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Linear constraints from generally covariant systems with quadratic constraints

Merced Montesinds
Departamento de Bica, Centro de Investigaaioy de Estudios Avanzados del I.P.N., Av. I.P.N. No. 2508,
07000 Ciudad de Néco, Mexico

JoseDavid Vergard
Instituto de Ciencias Nucleares, Universidad Nacional Aotoa de Mgico, 70-543, Ciudad de Mo, Meico
(Received 19 March 2001; published 5 February 2002

How to make compatible both boundary and gauge conditions for generally covariant theories using the
gauge symmetry generated by first class constraints is studied. This approach efinfilogauge transfor-
mations in contrast with previous works which use infinitesimal ones. Two kinds of variational principles are
taken into account; the first one features non-gauge-invariant actions whereas the second includes fully gauge-
invariant actions. Furthermore, it is shown that it is possible to rewrite fully gauge-invariant actions featuring
first class constraints quadratic in the momenta into first class constraints linear in the m¢anenkemo-
geneous in some cagedue to the full gauge invariance of their actions. This shows that the gauge symmetry
present in generally covariant theories having first class constraints quadratic in the momenta is not of a
different kind with respect to the one of theories with first class constraints linear in the momenta if fully
gauge-invariant actions are taken into account for the former theories. These ideas are implemented for the
parametrized relativistic free particle, parametrized harmonic oscillator, an8Lif#R) model.
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[. INTRODUCTION gauge symmetry is required. In this way, the procedure here
presented can be useful in the analysis of gauge-invariant
The compatibility of both gauge and boundary conditionssystems with nontrivial topological spaces or in systems with
for gauge theories is a key point that must be satisfied teingular boundary conditions. That is whigite gauge trans-
have a well-defined dynamics. It could happen that thdormations are really important.
boundary conditions chosen for a certain action were incom- To implement in the action the finite gauge transforma-
patible with the choice made to fix the gauge freedom of theions, two kinds of variational principles are analyzed: the
system. If this were the case, both gauge and boundary coffirst one features non-gauge-invariant actions whereas the
ditions could be made compatible using the infinitesimalones of the second are fully gauge invariant.
gauge symmetry generated by the first class constriints The first type of variational principle based on non-gauge-
It is important to recall that the gauge transformation associinvariant actions is conceptually the finite extension of the
ated with the first class constraints is not a sufficient condimethod of Ref[1]. Like there, the transversality condition is
tion to achieve that goal; an extra input is needed: the transaot necessary in the case of noncanonical gauges but is
versality condition, which precisely allows the use of theneeded if algebraic gauge conditions are taken into account.
gauge transformation in the method. The infinitesimal proceEven though “gauge-invariant” actions are used in Réf,
dure is completely systematic, being easily generalized tthe meaning of gauge invariance adopted there is not the
field theory[2]. However, is there any difference if finite standard one. So, strictly speaking, variational principles
gauge transformations are taken into account? On one handith fully gauge-invariant actions were not considered there
they are really important in a nonperturbative treatment okither in their infinitesimal or finite versions.
the full symmetry of gauge systems which has relevance The second type of variational principle introduced here
both classically and quantum mechanically. On the otheincludes fully gauge-invariant actions, where gauge invari-
hand, the finite gauge transformations include the largeance has the usual meaning. Of course, the same issues con-
gauge transformations; these transformations are not comerning the transversality condition are those of R&f.for
nected to the identity, therefore their effects are not observethe same reasons that apply in that case. This second type of
by the infinitesimal procedure. So, for example, the applicavariational principle is analyzed in both its finite and infini-
tion of the infinitesimal procedure to ti®L(2,R) model im-  tesimal versions. Finally, these two kinds of variational prin-
plies that its diffeomorphism constraifiinear and homoge- ciples are applied to the parametrized relativistic free par-
neous in the momenkaloes not contribute to the boundary ticle, parametrized harmonic oscillator, and tB&(2R)
term. However, the finite approach developed here showmodel with two noncommuting Hamiltonian constraints in-
that it really does contribute to it. Obviously, this contribu- troduced in Ref[3]. This is the first result of the paper dis-
tion cannot be neglected if a complete analysis of the fulplayed in detail in Sec. Il.
The second point analyzed here is deeper. Generally co-
variant theories usually have first class constraints quadratic
*Electronic address: merced@fis.cinvestav.mx in the momenta. Examples per excellence of these kinds of
"Electronic address: vergara@nuclecu.unam.mx theories are general relativity and string theory as well as
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many toy models with finite degrees of freedom found in theTherefore the system h&=N—M continuous physical de-
literature. It should be expected that their Hamiltonian acgrees of freedom (R in the reduced phase spac&he
tions were fully gauge invariant under the gauge symmetryboundary ternB(q,p,7) determines a complete set of com-
However, this is not so, rather, the gauge transformed actionsiuting variableQ'(q,p, 7) fixed at the end points; andr,,

of these theories are equal to the original ones plus boundary

terms because of the Hamiltonian constraints quadratic in the QA(7a),P(74), 7a]=Q,, =12,
momenta. Therefore one usually handles gauge theories o
coming from nonfully gauge-invariant actions which is an {Q'.Q'}=0 (atequal's). ()]

ugly situation from the point of view of gauge theories. In . ) .
this paper gauge symmetry is taken seriously and variationd|n€S€ commuting variables are equal in number agjthe
principles with fully gauge-invariant actions are constructed(‘completeness] and could be, for instance, tigs them-

by adding suitable boundary terms to the non-gaugeSelves Q'=q’) or any other combination ofi's and p's
invariant actions. By introducing these boundary terms intgSatisfying the commutation condition in the Poisson brackets
the integral the quadratic constraints are modified in a nic§ense. The relationship between these variables and the
way: they become linear in the momertend homogeneous boundary term is given by

in some casegsn the new canonical variable(,P;) natu- i B i

rally induced by the boundary terms, which is a beautiful Pidd —Hgd7— 6B=P;6Q —HedT, )

result just coming from the full gauge invariance of theirwhere theP's are the momenta conjugate to 1@s, andHg

actions. Thus first class constraints quadratic in the momenta o new extended Hamiltonian. Taking independent varia-
are not the distinguishing mark of generally covariant theo- tions ofq', p;, andr yields
il |

ries if fully gauge-invariant actions are taken into account

(cf. Ref.[4]). This result raises the question: what then is a JB JQi

Hamiltonian constraint? If generally covariant systems en- pi— — —P;—=0,

dowed with fully gauge-invariant actions and first class con- aq' aq'

straints quadratic in the momenta can be written in terms of :

first class constraints linear in the momenta like Yang-Mills 19_QJ E—O

theories, then how does one distinguish a genuine Yang- Vop, " ap;

Mills-like theory from one coming from a “linearization” in _

the sense explained of a generally covariant system? Does it B Q!

