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Brane localization of gravity in higher derivative theory
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We consider a class of higher order corrections in the form of Euler densities of arbitrary tanthe
standard gravity action i dimensions. We have previously shown that this class of corrections allows for
domain wall solutions despite the presence of higher powers of the curvature. In the present paper we explicitly
solve the linearized equation of motion for gravity fluctuations around the domain wall background and show
that there always exist one massless st@itaviton) propagating on the wall and a continuous tower of massive
states propagating in the bulk.
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It may very well be that the theory of gravity as we know calculating a first order correctidfinear in the Weyl tensor
it today is only an effective theory and the usual Einstein-to the formulas if2]. When all the contributions are added,
Hilbert action should be supplemented with corrections inthe resulting equation of motion turns out to be almost iden-
volving higher powers of the curvature tensor. This point oftical to the lowest order case, the only difference being in the
view is supported for example by string theory or the presactual value of the coefficients of the equations. It is ex-

ence of the conformal anomalies in all quantum field theoriegremely important to notice that the gravit¢normalizable
coupled to gravity. massless mode confined to the walkists independently of

In this paper we are interested in corrections of a Specid]he number of dimensions and the presence of Euler densities
type_Eu|er densities of arbitrary OrdBr(n being a power of hlgher order. It is qUite amaZing that the piCtUre in the
of the curvature tenspf1] in arbitrary space-time dimension Presence of Euler densities is almost identical to the lowest
D. It was shown in[2] that in the presence of an arbitrary order scenarig15].
number of Euler densities in the Lagrangian, there always The Euler densities ilD dimensions are definedin the
exist domain wall solutions. The ordarshould be less than form notation as
or equal toD/2 whereD is the dimension of space-time
(D=2n although formally the total derivative gives part of | (m_-__~
the conformal anomaly Euler densities appear for example (D—2n)! "2
in the @’ expansion of the string theory effective acti@j. A .. AeD 1)

The Euler density of orden=2 (equal in this case to the '
Gauss-Bonnet combinatiphas been discussed in the pres-(gqr p— o they are topological invariants and formally to-
ence of branes in many papers, some of which[arel4. (5 derivatives but a careful regularization shows that one

In the present paper we analyze the linearized equations;nnot discard them either in the action or in the equations of
of motion for the fluctuations of the metric around the do-,tion since they correspond to the conformal anornaly.
main wall solutions in the theory with an arbitrary number of  \ya \will consider models in whicB-dimensional gravita-
Euler densities. It is a generalization of the original i8]  {j5na| interactions are described by the sum of such Euler
and the analysis performed for the Gauss-Bomme® case gensities and in which there is @ 2)-brane(a domain

[4] (the Gauss-Bonnet term for intersecting domain wallsy a1y The action is the sum of the bulk and brane contribu-
was recently discussed a4]). The fluctuations are assumed ons-

to be gravitonlike i.e. transverse and traceless.

It turns out that in spite of the presence of higher powers S=Spuk+ Shrane
of curvature the picture is very similar to the usual Randall-
Sundrum scenarifil5]. There exists one normalizable mass-
less bound state and a continuous tower of massive states Sbulk:f dPx\—g >, k™, (2
with a small amplitude on the wall. The strategy adopted to n=0
calculate the equations of motions is based on the explicit
Loerr?g]lfals for the Euler densities derived in our previous pa Sbrane:J’ dD—1X\/__g(_>\+)\lR+ ).

The metric of the domain wall is conformally flaand _
this fact was extensively used|i#t]) but this is no longer the The metric on the brane is given ly,,(x")=g,.,(x",y
case when we add a fluctuation to the metric. Therefore cal=0) where y=x° and u,r,...=1,...D—1 while
culating the equations of motion for the fluctuation requiresM,N, ...=1,... D. In the brane action we write explicitly

a R2122/\ . .. /\R®2n-132n/\ @@2n+1
ap

nmax

0556-2821/2002/66)/0640176)/$20.00 65064017-1 ©2002 The American Physical Society



