally reduced action in the
local form as

IIl. 3D MINIMAL COUPLING

dsfs)=0,,dx“dX"+12d2(ado+A,dx*)?, 7)

1 — 3
whereg,,, ,®, andA,, are the two-dimensional metric, dila- Tamin=— WJ o —g[ZR( b= EX)
ton, and W1) gauge fields; all fields depend only bm. The m

constanty will be fixed later. The 3D scalar curvature for the
ansatz(7) is +(V¢)2—3(Vl//)(VX)—3(V¢)2§D—6R(p},
|22 20®
RO=R- ——F, Fr— =, ®) (13
where the auxiliary fieldsy and y satisfy the equations
where Fu. a nd R denotes the curvature in _
2D. Further \/—9(35 \/ gla®. Introducing the reduction Dy=R, (14)
formula (8) into the act|on(1) and integrating over the an- )
gular variable#, we obtain the 2D action Ox=(Ve)*~. (15
Fo=Tg+T,. 9

INote that our auxiliary fields are not the same as those introduced
Its gravitational parf’y is, up to a total divergence, given by in [4].
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The full semiclassical action for the minimally coupled field and rederive some of their results briefly for later compari-
is son. In the Hartle-Hawking vacuum state all functions are

independent of time. The solution of Eq44), (15) is
Iﬂmin:r‘g"'rl,min

2
J'dzxx/_e“’(RJrE—IZez“’F JERY #(r)=—loggq(r)+Cr,, (22)
—deZX\/—_g[ZR(tﬁ—gx +(Vi)? ‘f dr fd 0 o s
XO= ] gl ) fe 3

_3(V¢)(VX)_3I//(V<P)2_6R<P}- (16)

wherer . , the tortoise coordinate, is given for a nonextremal
We introduced the constamt=1/96m, which is the pertur-  BTZ metric by

bation parameter. The equations of motion obtained from the
action(16) are (14), (15 and

V,(e3¢F+*")=0 (17 r =J ar = ’ (r I0gr+r_—r Iongrr+
~ : * ) ga(r) 2(ri-r2)\ T r—r. T =)
2 312 (24
Rt 7~ 5 €*F?=6ke “[—R+V,(yV"¢)], (18

The assumption that the energy-momentum tensor is regu-

1 |2 . _ . .
0., 0P —V,V,0— g, - §<I>2FWF’”> lar on the outer horizom=r_ in the freely falling frame

means that
2
— _®3 2
2P FauFe Tu Tuu
T, <%, <oo, —<oo for r=r,., (25
:TQB/Z gCI gC|
3 3
= K| Vaf Vet = 5 Vath Vpx = 5 Vax Ve = 3 Va9 Vpe where the components of the EMT are given in the oy
coordinateg. Using Eq.(25), for the constant€ andD we
3 1 ) obtain
—2VpVa| ¥ =3¢ 5 x|~ 59l (V)" —3VyVx
) 3 r2—r2 6r2 +2r2
=3P(Ve)1+29,50| y—30—5x || (19 C=2——, D=——F7o—. (26)
2 I“r 3ler
T, denotes the energy-momentum tensor of the radiated
matter: Introducing these values, we get
T 2 oh (20)
py= T = e (r+r)%(r2=r%) r_ r+r_
V=8 % Ur)=—log——pr——+ —og——. (7
" _

For k=0 we obtain the classical vacuum equations of
motion. The classical solution feb andF ,, is

3r§r+r2_I (r+r.)2 (3r2+r2 )r_ r+r_

r LN | Jl r)y= lo
O=ef=y, FM= E—r—3=E’”r—3, (21) X 32 —17) 9 r2—1Z 32—, 19—~
J 1 (r2—r?)2
whereE*" is the covariant antisymmetric tensor. The zeroth +§Iog 13 (28)

order solution forg,,, is the BTZ metric(3). Note thatT,,

defined in Eq.(19), being of the first order in¢, is deter-

mined by the zeroth order solution for the fields x, and¢. 2In the rest of the text we will use three common choices of
The Hartle-Hawking vacuum state for the minimally coordinates in parallel. These are Schwarzschild coordirtates

coupled scalar field in the BTZ background was analyzed irhull coordinates u,v  (u=t—r, ,u=t+r,), and Eddington-

the work of Medved and Kunstattp4]. Here we will outline  Finkelstein coordinates,r.
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The corresponding values of the EMT in the Hartle-Hawkingdiation in the BTZ background is rather unexpected, and we
vacuum are will see that the conformal coupling improves it.
Having fixed the components of the EMT, one can find