make sense to distinguish both types of theories just by the He—He— or FPFO, ®)

form that momenta enter in their constraints? Even though it

is not possible to give a definitive answer to these questionghich establish the relationship between the new phase
from the present result, it is hoped that it can contribute tospace variablesq',P;) with the initial ones ¢',p;). There is
make clear the meaning of Hamiltonian constraints in generno uniqueness in the solution of these equations, in a similar
ally covariant systems. In particular, the transformation ofway to the fact that a canonical transformation can be ob-
the constraints could be useful to find in some cases a newined using different generating functions.

set of solutions of physical states through the Dirac condition

G.(Q',P)|¥)=0. This constitutes the second result of the Il COMPATIBILITY BETWEEN BOUNDARY AND
present paper displayed in detail in Sec. Ill. Finally, our con-  5AUGE CONDITIONS USING FINITE GAUGE
clusions are presented in Sec. IV. TRANSEORMATIONS

Let us begin by recalling the canonical transformation in-
duced when a boundary term is present, because this is the 1. Non-gauge-invariant actions

heart of the methods used in the paper. From now on, itis |t \as stated in the Introduction that this variational prin-
considered a generally covariant system determined by afpje featuring finite gauge transformations is, essentially, the

action of the form(5] finite version of the approach of Refl] based on non-
gauge-invariant actions. From a technical perspective the
. T2 . . - -
Sq',p; )\a]:J’ dr(pig—Hg) —B|?2, i=1,...N only remark is that the interplay between first class con-
R n ' ' I straints linear and homogeneous in the momenta and qua-

(1) dratic (or highep in the momenta could imply a contribution
to the boundary term of the former if finite gauge transfor-
whereHg=H+\?G, is the extended HamiltoniaiG® are  mations are taken into accoufsee the example of the
first class constraints, anH, is the canonical first class S|1(2R) model in this sectioh This is a key difference be-
Hamiltonian, tween the infinitesimal and finite versions because in the
infinitesimal approach constraints linear and homogeneous in
{Ga,Gp}=Cap“Ge, the momenta never contribute to boundary terms.
To be precise, this method is an analogue to the one in
{Ho,Ga}=V,"Gy, Ref.[1]. There, authors use a “hybrid” variational principle
because the action and the boundary conditions are ex-
a,b,c=1,... M. (2 pressed in terms of the original set of variables, however, the
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right gauge condition is expressed in terms of the gauge 2. Fully gauge-invariant actions

related ones. Here, on the other hand, the standard procedure o getajled description of this second type of variational
is followed, nam_e'ly, the actlpn, the boundary conditions, anqarinciple, introduced here for the first time, both in its finite
the gauge condition are written in terms of tb@meset of -4 infinitesimal versions follows.

canonical variables: the gauge related ones. Before going to (i) Finite case. Knowing that the actid) of any gener-

the description of the method, iboundary conditiéBsand 51y covariant system transforms in the generic case like Eq.
algebraic gauge conditiong,(q',pi)=0 are assumed not (7) the goal is to build a new actio,, such that it trans-
compatible to each other. Then, using the finite gauge symg, s ke

metry

ri 1if i ’ ’ i S ri, { 1)\’a =9 i, _,)\a ’ (12)
q I:q I(qupi,aa)’ pi :pi(ql'pi,aa)’ (6) mv[q pl ] Snv[q pl ]
under the finite gauge transformation. The weak expression
f'12) means that the gauge invariance of the action is required
‘only until a boundary term proportional to the constraints. It
is proposed folS;,, the form

generated by the first class constraints and the finite transfo
mation law for the Lagrange multipliers, the gauge trans
formed action(1) is computed,

S[q,i!pi,!)\,a]:S[qiipil)\a]+AS(qi!pi’aa)|:i' (7) Sinv[qi:piv)\a]%s[qivpi1)\a]_F(qivpi)|T2
1

Therefore, the original actiofll) can be expressed in terms =S [Q', P\, (13
of the gauge related variables and the gauge parameters

whereF is a function of the canonical variables and the last
Sa'.pi A =9q " p/ A2 equality is useful to remark that the acti¢tB) is subject to
o, . the boundary conditions
—AS[A'(a"p! a®),ai(a"lp] 1a®),a%]| 2,

ii,i,T To)= ia, 14
® Q'(d',pi,7)(7,)=Q (14)

determined by Eq(5) but with B replaced byB+F. Of
course, it is always possible to add an arbitrary function of
Dirac observable® s, {Ophys:Ga} =04 bOphyS to the time
boundary in the RHS of Eq(13) which would allow the
introduction ofad hocboundary conditions.

If the gauge condition is not compatible with Ed.4),
i a N a DN B then it can be imposed in the gauge related variatil€
Qla'(q.pi.a%),pi(q.p @), 7)(1,)=Q,, a=12. fixing the gauge parameters to E@.1). Again, the varia-

(9) tional principle is defined in terms of the gauge related vari-

ables, its action is simply E@13) but written in terms of the

In this way, the variational principle defined in terms of the gayge related canonical variables, under the boundary condi-
gauge related variables, formed with the acti8hand the  tjons

boundary conditiong9), has a certain freedom encoded in

the gauge parametetg'. The goal is to use this freedom to o, e Al i

make compatible both boundary and gauge conditions. In the QU(a’pi (1) =F1Q4,0'(7a),Pi(7a) Tl
gauge related variables, the gauge condition is

obtained by plugging into the boundary tet$ of Eq. (7)
the inverse transformation of E(6). At the same time, the
original boundary condition&3) must be rewritten by insert-
ing into the left-hand sideLHS) of Eq. (3) the inverse trans-
formation of Eq.(6),

(15

obtained by inserting into the LHS of E¢L4) both Eq.(11)
and the inverse gauge transformation of E). Notice that
it is not necessary to insert E¢l1) into Eq. (13) because
_ . _ such action is already gauge invariant. This is a key differ-
Inserting Eq.(6) into Eq. (10) fixes the gauge parameters  gnce hetween the variational principle with non-gauge-
_ invariant actions and the current one. Thus the fixed gauge
a®=a®(q',p;). (1) parameterq1l) are inserted just into the boundary condi-
tions. Moreover, Eqg.14) and(15) have the same functional
The remaining task is to plug Eqll) into the right-hand form in their LHS, the only difference between them is the
side (RHS) of Eq. (8) and the LHS of Eq(9) to obtain a value they take in their RHS. Again;(7,), andp;(7,) play
well-defined variational principle with both boundary and the role of parameters. Finally, it is not possible to determine
gauge conditions compatible to each other. Like in the infini-the explicit form forF in the generic case. However, it is
tesimal caseq'(7,) andp;(7,) play the role of parameters. possible to write down the differential equations tRatnust
Of course, the transversality condition has been assumedatisfy in the infinitesimal approach.
which is not necessary if noncanonical gauges are taken into (ii) Infinitesimal case. Knowing that Eql) transforms
account. infinitesimally like

xa(q''p/)=0. (10)
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) 1dé
, )\./_

