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Boundary conditions in linearized harmonic gravity
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We investigate the initial-boundary value problem for linearized gravitational theory in harmonic coordi-
nates. Rigorous techniques for hyperbolic systems are applied to establish well posedness for various reduc-
tions of the system into a set of six wave equations. The results are used to formulate computational algorithms
for Cauchy evolution in a 3-dimensional bounded domain. Numerical codes based upon these algorithms are
shown to satisfy tests of robust stability for random constraint violating initial data and random boundary data,
and shown to give excellent performance for the evolution of typical physical data. The results are obtained for
plane boundaries as well as piecewise cubic spherical boundaries cut out of a Cartesian grid.
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I. INTRODUCTION

Grid boundaries pose major difficulties in current comp
tational efforts to simulate 3-dimensional black holes by c
ventional Cauchy evolution schemes. The initial-bound
value problem for Einstein’s equations consists of the evo
tion of initial Cauchy data on a spacelike hypersurface a
boundary data on a timelike hypersurface. This problem
only recently received mathematical attention. Friedrich a
Nagy @1# have given a full solution for a hyperbolic formu
lation of the Einstein equations based upon a frame dec
position in which the connection and curvature enter as e
lution variables. Because this formulation was chosen
handle mathematical issues rather than for ease of nume
implementation, it is not clear how the results translate i
practical input for formulations on which most comput
tional algorithms are based. The proper implementation
boundary conditions depends on the particular reduction
Einstein’s equations into an evolution system and the cho
of gauge conditions. The purpose of this paper is to elu
date, in a simple context, such elementary issues as~i! which
variables can be freely specified on the boundary,~ii ! how
should the remaining variables be updated in a comp
tional scheme, and~iii ! how can the analytic results b
implemented as a computational algorithm. For this purpo
we consider the evolution of the linearized Einstein’s eq
tions in harmonic coordinates@2,3# and demonstrate how
robustly stable and highly accurate computational evolut
can be based upon a proper mathematical formulation of
initial-boundary value problem.

Harmonic coordinates were used to obtain the first hyp
bolic formulation of Einstein’s equations@4#. See Ref.@5# for
a full account of hyperbolic formulations of general relati
ity. While harmonic coordinates have also been widely
plied in carrying out analytic perturbation expansions, th
have had little application in numerical relativity, presumab
0556-2821/2002/65~6!/064015~15!/$20.00 65 0640
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because of the restriction in gauge freedom@6#. However,
there has been no ultimate verdict on the suitability of h
monic coordinates for computation. In particular, their ge
eralization to include gauge source functions@7# appears to
offer flexibility comparable to the explicit choice of laps
and shift in conventional numerical approaches to gen
relativity. There is no question that harmonic coordinates
fer greater computational efficiency than any other hyp
bolic formulation. See Ref.@8# for a recent application to the
study of singularities in a space-time without boundary. H
we use a reduced version of the harmonic formulation of
field equations. This allows us to retain a symmetric hyp
bolic system, and apply standard boundary algorithms, i
way that is consistent with the propagation of the constrai
We show, on an analytic level, that this leads to a well po
initial-boundary problem for linearized gravitational theor

Our computational results are formulated in terms o
Cartesian grid based upon background Minkowskian coo
nates. Robustly stable evolution algorithms are obtained
plane boundaries aligned with the Cartesian coordina
which is the standard setup for three dimensional evolut
codes. Similar computational results@9#, based upon long
evolutions with random initial and boundary data, were p
viously found for the linearized version of the Arnowit
Deser-Misner~ADM ! formulation@10# of the field equations,
where the lack of a hyperbolic formulation required a le
systematic approach which had no obvious generalizatio
other boundary shapes. In this paper, we also attain ro
stability for spherical boundaries which are cut out of t
Cartesian grid in an irregular piecewise cubic fashion. T
success gives optimism that the methods can applied to
problems as black hole excision and Cauchy-character
matching, where spherical boundaries enter in a natural w

Conventions: We use Greek letters for space-time indi
and Latin letters for spatial indices, e.g.xa5(t,xi) for stan-
dard Minkowski coordinates. Linear perturbations of
©2002 The American Physical Society15-1
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curved space metricgab about the Minkowski metrichab
are described bydgab5hab with similar notation for the
corresponding curvature quantities, e.g. the linearized R
mann tensordRabgd and linearized Einstein tensordGab .
Indices are raised and lowered with the Minkowski metr
with the result thatdgab52hab. Boundaries in the back
ground geometry are described in the formz5const with the
spatial coordinates decomposed in the formxi5(xA,z),
where thexA5(x,y) directions span the space tangent to
boundary.

II. HARMONIC EVOLUTION WITHOUT BOUNDARIES

The linearized Einstein tensor has the form

dGab52
1

2
hgab2] (aGb)1

1

2
hab]mGm, ~2.1!

whereh5]m]m

gab5hab2
1

2
habh ~2.2!

h5ha
a52ga

a52g and

Ga52]bgab. ~2.3!

We analyze these equations in standard backgro
Minkowskian coordinatesxa. To linearized accuracy,

Ga'gmn¹m¹n xa ~2.4!

in terms of the curved space connection¹m associated with
gab and the conditionGa50 defines a linearized harmon
gauge.

The diffeomorphisms of the curved spacetime indu
equivalent metric perturbations according to the harmo
subclass of gauge transformations

ĥab5hab12] (ajb), ~2.5!

where the vector fieldja satisfieshja50. The linearized
curvature tensor

2dRmanb5]m]bhan1]a]nhmb2]a]bhmn2]m]nhab ,
~2.6!

as well as the linearized Einstein equations, are gauge inv
ant.

We introduce a Cauchy foliationt in the perturbed space
time such that it reduces to an inertial time slicing in t
background Minkowski spacetime. The unit normal to t
Cauchy hypersurfaces is given, to linearized accuracy, b

na'2S 11
1

2
httD ]at. ~2.7!

The choice of an evolution directiontm5anm1bm, with unit
lapse and shift in the background Minkowski spacetime,
fines a perturbative lapseda52htt/2 and perturbative shif
db i52hti .
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A. Standard harmonic evolution

Harmonic evolution consists of solving the Einstein
equationsGab50, subject to the harmonic conditionsGa

50. This formulation led to the first existence and uniqu
ness theorems for solutions to the nonlinear Einstein eq
tions by considering them as a set of 10 nonlinear wa
equations@11#.

In the linearized case, Einstein’s equations in harmo
coordinates reduce to ten flat space wave equations so
their mathematical analysis is simple. The Cauchy d
gab(0,xi) and] tg

ab(0,xi) at t50 determine ten unique so
lutions gab(t,xi) of the wave equationhgab50, in the ap-
propriate domain of dependence. These solutions sa
hGa50 so that they satisfy Einstein’s equations provid
Ga(0,xi)50 and] tG

a(0,xi)50, which can be arranged b
choosing initial Cauchy data satisfying constraints. For a
tailed discussion, see Ref.@12#.

Although this standard harmonic evolution scheme led
the first existence and uniqueness theorem for Einste
equations, it is not straightforward to apply to the initia
boundary value problem. The ten wave equations forgab

require ten individual pieces of boundary data in order
determine a unique solution. Given initial data such thatGa

50 and] tG
a50 at t50, as described above, the resultin

solution satisfies the linearized Einstein equations only in
domain of dependence of the Cauchy data. In order that
solution of Einstein’s equations extend to the boundary, i
necessary thatGa50 at the boundary. Unfortunately, there
no version of boundary data forgab, e.g. Dirichlet, Neu-
mann or Sommerfeld data for the ten individual componen
from which Ga can be calculated at the boundary. Here
consider reduced versions of the harmonic evolution sche
in which only six wave equations are solved and this pro
lem does not arise. These reduced harmonic formulations
presented below.

B. Reduced harmonic Einstein evolution

A linearized evolution scheme for the harmonic Einste
system, can be based upon the six wave equations

hg i j 50 ~2.8!

along with the four harmonic conditions

]mgmn50. ~2.9!

