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Quantum corrections for a Bañados-Teitelboim-Zanelli black hole via the 2D reduced model
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The one-loop quantum corrections for a Ban˜ados-Teitelboim-Zanelli~BTZ! black hole are considered using
a dimensionally reduced 2D model. Two cases are analyzed: minimally coupled and conformally coupled 3D
scalar matter. In the minimal case, Hartle-Hawking and Unruh vacuum states are defined and the corresponding
semiclassical corrections of the geometry are found. The calculations are done for the conformal case too, in
order to make a comparison with the exact results obtained previously for a spinless BTZ black hole. The exact
corrections for an AdS2 black hole for the 2D minimally coupled scalar field in Hartle-Hawking and Boulware
states are found as a subcase.
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I. INTRODUCTION

For a long time it was believed that black hole solutio
do not exist in three dimensions, and therefore the discov
of Bañados, Teitelboim, and Zanelli~BTZ! @1,2# came as a
surprise. The BTZ black hole has many properties that
familiar four-dimensional~4D! black hole solutions do no
possess. First, as a BTZ black hole can be obtained by i
tification of points in 3D anti–de Sitter~AdS! space it is
locally AdS, which means that it has a constant~negative!
curvature. Therefore its singularity is not a curvature sin
larity but a singularity in the causal structure. Also, the BT
black hole is not asymptotically flat but, because of the id
tification mentioned, which breaks the symmetries of A
space, the asymptotic region can be identified. The fact
the BTZ black hole is three dimensional simplifies ma
computations which can be done only approximately in fo
dimensions; e.g., the thermal Green function of the con
mally coupled scalar field can be found. There are vari
interesting dimensional reductions from the BTZ black h
to two-dimensional configurations, too@3#.

One of the most interesting questions in the analysis
black holes is the Hawking radiation. Considerable work h
been done in the last few years in an effort to find 2D eff
tive models that can describe the properties of 4D bl
holes and the corresponding radiated field. The main ide
this approach is to consider the effective action obtained
functional integration of the scalar field as a semiclass
correction to the gravitational action. Different variants
the 2D effective action are used in the literature, but in pr
ciple they describe the effects of thes modes of the scala
field to one-loop order. A similar approach has been u
recently@4# for the BTZ black hole.

The purpose of this paper is twofold. Our first goal is
define the Unruh vacuum by means of a dimensionally
duced model. The definition of the Unruh vacuum still see
to be an open question for the BTZ black hole. We use
analogy with the Schwarzschild and Reisner-Nordstr¨m
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case, which offers the possibility of a straightforward defi
tion of the Unruh state via nonsingularity of the energ
momentum tensor~EMT! on the future event horizon.

The other important point is to use the advantage of
low dimensionality of the BTZ solution in order to analyz
the properties of the procedure of dimensional reducti
This problem is of great heuristic importance, as dimensio
reduction is repeatedly done in different scenarios of str
and brane theories, whereas the mechanism is fully un
stood only on the classical level. A study of the dimensio
reduction from four to two dimensions in the case of t
Schwarzschild black hole was done previously@5–8#. There
are also some new ideas in the literature such as
dimensional-reduction anomaly@9#. However, the analysis is
far from complete. In order to be able to compare with t
results obtained for the 3D BTZ@10–12#, we formulate a
dimensionally reduced theory for conformally coupled m
ter. We define the Hartle-Hawking vacuum and calculate
back reaction effects.

Finally, for the sake of completeness, we discuss the m
frequently used effective action, Polyakov-Liouville, for 2
minimally coupled scalars. As a dimensionally reduced sp
less BTZ black hole is, in fact, a two-dimensional black ho
with constant negative curvature, as a subcase we inclu
full discussion of the quantum corrections of the 2D Ad
black hole.

The plan of the paper is the following. In Sec. II w
introduce the general framework of the problem. Section
gives the analysis of the Unruh vacuum for the minima
coupled case, while conformal coupling is discussed in S
IV. Section V is devoted to the Polyakov-Liouville actio
and the 2D anti–de Sitter black hole.

II. GENERAL SETTING

We start with the three-dimensional gravitational acti
with negative cosmological constant (22L522l 22,0)
coupled to the scalar fieldf:

G0
(3)5

1

16pGE d3xA2g(3)S R(3)1
2

l 2D
2

1

16pGE d3xA2g(3)@~¹ f !21jR(3)f 2#. ~1!
©2002 The American Physical Society22-1
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The casej50 describes the minimal coupling in 3D, whil
j5 1

8 is the conformal coupling. This action admits th
vacuum solutionf 50. We consider the BTZ black hole so
lution which is locally AdS3 space:

ds(3)
2 52S r 2

l 2 2 lM Ddt21Jldtdu1r 2du2

1S r 2

l 2 2 lM 1
J2l 2

4r 2 D 21

dr2. ~2!

If we construct the metric reduced from Eq.~2! to a two-
dimensionalt,r hypersurface by the standard procedure@14#,
we obtain

ds252gcldt21
1

gcl
dr2, ~3!

where the functiongcl(r ) is given by

gcl~r !5
r 2

l 2 2 lM 1
J2l 2

4r 2 5
~r 22r 1

2 !~r 22r 2
2 !

r 2l 2 . ~4!

As show in@2#, the quantitiesM andJ have the meaning o
mass and angular momentum. The second equality in Eq~4!
holds whenMl>J; the caseMl 5J is the extremal BTZ
black hole. One can see from the Penrose diagram that
space shows a great resemblance to the Reisner-Nords¨m
black hole. The outer and inner horizonsr 6 are given by

r 6
2 5

l 2

2
~Ml 6AM2l 22J2!. ~5!

Inversely,

M5
r 1

2 1r 2
2

l 3 , J5
2r 1r 2

l 2 . ~6!

Achucarro and Ortiz showed in@3# that the 2D metric~3!
can be obtained from the dimensionally reduced action in
following way. Assume the axially symmetric metric ansa

ds(3)
2 5gmndxmdxn1 l 2F2~adu1Amdxm!2 , ~7!

wheregmn ,F, andAm are the two-dimensional metric, dila
ton, and U~1! gauge fields; all fields depend only ont,r . The
constanta will be fixed later. The 3D scalar curvature for th
ansatz~7! is

R(3)5R2
l 2F2

4
FmnFmn2

2hF

F
, ~8!

where Fmn5]mAn2]nAm a nd R denotes the curvature i
2D. Further,A2g(3)5A2glaF. Introducing the reduction
formula ~8! into the action~1! and integrating over the an
gular variableu, we obtain the 2D action

G05Gg1Gm . ~9!

