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Localization of metric fluctuations on scalar branes

Massimo Giovannini*
Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

~Received 15 June 2001; published 8 February 2002!

The localization of metric fluctuations on scalar brane configurations breaking spontaneously five-
dimensional Poincare´ invariance is discussed. Assuming that the four-dimensional Planck mass is finite and
that the geometry is regular, it is demonstrated that the vector and scalar fluctuations of the metric are not
localized on the brane.
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If internal dimensions are not compact@1–4# all the fields
describing the fundamental forces of our four-dimensio
world should be localized on a higher dimensional topolo
cal defect@1,2#. Among the various interactions an importa
role is played by gravitational forces@5,6#: the localization of
the metric fluctuations can lead to measurable deviation
Newton’s law at short distances@7#. In @6# it has been shown
that the zero mode related to the tensor fluctuations of
geometry is localized, provided the four-dimensional Plan
mass is finite. For a recent review see@8#.

If the four-dimensional world is Poincare´ invariant, the
higher-dimensional geometry will have not only tens
modes but also scalar and vector fluctuations. The local
tion of the various modes of the geometry will be the subj
of the present analysis. The invariance of the fluctuati
under infinitesimal coordinate transformations, i.e. gauge
variance@9#, is the tool which will be used in order to ad
dress this problem. Gauge invariance guarantees that
equations for the fluctuations of the geometry do not cha
when moving from one coordinate system to the other. Si
the scalar and vector modes of the geometry do depen
the specific coordinate system, the gauge-invariant fluc
tions corresponding to these modes should be constru
and analyzed. The form of these equations allows a mo
independent discussion of the localization properties of
geometry without resorting to any specific coordinate s
tem.

The following five-dimensional action1

S5E d5xAuGuF2
R

2k
1

1

2
GAB]Aw]Bw2V~w!G ~1!

can be used in order to describe the breaking of fi
dimensional Poincare´ symmetry. Consider a potential whic
is invariant under thew→2w symmetry. Then, non-singula
domain-wall solutions can be obtained, for various pot
tials, in a metric

ds25ḠABdxAdxB5a2~w!@dt22dxW22dw2#. ~2!

*Electronic address: massimo.giovannini@ipt.unil.ch
1Latin ~uppercase! indices run over the five-dimensional spac

time whereas Greek indices run over the four-dimensional sp
time. Notice that natural gravitational units 2k516pG5

516p/M5
35 will be often used.
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For instance, solutions of the type

a~w!5
1

Ab2w211
, w5w~w!5A6 arctanbw, ~3!

can be found for various classes of symmetry breaking
tentials@10–12#. Solutions like Eqs.~3! represent a smooth
version of the Randall-Sundrum scenario@5,6#. The assump-
tions of the present analysis will now be listed.

~i! The five-dimensional geometry is regular~in a techni-
cal sense! for any value of the bulk coordinatew. This im-
plies that singularities in the curvature invariants are abs

~ii ! Five-dimensional Poincare´ invariance is broken
through a smooth five-dimensional domain-wall soluti
generated by a potentialV(w) which is invariant underw
→2w. The warp factora(w) will then be assumed symme
ric for w→2w.

~iii ! Four-dimensional Planck mass is finite because
following integral converges:

M P
2 .M3E

2`

`

dwa3~w!. ~4!

~iv! Five-dimensional gravity is described according
Eq. ~1! and, consequently, the equations of motion for t
warped background generated by the smooth wall are
natural gravitational units,

w8256~H 22H8!, Va2523~3H 21H8!, ~5!

where the prime denotes derivation with respect tow and
H5a8/a. Using only the assumptions~i!–~iv! it will be
shown that the gauge-invariant fluctuations correspondin
scalar and vector modes of the geometry are not localized
the wall, while the tensor modes of the geometry will
shown to be localized.

In the literature there exist different approaches to me
fluctuations in brane cosmology but the present approac
different. In @13–17# fluctuations have been decomposed a
cording to three-dimensional rotations~as previously done in
a Kaluza-Klein context@18#!: decoupled fluctuations hav
not been obtained and scalar sources have not been co
ered. In the present case, fluctuations are decomposed u
4D Poincare´ transformations and the full system is dise
tangled by exploiting gauge invariance. Sometimes sc
fluctuations~but not vector! are analyzed in the context o

e-
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the radion problem but within specific gauges~often adapted
to the particular form of the metric! and in two~or even three
@19#! brane systems~see also@20# and references therein!. In
the present case we deal only with one brane but the anal
as stressed, holds for general backgrounds and independ
on the coordinate system. This discussion differs from
one of@21# where a specific gauge has been selected and
thin brane case was only investigated.