Because of the harmonic conditions, this system satisfies
spatial componentsdGi j 50 of the linearized Einstein’s
equations.

As a result of the linearized Bianchi identities]adGab

50, or

] tdGit1] jdGi j 50, ~2.10!

] tdGtt1] jdGt j50, ~2.11!

the linearized Hamiltonian constraintCªdGtt50 and linear-
ized momentum constraintsC i

ªdGti50 are also satisfied
throughout the domain of dependence of the Cauchy d
5-2
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BOUNDARY CONDITIONS IN LINEARIZED HARMONIC . . . PHYSICAL REVIEW D 65 064015
provided that they are satisfied at the initial timet50. This
constrains the initial values ofg ta according to

¹2g t i1] t] jg
i j 50 ~2.12!

and

¹2g tt2] i] jg
i j 50, ~2.13!

where ¹25d i j ] i] j . Then, if these constraints are initiall
satisfied, the reduced harmonic Einstein system determin
solution of the linearized Einstein’s equations.

The well posedness of the system follows directly fro
the well posedness of the wave equations forg i j . The auxil-
iary variablesgat satisfy the ordinary differential equation

] tg
i t1] jg

i j 50 ~2.14!

] tg
tt1] jg

t j50, ~2.15!

where g i j enters only in the role of source terms. The
differential equations do not affect the well-posedness of
system and have unique integrals determined by the in
values ofgat.

C. Reduced harmonic Ricci evolution

The reduced harmonic Ricci system consists of the
wave equations

hhi j 50 ~2.16!

along with the four harmonic conditions~2.9!, which can be
re-expressed in the form

] tf1] jh
jt1

1

2
] thj

j50, ~2.17!

] if1] th
it2

1

2
] ihj

j1] jh
i j 50, ~2.18!

where we have setf5htt/2. Together these equations imp
that the spatial components of the perturbed Ricci ten
vanish, dRi j 50. In addition, the Bianchi identities imply
that the remaining components satisfy

] tC i1] iC1] jdRi j 50 ~2.19!

] tC1] jC j50, ~2.20!

where, in terms of the Ricci tensor,C5 1
2 (dRtt1dRi

i) and
C i5dRti . Together with the evolution equationsdRi j 50, the
Bianchi identities imply that the Hamiltonian constraint s
isfies the wave equationhC50.

If the Hamiltonian and momentum constraints are sa
fied at the initial time, then] tC also vanishes at the initia
time so that the uniqueness of the solution of the wave eq
tion ensures the propagation of the Hamiltonian constra
In turn, Eq. ~2.19! then ensures that the momentum co
straint is propagated. Thus the reduced harmonic Ricci
tem of six wave equations and four harmonic equations le
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to a solution of the linearized Einstein’s equations for init
Cauchy data satisfying the constraints.

The harmonic Ricci system takes symmetric hyperbo
form when the wave equations are recast in first differen
order form. Thus the system is well posed. The formulat
of the harmonic Ricci system as a symmetric hyperbolic s
tem and the description of its characteristics is given in A
pendix A. Although well posedness of the analytic proble
does not the guarantee the stability of a numerical implem
tation it can simplify its attainment.

D. Other reduced harmonic systems

The harmonic Einstein and Ricci systems are spe
cases of a one parameter class of reduced harmonic sys
for the variable

kab5gab2
l

2
habg

which satisfies the wave equationsEi j 52 1
2 hk i j 50 and the

harmonic conditions Ga50, where Eab5dGab

2(l/2)habdG. This system is symmetric hyperbolic whe
the auxiliary systemGa50 is symmetric hyperbolic. This
can be analyzed by settingk i j 50 in the auxiliary system,
which then takes the form

05
~223l!

2~122l!
] tk

tt1] jk
t j

05] tk
t i2

l

2~122l!
] ik tt, ~2.21!

and implies

S ] t
22

l

~3l22!
] i]

i Dk tt50. ~2.22!

The auxiliary system is symmetric hyperbolic when E
~2.22! is a wave equation whose wave speed

v5A l

~3l22!
~2.23!

is positive. This is satisfied forl,0 and l.2/3. In the
range 2/3,l,1, the wave speed is faster than the speed
light. Only for the casel51, the harmonic Ricci system, i
the wave speed of the auxiliary system equal to the spee
light.

The auxiliary system for the reduced harmonic Einst
case has a well posed initial-boundary value problem
represents a borderline case. This could adversely affec
development of a stable code based upon a nonlinear ver
of the reduced harmonic Einstein system.

III. THE INITIAL-BOUNDARY VALUE PROBLEM

Consider the initial-boundary problem consisting
evolving Cauchy data prescribed in a setS at timet50 lying
in the half-spacez.0 with data prescribed on a setT on the
5-3
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boundaryz50. Harmonic evolution takes its simplest for
when Einstein equations are expressed as a second diff
tial order system. However, in order to apply standard me
ods it is necessary to recast the problem as a first order s
metric hyperbolic system. Then the theory determin
conditions on the boundary data for a well posed problem
the future domain of dependenceD 1. HereD 1 is the maxi-
mal set of points whose past directed inextendible charac
istic curves all intersect the union ofS andT before leaving
D 1.

Appendix A describes the symmetric hyperbolic descr
tion of boundary conditions for the 3-dimensional wa
equation. The basic ideas and their application to the init
boundary value problem are simplest to explain in terms
the 1-dimensional wave equation, as follows. See Appen
A for the analogous treatment of the 3-dimensional case.
presentation is based upon the formulation of maximally d
sipative boundary conditions@13#, the approach used b
Friedrich and Nagy@1# in the nonlinear case. An alternativ
description of boundary conditions for symmetric hyperbo
systems is given in Ref.@14# and for linearized gravity in
Ref. @15#.

A. The 1-dimensional wave equation

The one-dimensional wave equationh,tt5h,zz can be re-
cast as the first order system of evolution equations

ḣ5k ~3.1!

k̇5 f ,z ~3.2!

ḟ 5k,z , ~3.3!

where we have introduced the auxiliary variablesk and f.
Given initial data (h,k, f ) at time t50 subject to the con-
straint, f 5h,z , these equations determine a solutionh of the
wave equation. Note that the constraint is propagated by
evolution equations.

In coordinatesxm5(x0,x1)5(t,z) the system~3.1!–~3.3!
has the symmetric hyperbolic form

Am]mu5Bu1F, ~3.4!

where the solutionu consists of the column matrix

u5S h

k

f
D ~3.5!

and

A05S 1 0 0

0 1 0

0 0 1
D , A15S 0 0 0

0 0 21

0 21 0
D ,
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B5S 0 1 0

0 0 0

0 0 0
D . ~3.6!

In our case the source termF50 but otherwise it plays no
essential role in the analysis of the system.

The contraction of Eq.~3.4! with the transposeTu give
the flux equation

TuAm]mu5 Tu~ TB1B!u. ~3.7!

This can be used to provide an estimate on the no
* TuA0udz for establishing a well posed problem, in th
half-spacez.0 with boundary atz50, provided the flux
arising with the normal component ofAm satisfies the in-
equality

TuA1u<0. ~3.8!

This inequality determines the allowed boundary data fo
well posed initial-boundary value problem.

As expected from knowledge of the characteristics of
wave equation, the normal matrixA1 has eigenvalues 0,61,
with the corresponding eigenvectors

v05S 1

0

0
D , v615S 0

71

1
D . ~3.9!

These eigenvectors are associated with the variables

h05h, h615 f 7k5h,z7h,t . ~3.10!

Re-expressing the solution vector in terms of the eigenv
tors,

ũ5S h21

h0

h11

D 5S h,z1h,t

h

h,z2h,t

D ~3.11!

the inequality~3.8! implies that homogeneous boundary da
must take the form

05h112Hh21 , ~3.12!

where the parameterH satisfiesH2<1. The componenth0,
corresponding to the kernel ofA1, propagates directly up the
boundary and cannot be prescribed as boundary data.