K T S S 2 .2 the first correction of the metric, i.e., solve E¢$9) in the
TUU_2|4r6r?F [[(r F4)"=3rory —6ror, (2ri—r2) first order inx. The one-loop corrected static ansatz for the
metric is
—r%r2(3r2 +2r2)—2r% ,r2(5r2 —3r?)
1
—3r2r2r2(2r2 —3r2)+10r3rt +5r4r] ds?=—g(r)e?dt>+ mdrz. (35)
(r+r,)2(r2=r?)
+3ri(r2—ri)2(r2—r2)2( log +r2I2 We take the functiomy(r) in the form
r_ o r+r_ 9(r)=gci(r)—«Im(r), (36)
——log—— |1, (29
ry 11— and then Eqs(19) read, to first order,
__ K 2 22 2 4 2,2 .2 P T
Tuw W(r rore—ro)[13*+3ro(ri+r2) Zl—w’=T11+%), 37)
2 9 cl
—3rirc], (30)
, Too
Too=Tuu- (31 KM o (38
The energy density of the radiatidn; is Their solution is
K
TtFW[10rsr+—6r7(ri—r2_)+8r6(ri—3r+r2_) m(r)_4r2—6(r2++r2,) 16r,Io r+r_
5+ 4 4 4,5 3.2 4 B I - gr_rf
—6r>(rl—r2)—r¥6ri—16rirc+6r,r-
(rye—r=)=riers i +7-) 3r4—r2r2 +3r2(r2 +r2)
+2r32r2(r2 —r2)+2r3r% +3(r2—r2)? + 23
2/p2__ 2
X (r2=r2)2r Iog(r+r+) (o) (r+ro)2(r2=r2) r_ r+r_
_ + r2|2 X |Og r2|2 —:Iog; s
r_ r+r_ (39
. _
w(r)=F(r)—F(), (40)

There is an important comment on the values of the en-
ergy density in the asymptotic region. One can see That whereF(r) is given by
diverges asymptoticallyr(—=) asr?logr, a feature which
is not present in the Schwarzschild case. But the Schwarzs-
child metric is asymptotically flat, while the BTZ metric has F(r)=
nonzero curvature and,(r) behaves as? for r—o. In

(ry=3r)(rytro) (ry+3r)(ry—r_)
F+ ro(ro—r_)(r+r_) ro(ro+r_)(r—r_)

order to better understand the properties of the BTZ metric, 2(3ri+r2,) 3. .r? .
we transform the EMT to the locally flat coordinatésr’ at T hHr0Z=r?) + (22 )2'09(f+r+)
some distant fixed pointt(L). We get the asymptotics as- R A
suming thatr~L—c. The transformation of coordinates 3r_ 8r_
that we need is \Tor T2 log(r—r_)
+ + -
- 1 33 N 3r_ 8r_ )I ()
t'= t, r'= r. - og(r—+r_
ger(L) oD (33 =129
, o _ 3 (r+r)%(r2—r?)
Asymptotically,t’ ~ (L/1)t~(r/1)t and _ Fog 72 (41)

12 K
Tov~ TZTHW 12 L is the integration constant. We have assumed that our sys-
tem is in a 1D box of sizé [5].
so in the asymptotic region the local energy density diverges The first correction of the scalar curvatuRs Ry+ xRy,

only logarithmically. This behavior of minimally coupled ra- with Ry,

r
10+6 Iog—) , (39

064022-4
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L2 rir?
Ro==0c"=— 2= 67z7. (42)
can be expressed in termswf w as
R;=—3g 0 +Im"—2g,0". (43

It is regular on the horizon=r , . If one had not fixedC and

D previously, the same valuég6) would have been obtained

assuming the regularity d®; onr, . We find
Ri=;—s 2r3(r2 —r2)+8r3r2 —r (r*+r3(r2 +r?)
+
(r+r)2(r>=r%) r_ r4r_
—3rir2_)(log +r2I2 —log——||.
N _

(44)

The corrected value of the metric gives us the possibility
of determining how the horizon of the black hole changes
due to the back reaction of the Hawking radiation. The ap-
parent horizon of the black holevhich in the static case

PHYSICAL REVIEW D 65 064022

Having foundy, x, and the metric, one can easily calcu-
late the corrections of the thermodynamical quantities tem-
perature and entropy. Entropy is defined 48]

aL

S=— ZWEaﬁfyg[?Raﬁyﬁ

TAH

(51)

r r
:47T[I—_K(21/l_3)(_6 |Og|—

"AH

for the action(16). In the Hartle-Hawking state the corrected
entropy is given by

r, r2+3r2 5r2—r2  4(ri-r?)
S:4’7T_+K - 2 2 2 |Og 2
I re—r< re—r2 I
2ri+r2,I r2—r2 I 4r (r2—r?) .
— 22— + +
ri—rz,Og 4r? °9 3 g
(52)

coincides with the event horizons in 2D defined by the while the temperature is

equation

g“V&MrAHﬁyrAHZO. (45)

