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Localization of metric fluctuations on scalar branes
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The localization of metric fluctuations on scalar brane configurations breaking spontaneously five-
dimensional Poincar@variance is discussed. Assuming that the four-dimensional Planck mass is finite and
that the geometry is regular, it is demonstrated that the vector and scalar fluctuations of the metric are not
localized on the brane.
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If internal dimensions are not compddt4] all the fields  For instance, solutions of the type
describing the fundamental forces of our four-dimensional
world should be localized on a higher dimensional topologi- 1
cal defec{1,2]. Among the various interactions an important a(w)= \/ﬁ ¢=e(w)= 6 arctarbw, ~ (3)
role is played by gravitational forcés,6|: the localization of w

the metric fluctuations can lead to measurable deviations Qfan be found for various classes of symmetry breaking po-
Newton’s law at short distancgg]. In [6] it has been shown  antia1s[10-12. Solutions like Eqs(3) represent a smooth

that the zero mode related to the tensor fluctuations of th@ersion of the Randall-Sundrum scendi6]. The assump-

geometry is localized, provided the four-dimensional Planck;;ns of the present analysis will now be listed.

mass is finite. For a recent review 4. =~ (i) The five-dimensional geometry is regulam a techni-
If the four-dimensional world is Poincar@variant, the cal sensgfor any value of the bulk coordinate. This im-

h|gZer—dt|)men|S|onal Igeoméatry W|Ilﬂhave ot onr:y Itensl‘_orplies that singularities in the curvature invariants are absent.
modes but also scalar and vector fluctuations. The localiza- ;i) Fjye-dimensional Poincarénvariance is broken

tion of the various modes of the geometry will be the subjectthrough a smooth five-dimensional domain-wall solution

of the present analysis. The invariance of the ﬂucwaﬂon@enerated by a potential(¢) which is invariant unde

under infinitesimal coordinate transformations, i.e. gauge in-, Th ;
. i ; ; L — . The warp factoa(w) will then be assumed symmet-
variance[9], is the tool which will be used in order to ad- ¢ P (w) y

. . ) ric for w— —w.
dress this problem. Gauge invariance guarantees that the (i) royr.dimensional Planck mass is finite because the
equations for the fluctuations of the geometry do not Chang?ollowing integral converges:
when moving from one coordinate system to the other. Since
the scalar and vector modes of the geometry do depend on x
the specific coordinate system, the gauge-invariant fluctua- M%ZMaf dwad(w). (4)
tions corresponding to these modes should be constructed o
and analyzed. The form of these equations allows a model-
independent discussion of the localization properties of th
geometry without resorting to any specific coordinate sys
tem.

The following five-dimensional actidn

(iv) Five-dimensional gravity is described according to

%q. (1) and, consequently, the equations of motion for the
warped background generated by the smooth wall are, in
natural gravitational units,

Rl ©'?=6(H’~H'), Va?=—-3(BH*+H'), (5
“oet 5G onpdse—Vie)| (1)

S= f d>x\|G|

where the prime denotes derivation with respecitand
H=a'la. Using only the assumptiong)—(iv) it will be

can be used in order to describe the breaking of fiveshown that the gauge-invariant fluctuations corresponding to
dimensional Poincarsymmetry. Consider a potential which scalar and vector modes of the geometry are not localized on
is invariant under the— — ¢ symmetry. Then, non-singular the wall, while the tensor modes of the geometry will be
domain-wall solutions can be obtained, for various potenshown to be localized.

tials, in a metric In the literature there exist different approaches to metric
o R fluctuations in brane cosmology but the present approach is
ds?=Gpdx dxB=a%(w)[dt?—dx?—dw?].  (2) different. In[13—17 fluctuations have been decomposed ac-

cording to three-dimensional rotatiofes previously done in
a Kaluza-Klein contex{18]): decoupled fluctuations have
*Electronic address: massimo.giovannini@ipt.unil.ch not been obtained and scalar sources have not been consid-
'Latin (uppercaseindices run over the five-dimensional space- €red. In the present case, fluctuations are decomposed using
time whereas Greek indices run over the four-dimensional space4D Poincaretransformations and the full system is disen-
time. Notice that natural gravitational units k2167Gs  tangled by exploiting gauge invariance. Sometimes scalar
=16m/M3= will be often used. fluctuations(but not vectoy are analyzed in the context of
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the radion problem but within specific gauge$ten adapted where the metric and the scalar field have been separated into
to the particular form of the metri@nd in two(or even three  their background and perturbation parts:

