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We investigate the initial-boundary value problem for linearized gravitational theory in harmonic coordi-
nates. Rigorous techniques for hyperbolic systems are applied to establish well posedness for various reduc-
tions of the system into a set of six wave equations. The results are used to formulate computational algorithms
for Cauchy evolution in a 3-dimensional bounded domain. Numerical codes based upon these algorithms are
shown to satisfy tests of robust stability for random constraint violating initial data and random boundary data,
and shown to give excellent performance for the evolution of typical physical data. The results are obtained for
plane boundaries as well as piecewise cubic spherical boundaries cut out of a Cartesian grid.
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[. INTRODUCTION because of the restriction in gauge freedph However,
there has been no ultimate verdict on the suitability of har-

Grid boundaries pose major difficulties in current compu-monic coordinates for computation. In particular, their gen-
tational efforts to simulate 3-dimensional black holes by con-eralization to include gauge source functid@$ appears to
ventional Cauchy evolution schemes. The initial-boundaryoffer flexibility comparable to the explicit choice of lapse
value problem for Einstein’s equations consists of the evoluand shift in conventional numerical approaches to general
tion of initial Cauchy data on a spacelike hypersurface andelativity. There is no question that harmonic coordinates of-
boundary data on a timelike hypersurface. This problem hater greater computational efficiency than any other hyper-
only recently received mathematical attention. Friedrich andolic formulation. See Ref8] for a recent application to the
Nagy[1] have given a full solution for a hyperbolic formu- study of singularities in a space-time without boundary. Here
lation of the Einstein equations based upon a frame deconwe use a reduced version of the harmonic formulation of the
position in which the connection and curvature enter as evafield equations. This allows us to retain a symmetric hyper-
lution variables. Because this formulation was chosen tdolic system, and apply standard boundary algorithms, in a
handle mathematical issues rather than for ease of numericafay that is consistent with the propagation of the constraints.
implementation, it is not clear how the results translate intd/Ve show, on an analytic level, that this leads to a well posed
practical input for formulations on which most computa- initial-boundary problem for linearized gravitational theory.
tional algorithms are based. The proper implementation of Our computational results are formulated in terms of a
boundary conditions depends on the particular reduction ofartesian grid based upon background Minkowskian coordi-
Einstein’'s equations into an evolution system and the choiceates. Robustly stable evolution algorithms are obtained for
of gauge conditions. The purpose of this paper is to eluciplane boundaries aligned with the Cartesian coordinates,
date, in a simple context, such elementary issudp aghich ~ which is the standard setup for three dimensional evolution
variables can be freely specified on the boundéiry,how codes. Similar computational resulf8], based upon long
should the remaining variables be updated in a computaevolutions with random initial and boundary data, were pre-
tional scheme, andiii) how can the analytic results be viously found for the linearized version of the Arnowitt-
implemented as a computational algorithm. For this purposd)eser-MisnefADM ) formulation[10] of the field equations,
we consider the evolution of the linearized Einstein's equawhere the lack of a hyperbolic formulation required a less
tions in harmonic coordinatd®,3] and demonstrate how a systematic approach which had no obvious generalization to
robustly stable and highly accurate computational evolutiorother boundary shapes. In this paper, we also attain robust
can be based upon a proper mathematical formulation of thetability for spherical boundaries which are cut out of the
initial-boundary value problem. Cartesian grid in an irregular piecewise cubic fashion. This

Harmonic coordinates were used to obtain the first hypersuccess gives optimism that the methods can applied to such
bolic formulation of Einstein’s equationd]. See Ref[5] for ~ problems as black hole excision and Cauchy-characteristic
a full account of hyperbolic formulations of general relativ- matching, where spherical boundaries enter in a natural way.
ity. While harmonic coordinates have also been widely ap- Conventions: We use Greek letters for space-time indices
plied in carrying out analytic perturbation expansions, theyand Latin letters for spatial indices, exf:=(t,x') for stan-
have had little application in numerical relativity, presumablydard Minkowski coordinates. Linear perturbations of a
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curved space metrig,z about the Minkowski metricy, 4
are described byg,z=h,s with similar notation for the
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A. Standard harmonic evolution

Harmonic evolution consists of solving the Einstein’s

corresponding curvature quantities, e.g. the linearized RieéquationsG =0, subject to the harmonic conditiod&"
o L]

mann tensorR,s,s and linearized Einstein tensdiG,,z.

Indices are raised and lowered with the Minkowski metric
he8, Boundaries in the back-

with the result thatsg®#= —
ground geometry are described in the farmconst with the
spatial coordinates decomposed in the forn=(x*,2),

=0. This formulation led to the first existence and unique-

'ness theorems for solutions to the nonlinear Einstein equa-

tions by considering them as a set of 10 nonlinear wave
equationg 11].
In the linearized case, Einstein’s equations in harmonic

where thex"= (x,y) directions span the space tangent to thecoordinates reduce to ten flat space wave equations so that

boundary.

IIl. HARMONIC EVOLUTION WITHOUT BOUNDARIES

The linearized Einstein tensor has the form

SGP= — %Dyaﬁ_(g(arﬁ)_;_%naﬁaﬂrﬂ, (2.1
wherel]=4,d"
yB=hab— %n“ﬁh (2.2
h=hi= =y and
o=~ 5y, (2.3

their mathematical analysis is simple. The Cauchy data
y*#(0x") and 9,y*#(0X') att=0 determine ten unique so-
lutions y*#(t,x') of the wave equatiofill y*#=0, in the ap-
propriate domain of dependence. These solutions satisfy
OTI'*=0 so that they satisfy Einstein’s equations provided
r“«(0x')=0 and¢,I'*(0x')=0, which can be arranged by
choosing initial Cauchy data satisfying constraints. For a de-
tailed discussion, see Régfl2].

Although this standard harmonic evolution scheme led to
the first existence and uniqueness theorem for Einstein’s
equations, it is not straightforward to apply to the initial-
boundary value problem. The ten wave equations }i6f
require ten individual pieces of boundary data in order to
determine a unique solution. Given initial data such that
=0 andgI'*=0 att=0, as described above, the resulting
solution satisfies the linearized Einstein equations only in the
domain of dependence of the Cauchy data. In order that the

We analyze these equations in standard backgroungpjution of Einstein's equations extend to the boundary, it is

Minkowskian coordinateg®. To linearized accuracy,
re~g""v,v, x* (2.9

in terms of the curved space connectigp associated with

d.s and the conditiol™*=0 defines a linearized harmonic

gauge.

The diffeomorphisms of the curved spacetime induc
equivalent metric perturbations according to the harmoni

subclass of gauge transformations
heB=hab429(xgh) (2.5

where the vector field® satisfies[1£“=0. The linearized
curvature tensor

25R,u,avﬁ: éu(yﬁhav_l— (?a[?vh,uﬁ_ (Qaaﬁhlu,,_ (?#éyhaﬁ(,z 6)

necessary thdi“=0 at the boundary. Unfortunately, there is
no version of boundary data foy®?, e.g. Dirichlet, Neu-
mann or Sommerfeld data for the ten individual components,
from whichT'® can be calculated at the boundary. Here we
consider reduced versions of the harmonic evolution scheme
in which only six wave equations are solved and this prob-

eIem does not arise. These reduced harmonic formulations are
(presented below.

B. Reduced harmonic Einstein evolution

A linearized evolution scheme for the harmonic Einstein
system, can be based upon the six wave equations

O49=0 (2.9
along with the four harmonic conditions
d,y""=0. (2.9

as well as the linearized Einstein equations, are gauge invari-

ant.

