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Thick brane worlds and their stability
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Three types of thick branes, i.e., Poincade Sitter, and anti—de Sitter branes, are considered. They are
realized as the nonsingular solutions of the Einstein equations with nontrivial dilaton and potentials. The scalar
perturbations of these systems are also investigated. We find that the effective potentials of the master equa-
tions of the scalar perturbations are positive definite and consequently these systems are stable under small

perturbations.
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I. INTRODUCTION tions if we introduce nontrivial dilatons and suitable scalar

potentials, and these solutions are nonsingular in the whole
As the most promising candidate for a unified theory ofspacetime. The thick de Sitter and anti—de Sitter branes,
everything, superstring theory has been investigated for which are nonsingular, are found for the first time in this
long time. The recent discovery of D-branes stimulated gaper.

rather old idea, the “brane world[1,2]. In particular, the We also analyze the stability of these systems. We write
Randall-Sundrum(RS) model has been advocated as adown the master equations of the scalar perturbations and
simple model3,4]. find the effective potential in the Poincarde Sitter, and

RS considered a 3-brane(the four-dimensional anti—de Sitter brane case, respectively. As a result, due to the
Minkowski spacetimg embedded in five-dimensional positivity of the effective potentials, we find that all of the
anti—de Sitter spacetime (AgS and they found that there systems are stable under the scalar perturbations.
exists a massless gravitgQ-mode and massive gravitons Finally, we refer to the relation between the thickness and
(Kaluza-Klein modes The massless graviton reproduces thethe noncommutativity. As mentioned above, the thickness is
Newtonian gravity on the 3-brane, and Kaluza-Klein modesnecessary due to the existence of the minimum length, and
which are the effect of the existence of the higher dimensionthe noncommutativity also arises from this length. Therefore,
give a correction to the Newtonian gravit§y,6]. RS showed we can naively expect that the thickness has something to do
that Newtonian gravity can be reproduced in a sufficientlywith the noncommutativity.
low-energy limit, and the idea that our universe is a 3-brane The organization of this paper is as follows. In Sec. II, we
embedded in higher-dimensional spacetime came to be irreview the setup of the thin brane models and construct three
vestigated eagerly. Furthermore, the cosmological consaypes of maximally symmetric branes. In order to see the
quences of the RS model have been investigated and theegfect of the thickness, we consider the behavior of gravitons
has been no contradiction with observations until nowin the thick brane backgrounds. In Sec. Ill, we analyze the
[7—23. The inflationary scenario also seems to be compatscalar perturbations of the thick brane systems. We derive the
ible with brane model$24—-30Q. effective potentials of the scalar perturbations and examine

Note that the RS model is motivated by unified theorytheir behavior. Section 1V is devoted to discussions and con-
such as the superstring theory. Such theories are necessaryclasions. The relation between the thickness and the non-
represent the high-energy era of the history of our universegommutativity is also discussed there.
and in superstring theory there seems to exist a minimum
scale of length, thus we cannot consider an exact 0-width

brane. That is, we cannot neglect the thickness of the brane Il. THICK BRANE MODELS
at the string scale. _
For this reason, “thick brane world” scenarios have been A. Thin brane models

investigated 31-40. In this paper, we pay special attention At first, we review the setup of the thin brane models. The
to the construction of thick branes. We consider three typegimplest action of the thin brane model is

of maximally symmetric branes, that is, Poingade Sitter,
and anti—de Sitter branes. As these branes are highly sym- B 5 . 4
metric, they always exist as solutions of the Einstein equa- S= | d°)V=0gs(zR-As)—0o [ dxy—g, (2.1

*Email address: shinpei@phys.h.kyoto-u.ac.jp 1After completion of our work, we found the researches of Gio-
TEmail address: kazuya@phys.h.kyoto-u.ac.jp vannini[ 38,39, which are related to our work. 88,39, the thick
*Email address: jiro@phys.h.kyoto-u.ac.jp Poincarebrane is investigated.
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where we used the unit 8Gs=1 (Gs is the five- Note thaty,, denotes the metric of the maximally symmet-
dimensional gravitational constant g5 is the five- ric four-dimensional spacetimes, so we can write the four-
dimensional metric, andR denotes the five-dimensional dimensional Ricci tensor and Ricci scalar as follows:

Ricci scalar. If we consider the AdSthe five-dimensional

. . i (4) _
cosmological constant s is related to the AdS radiusas R, =3Kyu,, (2.9
6 R®=12K, 2.9

whereK takes 0, 1, or-1 and these values correspond Poin-

o _ care de Sitter, and anti—de Sitter branes, respecti¢ely.
The second term of the action is the action of the brane and Now we can write down the Einstein equations and the

o denotes the tension of the brane. Now we consider th%quation of motion of the scalar fielthatte,
following type of metric:
(z,2): 6H?*—6K=3(¢')?—a*V(g), (2.10
ds?=dy*+e? ¥y, dxdx’, (2.3
(m,v): 3H'+3H?—3K=-3%(¢")?—a?V(p), (2.1)
wherey denotes the coordinate of the direction of the bulk, N
Y. IS the metric on the brane, anpd v denote the indices of " r_ 2%V
the four-dimension of the brane2*¥) is a so-called “warp matter: - ¢"+3He'=a e’ 212

factor.” In this setup, we can get three types of branes whose . o )
geometry is maximally symmetric, that 814, dS,, or  Here a prime denotes the derivative with respect and we

AdS,. Solving the Einstein equations, we find define’H as follows:
Yo— Yl Poincarebrane, HE%,. (213
a(y)=1 logsinhyo—|y[)] ~ de Sitter brane,
log[cosiy,—|y|)] anti—-de Sitter brane, From Eqs.(2.10 and(2.11), we get the following equations:
2.4
24 (¢')?=—3H'+3H?-3K, (2.14

wherey, is a constant. In the case of the Poinclarane,y,
can be, get tq 0 without the loss of generality due to the V((P)z_iz@H,JrgHz_gK)_ (2.15
Poincareinvariance. Therefore, we can say tlygtdoes not 2

have any physical meaning. In the case of the de Sitter brane,

yo determines the range of the bulk. In fact, the warp factofrom Egs.(2.14 and (2.19, we can see that one can con-
becomes 0 ay:yO, so the range OY is _yogysyo and struct a thick brane model Stal’tlng from a given warp factor
y=Y, is the horizon of the AdS On the contrary, in the a(2), as long asa(z) satisfies the condition

case of the anti—de Sitter brang, denotes only the turning (0')2=0 (2.1
point of the warp factor because the metric does not become ¢ =0 ’

0 aty=y,. So there is no horizon in AdSwith the anti-de 66 the equation of motion of the scalar fig&i12) is au-
Sitter slicing. We consider the extension of the thin brangq,matically satisfied due to the Bianchi identity. Equation
systems to the thick brane ones in the following subsectlons(z_ls) simply determines the functional form of the potential.

B. Construction of the thick brane models C. Thick Poincaré brane model
In order to rc.-:‘alize thick brane models, we consider the | this paper, we use the following warp factor in order to
following action: make a thick Poincarbrane®
1/n
S=J dx\V—gs[sR—2(9¢)?>—V(o)]. 2. 20 n2a((2) 1
95[2 2( (P) (@)] ( 5) a (Z)_e @ = e—2n(yo+y)+e—2n(y0—y)

2.1
Here ¢ is the five-dimensional scalar field which depends (2.19

only on the coordinate of the bulk ant(¢) is its potential. ~ As shown in Fig. 1, there is no jump of the value of the
We use the metric extrinsic curvature aty=y,. When we take the limin

ds?=a%(2)(dZ+ y,,dx*dxX"), (2.6)

2From now on, we also set the AdS radlss1 and we normalize
the curvature radius of the four-dimensional spacetime to unity.
3There may be many ways to introduce the “thickness.” Here we
examine one of the possibilities. The parameter of the thickness
ZEJ ﬂ/, a(z):ea(y(z))_ (2.7) which is related to the noncommutative geometry is discussed in
a Sec. IV.

where a conformal-like coordinateis defined through the
following equations:
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FIG. 1. The warp factors of the thin and the thick brane are
shown. The solid line denotes the warp factor of the thin brane and

the dashed line denotes that of the thick brane. FIG. 2. The effective potential of the graviton in the thick Poin-

carebrane system. Here we sgy=1. The solid line denotes the

—oo, this warp factor approachasz(yo*WD, which is the n=1 case and the dashed line denotesrtke? case, respectively.

warp factor in the RS model. So the parameteontrols the
“thickness” of the brane.