Non-homogeneous boundary data can be given in
form

q~ t !5h112Hh215h,z~12H !2h,t~11H !, ~3.13!

whereq is an arbitrary function representing the free boun
ary data atz50. Equation~3.13! shows how the scalar wav
equation accepts a continuous range of boundary conditi
The well-known cases of Sommerfeld, Dirichlet or Neuma
boundary data are recovered by settingH50,11, or, 21,
respectively. Note that there are consistency conditions at
edge (t50,z50). For instance, Dirichlet data correspond
5-4
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BOUNDARY CONDITIONS IN LINEARIZED HARMONIC . . . PHYSICAL REVIEW D 65 064015
specifyingk5h,t on the boundary and this must be cons
tent with the initial data fork.

B. The reduced harmonic Einstein system

The harmonic Einstein system consists of the six wa
equations~2.8! and the four harmonic conditions~2.9!. Since
the wave equations forg i j are independent of the auxiliar
variables g ta, the well posedness of the initial-bounda
value problem forg i j follows immediately. Furthermore
since the harmonic conditions propagate the auxiliary v
ables up the boundary by ordinary differential equations,
harmonic Einstein system has a well posed initial-bound
value problem. A unique solution in the appropriate dom
of dependence is determined by the initial Cauchy datag i j

andg ,t
i j at t50, the initial datag ta at the edget5z50 and

the boundary datag i j at z50 given in any of the forms
described in Appendix A~e.g. Dirichlet, Neumann, Somme
feld!.

A solution of the linearized harmonic Einstein system s
isfies dGi j 50. As a result the Bianchi identities impl
] tC

i50 and] tC52] jC
j so that the constraints are satisfi

provided the constraint Eqs.~2.12! and~2.13! are satisfied at
t50.

The free boundary data for this system consists of
functions. However, as shown in Ref.@1#, the vacuum Bian-
chi identities satisfied by the Weyl tensor imply that only tw
independent pieces of Weyl data can be freely specifie
the boundary. We give the corresponding analysis for
linearized Einstein system in Appendix B. This makes
clear that only two of the six pieces of metric boundary d
are gauge invariant. This is in accord with the four degree
gauge freedom consisting of the choice of linearized la
da52htt/2 ~one free function! and linearized shiftdb i5
2hti ~three free functions!.

A linearized evolution requires a unique lapse and sh
whose values can be specified explicitly as space-time fu
tions or specified implicitly in terms of initial and bounda
data subject to dynamical equations. In the case of a
monic gauge, in order to assess whether explicit space-
specification of the lapse and shift is advantageous for
purpose of numerical evolution, it is instructive to see how
affects the initial-boundary value problem for the reduc
harmonic Einstein system. In the linearized harmonic form
lation without boundary, a gauge transformation~2.5! to a
shift-free gaugeg t i50 is always possible within the domai
of dependence of the initial Cauchy data@12#. In the pres-
ence of a boundary, consider a gauge transformation w
ja5(0,j i), so that

ĝ t i5g t i1] tj i . ~3.14!

For harmonic evolution of constrained initial data, bothj i

and g t i satisfy the wave equation. Att50, choose Cauchy
data forj i satisfying

05g t i1] tj i ~3.15!

and
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05] tg
t i1] t]

tj i52] jg
j i 2¹2j i . ~3.16!

On the boundaryz50, require thatj i satisfy

05g t i1] tj i . ~3.17!

Thenĝ t i5g t i1] tj i has vanishing Cauchy data att50, van-
ishing Dirichlet boundary data atz50 and satisfies the wav
equation, so thatĝ t i50. Thus, for evolution of constraine
data with a boundary, a shift-free harmonic gauge is possi

However, in this gauge, boundary data for all 6 comp
nents ofg i j can no longer be freely specified since the h
monic condition implies

]zg
z j1]AgA j50. ~3.18!

This relates Neumann data forgz j to Dirichlet data forgAB

and would complicate any shift-free numerical evoluti
scheme. As an example, one could freely specify Dirich
boundary data for the 3 componentsgAB and~i! obtain Neu-
mann boundary data]zg

zA from the A-components of Eq.
~3.18!, ~ii ! evolvegzA in terms of initial Cauchy data and~iii !
obtain Neumann boundary data]zg

zz from thez-component
of Eq. ~3.18!. Note the nonlocality of step~ii !, which would
have to be carried out ‘‘on the fly’’ during a numerical ev
lution.

The requirement that the shift vanish reduces the f
boundary data to three components. It is also possible
eliminate an additional free piece of data by choosing a u
lapse, i.e. settinghtt50. Suppose the shift has been set
zero, so that the harmonic condition implies] th

tt52] thi
i .

Consider a gauge transformationĥtt5htt22] tj
t, whereja

5(j t,j i) satisfies] tj
i5] ij t so that the shift remains zero

For harmonic evolution of constrained data, bothj t andhtt

satisfy the wave equation. Att50, choose Cauchy data fo
j t satisfying

05htt22] tj
t ~3.19!

and

05] th
tt22] t

2j t52] thi
i22¹2j t ~3.20!

~where we assume the Cauchy data is given on a n
compact set so that there are no global obstructions t
solutionj t). On the boundaryz50, requirej t satisfy

05htt22] tj
t. ~3.21!

Then ĥtt50 because it is a solution of the wave equati
with vanishing Cauchy data and Dirichlet boundary da
@Alternatively, the lapse can be gauged to unity by a tra
formation satisfyingG t5hj t5const, so that the harmoni
source functionG t still drops out of Eq.~2.1! for the Einstein
tensor.#

A unit lapse and zero shift implies that] tg i
i50 so thatg i

i

cannot be freely specified at the boundary. Coupled with
previous results, imposition of a unit lapse and zero-s
reduces the free boundary data to the two trace-free tr
verse componentsgAB2(1/2)dABgC

C , in accord with the two
5-5
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degrees of gauge-free radiative freedom associated with
Weyl tensor.@In addition, the initial Cauchy data must satis
Eq. ~3.18!, ] tg i

i50 and¹2g i
i50.# A similar result arises in

the study of the unit-lapse zero-shift initial-boundary val
problem for the linearized ADM equations@9#. However, in
the case of harmonic evolution, it is clear that explicit spe
fication of the lapse and shift leads to a more complica
initial-boundary value problem. It is more natural to reta
the freedom of specifying 6 pieces of boundary data, wh
then determine the lapse and shift implicitly during t
course of the evolution.

The reduction of the free boundary data can be acc
plished by other gauge conditions on the boundary, which
not directly based upon the lapse and shift. An exam
which plays a central role in the Friedrich-Nagy formulatio
is the specification of the mean curvature of the boundary
linearized accuracy, the unit outward normal to the bound
at z50 is

Na'S 11
1

2
hzzD¹az. ~3.22!

The associated mean extrinsic curvature (gab

2NaNb)¹bNa is given to linear order by

x5] thtz2]Ahz
A1

1

2
~]zhA

A2]zhtt!. ~3.23!

Although the extrinsic curvature of a planar boundary va
ishes in the background Minkowski space, the linear per
bation of the background induces a non-vanishing lineari
extrinsic curvature tensor.

Under a gauge transformation induced by theja, the
mean curvature transforms according to

x̂5x1~] t
22]A]A!jz. ~3.24!

A gauge deformation of the boundary in the embedd
space-time makes it possible to obtain any mean curva
by solving a wave equation intrinsic to the boundary. In t
respect, the mean extrinsic curvature of the boundary is p
‘‘boundary gauge’’ and can be specified to eliminate one
gree of gauge freedom. When the harmonic conditions
satisfied, the mean curvature of the boundary reducesx
5 1

2 ]zh
zz.

This discussion shows that there are various ways tha
six free pieces of boundary data can be restricted by ga
conditions. Such restrictions can be important for an anal
understanding of the initial-boundary problem but their u
fulness for numerical simulation is a separate issue, e
cially in applications where the boundary does not align w
the numerical grid as discussed in Sec. IV.

