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A two-parameter family of spherically symmetric, static Lorentzian wormholes is obtained as the general
solution of the equatiom=p,=0, wherep=T;u'u!, p,=(T;;—3Tg;)u'u/, andu'u;=—1. This equation
characterizes a class of spacetimes which are “self-d(ial'the sense of electrogravity dualityThe class
includes the Schwarzschild black hole, a family of naked singularities, and a disjoint family of Lorentzian
wormholes, all of which have a vanishing scalar curvatiRe=0). The properties of these spacetimes are
discussed. Using isotropic coordinates we delineate clearly the domains of parameter space for which worm-
holes, nakedly singular spacetimes and the Schwarzschild black hole can be obtained. A model for the required
“exotic” stress-energy is discussed, and the notion of traversability for the wormholes is also examined.
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[. INTRODUCTION in the domain of fiction. At times, their simplicity makes us
believe that they just might exist in nature though we are
Traversable Lorentzian wormholes have been in vogugery far from actually seeing them in the real world of as-
ever since Morris, Thorne and Yurtseu®TY) [1] came up  trophysics. (For attempts towards astrophysical conse-
with the exciting possibility of constructing time machine quences segl0].)
models with these exotic objects. The seminal paper by Mor- This paper does not set out to solve the exotic matter
ris and Thorngd2] demonstrated that the matter required toproblem. On the contrary, it does have exotic matter as the
support such spacetimes necessarily violates the null energpurce once again. The obvious query would therefore be—
condition. This at first made people rather pessimistic abouvhat is actually new? The first novelty is related to the
their existence in the classical world. Semiclassical calculamethod of construction. Generally, a wormhole is con-
tions based on techniques of quantum fields in curved spacétructed by imposing the geometrical requirement on space-
time, as well as an old theorem due to Epstein, Glaser antime that there exists a throat but no horizon. This is however
Yaffe [3], raised hopes about the generation of such spacewt couched in terms of an equation restricting the stress-
times through quantum stresses. The Casimir effect was p@nergy.
to use by MTY themselves to justify their introduction of  Perhaps for the first time, we are proposing a specific
such spacetimes as a means of constructing model time megstriction on the form of the stress-energy that, when solv-
chines. ing the Einstein equations, automatically leads to a class of
In the last twelve years or so there have been innumerablormhole solutions. The characterization we have in mind
attempts at solving the so-called “exotic matter problem” in for our class of static self-dual wormholes is
wormhole physics.(For a detailed account of wormhole
physics up to 1995 see the book by Visé} For a slightly
later survey sed5].) Alternative theories of gravity6],
evolving (dynamic, time-dependentvormhole spacetimes
[7-9] with varying definitions of the throat have been tried wherep andp, are respectively the energy density measured
out as possible avenues of resolution. by a static observer and the convergence density felt by a
Despite multiple efforts, all these spacetimes still remaintimelike congruence(Applying both of these conditions,
plus the Einstein equations, impli€&=0.) It is remarkable
that the general solutiofil1] of this equation automatically

p=p=0, @
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energy density nor geodesic convergence. This, in turn, leads (a) A no-horizoncondition— e?? has no zerog.The func-

to the fact that the general spacetime will be a modificatiortion ¢(r) is called the red-shift functioh.

of the Schwarzschild solution, which would be contained in  (b) A wormhole shape conditior-b(r =bg) =by; with

the general solution of Eq1) as a special case. Portions of b(r)/r<1(Vr=bg). [b(r) is called the wormhole shape
the general solution space are interpreted as wormhole spadenction|

times with the throat given by the well known Schwarzschild  (c) Asymptotic flatnessb(r)/r—0 asr—oe.

radius, which no longer defines the horizon. Indeed E&y. These features provide a minimum set of conditions
uniquely characterizes a class of “self-dual” static wormholewhich lead, through an analysis of the embedding of the
spacetimes which contains the Schwarzschild solution. Thepacelike slice in a Euclidean space, to a geometry featuring
notion of duality we have in mind involves the interchangetwo asymptotic regions connected by a bridge. Topologically
of the active and passive electric parts of the Riemann tensatifferent configurations where we only have one asymptotic
(termed aselectrogravity duality. This duality, which leaves region was the origin of the name “wormhole” in the man-
the vacuum Einstein equation invariant, was defined by on@er of Wheeler. It is well knowifi2,4] that these conditions

of the present authors ifl2]. Electrogravity duality essen- lead to the requirement that the stress-energy which supports
tially implies the interchange of the Ricci and Einstein ten-the wormhole violates the null energy conditi¢end even
sors. For vanishing Ricci scalar, these two tensors become averaged null energy conditiol8,9].