KRZYSZTOF A. MEISSNER AND MAREK OLECHOWSKI PHYSICAL REVIEW D65 064017

only the lowest order terms. The first two terms of the bulkwherek is a (D—1)-dimensional momentum satisfyirg
action are known from conventional gravity. The one with=—m? and the sum is for discrete modes while the integral
n=0 corresponds to the cosmological constaft=1, is for continuous modefin the above formula and in the
=—A. The one with=1 is the usual Hilbert-Einstein term, next one the factor exji(,x”) represents the sum of indepen-
IW=R with the coefficientx;=(2«%)"*. The maximal dentreal fluctuations with a given magsLet us now con-
number of higher order terms i, ,,<[ D/2] as discussed in centrate on one mode,,,(y). Calculating the curvature
[2]. tensor for the metric

We assume in the following that;=0; \;#0 would
give an additional contribution.;m?h,,(0)/2 to the right
hand side of Eq(36) discussed later so it would affect only
the massive modes.

Let us start with the bulk equations of motion. They can
be obtained from the variation of the vielbein in the bulk
action[for n<(D—1)/2]

9un(X7Y)=00,(x7,y) + e h L (y),

Iop(X7,Y) =g3p(X%,Y), (10)

the equation of motiori3) will be expanded to first order in
e. For the background metri¢7) the Weyl tensor vanishes

ab ; .
x,(D—2n) and thereforeC®® is already of ordek:

2 (D—2n)! €aja, --ap_,a

n

R2122/\ . . . /A R%2n-182n
C3P=¢(C,)2P+ O(€?). (12)
on+1/\ .. . ap-1—
X Aegdn+1/\. .. \e 0. ®) Thus, only terms up to the first order it€{)2" should be
kept in Eq.(3). There is a second contribution to the linear-
ized equations of motion fdr,, coming from the correction
1 to Ka,
a b_ 4b a
D_2(e/\K e’/\K?) (4)

We can write the curvature two-form as

Rab: Cab+
K2=(Kq)2+ e(K;)3+O(€?), (12

where C?" is a two-form composed of the Weyl tensor
CunrsWhile K2 is a one-form which will play an important
role in our calculations and which is defin€r invertible
vielbeinse,) asK®=K,yeMadxN=K? e’ with

and in the product3) for this contribution also only the first
power of (K;)? should be kept.

Using the above expansion we can write the equation of
motion (3) up to terms linear ire in the form

1
KMN:RMN_mgMNR- 5 0=eS Kn(D 22()2(;1—;1)!2 ;
n - —1-2n)!

+e(GIMN] (13)

[(HE) M+ e(HIM)N

The main purpose of this paper is to analyze the localization
of the effective brane gravity in higher order theories pro-
posed in our previous papg?]. In order to do this we will
look for solutions of the linearized equations of moti@  Where we introduced the following tensofisote thatH{"

for fluctuations of the metric: have different normalization from the corresponding tensors

H™ of Ref.[2)):
0
IMN=IunT €hun (6)
(HIN = (SN OS2 - - - 83"+ perm)
for which the background metrigd, is of the domain wall v "

type that was proven if2] to satisfy the equations of motion
(3). The line element of this domain wall background is
equal to

(Kol (Ko)2- - (Ko) (™ (14

(RPN =n( 83y o2~ oy = perm)

MZM; "M,
ds?=e %My, dx*dx"+dy? 7 " " y
X(Kl)Nl(KO)NZ"'(KO)Nnu (15)
with the warp factor function given b(y) = a]y|. The fluc- ! 2 "
tuationhyy is assumed to propagate along the brane and be n(D—2)
transverse and traceless: (G(ln))m = mwu 5":‘/&5";11. .. 5',\“/|nni perm)

how=0, 7*"h,,=k*h,,=0. )

We decompose the general fluctuation into modes with defi-
nite masgfrom the O — 1)-dimensional point of viey

X(Coy (Kol - (Ko)y™ (16

In [2] it was shown that the lowest orde¢%) term vanishes

for the domain wall metri¢7) with the warp factoir deter-
oo ik X mined in terms of the coupling constantg (this domain
hu(X ,y)—ie Py (Y) ©) wall is flat when some relation among tlg is satisfiedl.
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Let us start the discussion of corrections of orddrom  not possible to write it as a simple recurrence analogous to
H(ln). From Eq.(15) one can get the recurrence relations forEq. (17) valid for H{") . Therefore, we will present explicit
H{" (valid not only for the domain wall but for all back- formulas forG{" only for the domain wall backgroune).