C. The reduced harmonic Ricci system

The underlying equations of the reduced harmonic R
system are the six wave equations~2.16! and the four har-
monic conditions~2.17! and ~2.18!. The symmetric hyper-
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bolic formulation of this system and the analysis of its ch
acteristics is given in Appendix A. The variables consist

~hi j ,Ti j ,Xi j ,Yi j ,Zi j ,hit ,f!,

whereTi j 5] th
i j , Xi j 5]xh

i j , Yi j 5]yh
i j andZi j 5]zh

i j . In
a well posed initial-boundary value problem, there are se
free functions that may be specified at the boundary.
example, in the analogue of the Dirichlet case, the f
boundary data consists ofTi j andf.

In the context of the second order differential form giv
by Eqs. ~2.16!, with the harmonic conditions~2.17! and
~2.18!, the boundary data remains the same, e.g. Dirich
data] th

i j andf. This determines the evolution ofhi j by the
wave equation, which then provides source terms for
symmetric hyperbolic subsystem~2.17! and~2.18!. This sub-
system implies thathf50, so that the evolution off is
also governed by the wave equation, with initial Cauchy d
f and] tf where] tf is provided by the initial Cauchy dat
hit via Eq. ~2.18!. The evolution ofhit is then obtained by
integration of Eq.~2.18!.

Unlike the reduced harmonic Einstein system where
constraints propagate up the boundary by ordinary differ
tial equations, the initial-boundary value problem for the
duced harmonic Ricci system does not necessarily sa
Einstein’s equations even if the constraints are initially s
isfied. The Bianchi identities~2.19! imply Eq. ~2.20! so that
both C and] tC would initially vanish but, sinceC satisfies
the wave equation,C would vanish throughout the evolutio
domain only if it vanished on the boundary. In that case, E
~2.19! would imply that the momentum constraints were a
satisfied throughout the evolution domain.

Thus evolution of constrained initial data for the harmon
Ricci system yields a solution of the Einstein equations
and only if the Hamiltonian constraint is satisfied on t
boundary. This is equivalent to requiring thathf50 on the
boundary. If the evolution equations are satisfied, we
express this in the form

hf5
2

3
] t

2H2] i] jH
i j 50, ~3.25!

whereH5hi
i andHi j 5hi j 2 1

3 d i j hk
k . This allows formulation

of the following well posed initial-boundary value proble
for a solution satisfying the constraints.

We prescribe initial Cauchy data that satisfies the c
straints forHi j , H, f and hit , and free boundary data fo
Hi j and f. The system of wave equations then determin
Hi j . This allows integration of Eq.~3.25! on the boundary to
obtain Dirichlet boundary values for determination ofH as a
solution of the wave equation. The remaining fieldsf and
hit are then determined as a symmetric hyperbolic s
system. Note that the boundary constraint~3.25! reduces the
free boundary data from seven independent functions~for
unconstrained solutions! to six, in agreement with the free
boundary data for solutions of the reduced harmonic Eins
system.
5-6
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IV. NUMERICAL IMPLEMENTATION

Numerical error is an essential new factor in the com
tational implementation of the preceding analytic results. T
initial Cauchy data cannot be expected to obey the c
straints exactly. In particular, machine roundoff error alwa
produces an essentially random component to the
which, in a linear system, evolves independently of the
tended physical simulation. It is of practical importance th
a numerical evolution handle such random data without p
ducing exponential growth~and without an inordinate
amount of numerical damping!. We designate asrobustly
stablean evolution code for the linearized initial-bounda
problem which does not exhibit exponential growth for ra
dom ~constraint violating! initial data and random boundar
data. This is the criterion previously used to establish rob
stability for ADM evolution with specified lapse and shi
@9#.

We test for robust stability using the 3-stage methodolo
proposed for evolution-boundary codes in Ref.@9#. The tests
check that thel ` norm of the Hamiltonian constraintC does
not exhibit exponential growth under the following cond
tions.

Stage I: Evolution on a 3-torus with random initia
Cauchy data.

Stage II: Evolution on a 2-torus with plane boundarie
i.e. T23@2L,L#, with random initial Cauchy data and ran
dom boundary data.

Stage III: Evolution with a cubic boundary with random
initial Cauchy data and random boundary data.

Stage I tests robust stability of the evolution code in
absence of a boundary. Stage II tests robust stability of
boundary-evolution code for a smooth boundary~topology
T2). Stage III tests robust stability of the boundary-evoluti
code for a cubic boundary with faces, edges and corners
standard practice for computational grids based upon Ca
sian coordinates.

We have established robust stability for the evolutio
boundary codes, described in Secs. IV A and IV B, the
duced harmonic Einstein and Ricci systems. The tests
performed according to the procedures outlined in Ref.@9#
for an evolution of 2000 crossing times~a time of 4000L,
where 2L is the linear size of the computational domain! on
a uniform 483 spatial grid with a time stepDt5Dx/4 ~which
is slightly less than half the Courant-Friedrichs-Lewy lim
and typical of values used in numerical relativity!.

For purposes such as singularity excision or Cauc
characteristic matching, there are computational strate
based upon spherical boundaries. The extension of a rob
stable ADM boundary-evolution algorithm with given lap
and shift from a cubic grid boundary to a spherical bound
is problematic@16#. Robustly stable evolution-boundary a
gorithms for the reduced harmonic Ricci and Einstein s
tems with spherical boundaries are presented in Sec. IV

Numerical evolution of the fieldshi j ~or g i j ) andhtt ~or
g tt) is implemented on a uniform spatial gri
(x[ I ] ,y[J] ,z[K] )5(I Dx, J Dx, K Dx), with time levels t [N]

5N Dt. Thus a field componentf is represented by its value
f [ I ,J,K]

[N] 5 f (t [N] ,x[ I ] ,y[J] ,z[K] ). In order to obtain compac
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finite difference stencils for imposing boundary condition
the fields hit ~or g i t) are represented on staggered gr
at staggered time-levels, where f [ I 11/2,J11/2,K11/2]

[N11/2]

5 f (t [N11/2],x[ I 11/2] ,y[J11/2] ,z[K11/2]).
The extensive tests of stability reported here were p

formed using a leapfrog evolution algorithm in order not
bias the tests by introducing excessive dissipation. We ex
that the tests would also be satisfied by more dissipa
algorithms. This was borne out by a limited number of ev
lutions using an iterative Crank-Nicholson algorithm~imple-
mented as in Ref.@9#!.

A. Robustly stable algorithms for the reduced harmonic
Einstein system

Stage I

Evolution ofg i j is done by a standard three-level leapfr
scheme, with the wave equation in second-differential-or
form, i.e.

g [ I ,J,K]
i j [N11]22g [ I ,J,K]

i j [N] 1g [ I ,J,K]
i j [N21]

~Dt !2

5g ,xx[ I ,J,K]
i j [N] 1g ,yy[ I ,J,K]

i j [N] 1g ,zz[ I ,J,K]
i j [N] . ~4.1!

Second spatial derivatives are computed via

f ,xx[ I ,J,K]5
f [ I 11,J,K]22 f [ I ,J,K]1 f [ I 21,J,K]

~Dx!2
. ~4.2!

On a grid staggered in space and at staggered time le
evolution ofg i t is carried out by the finite difference versio
of Eq. ~2.14!, i.e.

g [ I 11/2,J11/2,K11/2]
i t [N11/2] 2g [ I 11/2,J11/2,K11/2]

i t [N21/2]

Dt

52g ,x[ I 11/2,J11/2,K11/2]
ix[N] 2g ,y[ I 11/2,J11/2,K11/2]

iy [N]

2g ,z[ I 11/2,J11/2,K11/2]
iz[N] . ~4.3!