=\ 3ae (22

Ny . G
S'la'pi A =9q",pi AT+ pi&—p_—G—{B,G})
I 2t
(16 with 0(s) an arbitrary function os. Now suppose the gauge

and F transforms as'=F+{F,G}, then F must weakly ~condition

satisfy the set of differential equations x0=0 (23)

pi ﬁm{B—{— F,G}, (17 were picked. This gauge condition did not match the bound-

Ipi ary conditiong19) if x°+0 and then the dynamical problem
would be in trouble. This conflict can be solved applying the
general scheme already explained. To do this, note that under
the gauge symmetry given by Eqg1), (22) the action(18)
transforms like

with G=€2G,, € being the infinitesimal gauge parameters,
then in Eq.(17) there areM differential equations forF.
Notice the interplay betweeR and B, in particularB=0
when the configuration variableg are fixed at the time
boundary ¢, and 7,) in variational principles with non-
gauge-invariant actions. In this casejs completely deter- S[X”fp,'t AN ]=8[x*,p, N+
mined by the explicit form of the first class constraints. If s

some of them were linear and homogeneous in the momenta (24
then they would not contribute t, as it happens in Yang-

Mills theories. However, if the constraints are quadrétic ~ The boundary termAS=(p*p,—m?c?)(6/2) comes from
highep in the momenta they will contribute fe. Therefore it ~ the fact tha(G is quadratic in the momenta. Notice thi8$ is

is only possible to build fully gauge-invariant actions at leastnot proportional toG and soSis not gauge invariant even on
infinitesimally by solving Eq.(17) and is not necessary to the constraint surfaceThus the original actiori18) can be
add new variablegenlarging the phase spade build fully  expressed in terms of the gauge related variabte$ 0.)
gauge-invariant actions, as it is argued in RE§]. The the Lagrange multiplieh’, and the gauge parametey
present formalism is completely systematic and could be eas-
ily extended to field theory with the obvious modifications f s » 20
and compared with the known results for self-dual gravity — SIX*.P. MN=SX%p, A =] (p"*p,—m )5
[2] and bosonic string theorly7] on this direction. Finally, 51
the issues concerning the transversality condition are those

of Ref.[1] for the same reasons that apply in that case.

S2

(p“p,,— mzcz)i

S2

(25

The RHS of the last expression telx*,p,,\] can be
considered a functional of the gauge related variables

A. Parametrized relativistic free particle X * p;,)\’, and 6. Also, the original boundary conditions

1. Non-gauge-invariant action (19) must be written in terms of the gauge related variables
The action for a parametrized relativistic free particle is XH(S,) — 0(S,) pH(S,) = X" 26)
s dx* I . . .
S[X“,p, ,)\]:f zds[—pﬂ—)\(p”p,ﬁ m?c?) |, It is time to set the right dynamical problem with boundary
s1 ds conditions compatible with the gauge condition. In the gauge

(18)  related variables, the gauge condition is

where the inner product is taken with respect to the x'0=0. (27)
Minkowski metric »,, with diag #,,=(—1,1,1,1), u

=0,1,2,3,s is an arbitrary parameteinot necessarily the By combining the gauge condition and EQ1) the gauge
proper timer) which parametrizes its world line. The stan- parameter is fixed,

dard boundary conditions for E¢L8) are

XH(s,)=xt, a=1,2, (19 f=——. (28)

with x4 prescribed numbers. The constraint . i .
The goal has been reached. The remaining task is to plug into

Gi=pHp,+ m2c2=0 (200  the RHS of Eq.(25 and into the LHS of Eq(26) last ex-
pression for the gauge parameter. By doing this the right
is first class and generates a finite gauge transformation o&ction,
the phase space variables

X' *=x*~+ 6(s)p*, p,’LZ Pus (21) 1in complex general relativity expressed in terms of Ashtekar vari-
ables the boundary term is proportional to the Hamiltonian con-
whereas the Lagrange multiplier transforms as straint. See Ref.2] for the details.
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X =0t N0 .p%): =[x p, A ' the time boundary of Eq(31) too without destroying the
Sred X 4 Pl N0 ) = SIX P M = — g0 gauge invariance o8,,, just modifying the boundary con-
— XA pl A ditions.
N Pu To find the new boundary conditions associated with the

action (31) the canonical transformation induced by its
boundary term will be used. By using E¢) the new phase
space variables,

0

+| (p'#pj,—mPc?)5
2
0

x
N
-

1
(29) Q¥=- Ep’*, Pu=BX, (33
are obtained, with@ a nonvanishing constant. Thus the
boundary conditions associated with Eg§1) are

[ E——)

1Xx;
- (p'*p,—m?*c?)5 —
{ . 2 p}

is obtained, under the boundary conditions

0

Xa
X"#(sq)+ p—opﬁzxﬁfy (30 Q#(Sa):_%pﬂ(sa)zgg_ (34)
which are, by construction, compatible with the gauge conit is immediately seen that the wanted gauge conditfn
dition (27). Herex*(s,)=x%, and p*#(s,)=p% which play = =0 does not conflict with these boundary conditions.
the role of “parameters” in the final actiof29).? In sum-
mary, the analysis began with a wrong variational principle B. Parametrized harmonic oscillator

where the boundary conditions were not compatible with the
gauge condition, and a right variational principle with
boundary conditions compatible with the gauge condition In this case, the original variational principle is defined by
was built. In the new variational principléi) a new action the action

including a boundary term was constructesge Eq.(29)];

1. Non-gauge-invariant action

(i) the boundary conditions were also modifigsee Eq.  (dx dt
Sx,t,p,pisAN]=| drl—p+p
(30 t " dr dr't
2. Fully gauge-invariant action 2
. . . . ) N pi+ + —mw?x? (35
Now, the original action will be fully gauge invariant un- 2
der the gauge symmetry generated by the consti@inn -
spite of the facthe constrainG is quadratic in the momenta. Under the standard boundary conditions
Ihxipsimplest boundary term needed to bufl, is F X(1,)=X,, t(r,)=t a=12, (36)
=Xx“p,,
with x, andt, prescribed numbers. The constraint
Sl X*,p, N ]= pM N(p¥p,+m*c?) 2 1
ds p
G:= pt+ — + ~Mw?x?=0, (37)

2
—x“pﬂ|zi. @y . .
is first class and generatesfinite gauge transformation on

In fact, by using the finite gauge transformatié2l) and  the phase space variable],
(22,

p x’=xcose(r)+m;:)5in6(r),
S X 4P N 1= S X, P, M= 5 (P4t m?e?) |2,

32) p’'=—mwxsind(7)+p coso(7),

6(7)

and the difference betweenSim,[x'“, pl’L,)\’] and t =
S X*,p,,\] is @ boundary term which iproportional to

the first class constrair®. ThereforeS,,, is gauge invariant

on the constraint surfac =0 only. Of course an arbitrary P =Pt (39)
function of the Dirac observables for the system o

F1(p,, ,x*p"—x"p*) might have beefiand can bpadded to whereas the Lagrange multiplier transforms as