We define the corrected null coordinates for the general
nonstatic metric by

ds’=—g(v,r)e**Ndp?+2e*Vdy dr

1 _
=— ;g(v,r)ez’“”(”'r)dudv (46)
with dv=dv, du=pudv—[2u/g(v.r)]e”*dr and u the
integration factof8]. The condition(45) in u,v coordinates
is

ol =0, il =0, (47)

or, equivalently,
e“’g(v,r)|,,=0 (48)

If we write the apparent horizon as=r , + «r4, for the
corrected value we get

Pm(v,r)r,
2(ra—r?) -

In the static case of the Hartle-Hawking vacu(9) the
one-loop corrected value of the event horizon is

I’AH=r++k (49)

Ir,r_ /Sri—rz,I ro+r_
Fan=r4+K 0
N (I 09—
3ri+r? 4(ri-r?) ri+3r?
+ log —— (50
r.r I ror_

2-r2 ré +or* +6r2r?
Th= 2 Tz LT RF(L)] =« 272 (r2 —r?)
8r% 16r2
T A2 - ).Og 12 ) (53

We will now analyze the Unruh vacuum. The Unruh
vacuum can be defined as a state of matter whose energy-
momentum tensor is regular on the future event horizon. As
is easily seen, the regiono<t<ow, r, <r<ow of thet,r
plane transforms into the interior of the triangle= — o0, u
=0, U=y in theu,v plane. The lineu=v is the time like
boundary(asymptotic regiopof the BTZ black holeu=«
is the future event horizon while= —« is the past event
horizon. In order to find the energy-momentum tensor we
need to solve Eq914), (15 in the general nonstatic case.
Those equations can be transformed into a system of partial
linear equations that is similar to the one obtained for the
SSG model. For details we refer the readef&p The gen-
eral solution is

P(v,r)=—logge(r)+Cjr —%)W(v), (54)
gcl(r v
x(v,r)= fgd(r)( +D r*_i +H(v),
(59

whereC,G,D,’H are arbitrary functions of their arguments.
Note that the arguments in Eq%4), (55) are written in such

a way that regularity on the future horizen-o, v =const

is equivalent to regularity on—r , (r, ——=), as the val-
ues ofv and its functions are constant on the future horizon.

064022-5
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While the value ofT, is in the general case the same as(y — —, u=const). Indeed, expressing the EN®), (57)

Eq. (30), for T, andT,, we obtain
K
Tuﬁw{ —3r84+2r8(r3 +r2)=3r4(r{ —4riri +r?)

3(r2—r2)2(r?—r
<r2—ri)<r2—r2>>

—6r2r2r2(r2 +r2)+5r4rt - 22

in terms ofr andu, a logarithmically divergent term fou
=const,r, — — appears independently of the choice of the
functions G and H, i.e., always except fog(u)=[(ri
—r2)/1?r . Jv which gives the time independence of the
EMT and the Hartle-Hawking state.

Taking the above discussion into account, we see that the
functionsG andH cannot be fixed by the properties of the
EMT. The simplest choice for the Unruh vacuumds-'H
=0. Then

—C12r33r4+3r3(r2 +r2)—r2r?]