Because of the harmonic conditions, this system satisfies the

We introduce a Cauchy foliationin the perturbed space- spatial componentssG''=0 of the linearized Einstein’s
time such that it reduces to an inertial time slicing in theequations.

background Minkowski spacetime. The unit normal to the

As a result of the linearized Bianchi identitigs 6G*#

Cauchy hypersurfaces is given, to linearized accuracy, by =0, or

(2.7

1+£htt a,t
2 at

Ny~ —

The choice of an evolution directidrf= an®+ g#, with unit

96G"+9;6G' =0, (2.10

9;8G"+9;8G" =0, (2.11)

lapse and shift in the background Minkowski spacetime, dethe linearized Hamiltonian constraifit=G"=0 and linear-

fines a perturbative lapsén=—h'"/2 and perturbative shift

5B'=—ht".

ized momentum constraintd' :=G"=0 are also satisfied,
throughout the domain of dependence of the Cauchy data,
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provided that they are satisfied at the initial titne0. This  to a solution of the linearized Einstein’s equations for initial

constrains the initial values of'® according to Cauchy data satisfying the constraints.
5 i . The harmonic Ricci system takes symmetric hyperbolic
Vay'+ o059 =0 (2.12  form when the wave equations are recast in first differential

order form. Thus the system is well posed. The formulation

of the harmonic Ricci system as a symmetric hyperbolic sys-

V2t — g 9.4l =0 2.13 tem and the description of its characteristics is given in Ap-
15y ’ ' pendix A. Although well posedness of the analytic problem
where V2= §14,0,. Then, if these constraints are initially does not the guarantee the stability of a numerical implemen-

satisfied, the reduced harmonic Einstein system determinest@tion it can simplify its attainment.
solution of the linearized Einstein’s equations.
The well posedness of the system follows directly from D. Other reduced harmonic systems

the well posedness of the wave equationsfér The auxil- The harmonic Einstein and Ricci systems are special
lary variablesy" satisfy the ordinary differential equations ¢ases of a one parameter class of reduced harmonic systems

oy +a,91=0 (2.14 for the variable

and

| A
ay'+3;91=0, (2.19 K B=y PSPy

where v/l enters only in the role of source terms. These .1 catisfies the wave equatioii= — 11«1 =0 and the
differential equations do not affect the well-posedness of th%armonic conditions T'*=0 Whezre EaB— sGob

\S;glslji?o?;gt have unique integrals determined by the Inltlal—()\/2) 7*P8G. This system is symmetric hyperbolic when

the auxiliary systemi’*=0 is symmetric hyperbolic. This
. _ can be analyzed by setting!=0 in the auxiliary system,
C. Reduced harmonic Ricci evolution which then takes the form

The reduced harmonic Ricci system consists of the six

wave equations _ (2—3M) tty ot
) 2(1-2)) ikt djK
Oh"=0 (2.1
: A :
along with the four harmonic conditior{8.9), which can be 0=d;k"— ma‘ P (2.21
re-expressed in the form ( )
1 and implies
drp+ ;i + Eath}:o, (2.17 \
2_ i |t
. (at 3 —2) 3,0 )K 0. (2.22
[ it~ ginia g hil=
¢+ ah 2(9h1+‘91h 0, (218 The auxiliary system is symmetric hyperbolic when Eg.

(2.22 is a wave equation whose wave speed
where we have sep=h'"/2. Together these equations imply
that the spatial components of the perturbed Ricci tensor A
vanish, R1=0. In addition, the Bianchi identities imply " N@En-2) (2.23
that the remaining components satisfy
is positive. This is satisfied fok<<O and A\>2/3. In the

HC'+3'C+3;6R1=0 (2.19  range 2/3\<1, the wave speed is faster than the speed of
‘ light. Only for the case.=1, the harmonic Ricci system, is
dC+9;C'=0, (220 the wave speed of the auxiliary system equal to the speed of
. o : light.
where, in terms of the Ricci tensof=3(SR"+ SR!) and The auxiliary system for the reduced harmonic Einstein

C'=56R". Together with the evolution equatioA®’ =0, the  case has a well posed initial-boundary value problem but
Bianchi identities imply that the Hamiltonian constraint sat-represents a borderline case. This could adversely affect the

isfies the wave equationlC=0. development of a stable code based upon a nonlinear version
If the Hamiltonian and momentum constraints are satisof the reduced harmonic Einstein system.

fied at the initial time, ther),C also vanishes at the initial

time so that the unigueness of the solutlon_ of t_he wave equa- | THE |INITIAL-BOUNDARY VALUE PROBLEM

tion ensures the propagation of the Hamiltonian constraint.

In turn, Eqg. (2.19 then ensures that the momentum con- Consider the initial-boundary problem consisting of
straint is propagated. Thus the reduced harmonic Ricci sysvolving Cauchy data prescribed in a Sait timet=0 lying
tem of six wave equations and four harmonic equations leads the half-space>0 with data prescribed on a s&on the
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boundaryz=0. Harmonic evolution takes its simplest form
when Einstein equations are expressed as a second differen-
tial order system. However, in order to apply standard meth-
ods it is necessary to recast the problem as a first order sym-
metric hyperbolic system. Then the theory determines o
conditions on the boundary data for a well posed problem i our case the source terfi=0 but otherwise it plays no
the future domain of dependenge’. HereD " is the maxi-  €SSential role in the analysis of the system. _
mal set of points whose past directed inextendible character- 1he contraction of Eq(3.4) with the transpos€ u give
istic curves all intersect the union 6fand 7 before leaving  the flux equation

D+' T " —TT
Appendix A describes the symmetric hyperbolic descrip- uAfg,u=u( B+Bu. .7

tion of boundary conditions for the 3-dimensional Wwave This can be used to provide an estimate on the norm
boundary value problem are simplest to explain in terms Oz;a|f_spacez>0 with boundary atz=0, provided the flux

the 1-dimensional wave equation, as follows. See Appendiyising with the normal component #* satisfies the in-
Afor the analogous treatment of the 3-dimensional case. Ougquality

presentation is based upon the formulation of maximally dis-

sipative boundary conditiongl3], the approach used by TuAtu=o. (3.8
Friedrich and Nagy1] in the nonlinear case. An alternative ) )

description of boundary conditions for symmetric hyperbolic This inequality determines the allowed boundary data for a

systems is given in Ref14] and for linearized gravity in Well posed initial-boundary value problem. o
Ref. [15]. As expected from knowledge of the characteristics of the

wave equation, the normal mat® has eigenvalues #,1,
with the corresponding eigenvectors

(3.6

I
o O O

1
0
0

o O O

A. The 1-dimensional wave equation

The one-dimensional wave equatibn,=h ,, can be re- 1

cast as the first order system of evolution equations vo=| 0|, v.=| F1]. (3.9

h=k @D 0
These eigenvectors are associated with the variables
k=1, 32 ho=h, h.,=fTk=h,%h,. (3.10
f=k,, (3.3 Re-expressing the solution vector in terms of the eigenvec-
' tors,

where we have introduced the auxiliary variableand f. h_, h,+h,

Given initial data b,k,f) at timet=0 subject to the con- ~_|n N h '

straint,f=h ,, these equations determine a solutioaf the u=\| o | = (3.19

wave equation. Note that the constraint is propagated by the hyq h,—h;
evolution equations. ] ) o
In coordinatesc“ = (x%,x1) = (t,2) the system(3.1)—(3.3  the inequality(3.8) implies that homogeneous boundary data
has the symmetric hyperbolic form must take the form
0=h,,—Hh_g, (3.12
A*3,u=Bu+F, (3.4 N ]
where the parametéd satisfiesH?<1. The componeni,,
where the solutions consists of the column matrix corresponding to the kernel &, propagates directly up the
boundary and cannot be prescribed as boundary data.
h Non-homogeneous boundary data can be given in the
form
u=| k (3.5
; q(t)=h,;—Hh_;=h (1-H)—=h(1+H), (3.13

whereq is an arbitrary function representing the free bound-
and ary data az= 0. Equation(3.13 shows how the scalar wave
equation accepts a continuous range of boundary conditions.
0 0 0 The well-known cases of Sommerfeld, Dirichlet or Neumann
boundary data are recovered by settig-0,+1, or, —1,
' respectively. Note that there are consistency conditions at the
0O -1 O edge (=0,z=0). For instance, Dirichlet data correspond to