Here first spatial derivatives are evaluated at the center of
integer grid cells, i.e.

f ,x[ I 11/2,J11/2,K11/2]5
1

4 F f [ I 11,J,K]2 f [ I ,J,K]

Dx

1
f [ I 11,J11,K]2 f [ I ,J11,K]

Dx

1
f [ I 11,J,K11]2 f [ I ,J,K11]

Dx

1
f [ I 11,J11,K11]2 f [ I ,J11,K11]

Dx G .
~4.4!
5-7
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BÉLA SZILÁ GYI, BERND SCHMIDT, AND JEFFREY WINICOUR PHYSICAL REVIEW D65 064015
Since g tt is represented on the integer grid which is sta
gered in space and time with respect to the grid represe
tion of g i t , the finite difference equation used for updati
g tt is similar to Eq.~4.3! used to updateg i t .

Stage II

The hierarchy of ten linearized equations for the redu
harmonic Einstein system makes the initial-boundary va
problem particularly simple to implement as a finite diffe
ence algorithm. Let the plane boundary be given by
K0-th grid point, with the stage I evolution algorithm applie
to all points withK,K0. Update ofg [K021]

i j requiresg [K0]
i j as

boundary data. The same boundary information allows
date ofg [K021/2]

i t , which, in turn, allows update ofg [K021]
tt

with no additional boundary data. However, it is interesti
to note that specification of free boundary data forg [K0]

tt or

g [K011/2]
i t would not affect stability simply because no ev

lution equation uses that data.

Stage III

Let the evolution domain be the cube2L,xi,L with
the grid structured so that the boundary lies on~non-
staggered! grid points, i.e.,x[1]

i 56L, etc. The boundary dat
consist ofg i j on the faces, edges and corners of the cu
The fieldg i t can then be updated at all staggered grid po
inside the cube, including those neighboring the bound
For instance, update ofg [3/2,3/2,3/2]

i t involves use ofg i j at the

points @ 3
2 6 1

2 , 3
2 6 1

2 , 3
2 6 1

2 #, all of which are on or inside the
boundary. Similarly, evolution ofg tt can be carried out at al
interior grid points without further boundary data.

Robust stability of the evolution-boundary algorithm
demonstrated by the graph of the Hamiltonian constrain
Fig. 2. The linear growth results from momentum constra
violation in the initial data.

B. Robustly stable algorithms for the reduced harmonic
Ricci system

Stage I

Evolution ofhi j is carried out identically as the evolutio
of g i j in the Einstein system@see Eq.~4.1!#. The fieldshi j

andf are represented on the integer grid whilehit is repre-
sented on a half-integer grid staggered in space and in t
Thus the evolution equations~2.17! and~2.18! for f andhit

have finite difference form

f [ I ,J,K]
[N11] 2f [ I ,J,K]

[N]

Dt
1~] ih

it ! [ I ,J,K]
[N11/2]

1
1

2
d i j

h[ I ,J,K]
i j [N11]2h[ I ,J,K]

i j [N]

Dt
50 ~4.5!

h[ I 11/2,J11/2,K11/2]
i t [N11/2] 2h[ I 11/2,J11/2,K11/2]

i t [N21/2]

Dt

1S ] ih
it2

1

2
d jk] ihjk1] jh

i j D
[ I 11/2,J11/2,K11/2]

[N]

50,

~4.6!
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where the spatial derivative terms are computed accordin
Eq. ~4.4!.

Stage II

Unconstrained plane boundary. As shown in Sec. III C,
seven free functions can be prescribed as unconstra
boundary data forḣi j andf in the reduced harmonic Ricc
system. Again let the boundary be defined by theK0-th grid
point, with K,K0 for interior points. Then the boundar
data ḣ[K0]

i j and f [K0] allows the evolution algorithm to be

applied to updatehi j and hit at all interior points, e.g. to
updateh[K021]

i j andh[K021/2]
i t , which in turn allows update of

f at all interior points.
Constrained plane boundary. Conservation of the con

straints in the reduced harmonic Ricci system requires
the Hamiltonian constraint be enforced at the boundary
order to obtain a finite difference approximation to a soluti
of Einstein’s equations, the unconstrained evolutio
boundary algorithm must be modified to enforce the Ham
tonian constraint on the boundary. On az5const boundary,
we accomplish this, in accord with the discussion in S
III C, by prescribing freely the functionf and the five com-
ponents of the traceless symmetric tensor] tH

i j . The missing
ingredient,] tH is updated at the boundary according to E
~3.25!.

In the finite difference algorithm, in order to be able
apply Eq.~3.25! via a centered three-point stencil, we intr
duce a guard point atz5z[K011] , where the boundary dat

] tH
i j is provided. ~See Fig. 1.! Assuming that the fields

hi j ,hit and f are known fort<t [N] , K<K0 and that the
boundary dataH [K011]

i j is known for t<t [N] , we use the fol-

lowing evolution-boundary algorithm to compute these fie
at t [N11]:

~i! We update the fieldshi j at time-levelt [N11] at all grid
points within the numerical domain of dependence of
data known att [N] , i.e., at all points which require no bound
ary data.

~ii ! At the guard pointK011 we assign Dirichlet bound
ary data to the five independent components of the symm
ric traceless (] tH

i j ) [K011]
[N11/2] by prescribing boundary value

for ] tH
xx,] tH

xy,] tH
xz,] tH

yy,] tH
yz and setting ] tH

zz5
2] tH

xx2] tH
yy.

~iii ! At the guard pointK011 we update the fields
H [K011]

i j [N11]5H [K011]
i j [N] 1(Dt)(] tH

i j ) [K011]
[N11/2] .

~iv! At the boundary pointK0 we updateH [K0]
i j [N11] using

the field-equationhHi j 50, written in the finite-difference
form

H [K0]
i j [N11]22H [K0]

i j [N]1H [K0]
i j [N21]

Dt2
5~¹2Hi j ! [K0]

[N] . ~4.7!

~v! At the boundary pointK0 we compute the boundar
values H [K0]

[N11] using the finite-difference version of Eq

~3.25!, i.e.
5-8
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2

3

H [K0]
[N11]22H [K0]

[N] 1H [K0]
[N21]

Dt2
2~] i] jH

i j ! [K0]
[N] 50. ~4.8!

In Eqs. ~4.7!, ~4.8! all derivatives are computed using ce
tered three-point expressions.

~vi! From knowledge ofH [K0]
i j [N11] and H [K0]

[N11] we con-

structh[K0]
i j [N11] .

~vii ! We assign boundary data forf [K0]
[N11] and update

f [N11] andhit [N11/2] according to Eqs.~4.5!, ~4.6!.

Stage III

Unconstrained cubic boundary. The unconstrained cubi
boundary is essentially the same as the unconstrained p
boundary, i.e., the functionsḣi j and f are provided at the
boundary. Then the evolution equations are applied to up
hi j , hit and f at all interior grid points. Recall thathit is
represented on a staggered grid with some interior po
located a half grid-step away from the boundary. Nevert
less,hit can be updated at such points using Eq.~4.6!.

Constrained cubic boundary. The algorithm for enforcing
the Hamiltonian constraint on a cubic boundary is an ext
sion of the algorithm for a plane boundary. The bound
functions] tH

i j are provided at a set of guard points that a
Dx outside the boundary of the cube, such that at grid-po
on the boundary of the cube we can use the field equat
hHi j 50 as well as the boundary constraint Eq.~3.25! to
updateHi j andH at the boundary points. Boundary data f
f is provided at grid points on the boundary of the cube
a similar fashion to the constrained plane boundary.

Robust stability of the evolution-boundary algorithm f
the constrained cubic boundary is demonstrated by the g
of the Hamiltonian constraint in Fig. 2. In addition to th
robust stability test results, in Fig. 2 we have also includ
results from two physical runs, based on the plane-wave
lution Eqs. ~4.11!–~4.14!. The longer physical run~up to
t/L'1000) was performed with a grid-size ofDx51/80,
while the shorter run~up to t/L'400) was performed with a
grid-size of Dx51/120. Comparison of the physical run
with different gridsizes indicates that the long-term polyn
mial growth in the Hamiltonian constraint violation can b
controlled by grid-resolution.