Its gravitational partGg is, up to a total divergence, given b
06402
is
o

e

Gg5
la

8GE d2xA2gFS R2
l 2F2

4
F21

2

l 2D , ~10!

while the part describing matter,Gm , is

Gm52
la

8GE d2xA2gFF ~¹ f !21j f 2S R2
l 2F2

4

3F22
2hF

F D G . ~11!

In the following we will choosea such thatla/8G51. Also,
instead of the dilaton fieldF we will use its logarithm:w
5 logF.

In order to analyze the vacuum fluctuations of the sca
field f one has to integrate it out to first order in\. Our
approximation consists of the fact that we do the functio
integration off in the 2D action~11! and not in the full 3D
action. We use the methods developed in@15#. The result that
we obtain for the one-loop effective action is

G15
1

96pE d2xA2g~12j21!R
1

h
R

1
1

8pE d2xA2gF S 1

4
22j DR

1

h
~¹w!2

1S 1

2
22j DRw2

j l 2

4
R

1

h
e2wF2G . ~12!

Note that the effective actions for 2D dilaton models a
analyzed in various papers@15–17#.

It is easier to use the local form of the action. The loc
form can be obtained by a suitable introduction of auxilia
fields @7,4#; however, it differs for the three cases we a
going to discuss. Therefore, we proceed with the minim
case.

III. 3D MINIMAL COUPLING

For j50, the effective actionG1 can be rewritten in the
local form as

G1,min52
1

96pE d2xA2gF2RS c2
3

2
x D

1~¹c!223~¹c!~¹x!23~¹w!2c26Rw G ,
~13!

where the auxiliary fields1 c andx satisfy the equations

hc5R, ~14!

hx5~¹w!2. ~15!

1Note that our auxiliary fields are not the same as those introdu
in @4#.
2-2
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The full semiclassical action for the minimally coupled fie
is

Gmin5Gg1G1,min

5E d2xA2gewS R1
2

l 2 2
l 2

4
e2wFmnFmnD

2kE d2xA2gF2RS c2
3

2
x D1~¹c!2

23~¹c!~¹x!23c~¹w!226RwG . ~16!

We introduced the constantk51/96p, which is the pertur-
bation parameter. The equations of motion obtained from
action ~16! are ~14!, ~15! and

¹m~e3wFmn!50, ~17!

R1
2

l 2 2
3l 2

4
e2wF256ke2w@2R1¹m~c¹mw!#, ~18!

gabhF2¹a¹bF2FgabS 1

l 2 2
l 2

8
F2FmnFmnD

2
l 2

2
F3FbmFa

m

5Tab/2

5kF¹ac¹bc2
3

2
¹ac¹bx2

3

2
¹ax¹bc23c¹aw¹bw

22¹b¹aS c23w2
3

2
x D2

1

2
gab@~¹c!223¹c¹x

23c~¹w!2#12gabhS c23w2
3

2
x D G . ~19!

Tab denotes the energy-momentum tensor of the radia
matter:

Tmn52
2

A2g

dG1

dgmn
. ~20!

For k50 we obtain the classical vacuum equations
motion. The classical solution forF andFmn is

F5ew5
r

l
, Fmn5

emn

A2g

Jl

r 3 5Emn
Jl

r 3 , ~21!

whereEmn is the covariant antisymmetric tensor. The zero
order solution forgmn is the BTZ metric~3!. Note thatTmn

defined in Eq.~19!, being of the first order ink, is deter-
mined by the zeroth order solution for the fieldsc, x, andw.

The Hartle-Hawking vacuum state for the minimal
coupled scalar field in the BTZ background was analyzed
the work of Medved and Kunstatter@4#. Here we will outline
06402
e

d

f

n

and rederive some of their results briefly for later compa
son. In the Hartle-Hawking vacuum state all functions a
independent of time. The solution of Eqs.~14!, ~15! is

c~r !52 loggcl~r !1Cr* , ~22!

x~r !5E dr

gcl~r ! S E dr
gcl~r !

r 2 D 1Dr * , ~23!

wherer * , the tortoise coordinate, is given for a nonextrem
BTZ metric by

r * 5E dr

gcl~r !
5

l 2

2~r 1
2 2r 2

2 !
S r 2log

r 1r 2

r 2r 2
2r 1log

r 1r 1

r 2r 1
D .

~24!

The assumption that the energy-momentum tensor is re
lar on the outer horizonr 5r 1 in the freely falling frame
means that

Tvv,`,
Tuv

gcl
,`,

Tuu

gcl
2

,` for r 5r 1 , ~25!

where the components of the EMT are given in the nullu,v
coordinates.2 Using Eq.~25!, for the constantsC andD we
obtain

C52
r 1

2 2r 2
2

l 2r 1
, D52

6r 1
2 12r 2

2

3l 2r 1
. ~26!

Introducing these values, we get

c~r !52 log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 1
r 2

r 1
log

r 1r 2

r 2r 2
, ~27!

x~r !5
3r 1

2 1r 2
2

3~r 1
2 2r 2

2 !
log

~r 1r 1!2

r 22r 2
2 2

~3r 1
2 1r 2

2 !r 2

3~r 1
2 2r 2

2 !r 1

log
r 1r 2

r 2r 2

1
1

3
log

~r 22r 2
2 !2

rl 3 . ~28!

2In the rest of the text we will use three common choices
coordinates in parallel. These are Schwarzschild coordinatest,r ,
null coordinates u,v (u5t2r * ,v5t1r * ), and Eddington-
Finkelstein coordinatesv,r .
2-3
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The corresponding values of the EMT in the Hartle-Hawki
vacuum are

Tuu5
k

2l 4r 6r 1
2 H @~r 2r 1!223r 6r 1

2 26r 5r 1~2r 1
2 2r 2

2 !

2r 4r 1
2 ~3r 1

2 12r 2
2 !22r 3r 1r 2

2 ~5r 1
2 23r 2

2 !

