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Thick brane worlds and their stability

Shinpei Kobayashi* and Kazuya Koyama†

Graduate School of Human and Environment Studies, Kyoto University, Kyoto 606-8501, Japan

Jiro Soda‡

Department of Fundamental Sciences, FIHS, Kyoto University, Kyoto 606-8501, Japan
~Received 11 July 2001; published 20 February 2002!

Three types of thick branes, i.e., Poincare´, de Sitter, and anti–de Sitter branes, are considered. They are
realized as the nonsingular solutions of the Einstein equations with nontrivial dilaton and potentials. The scalar
perturbations of these systems are also investigated. We find that the effective potentials of the master equa-
tions of the scalar perturbations are positive definite and consequently these systems are stable under small
perturbations.
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I. INTRODUCTION

As the most promising candidate for a unified theory
everything, superstring theory has been investigated fo
long time. The recent discovery of D-branes stimulated
rather old idea, the ‘‘brane world’’@1,2#. In particular, the
Randall-Sundrum~RS! model has been advocated as
simple model@3,4#.

RS considered a 3-brane~the four-dimensional
Minkowski spacetime! embedded in five-dimensiona
anti–de Sitter spacetime (AdS5), and they found that there
exists a massless graviton~0-mode! and massive graviton
~Kaluza-Klein modes!. The massless graviton reproduces t
Newtonian gravity on the 3-brane, and Kaluza-Klein mod
which are the effect of the existence of the higher dimens
give a correction to the Newtonian gravity@5,6#. RS showed
that Newtonian gravity can be reproduced in a sufficien
low-energy limit, and the idea that our universe is a 3-bra
embedded in higher-dimensional spacetime came to be
vestigated eagerly. Furthermore, the cosmological con
quences of the RS model have been investigated and t
has been no contradiction with observations until n
@7–23#. The inflationary scenario also seems to be comp
ible with brane models@24–30#.

Note that the RS model is motivated by unified theo
such as the superstring theory. Such theories are necess
represent the high-energy era of the history of our unive
and in superstring theory there seems to exist a minim
scale of length, thus we cannot consider an exact 0-w
brane. That is, we cannot neglect the thickness of the b
at the string scale.

For this reason, ‘‘thick brane world’’ scenarios have be
investigated@31–40#. In this paper, we pay special attentio
to the construction of thick branes. We consider three ty
of maximally symmetric branes, that is, Poincare´, de Sitter,
and anti–de Sitter branes. As these branes are highly s
metric, they always exist as solutions of the Einstein eq
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tions if we introduce nontrivial dilatons and suitable sca
potentials, and these solutions are nonsingular in the wh
spacetime. The thick de Sitter and anti–de Sitter bran
which are nonsingular, are found for the first time in th
paper.

We also analyze the stability of these systems. We w
down the master equations of the scalar perturbations
find the effective potential in the Poincare´, de Sitter, and
anti–de Sitter brane case, respectively. As a result, due to
positivity of the effective potentials, we find that all of th
systems are stable under the scalar perturbations.1

Finally, we refer to the relation between the thickness a
the noncommutativity. As mentioned above, the thicknes
necessary due to the existence of the minimum length,
the noncommutativity also arises from this length. Therefo
we can naively expect that the thickness has something t
with the noncommutativity.

The organization of this paper is as follows. In Sec. II, w
review the setup of the thin brane models and construct th
types of maximally symmetric branes. In order to see
effect of the thickness, we consider the behavior of gravito
in the thick brane backgrounds. In Sec. III, we analyze
scalar perturbations of the thick brane systems. We derive
effective potentials of the scalar perturbations and exam
their behavior. Section IV is devoted to discussions and c
clusions. The relation between the thickness and the n
commutativity is also discussed there.

II. THICK BRANE MODELS

A. Thin brane models

At first, we review the setup of the thin brane models. T
simplest action of the thin brane model is

S5E d5xA2g5~ 1
2 R2L5!2sE d4xA2g, ~2.1!

1After completion of our work, we found the researches of G
vannini @38,39#, which are related to our work. In@38,39#, the thick
Poincare´ brane is investigated.
©2002 The American Physical Society14-1
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where we used the unit 8pG551 ~G5 is the five-
dimensional gravitational constant!, g5 is the five-
dimensional metric, andR denotes the five-dimensiona
Ricci scalar. If we consider the AdS5, the five-dimensional
cosmological constantL5 is related to the AdS radiusl as

L552
6

l 2 . ~2.2!