C. Spherical boundaries

The implementation of both the reduced harmonic E
stein and Ricci systems display robust stability in stage I
and III tests. We now extend these results to a spher
boundary cut out of a Cartesian grid, with the evolution d
main defined by the interior of a sphere of radiusR. In order
to update fields at these interior grid points, values
needed at a set of ‘‘guard’’ points consisting of grid points
or outside the boundary. Some of these field values const
free boundary data. We extend our test of robust stability
fourth stage which checks that thel ` norm of the Hamil-
tonian constraintC does not exhibit exponential growth un
der the following condition.
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Stage IV:Evolution with a spherical boundary with ran
dom initial Cauchy data and random free boundary data a
guard points.

As before, we perform the tests for an evolution of 20
crossing times (4000R, where 2R is the diameter of the com
putational domain! on a uniform 483 spatial grid with a time
step slightly less than half the Courant-Friedrichs-Le
limit. We have established stage IV robust stability for t
following implementations of reduced harmonic Einstein a
Ricci revolution.

1. The reduced harmonic Einstein system

Let the evolution domain be defined by the interior of
sphere of radiusR. The update ofg tt at an interior point
@ I ,J,K# requires the values ofg i t at the points@ I 6 1

2 ,J
6 1

2 ,K6 1
2 #, some of which might be ‘‘staggered-boundary

points outside the evolution domain. These stagger
boundary points are inside the spherical shellR
<Ax21y21z2,R1 1

2 dr 0, if dr 0>A3Dx. At these points
we updateg i t by the same finite-difference equation~4.3! as
for the interior points. This defines a set of non-stagge
boundary points for the fieldg i j determined by two condi-
tions: ~i! that theg i j can be updated at all interior point
using Eq.~4.1! and~ii ! thatg i t can be updated at all interio
and staggered-boundary points. Both conditions are satis
if we define the set of non-staggered boundary points bR
<Ax[ I ]

2 1y[J]
2 1z[K]

2 ,R1dr 0, wheredr 0>A3Dx. At this set
of points we obtain values forg i j via Eq. ~4.1!, with ] tg

i j

provided in a ‘‘guard-shell’’ R1dr 0<Ax21y21z2,R
1dr 01dr 1, wheredr 1>Dx. The radiusR of the spherical
boundary of the reduced harmonic Einstein system is rela
to the linear size 2L of the computational grid by

R1dr 01dr 1<L. ~4.9!

This ensures that all guard points fall inside the doma
@2L,1L#3.

2. The reduced harmonic Ricci system

Unconstrained spherical boundary. The stage IV uncon-
strained evolution-boundary algorithm for the reduced h
monic Ricci system is similar to that of the reduced h
monic Einstein system. We use two spherical shells,
thicknessdr 0 anddr 1, with dr 0>A3Dx anddr 1>Dx. The
algorithm is the following:

~i! We update all fieldshi j at time-levelt [N11] at all non-
staggered grid points within the sphere of radiusR1dr 0.

~ii ! We provide boundary data (] th) i j [N11/2] at all non-
staggered grid points within the spherical shellR1dr 0

<Ax21y21z2,R1dr 01dr 1. We updatehi j [N11]5hi j [N]

1Dt(] th) i j [N11/2] within the same spherical shell.
~iii ! We provide boundary dataf [N11] within the spheri-

cal shellR<Ax21y21z2,R1dr 0.
~iv! We update the fieldf [N11] inside the sphere of radiu

R according to Eq.~2.17!, and update the fieldshit [N11/2]

inside the sphere of radiusR1dr 0/2 according to Eq.~2.18!.
Constrained spherical boundary. The evolution-boundary

algorithm for the reduced harmonic Ricci system with co
5-9
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strained spherical boundary is an extension of the algori
with unconstrained boundary. In addition to the spheri
shells defined in the case of the unconstrained boundary
define an additional set of guard pointsR1dr 01dr 1

<Ax[ I ]
2 1y[J]

2 1z[K]
2 ,R1dr 01dr 11dr 2, where the bound-

ary data] tH
i j is provided. The quantitydr 2 is defined by

two conditions:~i! the fieldsHi j can be updated according t
Eq. ~4.7! at all non-staggered grid pointsR1dr 0

<Ax[ I ]
2 1y[J]

2 1z[K]
2 ,R1dr 01dr 1, and~ii ! the Hamiltonian

constraint Eq.~3.25! can be enforced at the same set of g
points. Both of these conditions are satisfied ifdr 2>A2Dx.
The evolution-boundary algorithm for the reduced harmo
Ricci system with a constrained spherical boundary is
following:

~i! We update all fieldshi j at time-levelt [N11] at all non-
staggered grid points within the sphere or radiusR1dr 0.

~ii ! We update the fieldsHi j [N11] at the set of boundary

points R1dr 0<Ax[ I ]
2 1y[J]

2 1z[K]
2 ,R1dr 01dr 1 via Eq.

~4.7!. Then we update the fieldH [N11] at these points via Eq
~4.8!. From knowledge ofHi j [N11] andH [N11] we construct
hi j [N11] at the same set of grid points.

~iii ! We provide boundary data (] tH
i j ) [N11/2] at the set of

guard points R1dr 01dr 1<Ax[ I ]
2 1y[J]

2 1z[K]
2 ,R1dr 0

1dr 11dr 2, then we update Hi j [N11]5Hi j [N]

1Dt(] tH
i j ) [N11/2] at the same set of grid points.

~iv! We assign boundary data forf [N11] at the set of
boundary pointsR<Ax[ I ]

2 1y[J]
2 1z[K]

2 ,R1dr 0.

FIG. 1. Boundary stencil for the stage 2 evolution-bound
algorithm of the Ricci system with constrained boundary. Circ
stand for interior grid points which are updated by the evolut
algorithm. The required boundary data forHi j is provided at the
guard point@K011# ~triangle!, while the boundary data forf is
provided at the boundary point@K0# ~square!. The Hamiltonian
constraint is enforced at the boundary point@K0#.
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~v! We updatef [N11] and hit [N11/2] according to Eqs.
~2.17!, ~2.18!.

The radiusR of the constrained spherical boundary for t
reduced harmonic Ricci system and the linear size 2L of the
computational grid are related by

R1dr 01dr 11dr 2<L. ~4.10!

This ensures that all boundary points and all guard points
inside the domain@2L,1L#3.

The graphs of the Hamiltonian constraint in Fig. 3 illu
trate robust stability for a spherical boundary for the reduc
harmonic Einstein system and for the reduced harmo
Ricci system with constrained boundary data. Comparison
Figs. 2, 3 shows that there is no significant difference
tween the stage III and stage IV performances in terms
numerical stability.

D. Convergence tests

In order to calibrate the performance of the algorithms
carried out convergence tests based upon analytic solut
constructed from a superpotentialFabmn symmetric in
(a,b) and (m,n) and antisymmetric in@a,m#, @b,n#, such
that hFabmn50. As a result of these symmetry propertie
the tensorgmn5]a]bFabmn is symmetric and satisfies th
linearized harmonic Einstein equationshgmn50 and
]mgmn50.

In our first testbed we chooseFabmn as a superposition o
two solutions,

Fmmnn5Amn1Bmn, mÞn, ~4.11!

y
s

FIG. 2. A log-log plot of thel ` norm of the Hamiltonian con-
straint as a function of time for a stage 3 test of the evolutio
boundary algorithm of the Einstein system and of the Ricci sys
with constrained boundary. The upper two curves correspond
stability tests~random data!, while the lower two curves indicate
performance tests~physical data!.
5-10



t

ty

I

g

f
e

th

lgo-
n-
go-
th
ram-

s

t
ere
lso
na-

ive
sed

d-

re
u-

ata

u-
ed

he
ary

int
re-

ry
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with the remaining independent components ofFabmn set to
zero. The solutionAmn is defined by

Aii 5Ait5Att50, ~4.12!