23r 2r 1
2 r 2

2 ~2r 1
2 23r 2

2 !110rr 1
3 r 2

4 15r 1
4 r 2

4 #

13r 1
2 ~r 22r 1

2 !2~r 22r 2
2 !2S log

~r 1r 1!2~r 22r 2
2 !

r 2l 2

2
r 2

r 1
log

r 1r 2

r 2r 2
D J , ~29!

Tuv5
k

2l 4r 6 ~r 22r 1
2 !~r 22r 2

2 !@13r 413r 2~r 1
2 1r 2

2 !

23r 1
2 r 2

2 #, ~30!

Tvv5Tuu . ~31!

The energy density of the radiationTtt is

Ttt5
k

l 4r 6r 1
F10r 8r 126r 7~r 1

2 2r 2
2 !18r 6~r 1

3 23r 1r 2
2 !

26r 5~r 1
4 2r 2

4 !2r 4~6r 1
5 216r 1

3 r 2
2 16r 1r 2

4 !

12r 3r 1
2 r 2

2 ~r 1
2 2r 2

2 !12r 1
5 r 2

4 13~r 22r 1
2 !2

3~r 22r 2
2 !2r 1S log

~r 1r 1!2~r 22r 2
2 !

r 2l 2

2
r 2

r 1
log

r 1r 2

r 2r 2
D G . ~32!

There is an important comment on the values of the
ergy density in the asymptotic region. One can see thatTtt
diverges asymptotically (r→`) as r 2 log r, a feature which
is not present in the Schwarzschild case. But the Schwa
child metric is asymptotically flat, while the BTZ metric ha
nonzero curvature andgcl(r ) behaves asr 2 for r→`. In
order to better understand the properties of the BTZ me
we transform the EMT to the locally flat coordinatest8,r 8 at
some distant fixed point (t,L). We get the asymptotics as
suming thatr;L→`. The transformation of coordinate
that we need is

t85Agcl~L !t, r 85
1

Agcl~L !
r . ~33!

Asymptotically,t8;(L/ l )t;(r / l )t and

Tt8t8;
l 2

r 2 Ttt;
k

l 2 S 1016 log
r

l D , ~34!

so in the asymptotic region the local energy density diver
only logarithmically. This behavior of minimally coupled ra
06402
-

s-

c,

s

diation in the BTZ background is rather unexpected, and
will see that the conformal coupling improves it.

Having fixed the components of the EMT, one can fi
the first correction of the metric, i.e., solve Eqs.~19! in the
first order ink. The one-loop corrected static ansatz for t
metric is

ds252g~r !e2kv(r )dt21
1

g~r !
dr2. ~35!

We take the functiong(r ) in the form

g~r !5gcl~r !2k lm~r !, ~36!

and then Eqs.~19! read, to first order,

2
k

l
v85T111

T00

gcl
2

, ~37!

km85
T00

gcl
. ~38!

Their solution is

m~r !5
4r 226~r 1

2 1r 2
2 !

l 2r
1

16r 2

l 2 log
r 1r 2

r 2r 2

1
3r 42r 1

2 r 2
2 13r 2~r 1

2 1r 2
2 !

l 2r 3

3S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D ,

~39!

v~r !5F~r !2F~L !, ~40!

whereF(r ) is given by

F~r !5 l F1

r
1

~r 123r 2!~r 11r 2!

r 1~r 12r 2!~r 1r 2!
1

~r 113r 2!~r 12r 2!

r 1~r 11r 2!~r 2r 2!

2
2~3r 1

2 1r 2
2 !

~r 1r 1!~r 1
2 2r 2

2 !
1

32r 1r 2
2

~r 1
2 2r 2

2 !2log~r 1r 1!

2S 3r 2

r 1r
2

8r 2

~r 11r 2!2D log~r 2r 2!

1S 3r 2

r 1r
2

8r 2

~r 12r 2!2D log~r 1r 2!

2
3

r
log

~r 1r 1!2~r 22r 2
2 !

r 2l 2 G . ~41!

L is the integration constant. We have assumed that our
tem is in a 1D box of sizeL @5#.

The first correction of the scalar curvature,R5R01kR1,
with R0,
2-4
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QUANTUM CORRECTIONS FOR A BAÑADOS- . . . PHYSICAL REVIEW D 65 064022
R052gcl952
2

l 2 26
r 1

2 r 2
2

l 2r 4 , ~42!

can be expressed in terms ofm,v as

R1523gcl8 v81 lm922gclv9. ~43!

It is regular on the horizonr 5r 1 . If one had not fixedC and
D previously, the same values~26! would have been obtaine
assuming the regularity ofR1 on r 1 . We find

R15
6

lr 1r 5 F2r 3~r 1
2 2r 2

2 !18r 1
3 r 2

2 2r 1~r 41r 2~r 1
2 1r 2

2 !

23r 1
2 r 2

2 !S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D G .

~44!

The corrected value of the metric gives us the possibi
of determining how the horizon of the black hole chang
due to the back reaction of the Hawking radiation. The
parent horizon of the black hole~which in the static case
coincides with the event horizon! is in 2D defined by the
equation

gmn]mr AH]nr AH50. ~45!

We define the corrected null coordinatesū,v̄ for the general
nonstatic metric by

ds252g~v,r !e2kv(v,r )dv212ekv(v,r )dv dr

52
1

m
g~v,r !e2kv(v,r )dūdv̄ ~46!

with dv̄5dv, dū5mdv2@2m/g(v,r )#e2kvdr and m the
integration factor@8#. The condition~45! in ū,v̄ coordinates
is

] ūr ur AH
50, ] v̄r ur AH

50, ~47!

or, equivalently,

ekvg~v,r !ur AH
50. ~48!

If we write the apparent horizon asr AH5r 11kr 1, for the
corrected value we get

r AH5r 11k
l 3m~v,r 1!r 1

2~r 1
2 2r 2

2 !
. ~49!