r2—r2 ( (r+r,)3(r2—r?)
v—| log

) Po,r)=——3 22
+148(C 2—30’D’—2C”+3D”)], (56) rs l
r_ r+r_
p - —|Og? (60)
TUU=—2|4r6[—3r8+2r6(ri+r2_)—3r4(ri‘r—4rir2_+r‘i) ’
3r2 +r2 3r2 +r2 r+r,)?
—6r2r2r2 (r2 +r2)+5r4r* —3(r2—r2)2(r2—r2)? x(v,r)= ?er vt 3 - og( o i
+ (r+ 7) —-r-
r2—r2)(r2—r2
X g+C—Iog( +r)2§2 )) @ri+rir o, 1I (r2—r2)?
3(ri—r2_)r+'ogr—r, 39 3
50123724 2
2G'1°ro[3r*+3r 61)
X 2+ 2N ,.2.2 + 4.6,-'2 ragr
(P Ar2) —rar= ]+ 4G =361 The final expressions fdf ,, are
—2g”+3H”)}. (57 ] .
Tow= 2|6r6 12(r—r)%(—3r,ré—6(2ri—r?)
From these expressions one can see that, in order to en- 5 5 2 4 5 5 )
force the regularity ofT,,/g? on the future horizon, one Xro—r (3ri+2r2)r*—2rZ(5ri—3r2)
needs to make the functiortsand D linear in their argu- 3 25,2 24,2 2.4 3.4
. . Xro=3r, re(2re—=3ro)re+10r<rZr+5rir”
ments,C(x) =Cx, D(x)=Dx, with the Hartle-Hawking val- +re(ars ) * +ro)
ues of constant€,D .given by Eq.(26).. The functionsg, H +3(r2—r2)2(r2=r2)2(r2 —r?)u+3I%r, (r?—r2)?
cannot be fixed in this manner. We will assume tandH oo o
are also linear, which is in accordance with the constancy of 2_ 22| (r+r)(re—r<) " oa
luminosity of a black hole. We see then that the difference X(r°=r=)% log r2|2 B EOgr_rf '
between outgoing and ingoing fluxes in the asymptotic re- 62

gionr—x(r,—0) has the leading behavior

3kr ,
TUU_TUUN_ W(C_Zg )

It is much smaller than the asymptotic value of the flux
r2

C
2% Zv-9 1)

Tuuw~ 2logr+ = (59

In fact, the asymptotic value of flux is not dominated by the
function G(v)=g(t+r,) for r,—0, althoughg fixes the
luminosity of the black hole. The dominant term is the
r’logr term, and this term is the same fby,, andT,, . This

(58  Ty=

K
—5— {I2r+(—3r8+ 2(r2 +r2)ré—3(r4 +r*
N

21°r°r
—4r2r2)rt—6r2r2 (r2 +r2)r2+5rtrt)

+3(r2=r2)2(r2=r2)2(r2 —r2)p+31?%r (r?—r2)2

r+r)2(r2=r?) r_ r+r.
X(I’Z—FZ_)Z(|OQ( +)Zf )—:Iog; }

(63

The same values of the energy-momentum tensor can be ob-

is a rather peculiar characteristic of the BTZ black hole if wetained by applying the procedure developed by Balbinot and
recall that for the Unruh vacuum usually the outgoing flux isFabbri in[6].

constant while the ingoing flux vanishéssymptotically.

Now we will find the corrected geometry. The one-loop

One can verify that the given energy-momentum tensomnsatz for the metric is

really describes the Unruh vacuum because it is regular on
the future horizon but divergent on the past event horizon

064022-6
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whereg(v,r)=g¢(r) — «xIm(v,r). Putting this ansatz in Eq.

(19) we get
kK do Ty
1o 2
Jam
T T

m
K% :Tvv + gCITvr .

Introducing the value$30), (62), (63) in the system of
equations form(v,r) and w(v,r) we obtain the one-loop

correction for the metric:

PHYSICAL REVIEW D 65 064022

2 2
re+3r< 4r,v
S= 4'n'|—+ k(— Tt
e
5r2 —r2  4(r2—r2) r++r, 4r?
(65 + log +2— 0g
re—r? 12 r2— Z! r2—r2
4r+( + r?)
tlog— it 6Iog— (71)
(66) |
(67) IV. 3D CONFORMAL COUPLING

We will now discuss the case of conformally coupled mat-
ter. The coupling constant for conformal coupling in three
dimensions is¢=3. The local form of the effective action
(12) is given by

2 _ 2
—r2
m(v,r)=—vlzr—r3[—3r4+8r+r3—3(ri+r2,) I'icont= fdzx\/ (R(2¢+X)+(V¢)2+(V¢)(VX)
+
) Ar2—6(r2 +r2) r- r+r_ _3|2 2¢F24 GR 72
XTr +r ]+—|2—+16|—2‘|09? Tl//e @) (72
3ré+3(r2 +r2)r2—rar?
+ ( +I2r;) R so the full action reads
r+r)2r2=r2) r_ r+r_ =
> |og( Jr:zfz )__Io (68) Fconf Fg+rl,conf
2
:f d?x\—ge? R+|32—|Ze2¢|:,w|=ﬂ”)
0.1) I(Br_—r)(ryo+r_) I(r_—ry)(ryo+3r_)
w(v,ln)= -
ro(r+r_)(r_—r ro(r—r_)(r_+r K
AT 2 dZX\/—_g(R(2¢+X)+(V¢)2+(V¢)(VX)
21(3re+r2) 8lr _
- > ot 73 3|2
(r+r)(ri—ro) (ri—-r?) —T¢e2¢F2+6R¢). (73
(r+r,)?
x| (r2+r? )Iog—+2r r_ Iog—z—