6(7)
2 L . N =N+ , (39
From now on Kuchar’s notation is used, naméyy; - - (- - -) is w
a functional of the variables inside the square brackets and a func-
tion of the variables inside the parentheses. with 6(7)=d6(7)/dr.
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Again, suppose the gauge condition From the RHS of the last equation it is clear that
Sx,t,p,pi,A] can be considered a functional of
t=0 (40 x',t',p’,p{ ,\\', and@. At the same time, theriginal bound-

ary conditions(36) must be written in terms of the gauge

were picked. Obviously, it did not match the boundary Con_related variables and the gauge paraméter

ditions(36) if t,#0. It is time to apply the method. By using
the finite gauge transformatiori38), (39) the action(35)
transforms like

P (Ta)sin 0(7,)=X,,
w

x'(7,) cosO(t,)—

SIx',t,p,p N T1=9[X,t,p,pr N+

—sirfoxp o) o(r,) t
TCY - w = a

72

1/p> 1, ,\sin20
+;(m‘zm‘°x 2 | a=1.2.
' (43

(41)

Again, the boundary termAS= —sirfgxp+(L/w)(p?2m |t is time to define the new variational principle whose
— 3mw?x?)(sin 20/2) comes from the quadratic in the mo- boundary conditions will be compatible with the required
menta term ofG. Note thatAS is not proportional toG.  gauge condition. In the gauge related variables, the gauge
Therefore condition is

t'=0. (44)
SIx.t,p,pe N ]=S[X 7, p,pf N ]| sirfox’p’

75 By using the transformation law for thevariable (38) to-
] gether with the required gauge conditiofd) the explicit
expression for the gauge parameter is obtaingd,— wt.
e The goal has been reached. A right variational principle with
(42 canonical pairsX’,p’) and ¢’,p;) can be built its action is

1<p'2 1 2,z)sinze
2

Srec{X,,t,,p,,pt, ,)\,](tl,tz)==S[X,t,p,pt 1)\:”0:—(»'[1

YA N N ; ’ ’ 1 p’2(72) 1 , Sln2wt2
:S[X |t PPt A ]_ S|nz(l)t2X (Tz)p (7'2)_Z<W—§mw2x 2(7-2) 5
; e L(p'%(r) 1, . |sin2ot
+|sirfwt; X' (11)p (Tl)_Z(W_Emw X' 2(r | (45)
|
under the boundary conditions Once the dynamical problem has been well defined,

there are still two remaining things to do. The first one is to
compute the gauge-fixed variational principle by plugging
into the action S{x’,t’,p’,p; ,A'1(t1,t,) and into the
boundary condition$46) the gauge condition’ =0 as well

!
TG’

sinwt,,=X,,,
w o [e3

p
x'(r,) coswt,+

t'(7,)=0, a=12, (46)  as the constrainG’=0. The second one is to solve the dy-
which are, by construction, compatible with the gauge con'@mics by using the equations of motion with the gauge
dition conditiont’ =0. Let us focus in the first option. By plugging
the gauge conditioh’ =0 and the constraing’ =0 into the
t'=0. (47 actionSdx',t’',p’,p; ,\"](t1,t2), the gauge-fixed action
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Sfixe([xrap,](tl1t2):SrE([X1t!p,!ptl !)\,](tlatZ)lG’:O,t’:Ov
=3X,t,P,Pt N g=—wt,c' =0t =0,

e dx T , , pAm) 1, sin 2wt,
_frldTFp - S|nz(1)t2X (TZ)D (7'2)_;(?_5”1(1) X ) 2
_ , , 1(p'%(r) 1, ., \sin2wt
+| sirfwty X' (71)p (Tl)—a( om Emw X"“(7q) 5 (48

is obtained. This form of the action is very interesting. It wherex’(r,) =X, andp’(7,)=po were used. It is clear that
contains a kinematical term like any action, but it has not aS(xq,pg;t;,t,) represents a two parameter family of physi-
Hamiltonian, rather, all its dynamical information has beencal (Dirac) observables on the reduced phase space labeled
mapped to its time boundary. Therefore it is natural to interby x, andpg; t; andt, being the parameters. Of course, Egs.
pret this result as the “canonical version” of the holographic (48) and (51) are the same thing but they look different be-
hypothesis in the sense that with this particular choice of theause it has not been inserted in E48) the fact—coming
gauge condition, its dynamics is now at the time boundaryfrom the equations of motion—that =x, andp’ =p,. Us-

[8]. In fact, there was a “reduction” of degrees of freedom; ing this information, Eq(48) acquires the forn{51). In ad-
before fixing the gauge the initial dynamical problem wasdition, the boundary conditions, of course, reduce to

defined on the closed st ,7,] whereas the final dynami-
cal problem is now defined on justo points, 7, and 7;. Of
course, the gauge-fixed variational principle has associated
the remaining boundary conditions,

Xo c05wta+ﬂsinwta=xa, a=1,2, (52
Mo

establishing a relationship between the initial and final data
[X1, X2, t1, andt,] and the physical stateg{ andpg) in the
reduced phase space, displaying the fact that dynamics of the
parametrized harmonic oscillator betweenand 7, is pure
Note that the number of boundary conditions has decreasegauge, namely, it corresponds to a poirg,(o) in the re-
Alternatively, the second option is to solve the equationgluced phase space for each set of initial and final data

of motion which are the original ones but witht,p,p;, and  (X1.X2,t3,t).
\ replaced by’ t’,p’,p;, and\’. Their solution, using the To find the explicit expressions for these observables in

!
[e3

(Ta)
” sinwt,=x,, a=12. (49

p
x'(r,) coswt,+

gauget’ =0, is terms of the original phase space variableg} and {,p;),
it is necessary to use the relationship between the original
X' =Xg, phase space variables,{,p,p;) and the gauge related ones
(x',t’",p’,p;) together with the expression for the gauge pa-
p'=po, rameterf= — wt. From them,
t'=0, X’=XCOSwt—iSinwt,
Mw
ps 1 .
pl=— ﬁ _ EmeX(Z” (50) p’ =mMwX Sinwt + p coswt. (53)

. _ But, because of Eq50), these two expressions fat andp’
with Xo, po constants £ independent and therefore they are  must be the same thing. Therefatg and p, are given by
Dirac observables. Inserting this solution into the acfié®), [10]

the termS[x’,t’,p’,p; ,A'] vanishes, and the only contribu-

tion is given by the boundary term p .
Xp=X COSwt— msmwt,

_ » 1(ph
S(X0,Poity,t2) = = Sty XoPo~ | 5 Po=MwX Sinwt+ p coswt, (54)
1, ,|Sin20t; - satisfying{xq,po} = 1. Computing Eq(54) att=0, it can be
2me XO) > |" sifwt; XoPo shown that these variables correspond to the initial condi-
5 . tions. Furthermore, considering the inverse transformation of
_ E(&_ Em zxz)s'n 2wty (51) Eqg. (54) it follows that dynamics of the system is expressed
w\2m 2?70 2 ' in terms of the initial conditions.
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2. Fully gauge-invariant action 1
2X _ ;
e“‘ecosw7, sinw7,
Mw