In the static case of the Hartle-Hawking vacuum~49! the
one-loop corrected value of the event horizon is

r AH5r 11k
lr 1r 2

~r 1
2 2r 2

2 !
S 5r 1

2 2r 2
2

r 1
2 log

r 11r 2

r 12r 2

1
3r 1

2 1r 2
2

r 1r 2
log

4~r 1
2 2r 2

2 !

l 2 2
r 1

2 13r 2
2

r 1r 2
D . ~50!
06402
y
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Having foundc, x, and the metric, one can easily calc
late the corrections of the thermodynamical quantities te
perature and entropy. Entropy is defined as@18#

S522peabegd

]L
]Rabgd

U
r AH

54pF r

l
2kS 2c23x26 log

r

l D GU
r AH

~51!

for the action~16!. In the Hartle-Hawking state the correcte
entropy is given by

S54pF r 1

l
1kS 2

r 1
2 13r 2

2

r 1
2 2r 2

2 1
5r 1

2 2r 2
2

r 1
2 2r 2

2 log
4~r 1

2 2r 2
2 !

l 2

22
r 1

2 1r 2
2

r 1
2 2r 2

2 log
r 1

2 2r 2
2

4r 1
2 1 log

4r 1~r 1
2 2r 2

2 !

l 3 16 log
r 1

l D G ,
~52!

while the temperature is

TH5
r 1

2 2r 2
2

2p l 2r 1
@12kF~L !#2kS r 2

4 19r 1
4 16r 1

2 r 2
2

2p lr 1
2 ~r 1

2 2r 2
2 !

2
8r 2

2

p l ~r 1
2 2r 2

2 !
log

16r 1
2

l 2 D . ~53!

We will now analyze the Unruh vacuum. The Unru
vacuum can be defined as a state of matter whose ene
momentum tensor is regular on the future event horizon.
is easily seen, the region2`,t,`, r 1<r ,` of the t,r
plane transforms into the interior of the trianglev52`, u
5`, u5v in the u,v plane. The lineu5v is the time like
boundary~asymptotic region! of the BTZ black hole;u5`
is the future event horizon whilev52` is the past event
horizon. In order to find the energy-momentum tensor
need to solve Eqs.~14!, ~15! in the general nonstatic case
Those equations can be transformed into a system of pa
linear equations that is similar to the one obtained for
SSG model. For details we refer the reader to@8#. The gen-
eral solution is

c~v,r !52 loggcl~r !1CS r * 2
v
2D1G~v !, ~54!

x~v,r !5E dr

gcl~r ! S E gcl~r !

r 2
dr D 1DS r * 2

v
2D1H~v !,

~55!

whereC,G,D,H are arbitrary functions of their argument
Note that the arguments in Eqs.~54!, ~55! are written in such
a way that regularity on the future horizonu→`, v5const
is equivalent to regularity onr→r 1(r * →2`), as the val-
ues ofv and its functions are constant on the future horizo
2-5
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While the value ofTuv is in the general case the same
Eq. ~30!, for Tuu andTvv we obtain

Tuu5
k

2l 4r 6H 23r 812r 6~r 1
2 1r 2

2 !23r 4~r 1
4 24r 1

2 r 2
2 1r 2

4 !

26r 2r 1
2 r 2

2 ~r 1
2 1r 2

2 !15r 1
4 r 2

4 23~r 22r 1
2 !2~r 22r 2

2 !2

3S G1C2 log
~r 22r 1

2 !~r 22r 2
2 !

r 2l 2 D
2C 8l 2r 3@3r 413r 2~r 1

2 1r 2
2 !2r 1

2 r 2
2 #

1 l 4r 6~C 8223C 8D 822C 913D 9!J , ~56!

Tvv5
k

2l 4r 6H 23r 812r 6~r 1
2 1r 2

2 !23r 4~r 1
4 24r 1

2 r 2
2 1r 2

4 !

26r 2r 1
2 r 2

2 ~r 1
2 1r 2

2 !15r 1
4 r 2

4 23~r 22r 1
2 !2~r 22r 2

2 !2

3S G1C2 log
~r 22r 1

2 !~r 22r 2
2 !

r 2l 2 D
22G 8l 2r 3@3r 413r 2

3~r 1
2 1r 2

2 !2r 1
2 r 2

2 #14l 4r 6~G 8223G 8H 8

22G 913H 9!J . ~57!

From these expressions one can see that, in order to
force the regularity ofTuu /gcl

2 on the future horizon, one
needs to make the functionsC and D linear in their argu-
ments,C(x)5Cx, D(x)5Dx, with the Hartle-Hawking val-
ues of constantsC,D given by Eq.~26!. The functionsG,H
cannot be fixed in this manner. We will assume thatG andH
are also linear, which is in accordance with the constanc
luminosity of a black hole. We see then that the differen
between outgoing and ingoing fluxes in the asymptotic
gion r→`(r * →0) has the leading behavior

Tuu2Tvv;2
3kr

2l 2 ~C22G 8!. ~58!

It is much smaller than the asymptotic value of the flux

Tuu;
3kr 2

2l 4 S 2 logr 1
C

2
v2G21D . ~59!

In fact, the asymptotic value of flux is not dominated by t
function G(v)5G(t1r * ) for r * →0, althoughG fixes the
luminosity of the black hole. The dominant term is th
r 2log r term, and this term is the same forTuu andTvv . This
is a rather peculiar characteristic of the BTZ black hole if
recall that for the Unruh vacuum usually the outgoing flux
constant while the ingoing flux vanishes~asymptotically!.

One can verify that the given energy-momentum ten
really describes the Unruh vacuum because it is regula
the future horizon but divergent on the past event horiz
06402
n-

of
e
-

r
n
n

(v→2`,u5const). Indeed, expressing the EMT~56!, ~57!
in terms of r and u, a logarithmically divergent term foru
5const,r * →2` appears independently of the choice of t
functions G and H, i.e., always except forG(v)5@(r 1

2

2r 2
2 )/ l 2r 1#v which gives the time independence of th

EMT and the Hartle-Hawking state.
Taking the above discussion into account, we see that

functionsG andH cannot be fixed by the properties of th
EMT. The simplest choice for the Unruh vacuum isG5H
50. Then

c~v,r !52
r 1

2 2r 2
2

l 2r 1
v2S log

~r 1r 1!2~r 22r 2
2 !

r 2l 2

2
r 2

r 1
log

r 1r 2

r 2r 2
D , ~60!

x~v,r !5
3r 1

2 1r 2
2

3l 2r 1
v1

3r 1
2 1r 2

2

3~r 1
2 2r 2

2 !
log

~r 1r 1!2

r 22r 2
2

2
~3r 1

2 1r 2
2 !r 2

3~r 1
2 2r 2

2 !r 1

log
r 1r 2

r 2r 2
1

1

3
log

~r 22r 2
2 !2

rl 3 .