The second term of the action is the action of the brane
s denotes the tension of the brane. Now we consider
following type of metric:

ds25dy21e2a~y!gmndxmdxn, ~2.3!

wherey denotes the coordinate of the direction of the bu
gmn is the metric on the brane, andm, n denote the indices o
the four-dimension of the brane.e2a(y) is a so-called ‘‘warp
factor.’’ In this setup, we can get three types of branes wh
geometry is maximally symmetric, that is,M4, dS4 , or
AdS4 . Solving the Einstein equations, we find

a~y!5H y02uyu Poincare´ brane,

log@sinh~y02uyu!# de Sitter brane,

log@cosh~y02uyu!# anti–de Sitter brane,
~2.4!

wherey0 is a constant. In the case of the Poincare´ brane,y0
can be set to 0 without the loss of generality due to
Poincare´ invariance. Therefore, we can say thaty0 does not
have any physical meaning. In the case of the de Sitter br
y0 determines the range of the bulk. In fact, the warp fac
becomes 0 aty5y0 , so the range ofy is 2y0<y<y0 and
y5y0 is the horizon of the AdS5. On the contrary, in the
case of the anti–de Sitter brane,y0 denotes only the turning
point of the warp factor because the metric does not bec
0 at y5y0 . So there is no horizon in AdS5 with the anti–de
Sitter slicing. We consider the extension of the thin bra
systems to the thick brane ones in the following subsectio

B. Construction of the thick brane models

In order to realize thick brane models, we consider
following action:

S5E d5xA2g5@ 1
2 R2 1

2 ~]w!22V~w!#. ~2.5!

Here w is the five-dimensional scalar field which depen
only on the coordinate of the bulk andV(w) is its potential.
We use the metric

ds25a2~z!~dz21gmndxmdxn!, ~2.6!

where a conformal-like coordinatez is defined through the
following equations:

z[E dy

a
, a~z!5ea„y~z!…. ~2.7!
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Note thatgmn denotes the metric of the maximally symme
ric four-dimensional spacetimes, so we can write the fo
dimensional Ricci tensor and Ricci scalar as follows:

Rmn
~4!53Kgmn , ~2.8!

R~4!512K, ~2.9!

whereK takes 0, 1, or21 and these values correspond Po
caré, de Sitter, and anti–de Sitter branes, respectively.2

Now we can write down the Einstein equations and
equation of motion of the scalar field~matter!,

~z,z!: 6H226K5 1
2 ~w8!22a2V~w!, ~2.10!

~m,n!: 3H813H223K52 1
2 ~w8!22a2V~w!, ~2.11!

matter: w913Hw85a2
]V

]w
. ~2.12!

Here a prime denotes the derivative with respect toz and we
defineH as follows:

H[
a8

a
. ~2.13!

From Eqs.~2.10! and~2.11!, we get the following equations

~w8!2523H813H223K, ~2.14!

V~w!52
1

2a2 ~3H819H229K !. ~2.15!

From Eqs.~2.14! and ~2.15!, we can see that one can co
struct a thick brane model starting from a given warp fac
a(z), as long asa(z) satisfies the condition

~w8!2>0. ~2.16!

Here the equation of motion of the scalar field~2.12! is au-
tomatically satisfied due to the Bianchi identity. Equati
~2.15! simply determines the functional form of the potentia

C. Thick Poincaré brane model

In this paper, we use the following warp factor in order
make a thick Poincare´ brane:3

a2~z!5e2a„y~z!…5S 1

e22n~y01y!1e22n~y02y!D 1/n

.

~2.17!

As shown in Fig. 1, there is no jump of the value of th
extrinsic curvature aty5y0 . When we take the limitn

2From now on, we also set the AdS radiusl 51 and we normalize
the curvature radius of the four-dimensional spacetime to unity

3There may be many ways to introduce the ‘‘thickness.’’ Here
examine one of the possibilities. The parameter of the thickn
which is related to the noncommutative geometry is discusse
Sec. IV.
4-2
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→`, this warp factor approachese2(y02uyu), which is the
warp factor in the RS model. So the parametern controls the
‘‘thickness’’ of the brane.