Now, the original action will be fully gauge invariant un- 1I x’ (=1
der the gauge symmetry generated by the first class con- N —(7e)=51n 2
straintG in spite of the facthat the constrain® is quadratic P evesinoT, +cosw,
in the momentump, p%2m. The simplest boundary term

needed to build,, is F=— ixp, t'(7,)=0, a=12, (62)

dx dt which are, by constructipn, cqmpatible \_/vith the gauge con-
—p+—p, dition (60). Therefore this variational principle based on a
dr™ dr fully gauge-invariant action is more “economic” than the

1 one based on a non-gauge-invariant action because in the
— Zxp|™ former it is not necessary to handle additional boundary
2N terms for the original action is already fully gauge invariant.
(55) Also, the boundary conditions in terms of the original vari-

ables and in terms of the gauge related ones look more

T2
Sinv[xvtvp-pt ,)\]Z J dr
T1

2
P 1 50
)\(pt-i- 2m+2mw X

Using Egs.(38) and(39), it is clear that “symmetric” [see Egs.(58) and (62)], the difference be-
o tween them being the value they take in their RHS.
S X"\t p" P N 1= S Xt P, P, A (56) Again, once the gauge conditions have been made com-

patible with the boundary conditions, there are still two re-
maining things to do. The first one is to compute the gauge-
fixed variational principle by plugging into the action and
into the boundary conditions the gauge condittos0 to-
gether with the constraire’=0. By doing this

Thus the actiorg,,, is indeed fully gauge invariant under the
finite gauge symmetry involved. Again, an arbitrary function
F1(p?/2m+ imw?x?) might have beertand can bpadded
to the time boundary of Eq55). However, Eq.(55) is the
simplest form. The boundary term in E(p5) induces the
canonical transformatios) from the original set of vari- _ ' n'= "' 0 N ler
2bIES & 1..p0) 10 the New SELE TP, P), Sixed X"P'1=Sin X", t",p",p¢ N ar=0tr =0

1 X — 2 _/ T In| T2
X=§In(6, P=xp, T=t, Pr=p;. (57 dedrp 2Xp|71’ (63

71

Therefore the boundary conditions associated with the actiol? the gauge-fixed action and its boundary conditions are
Sy are

2X 1 H
, e“‘ecosw?,— —sinw7,
1 1 mw
5ln (Ta)

1 (x
Sl 2| (r)=2,, t(r)=T, a=12, (58 .
2 (P)(Ta) a U “ 8 2 e?Yesinw7,+ coswT,

where a dimensional constant equals to 1 is understood. a=12. (64)
Again, suppose the gauge condition

This form of the action contains a kinetic term, as any action,
and it has not a Hamiltonian. Where is the dynamics con-

were picked, then it is pretty obvious that it would conflict ftalned. Obviously itis fully contained in the boundary terms,

" ! in a similar way to Eq.(54). Again, this result might be
the boundary condition&8) provided7,+ 0. Nevertheless, . . . )
the gauge cgndition car?sb; Iraeached ir?the gauge-related Valrllqterpreted as an implementation of the holographic hypoth-
ables, namely esis in the sense dynamics has been mapped to its time

t=0 (59

boundary(8].
t'=0. (60) Finally, it can be easily checked that the dynamics coming
from the last variational principle is the same as the one
By applying the method, the right action is coming from the equations of motion when the gauge con-

ditiont’ =0 is imposed, as was done in the noninvariant case
dx’ dt’ discussed in the previous subsection. It makes no sense to

i a—p/ =\’ repeat this computation.
dr P a7 Pt A

2
S0 A'1= [ "ar
71

" C. SL(2,R) model
1
)] 1. Non-gauge-invariant SI(2,R) model

x( pt’+;—m+ Emwzx'2
Up to here, generally covariant systems with a single

Hamiltonian constraint have been studied. Next, a model

— _x'n'|™ . . . . .
2X p |r1* (61) with two noncommuting Hamiltonian constraints and one
constraint linear and homogeneous in the momenta will be
under the boundary conditions analyzed. The nontrivial interplay among linear and qua-
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dratic constraints will produce a contribution to the boundary/ )’ N’ a B\[N N
term of the linear ones in direct opposition to what the in- N y s/\M -

finitesimal approach says.

This model has &L(2,R) gauge symmetry, one continu-
ous physical degree of freedom, and mimics the constraint

structure

{H,H}~D, {H,D}~H, {D,D}~D, (65
of general relativity. It can be considered astwo point9
discrete version of the Arnowitt-Deser-MisnékDM) for-

mulation of gravity. Readers are urged to read R&ffor the

details, in particular for a clear description of the relational

evolution of the degrees of freedom of the syst@m this
see also Ref§9-11]). Its Hamiltonian action is

S[J,J,ﬁ,;r,N,M,)\]=f “de[G-p+0-7— (NH,+MH,
71

+AD)], (66)
under the boundary conditions
Ur)=Us, v(1)=V,, a=12. (67

The canonical pairs arei(p), and @, ); each vector being
a two-dimensional real one, the scalar product is takegfin
N, M, and\ are Lagrange multipliers. The constraims,
H,, andD,

Hy=3(p*~0%)=0,
(69)

D:=u-p—v-7=0,

are first class, witlp?=p-p=(p,)%+(p,)?, and so on. The
constraint algebra is isomorphic to t84(2,R) Lie algebra

PHYSICAL REVIEW D 65 064002
6 —B a B
—y a) \y &

(71

M/

o B
>< . . )
-y
so, the matrix(71) transforms as a Yang-Mills connection

valued in the Lie algebra &6L(2,R) [3].
Now, suppose the gauge condition
ul=A, u’=B,

p.=C (72)

were picked. Obviously it did not match with the boundary

conditions(67) in general. Under théinite gauge transfor-
mation (69) and(71) the change of the actiof®6) is

s

Su',v.p 7 N .M’ \N1=9u,0,p,7N,M\]
+[(By)(u-p+uv-m)
+3(ay) (U2 +7?)
+3(BO) (WP +p*)] 2

(73

The boundary termAS=(B8y)(U-p+uv-m)+(ay)(U?
+7%) +3(B8) (v?+ p?) comes from the two noncommuting
Hamiltonian constraints. Alsa\S is not a linear combina-
tion of the first class constraints. More important, the term

(By)(ﬁ«|5+5-77r) is not present at the infinitesimal level.
This term is associated with the “diffeomorphism” con-
straintD, which is linear and homogeneous in the momenta
and so it does not contribute at tiidinitesimallevel. Nev-
ertheless, wheffinite gauge transformations are taken into
account, the contribution associated with this constraint ap-
pears again. Notice that if the two Hamiltonian constraints
were turned off, namely3=0 and y=0, then the action
would be gauge invariant as expected because the only re-
maining constraint would bB, which is linear and homoge-

and thefinite gauge transformation the constraints generate i§€0US in the momenta. Here, it will be taken into account the

(3]

W=a(n)u+B(np, ' =a(nm+p(nu,

p'=y(nu+d8(n)p, v'=y(r)m+8(1)v,

(69

where the matrix

a(7) ﬁ(T)) 70

G(T):(ym 5(7)

belongs to theSL(2,R) group, i.e., it satisfiesu(7)5(7)
—B(7)y(7)=1. So, the system is invariant undesa(2,R)
gauge symmetry local im. The finite transformation law for
the Lagrange multipliers is

full SL(2,R) gauge symmetry and not just only a subgroup
of it. By using again the finite gauge transformati@9) and
(71) the original action can be written as

Su,u,p,mN,MX]=Su’",v’,p’, 7 N M’ \']
—[=(By)(U'-p'+v"-7")
+3(yd)(U'+7'?)