ground metrick In this case, using the symmetry [(:)kr)operties of the Weyl ten-
B B sorC and the fact thatk)” and Hg") ! are proportional to
(HMN=n[am(KDRHE 5= (K R(HE D)y 5", we get . .
= (Kou(H{" )31, (17)
To proceed further let us specialize to the transverse and (Myv _ .o (D—2)
(G1"),=(Cy

traceless fluctuations of the metri6) in the domain wall “bp—1—n
background(7). In this case the tensd{, satisfies the fol-

: L ’ k(—1)
lowing conditions: % ) ﬁ[(KO)Z]k—l[(D —1)
(Kl)ﬁ=0, (Kl),DL:(Kl)g:(Kl)BZO- (18 = (=N )

X(HI B — (H{=R)ye, 23
The tensoiK has been calculated (2], (o™ "o = (Ho™ )p] 3

D—2[of\?
(KMyr=—s" ——| —| | Substituting the explicit formulas fdf, andH{ (19,20 it
0 /u L2 g . . . 0
y can be rewritten in the following form:
D—2(af\? &
(m\b_ _ T _

D-— n—1
(G&“>>;=<c1>;%<—1>“(7)

while H{" differ only by normalization fronH (™ defined in
9?f ( of ) 2n—4
ay?)\ay '

[2]: 2n(D-2)! (n—1)
(D—1-n)! D-3

() = (10 D-2|\" (D-1)!
0 )= O 2 | (D—1-n)! (24)
af\2"=2 (9f\2  2n [ 9%f
“\ oy ay] TD1lay2) | We see that the tensok” andG{" are proportional ta,
and C,, respectively, which can be found using the decom-
HOWP_ (1) D-2\" (D—1)! ﬁ 2n position of the curvature tensggiven by Eq.(4)]:
0 b 2 | (D—1—n)!ay
(20)

1 ¢> D-5(df\ 0
ZayZ 2

+o-3| )
ayl oyt PGy

Substituting Eqs(19) and (20) into formula(17) and using (K=

the conditiong18) we get the following expression fot{" :

n —(fi——m%”hJW) (25)
H(ﬂ) v —(K,)Y -1 k0 (9y2 2 " ,
(HP)= (K2, ( N oD
LK) IHHG )7 @) D-3| 1 9% 3(of\a [of\? [&*f
vD__ T _ 7 T 2y
with all other components vanishing. It explicitly reads (Co)up= D-2 2 ay? 2(&y> ay (&y) (ayZ)
D-2\""! n(b-2)!
(n)yv _ v __ n 1 v
(H]_ ),,L_(Kl),u( 1) ( 2 ) (D—l—n)! —mfﬂze2f hm'u(y) (26)
><(af>2”4{<af)2 2(n——1)<a2f)]
ay %y D-2 ay? In both these tensors the operators actingwg;j(y) do not

(22 depend on the Lorentz indicgs,v so we will drop these
indices from now on.
Let us now turn toG(ln). For a general background metric ~ Now we are ready to get the equation of motion for the
g% the expression obtained by taking into account all perfluctuation h,(y). We rewrite Eq.(13) using the explicit
mutations in Eq.(16) is very complicated. The result con- forms of H{" ,G{", K, andC;, Egs.(22), (24)—(26). The
tains different combinations of aI-Hgk) with k<n and it is  part of this equation linear ie gives

064017-3



KRZYSZTOF A. MEISSNER AND MAREK OLECHOWSKI PHYSICAL REVIEW D65 064017

1 92 Mmax n(D—3)!
_ T (f1\2n—-2 ____ — _1\n 2n—2
2(1) ay? 0 ; (D ST 7

Nmax _2n(D-3)!
0=2 w(~" 51 oy

D-5 P P X[ —h" +(D—5)ch’ +2(D—3)c2h,—m2e2Vh_].
H g (1) (=) ¥() 2+ (D=3 ) ) ! )