In this case, we can write downw(y) andV(w) explicitly.
In fact, substituting the warp factor~2.17! into Eqs.~2.14!
and ~2.15!, we get

w~y!56A6

n
arctan~e2ny!, ~2.18!

V~w!52613~n12!sin2SA6n

3
w D . ~2.19!

Now, in order to see the effect of the ‘‘thickness,’’ let u
consider the gravitational perturbation in this system. H
the gravitonhmn is the tensor perturbation of the metric, so
can be written as

ds25a2~z!@dz21~gmn1hmn!dxmdxn#. ~2.20!

Herehmn satisfies the transverse-traceless condition

hm
m5hmn

un 50, ~2.21!

where the vertical bar denotes the covariant derivative w
respect togmn . In this system, the equation forhmn becomes

hmn9 13Hmn8 1hmnul
ul 22Khmn50. ~2.22!

Here we can define the four-dimensional momentump as
follows:

hmnul
ul 22Khmn5p2hmn . ~2.23!

Furthermore, we can decomposehmn using the polarization
tensor«mn , which depends only on the four-dimensional c
ordinatesxr as follows:

hmn~z,xr!5«mn~xr!X~z!, ~2.24!

where«mn satisfies the transverse-traceless condition

«m
m5«mn

un 50. ~2.25!

Now, regardless of the value ofK, we can rewrite Eq.~2.22!
as

FIG. 1. The warp factors of the thin and the thick brane
shown. The solid line denotes the warp factor of the thin brane
the dashed line denotes that of the thick brane.
06401
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X913HX852p2X. ~2.26!

To see the behavior ofhmn , we transform this equation into
the Schro¨dinger-type equation and write down the effecti
potential.

Now we introduce a new functionx(z), which satisfies
the following equation:

X~z!5a~z!23/2x~z!. ~2.27!

Substituting Eq.~2.27! into Eq.~2.26!, we find that the equa-
tion for x(z) becomes

2x9~z!1V~z!•x~z!52p2x~z!, ~2.28!

V~z!5 3
2 H81 9

4 H2, ~2.29!

whereV(z) is the effective potential of the graviton. Furthe
more, substituting the warp factor~2.17! into Eq. ~2.29!, we
get

V~z!5
3e2y0@5e4ny2~16n110!15e24ny#

4~e2ny1e22ny!21~1/n! . ~2.30!

We show the effective potentials in Fig. 2. The effecti
potentials show that the gravitons can localize around
brane. In fact, there is a 0-mode solution,

x0~z!;a3/2~z!. ~2.31!

Here we neglect the normalization constant.
The width of the brane becomes wider asn approaches 0.

On the other hand, whenn approaches̀ , the effective po-
tential approaches the ‘‘volcano’’ potential, which can
seen in the RS model, and the 0-mode solutionx0(z) coin-
cides with the massless graviton in the RS model. So we
say that if we take a sufficiently largen and the low-energy
limit, the Newtonian gravity can be reproduced in th
model.4

4In @34#, it is shown that the Newtonian gravity is reproduced.

e
d

FIG. 2. The effective potential of the graviton in the thick Poi
carébrane system. Here we sety051. The solid line denotes the
n51 case and the dashed line denotes then52 case, respectively
4-3
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FIG. 3. The effective potential of the graviton in the thick d
Sitter brane system. The solid line denotes then51 case and the
dashed line denotes then52 case, respectively. Both approach9

4 H2

asy→y0 . Here we sety052.

FIG. 4. The squares of the warp factors of a thin and thick A
brane. The solid line denotes the warp factor of the thin AdS br
and the dashed line denotes that of the thick AdS brane. Here w
y051.

FIG. 5. The effective potential of the graviton in the thick Ad
brane system. The solid line denotes then51 case and the dashe
line denotes then52 case, respectively. Here we sete50.4 and
y052.
06401
D. Thick de Sitter brane model

Similarly, we set the warp factor of a thick de Sitter bra
as follows:

a2~z!5S 1

sinh22n~y01y!1sinh22n~y02y! D
1/n

.

~2.32!

In this case, we cannot calculatew(y) andV(w) analytically
for an arbitraryn, so we have to calculate them numerical

Let us consider the behavior of the graviton in the thi
de Sitter brane system as well as in the previous subsec
Substituting the warp factor~2.32! into Eq.~2.30!, we get the
effective potential of the graviton propagating in the thick
Sitter brane system. The result is shown in Fig. 3.