The entangled equations for the fluctuations can be w
ten in general terms as

dRAB5
1

2
]Aw]Bx1

1

2
]Ax]Bw2

1

3

]V

]w
xḠAB2

V

3
dGAB ,

~6!

dGAB~]A]Bw2ḠAB
C ]Cw!1ḠAB~]A]Bx2ḠAB

C ]Cx

2dGAB
C ]w!1

]2V

]w2
x50, ~7!
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where the metric and the scalar field have been separated
their background and perturbation parts:

GAB~xm,w!5ḠAB~w!1dGAB~xm,w!,

w~xm,w!5w~w!1x~xm,w!. ~8!

In Eqs. ~6! and ~7!, dGAB
C and dRAB are, respectively, the

fluctuations of the Christoffel connections and of the Ric

tensors, whereasḠAB
C are the values of the connections com

puted using the background metric~2!. In Eq.~6! and~7!, the
fluctuations of the brane source are coupled to the sc
fluctuations of the geometry whose modes are classified
ing Poincare´ invariance in four dimensions
dGAB5a2~w!S 2hmn1~]m f n1]n f m!12hmnc12]m]nE Dm1]mC

Dm1]mC 2j
D . ~9!
ated

his
qs.

ors,

f
of
On top of hmn which is divergenceless and traceless@i.e.
]mhn

m50, hm
m50# there are four scalars~i.e. E, c, j andC)

and two divergenceless vectors (Dm and f m). For infinitesi-
mal coordinate transformationsxA→ x̃A5xA1eA the tensors
are invariant whereas the vectors and the scalars trans
non-trivially. The four-dimensional part of the infinitesim
shift eA5a2(w)(em ,2ew) can be decomposed asem5]me
1zm , wherezm is a divergenceless vector ande is a scalar.

The transformations for the scalars involve two gau
functionse andew . The transformations for the vectors in
volve zm . Two scalars and one divergenceless vector can
gauged away by fixing the scalar and the vector gauge fu
tions. In a different perspective@9#, since there are two scala
gauge functions and four scalar fluctuations of the metric~9!,
two gauge-invariant~scalar! variables can be defined. In th
present case the gauge-invariant scalar variables can be
fully chosen to be

C5c2H~E82C!,

J5j2
1

a
@a~C2E8!#8. ~10!

By shifting infinitesimally the coordinate system fromxA to
x̃A the metric fluctuations change as

dGAB~xm,w!→dG̃AB5dGAB2¹AeB2¹BeA , ~11!

where the covariant derivatives are computed using the b
round metric of Eq.~2!. In spite of this,C̃5C, J̃5J and
rm

e

e
c-

se-

k-

h̃mn5hmn . The scalar field fluctuation of Eq.~8! is not
gauge-invariant and the gauge-invariant variable associ
with it is

X5x2w8~E82C!. ~12!

Since there is one vector gauge function, i.e.zm , one
gauge-invariant variable can be constructed out ofDm and
f m :

Vm5Dm2 f m8 . ~13!

The choice of gauge-invariant fluctuations proposed in t
paper is relevant: in terms of the variables defined in E
~10!–~12! and ~13! the perturbed system of Eqs.~6! and ~7!
can be written~and decoupled! with a procedure which is
gauge-invariant at every step. The equation for the tens
as expected, decouples from the very beginning:

mmn9 2]a]ammn2
~a3/2!9

a3/2
mmn50. ~14!

wheremmn5a3/2hmn is the canonical normal mode of the o
the action~1! perturbed to second order in the amplitude
tensor fluctuations.

The scalar variables~10! and ~12! form a dynamical sys-
tem defined by the diagonal components of Eq.~6!,

C917HC81HJ812~H813H 2!J1
1

3

]V

]w
a2X2]a]aC

50, ~15!
8-2



e

t

c-
to

c

t

al

pli-

ry

iz-

re
i.e.

ric

t
t,
-

-

at

ity
t

ven

m

LOCALIZATION OF METRIC FLUCTUATIONS ON . . . PHYSICAL REVIEW D65 064008
2]a]aJ24@C91HC8#24HJ82w8X82
1

3

]V

]w
a2X

1
2

3
Va2J50, ~16!

supplemented by the gauge-invariant version of the p
turbed scalar field equation~7!