The equations that follow from the variational principle for

3l I (r+r)%(r?2-=r?) = r+r_ Eq. (73 are
AR r?|2 %
| 2 _p2 O¢=R, (74)
2
+F_30 Ta; (69)
- L
The value of the apparent horizon is X== e (79
a2 +12)] 4(r2 —r?) 3
FAH= f++K—(2—2—) re@ri+rojlog—z— v, (1+§Kz/xe‘*’)e3“’F“V 0, (76)
ro+r_
—r_(r2 =5r2)log——— —r.(r2 +3r?)
F+=r- 2 312 312
; R+|——TEZ¢F2:_K6"D<3R_Tlﬁez‘p|:2)y
—l—z(ri—rz)z), (70) (77)

and the entropy for the Unruh state is given by

and
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1 12 ) , For y we get
gaBD(I)_VaVBCD_q)gaB I_z_gq) F/_LVFI'L 2
. (r+r_)(r—r_)
_f(p3|: » X(r)—ri_rz_'()g r2
2 uBt
r3 C(rr) 2r2,I r+r,
=T,p/2 r+(ri—r2,)'09(r—r_) ri—rz,'ogr '

S UVt SVt YV (89
2| a7 BT Ta T BT g Tak B

312
— 5 YR = VeVa(20+ X +B9)

while ¢ is the same as in the 3D minimal casad as it will
be for the Polyakov-Liouville effective actionThe energy-
momentum tensor reads

1 312 T,,=T
_ 2 = 202 uu Vv
zgaﬁ((w/) +VyVyx Ve F )

(r—ry)? 6 5 4yqp2 2
——KWBr +6r°r  +r*(3re—10r2)
+ 00029+ x+6¢)|. (78)
—20r3r ,r2 +3r2r2(—3r2 +r2)
We can again take the solution of Eg7) for the dilaton +8rr.r4 +4r2rt 86
in the form e®=r/l, as this represents our choice of the A =l (86)
radial coordinate. Then E76) can also be solved exactly: 2 2802 .2
(rf—ri)(r°—r<) 4 2,2 2 2.2
3 L) 1 Tw=kK 2176 r*+3ro(ri+ro)—12r5r<
Frr=EH'e 3¢ — 1+3K—) (79
I 2r ar? z(l (r+r)%(r2—r?) o
We proceed with the static case. The zeroth order solution r+r=|'og r1? ry 9=/
for ¢ is 87)
Y(r)y=—logge(r)+Cr,, (80) and the energy density
while for y we get K
xwed Tu=— rasl2rs—ars(ar? +3r?)

+Dr, . (81

") f dr U 3J2I2d
r=|——\ | —=2dr
X ga(n) | ) 2r*
Our goal is to solve Eq(78) determining the back reaction —24r%r2r2(r2 +r2)+16rtr4 ]
on the metric, i.e., to extract the equations for the functions

: (r2=r2)(r?-r?) (r+r.)2(r2=r?)
m(r) andw(r) from it. Let us note that, as can be seen from — 3k +4 - 2 rz( + s -

[*r o rel

Eq. (79), in the conformal case the “electromagnetic field”
F ., also has corrections of first order in This means that

+riert +382r2 +6rt)—2r3 r?(r2 —r?)