The shape of the effective potential in this case is v
similar to that in the case of the Poincare´ brane. There is a
hole around the location of the brane and we can find
bound state of the graviton which localizes around the bra

Here, we have to note that the asymptotic value of
effective potential in this case is different from that in th
case of the Poincare´ brane. The value of the effective poten
tial of the graviton in the case of the thick de Sitter bra
approaches9

4 H2 as y→6` ~where H is the Hubble con-
stant!. This phenomenon can be seen in the analysis of
thin brane, too@24,27#.

E. Thick anti –de Sitter brane model

Finally, we construct the warp factor of the thick anti–d
Sitter brane as follows:

a2~z!5F S 11
1

sinh22n~y01y!1sinh22n~y02y! D
1/2n

2eG2

,

~2.33!

wheree is a constant which satisfies 0,e,1. e is necessary
for the spacetime to become an exact AdS5 only at infinity
~i.e., y56`!. Without e, we find that the spacetime als
becomes an exact AdS5 at y56y0 . This will cause techni-
cal trouble in the analysis of the scalar perturbation discus
in Sec. III, and we have to calculate the fluctuations num
cally in this case as well. We show the warp factor of t
thick anti–de Sitter brane in Fig. 4 and the effective poten
of the graviton propagating in this system in Fig. 5. Both
them diverge asy→`, which is different from the previous
two cases.

III. STABILITY ANALYSIS

A. Perturbation of scalar-gravity coupled systems

In the previous section, we constructed three types
thick brane systems. Next, we have to investigate their
bility. To do so, let us examine the scalar perturbation
these systems.

We use the following perturbed metric:

e
set
4-4
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ds25~gMN1dgMN!dxMdxN

5a2~z!$~112f!dz222Bumdz dxm

1@~112c!gmn2Eumn#dxmdxn%. ~3.1!

In this paper, we use the longitudinal gauge (B5E50) and
we get the following metric:

ds25a2~z!@~112f!dz21~112c!gmndxmdxn#.
~3.2!

Now we get equations for the scalar perturbation:

~z,z!: 3grlc url112Hc8212H2f112Kc

5w08dw82f~w08!22a2
]V

]w0
dw,

~3.3!

~z,m!: 23c um8 13Hf um5w08dw um , ~3.4!

~m,n!: ~3c926H8f23Hf819Hc826H2f

1grlf url12grlc url16Kc)dn
m2gmrf urn

22gmrc urn

5S 2w08dw81f~w08!22a2
]V

]w0
dw D dn

m , ~3.5!

matter: dw913Hdw81~4c82f826Hf!w08

22fw91grldw url5a2
]2V

]w0
2 dw,

~3.6!

where the vertical bar denotes the covariant derivative w
respect togmn just as in Sec. II, and we splitw into its
backgroundw0 and its perturbationsdw. Now let us derive
the master equation of this system. At first, from Eq.~3.4!,
we get

dw5
1

w08
~23c813Hf!, ~3.7!

and from the off-diagonal part of Eq.~3.5!, we get

f12c50. ~3.8!

Substituting Eqs.~3.6!, ~3.7!, and ~3.8! into Eqs.~3.3! and
~3.5!, we find the master equation of the system,
06401
h

c91grlc url1S 3H22
w09

w08
Dc81S 4H824H

w09

w08
16K Dc

50. ~3.9!

We transform this equation into a form of the Schro¨dinger
equation in order to examine the stability of this system.
do so, we define a new functionF(z,xm) as

c~z,xm!5
w08~z!

a~z!3/2F~z,xm!. ~3.10!

We get the Schro¨dinger-type equation for the scalar pertu
bation,

2F9~z,xm!1Ve~z!•F~z,xm!5grlF~z,xm! url ,
~3.11!

whereVe is the effective potential for the perturbation and
concrete form becomes

Ve52 5
2 H81 9

4 H21H
w09

w08
2

w0-

w08
12S w09

w08
D 2

26K.

~3.12!

We analyze the effective potentials of three types of bra
separately.