[19]) brane systemé&see alsq20] and references thergirnn

the present case we deal only with one brane but the analysis,

as stressed, holds for general packgrounds an_d independently Gag(X*, W)= Gag(W) + 6Gpg(X*, W),

on the coordinate system. This discussion differs from the
one of[21] where a specific gauge has been selected and the
thin brane case was only investigated.

The entangled equations for the fluctuations can be writ- P(X,W) = (W) + x (X, w). ®)
ten in general terms as
1 1 1oV — \% In Egs. (6) and (7), 51“23 and SRag are, respectively, the
ORag= 5 0aPdeX+ 5IaxTeP~ 3 %XGAB_ 39Cns. fluctuations of the Christoffel connections and of the Ricci

(6)  tensors, whereaBS are the values of the connections com-
puted using the background met(®). In Eq.(6) and(7), the

AB, TC ~AB TC .
0G™(dpdpe—I'ggdce) + G *(Iadpx — I ggdcx fluctuations of the brane source are coupled to the scalar
2V fluctuations of the geometry whose modes are classified us-
— ST Sa¢) + Z=x=0, (77 ing Poincareinvariance in four dimensions

2h,,+(d,f,+d,f,)+29,,4+24,0,E D,+4,C

8Gpg=a’(W) D,+,C 2¢
wT %

On top ofh,, which is divergenceless and tracelgse. h —h,,. The scalar field fluctuation of E¢8) is not
d,h;=0, hi=0] there are four scalaig.e. E, ¢, £ andC)  gauge-invariant and the gauge-invariant variable associated
and two divergenceless vector® ( andf ). For infinitesi-  with it is

mal coordinate transformationd —x"=x"+ € the tensors

are invariant whereas the vectors and the scalars transform

non-trivially. The four-dimensional part of the infinitesimal

shift eAzaZ(W)(e#,— €,) can be decomposed a&g=d,€

+¢,, where{, is a divergenceless vector ards a scalar.
The transformations for the scalars involve two gauge #°

functionse and ¢,,. The transformations for the vectors in- V,= DM_f’ ) (13

volve {,,. Two scalars and one divergenceless vector can be a

gauged away by fixing the scalar and the vector gauge funcFhe choice of gauge-invariant fluctuations proposed in this

tions. In a different perspectiVé®], since there are two scalar paper is relevant: in terms of the variables defined in Egs.

gauge functions and four scalar fluctuations of the mé®ic  (10)—(12) and(13) the perturbed system of Eq®) and (7)

two gauge-invariantscalay variables can be defined. In the can be written(and decoupledwith a procedure which is

present case the gauge-invariant scalar variables can be ugguge-invariant at every step. The equation for the tensors,

X=x—¢'(E'—C). (12)

Since there is one vector gauge function, ig., one
gauge-invariant variable can be constructed ouDgfand

fully chosen to be as expected, decouples from the very beginning:
‘P:l/f_H(E,_C), , . (a3/2 "
IL'L,LLV_(?a(7 Muv™ F/‘L,uvzo- (14)

1
E=é- a[a(C— EDT. (10 whereu,,,=a*%,,, is the canonical normal mode of the of

the action(1) perturbed to second order in the amplitude of

By shifting infinitesimally the coordinate system frorft to  tensor fluctuations. _
%A the metric fluctuations change as The scalar variable€l0) and (12) form a dynamical sys-

tem defined by the diagonal components of Hj,
5GAB(X”,W)—>56AB: 5GAB_VAEB_VB€A, (11) 1 9V
V'+THY' +HE' +2(H' +3H?)E+ §&—a2x—aaaa\1f
where the covariant derivatives are computed using the back- ¢
round metric of Eq(2). In spite of this ¥ =¥, E=5 and =0, (15
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1
_ a:_ "y r_ EI_ AV
d a0 AV'"+HY']-4H ¢'X 3 (wa X