In this case, we can write dowp(y) andV(¢) explicitly.
In fact, substituting the warp factg@.17) into Egs.(2.14  To see the behavior df,,, we transform this equation into
and(2.15, we get the Schrdinger-type equation and write down the effective

X"+ 3HX' = —p?X. (2.26

potential.
6 . . . -
o(y)==* \ﬁarctamezny), (2.18 Now we mtroduge .a new functiog(z), which satisfies
n the following equation:

= -3/2
: (2.19 X(z)=a(z)"*x(2). (2.27)

\V6én
V(p)= —6+3(n+2)sin2<Tgo
Substituting Eq(2.27) into Eqg.(2.26), we find that the equa-

Now, in order to see the effect of the “thickness,” let us tion for y(z) becomes

consider the gravitational perturbation in this system. Here o 2
the gravitonh ,, is the tensor perturbation of the metric, so it X'(2)+V(2)-x(2)==px(2), (228
can be written as V(z)=3H'+3H?, (2.29

ds’=a?(z)[dZ+(y,,+h,,)dx*dx"].  (2.20
(@1 Yurt N ] whereV(z) is the effective potential of the graviton. Further-

more, substituting the warp fact@.17) into Eq.(2.29, we

Hereh,,, satisfies the transverse-traceless condition
get

h#=hl” =0, (2.21)
e 3e?Vo[5e*"Y— (16n+ 10) + 5~ "]

where the vertical bar denotes the covariant derivative with V(z)= 4(e2ny+ e—2ny)2+(1/n)
respect toy,,, . In this system, the equation for,, becomes

(2.30

h' +3H' +h . —2Kh =0. (229 We show the effective potentials in Fig. 2. The effective
mr wr” D mr potentials show that the gravitons can localize around the

Here we can define the four-dimensional momentoras ~ Prane. In fact, there is a 0-mode solution,

follows:
xo(2)~a%42). (2.3D
hn—2Kh,,=p?h,,. (2.23
Here we neglect the normalization constant.

Furthermore, we can decompolsg, using the polarization The width of the brane becomes widerraapproaches 0.
which depends only on the four-dimensional co-On the other hand, when approachese, the effective po-

tensore
ordinatesx” as follows: tential approaches the “volcano” potential, which can be
seen in the RS model, and the 0-mode solutig(z) coin-
h.u(2XP) =& 4, (X")X(2), (224 ¢ides with the massless graviton in the RS model. So we can
wheree ,, satisfies the transverse-traceless condition ﬁ;{t’th?hte'f \,(lvgv\t/?;i;]ngggg'tlzgﬁr%eeaﬁggrf d[?é’é'der}irg%is
sﬁzs‘:yzo. (2.25  model’

Now, regardless of the value &, we can rewrite Eq(2.22

as “4In [34], it is shown that the Newtonian gravity is reproduced.
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\ D. Thick de Sitter brane model

Similarly, we set the warp factor of a thick de Sitter brane
as follows:

1 1/n

2(5) =
ax(2) sinh™?"(yo+y) +sinh™*"(yo—y)

(2.32

{
—40ry In this case, we cannot calculag€y) andV(¢) analytically
1y for an arbitraryn, so we have to calculate them numerically.
th Let us consider the behavior of the graviton in the thick
-60 de Sitter brane system as well as in the previous subsection.
Substituting the warp factd®.32) into Eq.(2.30, we get the
effective potential of the graviton propagating in the thick de
Sitter brane system. The result is shown in Fig. 3.

The shape of the effective potential in this case is very
similar to that in the case of the Poincdreane. There is a
hole around the location of the brane and we can find a
warp factor bound state of the graviton which localizes around the brane.

Here, we have to note that the asymptotic value of the
effective potential in this case is different from that in the
case of the Poincaterane. The value of the effective poten-
tial of the graviton in the case of the thick de Sitter brane
approaches H? asy— *+% (whereH is the Hubble con-
stan). This phenomenon can be seen in the analysis of the
thin brane, tod24,27).

FIG. 3. The effective potential of the graviton in the thick de
Sitter brane system. The solid line denotes thel case and the
dashed line denotes time=2 case, respectively. Both approa%jH2
asy—Yyy. Here we sey=2.