B. Thick Poincaré brane case

In the case of the thick Poincare´ brane, we can expand
F(z,xm) as follows:

F~z,xm!5E d4p

~A2p!4
f p~z!eipmxm

, ~3.13!

and we find that the equation forf p(z) becomes

2 f p9~z!1Ve~z!• f p~z!5m2f p~z!, ~3.14!

wherem is the four-dimensional mass which satisfiesm25
2p2. In the four-dimensional flat spacetime, we have t
relationp252v21k2. Here,v is the eigenvalue of the time
direction andk is the norm of the three-dimensional mome
tum. If there is only time dependence in this system~i.e., k
50!, v5m. So if there is a solution which has an imagina
m, we can say that this system is unstable.

Next we examine the effective potentialVe . In this sys-
tem,Ve becomes
4-5
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Ve5
e2y0@~16n2116n13!e4ny132n2180n261~16n2116n13!e24ny#

4~e2ny1e22ny!21~1/n! . ~3.15!
e
th

ia
it
to
ic

n

er

ew

the

de
is

lar

t
as a

he
d

Clearly, Ve is positive definite and it approaches 0 asy→
6`.5 The solution which has an imaginarym cannot exist
because it will necessarily diverge either aty5` or at y5
2`. So we can conclude that the thick Poincare´ brane is
stable under the scalar perturbation. It is interesting that th
is no bound state on the brane, which is different from
tensor perturbation. The thickness parametern determines
the height of the effective potential. The effective potent
becomes higher asn becomes larger. In the thin brane lim
~i.e., n→`!, the height of the effective potential goes
infinity, and the thin brane becomes a singular object wh
has no width~see Fig. 6!.

C. Thick de Sitter brane case

In the case of the thick de Sitter brane, we expa
F(z,xm) as follows:

F~z,xm!5E d3k dm fm~z!gkm~ t !eikx. ~3.16!

Here we introduce the four-dimensional massm through the
equation forgkm(t) as follows:

g̈km~ t !13Hġkm~ t !1~k2e22t1m2!gkm~ t !50, ~3.17!

where a dot denotes the derivative with respect tot, andH is
the Hubble constant. Then solving Eq.~3.17!, we find that
gkm becomes

gkm~h!5
Ap

2
H~2h!3/2e2pb/2Hib

~1!~2kh!, ~3.18!

whereH (1) is the Hankel function of the first kind.6 Here,h
is conformal time defined as

h[2e2t ~3.19!

andb is defined as follows:

b[Am22 9
4 . ~3.20!

In order to investigate the time evolution of the scalar p
turbation, we examinegkm(h) for various m. At first, we
expandgkm(h) nearh;0(t→`) as

5Note that we can discuss usingy instead ofz becausez is a
monotonic function ofy from Eq. ~2.7!.

6We setH51 from now on.
06401
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gkm~h!5
Ap

2
e2pb/2F kib

2ibG~11 ib! S 11 i
cos~ ibp!

sin~ ibp! D
3~2h!~3/2!1 ib2

ik2 ib

22 ib sin~ ibp!G~12 ib!

3~2h!~3/2!2 ibG . ~3.21!

For m2> 9
4 , b becomes a real number, sogkm oscillates near

h;0 and we can say thatgkm is stable. Next, for 0,m2

< 9
4 , b becomes an imaginary number. Now we define a n

variablez as

b5Am22 9
4 [ i z. ~3.22!

The first term in the square brackets of Eq.~3.21! behaves as
(2h)(3/2)2z and the second term behaves as (2h)(3/2)1z. So
both terms converge to 0 ash approaches 0 becausez is 0
<z, 3

2 . From the above discussion, we can conclude that
solution whosem2 satisfies 0,m2< 9

4 is also stable.
Finally, for m2<0, z becomes larger than32, so the first

term of Eq.~3.21! does not converge to 0 whenh goes to 0.
This means that if there is a solution withm2<0, this system
must be unstable.

Then we examine the effective potential for the thick
Sitter brane. We calculate it numerically, and the result
shown in Fig. 7. In this case,y56y0 is the horizon of
AdS5 , so the spacetime is defined in the region2y0<y
<y0 . Figure 7 shows that the effective potential of the sca
perturbation is positive for2y0<y<y0 and we can con-
clude that there is no solution withm2<0 because it canno
be normalizable. So unstable solutions do not exist, and

FIG. 6. The effective potential of the scalar perturbation in t
case of the thick Poincare´ brane. The solid line, dashed line, an
dotted line denote then51, n52, andn53 case, respectively.
4-6
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THICK BRANE WORLDS AND THEIR STABILITY PHYSICAL REVIEW D 65 064014
result this system is stable under the scalar perturbation
as in the case of the thick Poincare´ brane.