~61!

The final expressions forTmn are

Tuu5
k

2l 6r 6r 1
F l 2~r 2r 1!2~23r 1r 626~2r 1

2 2r 2
2 !

3r 52r 1~3r 1
2 12r 2

2 !r 422r 2
2 ~5r 1

2 23r 2
2 !

3r 323r 1r 2
2 ~2r 1

2 23r 2
2 !r 2110r 1

2 r 2
4 r 15r 1

3 r 2
4 !

13~r 22r 1
2 !2~r 22r 2

2 !2~r 1
2 2r 2

2 !v13l 2r 1~r 22r 1
2 !2

3~r 22r 2
2 !2S log

~r 1r 1!2~r 22r 2
2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D G ,
~62!

Tvv5
k

2l 6r 6r 1
F l 2r 1~23r 812~r 1

2 1r 2
2 !r 623~r 1

4 1r 2
4

24r 1
2 r 2

2 !r 426r 1
2 r 2

2 ~r 1
2 1r 2

2 !r 215r 1
4 r 2

4 !

13~r 22r 1
2 !2~r 22r 2

2 !2~r 1
2 2r 2

2 !v13l 2r 1~r 22r 1
2 !2

3~r 22r 2
2 !2S log

~r 1r 1!2~r 22r 2
2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D G .
~63!

The same values of the energy-momentum tensor can be
tained by applying the procedure developed by Balbinot a
Fabbri in @6#.

Now we will find the corrected geometry. The one-loo
ansatz for the metric is

ds252g~v,r !e2kv(v,r )dv212ekv(v,r )dvdr, ~64!
2-6
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whereg(v,r )5gcl(r )2k lm(v,r ). Putting this ansatz in Eq
~19! we get

k

l

]v

]r
5

Trr

2
, ~65!

2k
]m

]r
5Trv , ~66!

k
]m

]v
5Tvv1gclTvr . ~67!

Introducing the values~30!, ~62!, ~63! in the system of
equations form(v,r ) and v(v,r ) we obtain the one-loop
correction for the metric:

m~v,r !52v
r 1

2 2r 2
2

l 4r 1r 3 @23r 418r 1r 323~r 1
2 1r 2

2 !

3r 21r 1
2 r 2

2 #1
4r 226~r 1

2 1r 2
2 !

l 2r
116

r 2

l 2 log
r 1r 2

r 2r 2

1
3r 413~r 1

2 1r 2
2 !r 22r 1

2 r 2
2

l 2r 3

3S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D , ~68!

v~v,r !5
l ~3r 22r 1!~r 11r 2!

r 1~r 1r 2!~r 22r 1!
2

l ~r 22r 1!~r 113r 2!

r 1~r 2r 2!~r 21r 1!

2
2l ~3r 1

2 1r 2
2 !

~r 1r 1!~r 1
2 2r 2

2 !
1

8lr 2

~r 1
2 2r 2

2 !2

3S ~r 1
2 1r 2

2 !log
r 2r 2

r 1r 2
12r 1r 2log

~r 1r 1!2

r 22r 2
2 D

2
3l

r S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D

1
l

r
23v

r 1
2 2r 2

2

lr 1r
. ~69!

The value of the apparent horizon is

r AH5r 11k
l

r 1~r 1
2 2r 2

2 !
S r 1~3r 1

2 1r 2
2 !log

4~r 1
2 2r 2

2 !

l 2

2r 2~r 2
2 25r 1

2 !log
r 11r 2

r 12r 2
2r 1~r 1

2 13r 2
2 !

2
v
l 2 ~r 1

2 2r 2
2 !2D , ~70!

and the entropy for the Unruh state is given by
06402
S54pF r 1

l
1kS 2

r 1
2 13r 2

2

r 1
2 2r 2

2 1
4r 1v

l 2

1
5r 1

2 2r 2
2

r 1
2 2r 2

2 log
4~r 1

2 2r 2
2 !

l 2 12
r 1

2 1r 2
2

r 1
2 2r 2

2 log
4r 1

2

r 1
2 2r 2

2

1 log
4r 1~r 1

2 2r 2
2 !

l 3 16 log
r 1

l D G . ~71!

IV. 3D CONFORMAL COUPLING

We will now discuss the case of conformally coupled m
ter. The coupling constant for conformal coupling in thr
dimensions isj5 1

8 . The local form of the effective action
~12! is given by

G1,con f5
k

2E d2xA2gS R~2c1x!1~¹c!21~¹c!~¹x!

2
3l 2

4
ce2wF216Rw D , ~72!

so the full action reads

Gcon f5Gg1G1,con f

5E d2xA2gewS R1
2

l 2 2
l 2

4
e2wFmnFmnD

1
k

2E d2xA2gS R~2c1x!1~¹c!21~¹c!~¹x!

2
3l 2

4
ce2wF216Rw D . ~73!

The equations that follow from the variational principle f
Eq. ~73! are

hc5R, ~74!

hx52
3l 2

4
e2wF2, ~75!

¹mF S 11
3

2
kce2wDe3wFmnG50, ~76!

R1
2

l 2 2
3l 2

4
e2wF252ke2wS 3R2

3l 2

4
ce2wF2D ,

~77!

and
2-7
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gabhF2¹a¹bF2FgabS 1

l 2 2
l 2

8
F2FmnFmnD

2
l 2

2
F3FmbF a

m

5Tab/2

52
k

2 F¹ac¹bc1
1

2
¹ac¹bx1

1

2
¹ax¹bc

2
3l 2

2
ce2wFbnFa

n2¹b¹a~2c1x16w!

2
1

2
gabS ~¹c!21¹c¹x2

3l 2

4
ce2wF2D

1gabh~2c1x16w!G . ~78!

We can again take the solution of Eq.~77! for the dilaton
in the form ew5r / l , as this represents our choice of th
radial coordinate. Then Eq.~76! can also be solved exactly

Fmn5Emne23w
J

l 2 S 113k
lc

2r D
21

. ~79!

We proceed with the static case. The zeroth order solu
for c is

c~r !52 loggcl~r !1Cr* , ~80!

while for x we get

x~r !5E dr

gcl~r ! S E 3J2l 2

2r 4 dr D1Dr * . ~81!