A%=

o o r
o r O
P O O
>
-
[
o
o
|
|
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specifyingk=h; on the boundary and this must be consis- 0=yl +a,d'¢ = -9, yii—vy2g, (3.16
tent with the initial data fok. _
On the boundarg=0, require that' satisfy

B. The reduced harmonic Einstein system 0= ,yti+ &tgi_ (3.17

The harmonic Einstein system consists of the six wave o ‘
equationg2.8) and the four harmonic conditiorf2.9). Since  Theny"=9"+4'¢' has vanishing Cauchy datatat0, van-
the wave equations foy" are independent of the auxiliary ishing Dirichlet boundary data at=0 and satisfies the wave

variables y'“, the well posedness of the initial-boundary equation, so thay'=0. Thus, for evolution of constrained
value problem fory" follows immediately. Furthermore, data with a boundary, a shift-free harmonic gauge is possible.
since the harmonic conditions propagate the auxiliary vari- However, in this gauge, boundary data for all 6 compo-

ables up the boundary by ordinary differential equations, theients ofy'l can no longer be freely specified since the har-
harmonic Einstein system has a well posed initial-boundarynonic condition implies

value problem. A unique solution in the appropriate domain _ ‘

of dependence is determined by the initial Cauchy data 3,78+ N =0. (3.18
andy' att=0, the initial datay'* at the edgg=z=0 and , . N 5
the boundary data/ at z=0 given in any of the forms This relates Neumann data fef) to Dirichlet data fory*

described in Appendix Ae.g. Dirichlet, Neumann, Sommer- and would complicate any shift-free numerical evolution
feld). ’ ’ scheme. As an example, one could freely specify Dirichlet

A solution of the linearized harmonic Einstein system sat-Poundary data for the BZ(i\omponem%B and (i) obtain Neu-
isfies 6G' =0. As a result the Bianchi identities imply Mann boundary dg‘,aﬂ from the A-components of Eq.
#C'=0 andd,C= —4,C! so that the constraints are satisfied (3.18), (ii) evolvey*"in terms of |n|ZtZ|aI Cauchy data aridi)
provided the constraint Eq&2.12) and(2.13 are satisfied at obtain Neumann boundary datgy** from the z-component
t=0. of Eq. (3.18. Note the nonlocality of stefi), which would

The free boundary data for this system consists of sif'@ve to be carried out “on the fly” during a numerical evo-
functions. However, as shown in R¢L], the vacuum Bian- 'Ution. _ _ ,
chi identities satisfied by the Wey! tensor imply that only two ~ 1h€ requirement that the shift vanish reduces the free
independent pieces of Weyl data can be freely specified &oundary data to three components. It is also possible to
the boundary. We give the corresponding analysis for th&liminate an add't'g”a' free piece of data by choosing a unit
linearized Einstein system in Appendix B. This makes it/2PSe, i.e. settingi”=0. Suppose the shift has been set to
clear that only two of the six pieces of metric boundary dateZ€r0. so that the harmonic condition implié =—ah;.
are gauge invariant. This is in accord with the four degrees o€onsider a gauge transformatitif=h"—24,&', where £*
gauge freedom consisting of the choice of linearized lapse= (¢, &) satisfiesd,&'=d'¢é' so that the shift remains zero.
Sa= —h'/2 (one free function and linearized shiftsg'= For harmonic evolution of constrained data, bgtrand h't
—h'" (three free functions satisfy the wave equation. At=0, choose Cauchy data for

A linearized evolution requires a unique lapse and shift' satisfying
whose values can be specified explicitly as space-time func-
tions or specified implicitly in terms of initial and boundary 0=h"—24¢ (3.19
data subject to dynamical equations. In the case of a har-
monic gauge, in order to assess whether explicit :space-timfén
specification of the lapse and shift is advantageous for the
purpose of numerical evolution, it is instructive to see how it
affects fche _initia_l-boundary value_prob_lem for the _reduced(v\,here we assume the Cauchy data is given on a non-
harmonic Einstein system. In the linearized harmonic formu'compact set so that there are no global obstructions to a

lation without boundary, a gauge transformati@®) to a ¢y jution £). On the boundarg=0, require¢' satisfy
shift-free gaugey!! =0 is always possible within the domain

0=g;ht'—242¢'= — o;hl — 2V 2¢! (3.20

of dependence of the initial Cauchy date2]. In the pres- 0=h"—24,&". (3.21)

ence of a boundary, consider a gauge transformation with

§*=(0,¢"), so that Then h''=0 because it is a solution of the wave equation
~i i with vanishing Cauchy data and Dirichlet boundary data.
y' =y +adé. (3.14 [Alternatively, the lapse can be gauged to unity by a trans-

~ formation satisfyingl''=[1¢£'=const, so that the harmonic
For harmonic evolution of constrained initial data, b@h  source functiod™ still drops out of Eq(2.1) for the Einstein
and y" satisfy the wave equation. At=0, choose Cauchy tensor]

data for¢' satisfying A unit lapse and zero shift implies thaty! =0 so thaty!
_ . cannot be freely specified at the boundary. Coupled with our
0=+ 9t¢ (3.19  previous results, imposition of a unit lapse and zero-shift
reduces the free boundary data to the two trace-free trans-
and verse componentg*E— (1/2)6*B<, in accord with the two
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degrees of gauge-free radiative freedom associated with tHmlic formulation of this system and the analysis of its char-
Weyl tensor[In addition, the initial Cauchy data must satisfy acteristics is given in Appendix A. The variables consist of
Eq. (3.18, 4,¥,=0 andV?y/=0.] A similar result arises in
the study of the unit-lapse zero-shift initial-boundary value
problem for the linearized ADM equatiof8]. However, in
the case of harmonic evolution, it is clear that explicit speci- i i vl i il i i i
fication of the lapse and shift leads to a more gompligate hereTU=g:", X'=g,h'", Yi=4,h andZ'=g;h". In
initial-boundary value problem. It is more natural to retain & well pos_ed initial-boundary valug.problem, there are seven
the freedom of specifying 6 pieces of boundary data, whict{ree functions that may be specified at the boundary. For

then determine the lapse and shift implicitly during thegxamdple, ('jn tthe an_altog;ﬁ ofdthe Dirichlet case, the free
course of the evolution. ounadary data consists and ¢.

The reduction of the free boundary data can be accom: In the context of the second order differential form given

. i . Egs. (2.16), with the harmonic conditiong2.17) and
plished by other gauge conditions on the boundary, which ar?y . L
not directly based upon the lapse and shift. An exampledz'tl&hti?e bdounﬁﬁfy (?atta re_:maTﬁ the lsatr_ne,b%.gb [zrl]rlchlet
which plays a central role in the Friedrich-Nagy formulation, atagh” and 4. This determines the evolution y the

. P tion, which then provides source terms for the
is the specification of the mean curvature of the boundary. Tgrave equation, wnl :
linearized accuracy, the unit outward normal to the boundar;?ymmmrIC hyperbolic subsystef@.17) and(2.18. This sub-

atz=0 is system implies thaf1¢=0, so that the evolution o is
also governed by the wave equation, with initial Cauchy data
¢ andd,¢ whered, ¢ is provided by the initial Cauchy data
h't via Eq. (2.18. The evolution ofh't is then obtained by
integration of Eq.(2.18).