in the original 3D metric the angular part has to be corrected, _ r_,logr el 89)
too. Technically, there are first order terms on both sides of re “r—r_
Eq. (78). We collect all first order terms on the right hand
side, and then the equations read We see that the asymptotic behavior of the EMT has im-
proved now, as the leading term forsoe is Ty~ — kr?/I4.
K T is means that the energy density of radiation in the locally
0 Thi hat th density of radiation in the locall
2|—w =Tyt —, (82 Minkowskian frame is constant. The solution for the func-
cl tions m and w is nonsingular on the horizon=r . :
Too 3k 2%y 1
r__2_ — | _ord_@ar22 2
KM 9 2 T (83 m(r)= 7| —2r'=6ri(ri+rl)
under the same ansat2b) for g,,, as before. > 2 S
The procedure to determine the integration constants is +6rirt—2r_rilog——
the same as for the minimal coupling. The values of the
constants in the Hartle-Hawking vacuum are s (r+r)2(r2=r%) r_ r+r_
—rir<| log Ty - —log——| |,
2 _p2 2 rel ry or—r_
re—r 2r<
C=2——, D=—>—. (84)
+ + w(lr)=F(r)— ,
I%r I%r (r)=F(r)—F(L) (89
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whereF(r) is locally flat frameT, ;. ~ — «/I2. However, we know from the
analysis of the Schwarzschild black hole that dimensional
F(r)=4|—— I(ro—2r)  I(re+2r) reduction can change the sign of the energy, as it takes into
ro2(r+r ) (ro—r_) 2(r—r_)(ry+r_) account only some of the modes of the scalar field. The EMT
5 5 5 is regular forr =r . and singular as— 0 both in[10,11] and
N Ir= 2r r< o (r+r,) in our calculation.
(r+r)(r2—r2) (r2-r?)? 922 Since the metric ansatz [10] is not the same as the one
we used(and it does not seem to be correct; $2&]), we
Ir_(r2++r2_)| r+r_ will compare the corrections for the curvature. Reference
(rZ=rZ)? 10—~ (90 [10] obtained that the curvature scaR? diverges as 1f
nearr=0. ForJ=0 in Eq.(91) we see thaR;=6/Ir. How-
For the first correction of the curvature we obtain ever, this is only the correction of the two-dimensional piece
of the curvature. In order to find the full three-dimensional
6|, 5 5 ) 5 (r+r,)3(r2=r?) correction, we should employ the reduction form(@8a Us-
Ry=ps|ri+3rir=—2rir| log 1212 ing the solutions written to the first order i
r J2I12 Y
_:flog:i:_ . 1) b=, F2=—2r—6(1—3KT), (92)

Now we can compare our results with the results in the?nd
literature. Green functions for the BTZ black hole were cal-

; . : N 1 1
culated in[10—-13. The starting point of these calculations is ¢ = 9,(\N—9g'9,®)= =(g,+ kg’ — klm’
the Green function for the scalar field in AglSpace. How- V=g w7097 9,)= (0ot xGa )
ever, as anti—de Sitter space has a timelike infinity, it does (93

not have a Cauchy surface. A prescription to fix the boundary i _

conditions for the wave equation and define the orthonorma’€ find the first correction:

basis of eigenfunctions for quantization was developed by 8 M2

Avis, Isham, and Storej20]. One conformally maps the AdS R¥=—+6—5. (94)
space into the half of the Einstein static unive(8SU) that Ir r

s spatially compact and has a well defined Cauchy pr_oblen]._.rom this expression it can be seen that theR¥diverges
The solutions for a conformally coupled scalar field in theas 15 nearr =0 in our calculation, too. Note that at zeroth

ESU can be mapped back into the solutions for the confor- . B) an2 -
mally coupled scalar field in AdS, and hence from the basisOrder the reduction formula giveRy”=—61% but Ry=

> 2__ 212 4 : —
of eigenfunctions in the ESU one inherits the basis in AdS, 2/ t3'J Llﬁr : V.V; Wlt|r|1 Ia;er uTe It(hﬁ Tact that faj=0
The use of the complete basis in the ESU gives the so-calle%'l‘e me ric(4) describes the AdSb ack hole. .
Finally, we can compare the metric corrections which are

transparent boundary conditions. Transparent boundary con- . ; L :

ditions have the property that the energy of the scalar field i§'VE" |r'1[11] n th.e large mass limit. The function(r) used

not conserved. It is possible also to define two types of rein [11]is proportional to oum(r). It behaves as

flective boundary conditiongDirichlet and Neumannsuch r

that energy is conserved. The final step in the construction of u(r)~ - 1, Neumann, (95)

Green functions for the BTZ black hole is to apply the r

method of images, which takes into account the identifica- I

tions used to obtaln BTZ space f_ron_1 AAS M(r)N(_*) —2-—-—1, Dirichlet, (96)
The Green function for the spinning BTZ black hole for r r

transparent boundary conditions was obtained by $1&if ) )

and the back reaction to the metric discussed by Martine/hile our result form(r) is

and Zanelli[21]. We will not compare our results to those;

transparent boundary conditions are not appropriate for de- m(r)=—2

scription of the Hartle-Hawking state as they do not conserve

energy. Lifschytz and Ortif10], and Shiraishi and MaKil1]

found the Green function for reflective boundary conditionslf the limit M—c is understood as, >r, then the behavior

in the spinless cas@é=0 and the expectation value of the of m(r) is the same as E¢95) for Neumann boundary con-

energy-momentum tensor. The components of the EMT havditions[up to an integration constant which we, for the sake

the relatively complicated form of infinite sum and nonpoly- of simplicity, discarded in the expressi¢89) for m].