E. Thick anti—de Sitter brane model

0.5 Finally, we construct the warp factor of the thick anti—de
Sitter brane as follows:

Yy

22 -1 1 > 2

az(z)= 1+ —€|,

1 1/2n
sinh‘zn(yo+y)+Sinh—2n(YO—Y))

FIG. 4. The squares of the warp factors of a thin and thick AdS
brane. The solid line denotes the warp factor of the thin AdS brane (2.33
and the dashed line denotes that of the thick AdS brane. Here we set

Yo=1. wheree is a constant which satisfies<Ge<<1. € is necessary
for the spacetime to become an exact Adfdly at infinity

v (i.e., y=* ), Without ¢, we find that the spacetime also
becomes an exact Ad&ity=*y,. This will cause techni-
cal trouble in the analysis of the scalar perturbation discussed
in Sec. lll, and we have to calculate the fluctuations numeri-
cally in this case as well. We show the warp factor of the
thick anti—de Sitter brane in Fig. 4 and the effective potential
of the graviton propagating in this system in Fig. 5. Both of
them diverge ag— o, which is different from the previous
two cases.

Ill. STABILITY ANALYSIS

A. Perturbation of scalar-gravity coupled systems

-24t! In the previous section, we constructed three types of
FIG. 5. The effective potential of the graviton in the thick AdS thick brane systems. Next, we have to investigate their sta-
brane system. The solid line denotes thel case and the dashed bility. To do so, let us examine the scalar perturbation of
line denotes then=2 case, respectively. Here we set0.4 and these systems.
Yo=2. We use the following perturbed metric:
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ds”=(gun+ 6gumn) dxMdx"
=a%(2){(1+2¢)dz*- 2B, dz dx*

+[(1+2¢)7,,— E|,, Jdx*dx’}. 3.0

In this paper, we use the longitudinal gaude=E=0) and
we get the following metric:

ds?=a?(z)[(1+2¢)dZ+(1+24)y,,dx dx"].

(3.2
Now we get equations for the scalar perturbation:
(z,2): 3y +12HY — 12H?p+ 12Ky
_ 75 r_¢( /)z_azav5
PooP ®o ‘9900 @,
(3.3
(zpw): =3¢, +3He|,= 69|, (3.4
(1,v): (3¢ —6H p—3Hp' +9IHY —6H>¢
+ﬂyp)\(b|p)\+2yp)\¢|p)\+6K¢)5l;_’y'up(mpv
_27’Mp¢|pv
/ ’ 2 2 N V22
=| ~od¢'+ dl@o)"—a" ¢ |4, (3.5
Po
matter: S¢"+3HSe' +(4y' — ' —6Hp)eg
" I Zﬁzv
—2¢¢"+ 9"\ =a"— 5 o,
®o
(3.6

where the vertical bar denotes the covariant derivative with

respect toy,,, just as in Sec. I, and we splip into its

backgrounde, and its perturbationge. Now let us derive

the master equation of this system. At first, from Eg84),
we get

1
S¢=— (=3¢’ +3Hde), (3.7
®o
and from the off-diagonal part of E¢3.5), we get
¢+2¢=0. (3.9

Substituting Eqs(3.6), (3.7), and (3.8) into Egs.(3.3) and
(3.5, we find the master equation of the system,

PHYSICAL REVIEW D 65 064014

n

3220
®o

n

0]
Wyt o+ 4H'—4H;Z+6K y

=0. (3.9

We transform this equation into a form of the Satirmer
equation in order to examine the stability of this system. To
do so, we define a new functidf(z,x*) as

©o(2)

zp(z,x“):mF(z,x”).

(3.10

We get the Schidinger-type equation for the scalar pertur-
bation,

—F"(2,x")+Ve(2) - F(z,x*) = y"*F(2,x")
(3.11

whereV, is the effective potential for the perturbation and its
concrete form becomes

”n "
®o %o

Ve=—3H +iH*+H—— —+2
$o %o

(3.12

We analyze the effective potentials of three types of branes
separately.