equal and the corresponding solutions could therefore be Amongst examples, the simplest is of course the spatial-
called self-dualin this sense. Under the duality transforma- Schwarzschild wormhole defined by the choige=0 and
tion, p and p, are interchanged indicating invariance of Eq. b(r)=2m. The horizon is(by fiaf) gotten rid of simply by

(1). Since energy densities vanish and yet the spacetime ishoosinggy,=—1 and the wormhole shape is retained by
not entirely empty, the matter distribution would naturally choosingb(r)=2m. This geometry would of course be con-
have to be exotidviolating all the energy conditionB4]).  tained in the general solution of E@¢l). Many other ex-
Physically, the existence of such spacetimes might bemples can be constructed. There is no general principle as
doubted because of this violation of the weak and null energguch to generate these wormholes—one might just “tailor-
conditions. Analogous to the spatial-Schwarzschild worm-make” them according to ones taste. If we demand that the
hole, for which goo=—1 and gy;=(1—2m/r)~*, these wormhole spacetime must contain the Schwarzschild space-
spacetimes have zero energy density but nonzero pressurésne, Eq.(1) completely and uniquely characterizes it.

The spatial-Schwarzschild wormhole is one specific particu-

lar solution of the equationp=0, p,=0, while here we

exhibit the most general solutida1]. A. General solution

Furthermore, on reWriting the line element in terms of In order to make a wormhole, we have to Specify or de-
iSOtrOpiC coordinates we realize the existence of all threQermine two functions. Genera"y one of them is Cho@n
classes of spherically symmetric spacetimes—namely thgat while the other is determined by implementing some
black holes, the wormholes and the nakedly singulaiphysical condition. In this paper, we have proposed @&j.
geometries—all within the framework of our general solu- a5 the equation for wormhole, which would imgh=0, and
tion. This happens through the understanding of the nature @fjace a constraint on the wormhole shape function. Alterna-
the spacetime for different domains of the two parameters tjvely, we could choose the shape function and solveRor
and A defined below. A detailed discussion on this is in- =g, The R=0 constraint will be a condition ob(r) and
cluded too. #(r) and its derivatives. In an earlier pagd3] ¢(r) was

The following section(ll) deals with all the above men- chosen and an appropridiér) (satisfying wormhole condi-
tioned aspects 0R=0 spacetimes. In the last sectidifl )  tjong) was obtained as a solution to tHR=0 constraint.
we offer our conclusions and remarks. We choose the metrigiere we do the opposite, first demape 0 and then solve
signature as{ + + +) and sec=1 unless otherwise stated. for R=0, which would determine botkp and b. Interest-

ingly, the most general solution of E¢l) automatically in-

Il. R=0 CHARACTERIZATION OF LORENTZIAN corporates the requirement of existence of a throat without
WORMHOLES horizon. This is thus a natural characterization of a Lorentz-

ian wormhole.
The Lorentzian wormholea la Morris and Thorne, is Defining the diagonal energy momentum tensor compo-

defined through the specification of two arbitrary functionsnents asTy,=p(r), T1;=7(r) and T,,=Ta=p(r) and us-
b(r) and¢(r) which appear in the following generic version ing the Einstein equations with the assumption of the line

of a spherically symmetric, static line element: element given above we find that
2 2¢(r) 442 dr 20492 P 2 (r) v 3)
=— r - i N=o-~ ">
d e dt<+ b(r)H (do“+sinrode). (2 p 87G 2
1_ R
r
H H “ ” 1 ¢, b
The properties ob(r) and ¢(r) which “make” a wormhole ()=o—x| ——+2—1-—||; (4
are[2,4]: 8wG| 3 r r
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1 b(r) b'r—b 1 Mk
0= 575 | 17| e e [ m o
, , r3l K+ 1——)
+¢’2+¢%—¥ ] (5) '
2ri(r—b) The weak p=0,p+7=0,p+p=0) and null p+7=0p