(16)

supplemented by the gauge-invariant version of the per-

turbed scalar field equatiafT)

Y _
é,aaax_xu_3Hxl+_2a2x_(Pr[4\I,/+zl]
J¢

—25(¢"+3He")=0, 17

and subjected to the constraints
d,0,[E—2¥]=0, (19
6HE+6W'+X ' =0. (19

coming from the off-diagonal componenitse. (u,w)] of
Eq. (6). From Eq.(6) the evolution of the gauge-invariant
vector variablg(13) is

3
000"V, =0, Vj,+ 5HV,=0, (20)

whereV,=a*%, is the canonical normal mode of the ac-
tion (1) perturbed to second order in the amplitude of vector

fluctuations of the metric.

Using repeatedly the constraints of Eq&8) and (19),
together with the background relatio(®, the scalar system
can be reduced to the following two equations:

l n
(I)”—&a&“d)—z( E) d=0, (21)
G"'—da0°G— —G=0, (22
where
a3/2
b=—W, G=a¥X-2z¥. (23
©

The same equation satisfied 8y is also satisfied byg by
virtue of Eq. (18). In Egs. (22) and (23) the background
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mode of the action perturbed to second order in the ampli-

tude of the scalar fluctuatiorisee, for comparison, al§@8]

which deals with the case of compact extra dimengions
The lowest mass eigenstate of E@l4), i.e. u(w)

= uoa®3(w), is normalized if

|,u0|2f_ma3dw=2|,u0|2fo a’(w)ydw=1, (25

where thew— —w symmetry of the background geometry
[see(ii)] has been exploited. Using now the assumptighs
(ii) and(iii) the tensor zero mode turns out to be normaliz-
able[5,6].

Equation (20) indicates that the vector fluctuations are
always massless and the corresponding zero mode, i.e.
V(w)~Voa ¥ is localized if

> dw
vl [ 1,
0 ad(w)

which cannot be true if assumptiofig, (i) and(iii) hold.
From Eq.(21) the lowest mass eigenstate of the metric
fluctuation, i.e.®(w)=®,z"1(w), is normalized if

© dw
2|<1>0|2f =1.
0 Z2(w)

(26)

(27)

The integrand appearing in E27) is non-convergent at
infinity if the geometry is regular in the same limit. In fact,
according to assumptiafm), the curvature invariants pertain-
ing to the geometry(2) [i.e. R?, RynagR“NAB and
RunRMN] should be regular for anw and, in particular, at
infinity. Since a(w) must converge at infinitya(w)~w™"”
with? 1/3< y=<1. Notice thaty=1/3 comes from the conver-
gence(at infinity) of the integral of Eq(4) and thaty<1 is
implied by the regularity of the curvature invariants since, at
infinity, RynRN~RynapRYNAB~w4(r~1) should con-
verge. Using Eq(24) and Egs.(5) the integrand of Eq(27)
can be written as

1 M2 1( H2>
22 ap’? 6ad\H2-H')

2 3 12 (28)

Assuming the regularity of the curvature invariants at infinity

dependence appears only in terms of the “universal” func-{i.e. a(w)~w~? with 0<y=<1] it can be demonstrated that

tion z(w):

(24

In deriving Egs.(21), (22) and (23), (24) no specific back-

1/z? diverges, at infinityat least asa .

The second(linearly independentsolution to Eq.(21)
which is given byz~1(w)["Z?(x) dx has poles at infinity
and forw—0. The poles appearing fav—0 will now be

ground dependence has been assumed, but only the equation§he powery measures only the degree of convergence of a given

of motion, i.e. Eqs.(5), which come directly from Eq(1)

integral.

and hold for any choice of the pOtential generating the scalar 3| fact, y=1, 1/72 diverges even more as it can be argued from

brane configuration. The effective ScHiager-like “poten-
tials” appearing in Eqs(21) and(22) are dual with respect to
z—1/z. Finally, the gauge-invariant functiafis the normal