+3aB) 0P+ A]7 (74

From the RHS of last expression it is clear that
Su,v,p,,N,M,\] can be interpreted as a functionaluwf

v, p, 7 N, M, \', a, B, v, andd. In the same way, it

is possible to rewrite theriginal boundary conditiong67)

in terms of the gauge related variables as well as of the gauge
parametersy, B, y, and &,
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S(r U (1) = B(7)P] (7,)=U,,, —ACW+(BC+0;,ut
o= :
(70" (1) = V(7o) T (1) =V, 77)
_ where O;,=u'p,—u?p; is a physical observablgs]. The
a=12; i=1.2 goal has been reached, i.e., it has been possible to build a

(79 variational principle where the canonical pairs atg,p’)

It is time to define the new variational principle whoseand @', 7'), its action is given by
boundary conditions will be compatible with the required T

gauge condition. This new variational principle is defined inSredU",v",p",7",N",M" N J[U'(7,),Pi(74)]
terms of the gauge related variableg ¢ ,p’,7'), given by eSO E B AN M

the RHS side of Eq(74), and its boundary conditions will be v P mNM Ml g5,
those given in Eq(75). In the gauge related variables, the

gauge condition is =S[G’,J’,5’,7?’,N’,M’,>\’]+

u'l=A, u’?=B, p;=C. (76)

(Bul—Auz)
012

X

ACp,—(BC+01)p1| -, NI 2
A0y, (u-p v~7r)T

The explicit expressions for the gauge parameters are com-
puted using Eq(69), (76) together witha 56— By=1,

1

[1(ACp2—(BC+012)p1)
a:ApZ_Bpl 2 AOz,
Op ~ACUW+(BC+Oput) - . =
X A0 (u'?+7'?)
_ Bu'-AW? 2 g
O 1/Ap,—Bpy|[BUul-AW| . . =
|| AP B AT Gy |
_ ACp,—(BC+01))p; 12 12 ™
AOy, ' and the boundary conditions are

1

. B u? , i
)(Ta)u”(Ta)_(o—lz)(Ta)pi (t)=U,,

(—ACu2+(BC+012)u1

AO,,
ACp,—(BC+017)py , Ap,—Bp,; y _ .
_( AOL, (Ta) i (7o) + o, (v (1)=V., a=12; i=12,
(79

which are, by construction, compatible with the gauge conditig.
Once the dynamical problem has been well defined, there are still two remaining things to do. The first one is to compute

the gauge-fixed variational principle by plugging into both the ac8gu’,v’,p’,7',N’,M’ X' J[u'(7,),pi(7,)] and into
the boundary condition&9) the gauge conditioki76) together with the first class constraints equal to zero. The second one is
to solve the dynamics by using the equations of motion and the gauge condi@oriet us focus on the first option. By

plugging the gauge conditiof¥6) and the first class constraints equal to zero into the aGighu’,v’,p’, 7' N’ M’ \']
X[u'(7,),pi(7,)], the gauge-fixed action

Sixed v/, U (7)1=Sed U077 N M N TIU (70) Pi( 7o) 1l .61 =0H2 =007 =0wr 1= A, 2=B.pl =C »

2
:j dr
71
ACp,—(BC+0yp)p| [ —ACUW+(BC+Oput) -, ]2 [(Ap,—Bp;

AO,, AO;, ™) O,

——m+

dvrl der )
dr 2

dr

( Bul—AuZ) (ACpQ—(BCJrOlz)pl
Oy, AOp,

)(25’.%’)} i

1

1

(80)

Bul—Auz) . 2}72
X| ———— 02|

012

71
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is obtained, under the boundary conditions . —ACO,;+0,503,+BC)
v't= ,
ACp,~ (BC+Osp)p; , Ap,~Bp, AOz2
- NG o) (1) +H| g
12 12 ,2_ _AC024+ 014(012“1‘ BC) 83
X(r)v'(1)=V\ | a=12; i=1.2. (81) v AO,, (83)

In this variational principle the phase space variables ar¢see Ref[3] for the definition of theO;; observables But,

(v,,7') andu'(r,)=U' are parametericf. Eq. (48) in the  because of Eq(82), these two expressions for, v, p’,

case of the harmonic oscillaforNote that in the boundary and#+’ must be the same thing. TherefdeE, F, G, andH

term of last action as well as in last boundary conditionsare given by

pi(7,) is a function ofA, B, C, u'(7,), v''(7,), andps(7,).

Therefore the boundary conditions and the action are well 0,+AC

defined. To arrive at this result the first set of equations in D= A

Eq. (79 was used, which giveg;(7,) as a function ofj, B,

C; and p5(7,). Nevertheless, _using the constraidt =0, —AO,3+BOys

ps(7,) can be put as a function &, B, C, v''(7,), and =" 0.

/(7). The final result comes from the combination of 12

these two partial results. Notice also that the number of _AO..+BO

boundary conditions has decreased. This form of the varia- = T

tional principle is very interesting. It contains a kinematical Oy

term like any action, but it has not a Hamiltonian, that is to

say, all its dynamical information has been mapped to its —ACOy3+04504,+BC)

time boundary. Therefore it is natural to interpret this result G= AO '
12

as the “canonical version” of the holographic hypothesis in

the sense that with this particular choice of the gauge condi- _ —ACO,,+044(04,+BC)

tion, the dynamics of the system is now at the time boundary H= . (84
[8]. AOy,

Alternatively, the second option is to solve the equations i .
. . . o s o Of course, these five observables are non independent, there
of motion which are the original ones butwithv, p, 7, N, 5r6 restrictions among the[8]. The important point is that
M, and\ replaced by’, v', p’, @', N', M’, and\’. Their  this shows that the dynamics is frozen in this particular
solution, using the gauge’'*=A, u’?=B, p;=C is gauge.