B. Thick Poincaré brane case

In the case of the thick Poincal#ane, we can expand
F(z,x*) as follows:

F(z x“)=fﬂf (z)elPu" (3.13
’ (V2m)* P ’ '
and we find that the equation fép(z) becomes
—f5(2) +Ve(2)- Fo(2)=m?f(2), (3.14

wherem is the four-dimensional mass which satisfie$=
—p?. In the four-dimensional flat spacetime, we have the
relationp?= — w?+ k2. Here,w is the eigenvalue of the time
direction andk is the norm of the three-dimensional momen-
tum. If there is only time dependence in this systérm., k
=0), ®=m. So if there is a solution which has an imaginary
m, we can say that this system is unstable.

Next we examine the effective potentid]. In this sys-
tem, V, becomes
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v e[ (16n2+ 160+ 3)e*W+32n2+80n— 6+ (16n2+ 16n+3)e 4]

e~ 4(e2 1 e 2)2F(m . (3.19
|
Clearly, V. is positive definite and it approaches 0 yas: \/; " KiB cogi Bm)
5 . . . . . N e .
+00,” The solution which has an imaginang cannot exist Okm( ) 5 e FPT(1+15) +i sin(i,Bw))

because it will necessarily diverge eitheryat« or aty=

—o, So we can conclude that the thick Poinclrane is
stable under the scalar perturbation. It is interesting that there
is no bound state on the brane, which is different from the
tensor perturbation. The thickness parametedetermines
the height of the effective potential. The effective potential
becomes higher as becomes larger. In the thin brane limit

(i.e., n—x), the height of the effective potential goes to Form?=2, g becomes a real number oscillates near
infinity, and the thin brane becomes a singular object which A » SRm

ik 1A
2 'Bsin(iBm)T(1—ip)

X (= p)32+iB_

X(—n)(s’z)_iﬁ}- (3.21)

has no width(see Fig. 6.

C. Thick de Sitter brane case

In the case of the thick de Sitter brane, we expand

F(z,x*) as follows:

F(z,x")=J d*kdm f(2)gem(H)eX.  (3.16

Here we introduce the four-dimensional masshrough the
equation forg,,(t) as follows:

Gkm(t) + 3HGkm(t) + (ke 2'+ M) gn(t) =0, (3.17)

where a dot denotes the derivative with respedt amdH is
the Hubble constant. Then solving E®@.17), we find that
Okm becomes

Gk 7) = gm— )% TPPHIE (—k7), (3.18

whereH™) is the Hankel function of the first kin®Here, 7

7~0 and we can say tha,, is stable. Next, for 6cm?
<2, B becomes an imaginary number. Now we define a new
variable{ as

B=\m*—3=i¢.

The first term in the square brackets of E8}21) behaves as

(— 7)®2~¢ and the second term behaves asi) ¢2*¢. So
both terms converge to 0 agapproaches 0 becaugds 0
<(¢<3. From the above discussion, we can conclude that the
solution whosem? satisfies & m?<? is also stable.

Finally, for m®><0, ¢ becomes larger thaf, so the first
term of Eq.(3.21) does not converge to 0 whepgoes to 0.
This means that if there is a solution with?< 0, this system
must be unstable.

Then we examine the effective potential for the thick de
Sitter brane. We calculate it numerically, and the result is
shown in Fig. 7. In this casey= *y, is the horizon of
AdS;, so the spacetime is defined in the regiery,<y
<y,. Figure 7 shows that the effective potential of the scalar
perturbation is positive for-y,<y<y, and we can con-
clude that there is no solution with®><0 because it cannot
be normalizable. So unstable solutions do not exist, and as a

(3.22

is conformal time defined as ve
n=—e"t (3.19 250
and g is defined as follows: 200
150
B= mz—%_ (32@ T~
\
PO
In order to investigate the time evolution of the scalar per- L N
turbation, we examing,(7) for various m. At first, we L7 80 N
expandg,m(7) nearp~0(t—=) as v TNl
2 -1 1 > 7

SNote that we can discuss usiryginstead ofz becausez is a
monotonic function ofy from Eq. (2.7).
%We setH=1 from now on.

FIG. 6. The effective potential of the scalar perturbation in the
case of the thick Poincarerane. The solid line, dashed line, and
dotted line denote the=1, n=2, andn=3 case, respectively.
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Y

0.5 1

FIG. 7. The effective potential of the scalar perturbation in the
case of the thick de Sitter brane. Here wersetl, y,=1.

result this system is stable under the scalar perturbation just

as in the case of the thick Poincarene.