Our goal is to solve Eq.~78! determining the back reactio
on the metric, i.e., to extract the equations for the functio
m(r ) andv(r ) from it. Let us note that, as can be seen fro
Eq. ~79!, in the conformal case the ‘‘electromagnetic field
Fmn also has corrections of first order ink. This means that
in the original 3D metric the angular part has to be correct
too. Technically, there are first order terms on both sides
Eq. ~78!. We collect all first order terms on the right han
side, and then the equations read

2
k

l
v85T111

T00

gcl
2

, ~82!

km85
T00

gcl
2

3k

2

J2l 2c

r 4 , ~83!

under the same ansatz~35! for gmn as before.
The procedure to determine the integration constant

the same as for the minimal coupling. The values of
constants in the Hartle-Hawking vacuum are

C52
r 1

2 2r 2
2

l 2r 1
, D5

2r 2
2

l 2r 1
. ~84!
06402
n

s

d,
f

is
e

For x we get

x~r !5
r 1

2

r 1
2 2r 2

2 log
~r 1r 2!~r 2r 2!

r 2

1
r 2

3

r 1~r 1
2 2r 2

2 !
log

~r 1r 2!

~r 2r 2!
2

2r 2
2

r 1
2 2r 2

2 log
r 1r 1

r
,

~85!

while c is the same as in the 3D minimal case~and as it will
be for the Polyakov-Liouville effective action!. The energy-
momentum tensor reads

Tuu5Tvv

52k
~r 2r 1!2

2l 4r 6 @3r 616r 5r 11r 4~3r 1
2 210r 2

2 !

220r 3r 1r 2
2 13r 2r 2

2 ~23r 1
2 1r 2

2 !

18rr 1r 2
4 14r 1

2 r 2
4 #, ~86!

Tuv5k
~r 22r 1

2 !~r 22r 2
2 !

2l 4r 6 F r 413r 2~r 1
2 1r 2

2 !212r 1
2 r 2

2

23r 1
2 r 2

2 S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D G ,
~87!

and the energy density

Ttt52
k

l 4r 6 @2r 824r 6~2r 1
2 13r 2

2 !

1r 4~6r 1
4 138r 1

2 r 2
2 16r 2

4 !22r 3r 1r 2
2 ~r 1

2 2r 2
2 !

224r 2r 1
2 r 2

2 ~r 1
2 1r 2

2 !116r 1
4 r 2

4 #

23k
~r 22r 1

2 !~r 22r 2
2 !

l 4r 6 r 1
2 r 2

2 S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2

2
r 2

r 1
log

r 1r 2

r 2r 2
D . ~88!

We see that the asymptotic behavior of the EMT has
proved now, as the leading term forr→` is Ttt;2kr 2/ l 4.
This means that the energy density of radiation in the loca
Minkowskian frame is constant. The solution for the fun
tions m andv is nonsingular on the horizonr 5r 1 :

m~r !5
1

l 2r 3 F22r 426r 2~r 1
2 1r 2

2 !

16r 1
2 r 2

2 22r 2r 3log
r 1r 2

r 2r 2

2r 1
2 r 2

2 S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2 2
r 2

r 1
log

r 1r 2

r 2r 2
D G ,

v~r !5F~r !2F~L !, ~89!
2-8
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whereF(r ) is

F~r !54
l

r
2

l ~r 122r 2!

2~r 1r 2!~r 12r 2!
2

l ~r 112r 2!

2~r 2r 2!~r 11r 2!

1
lr 2

2

~r 1r 1!~r 1
2 2r 2

2 !
2

2lr 1r 2
2

~r 1
2 2r 2

2 !2log
~r 1r 1!2

r 22r 2
2

1
lr 2~r 1

2 1r 2
2 !

~r 1
2 2r 2

2 !2 log
r 1r 2

r 2r 2
. ~90!

For the first correction of the curvature we obtain

R15
6

lr 5 F r 413r 1
2 r 2

2 22r 1
2 r 2

2 S log
~r 1r 1!2~r 22r 2

2 !

r 2l 2

2
r 2

r 1
log

r 1r 2

r 2r 2
D G . ~91!

Now we can compare our results with the results in
literature. Green functions for the BTZ black hole were c
culated in@10–13#. The starting point of these calculations
the Green function for the scalar field in AdS3 space. How-
ever, as anti–de Sitter space has a timelike infinity, it d
not have a Cauchy surface. A prescription to fix the bound
conditions for the wave equation and define the orthonor
basis of eigenfunctions for quantization was developed
Avis, Isham, and Storey@20#. One conformally maps the AdS
space into the half of the Einstein static universe~ESU! that
is spatially compact and has a well defined Cauchy probl
The solutions for a conformally coupled scalar field in t
ESU can be mapped back into the solutions for the con
mally coupled scalar field in AdS, and hence from the ba
of eigenfunctions in the ESU one inherits the basis in Ad
The use of the complete basis in the ESU gives the so-ca
transparent boundary conditions. Transparent boundary
ditions have the property that the energy of the scalar fiel
not conserved. It is possible also to define two types of
flective boundary conditions~Dirichlet and Neumann! such
that energy is conserved. The final step in the constructio
Green functions for the BTZ black hole is to apply th
method of images, which takes into account the identifi
tions used to obtain BTZ space from AdS3.

The Green function for the spinning BTZ black hole f
transparent boundary conditions was obtained by Steif@12#
and the back reaction to the metric discussed by Marti
and Zanelli@21#. We will not compare our results to thos
transparent boundary conditions are not appropriate for
scription of the Hartle-Hawking state as they do not conse
energy. Lifschytz and Ortiz@10#, and Shiraishi and Maki@11#
found the Green function for reflective boundary conditio
in the spinless caseJ50 and the expectation value of th
energy-momentum tensor. The components of the EMT h
the relatively complicated form of infinite sum and nonpo
nomial behavior, so it is not easy to compare them direc
with Eqs.~86!, ~87! which are much simpler. Reference@10#
showed that the energy density is positive for Dirich
boundary conditions, while for Neumann boundary con
tions it is not. We obtainedTtt;2kr 2/ l 4 for r→`, or in the
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locally flat frameTt8t8;2k/ l 2. However, we know from the
analysis of the Schwarzschild black hole that dimensio
reduction can change the sign of the energy, as it takes
account only some of the modes of the scalar field. The E
is regular forr 5r 1 and singular asr→0 both in@10,11# and
in our calculation.