u't=A, u’?=B, p;=C, p'?=D, 2. Fully gauge-invariant SL(2,R) model

The simplest boundary term needed to busig, is F
82) =1(u-p+uv-m). Of course an arbitrary function of the
Dirac observable§ 1(¢,J,€,€’) can been added too. How-
with A---H constants £ independent and therefore they €ver, particular choices fd¥, just modify the boundary con-
are Dirac observable®f course they are not independent, ditions. Therefore the simplest variational principle has the
rather, they are related by means of the constraint equationggauge-invariant action
Inserting this solution in the action(78), the term L L
Su',v’,p’, 7' ,N’,M’,\'] vanishes, and the only contribu- SmlU,v,p,7,N,M,\]1=S~3(u- D+U'7T)|Z- (85)
tion is given by the boundary term there.
It is worth emphasizing thdd - - - H are indeed Dirac ob- Due to the fact that the actic®has been replaced 8, ,
servables. To obtain the explicit expressions of these obseryhe boundary conditions must be modified too. Using (&y.
ables in terms of the original phase space variables, p,  the canonical transformation induced by the boundary term

and, it is necessary to use Eq$€9) and(77). From them, Bz is

v''=E, v'?=F, @|=G, w,=H,

O, +AC 1 (ut
pé: 12A ’ lezln(a>v 7Dlzulpla
—AO,s+BOys , 1 (Uz) 2
= =-In| —|, P,=uUp,,
T 01, ) Q 2" b, 2 P2
, _AOZ4+BO]_4 3 1 Ul 1
TS0, O BT

064002-11



MERCED MONTESINOS AND JOSIAVID VERGARA PHYSICAL REVIEW D 65 064002

1 [v? u'l=A, u’?=B, p;=C. 91
Q4=§In<ﬂ—), 7)4_02,”.2 (86) P1 ( )
2
By inserting Eq.(69) and usinga6— By=1 the expressions
Thus the new boundary conditions associated \8jth are of the gauge parameters are computed. Of course, they are

the same as those found in the previous subsection, and

}In(u—l (r.)= 0L given by Eq.(77). Notice again that'(r,) andp;(r,) are

2 \p; Ta) =% a parameters. The difference with the non-gauge-invariant case
is that in the present case these parameters do not appear in

1 (u? 5 the action, they appear in the boundary conditions only.

E'“(E)(TaFQa, Therefore the goal has been reached. The new variational
principle is defined by the actio(89) with the boundary

1 [yt conditions(90) where the gauge parameters are given by Eq.

—In(—)(q-a = Qi, (77). In this variational principle the boundary conditions are

2°\m compatible with the gauge conditions.

1 2 Now, as before, the gauge-fixed variational principle will

_|n(v_)(7.a)= Qia a=12. (87) be com_puted. T(_) do this, the_gauge c_ondltl()9$) a_md the _

2 2 constraint equations must be inserted into the action and into

the boundary conditions. This gives a reduced action with, of
In summary, the original variational principle is defined by course, a lower number of boundary conditions. By doing
the action(85) and by the boundary conditiori87) if (u p) this, the variational principle is defined by the action
and (,7) are used as canonical variables. Suppose the

boundary conditions 'l dv'?

>, 2 ’ ' Ty 2|7
Sfixe({v,-ﬂ'l]:J dr dr m+ dr 772}_0 T |Ti
ul=A, =B, p,=C (88) " (92)

were imposed. It is clear that they would conflict with the
boundary conditions. Applying the method, the action in the!
new variational principle is simply Eq85) but rewritten in
terms of (’,p’), and @', 7'), 1 (U'l)( )——I ( V(7o) +8(7,)e )
2 "2 a(r)+ B(r,)e20

nder the boundary conditions

Sinv[J,,l;,,ﬁ,,?;’,N,,M,,)\,]:S’_BZ,|:i,

1(’7 1(wmwaummw
- 5In (Ta)_i 4 |

(u'-p'+v'-7)? 2 a(7y)+ B(7,)€%%a

a=1,2. (93

under the boundary conditions

The constrainD’ =0 was used to reduce the boundary term

in the action. In this variational principle the phase space

variables ared’,7'). Notice that there are no parameters in

the action, rather, the parametar¢r,), andp;(7,) are in

the boundary conditions. The new thing here is that these

parameters can be, using the first four equations in(&4q,

the first four equations in Ec(90) and the constrainD’

=0, putinterms oA, B, C, 91, 02, v'i(7,), and 7! (7,).
(vrl)( : 1| ( Y(7,)+ 8(7,)e* ) Therefore the variational principle is well defined, its action

— (7)) = E n

(u“)(”: In(ﬁ(fa)Jra(Ta)eZQ
T2 a(r) (e

B(T )Jra(Ta)ezg
5(7 )+ () €%

has not a Hamiltonian, and its dynamics sits both at the
boundaries and in the boundary conditions. This might be
interpreted as the canonical version of the holographic hy-
pothesiq 8].

a(7,)+B(7,)e? e

Y7+ 8(r,) e %
a(7,)+ B(7,)e? e

IIl. WHAT IS A HAMILTONIAN CONSTRAINT?

a=1.2, (90 Hamiltonian constraints are quadratic in the momenta.
Lo This fact implies that a boundary term arises when the gauge
which were obtained rewriting E@87) in terms of (",p’),  transformed action is computed. On the other hand, in Sec. I
(v',7"), and the gauge parameters. fully gauge-invariant actions were built in spite of the fact
In the gauge related variables, the gauge condition is  the systems have first class constraints quadratic in the mo-
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menta. Is there anything deep in fully gauge-invariant actions B. Parametrized harmonic oscillator
besides their aesthetic property? Is the gauge symmetry of The fylly gauge-invariant action associated with the pa-
generally covariant theories with first class constraints quargmetrized harmonic oscillator is given by
dratic in the momenta of a different kind with respect to the

one of Yang-Mills theories which have constraints linear in ™ dx dt p

the momenta? In this section, new variational principles with S %P, P = Ll A7l g P+ g P M Pt o
first class constraints linear in the momenta will be built for

the generally covariant systems with first class constraints n E 202 | } 7 99
quadratic in the momenta studied in Sec. Il. These varia- 2mw X 2xp|71 (99)

tional principles will be written in terms of the new phase
space variables@',P,) naturally induced by the boundary
term. According to Eq(5) with B replaced byB+ F the new ; ; ) .
variables are r?ot unic<]:|ue and therpe is a frézdom to select éhonlcal varlablgs )(,t,p.,pt) to the new can?nlcarllzjet
appropriated combination @+ F in such way that in the (ZP:P7). By introducing the boundary term ;xp|
infinitesimal case the system of Eq4.7) have a solution. into the integral the gauge-invariant action is written in terms
Once, a solution of Eqgs(5) and (17) is found the fully  of the new canonical variables

gauge-invariant action is given by

under the boundary conditior{88). The boundary term in-
duces the canonical transformati@i/) from the initial ca-

T=T

X, x—szd ST N
| . B q Sl X, TP, Pr,N]= . N9 g 7 MPr
Sinv[erpi!}\a]:f dr pin_HE_d_(B+F) '
b ' (99 +i77e’2"+ EmePeZX