Notice that the shape of the effective potential is ve
different from that of the graviton or that of the free te
scalar field. The effective potentials of the graviton or t
free scalar field have holes in their potentials at the loca
of the branes. On the contrary, the effective potential of
scalar perturbation has no hole at the location of the bra

Furthermore, the mass gap has disappeared in the e
tive potential of the scalar perturbation. There exist m
gaps in the effective potentials of the graviton or the free
scalar fields. That is, the effective potentials approach9

4 H2

~H is the Hubble constant!, not 0, asy→6y0 , as shown in
Fig. 3. The disappearance of the mass gap is peculiar to
scalar perturbation for the thick de Sitter brane.

D. Thick anti –de Sitter brane case

Finally, let us consider the thick AdS brane case. In
case of the AdS brane, we decomposeF(z,xm) in Eq. ~3.11!
as

F~z,xm!5E dm fm~z!gm~xm!, ~3.23!

and we get the following equation forgm(xm):

grlgm~xm! url5m2gm~xm!, ~3.24!

wherem is the four-dimensional mass. It is known that E
~3.24! can be solved with suitable harmonic functions, a
there is the Breitenlohner-Freedman bound which allows
tachyonic mass to some extent from the condition of
normalization @40–45#. From the Breitenlohner-Freedma
bound, the massm is bounded as

m2>2 9
4 . ~3.25!

This means that even when there are solutions with2 9
4

<m2,0, such solutions are stable in spite of the tachyo
mass.

FIG. 7. The effective potential of the scalar perturbation in
case of the thick de Sitter brane. Here we setn51, y051.
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Then we examine the effective potential in the case of
thick AdS brane. Substituting the warp factor~2.33! into Eq.
~3.12! and settingK521, we can getVe . We show the
numerical result in Fig. 8.

Clearly, the effective potential is positive definite also
this case. As the effective potential is positive, there is
solution with m2,2 9

4 , so we can conclude that the thic
AdS brane is stable under the scalar perturbation as we
the thick Poincare´ and the thick de Sitter brane.

Next we pay attention to the shape of the effective pot
tial. The upheaval appears aroundy50 just as in the case o
the Poincare´ and of the de Sitter brane. This upheaval de
onstrates that the thick branes behave repulsively. But
effective potential in the AdS case diverges asy→6`. This
behavior is unique to the AdS brane system. This diverge
is caused by the divergence of the warp factor aty→6`.

Note that we treat the metric which coincides with
exact AdS5 only at infinity. We may be able to consider th
metric which coincides with an exact AdS5 at finite y, but if
we use such a metric,w8 becomes 0 at that point and th
effective potential appears to diverge there. In fact, if we ta
e50 in Eq. ~2.33!, we find thatw850 at y56y0 and the
effective potential diverges there. But note that the warp f
tor itself does not diverge aty56y0 . This shows that this
divergence has a different origin from the divergence at
finity, and we can say that the divergence aty56y0 has no
physical meaning. In fact, if we take a suitable variable a
rewrite the effective potential with it, we will see no dive
gence aty56y0 .

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed three types of thick brane m
els and analyzed their stability. The three types of th
branes are the solutions of the Einstein equations with n
trivial dilatons and potentials. Furthermore, these solutio
are nonsingular in the whole spacetime, even at the loca
of the brane.

At first, we considered gravitons in these thick brane s
tems. In all cases, the effective potentials of the gravito

FIG. 8. The effective potential of the scalar perturbation in t
case of the thick AdS brane. Here we setn51, y051, e50.4.
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show that there are bound states which localize around
brane. Such gravitons make the four-dimensional gravity
the brane if we take the thin brane and low-energy lim
Here, note that there are ambiguities with regard to estim
ing the corrections to the four-dimensional gravity due to
KK modes. This issue warrants further investigation.