+p=0) energy conditions are both violated. We note that
(Note thatr as defined above is simply the radial pressurethe stress energy given above satisfiesT= —2p; which
p;, and differs by a minus sign from the conventions inobviously follows fromR=0=T=0. The violation of the
[2,4]. The symbolp is simply the transverse pressupg.) energy condition stems from the violation of the inequality
Implementing the conditiorp=p, (or, equivalentyR=T  p+7=0. The extent of the violation, caused by the31/

=0) we find the following equation: behavior of the relevant quantity, is large in the vicinity of
the throat. One does have a control paramegtexhich, can
, [2 b'r=b b’ be chosen to be very small in order to restrict the amount of
E+¢ +(F_2r(r—b)>§:r(r—b)’ (6)  violation.

The complete line element for the geometry discussed

above is
whereé= ¢’ and the prime denotes a derivative with respect

to r. Givenb(r) we can solve the above equation to obtain 5 2m\? ) dr?

¢. We note that the above equatignith a givenb) is a ds”=—| k A\ 1= —| di™+ =
nonlinear, first-order ordinary differential equation which is

known in mathematics as a Riccati equation. This equation is +r2(d6?+ sirf 6 dg?). (12

covariant under fractional linear transformations of the de- ) )
pendent variabldSL(2,R) symmetry. In principle Eq.(6)  Of course we could also consider the line element below
can be thought of as the “master” differential equation for (obtained by replacing by —\), which also hask=0:

all spherically symmetric, statiR=0 spacetimes, examples 2 a2
of which include the Schwarzschild and the Reissner- ds?= — ( K=\ A /1_ 2_m) dt2+ r
Nordstrom geometries. 1-2m/r

Now solving for p=0 clearly givesb=constant2m. 2 12 2
Then Eq.(6) simplifies to +r?(d6*+ it gde?). (13)

Note that these metrics only make sefisgconstructionfor
r=2m. So to really make the wormhole explicit we need
two coordinate patcheste(2m,»), and r,e(2m,»),
which we then have to sew togetherrat 2m. (And in this
particular case the geometry is smooth across the junction
provided we pick thet root on one side and the root on

the other side, in which case there is no thin shell contribu-

om) 2 ) ) . I . ;
PN /1_ T) , ) tion at the junction. This is not particularly obvious, and to

, &(2r—3m _
é +§2+F( r—2m)_0' (7)

It admits the most general solution given by

Yoo~ make this a little clearer, it is convenient to go to isotropic
coordinates, defined by
wherex and\ are constants of integration. 2
Clearly the Schwarzschild geometry is the special solu- r=rl 1+ m_ _ (14)
tion for whichR;; =0, to which the general solution reduces 2r

when k=0. This shows that the Schwarzschild solution is

contained in the above general solution. It also contains th&ince the space part of the metric for the general solution
spatial-Schwarzschild wormhole withy,=—1 whenx=0.  [Ed. (12) or Eq. (13)] is identical to the space part of the
The solution then admits no horizon but there is a wormholéSchwarzschild geometry we can use exactly the same trans-

throat atr =2m. We thus have a Lorentzian wormhole. formation for going from curvature coordinates to isotropic
The components of the energy momentum tensor for thi§oordinates as was used for Schwarzschild itself. Then it is
geometry turn out to be easy to see that
2 4
. 1-m/2r m
p=0; ©) ds?=—{ k+\ dt2+ | 1+ —|
1+m/2r 2r
1 2mk _ 10 X[dr2+r2(d6?+sir?0 de?)]. (15)
T=— :
8mG 3 e /1- 2_m The space part of the geometry is invariant under inversion
r r—m?/(4r).
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The advantage of isotropic coordinates is that in almost Ssw
all cases a single coordinate patch covers the entire geom-

etry, r=0 is the second asymptotically flat region. Indeed
whenever the geometry is such that it can be interpreted as a
Lorentzian wormhole then the isotropic coordinate patch is a
global coordinate patch(This is not a general result; it
works for the class of geometries in our general solution SBH
[Egs.(12), (13), or (15)] because the space part of the metric
is identical to Schwarzschilg.