nomial behavior, so it is not easy to compare them directly Coming back to the dimensionally reduced BTZ model,

with Egs.(86), (87) which are much simpler. ReferenfE)]  we want to make some additional remarks, skipping the de-

showed that the energy density is positive for Dirichlettails of the calculation. It is always interesting to give a par-

boundary conditions, while for Neumann boundary condi-ticular analysis of the extremal black hole, and this was done

tions it is not. We obtained~ — xr2/1* forr—o, orinthe  in [4] for the case of minimally coupled matter. The conclu-

12r ®7
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sion of [4] was that the BTZ black hole behaves similarly to or in the local form

a dimensionally reduced Reisner-Nordstrblack holg[19];

namely, the EMT for minimally coupled matter in the Hartle- Ty =— Kf d2x\—g[(V )2+ 2Ry]. (99)
Hawking state of the extremal black hole is different from e aL(ve V]

that in the limitr _—r, of nonextremal black holes. The e auxiliary field ¢ satisfies the equatioly=R. The

differences show drastically on the event horizon: while thesnergy-momentum tensor determined from E9) is
energy-momentum tensor for the extremal black hole is regu-

lar, in the nonextremal limit the EMT is singuffSurpris- 1

ingly, this is not so in the case of conformally coupled mat- TWZZK(V/L‘WV"”_ 2V Vb= Egﬂv(V'/’)Z“LZgWD d’)'
ter. If we, as before, assume the extremal form of the metric (100
at the beginning of the analysis and impose regularity, wi
conclude that no choice of consta@a exists such that the
EMT is regular on the horizon. A similar conclusion holds

for the curvature. Both quantities are the “least divergent Let us see what results we get for the Hartle-Hawking

forT%:O’thWhiCh islgxactly thte n?crlﬁxtrem?l Iimilt—>r+.. h tstate now. The solution of the equation of motion 1o,
e other peculiar property of the conformal case is that_ . +Typ for static ¢ is Eq. (22, with C=2(r2

we cannot define the Unruh vacuum.
- rzg)/rﬁl. The components of the energy-momentum tensor

calculated from Eq(100 are
2_ .2\ 2_ 2 (4 2.2

In this section we will consider the Polyakov-Liouville T, :zh(r —r —r6,4)(r +3rire) (101)
effective action. This action is obtained by functional inte- ’ rol
gration of a scalar field coupled to gravity in two dimensions. d
The Polyakov-Liouville action is used very often for the ex-
act or qualitative description of one-loop quantum effects of (r2—ri)zrz_[r2(3ri—r2_)—2rir2_]
the scalar field and it has been widely discussed in the con- Ty,=T,,=— 2k 16142 -
text of string theory and 2D dilaton gravity. It is given by + (102

?Ne see that in the Polyakov-Liouville case the effective ac-
tion looks much simpler than the actiohi,in,['cons s it is
expressed in terms of one auxiliary field.

V. 2D MINIMAL COUPLING

__ 2y AP The energy density is positive and has regular behavior in the
F1ipL=" 56 f d>V-gRER, (%8) asymptotic region

(r2=r2)[rer2 —r*r2 (4r2 —r2)+r?r2r2(6r2 +r2)—5r2r?]
+

in the sense discussed at the end of Sec. lll. The asymptotiehile the first correction of the curvature vanishBs=0.
value of the energy density in the locally flat frame ie/¥. The results given above are particularly interesting be-
The corrections of the metric read cause they can be interpreted as the one-loop corrections for
the AdS black hole; namely, in the spinless case the action
2 . o2 2 ) o I'p describes dilaton gravity with negative cosmological
m(r)= 375z | 2r-[3r +3ro(ri+r2) = 5rirt] constant and with quantum corrections produced by a 2D
* minimally coupled scalar field. The classical part of this ac-
tion is the Jackiw-Teitelboim 2D gravity modéR2]. The
' classical solution has AdSyjeometry

r—r_
+3r3(ri—r2_)zlogw

2

r -1
|—2—||v|) dr?, (105

—2r%(3r2 +r2)+8r2r? ;2
rrs(r2—r2) d52:_<|_2_|M

3r2+r2  r4r_

|
o ’
Zr % —r_

(104
as forJ=0 one hasr_=0, r,=+IM?3. The curvature is

Ro=—2/12. AdS,x S? appears as the near horizon geometry
of the extremal Reisner-Nordstro solution. Different
3By the regularity of the EMT on the horizon we always mean thevacuum states of the AdSblack hole were discussed by
regularity in the freely falling frame, as defined by Eg5). Spradlin and Stromingg23]. Fabbri, Navarro, and Navarro-
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Salas considered one-loop corrections for an evaporating r r r+r,
AdS, black hole[24], again in connection with Reisner- b=y +x —log——. (111
Nordstran geometry. - *

The line element{105 can be rewritten in the null form:

The integration constants in previous formulas are chosen in

ds?=— — M dudv, (106) agreement with the classical limiti—0. We see that the
sinkf[ M/l (v —u/2)] one-loop corrected metric is the Ag®lack hole again—

quantum corrections neither change the character of the

whereu=t—r, , v=t+r, as usual, and, is given by space nor produce the singularityrat 0.