Ai j 5
8ai j sin@vA„t2~xi1xj !/A2…#

vA
2

, iÞ j ~4.13!

andBmn is defined by

Bit5
8bit sin@vB~ t2xi !#

vB
2

, Bi j 5Btt50. ~4.14!

HereAxy is a plane wave propagating with frequencyvA
along the diagonal of the (x,y) plane, so that a wave cres
leaving x52L travels a distanceLA2 before arriving atx
51L. Since the topology of stages I and II imply periodici
in the x direction, we set

vA5A2p/L.

Similarly, the frequencyvB of the functionsBit is set to

vB5p/L.

In stage III we use the same choices, while in the stage
tests we set

vA5A2p/R, vB5p/R.

The amplitudesai j ,bit were chosen to be

axy51.131028, axz51.331028, ayz51.231028,

bxt51.431028, byt51.031028, bzt51.531028.

Convergence runs used the plane wave solution. In sta
I–III we used the grid sizes

Dx

2 L
5

1

80
,

1

100
,

1

120
,

1

160
.

while in stage IV we used

Dx

2 R
5

1

80
,

1

100
,

1

120
,

1

160
,

with the additional gridsizeDx/(2R)51/200 in the case o
the reduced harmonic Ricci system with constrained sph
cal boundary.

The time-step was set toDt5Dx/4. In the stage IV test of
the reduced harmonic Einstein system the widths of
boundary shells were chosen to bedr 051.8Dx and dr 1
06401
V

es

ri-

e

5Dx. The same parameters were used when testing the a
rithm for the reduced harmonic Ricci system with unco
strained spherical boundary. The evolution-boundary al
rithm for the reduced harmonic Ricci system wi
constrained spherical boundary was tested using the pa
etersdr 051.8Dx, dr 152.5Dx, anddr 251.5Dx.

The code was used to evolve the solutions fromt50 to
t5L (t5R in stage IV!, at which time convergence wa
tested by measuring thel ` and thel 2 norms ofhg tt for the
Einstein system and ofhf for the Ricci system, which tes
convergence of the Hamiltonian constraint. The norms w
evaluated in the entire evolution domain. In addition, we a
checked convergence of the metric components to their a
lytic values.

In addition to plane wave tests, we tested the qualitat
performance in stage IV using an offset spherical wave ba
upon the superpotential~with shifted origin!

Fmmnn5
f ~ t1 r̃ !2 f ~ t2 r̃ !

r̃
, mÞn, ~4.15!

where r̃ 5Ax21(y1a)21z2 and

f ~u!5AS u

wDexpF2S u

wD 2G . ~4.16!

The parametersA, a, andw are set to

A523w331025, a50.05R, w50.2R.

1. The reduced harmonic Einstein system

Evolution requires Cauchy data att50 and boundary data
at the guard points. The Cauchy data$g i j ,] tg

i j ,g i t ,g tt% t50
was provided by givingg i j [0] , g i j [ 21], g tt[0] andg i t [1/2] at
all interior and guard points. In addition, we provided boun
ary data at each time-step by giving (] tg

i j ) [N11/2] at all
guard points. The metric and Hamiltonian constraint we
found to be 2nd order convergent for stages I–IV. In partic
lar, in stage IV, the norm ofhg tt vanished toO(D1.99).

2. The reduced harmonic Ricci system

In the case of the Ricci system the Cauchy d
$hi j ,] th

i j ,hit ,f% t50 was provided by giving
hi j [0] , hi j [ 21], f [0] andhit [1/2] at all interior and boundary
points. In addition, when the Hamiltonian constraint was n
merically imposed at the boundary, we also provid
$Hi j % t50 by giving Hi j [0] .

We first tested the code without numerically imposing t
Hamiltonian constraint. In this case we provided bound
data at each time-step by giving (] th

i j ) [N11/2] andf [N] at all
guard points.

Next we tested the code with the Hamiltonian constra
numerically imposed at the boundary. Thus we first p
scribed the traceless (] tH

i j ) [N11/2] and f [N] at all guard
points, then computedH at each time-step via the bounda
constraint Eq.~3.25!.
5-11
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In all cases we found the numerically evolved met
functions converge to their analytic values toO(D2). In
stage I,hf vanished to roundoff accuracy, while in stag
II, III it vanished to second order accuracy. In particular, f
the stage III algorithm with constrained boundary,hf con-
verged to zero asO(D1.99).

In stage IV, with constrained boundary, we found that
l 2 norm ofhf vanishes to first order accuracy. However, t
l ` norm decreases linearly with grid size only forDx/(2R)
51/80,1/100 and 1/120 but fails to show further decrease
Dx/(2R)51/160 and 1/200. This anomalous behavior of t
l ` norm stems from the random way in which guard poi
are required at different sites near the boundary. This in
duces an unavoidable nonsmoothness to the second
error in the metric components, which in turn leads toO(1)
error in the second spatial derivatives occurring inhf or in
the Hamiltonian constraint. Unlike the Einstein system
which the constraints propagate tangent to the boundary,
error in the Ricci system propagates along the light cone
the interior. However, since its origin is a thin boundary sh
whose width isO(Dx), the l 2 norm of hf remains conver-
gent to first order. We expect that the convergence of
Hamiltonian constraint for a spherical boundary would
improved by matching the interior solution on the Cartes
grid to an exterior solution on a spherical grid aligned w
the boundary, as is standard practice in treating irreg
shaped boundaries.

3. Simulation of an outgoing wave using a constrained
spherical boundary

We also tested the code’s ability to evolve an outgo
spherical wave traveling off center with respect to a spher
boundary of radiusR. Figure 4 illustrates a simulation pe
formed using the stage IV algorithm for the reduced h
monic Ricci system, with the Hamiltonian constraint nume

FIG. 3. A log-log plot of thel ` norm of the Hamiltonian con-
straint as a function of time for a stage 4 test of the evoluti
boundary algorithm of the Einstein system and the Ricci sys
with constrained boundary.
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FIG. 4. Stage IV evolution of an outgoing solution using t
reduced harmonic Ricci system with a constrained spherical bou
ary. The plots show the metric fieldhyt at x50, for t/R50.1 ~top!,
t/R51.0 ~middle! and t/R51.5 ~bottom!. In the bottom plot, the
field has decayed by two orders of magnitude.
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cally enforced at the boundary. The metric fields we
evolved from t50 to t51.5R, using a grid ofDx/(2R)
51/120. After the analytic wave has propagated out of
computational domain, the remnant error is two orders
magnitude smaller than the initial signal. This shows t
artificial reflection off the boundary is well controlled eve
in the computationally challenging case of a piecewise cu
spherical boundary.

ACKNOWLEDGMENTS

We thank Helmut Friedrich for numerous discussions
the initial-boundary value problem. Our numerical code w
based upon an earlier collaboration with Roberto Go´mez.
This work has been partially supported by NSF grant P
9988663 to the University of Pittsburgh. Computer time w
provided by the Pittsburgh Supercomputing Center and
NPACI.

APPENDIX A: HYPERBOLIC FORMULATION OF THE
LINEARIZED HARMONIC RICCI SYSTEM

In order to study the evolution of the system consisting
Eqs. ~2.16!, ~2.17!, and ~2.18! in the half-spacez.0 with
boundary atz50, we employ the auxiliary variablesTi j

5] th
i j ,Xi j 5]xh

i j ,Yi j 5]yh
i j ,Zi j 5]zh

i j ,f5 1
2 htt. In terms

of the variables

~hi j ,Ti j ,Xi j ,Yi j ,Zi j ,hit ,f!,

the system takes the form

] th
i j 5Ti j ~A1!

] tT
i j 5]xX

i j 1]yY
i j 1]zZ

i j ~A2!
06401
e

e
f
t

ic

f
s

s
y

f

] tX
i j 5]xT

i j ~A3!

] tY
i j 5]yT

i j ~A4!

] tZ
i j 5]zT

i j ~A5!