We now have a single global coordinate patch for the
(alleged traversable wormhole, and use it to discuss the
properties of the geometiyve always taken>0 since oth-
erwise there is an unavoidable naked singularity in the space
part of the metric, regardless of the values\odnd «):

(1) The geometry is invariant under simultaneous sign flip FIG. 1. The solution space showing different regions represent-
N —\ k- — " it is also invariant under simultaneous in- ing naked singularities, wormholes and black holes. Here

SBH

= = . i =Zsinf and A =Z cosé. N: Naked singularities; W: Wormholes;
versionr—m /(4r) and sign reversak— —\ (keeping « SBH: Schwarzschild black hole; SSW: spatial Schwarzschild
fixed). wormhole; Sp1,2: Special solutions.

(2) k=0\#0 is the Schwarzschild geometry; it is non-
traversable(This is also an example of a case where even

3
the isotropic coordinate system does not cover the entire r=— 128 _ rmr ; (21)
manifold) 87G (2r+m)5{—gy
(3) A\=0,k#0 is the spatial-Schwarzschild traversable
\évormhole.(AtEd he;e cIearI}; t}hde isotropic coordinate system ) 64 emr3 o)
oes cover the entire manifojd. p= — :
(4) A\=0,k=0 is singular. 87G (2r+m)®\—gy

(5) At the throatgy(r=2m)=—«?, so k#0 is required
to ensure traversability.

(6) Is there ever a “horizon”? This requires a little analy-
Sis.

explicitly showing thatg,;— 0 is a naked curvature singular-
ity. To reiterate, this curvature singularity forms if

A horizon would seem to form iy, has a zero, that is if A “~o. (23)
there is a physically valid solution to N+ K
k(1+m/2r)+\(1—m/2r)=0. (16)  This occurs if either
Solving this equation we obtain A+ x>0 and  A—«k>0; (24)
. MAN—«K (17) or
I’H = .
2 N+
“ AN+xk<0  and  A—«<O. (25)
That is, a horizon tries to fornthough typically not at the ) ) ) )
throay if Outside of these regions the curvature singularity does not
form, thegy; component of the metric never goes to zero, and
N—«k we have a traversable wormhole.
ey (18) To summarize: Thec—\ plane has the following struc-

ture (let x run up the vertical axis; and define=Z cosé,
Unfortunately, this “would be horizon” is actually a naked x=Zsiné, see Fig. I

singularity. To see this we calculate 0=0 (the +\ axis): Schwarzschild spacetime.
0 e (0,7/4) naked singularity.
128 kmr3 19 6= m/4 special; see below.
== — — ; 0 (w/4,37/4) traversable wormhole;
871G 5 _
72 (2r+mP(2Lk+AJr+{x=N]m) 0= /2 (the + k axi9) is the spatial-Schwarzschild worm-
— hole.
. 64 kmr _ 6=3m/4 special; see below.
P 871G (2r+m)%(2[k+N]r +[xk—A]m) (20 0 e (3w/4,m) naked singularity.

6=a(—\ axis): Schwarzschild spacetime.

0> 1r: repeat the previous diagram in the lower half plane.
and notice that the radial and transverse pressure both diet us now look at the two special cases:
verge agy;;— 0. In fact it is better to rewrite the above as 0= mw/4=\= k. The geometry is
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26 |2 m\* _ _ and #2=gy(r)x%r we obtain the differential equation for
ds?=— dt?+| 1+ —] [dr?+r?(d6? the functiong(r):
1+m/2r 2r
. 1 2 1 (B)’ 29
+sirf 0 de?)]. (26) Zarel s 22 1290 5.
AgO+ AI’+ZB A gO I'Z UgO 0. (33)

Ther—0 region is not fIat(Spac_e is asymptotically flat,

but spacetime is not sinagg;—0 asr—0.)
0=3m/4=\=— k. The geometry is

With go(r)=a/+r the above equation results in a constraint
on the parametera and o oa*= —9/4, to leading order in

1/r.
mir |2 m\4 The components of the energy momentum tensor are
K —_
ds?=— dt?+| 1+ =] [dr?+r%(d 6? (4.2 .2 1
1+m/2r 2r 1 |9 9" o

P=Too=g 5| 2a T2 T5% | (34)

