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Brane localization of gravity in higher derivative theory
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We consider a class of higher order corrections in the form of Euler densities of arbitrary rankn to the
standard gravity action inD dimensions. We have previously shown that this class of corrections allows for
domain wall solutions despite the presence of higher powers of the curvature. In the present paper we explicitly
solve the linearized equation of motion for gravity fluctuations around the domain wall background and show
that there always exist one massless state~graviton! propagating on the wall and a continuous tower of massive
states propagating in the bulk.
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It may very well be that the theory of gravity as we kno
it today is only an effective theory and the usual Einste
Hilbert action should be supplemented with corrections
volving higher powers of the curvature tensor. This point
view is supported for example by string theory or the pr
ence of the conformal anomalies in all quantum field theo
coupled to gravity.

In this paper we are interested in corrections of a spe
type—Euler densities of arbitrary ordern (n being a power
of the curvature tensor! @1# in arbitrary space-time dimensio
D. It was shown in@2# that in the presence of an arbitra
number of Euler densities in the Lagrangian, there alw
exist domain wall solutions. The ordern should be less than
or equal toD/2 where D is the dimension of space-tim
(D52n although formally the total derivative gives part
the conformal anomaly!. Euler densities appear for examp
in the a8 expansion of the string theory effective action@3#.
The Euler density of ordern52 ~equal in this case to the
Gauss-Bonnet combination! has been discussed in the pre
ence of branes in many papers, some of which are@4–14#.

In the present paper we analyze the linearized equat
of motion for the fluctuations of the metric around the d
main wall solutions in the theory with an arbitrary number
Euler densities. It is a generalization of the original idea@15#
and the analysis performed for the Gauss-Bonnetn52 case
@4# ~the Gauss-Bonnet term for intersecting domain wa
was recently discussed in@14#!. The fluctuations are assume
to be gravitonlike i.e. transverse and traceless.

It turns out that in spite of the presence of higher pow
of curvature the picture is very similar to the usual Rand
Sundrum scenario@15#. There exists one normalizable mas
less bound state and a continuous tower of massive s
with a small amplitude on the wall. The strategy adopted
calculate the equations of motions is based on the exp
formulas for the Euler densities derived in our previous
per @2#.

The metric of the domain wall is conformally flat~and
this fact was extensively used in@2#! but this is no longer the
case when we add a fluctuation to the metric. Therefore
culating the equations of motion for the fluctuation requi
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calculating a first order correction~linear in the Weyl tensor!
to the formulas in@2#. When all the contributions are adde
the resulting equation of motion turns out to be almost id
tical to the lowest order case, the only difference being in
actual value of the coefficients of the equations. It is e
tremely important to notice that the graviton~normalizable
massless mode confined to the wall! exists independently o
the number of dimensions and the presence of Euler dens
of higher order. It is quite amazing that the picture in t
presence of Euler densities is almost identical to the low
order scenario@15#.

The Euler densities inD dimensions are defined~in the
form notation! as

I (n)5
1

~D22n!!
ea1a2•••aD

Ra1a2`•••`Ra2n21a2n`ea2n11

`•••`eaD. ~1!

~For D52n they are topological invariants and formally to
tal derivatives but a careful regularization shows that o
cannot discard them either in the action or in the equation
motion since they correspond to the conformal anomaly.!

We will consider models in whichD-dimensional gravita-
tional interactions are described by the sum of such Eu
densities and in which there is a (D22)-brane~a domain
wall!. The action is the sum of the bulk and brane contrib
tions:

S5Sbulk1Sbrane,

Sbulk5E dDxA2g (
n50

nmax

knI (n), ~2!

Sbrane5E dD21xA2g̃~2l1l1R̃1••• !.

The metric on the brane is given byg̃mn(xr)5gmn(xr,y
50) where y5xD and m,n, . . . 51, . . . ,D21 while
M ,N, . . . 51, . . . ,D. In the brane action we write explicitly
©2002 The American Physical Society17-1
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only the lowest order terms. The first two terms of the bu
action are known from conventional gravity. The one w
n50 corresponds to the cosmological constant:I (0)51, k0
52L. The one withn51 is the usual Hilbert-Einstein term
I (1)5R with the coefficient k15(2k2)21. The maximal
number of higher order terms isnmax<@D/2# as discussed in
@2#.

We assume in the following thatl150; l1Þ0 would
give an additional contributionl1m2hm(0)/2 to the right
hand side of Eq.~36! discussed later so it would affect on
the massive modes.