Unlike the reduced harmonic Einstein system where the
constraints propagate up the boundary by ordinary differen-
tial equations, the initial-boundary value problem for the re-
duced harmonic Ricci system does not necessarily satisfy
Einstein’s equations even if the constraints are initially sat-
isfied. The Bianchi identitie§2.19 imply Eqg. (2.20 so that
both C and 4,C would initially vanish but, sinceC satisfies
the wave equatiorC would vanish throughout the evolution
rgomain only if it vanished on the boundary. In that case, Eq.
&2.19) would imply that the momentum constraints were also
satisfied throughout the evolution domain.

Thus evolution of constrained initial data for the harmonic
Ricci system yields a solution of the Einstein equations if
and only if the Hamiltonian constraint is satisfied on the
boundary. This is equivalent to requiring thatp=0 on the
(3.29 boundary. If the evolution equations are satisfied, we can

express this in the form

A gauge deformation of the boundary in the embedding
space-time makes it possible to obtain any mean curvature
by solving a wave equation intrinsic to the boundary. In this
respect, the mean extrinsic curvature of the boundary is pure
“boundary gauge” and can be specified to eliminate one de-

ree of gauge freedom. When the harmonic conditions are i G i . .
gatisfied,gthg mean curvature of the boundary reduceg to whereH =h; fandH'J =h" —%é"_hﬁ. This allows formulation

19,072 of the follqwmg v_vell_posed |n|t|al-b9undary value problem
This discussion shows that there are various ways that thfé)r a solut|on_sat|.sf_y.|n9 the constraints. -
six free pieces of boundary data can be restricted by gauge We presc”be initial Caughy data that satisfies the con-
conditions. Such restrictions can be important for an analyti wraints forH”, H, ¢ andh”, and free boundary data for

understanding of the initial-boundary problem but their use- and ¢. The system of wave equations then determines
fulness for numerical simulation is a separate issue, espe-

'l This allows integration of Eq3.25 on the boundary to

cially in applications where the boundary does not align with®Ptain Dirichlet boundary values for determinationofs a

the numerical grid as discussed in Sec. IV solution of the wave equation. The remaining fiellsand
T h't are then determined as a symmetric hyperbolic sub-

system. Note that the boundary constrdB25 reduces the

(', T, X1,Y1,Z,h, ¢),

1
N,~[1+ Ehzz) v,z. (3.22

The associated mean  extrinsic
—N*NP)VgN,, is given to linear order by

curvature g*4

1
X = N — dahl+ E(azhﬁ_&zhtt)- (3.23

Although the extrinsic curvature of a planar boundary van
ishes in the background Minkowski space, the linear pertu
bation of the background induces a non-vanishing linearize
extrinsic curvature tensor.

Under a gauge transformation induced by g the
mean curvature transforms according to

X=x+ (37— &

2 y
O¢= §afH—aiajH'J:o, (3.2

C. The reduced harmonic Ricci system

free boundary data from seven independent functidos

The underlying equations of the reduced harmonic Riccunconstrained solutiongo six, in agreement with the free

system are the six wave equatiof’s16 and the four har-
monic conditions(2.17) and (2.18. The symmetric hyper-

boundary data for solutions of the reduced harmonic Einstein
system.
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IV. NUMERICAL IMPLEMENTATION finite difference stencils for imposing boundary conditions,
. . . . the fieldsh' (or y'') are represented on staggered grids
Numerical error is an essential new factor in the compu- (or y) P 99 g

ST ; . ) at staggered time-levels, wheref!]N"}2
tational implementation of the preceding analytic results. The f(t[N+9,9 [1+1/2J+1/2K+1/2]

1 x
el - X1 +2/2] Y13+ 102]  Z[K + 1/2)) -
initial Cauchy data cannot be expected to obey the con- 'mpo o iansive tests of stability reported here were per-

straints exactly. In particular, machine roundoff error alwaysformed using a leapfrog evolution algorithm in order not to
produces an essentially random component to the dalgiss the tests by introducing excessive dissipation. We expect
which, in a linear system, evolves independently of the inp5; the tests would also be satisfied by more dissipative
tended physical simulation. It is of practical importance thatalgorithms. This was borne out by a limited number of evo-
a numerical evolution handle such random data without progtions using an iterative Crank-Nicholson algoritiiimple-
ducing exponential growth(and without an inordinate mented as in Ref9]).

amount of numerical dampingWe designate asobustly

stablean evolution code for the linearized initial-boundary A Rrobustly stable algorithms for the reduced harmonic

problem which does not exhibit exponential growth for ran- Einstein system

dom (constraint violating initial data and random boundary

data. This is the criterion previously used to establish robust

stability for ADM evolution with specified lapse and shift Evolution of '/ is done by a standard three-level leapfrog

[9]. scheme, with the wave equation in second-differential-order
We test for robust stability using the 3-stage methodologyform, i.e.

proposed for evolution-boundary codes in Hé&f. The tests

check that thé., norm of the Hamiltonian constraiigt does

Stage |

- . . . ij[N+1 ij[N Ij[N=1
not exhibit exponential growth under the following condi- 7I[JIEJ,K] ]_ZVI[IIFJ,]K]'i_'yI[JIFJ,K]]
tions. (At)2
Stage [: Evolution on a 3-torus with random initial
_ JiIN ij[N ij[N
Cauchy data. = 7’{!([x[l],J,K] + 7',§/[y[|],;|,|<] + ')’{Jz[z[l],J,K] . 4D

Stage II: Evolution on a 2-torus with plane boundaries,
i.e. T>X[—L,L], with random initial Cauchy data and ran- Second spatial derivatives are computed via
dom boundary data.
Stage IlI: Evolution with a cubic boundary with random
initial Cauchy data and random boundary data. f _ 1ok = 2F 0 fi-1ak 4.2
Stage | tests robust stability of the evolution code in the ol 2K (Ax)? ' '
absence of a boundary. Stage Il tests robust stability of the
boundary-evolution code for a smooth boundégpology On a grid staggered in space and at staggered time levels,
T?). Stage IlI tests robust stability of the boundary-evolutionevolution of y' is carried out by the finite difference version
code for a cubic boundary with faces, edges and corners, & Eq. (2.14), i.e.
standard practice for computational grids based upon Carte- ,
. . itIN+1/2] _ itIN=1/2]
sian coordinates. Y123+ 12K+1/21 Y[I+ 123+ 12K+ 1/2]
We have established robust stability for the evolution- At
boundary codes, described in Secs. IV A and IV B, the re-
duced harmonic Einstein and Ricci systems. The tests are
performed according to the procedures outlined in Ref. _
for an evolution of 2000 crossing timéa time of 4000, — YU 120+ 12K+ 172 - (4.3
where 4 is the linear size of the computational domaim
a uniform 48 spatial grid with a time stept=Ax/4 (which ~ Here first spatial derivatives are evaluated at the center of the
is slightly less than half the Courant-Friedrichs-Lewy limit integer grid cells, i.e.
and typical of values used in numerical relatiyity
For purposes such as singularity excision or Cauchy-
characteristic matching, there are computational strategies ¢ o= foax

_ _ ixIN] —iy[N]
= T Y X +120+12K+12] Y Y[+ 120+ 12K +1/2]

based upon spherical boundaries. The extension of a robustly M2 LK) g Ax

stable ADM boundary-evolution algorithm with given lapse f g

and shift from a cubic grid boundary to a spherical boundary 4 UHIIFIK] [ I+1K]
is problematic[16]. Robustly stable evolution-boundary al- Ax

gorithms for the reduced harmonic Ricci and Einstein sys-

) . . . f —f
tems with spherical boundaries are presented in Sec. IV C. (+1JK+1] [1JK+1]