+sirf 6 de?)]. (27 i r ]

— [ 12 2 T

Ther —oo region is not flat(Space is asymptotically flat, - 1 190 B Y0 9 6.
o : — =Tu=g—©=|l5x 2 &% | (39

but spacetime is not sin@g;—0 asr—.) 87G| 2A 2 677 |

Other interesting features are ,

— =Too=Tasm———| — ﬁ_f 6

Gu(r=2)=—(k+1)>2 (29) P=122=Ts"g G| " 2a 6% (36

P _ _ 2
9ul(r=0)=~(xk=M)" (29 Assuming that in the asymptotic regid(r)—1 andgq(r)

That is, time runs at different rates in the two asymptotic_”’;‘/‘/FWe get

regions. If we try to reconnect the other side of the wormhole
back to our own universe we get a “locally static” wormhole ~—:
in the sense of Froloj{/14] and Novikov[15]. 327Gr?

2 2

3a? a®?
167Gr3’ P 327Gr3’

a

(37

From the Einstein tensor for the wormhole, takinigrge, we
obtain the exact resufi=0 and the approximations
We now move on briefly to the generation of the stress

B. Matter fields

energy for the two-parameter asymptotically flat wormhole 1 2mk 1 Mk
in 3+ 1 dimensions(The two parameters areand.) As is C-yere ] ERN S yrey It b
well known, the energy-momentum tensor which acts as a TR T L) 38)

source for the Schwarzschild spacetime with a global mono-

pole can be generated through a triplet of scalar fiedds  of course, the above stress-energy does not match with the
self-interacting via a Higgs potentigl6]. The Lagrangian one generated from the scalar field. To match things we add

for this is an exoticdust distribution given by
L :}g Uﬂbd’a&]}(ﬁa"' Eg( ¢a¢a_ 772)2. (30) 1 3a2
scalar 2 Juv 4 pd:_%ﬁ; Td:pdzo- (39)

. r . . . a
8h0f0?'r;%/r 3\/ m?]nopﬁlerhtketh f'?ld ircc()jnfl?ruratlor:]¢r iNotice that this stress energy explicitly violates the energy
= nf(r) € can generate e required Sress energy Iy, qiions. The scalar field with a sextic interaction im-

:chf Le:?]lorll/l i\;ll/a){ ;robm ttr?ie r(;org Ior/vittne Tr(imlort)@fherel ; mersed in this dust distribution can give rise to the matter
(r)=1]. Motivated by this mode a triplet of scalar gy qqq energy required for our wormhole, in the lardjenit.

f|eId_s, we make an att_empt to genera.te onigndp W't.hOUt. For all parameters to exactly match we would require
making any contribution tg as required by the Einstein

tensor for the line element of the general wormhole dis- a2 me
cussed in the previous subsecti@hA). To this end, we —= .
. . . . . 4 N+«
introduce a Lagrangian with a triplet® given by

(40)

1 1 Thus, in the large region one can obtain the stresses which
_- WAy Ay a,a\3 generate the metric by using the above scalar field model
Lscala=5 und" Y7 0"+ g o (Y47 S immersed in a dust distribution of negative energy density.
In closing this section we remind the reader that viola-
Assuming a general metric of the form tions of the energy conditions, though certainly present in
wormhole spacetimes, cannot be uggden our current un-
ds?=—B(r)dt?+A(r)dr?+r?(d >+ sirf0de?), (32)  derstanding of physigsto automatically rule out wormhole
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geometries. Indeed over the last few years the catalogue éfame moving with a radial velocity. (For details se¢4],
physical situations in which the energy conditions are knowrpp 137-143\. For our geometry these constraints turn out to
to be violated has been growifgj7]. There are quite reason- be

able looking classical systenason-minimally coupled scalar

fields) for which all the energy conditiongncluding the null 1 A 2GM/c2
energy conditiopare violated; and which lead to wormhole — < — ; (44
geometrieg18,19. In certain branches of physics, most no- 32 v+ av—1| 1 lightyear
tably braneworld scenarios based on some form of the
Randall-Sundrum ansatz, violations of the energy conditions 1 ANr—1 2G6M/c2\ ?
are now so ubiquitous as to be completely mainstrE20h = < : (45)
Attitudes regarding the energy conditions are changing, and v k-1 10° km
their violation(even their classical violations no longer the
anathema it has been in the past. y2 1 Ar—1 (0)2 2GM/c2\? .
_ | — g S —
2 3 kfv+afr—1 \¢C 10° km