] th
xt52]xf2

1

2
Xxx1

1

2
Xyy1

1

2
Xzz2Yxy2Zxz ~A6!

] th
yt52]yf1

1

2
Yxx2

1

2
Yyy1

1

2
Yzz2Xxy2Zyz ~A7!

] th
zt52]zf1

1

2
Zxx1

1

2
Zyy2

1

2
Zzz2Xxz2Yyz ~A8!

] tf52]xh
xt2]yh

yt2]zh
zt2

1

2
Txx2

1

2
Tyy2

1

2
Tzz.

~A9!

Next we define the 34-dimensional vectoru by

u5 T~hxx,hxy,hxz,hyy,hyz,hzz,Txx, . . . ,

Tzz,Xxx, . . . ,Xzz,Yxx, . . . ,Yzz,

Zxx, . . . ,Zzz,hxt,hyt,hzt,f!. ~A10!

The system of equations~A1!–~A9! then has the form

Am]mu5B u ~A11!

whereAt5I34334 is the identity matrix,
Az51
0636 0636 0636 0636 0636 0136 0136 0136 0136

0636 0636 0636 0636 2I636 0136 0136 0136 0136

0636 0636 0636 0636 0636 0136 0136 0136 0136

0636 0636 0636 0636 0636 0136 0136 0136 0136

0636 2I636 0636 0636 0636 0136 0136 0136 0136

0631 0631 0631 0631 0631 0131 0131 0131 0131

0631 0631 0631 0631 0631 0131 0131 0131 0131

0631 0631 0631 0631 0631 0131 0131 0131 1I131

0631 0631 0631 0631 0631 0131 0131 1I131 0131

2 ~A12!

and
5-13
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B51
0636 I636 0636 0636 0636 0136 0136 0136 0136

0636 0636 0636 0636 0636 0136 0136 0136 0136

0636 0636 0636 0636 0636 0136 0136 0136 0136

0636 0636 0636 0636 0636 0136 0136 0136 0136

0636 0636 0636 0636 0636 0136 0136 0136 0136

0631 0631 Cx 2d2 j 2d3 j 0131 0131 0131 0131

0631 0631 2d2 j Cy 2d5 j 0131 0131 0131 0131

0631 0631 2d3 j 2d5 j Cz 0131 0131 0131 0131

0631 Ct 0631 0631 0631 0131 0131 0131 0131

2 ~A13!
si

o

to

-

just

-

ant
hes
the

y
a
m-

n
e 2
where

Cx5
1

2
~21,0,0,11,0,11!, ~A14!

Cy5
1

2
~11,0,0,21,0,11!, ~A15!

Cz5
1

2
~11,0,0,11,0,21!, ~A16!

Ct5
1

2
~21,0,0,21,0,21!. ~A17!

The matrixAz has the eigenvalue11, with multiplicity 7
and eigenvectors

~] t2]z!h
i j , f1hzt;

the eigenvalue21, with multiplicity 7 and eigenvectors

~] t1]z!h
i j , f2hzt;

and the kernel of the matrix has dimension 20, with a ba

hi j , ]xh
i j , ]yh

i j , hxt,hyt.

In the eigenbasis defined byAz the vectoru defined in Eq.
~A10! takes the form

u5 T~u2 ,u0 ,u1! ~A18!

with

u25 T~Txx1Zxx, . . . ,Tzz1Zzz,f2hzt! ~A19!

u05 T~hxx, . . . ,hzz,Xxx, . . . ,Xzz,Yxx, . . . ,Yzz,hxt,hyt!
~A20!

u15 T~Txx2Zxx, . . . ,Tzz2Zzz,f1hzt!. ~A21!

Non-homogeneous boundary data can be given in terms
free column vector fieldq in the form

q5u12Hu2 ~A22!
06401
s

f a

whereH can be any 737 matrix satisfying

2 Ta a1 Ta TH H a<0, aPR7. ~A23!

The three simplest matrices that satisfy the condition~A23!
are 2I737 ,0737 and I737. The last of these corresponds
specifying Neumann data forhi j and Dirichlet data forhzt.
Using the zero matrix as a candidate forH corresponds to
giving Sommerfeld data forhi j and specifying the quantity
f1hzt. Last, pickingH to be minus the identity matrix cor
responds to giving Dirichlet data for] th

i j as well as forf.
Note that the evolution system~A1!–~A9! accepts a much
richer class of boundary conditions than the three we
mentioned. One simply needs to pick a matrixH that satisfies
Eq. ~A23! and the choice ofH defines the seven free func
tions that are to be specified at the boundary.

APPENDIX B: WEYL DATA ON BOUNDARY

The curvature tensor, which provides gauge invari
fields, decomposes into the Ricci curvature, which vanis
if the evolution and constraint equations are satisfied, and
Weyl curvatureCabgd . In order to analyze the boundar
freedom, it is convenient make the following choice of
complete, independent set of 10 linearized Weyl tensor co
ponents Kabgd5dCabgd : CAB5KtABt2

1
2 dABdCDKtCDt ,

Kt
A

At , KtAzt , Ktzxy, Kt
A

AB , andDAB5KtABz2
1
2 dABd tCDz

CD .
We use the linearized vacuum Bianchi identities] [aKbg]mn

50 and]dKabgd50 to show that the Weyl data which ca
be freely specified on the boundary can be reduced to th
independent componentsCAB .

First, the identity ]dKtzzd50 implies ~after using the
trace-free property of the Weyl tensor!

] tKt
A

At2]BKt
A

AB50 ~B1!

which determines the boundary behavior ofCt
A

At in terms of
the remaining 9 Weyl components.

Next, note that the identity

] tKtABC1]BKtACt1]CKtAtB50 ~B2!

implies
5-14
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] tKt
A

AC52]ACAC11
1

2
]CKt

D
Dt , ~B3!

or, taking at-derivative and using Eq.~B1!, that

] t
2Kt

A
AC52] t]

ACAC1
1

2
]C]DKt

A
AD . ~B4!

This gives a propagation equation intrinsic to the bound
which determines the time dependence ofKt

A
AC in terms of

the boundary data forCAB . ~Note thatKt
A

AC propagates up
the boundary with velocity 0 in one mode and in a cone w
velocity 1/A2 in the other mode.!

Next, the identity

]dKtAzd52] tKtAzt1]BKtAzB50 ~B5!

determines the time dependence ofCtAzt ; and the identity

] tKtzAB1]BKtztA1]AKtzBt50 ~B6!

determines the time dependence ofKtzxy. This reduces the
free Weyl data on the boundary to the 4 independent com
nentsCAB andDAB .

However, the specification ofDAB , in addition toCAB ,
would lead to an inconsistent boundary value problem. T
can be seen from the identity

]dKtABd52] tKtABt1]zKtABz1]CKtABC50, ~B7!

which determines Neumann data forDAB in terms of Dirich-
let data forCAB and other known quantities. Similarly, th
identity
r

s.

06401
y

o-

is

] tKtABz2]zKtABt1]BKtAzt50 ~B8!

determines Neumann data forCAB . Thus, since the compo
nents of the Weyl tensor satisfy the wave equation, the sp
fication of bothCAB andDAB as free Dirichlet boundary dat
leads to an inconsistent boundary value problem.

The determination of boundary values forDAB from
boundary data forCAB is a global problem which first re
quires solving the wave equation to determineCAB from its
boundary and initial data. Then the time derivative of t
trace-free part of Eq.~B8! yields

] t
2DAB2]B]CDAC1

1

2
dAB]C]DDCD2] t]zCAB50

~B9!

which propagatesDAB up the boundary in terms of initia
data. DefiningC5qAqBCAB and D5qAqBDAB , with qA]A
5]x1 i ]y , this reduces to

] t
2D2

1

2
]A]AD2] t]zC50, ~B10!

which has propagation velocity 1/A2. ~Note that this is but
one of the variations consistent with the maximally dissip
tive condition used by Friedrich and Nagy@1#. In the case of
unit lapse and vanishing shift, assigning boundary data foC
is equivalent to assigning data for the trace-free part of
intrinsic 2-metric of the boundary foliation, consistent wi
results found in Ref.@9#.!
,
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