]a]aX2X923HX81
]2V

]w2
a2X2w8@4C81J8#

22J~w913Hw8!50, ~17!

and subjected to the constraints

]m]n@J22C#50, ~18!

6H J16C81X w850. ~19!

coming from the off-diagonal components@i.e. (m,w)# of
Eq. ~6!. From Eq.~6! the evolution of the gauge-invarian
vector variable~13! is

]a]aVm50, Vm8 1
3

2
HVm50, ~20!

whereVm5a3/2Vm is the canonical normal mode of the a
tion ~1! perturbed to second order in the amplitude of vec
fluctuations of the metric.

Using repeatedly the constraints of Eqs.~18! and ~19!,
together with the background relations~5!, the scalar system
can be reduced to the following two equations:

F92]a]aF2zS 1

zD 9
F50, ~21!

G92]a]aG2
z9

z
G50, ~22!

where

F5
a3/2

w8
C, G5a3/2X2zC. ~23!

The same equation satisfied byC is also satisfied byJ by
virtue of Eq. ~18!. In Eqs. ~22! and ~23! the background
dependence appears only in terms of the ‘‘universal’’ fun
tion z(w):

z~w!5
a3/2w8

H . ~24!

In deriving Eqs.~21!, ~22! and ~23!, ~24! no specific back-
ground dependence has been assumed, but only the equa
of motion, i.e. Eqs.~5!, which come directly from Eq.~1!
and hold for any choice of the potential generating the sc
brane configuration. The effective Schro¨dinger-like ‘‘poten-
tials’’ appearing in Eqs.~21! and~22! are dual with respect to
z→1/z. Finally, the gauge-invariant functionG is the normal
06400
r-

r

-
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mode of the action perturbed to second order in the am
tude of the scalar fluctuations~see, for comparison, also@18#
which deals with the case of compact extra dimensions!.

The lowest mass eigenstate of Eq.~14!, i.e. m(w)
5m0a3/2(w), is normalized if

um0u2E
2`

`

a3dw52um0u2E
0

`

a3~w!dw51, ~25!

where thew→2w symmetry of the background geomet
@see~ii !# has been exploited. Using now the assumptions~i!,
~ii ! and ~iii ! the tensor zero mode turns out to be normal
able @5,6#.

Equation ~20! indicates that the vector fluctuations a
always massless and the corresponding zero mode,
V(w);V 0a23/2, is localized if

2uV 0u2E
0

` dw

a3~w!
51, ~26!

which cannot be true if assumptions~i!, ~ii ! and ~iii ! hold.
From Eq. ~21! the lowest mass eigenstate of the met

fluctuation, i.e.F(w)5F0z21(w), is normalized if

2uF0u2E
0

` dw

z2~w!
51. ~27!

The integrand appearing in Eq.~27! is non-convergent a
infinity if the geometry is regular in the same limit. In fac
according to assumption~i!, the curvature invariants pertain
ing to the geometry ~2! @i.e. R2, RMNABRMNAB and
RMNRMN# should be regular for anyw and, in particular, at
infinity. Since a(w) must converge at infinity,a(w);w2g

with2 1/3<g<1. Notice thatg>1/3 comes from the conver
gence~at infinity! of the integral of Eq.~4! and thatg<1 is
implied by the regularity of the curvature invariants since,
infinity, RMNRMN;RMNABRMNAB;w4(g21) should con-
verge. Using Eq.~24! and Eqs.~5! the integrand of Eq.~27!
can be written as

1

z2
5

H 2

a3w82
5

1

6a3 S H 2

H 22H8
D . ~28!

Assuming the regularity of the curvature invariants at infin
@i.e. a(w);w2g with 0,g<1# it can be demonstrated tha
1/z2 diverges, at infinity,at least3 asa23.

The second~linearly independent! solution to Eq.~21!
which is given byz21(w)*wz2(x) dx has poles at infinity
and for w→0. The poles appearing forw→0 will now be

2The powerg measures only the degree of convergence of a gi
integral.