Eq. (28) which has a further pole fop?=y. The example given in
Egs.(3) corresponds to a behavior at infinity given by=1 and a
direct calculation shows thatZf/ diverges, in this case, as°.
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discussed since they are needed in order to prove that theherey, is the induced metric is the brane tension and

zero mode of Eq(22), i.e. G(w)=Gyz(w), is not localized. A is the bulk cosmological constant. Then the equations of
Provided the assumptior(§)—(iv) are satisfied, the inte- motion which have to be perturbed are

gral

A A NE
Rag=— §GAB+ EJ d*p ——= y*#9, XMapxN

JIGl
1

GamGen— SGMNGAB) o(w), (35

2|g0|2f:zzdw (29

is divergent not because of the behavior at infinity but be- X
cause of the behavior of the solution close to the core of the

wall, i.e. w—0. According to assumption$) and (i) a(w) where the delta function comes about since, in the variation,
and ¢ should be regular for anw and close to the core of the brane location is fixed. From E35) the background
the wall ¢—0 anda(w)—const because of the/— —w equations are simply

symmetry. Hence the following regular expansions can be

written for smallw 6(H?—H')=Nad(w),
a(w)=ag—awh+---, B>0, (30) 6[3H2+H']+2Aa%+ ad(w)=0, (36)
(W)= W+ -, a>0 (31) which can be solved, in particular, B(w)=(blw|+1)"?!

with b= —A/12. By consistently perturbing E¢35) and
for w— 0. Inserting the expansiai30), (31) into Egs.(5) the  using Eqs(36) in the obtained equations for the fluctuations
following relations can be obtained: it is found that, also in the thin brane case, the normalizabil-
ity conditions for the tensor and for the gauge-invariant vec-
tors(i.e.V,) are exactly the same as the ones obtained in the
thick case. This conclusion comes from the tensor and vector
projection of the perturbedu(,v) component of Eq(35).
Inserting now Eqs(30), (31) into Eq.(24) and exploiting the  Moreover, from the perturbed vector projection of the )
first of Egs.(32) we have component of Eq(35), it is found that the gauge-invariant
lim 22(w)=w2@ B —w-2¢  4>0 (33 vector is massless. Hence, if the four-dimensional Planck
woo ' mass is finite, the gauge-invariant vector fluctuations are not
normalizable. The only scalar fluctuations appearing in the
Using Egs.(30) into the curvature invariants we get that thin brane limit are the ones associated with In this case
RagR*E~RynasRYNAB~w?£~4 which impliesg=2 inor-  the scalar projection of theu(w) component of Eqs(35)
der to have regular invariants fav—0. Since, from Eq. leads to the constraink’+2HW¥ =0 from which¥~a~?,
(32), B=2a, in Eq. (33) it must bea=1. As in the case of Using this constraint into the other dynamical equations to-
Eq. (21), Eq. (22) also has a secondinearly independent ~ gether with t_he background relatiori86) we get that the
solution for the lowest mass eigenvalue, namelyequation for¥ =a%2¥ is
z(w) f¥dx z 2(x) which has poles at infinity. In fact, a direct P
check shows that, at infinity, this quantity goesves?7*?! V' — g 9T — (a'?) V=0 37)
where, as usual, 18y=<1 for the convergence of the “ a 12 ’
Planck mass and of the curvature invariants at infinity.

The gauge-invariant techniques developed in the thicklence the integral which should converge is in this case
brane limit can be compared with what happens in the thif dwa(w) ~*, which never converges if the 4D Planck mass
brane limit. Indeed it has been shopi0,11] that the action is finite.
of Eq. (1) can be viewed as the thick version of a thin brane In conclusion, it has been demonstrated that under as-

B=2a, azsoizb‘:—;ﬁ(ﬁ—l). (32

action of the type sumptions(i)—(iv) the scalar and vector fluctuations of the
five-dimensional metric decouple from the wall. Heeding ex-
_ 5 =T o perimental testg7], the present results suggest that under the

Sthi“_f d>xV|G|[-R-A] assumptiongi)—(iv) no vector or scalar component of the

\ Newtonian potential at short distances should be expected.
M 44 TTaaBa wM 4 wN It is pleasure to thank M. E. Shaposhnikov and G. Ven-
Zf dpVlry* 2 X"0pX Gy (34 eziano for interesting discussions.
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