Numerical evolution of the fields' (or 4") andh' (or Ax
YY) is implemented on a uniform spatial grid f _§
(X1 Y131 Zik) = (1 Ax, JAX, K Ax), with time levelst™] !
=N At. Thus a field componelifitis represented by its values X
N = F(t™ X017, Y91 . Z1) . In order to obtain compact (4.9

064015-7



BELA SZILAGYI, BERND SCHMIDT, AND JEFFREY WINICOUR PHYSICAL REVIEW D65 064015

Since y“ is represented on the integer grid which is stag-where the spatial derivative terms are computed according to
gered in space and time with respect to the grid representé&q. (4.4).

t|on of y'!, the finite difference equatlon used for updating

y' is similar to Eq.(4.3) used to update'". Stage I

Stage Il Unconstrained plane boundanAs shown in Sec. Il C,

The hierarchy of ten linearized equations for the reduce€Ven free functions can be prescribed as unconstrained
harmonic Einstein system makes the initial-boundary valuéoundary data foh’ and ¢ in the reduced harmonic Ricci
problem particularly simple to implement as a finite differ- system. Again let the boundary be defined by lhgeth grid
ence algorithm. Let the plane boundary be given by theoint, with K<K, for interior points. Then the boundary
Ko-tl? grid pomth with the stgge I ?volutlon algorlthm applied datah[K ; and ¢y allows the evolution algorithm to be
to all points withK <Ko. Up at80'y[K -1 I‘GQUII‘eS'y[K ] 83 applied to updaté! and h'* at all interior points, e.g. to
boundary data. The same boundary information aIIows “pupdateh[K andh[K 112, which in turn allows update of
date ofy Ko—1/2] which, in turn, allows update of/[K 1

o ¢ at all mtenor points.

with no a;]ddltlonalfboundar¥fdatabHov(\;everdlt is interesting ™ ~0 . <trained plane boundanConservation of the con-
to note that specification of free boundary data f6k; O giraints in the reduced harmonic Ricci system requires that
7’[K + 1/ Would not affect stability simply because no evo- the Hamiltonian constraint be enforced at the boundary. In

Iutlon equation uses that data. order to obtain a finite difference approximation to a solution
of Einstein’s equations, the unconstrained evolution-
Stage Il boundary algorithm must be modified to enforce the Hamil-

Let the evolution domain be the cubeL<x'<L with  tonian constraint on the boundary. Orz=a const boundary,

the grid structured so that the boundary lies @mon-  we accomplish this, in accord with the discussion in Sec.
staggereggrid points, i.e. x[l] ==L, etc. The boundary data 11l C, by prescribing freely the functiow and the five com-
consist ofy" on the faces, edges and corners of the cubeponents of the traceless symmetric tengt’. The missing
The fieldy'"* can then be updated at all staggered grid pointsngredient,d,H is updated at the boundary according to Eq.
inside the cube, mcludlng those neighboring the boundary3.25.
For instance, update qf[3,2 32,3121 INVolves use ofy at the In the finite difference algorithm, in order to be able to
points[2+1 2+1 2+17 all of which are on or inside the apply Eq.(3.29 via a centered three-point stencil, we intro-
boundary. Similarly, evolution of'! can be carried out at all duce a guard point &=z . 1j, Where the boundary data
interior grid points without further boundary data. dH" is provided. (See Fig. 1. Assuming that the fields

Robust stability of the evolution-boundary algorithm is h'l hit and ¢ are known fort<t[N, K<K, and that the
demonstrated by the graph of the Hamiltonian constraint ihoundary data-I[K 117 is known fort<t NI \we use the fol-
Fig. 2. The linear growth results from momentum CorlStraIntIowmg evolution-boundary algorithm to compute these fields
violation in the initial data. at tINF1]-

(i) We update the fields" at time-levelt!N"% at all grid
points within the numerical domain of dependence of the
data known at!™l, i.e., at all points which require no bound-
Stage | ary data.

(i) At the guard poinKy+1 we assign Dirichlet bound-
ary data to the five independent components of the symmet-

B. Robustly stable algorithms for the reduced harmonic
Ricci system

Evolution ofh" is carried out identically as the evolution
of %" in the Einstein systerfisee Eq.(4.1)]. The fieldsh" ) N[N+ 172] L
and ¢ are represented on the integer grid whilkis repre-  M¢ traceless &H")ix 17 by prescribing boundary values
¢ p ger g p [Ko+1]
sented on a half-integer grid staggered in space and in timéor ,H**,9,H*Y,a,H*?, a,HYY,3HY* and setting 9,H**=

Thus the evolution equatiorf8.17 and(2.18 for ¢ andh' — g H* =g, HYY.
have finite difference form (i) At the guard pointKy,+1 we update the fields
¢[N+l d)N] HI[IK[(IJ\Ilel]]:HI[Q?llﬁ(“)Wt Il)er-&/la
WH& hiON 42 (iv) At the boundary poinK, we updateH}{y"*! using
) ) the field-equatiorr]1H') =0, written in the finite-difference
1 h|][N+l]_h|J[N] form
<o MK [LIK]_
+2 I Ta— 0 4.5
ijIN+1 ij[N ij[N—-1
hlt [N+1/2] h t[N—1/2] HI[JK[O]Jr ]_ZHI[]K[O]]+HI[]K[O] ] 20 1ii\[N]
[I+l/2,.]+l/2K+l/2] [I+1/2,.]+1/2K+1/2] =(VHDHL . (4.7
At Atz [Ko]
1 N _
a;hit— > jkg'th+ d;hl =0, (v) At the boundary poinK, we compute the boundary
[1+1/2)+ 112K +1/2] values Hy N“] using the finite-difference version of Eq.

(4.6) (3.25, |.e.
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[N+1]_ 5 4[N] [N-1] Stage IV:Evolution with a spherical boundary with ran-
Hikg ™~ 2Hikg T Hikg "
0 0 o (g:0HHIN. =0, (4.9 dom initial Cauchy data and random free boundary data at all
At? Il guard points.
As before, we perform the tests for an evolution of 2000
crossing times (40, where R is the diameter of the com-

Wl N

lgrsgih(rig)p é?ﬁ?)eigrzzgi\ﬁlsves are computed using cen- putational domainon a uniform 48 spatial grid with a time
[N+1]

: ii[N+1] _ step slightly less than half the Courant-Friedrichs-Lewy
i) .F[rn?inl] knowledge ofHjicy™ ™~ and Hy ™ We Con- i \we have established stage IV robust stability for the
SthCth[JKO] . following implementations of reduced harmonic Einstein and

(Vi) We assign boundary data faﬁ{ﬂ;]” and update Ricci revolution.