3In fact, g51, 1/z2 diverges even more as it can be argued fro
Eq. ~28! which has a further pole forg25g. The example given in
Eqs.~3! corresponds to a behavior at infinity given byg51 and a
direct calculation shows that 1/z2 diverges, in this case, asw5.
8-3
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MASSIMO GIOVANNINI PHYSICAL REVIEW D 65 064008
discussed since they are needed in order to prove tha
zero mode of Eq.~22!, i.e. G(w)5G0z(w), is not localized.

Provided the assumptions~i!–~iv! are satisfied, the inte
gral

2uG 0u2E
0

`

z2dw ~29!

is divergent not because of the behavior at infinity but
cause of the behavior of the solution close to the core of
wall, i.e. w→0. According to assumptions~i! and ~ii ! a(w)
andw should be regular for anyw and close to the core o
the wall w→0 and a(w)→const because of thew→2w
symmetry. Hence the following regular expansions can
written for smallw

a~w!.a02a1wb1•••, b.0, ~30!

w~w!.w1wa1•••, a.0, ~31!

for w→0. Inserting the expansion~30!, ~31! into Eqs.~5! the
following relations can be obtained:

b52a, a2w1
256

a1

a0
b~b21!. ~32!

Inserting now Eqs.~30!, ~31! into Eq.~24! and exploiting the
first of Eqs.~32! we have

lim
w→0

z2~w!.w2(a2b)5w22a, a.0 ~33!

Using Eqs.~30! into the curvature invariants we get th
RABRAB;RMNABRMNAB;w2b24, which impliesb>2 in or-
der to have regular invariants forw→0. Since, from Eq.
~32!, b52a, in Eq. ~33! it must bea>1. As in the case of
Eq. ~21!, Eq. ~22! also has a second~linearly independent!
solution for the lowest mass eigenvalue, nam
z(w)*wdx z22(x) which has poles at infinity. In fact, a direc
check shows that, at infinity, this quantity goes asw(3/2)g11

where, as usual, 1/3<g<1 for the convergence of th
Planck mass and of the curvature invariants at infinity.

The gauge-invariant techniques developed in the th
brane limit can be compared with what happens in the t
brane limit. Indeed it has been shown@10,11# that the action
of Eq. ~1! can be viewed as the thick version of a thin bra
action of the type

Sthin5E d5xAuGu@2R2L#

2
l

2E d4rAugugab]aXM]bXNGMN ~34!
06400
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wheregab is the induced metric,l is the brane tension an
L is the bulk cosmological constant. Then the equations
motion which have to be perturbed are

RAB52
L

3
GAB1

l

2E d4r
Augu

AuGu
gab]aXM]bXN

3S GAMGBN2
1

3
GMNGABD d~w!, ~35!

where the delta function comes about since, in the variat
the brane location is fixed. From Eq.~35! the background
equations are simply

6~H 22H8!5lad~w!,

6@3H 21H8#12La21lad~w!50, ~36!

which can be solved, in particular, bya(w)5(buwu11)21

with b5A2L/12. By consistently perturbing Eq.~35! and
using Eqs.~36! in the obtained equations for the fluctuatio
it is found that, also in the thin brane case, the normaliza
ity conditions for the tensor and for the gauge-invariant v
tors ~i.e. Vm) are exactly the same as the ones obtained in
thick case. This conclusion comes from the tensor and ve
projection of the perturbed (m,n) component of Eq.~35!.
Moreover, from the perturbed vector projection of the (m,w)
component of Eq.~35!, it is found that the gauge-invarian
vector is massless. Hence, if the four-dimensional Pla
mass is finite, the gauge-invariant vector fluctuations are
normalizable. The only scalar fluctuations appearing in
thin brane limit are the ones associated withC. In this case
the scalar projection of the (m,w) component of Eqs.~35!
leads to the constraintC812HC50 from whichC;a22.
Using this constraint into the other dynamical equations
gether with the background relations~36! we get that the
equation forC̄5a3/2C is

C̄92]a]aC̄2
~a21/2!9

a21/2
C̄50. ~37!

Hence the integral which should converge is in this ca
*dwa(w)21, which never converges if the 4D Planck ma
is finite.

In conclusion, it has been demonstrated that under
sumptions~i!–~iv! the scalar and vector fluctuations of th
five-dimensional metric decouple from the wall. Heeding e
perimental tests@7#, the present results suggest that under
assumptions~i!–~iv! no vector or scalar component of th
Newtonian potential at short distances should be expecte

It is pleasure to thank M. E. Shaposhnikov and G. Ve
eziano for interesting discussions.
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