2 ay (32

X ()2 —(2n—1)(f")2"2(f") - %mZer(f ry2n-2 It is rather amazing that the expression i_n the square brackets
does not depend on. Therefore for arbitrary, and Ny
the bulk equation of motion fon,, reduces to

n—-1
+ _mZer(f/)Zn—4(f//)

h . 2
D-3 ) 20 0=—h"+(D—5)ch/. +2(D-3)c?h,—m?e?" V.
- . (33
At this point we can use the explicit form of the warp factor
f(y)=oly|. One should be careful when performing this Its solution form=0 is equal to
substitution because the first derivative f@¥) is not con-
tinuous aty=0 and the second derivative bfy) is propor- ho(y) =Aoe‘2"|y‘+ Boe(D_g)ng (34)

tional to the Dirac delta at=0. Similar care is needed when
calculating terms containing derivatives of the fluctuatign . ) . . .
because the solutions to the above equation are also fun@hilé for m#0 it can be written using the Bessel functions
tions of |y|. Regularizing the Dirac delta function one can of order © —1)/2:

find the following equalities:

m
2 hm(y):e{[(D5)/2]U|Y|}[AmJ(Dl)/2<;eﬂ'|)’|>

(f')Zk(f’,)=m02k+15(y), (28)

M ol
+BmY(p-1)2 ;egy : (35

(92
(f’)ZKFhm(yFoZkh?%(lyl)
y For eachm only one of the above combinations of the solu-
o o tions of the bulk equatior{32) is the solution of the full
a™8(y)hn(07), (29 equation(27). In order to identify this combination we have
to take into account the part of the equation of motiai)
proportional tod(y). It reads

T okF1

(f’)z“‘l(f”){%hm(y)=2k+102"5()/)%(0*), i o
(30) 0= gx K“(_l)n(ljn(—[?]_—_—:gz)r:)!oznl{ _ hm(: ) —2h(0)
where
h/(0%)= lim ih ( +&m—2h (0)]. (36)
m —y_}o+ ay y). (31 (D—-3)(2n—-3) g2 ™m

Making these substitutions in ER7) we find the following  This equation is equivalent to the following boundary condi-
bulk (y+#0) equation of motion foh,,: tion aty=0:

> ky(—1)"[N/(D—1—2n)!][(n—1)/(2n—3)]o?"

=—2q| 1-— . (37)
> ky(—=1)"[n/(D—1-2n)!]g?>"

1The necessary denominators df-21 have not been taken into account for example by the authors ofHefwho discuss the case
D=5), leading to wrong equations of motion.
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For m#0 it is quite complicated and depends ep but in  reason is the following. The bulk equation of motiG2i7)
principle can be used to fix the ratio of the coefficientscontains an overall factor depending @p and on the warp

A /B, for the massive modes. factor o
The situation is much simpler fan=0 because in this .
case the above boundary condition does not depend,on g n-py NO=3)' .,
and simplifies to ; wn(— 1) (D—1-2n1 7 ! (45)
ho(0™) - 2g (39) Although the value of this factor is not important for the
ho(0) ' solution, we have to remember that the sign of this factor is

related to the sign of the kinetic energy term for the fluctua-
Applying this condition to Eq(34) we find that for arbitrary  tions in the effective Lagrangian. The wrong sign of the ki-
space-time dimensiorD, and for arbitrary strength of the netic energy indicates instability of the assumed background.
higher order interactionggiven by the coefficients,) the  Thus, our domain wall solution can be stable only if the
massless solution of the equations of motion always existarametersc, are such that the sum in EG5) is positive.
and is given by Using the rescaled couplingmtroduced in[2])

ho(y)=exp —20ly]). (39 B (D—1)!

pn=(—1)" Ky (46)
We would like to interpret these solutions as massless, nor- (D—-1-2n)!
malizable 4-dimensional gravitons. It turns out to be pos-
sible, but some care is needed. Let us start with the normal
izability issue. To check whether the above solutions

he necessary condition for the stability of the domain wall
Solutions can therefore be written in the form