[N+1] it[N+1/2] ;
¢ andh according to Eqsi4.5), (4.6. 1. The reduced harmonic Einstein system
Stage I Let the evolution domain be defined by the interior of a

ined cubic boundardh ined cubi sphere of radiuR. The update ofy" at an interior point
Unconstrained cubic boundaryrhe unconstrained cubic Ble"]’K] requires the values of/t at the points[l+2,J
1
2

boundary is essentially the same as the unconstrained pla K= 1], some of which might be “staggered-boundary”
1 — 21

boundary, i.e., the functions’ and ¢ are provided at the points outside the evolution domain. These staggered-
boundary. Then the evolution equations are applied to updatgoundary points are inside the spherical shef
h'l, h'" and ¢ at all interior grid points. Recall that" is < 212+ 2 +yZ+ ZZ<R+16ry, if 6ry=13Ax. At these points
represented on a staggered grid with some interior pointge ypdatey't by the same finite-difference equatiéh3d) as
located a half grid-step away from the boundary. Neverthefor the interior points. This defines a set of non-staggered
less,h™ can be updated at such points using #46..  poundary points for the field/l determined by two condi-
Constrained cubic boundaryrhe algorithm for enforcing  tions: (i) that they!l can be updated at all interior points
the Hamiltonian constraint on a cubic boundary is an exten-using Eq.(4.1) and (i) that y'' can be updated at all interior
sion of the ail_lgorlthm for a plane boundary. The boundary,ynq staggered-boundary points. Both conditions are satisfied
functionsgH" are provided at a set of guard points that arejs ye define the set of non-staggered boundary point&kby

Ax outside the boundary of the cube, such that at grid-pointg_ \/_ZTZTT<R+ h = [3Ax. At thi
on the boundary of the cube we can use the field equationgf p)é)[ilgltsy\x]e ozb[gin Vaﬁ;g’ ;gyi?r\?iir(lqu.\/(il))(. WtitL Iﬁst;?t

OH''=0 as well as the boundary constraint Eg.25 to . : . ;
i ) provided in a “guard-shell” R+ 8ro=<\X?+y?+z?<R
updateH" andH at the boundary points. Boundary data for Y ST ot Ory, where ot ;= Ax. The radiusR of the spherical

¢ IS p'rowded'at grid points on 'the boundary of the cube, Inboundary of the reduced harmonic Einstein system is related
a similar fashion to the constrained plane boundary. to the linear size P of the computational arid b
Robust stability of the evolution-boundary algorithm for P grid by

the constrained cubic boundary is demonstrated by the graph R+ r g+ or <L. 4.9

of the Hamiltonian constraint in Fig. 2. In addition to the

robust stability test results, in Fig. 2 we have also includedrpis ensures that all guard points fall inside the domain
results from two physical runs, based on the plane-wave S, +L]3

lution Egs. (4.1)—(4.14. The longer physical rufup to

t/L~1000) was performed with a grid-size dfx=1/80, 2. The reduced harmonic Ricci system

while the shorter rurfup tot/L~400) was performed with a _ _

grid-size of Ax=1/120. Comparison of the physical runs Unconstrained spherical boundaryhe stage IV uncon-
with different gridsizes indicates that the long-term p0|yn0_stra|ned evolution-boundary algorithm for the reduced har-

mial growth in the Hamiltonian constraint violation can be Monic Ricci system is similar to that of the reduced har-
controlled by grid-resolution. monic Einstein system. We use two spherical shells, of

thicknesssr, and or 1, with 8r = /3Ax and r;=Ax. The
algorithm is the following:

C. Spherical boundaries (i) We update all field#'! at time-levelt!N™11 at all non-
The implementation of both the reduced harmonic Ein-Staggered grid points within the Spheir_l‘l?NCifl/rnglﬁ org.
stein and Ricci systems display robust stability in stage I, Il (i) We provide boundary datajf)" at all non-

and Il tests. We now extend these results to a sphericaitaggered grid points within the spherical sh&ltorg
boundary cut out of a Cartesian grid, with the evolution do-<+x?+y?+z><R+ dro+ r;. We updateh!/IN*21=pii[N]
main defined by the interior of a sphere of radRidn order  +At(d;h) 1IN within the same spherical shell.

to update fields at these interior grid points, values are (iii) We provide boundary data!N**! within the spheri-
needed at a set of “guard” points consisting of grid points oncal shellR< U+ y2+ 2<R+ 6ty

or outside the boundary. Some of these field values constitute (iv) We update the field!N* ! inside the sphere of radius
free boundary data. We extend our test of robust stability to & according to Eq(2.17, and update the fieldg'!(N*1/2]
fourth stage which checks that tthe norm of the Hamil- inside the sphere of radil&+ 6r /2 according to Eq(2.18).
tonian constrainC does not exhibit exponential growth un-  Constrained spherical boundaryhe evolution-boundary
der the following condition. algorithm for the reduced harmonic Ricci system with con-
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FIG. 2. A log-log plot of thel.. norm of the Hamiltonian con-
O O [] A straint as a function of time for a stage 3 test of the evolution-
K;2] Ky1] K] K] boundary algorithm of the Einstein system and of the Ricci system
with constrained boundary. The upper two curves correspond to
FIG. 1. Boundary stencil for the stage 2 evolution-boundarystability tests(random data while the lower two curves indicate
algorithm of the Ricci system with constrained boundary. Circlesperformance testéhysical data
stand for interior grid points which are updated by the evolution
algorithm: The requireq boundary data fdfl is provided at t.he (v) We update(ﬁ[N”] and hitIN+172] according to Egs.
guard point[Ky+1] (triangle), while the boundary data fog is (2.17), (2.18.
provided at the boundary poiftk,] (squarg. The Hamiltonian

o The radiusk of the constrained spherical boundary for the
constraint is enforced at the boundary pdiKi].

reduced harmonic Ricci system and the linear sited? the
computational grid are related by

strained spherical boundary is an extension of the algorithm
with unconstrained boundary. In addition to the spherical
shells defined in the case of the unconstrained boundary, we
define an additional set of guard poin®R+ rg+ drq

< \/XZ[I] +y2[J] + Z[zK] <R+ 8o+ 8ry+ 6r,, where the bound- This ensures that all boundary points and all guard points fall
ary datad,H'l is provided. The quantityr, is defined by inside the domaifi—L,+L]°.

two conditions:(i) the fieldsH'! can be updated accordingto ~ The graphs of the Hamiltonian constraint in Fig. 3 illus-
Eq. (47 at all non-staggered grid pointsR+ dr, trate robust stability for a spherical boundary for the reduced

< iy yPy 2y <R oro+ary, andi the Hamitonian  pRERORS EREE e e Comparison o
constraint Eq(3.25 can be enforced at the same set of grid Y y : P

. h of th giti isfiedbit= 2 Figs. 2, 3 shows that there is no significant difference be-
points. Both of these conditions are satisfiedi;=y2AX.  yyeen the stage Il and stage IV performances in terms of

The evolution-boundary algorithm for the reduced harmonic,;merical stability.
Ricci system with a constrained spherical boundary is the

R+ 8rg+ 6rq+ oro<L. (4.10

following: )
(i) We update all fields' at time-levelt!N"1! at all non- D. Convergence tests
staggered grid points within the sphere or radis or . In order to calibrate the performance of the algorithms we

(i) We update the fieldsi![N** at the set of boundary carried out convergence tests based upon analytic solutions
points R+ drp= \/X[2|]+y[2J]+Z[2K'\l<R+ Sro+dry via Eq. constructed from a su_perpoten_ti@“ﬂw symmetric in
(4.7). Then we update the field(N*1] at these points via Eq. (@.8) and (u,») and antisymmetric ifia, ], [B,v], such
(4.8). From knowledge of'IIN*11 andHIN*1] we construct that O ®*##*=0. As a result of these symmetry properties,
hilN*1] gt the same set of grid points. the tensory*”=9,d,®*#*" is symmetric and satisfies the

(iii) We provide boundary dataggH!l)N* 2! at the set of linearized harmonic Einstein equationsly*”=0 and

- 9, y""=0.
uard points R+ 8rg+ Or =<\/X3,+ Yy + ZZ <R+ or wY . L
i S+ 5? then  we up([:;;teypll—l”[’{'l(*]” _yiiIN] In our first testbed we choose*#~” as a superposition of
1 23 -

+At(aH")IN*12] at the same set of grid points. two solutions,
(iv) We assign boundary data fasiN"1l at the set of

boundary pointR< x4, +y?; + zi <R+ dro. QrEY=PARYLBEY, pF v, (4.1
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with the remaining independent componentsbsf+” set to
zero. The solutioA*” is defined by

Al=Al'=Al=0, (4.12
- 8alsi t—(x'+x1)/y2
All = N wa( 2( ) \/—)]’ %] 413
wp
andB*" is defined by
_ 8b'tsi t—x y
g2 Sest0) g _gug (414

wp

Here A is a plane wave propagating with frequensy

along the diagonal of thex(y) plane, so that a wave crest

leavingx=—L travels a distancé 2 before arriving aix

=+L. Since the topology of stages | and Il imply periodicity

in the x direction, we set

wp= \/E’iT/L.