Let us start with the bulk equations of motion. They c
be obtained from the variation of the vielbein in the bu
action @for n<(D21)/2#

(
n

kn~D22n!

~D22n!!
ea1a2•••aD21aRa1a2`•••`Ra2n21a2n

3`ea2n11`•••`eaD2150. ~3!

We can write the curvature two-form as

Rab5Cab1
1

D22
~ea`Kb2eb`Ka! ~4!

where Cab is a two-form composed of the Weyl tens
CMNRS while Ka is a one-form which will play an importan
role in our calculations and which is defined~for invertible
vielbeinseM

a ) asKa5KMNeMadxN5Ka
beb with

KMN5RMN2
1

2~D21!
gMNR. ~5!

The main purpose of this paper is to analyze the localiza
of the effective brane gravity in higher order theories p
posed in our previous paper@2#. In order to do this we will
look for solutions of the linearized equations of motion~3!
for fluctuations of the metric:

gMN5gMN
0 1ehMN ~6!

for which the background metricgMN
0 is of the domain wall

type that was proven in@2# to satisfy the equations of motio
~3!. The line element of this domain wall background
equal to

ds25e22 f (y)hmndxmdxn1dy2 ~7!

with the warp factor function given byf (y)5suyu. The fluc-
tuationhMN is assumed to propagate along the brane and
transverse and traceless:

hDM50, hmnhmn5kmhmn50. ~8!

We decompose the general fluctuation into modes with d
nite mass@from the (D21)-dimensional point of view#

hmn~xs,y!5(E eiksxs
hmmn~y! ~9!
06401
n
-

e

fi-

wherek is a (D21)-dimensional momentum satisfyingk2

52m2 and the sum is for discrete modes while the integ
is for continuous modes@in the above formula and in the
next one the factor exp(iksxs) represents the sum of indepe
dent real fluctuations with a given mass#. Let us now con-
centrate on one modehmmn(y). Calculating the curvature
tensor for the metric

gmn~xs,y!5gmn
0 ~xs,y!1eeiksxs

hmmn~y!,

gDD~xs,y!5gDD
0 ~xs,y!, ~10!

the equation of motion~3! will be expanded to first order in
e. For the background metric~7! the Weyl tensor vanishe
and thereforeCab is already of ordere:

Cab5e~C1!ab1O~e2!. ~11!

Thus, only terms up to the first order in (C1)ab should be
kept in Eq.~3!. There is a second contribution to the linea
ized equations of motion forhmn coming from the correction
to Ka,

Ka5~K0!a1e~K1!a1O~e2!, ~12!

and in the product~3! for this contribution also only the firs
power of (K1)a should be kept.

Using the abovee expansion we can write the equation
motion ~3! up to terms linear ine in the form

05e(
n

kn

2n~D212n!!

~D22!n~D2122n!!
@~H0

(n)!M
N 1e~H1

(n)!M
N

1e~G1
(n)!M

N # ~13!

where we introduced the following tensors~note thatH0
(n)

have different normalization from the corresponding tens
H (n) of Ref. @2#!:

~H0
(n)!M

N 5~dM
N dM1

N1 dM2

N2
•••dMn

Nn 6 perm.!

3~K0!N1

M1~K0!N2

M2
•••~K0!Nn

Mn, ~14!

~H1
(n)!M

N 5n~dM
N dM1

N1 dM2

N2
•••dMn

Nn 6 perm.!

3~K1!N1

M1~K0!N2

M2
•••~K0!Nn

Mn, ~15!

~G1
(n)!M

N 5
n~D22!

4~D212n!
~dM

N dM0

N0 dM1

N1
•••dMn

Nn 6 perm.!

3~C1!N0N1

M0M1~K0!N2

M2
•••~K0!Nn

Mn. ~16!

In @2# it was shown that the lowest order (e0) term vanishes
for the domain wall metric~7! with the warp factors deter-
mined in terms of the coupling constantskn ~this domain
wall is flat when some relation among thekn is satisfied!.
7-2
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Let us start the discussion of corrections of ordere from
H1

(n) . From Eq.~15! one can get the recurrence relations
H1

(n) ~valid not only for the domain wall but for all back
ground metrics!:

~H1
(n)!M

N 5n@dM
N ~K1!P

Q~H0
(n21)!Q

P2~K1!M
P ~H0

(n21)!P
N

2~K0!M
P ~H1

(n21)!P
N#. ~17!