Next we analyzed the scalar perturbations of the th
brane systems. We write the master equations of the sc
perturbations explicitly, and we get the effective potentials
the scalar perturbations in the three cases, respectively.
result, we see that all of the thick branes are stable unde
scalar perturbations. This is because the effective poten
of the scalar perturbations are positive definite. But the sh
of the effective potentials of the scalar perturbations is v
different from that of the gravitons. In all cases, there is
bound state because there is no hole around the locatio
the brane in the effective potentials of the scalar pertur
tions. Furthermore, there is an upheaval around the loca
of the brane. So we conclude that the three types of th
branes behave repulsively against the scalar perturbatio

The asymptotic behavior of the effective potential of t
scalar perturbation in the case of the thick de Sitter bran
also different from that of the graviton or the free test sca
field propagating in the same background. Asy→6y0 , the
effective potential of the graviton approaches9

4 H2, not 0.
This mass gap can be seen in various analyses on de S
brane models@24#. But for the scalar perturbation in the thic
de Sitter brane system, the mass gap disappeared. That i
effective potential of the scalar perturbation approaches
y→6y0 . This phenomenon is peculiar to the scalar pert
bation including the backreaction.

In addition, the shape of the effective potential in the ca
of the thick AdS brane is distinctive. It diverges asy→
6`, which is caused by the divergence of the warp facto
y56`. In the case of the thick Poincare´ brane or of the de
Sitter brane, the warp factors do not diverge in the wh
spacetimes.

Consequently, we have concluded that all of the th
branes are stable under the scalar perturbations. But
should note that these analyses have been done classica
the analogy of the two analyses on the Schwarzschild b
holes ~i.e., the analysis by Regge-Wheeler and the anal
by Hawking!, the thick de Sitter brane might be unstab
quantum mechanically. In fact, as the de Sitter spacetime
a temperature, the spacetime may radiate and get to the P
caré spacetime@46#. So we may have to treat this syste
quantum mechanically. We leave this issue for future wo

Finally, we refer to the relation between the thickness a
the noncommutativity. As we have mentioned, we can m
smooth warp factors in various ways. For example, to c
struct the thick Poincare´ brane, we can introduce anoth
‘‘thickness’’ parameterlu2,

a2~z!5e2a„y~z!…5
1

e2y1lu2e22y . ~4.1!

If we setlu2 to 0, AdS5 spacetime with the Poincare´ slicing
is recovered. Here we introduce the new variablej, which is
defined as
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e22j[Alu2e22y. ~4.2!

Usingj, we can rewrite the warp factor~4.1! into the follow-
ing form:

a2~j!5
1

Alu2
•

1

e2j1e22j . ~4.3!

So Eq.~4.1! coincides with Eq.~2.17! with n51 ande2y0

51/Alu2. From the above equation, we can say that E
~4.1! is one of the warp factors of the thick Poincare´ brane
models and thatlu2 is one of the parameters which dete
mine the thickness.

On the other hand,lu2 seems to be related to the no
commutative geometry. From the discussion of the AdS/C
correspondence, it is known that there is the classical s
tion of the supergravity which corresponds toN54 super-
Yang-Mills theory in the noncommutative spacetime@47,48#.
This classical solution is given by

ds25dy21S 1

e2y1lu2e22yDhmndxmdxn1dV5
2, ~4.4!

wheredV5
2 is the metric ofS5 and clearly Eq.~4.1! coincides

with the warp factor of Eq.~4.4!.
N54 super-Yang-Mills theory in the noncommutativ

spacetime is realized on the D3-branes with the nonzero
pectation value of theB field. In this context,l is the
’t Hooft coupling of N54 super-Yang-Mills theory in the
noncommutative spacetime andu is the expectation value o
the B field. So we can calllu2 the noncommutative param
eter.

From the above discussion, we can interpretlu2 in two
ways, that is, as the thickness parameter and as the non
mutative parameter. So we can expect that Eq.~4.1! contains
some effects due to the noncommutativity.

There is another thing we should mention here. In t
paper, we construct the thick de Sitter and the thick anti–
Sitter brane system. In the analogy of the case of the th
Poincare´ brane, we cannot deny the possibility that the thi
de Sitter and the thick anti–de Sitter brane systems also
respond to some field theories. If so, the corresponding th
ries may be the quantum field theories in the curved spa
time with the noncommutative coordinate. As we have n
known of any theories in the noncommutative curved spa
time, this topic is very interesting.

In any case, we want to derive thick brane systems fr
the ten-dimensional supergravity or from the eleve
dimensional M theory. We expect that we might be able
interpret the noncommutativity in the context of these the
ries. We leave these themes for future work.
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