Notice that the shape of the effective potential is very

different from that of the graviton or that of the free test

scalar field. The effective potentials of the graviton or the
n

free scalar field have holes in their potentials at the locatio

of the branes. On the contrary, the effective potential of the

scalar perturbation has no hole at the location of the brane
Furthermore, the mass gap has disappeared in the effe

tive potential of the scalar perturbation. There exist mass
gaps in the effective potentials of the graviton or the free tes{

scalar fields. That is, the effective potentials approaktt
(H is the Hubble constaptnot 0, asy— *y,, as shown in

Fig. 3. The disappearance of the mass gap is peculiar to th

scalar perturbation for the thick de Sitter brane.

D. Thick anti—de Sitter brane case

PHYSICAL REVIEW D 65 064014

Ve

‘ Y
2.5 5 7.5

FIG. 8. The effective potential of the scalar perturbation in the
case of the thick AdS brane. Here we getl,y,=1, e=0.4.

Then we examine the effective potential in the case of the
thick AdS brane. Substituting the warp fact@:33 into Eq.
(3.12 and settingk=—1, we can getV.. We show the
numerical result in Fig. 8.

Clearly, the effective potential is positive definite also in
his case. As the effective potential is positive, there is no
solution with m?<—2, so we can conclude that the thick
AdS brane is stable under the scalar perturbation as well as
fhe thick Poincarend the thick de Sitter brane.

Next we pay attention to the shape of the effective poten-
ial. The upheaval appears arouyd O just as in the case of
the Poincareand of the de Sitter brane. This upheaval dem-
onstrates that the thick branes behave repulsively. But the
effective potential in the AdS case divergesyas =o. This
behavior is unique to the AdS brane system. This divergence
is caused by the divergence of the warp factoy-at=*oo.

Note that we treat the metric which coincides with an

t

Finally, let us consider the thick AdS brane case. In theexact Adg only at infinity. We may be able to consider the

case of the AdS brane, we decompége,x*) in Eq. (3.11)
as

Fx)= [ dmiy@g,000, (329
and we get the following equation fay,(x*):
')’p)\gm(x'u)\p)\: ngm(x'u)y (3.29

wherem is the four-dimensional mass. It is known that Eq.
(3.24 can be solved with suitable harmonic functions, and

metric which coincides with an exact Ag&t finitey, but if

we use such a metrigg’ becomes 0 at that point and the
effective potential appears to diverge there. In fact, if we take
€=0 in Eq. (2.33, we find thate'=0 aty=*y, and the
effective potential diverges there. But note that the warp fac-
tor itself does not diverge at=*y,. This shows that this
divergence has a different origin from the divergence at in-
finity, and we can say that the divergenceyat+y, has no
physical meaning. In fact, if we take a suitable variable and
rewrite the effective potential with it, we will see no diver-
gence aly=*yjy.

there is the Breitenlohner-Freedman bound which allows the

tachyonic mass to some extent from the condition of the

normalization[40—-45. From the Breitenlohner-Freedman
bound, the masm is bounded as

mé=—

E[te)

(3.2

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed three types of thick brane mod-
els and analyzed their stability. The three types of thick
branes are the solutions of the Einstein equations with non-

trivial dilatons and potentials. Furthermore, these solutions
are nonsingular in the whole spacetime, even at the location
This means that even when there are solutions with of the brane.

<m?<0, such solutions are stable in spite of the tachyonic At first, we considered gravitons in these thick brane sys-
mass. tems. In all cases, the effective potentials of the gravitons
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show that there are bound states which localize around the e 2=\ 0%, (4.2)
brane. Such gravitons make the four-dimensional gravity on

the brane if we take the thin brane and low-energy limit. ) )

Here, note that there are ambiguities with regard to estimat/sing ¢, we can rewrite the warp facto4.1) into the follow-
ing the corrections to the four-dimensional gravity due to theng form:

KK modes. This issue warrants further investigation.

Next we analyzed the scalar perturbations of the thick 1 1
brane systems. We write the master equations of the scalar a(&)= 7z (4.3
perturbations explicitly, and we get the effective potentials of Jhg? erte

the scalar perturbations in the three cases, respectively. As a
(Sl e s it ll o he Wik banes are sible Lrer 0 0.4 concides with Eq1217 wih n=1 ande?
of the scalar perturbations are positive definite. But the shap: /A6, From the above equation, we can say that Eq.