C. Traversability

In the asymptotically flat (3-1)-dimensional spacetime where v=r/(2m). In particular »=1 (we are now using
discussed in subsectigti A) we have three parameters: the Schwarzschild coordinates ang=1 is the throat of the
mass parameter ffor, in dimensionful units M/c?) and  wormhole.
the two wormhole parameters (this gets rid of the horizon Picking values of» andv we can calculate the acceptable
and “makes” the geometry a wormhogland\. In order to  range of values for the parametens«, and\ which appear
obtain values for each of these or appropriate ratios, we us@ the line element. This would determine for us theual
the well-known traversability constraints discussed by Mor-geometry of a macroscopic traversable wormhole without
ris and Thornd2]. any unknown, to-be-determined constants. As an example we

The first constraint as mentioned in MT is related to thechooser=1 (at the throat of the wormholeAssumingr
acceleration felt by the traveller. Since humans are used te:2m=10° km we find thatx/\=10°y and y*B8%<2, im-
feeling acceleration of ordege (earth gravity we have to  plying 8< /2/3. One can obtain similar bounds by assuming

ensure this in the trip. The constraint turns out to be other values for the throat radius.
d(ye®)| ge 1
-® sS—~T—. 41 I1l. CONCLUSIONS
€ dl c2 lightyear (42)

Let us now summarize the results obtained. We set out

For a traveller moving through the wormhole from one uni—With .the goal'of'obtaining wormholes through a certain geo-
verse to another we must also ensure that the tidal forced Stric Prescription. TO this end we Pm_posf?é pt=0_as t_he
which he has to endure should not crush himp lis the characterizing equation on the spacetifwhich also implies

radial velocity of the travellefwhom we assume to be of R0 [-€-p=p¢, and, equivalently, traceless stress engrgy

height 2 m), the tidal forces are related to the projections ofzh; SSZ?\F/)i?]gfo[Egting:l)s(Ji)n;]S d?f?é?émiigleiqbuya:igi ?grn?éggg
he Ri I he locally L 2
the Riemann tensor components along the locally Orentzondition we obtain the red-shift functiog(r). The result-

frame moving with the traveller. The constraints as outlined*°Nd ;
by MT are given as ing line element represents a two-parameter family of geom-

etries which contains Lorentzian wormholes, naked singu-
larities, and the Schwarzschild black hole. Using isotropic
coordinates we subsequently displayed the full structure of
the solution space of the relevant equations, discussing the

2

Al

2r

|R202d = +2(r—b)d>’}

ol

b
'Rwld:’(l_F)(_@” 2r<r—b>q”_®/2)
domains ink-\ parameter space for which these geometries
- 9% _ 1 _ 1 42 arise.
X2 m (10° cm)?2 (10° km)?’ ‘The matter stress energy for the=0 solutions is ob-
tained thereafter through a model with a triplet scalar field in
a sextic potential, superimposed upon a dust distribution of
v\? , b negative energy density. Finally the traversability constraints
b’ T are written down and analyzed.
Our aim in this paper has been to provide a prescription
e 1 1 . for obtaining wormholes. We have proposed one such pre-
< = = . scription which is characterized by the equatjos p,=0.
X2 m (10° cm? (10° km)? This would implyR=0. One can also generalize this further
and look into the solution space of similar characterizing
The above Riemann tensor components are obtained hgquations or relations which yield wormholes and other so-
transforming those in the tetrdffame basis attached to the lutions. Additionally, instead oR=0 one might want to ob-
Schwarzschild coordinate system to those in a local Lorenttain constant curvature wormholes which belong to the class

064004-6



R=0 SPACETIMES AND SELF-DUAL LORENTZIAN WORMHOLES PHYSICAL REVIEW D 65 064004

of spaces known as Einstein spaces. Future work along thesearked change in attitude towards the energy conditions.
lines, will, hopefully shed light on these features in greaterAttitudes now tend to be more accommodating and liberal.
detail.
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