Similarly, the frequencywg of the functionsB' is set to

wg=m/L.

PHYSICAL REVIEW D 65 064015

=Ax. The same parameters were used when testing the algo-
rithm for the reduced harmonic Ricci system with uncon-
strained spherical boundary. The evolution-boundary algo-
rithm for the reduced harmonic Ricci system with
constrained spherical boundary was tested using the param-
etersoro=1.8Ax, or,=2.5Ax, anddr,=1.5Ax.

The code was used to evolve the solutions froaD to
t=L (t=R in stage IV}, at which time convergence was
tested by measuring tHe and thel, norms of 4" for the
Einstein system and dfl ¢ for the Ricci system, which test
convergence of the Hamiltonian constraint. The norms were
evaluated in the entire evolution domain. In addition, we also
checked convergence of the metric components to their ana-
lytic values.

In addition to plane wave tests, we tested the qualitative
performance in stage IV using an offset spherical wave based
upon the superpotenti@lvith shifted origin

f(t+1)—f(t—T1)

PHruvy—= — . MFED, (4.19
r
wherer = x>+ (y+a)’+z2 and
o=l gles (]
(U)—A w exp — w . (4.19

The parameterd\, a, andw are set to

In stage Il we use the same choices, while in the stage IV

tests we set

wp= \/EW/R,

wB:’ﬂ'/R

The amplitudesa,b't were chosen to be

a¥=1.1x10"8, a**=1.3x10"8, a¥?=1.2x10 8,

b*'=1.4x10"8 bY'=1.0x10"8 b?'=1.5x1078,

A=2xw3x10° a=0.0:R, w=0.2R.

1. The reduced harmonic Einstein system

Evolution requires Cauchy datatat 0 and boundary data
at the guard points. The Cauchy ddta’,d,v", 9", '} -
was provided by givingy'l[%1, 11711 10l gnd 4t2] gt
all interior and guard points. In addition, we provided bound-
ary data at each time-step by giving,¢')[N*2 at all
guard points. The metric and Hamiltonian constraint were
found to be 2nd order convergent for stages I-1V. In particu-

Convergence runs used the plane wave solution. In stagdar, in stage 1V, the norm ofly" vanished toO(A*99.

-1l we used the grid sizes

Ax 1 1 1 1
2L 80 100° 120° 160
while in stage IV we used

Ax 11 1 1
2R 80" 1000 120' 160’

2. The reduced harmonic Ricci system

In the case of the Ricci system the Cauchy data
{h,9:h h'Y éhi—p was provided by giving
hitol - RiIT=1 - 5[0 and htlY2] at all interior and boundary
points. In addition, when the Hamiltonian constraint was nu-
merically imposed at the boundary, we also provided
{H1},_, by giving H,

We first tested the code without numerically imposing the
Hamiltonian constraint. In this case we provided boundary
data at each time-step by giving.t")IN" Y2l and NI at all

with the additional gridsizé\x/(2R)=1/200 in the case of guard points.
the reduced harmonic Ricci system with constrained spheri- Next we tested the code with the Hamiltonian constraint

cal boundary.

numerically imposed at the boundary. Thus we first pre-

The time-step was set tht=Ax/4. In the stage IV test of scribed the tracelesssH')IN*Y2 and ¢! at all guard
the reduced harmonic Einstein system the widths of theoints, then computeH at each time-step via the boundary

boundary shells were chosen to IBe,=1.8Ax and 6r,

constraint Eq(3.25.
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FIG. 3. Alog-log plot of thel.,, norm of the Hamiltonian con-  (a) tme/R=1.0

straint as a function of time for a stage 4 test of the evolution-
boundary algorithm of the Einstein system and the Ricci system
with constrained boundary. 1e-05

5e-06

In all cases we found the numerically evolved metric 0
functions converge to their analytic values @(A?). In
stage |,[0 ¢ vanished to roundoff accuracy, while in stages
I, 11l it vanished to second order accuracy. In particular, for _45_o5
the stage Il algorithm with constrained bounddryg con-
verged to zero a®(A%)

In stage 1V, with constrained boundary, we found that the
I, norm of (] ¢ vanishes to first order accuracy. However, the
[.. norm decreases linearly with grid size only fvk/(2R)
=1/80,1/100 and 1/120 but fails to show further decrease for
Ax/(2R)=1/160 and 1/200. This anomalous behavior of the
I, norm stems from the random way in which guard points
are required at different sites near the boundary. This intro-
duces an unavoidable nonsmoothness to the second ord
error in the metric components, which in turn lead<dl)
error in the second spatial derivatives occurringdib or in
the Hamiltonian constraint. Unlike the Einstein system in
which the constraints propagate tangent to the boundary, thi:
error in the Ricci system propagates along the light cone into %807 -
the interior. However, since its origin is a thin boundary shell 0 -
whose width iSO(AXx), thel, norm of (] ¢ remains conver-
gent to first order. We expect that the convergence of the
Hamiltonian constraint for a spherical boundary would be -1e-06
improved by matching the interior solution on the Cartesian
grid to an exterior solution on a spherical grid aligned with | /7 " 15
the boundary, as is standard practice in treating irregular T
shaped boundaries.

-6e-06

le-06

’\'
\\\\ A E}M}» bl
”:I,\\..’Z',‘!.W H

i

be-07

3. Simulation of an outgoing wave using a constrained

spherical boundary © 1 515

We also tested the code’s ability to evolve an outgoing FiG. 4. Stage IV evolution of an outgoing solution using the
spherical wave traveling off center with respect to a sphericaleduced harmonic Ricci system with a constrained spherical bound-
boundary of radiusR. Figure 4 illustrates a simulation per- ary. The plots show the metric fielt'! atx=0, for t/R=0.1 (top),

formed using the stage IV algorithm for the reduced har+/R=1.0 (middle) andt/R=1.5 (bottom). In the bottom plot, the
monic Ricci system, with the Hamiltonian constraint numeri-field has decayed by two orders of magnitude.
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cally enforced at the boundary. The metric fields werey X =4, T (A3)
evolved fromt=0 to t=1.5R, using a grid ofAx/(2R)
=1/120. After the analytic wave has propagated out of the
computational domain, the remnant error is two orders of,Y'l =g, T'l (A4)
magnitude smaller than the initial signal. This shows that
artificial reflection off the boundary is well controlled even 2l — 5 il AS
in the computationally challenging case of a piecewise cubidté” =9z (AS)
spherical boundary.
1 1 1
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APPENDIX A: HYPERBOLIC FORMULATION OF THE 1 1 1
LINEARIZED HARMONIC RICCI SYSTEM o= _ﬁxhxt_&yhyt_ﬁzhzt_ E-|—xx_ E-|—yy_ ETZZ'
In order to study the evolution of the system consisting of (A9)
Egs.(2.16, (2.17), and(2.18 in the half-space>0 with
boundary atz=0, we employ the auxiliary variable$"  Next we define the 34-dimensional vectoby
=aoh' XT=9,h" Y =g h1,Z1=,hY, p=3h". In terms
of the variables u= T(hxx,hxy7hxz,hyy,hyz,hzz,-|-xx, L
TZEX* o XEEYXX L Y
(hil T X1 Y1 Z1 it ), R . B
Z¥, .. 2R Y hE g). (A10)
the system takes the form The system of equation®\1)—(A9) then has the form
g;hil =Tl (A1) A*g,u=Bu (Al1)
9T =g,X11 + 9, Y1 + 9,71 (A2)  whereA'=1,,,3, is the identity matrix,
|
O6><6 O6><6 O6><6 O6><6 O6><6 0l><6 Ol><6 Ol><6 ol><6
Osx6  Osxs Oexe Oexe ~lexe Oixe Oixe Oixe  Oixe
o6><6 O6><6 O6><6 06><6 06><6 01><6 01><6 01><6 01><6
Osxs  Oexs Osxs Osxe Oexs Oixe Oixe Oixe  Oixe
A’=| Ogxs —lexe Osxe Osxe Osxe Oixe Oixe Oixe  Oixe (A12)