2m 2 '

subject to the boundary conditions (100
_ . under the boundary conditions
QU(7,)=Q,, a=12. (95)

XMry)=Xx,, T(7,)=7,, a=12. (101
A. Parametrized relativistic free particle Notice two things:(i) Eq. (100 has no boundary terndji)

) ) ) ) ) the first class constraint in E4100) is linear and homoge-
The_ fully gauge-invariant action as_somated with the pa+eous in the new moment®, P;. These two facts are re-
rametrized relativistic free particle is given by lated. Due to the fact that the acti¢h00) is fully gauge
s, [dx* invariant and has no boundary term, according to Rdfthe
Sl X, P, ,)\]=f dS[E P~ NP p,+ m?) —x"pulzi, first class con_straint has to be linear and homogeneous in the
1 momenta as it really happens.
(96)
C. SL(2,R) model
The fully gauge-invariant action which captures the
SL(2,R) gauge symmetry of this model is

under the boundary conditiori84). The boundary term in-
duces the canonical transformati(88) from the original set
of variables &“,p,) to the new phase space variables
(Q#,P,). By introducing the boundary term XMP;JZ into
the integralS;,, can be written in terms of the new phase
space variables

Sinv[l],l;,ﬁ,’;',N,M,)\]:f ZdT[G' 5"'5 7—7)'_(NH1+MH2
71

1 .. - .
+)\D)]—§(u~p+v-7r)|:i, (102

s, |dOH*
QX P, \ =f ds[ P,—NB2Q*Q,+m?c? _ » .
S woM] s ds " # (8 " ) with the boundary condition§87). The boundary term in-

(97) duces a canonical transformation given by EBf) from the
initial set of canonical variablesi(v;p, ) to the new one

under the boundary conditions (Q',P). Then it is possible to rewrite the variational prin-

ciple in terms of these new variables. This is done by intro-
QH(s,)=0QFk. (98)  ducing the boundary term into the integral in E402), and

S,v becomes

Notice three things(i) the action written in terms o #, P, )  [dQ]

has no boundary terntii) the first class constraint does not ~ S [ Q' P; ,N,M,N]:f d7 4 Pi—(NC,+MC,

depend on the momenfd, , (iii) the action(97) transforms n

under gauge transformations in similar way to the action for

self-dual gravity[2], whereas the transformation properties +7\C3)}, (103

of the action(18) are equivalent to those of gravity in ADM

variables. with
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_ 1 _ 2 3 4 H P
Ci=3[Pe 29 +P,e 29"~ Pe22’—p 20" (and homqgeneous in some ca)smsthe.momenta. For a

long time it has been considered that first class constraints

quadratic in the momenta are the distinguishing mark of gen-

C,=1[Pe 29°+P,e 22— p 20— p g22%], . . - ;
2=2[Ps Pa P1 P2 ] erally covariant theories, as general relativity or string theory

_ D (see, for instance, Ref4]). Here it was shown that these
Ca=Prt Po=Ps=Pa, (109 kind of theories can be written in terms of first class con-
under the boundary conditions straints linear in the momenta if fully gauge-invariant actions
_ _ are taken into account. Thus the gauge symmetry present in
Q'(r)=09!, i=1234, a=1.2. (105  generally covariant theories with first class constraints qua-

_ o o dratic in the momenta is apparently of the same kind as the
Again, the new variational principle in terms of the phasegayge symmetry present in Yang-Mills theories if fully
space variables@',7;) features(i) no boundary term in the gauge-invariant actions are taken into account for the former:
action(103), and(ii) the first class constraints are linear and after all, both kinds of theories can be described with first
homogeneous in the momerfia. class constraints linear in the momenta. It is important to

It could be said in some sense that the parametrized hafgcall that some steps in this direction have been done for
monic oscillator and the&5L(2,R) model are of the same Bosonic strings, at least infinitesimal[y]. In the case of
kind, both have first class constraints quadratic in the CoNgeneral relativity, it has been shown in REZ] that the ac-
figuration and momentum variables. In both cases, the simjon for gravity in terms of Ashtekar variabld42—14 is
plest boundary term needed to bulg}, is —z0'p;. The  gauge invariant up to a term proportional to the Hamiltonian
parametrized relativistic free particle, on the other hand, isonstraint under the gauge symmetry generated by their first
quadratic in the momenta only. In that case, the boundarg|ass constraints. This suggests that if one starts from the
term needed to buil&,, is —x*p, and S, is fully gauge  action for gravity in terms of Arnowitt-Deser-MisnéADM )
invariant on the constraint surface only. In all cases, wheWariables in its triad versiof17] and apply Eq.(17) the
Sinv is written in terms of the phase space variables inducedolution for the generating function will be the one intro-
by the boundary term it happens that no boundary term igluced in Ref[18]. From the models studied here it is con-
present anymore. In the cases whég is fully gauge in-  cluded that gauge invariance for the actions is the reason to
variant [parametrized harmonic oscillator and t8&(2,R)  have first class constraints linear in the momenta.
mode] the new constraints arnear and homogeneougn There are other aspects of this last topic which were not
the new momentum variables whereas in the parametrizeghalyzed here but deserve to be studied. At a classical level,
relativistic free particle wherg,, is gauge invariant only on the introduction of the boundary term into the integral ac-
the constraint surface the new constraimashomogeneous tions could have also been handled with the original set of

in the new momenta. canonical variables instead of making the canonical transfor-
mation as it was done here, but this other way of dealing
IV. CONCLUDING REMARKS with the boundary term in the fully gauge-invariant actions

In thi . . hed The fi would have led to the introduction of second class con-

n this pr?pe_r t\’\{o main t_oplcsware _'([jouc ef on. fe I'Sstraints. On the other hand, it would be worth analyzing the
one was the implementation of the ideas o Ref] for quantum theory emerging from these systems with first class
gauge systems whefinite gauge transformations are taken o nqiraints linear in the momentand homogeneous in some
into account to make compatible both boundary and gaugg,qeg and compare with the standard quantization coming

conditions. In this case, also two different variational prin-o thejr quadratic constraints. These issues are left for fu-
ciples were analyzed. The first one features non-gaug&i;re work.

invariant actions whereas the other includes fully gauge-
invariant ones. One of the main lessons learned from the
finite but non-gauge-invariant approach is that the interplay
between constraints quadratic and linear in the momenta can M.M. thanks financial support provided by tt&istema
result in a contribution of the seconds to the boundary ternNacional de Investigadoresf the Secretaa de Educacio

in contrast to the infinitesimal approach. The second contriPiblica (SEP of Mexico. M.M. was also supported by grant
bution was to take advantage of fully gauge-invariant action€€INVESTAV JIRA2001/16. J.D.V. was partially supported
to rewrite such systems in terms of new phase space varby grants DGAPA-UNAM IN100397 and CONACyYT
ables in terms of which the first class constraints are lineaB2431-E.
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