Since the metric ansatz in@10# is not the same as the on
we used~and it does not seem to be correct; see@21#!, we
will compare the corrections for the curvature. Referen
@10# obtained that the curvature scalarR2 diverges as 1/r 6

nearr 50. ForJ50 in Eq. ~91! we see thatR156/lr . How-
ever, this is only the correction of the two-dimensional pie
of the curvature. In order to find the full three-dimension
correction, we should employ the reduction formula~8!. Us-
ing the solutions written to the first order ink,

F5
r

l
, F2522

J2l 2

r 6 S 123k
c l

r D , ~92!

and

hF5
1

A2g
]m~A2ggmn]nF!5

1

l
~gcl8 1kgclv82k lm8!,

~93!

we find the first correction:

R1
(3)5

8

lr
16

Ml 2

r 3 . ~94!

From this expression it can be seen that the 3DR2 diverges
as 1/r 6 nearr 50 in our calculation, too. Note that at zero
order the reduction formula givesR0

(3)526/l 2, but R05
22/l 223J2l 2/2r 4. We will later use the fact that forJ50
the metric~4! describes the AdS2 black hole.

Finally, we can compare the metric corrections which a
given in @11# in the large mass limit. The functionm(r ) used
in @11# is proportional to ourm(r ). It behaves as

m~r !;
r 1

r
21, Neumann, ~95!

m~r !;S r 1

r D 3

22
r 1

r
21, Dirichlet, ~96!

while our result form(r ) is

m~r !522
r 213r 1

2

l 2r
. ~97!

If the limit M→` is understood asr 1@r , then the behavior
of m(r ) is the same as Eq.~95! for Neumann boundary con
ditions @up to an integration constant which we, for the sa
of simplicity, discarded in the expression~89! for m#.

Coming back to the dimensionally reduced BTZ mod
we want to make some additional remarks, skipping the
tails of the calculation. It is always interesting to give a p
ticular analysis of the extremal black hole, and this was do
in @4# for the case of minimally coupled matter. The concl
2-9
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sion of @4# was that the BTZ black hole behaves similarly
a dimensionally reduced Reisner-Nordstro¨m black hole@19#;
namely, the EMT for minimally coupled matter in the Hartl
Hawking state of the extremal black hole is different fro
that in the limit r 2→r 1 of nonextremal black holes. Th
differences show drastically on the event horizon: while
energy-momentum tensor for the extremal black hole is re
lar, in the nonextremal limit the EMT is singular.3 Surpris-
ingly, this is not so in the case of conformally coupled m
ter. If we, as before, assume the extremal form of the me
at the beginning of the analysis and impose regularity,
conclude that no choice of constantsC,D exists such that the
EMT is regular on the horizon. A similar conclusion hold
for the curvature. Both quantities are the ‘‘least diverge
for C50, which is exactly the nonextremal limitr 2→r 1 .

The other peculiar property of the conformal case is t
we cannot define the Unruh vacuum.

V. 2D MINIMAL COUPLING

In this section we will consider the Polyakov-Liouvill
effective action. This action is obtained by functional int
gration of a scalar field coupled to gravity in two dimension
The Polyakov-Liouville action is used very often for the e
act or qualitative description of one-loop quantum effects
the scalar field and it has been widely discussed in the c
text of string theory and 2D dilaton gravity. It is given by

G1,PL52
1

96pE d2xA2gR
1

h
R, ~98!
to

the
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or in the local form

G1,PL52kE d2xA2g@~¹c!212Rc#. ~99!

The auxiliary field c satisfies the equationhc5R. The
energy-momentum tensor determined from Eq.~99! is

Tmn52kS ¹mc¹nc22¹m¹nc2
1

2
gmn~¹c!212gmnhc D .

~100!

We see that in the Polyakov-Liouville case the effective
tion looks much simpler than the actionsGmin ,Gcon f as it is
expressed in terms of one auxiliary field.

Let us see what results we get for the Hartle-Hawki
state now. The solution of the equation of motion forGPL

5Gg1G1,PL for static c is Eq. ~22!, with C52(r 1
2

2r 2
2 )/r 1

2 l . The components of the energy-momentum ten
calculated from Eq.~100! are

Tuv52k
~r 22r 1

2 !~r 22r 2
2 !~r 413r 1

2 r 2
2 !

r 6l 4 ~101!

and

Tuu5Tvv522k
~r 22r 1

2 !2r 2
2 @r 2~3r 1

2 2r 2
2 !22r 1

2 r 2
2 #

r 6l 4r 1
2 .

~102!

The energy density is positive and has regular behavior in
asymptotic region
Ttt54k
~r 22r 1

2 !@r 6r 1
2 2r 4r 2

2 ~4r 1
2 2r 2

2 !1r 2r 2
2 r 1

2 ~6r 1
2 1r 2

2 !25r 1
2 r 2

2 #

r 6l 4r 1
2 ~103!
be-
s for
ion
al
2D
c-

try

y
-

in the sense discussed at the end of Sec. III. The asymp
value of the energy density in the locally flat frame is 4k/ l 2.
The corrections of the metric read

m~r !5
2

3r 2r 6r 1
2 S 2r 2@3r 413r 2~r 1

2 1r 2
2 !25r 1

2 r 2
2 #

13r 3~r 1
2 2r 2

2 !2log
r 2r 2

r 1r 2
D ,

v~r !5 l
22r 2~3r 1

2 1r 2
2 !18r 1

2 r 2
2

rr 1
2 ~r 22r 2

2 !

1 l
3r 1

2 1r 2
2

r 1
2 r 2

log
r 1r 2

r 2r 2
, ~104!

3By the regularity of the EMT on the horizon we always mean
regularity in the freely falling frame, as defined by Eq.~25!.
ticwhile the first correction of the curvature vanishes,R150.
The results given above are particularly interesting

cause they can be interpreted as the one-loop correction
the AdS2 black hole; namely, in the spinless case the act
GPL describes dilaton gravity with negative cosmologic
constant and with quantum corrections produced by a
minimally coupled scalar field. The classical part of this a
tion is the Jackiw-Teitelboim 2D gravity model@22#. The
classical solution has AdS2 geometry

ds252S r 2

l 2 2 lM Ddt21S r 2

l 2 2 lM D 21

dr2, ~105!

as for J50 one hasr 250, r 15AlM 3. The curvature is
R0522/l 2. AdS23S2 appears as the near horizon geome
of the extremal Reisner-Nordstro¨m solution. Different
vacuum states of the AdS2 black hole were discussed b
Spradlin and Strominger@23#. Fabbri, Navarro, and Navarro
2-10
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Salas considered one-loop corrections for an evapora
AdS2 black hole @24#, again in connection with Reisne
Nordström geometry.