06><1 06><1 06><1 06><1 06><l 01><l 01><l 01><l 01><l

06><1 06><1 06><1 06><1 06><1 01><1 01><1 01><1 01><l
06><1 06><1 06><1 06><1 06><1 01><1 01><1 Ol><1 +|1><1

06><1 O6><1 O6><1 06><1 O6><1 Ol><1 Ol><1 +|l><1 Ol><1

and
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Osx6 lexe Osxs Osxe

Osx6 Osxs Osxs Osxs

Osx6 Osxe Osxs Osxs

Osxs Osxs Osxs Osxs

B=| Oexs Osxs Osxs Osxs

06><1 06><1 cx _52j

06><1 06><1 _52j ¢

06><l 06><l _53j _55j

Osx1  C'  Ogx1  Ogx1

where

1

CX=§(—1,O,0,+ 1,0+1), (A14)
1

Cﬂ:§(+LQ071@¢1L (A15)
1

C*= E( +1,0,0/41,0-1), (Al6)
1

C'= 5( -1,0,0-1,0,-1). (A17)

The matrixA? has the eigenvalué: 1, with multiplicity 7
and eigenvectors

(=3, p+h7;
the eigenvalue-1, with multiplicity 7 and eigenvectors

(d;+3d,)h",  ¢p—h?

PHYSICAL REVIEW D65 064015

06X6 01X6 01X6 01X6 01X6

06X6 OlXG 01X6 OlXG OlXG

06X6 OlXG OlXG OlXG OlXG

06X6 OlXG OlXG OlXG OlXG

Osxs Oixs Oixs Oixe Oixe (A13)

— 58
— 55
CZ

01X1 01X1 lel lel

Ole Ole lel lel

Ole Ole Ole Ole

06Xl 01X1 01X1 01X1 Ole

whereH can be any ¥ 7 matrix satisfying

— Taa+Ta™MHa<0, aeR’. (A23)
The three simplest matrices that satisfy the conditid®3)
are —l;y7,07x7 andl;y7. The last of these corresponds to
specifying Neumann data fdr! and Dirichlet data foh?',
Using the zero matrix as a candidate tércorresponds to
giving Sommerfeld data foh"” and specifying the quantity
¢+h?. Last, pickingH to be minus the identity matrix cor-
responds to giving Dirichlet data farh' as well as fore.
Note that the evolution systeri1)—(A9) accepts a much
richer class of boundary conditions than the three we just
mentioned. One simply needs to pick a mattixhat satisfies
Eq. (A23) and the choice oH defines the seven free func-
tions that are to be specified at the boundary.

APPENDIX B: WEYL DATA ON BOUNDARY

The curvature tensor, which provides gauge invariant
fields, decomposes into the Ricci curvature, which vanishes
if the evolution and constraint equations are satisfied, and the
Weyl curvatureC,gz,s. In order to analyze the boundary

hi, g, ol h< R

In the eigenbasis defined Wy the vectoru defined in Eq.

(A10) takes the form
u=T(u_,ug,u,) (A18)

with

u_= (T4 2% ... T+ 7% ¢—h? (A19)

Up= (N, ... hZ2 X% L XP2 Y%, L Y72 he YY)
(A20)

u,= T(Txx_ Zxx, . ,TZZ— ZZZ,Q')-I- hzt)_ (AZl)

complete, independent set of 10 linearized Weyl tensor com-
ponents K,g,5=6Cap,6:  Cas=Kiapi— 20286 Kicpr,
Kat: Kiazt, Ktzxy K*ag. andDag=Kias,~ 3 Sasdieby-
We use the linearized vacuum Bianchi identitiggK s,; .,
=0 and&‘sKaMa:O to show that the Weyl data which can
be freely specified on the boundary can be reduced to the 2
independent componenG,g -

First, the identity 9°K,,5=0 implies (after using the
trace-free property of the Weyl tengor

3thAAt_¢9BKtAAB:0 (B1)

which determines the boundary behavioiGf,; in terms of
the remaining 9 Weyl components.

Next, note that the identity

Non-homogeneous boundary data can be given in terms of a

free column vector field) in the form

g=u,—Hu_ (A22)

IKiagct dgKiactt dcKiag=0 (B2

implies
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1 IKiagz— 9Kiagt+ dsKiazi=0 (B8)
athAAC: _aACAc+ + El‘?cKtDDt, (BB) t"NtABz z'NMtABt BN tAzt
. o ] determines Neumann data fGng. Thus, since the compo-
or, taking at-derivative and using EqB1), that nents of the Weyl tensor satisfy the wave equation, the speci-
1 fication of bothC,g andD 55 as free Dirichlet boundary data
92K Pac=— 3,d"Cpac+ Eé’caDKtAAD- (B4) leads to an inconsistent boundary value problem.

The determination of boundary values f@r,g from
boundary data folC,g is a global problem which first re-
%uires solving the wave equation to determigg from its
boundary and initial data. Then the time derivative of the
trace-free part of Eq(B8) yields

This gives a propagation equation intrinsic to the boundar
which determines the time dependencekgf,c in terms of
the boundary data fo€ 55. (Note thatk,A,c propagates up
the boundary with velocity 0 in one mode and in a cone with
velocity 1A/2 in the other modg.

. . 1
Next, the identity 9D s~ dpd“Dact §5ABI70(9DDCD_'9t(9zCAB=O
9°Kiaze= — 0'"Kiazet 9®Kia,5=0 (BS) (B9)
determines the time dependenceQyf,; and the identity which propagate® g up the boundary in terms of initial
_ data. DefiningC=g"qBC,g and D=q"q®D g, with g*o
0Kizagt dgKiziat IaKiz5:=0 B6 AB AB A
t'™tzAB B ztA T YATNMzBE ( ) :é’x_'—iays this reduces to
determines the time dependencekaf,,. This reduces the
free Weyl data on the boundary to the 4 independent compo-
nentsCag andDpg.
However, the specification dD,g, in addition toC,g,

would lead to an inconsistent boundary value problem. This | . . . o
can be seen from the identity which has propagation velocity 2. (Note that this is but

one of the variations consistent with the maximally dissipa-
K aps= — 0Kippt+ 9K ags+ ICKiagc=0, (B7)  tive condition used by Friedrich and Naf]. In the case of
unit lapse and vanishing shift, assigning boundary dat&for
which determines Neumann data @} in terms of Dirich-  is equivalent to assigning data for the trace-free part of the
let data forC,z and other known quantities. Similarly, the intrinsic 2-metric of the boundary foliation, consistent with
identity results found in Ref[9].)

2 1 A
D= 529" D= 9,9,C=0, (B10)
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