[ r
re=-— \/%arccothﬁ.

VI. CONCLUSIONS

One can also introduce Kruskal coordinates: In this paper we treated the one-loop corrections of a di-
mensionally reduced BTZ black hole. We discussed three
U=— \/Ie‘ Wil /= \ﬁeymv types of effective action wh@ch correspond to different cou-

M ' M ' plings of scalar mattef3D minimal, 3D conformal, and 2D

minimal coupling$.

which are regular on the horizan . In these coordinates the As a first case we analyzed the 3D minimally coupled

line element is scalar field. The Hartle-Hawking vacuum state of this model
was obtained by Medved and Kunstattef4n. Although the
Hartle-Hawking state can be defined straightforwardly and
has a regular energy-momentum tensor on the event horizon
for both extremal and nonextremal black holes, it has the
Equationg101)—(103 for J=0 andC=2r , /I? reduce to  ynexpected property that the EMT diverges in the asymptotic
22 region, e..g.,Tuu—>.(3Kr2/I4)Iog(r/|). This holds also in the

Tou=T,=0, Ty=4Kk— +1 locally Mmkqwsk}an frame,.where the energy density di-
| verges logarithmically. In this paper we defined the Unruh

(107 vacuum state, demanding the regularity of the EMT on the

: : future event horizon. The Unruh vacuum for the BTZ black

and describe the EMT of the 2D black hole in the Hartle'hole has unusual behavior, too. Both incoming and outgoing

Hawking state. This result can be obtained in another way,

As is known, the Hartle-Hawking state is the conformal statefluxes T, and T, tend to the same divergent value

IUV). It is easy to find the components of the EMT in this (3kr2/1%1og(r/1) asymptotically. This value dominates the
state using the transformation law of the EMT from the time-dependent term. Let us just recall that for the Schwarzs-
Boulware statduv) to the Hartle-Hawking statfJV). On child black hole the ingoing fluxT,, asymptotically van-

performing this transformation one easily recovers the previiShes, while the outgoing flux tends to a constant.
ous result for the EMT. We considered next 3D conformally coupled matter. In

Now we want to find the one-loop solution of this model. this case one obtains the result that the energy-momentum
The equations of motion can be written in the following tensor in the Hartle-Hawking state is regular both on the
form: event horizon and asymptotically. However, one cannot de-

fine a regular Hartle-Hawking vacuum for the extremal BTZ
2 black hole as was possible for the minimal coupling. The
R=- 12’ (108 EMT for the extremal black hole is singular on the horizon
and equals the value obtained in the extremal limit of non-
o 1 extremal black holes, —r, .
gaﬁDq)_VaVBq)_gaBF: ETaB- (109 We also compared the results of a 2D reduced model with
the exact 3D results. The expressions for the 2D model are
These equations can be solved not only perturbatively bumuch simpler as they are approximate; it is not straightfor-
exactly. If we assume that the one-loop metric is of the formward to compare them with the 3D expressions, which are
(105, then we obtain the dilaton as usually in the form of infinite nonpolynomial series. Further,
the values of EMT cannot be compared directly because they
are defined as variations of Lagrangians in different dimen-
sions. In any case, there is a relatively good agreement in
some properties that we checkgéhe behavior of the curva-
in the Hartle-Hawking state. It is interesting to note that inture nearr=0, behavior of the metric in the large-mass
the Boulware statdwhere C=0) there is again an exact limit). Our results seem to correspond to Neumann boundary
solution: conditions of the scalar field.

ds?= 4IM dudv.
T (1+MUV/I)? '

r2—r2
TUU=2K|—4,

r
b= -2« (110
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Finally, in the spinless case our model reduces to theacuum states for AdSblack hole. In both cases the quan-
Jackiw-Teitelboim model. Adding the Polyakov-Liouville tum corrections on the geometry vanish; the back reaction
term as the effective action and fixing the correspondingchanges only the dilaton. The properties of these solutions
EMT, we obtained the Hartle-Hawking and the Boulwarewill be analyzed in a future publication.
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