(massless and massjvare normalizable we have to choose Nmax
an appropriate integration measure. Such a measure can be E np,o2"2>0. (47)
determined by the requirement that the kinetic operator for n=1

the gravitons should be self-adjointhich is not satisfied in
the case of Eq32)]. To find the proper operator it is helpfu
to change the variablg and to rescale the fluctuatidn,:

| It is interesting to compare the above condition with the bulk
and boundary equation®] that must be satisfied by the
warp factor,o, of the background domain wall metr{@):

hm(y) = (1+0]2))®~9h(2) (40)
on_ _
where 2 pro?=—A, (48)
oz=sgr(y)(e”V - 1). (42) Nmax _
> Lp g1y (49)
The equation of motion then reads n=12n—1"" 4
d? D(D—2)¢? ) In our previous papef2] we considered the possibility of
- d_zzhm(z) + 4(1+—U|Z|)2hm(2) =m°hn(z2) (42 domain wall solutions without the bulk or/and the brane cos-

mological constants. Such solutions are acceptable only if
the new condition47) is satisfied and this must be checked
for any specific model described by a set of the coefficients
K, . It is not easy to discuss the consequences of(&4).in
general but one can make the following observation.
R (D-3)o Let us assume that we insist on=0—the “self-
ho(2)= \/——5—(1+ olz|)~(P~2)2 (43 supporting” brane solution without any matter on the brane
(the bulk cosmological constant may be different from 0
Let us define a polynomial

and is explicitly self-adjoint with a flat measu(ehich we
can take equal to)1
The properly normalized massless solution is given by

and is normalizabléfor D> 3) while the massive modes are
given by the formula

P<x>=n§x MPn_yen-1 (50)
~ m m i1 2n—1 ’
hn(2)= ;+m|z| Andp-1)2 ;+m|z|

The condition for vanishing readsP (o) =0 while the con-
dition for the correct sign of the kinetic terms s (o) >0.
From the positivity of the gravitational constant;
=(2«?) "1 it follows that P'(0)>0. This means of course
Massive modes are asymptoticalljor large |z|) plane that the trivial domain wall witho=0 (i.e. the Minkowski
waves and therefore for infinite range ohot normalizable. space has the correct sign of the graviton kinetic term. This
We showed that the massless mode is always normalizneans also that the first nontrivial domain wlle one with
able but this is not enough to interpret it as a graviton. Thehe smallest positiver) with A=0 is unstable. But not all

D-3

+B, . (49

Y(o-1)12

m
—+m|z|)
g
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solutions withh =0 must be unstable. The number of differ-  In conclusion, we considered a class of models with
ent solutions witth =0 ando# 0 is equal to the number of higher order gravity corrections in the form of the Euler den-
positive zeros ofP(x) which is at most f,.,—1). If P(x)  sities with arbitrary powen of the curvature tensor in arbi-
has only first order zeros than “every second” solution with trary space-time dimensioB. The fluctuations around the
A=0 can be stable because such a function changes its ddemain wall type solutiongfound in [2]) were shown to
rivative when moving from one zero point to the next one.have a similar spectrum as in the lowest order case
Thus, a nontrivial domain wall with vanishing brane cosmo-(n=1)—the bulk equation of motion rather miraculously
logical constant is possible if,,5,=3 and this can be satis- turned out to depend only dd and not om. The boundary
fied for space-time dimension=6. condition at the wall for massive modes has samedepen-

A similar analysis can be performed for domain walls dence. There exists one normalizable massless mode and a
with vanishing bulk cosmological constart,=0—the only  continuum of massive modéwithout the energy gapThe
difference is to use the polynomizﬂzga‘lxpnxzn instead of Solutions for allD are almost the same as ip thg origi_nal
that defined in Eq(50). Randall-Sundrum model Wlt'h the Hllbert-Emst.eln aptlon

In the case of both cosmological constants vanishing it i$12] (apart from some numerical fa,CtQ” snd the discussion
not difficult to see that fon,,,=3 there exists a range of aPout the applicability of Newton's law and the effective
values ofp, . . . Po for which all three conditiong47)— numbelr of d|n(1jgn5|onsdc_an rt?_e carried over frobh] to the
(49) can be simultaneously satisfied with=A—0 and o general case discussed in this paper virtually unchanged.

#0. Thus, stable solutions with vanishing brane and/or bulk This work was partially supported by the Polish KBN
cosmological constant are possible if the space-time is grants 5 PO3B 150 20, 2 PO3B 052 16 Polonium and by the

least 6 dimensional. European Commission RTN grant HPRN-CT-2000-00152.
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