To proceed further let us specialize to the transverse
traceless fluctuations of the metric~6! in the domain wall
background~7!. In this case the tensorK1 satisfies the fol-
lowing conditions:

~K1!m
m50, ~K1!m

D5~K1!D
m5~K1!D

D50. ~18!

The tensorK0 has been calculated in@2#,

~K0
(n)!m

n 52dm
n

D22

2 S ] f

]yD 2

,

~K0
(n)!D

D52
D22

2 S ] f

]yD 2

1
]2f

]y2
, ~19!

while H0
(n) differ only by normalization fromH (n) defined in

@2#:

~H0
(n)!m

n 5dm
n ~21!nS D22

2 D n ~D21!!

~D212n!!

3S ] f

]yD 2n22F S ] f

]yD 2

2
2n

D21 S ]2f

]y2D G ,

~H0
(n)!D

D5~21!nS D22

2 D n ~D21!!

~D212n!! S ] f

]yD 2n

.

~20!

Substituting Eqs.~19! and ~20! into formula ~17! and using
the conditions~18! we get the following expression forH1

(n) :

~H1
(n)!m

n 5~K1!m
n (

k51

n

(21)k
n!

~n2k!! ~D21!k

3@~K0!r
r#k21~H0

(n2k)!s
s ~21!

with all other components vanishing. It explicitly reads

~H1
(n)!m

n 5~K1!m
n ~21!nS D22

2 D n21 n~D22!!

~D212n!!

3S ] f

]yD 2n24F S ] f

]yD 2

2
2~n21!

D22 S ]2f

]y2D G .

~22!

Let us now turn toG1
(n) . For a general background metr

gMN
0 the expression obtained by taking into account all p

mutations in Eq.~16! is very complicated. The result con
tains different combinations of allH0

(k) with k,n and it is
06401
r

d

r-

not possible to write it as a simple recurrence analogou
Eq. ~17! valid for H1

(n) . Therefore, we will present explici
formulas forG1

(n) only for the domain wall background~7!.
In this case, using the symmetry properties of the Weyl t
sorC and the fact that (K0)m

n and (H0
(k))m

n are proportional to
dm

n , we get

~G1
(n)!m

n 5~C1!mD
nD n! ~D22!

D212n

3 (
k51

n
k~21!k

~n2k!! ~D21!k
@~K0!r

r#k21@~D21!

3~H0
(n2k)!D

D2~H0
(n2k)!r

r#. ~23!

Substituting the explicit formulas forK0 andH0
(k) ~19,20! it

can be rewritten in the following form:

~G1
(n)!m

n 5~C1!mD
nD ~21!nS D22

2 D n21

3
2n~D22!!

~D212n!!

~n21!

D23 S ]2f

]y2D S ] f

]yD 2n24

.

~24!

We see that the tensorsH1
(n) andG1

(n) are proportional toK1

andC1, respectively, which can be found using the deco
position of the curvature tensor@given by Eq.~4!#:

~K1!m
n 5F2

1

2

]2

]y2
1

D25

2 S ] f

]yD ]

]y
1~D23!S ] f

]yD 2

2S ]2f

]y2D 2
1

2
m2e2 f Ghmm

n ~y!, ~25!

~C1!mD
nD 5

D23

D22 F2
1

2

]2

]y2
2

3

2 S ] f

]yD ]

]y
2S ] f

]yD 2

2S ]2f

]y2D
2

1

2~D23!
m2e2 f Ghmm

n ~y!. ~26!

In both these tensors the operators acting onhmm
n (y) do not

depend on the Lorentz indicesm,n so we will drop these
indices from now on.

Now we are ready to get the equation of motion for t
fluctuation hm(y). We rewrite Eq.~13! using the explicit
forms of H1

(n) ,G1
(n) , K1, andC1, Eqs.~22!, ~24!–~26!. The

part of this equation linear ine gives
7-3
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05 (
n

nmax

kn~21!n
2n~D23!!

~D2122n!! F2
1

2
~ f 8!2n22

]2

]y2

1
D25

2
~ f 8!2n21

]

]y
2~n21!~ f 8!2n23~ f 9!

]

]y
1~D23!

3~ f 8!2n2~2n21!~ f 8!2n22~ f 9!2
1

2
m2e2 f~ f 8!2n22

1
n21

D23
m2e2 f~ f 8!2n24~ f 9!Ghm~y!. ~27!