The line element~105! can be rewritten in the null form

ds252
lM

sinh2@AM / l ~v2u/2!#
dudv, ~106!

whereu5t2r * , v5t1r * as usual, andr * is given by

r * 52A l

M
arccoth

r

Al 3M
.

One can also introduce Kruskal coordinates:

U52A l

M
e2AM / lu, V5A l

M
eAM / lv,

which are regular on the horizonr 1 . In these coordinates th
line element is

ds252
4lM

~11MUV/ l !2 dUdV.

Equations~101!–~103! for J50 andC52r 1 / l 2 reduce to

Tuv52k
r 22r 1

2

l 4 , Tuu5Tvv50, Ttt54k
r 22r 1

2

l 4 ,

~107!

and describe the EMT of the 2D black hole in the Hart
Hawking state. This result can be obtained in another w
As is known, the Hartle-Hawking state is the conformal st
uUV&. It is easy to find the components of the EMT in th
state using the transformation law of the EMT from t
Boulware stateuuv& to the Hartle-Hawking stateuUV&. On
performing this transformation one easily recovers the pre
ous result for the EMT.

Now we want to find the one-loop solution of this mode
The equations of motion can be written in the followin
form:

R52
2

l 2 , ~108!

gabhF2¹a¹bF2gab

F

l 2 5
1

2
Tab . ~109!

These equations can be solved not only perturbatively
exactly. If we assume that the one-loop metric is of the fo
~105!, then we obtain the dilaton as

F5
r

l
22k ~110!

in the Hartle-Hawking state. It is interesting to note that
the Boulware state~where C50) there is again an exac
solution:
06402
g

-
y.
e

i-

ut

F5
r

l
1k

r

r 1
log

r 1r 1

r 2r 1
. ~111!

The integration constants in previous formulas are chose
agreement with the classical limitk→0. We see that the
one-loop corrected metric is the AdS2 black hole again—
quantum corrections neither change the character of
space nor produce the singularity atr 50.

VI. CONCLUSIONS

In this paper we treated the one-loop corrections of a
mensionally reduced BTZ black hole. We discussed th
types of effective action which correspond to different co
plings of scalar matter~3D minimal, 3D conformal, and 2D
minimal couplings!.

As a first case we analyzed the 3D minimally coupl
scalar field. The Hartle-Hawking vacuum state of this mo
was obtained by Medved and Kunstatter in@4#. Although the
Hartle-Hawking state can be defined straightforwardly a
has a regular energy-momentum tensor on the event hor
for both extremal and nonextremal black holes, it has
unexpected property that the EMT diverges in the asympt
region, e.g.,Tuu→(3kr 2/ l 4)log(r/l). This holds also in the
locally Minkowskian frame, where the energy density d
verges logarithmically. In this paper we defined the Unr
vacuum state, demanding the regularity of the EMT on
future event horizon. The Unruh vacuum for the BTZ bla
hole has unusual behavior, too. Both incoming and outgo
fluxes Tvv and Tuu tend to the same divergent valu
(3kr 2/ l 4)log(r/l) asymptotically. This value dominates th
time-dependent term. Let us just recall that for the Schwa
child black hole the ingoing fluxTuu asymptotically van-
ishes, while the outgoing flux tends to a constant.

We considered next 3D conformally coupled matter.
this case one obtains the result that the energy-momen
tensor in the Hartle-Hawking state is regular both on
event horizon and asymptotically. However, one cannot
fine a regular Hartle-Hawking vacuum for the extremal BT
black hole as was possible for the minimal coupling. T
EMT for the extremal black hole is singular on the horiz
and equals the value obtained in the extremal limit of no
extremal black holes,r 2→r 1 .

We also compared the results of a 2D reduced model w
the exact 3D results. The expressions for the 2D model
much simpler as they are approximate; it is not straightf
ward to compare them with the 3D expressions, which
usually in the form of infinite nonpolynomial series. Furthe
the values of EMT cannot be compared directly because t
are defined as variations of Lagrangians in different dim
sions. In any case, there is a relatively good agreemen
some properties that we checked~the behavior of the curva
ture nearr 50, behavior of the metric in the large-mas
limit !. Our results seem to correspond to Neumann bound
conditions of the scalar field.
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Finally, in the spinless case our model reduces to
Jackiw-Teitelboim model. Adding the Polyakov-Liouvill
term as the effective action and fixing the correspond
EMT, we obtained the Hartle-Hawking and the Boulwa
lli,

,

D

06402
e

g

vacuum states for AdS2 black hole. In both cases the qua
tum corrections on the geometry vanish; the back reac
changes only the dilaton. The properties of these soluti
will be analyzed in a future publication.
t.
.
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@15# A. Miković and V. Radovanovic´, Nucl. Phys. B504, 511
~1997!; Class. Quantum Grav.15, 827 ~1998!; R. Bousso and
S.W. Hawking, Phys. Rev. D56, 7788 ~1997!; F. Lombardo,
F.D. Mazitelli, and J.G. Russo,ibid. 59, 064007~1999!.

@16# S. Nojiri and S.D. Odintsov, Mod. Phys. Lett. A12, 2083
~1997!; Int. J. Mod. Phys. A15, 989 ~2000!; S. Nojiri, O.
Obregon, S.D. Odinstov, and K.E. Osertin, Phys. Rev. D60,
024008~1999!.

@17# W. Kummer, H. Leibl, and D.V. Vassilevich, Mod. Phys. Let
A 12, 2683 ~1997!; W. Kummer and D.V. Vassilevich, Ann
Phys.~Leipzig! 8, 801~1999!; W. Kummer, H. Leibl, and D.V.
Vassilevich, Phys. Rev. D58, 108501 ~1998!; 60, 084021
~1999!.

@18# R.M. Wald, Phys. Rev. D48, 3427~1993!.
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