. . . ; 4.1) is one of the warp factors of the thick Poincdmane
of the effective potentials of the scalar perturbations is ver o ;
) : : models and thak 6 is one of the parameters which deter-
different from that of the gravitons. In all cases, there is no__. .
bound state because there is no hole around the location 8?'”6 the thickness.
On the other hand\ #? seems to be related to the non-

the brane in the effective potentials of the scalar perturba- , . .
tions. Furthermore, there is an upheaval around the Iocatio%ommmatlve geometry. From the discussion of the AdS/CFT

of the brane. So we conclude that the three types of thiclgg;re;ptc;]rédggcz,r ':;\S/itkn\?vvr\]’irlrt]h?értrr;esreol]s dgféchsicaelfom'
branes behave repulsively against the scalar perturbations. perg y P P

The asymptotic behavior of the effective potential of theYﬂng"l\m"S.thfor% n thg noncommutative spacetifie 48.
scalar perturbation in the case of the thick de Sitter brane i; is classical solution is given by
also different from that of the graviton or the free test scalar
field propagating in the same background.yAs *+y,, the
effective potential of the graviton approachgsl?, not 0.
This mass gap can be seen in various analyses on de Sitter
brane model§24]. But for the scalar perturbation in the thick
de Sitter brane system, the mass gap disappeared. That is, tHBeredQ2 is the metric ofS° and clearly Eq(4.1) coincides
effective potential of the scalar perturbation approaches 0 awith the warp factor of Eq(4.4).
y— *Yo. This phenomenon is peculiar to the scalar pertur- AN=4 super-Yang-Mills theory in the noncommutative
bation including the backreaction. spacetime is realized on the D3-branes with the nonzero ex-
In addition, the shape of the effective potential in the caséectation value of theB field. In this context,\ is the
of the thick AdS brane is distinctive. It diverges gs» 't Hooft coupling of N=4 super-Yang-Mills theory in the
+ o0, which is caused by the divergence of the warp factor anoncommutative spacetime andds the expectation value of
y=+. In the case of the thick Poincabeane or of the de theB field. So we can calk 6% the noncommutative param-

Sitter brane, the warp factors do not diverge in the wholeeter.
spacetimes. From the above discussion, we can interpréf in two
Consequently, we have concluded that all of the threavays, that is, as the thickness parameter and as the noncom-
branes are stable under the scalar perturbations. But wautative parameter. So we can expect that(dl) contains
should note that these analyses have been done classically.9ame effects due to the noncommutativity.
the analogy of the two analyses on the Schwarzschild black There is another thing we should mention here. In this
holes(i.e., the analysis by Regge-Wheeler and the analysi§aper, we construct the thick de Sitter and the thick anti—de
by Hawking, the thick de Sitter brane might be unstable Sitter b,rane system. In the analogy of the case of the thick
quantum mechanically. In fact, as the de Sitter spacetime hdoincarebrane, we cannot deny the possibility that the thick
a temperature, the spacetime may radiate and get to the Poifie Sitter and the thick anti—de Sitter brane systems also cor-
care spacetime[46]. So we may have to treat this system respond to some field theories. If so, the corresponding theo-
quantum mechanically. We leave this issue for future work.fies may be the quantum field theories in the curved space-
Finally, we refer to the relation between the thickness andime with the noncommutative coordinate. As we have not
the noncommutativity. As we have mentioned, we can maké&nown of any theories in the noncommutative curved space-
smooth warp factors in various ways. For example, to contime, this topic is very interesting.
struct the thick Poincarérane, we can introduce another In any case, we want to derive thick brane systems from
“thickness” parametei 62, the ten-dimensional supergravity or from the eleven-
dimensional M theory. We expect that we might be able to
1 interpret the noncommutativity in the context of these theo-
i ngle I (4.1) ries. We leave these themes for future work.

7,,0xHdX"+dQE, (4.9

1
— 2
ds’=dy *(W)

a2( Z) = eZQ(Y(Z)) —

2 . . . s . .
!f we setA 6“ to 0, Ad&g_spacetlme with the P(.)mcaai;cm.g ACKNOWLEDGMENT
is recovered. Here we introduce the new variahle/hich is
defined as The work of K.K. was supported by JSPS.
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