At this point we can use the explicit form of the warp fact
f (y)5suyu. One should be careful when performing th
substitution because the first derivative off (y) is not con-
tinuous aty50 and the second derivative off (y) is propor-
tional to the Dirac delta aty50. Similar care is needed whe
calculating terms containing derivatives of the fluctuationhm
because the solutions to the above equation are also f
tions of uyu. Regularizing the Dirac delta function one ca
find the following equalities:1

~ f 8!2k~ f 9!5
2

2k11
s2k11d~y!, ~28!

~ f 8!2k
]2

]y2
hm~y!5s2khm9 ~ uyu!

1
2

2k11
s2kd~y!hm8 ~01!, ~29!

~ f 8!2k21~ f 9!
]

]y
hm~y!5

2

2k11
s2kd~y!hm8 ~01!,

~30!

where

hm8 ~01!5 lim
y→01

]

]y
hm~y!. ~31!

Making these substitutions in Eq.~27! we find the following
bulk (yÞ0) equation of motion forhm :
06401
c-

05 (
n

mmax

kn~21!n
n~D23!!

~D2122n!!
s2n22

3@2hm9 1~D25!shm8 12~D23!s2hm2m2e2suyuhm#.

~32!

It is rather amazing that the expression in the square brac
does not depend onn. Therefore for arbitrarykn and nmax
the bulk equation of motion forhm reduces to

052hm9 1~D25!shm8 12~D23!s2hm2m2e2suyuhm .
~33!

Its solution form50 is equal to

h0~y!5A0e22suyu1B0e(D23)suyuv ~34!

while for mÞ0 it can be written using the Bessel function
of order (D21)/2:

hm~y!5e$[(D25)/2]suyu%FAmJ(D21)/2S m

s
esuyu D

1BmY(D21)/2S m

s
esuyu D G . ~35!

For eachm only one of the above combinations of the sol
tions of the bulk equation~32! is the solution of the full
equation~27!. In order to identify this combination we hav
to take into account the part of the equation of motion~27!
proportional tod(y). It reads

05 (
n

nmax

kn~21!n
n~D23!!

~D2122n!!
s2n21F2

hm8 ~01!

s
22hm~0!

1
2~n21!

~D23!~2n23!

m2

s2
hm~0!G . ~36!

This equation is equivalent to the following boundary con
tion at y50:
hm8 ~01!

hm~0!
522sS 12

m2

s2

1

D23

(
n

kn~21!n@n/~D2122n!! #@~n21!/~2n23!#s2n

(
n

kn~21!n@n/~D2122n!! #s2n D . ~37!

1The necessary denominators of 2k11 have not been taken into account for example by the authors of Ref.@4# ~who discuss the case
D55), leading to wrong equations of motion.
7-4
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For mÞ0 it is quite complicated and depends onkn but in
principle can be used to fix the ratio of the coefficien
Am /Bm for the massive modes.

The situation is much simpler form50 because in this
case the above boundary condition does not depend okn
and simplifies to

h08~01!

h0~0!
522s. ~38!

Applying this condition to Eq.~34! we find that for arbitrary
space-time dimension,D, and for arbitrary strength of the
higher order interactions~given by the coefficientskn) the
massless solution of the equations of motion always ex
and is given by

h0~y!5exp~22suyu!. ~39!

We would like to interpret these solutions as massless,
malizable 4-dimensional gravitons. It turns out to be p
sible, but some care is needed. Let us start with the norm
izability issue. To check whether the above solutio
~massless and massive! are normalizable we have to choo
an appropriate integration measure. Such a measure ca
determined by the requirement that the kinetic operator
the gravitons should be self-adjoint@which is not satisfied in
the case of Eq.~32!#. To find the proper operator it is helpfu
to change the variabley and to rescale the fluctuationhm :

hm~y!5~11suzu!(D26)/2ĥm~z! ~40!

where

sz5sgn~y!~esuyu21!. ~41!

The equation of motion then reads

2
d2

dz2
hm~z!1

D~D22!s2

4~11suzu!2
hm~z!5m2hm~z! ~42!

and is explicitly self-adjoint with a flat measure~which we
can take equal to 1!.

The properly normalized massless solution is given by

ĥ0~z!5A~D23!s

2
~11suzu!2(D22)/2 ~43!

and is normalizable~for D.3! while the massive modes ar
given by the formula

ĥm~z!5Am

s
1muzuFAmJ(D21)/2S m

s
1muzu D

1BmS m

s D D23

Y(D21)/2S m

s
1muzu D G . ~44!

Massive modes are asymptotically~for large uzu) plane
waves and therefore for infinite range ofz not normalizable.

We showed that the massless mode is always norm
able but this is not enough to interpret it as a graviton. T
06401
ts

r-
-
l-

s

be
r

z-
e

reason is the following. The bulk equation of motion~27!
contains an overall factor depending onkn and on the warp
factor s:

(
n

nmax

kn~21!(n21)
n~D23!!

~D2122n!!
s2n22. ~45!

Although the value of this factor is not important for th
solution, we have to remember that the sign of this facto
related to the sign of the kinetic energy term for the fluctu
tions in the effective Lagrangian. The wrong sign of the
netic energy indicates instability of the assumed backgrou
Thus, our domain wall solution can be stable only if t
parameterskn are such that the sum in Eq.~45! is positive.
Using the rescaled couplings~introduced in@2#!

pn5~21!n21kn

~D21!!

~D2122n!!
~46!

the necessary condition for the stability of the domain w
solutions can therefore be written in the form

(
n51

nmax

npns2n22.0. ~47!

It is interesting to compare the above condition with the b
and boundary equations@2# that must be satisfied by th
warp factor,s, of the background domain wall metric~7!:

(
n51

nmax

pns2n52L, ~48!

(
n51

nmax n

2n21
pns2n215

D21

4
l. ~49!

In our previous paper@2# we considered the possibility o
domain wall solutions without the bulk or/and the brane c
mological constants. Such solutions are acceptable onl
the new condition~47! is satisfied and this must be checke
for any specific model described by a set of the coefficie
kn . It is not easy to discuss the consequences of Eq.~47! in
general but one can make the following observation.

Let us assume that we insist onl50—the ‘‘self-
supporting’’ brane solution without any matter on the bra
~the bulk cosmological constant may be different from!.
Let us define a polynomial

P~x!5 (
n51

nmax npn

2n21
x2n21. ~50!

The condition for vanishingl readsP(s)50 while the con-
dition for the correct sign of the kinetic terms isP8(s).0.
From the positivity of the gravitational constantk1
5(2k2)21 it follows that P8(0).0. This means of course
that the trivial domain wall withs50 ~i.e. the Minkowski
space! has the correct sign of the graviton kinetic term. Th
means also that the first nontrivial domain wall~the one with
the smallest positives) with l50 is unstable. But not all
7-5
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solutions withl50 must be unstable. The number of diffe
ent solutions withl50 andsÞ0 is equal to the number o
positive zeros ofP(x) which is at most (nmax21). If P(x)
has only first order zeros than ‘‘every second’’ solution w
l50 can be stable because such a function changes its
rivative when moving from one zero point to the next on
Thus, a nontrivial domain wall with vanishing brane cosm
logical constant is possible ifnmax>3 and this can be satis
fied for space-time dimensionD>6.

A similar analysis can be performed for domain wa
with vanishing bulk cosmological constant,L50—the only
difference is to use the polynomial(n51

nmaxpnx2n instead of
that defined in Eq.~50!.

In the case of both cosmological constants vanishing
not difficult to see that fornmax>3 there exists a range o
values ofp1 , . . . ,pnmax

for which all three conditions~47!–

~49! can be simultaneously satisfied withl5L50 and s
Þ0. Thus, stable solutions with vanishing brane and/or b
cosmological constant are possible if the space-time is
least 6 dimensional.
06401
e-
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-

is
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In conclusion, we considered a class of models w
higher order gravity corrections in the form of the Euler de
sities with arbitrary powern of the curvature tensor in arbi
trary space-time dimensionD. The fluctuations around the
domain wall type solutions~found in @2#! were shown to
have a similar spectrum as in the lowest order c
(n51)—the bulk equation of motion rather miraculous
turned out to depend only onD and not onn. The boundary
condition at the wall for massive modes has somen depen-
dence. There exists one normalizable massless mode a
continuum of massive modes~without the energy gap!. The
solutions for allD are almost the same as in the origin
Randall-Sundrum model with the Hilbert-Einstein actio
@15# ~apart from some numerical factors!, and the discussion
about the applicability of Newton’s law and the effectiv
number of dimensions can be carried over from@15# to the
general case discussed in this paper virtually unchanged
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