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Linear constraints from generally covariant systems with quadratic constraints
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How to make compatible both boundary and gauge conditions for generally covariant theories using the
gauge symmetry generated by first class constraints is studied. This approach employsfinite gauge transfor-
mations in contrast with previous works which use infinitesimal ones. Two kinds of variational principles are
taken into account; the first one features non-gauge-invariant actions whereas the second includes fully gauge-
invariant actions. Furthermore, it is shown that it is possible to rewrite fully gauge-invariant actions featuring
first class constraints quadratic in the momenta into first class constraints linear in the momenta~and homo-
geneous in some cases! due to the full gauge invariance of their actions. This shows that the gauge symmetry
present in generally covariant theories having first class constraints quadratic in the momenta is not of a
different kind with respect to the one of theories with first class constraints linear in the momenta if fully
gauge-invariant actions are taken into account for the former theories. These ideas are implemented for the
parametrized relativistic free particle, parametrized harmonic oscillator, and theSL(2,R) model.
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I. INTRODUCTION

The compatibility of both gauge and boundary conditio
for gauge theories is a key point that must be satisfied
have a well-defined dynamics. It could happen that
boundary conditions chosen for a certain action were inco
patible with the choice made to fix the gauge freedom of
system. If this were the case, both gauge and boundary
ditions could be made compatible using the infinitesim
gauge symmetry generated by the first class constraints@1#.
It is important to recall that the gauge transformation ass
ated with the first class constraints is not a sufficient con
tion to achieve that goal; an extra input is needed: the tra
versality condition, which precisely allows the use of t
gauge transformation in the method. The infinitesimal pro
dure is completely systematic, being easily generalized
field theory @2#. However, is there any difference if finit
gauge transformations are taken into account? On one h
they are really important in a nonperturbative treatment
the full symmetry of gauge systems which has releva
both classically and quantum mechanically. On the ot
hand, the finite gauge transformations include the la
gauge transformations; these transformations are not
nected to the identity, therefore their effects are not obser
by the infinitesimal procedure. So, for example, the appli
tion of the infinitesimal procedure to theSL(2,R) model im-
plies that its diffeomorphism constraint~linear and homoge-
neous in the momenta! does not contribute to the bounda
term. However, the finite approach developed here sh
that it really does contribute to it. Obviously, this contrib
tion cannot be neglected if a complete analysis of the
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gauge symmetry is required. In this way, the procedure h
presented can be useful in the analysis of gauge-invar
systems with nontrivial topological spaces or in systems w
singular boundary conditions. That is whyfinite gauge trans-
formations are really important.

To implement in the action the finite gauge transform
tions, two kinds of variational principles are analyzed: t
first one features non-gauge-invariant actions whereas
ones of the second are fully gauge invariant.

The first type of variational principle based on non-gaug
invariant actions is conceptually the finite extension of t
method of Ref.@1#. Like there, the transversality condition
not necessary in the case of noncanonical gauges bu
needed if algebraic gauge conditions are taken into acco
Even though ‘‘gauge-invariant’’ actions are used in Ref.@1#,
the meaning of gauge invariance adopted there is not
standard one. So, strictly speaking, variational princip
with fully gauge-invariant actions were not considered th
either in their infinitesimal or finite versions.

The second type of variational principle introduced he
includes fully gauge-invariant actions, where gauge inva
ance has the usual meaning. Of course, the same issues
cerning the transversality condition are those of Ref.@1# for
the same reasons that apply in that case. This second typ
variational principle is analyzed in both its finite and infin
tesimal versions. Finally, these two kinds of variational pr
ciples are applied to the parametrized relativistic free p
ticle, parametrized harmonic oscillator, and theSL(2,R)
model with two noncommuting Hamiltonian constraints i
troduced in Ref.@3#. This is the first result of the paper dis
played in detail in Sec. II.

The second point analyzed here is deeper. Generally
variant theories usually have first class constraints quadr
in the momenta. Examples per excellence of these kind
theories are general relativity and string theory as well
©2002 The American Physical Society02-1
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many toy models with finite degrees of freedom found in
literature. It should be expected that their Hamiltonian
tions were fully gauge invariant under the gauge symme
However, this is not so, rather, the gauge transformed act
of these theories are equal to the original ones plus boun
terms because of the Hamiltonian constraints quadratic in
momenta. Therefore one usually handles gauge theo
coming from nonfully gauge-invariant actions which is
ugly situation from the point of view of gauge theories.
this paper gauge symmetry is taken seriously and variatio
principles with fully gauge-invariant actions are construc
by adding suitable boundary terms to the non-gau
invariant actions. By introducing these boundary terms i
the integral the quadratic constraints are modified in a n
way: they become linear in the momenta~and homogeneou
in some cases! in the new canonical variables (Q i ,Pi) natu-
rally induced by the boundary terms, which is a beauti
result just coming from the full gauge invariance of the
actions. Thus first class constraints quadratic in the mom
arenot the distinguishing mark of generally covariant the
ries if fully gauge-invariant actions are taken into accou
~cf. Ref. @4#!. This result raises the question: what then is
Hamiltonian constraint? If generally covariant systems
dowed with fully gauge-invariant actions and first class co
straints quadratic in the momenta can be written in terms
first class constraints linear in the momenta like Yang-M
theories, then how does one distinguish a genuine Ya
Mills-like theory from one coming from a ‘‘linearization’’ in
the sense explained of a generally covariant system? Do
make sense to distinguish both types of theories just by
form that momenta enter in their constraints? Even thoug
is not possible to give a definitive answer to these quest
from the present result, it is hoped that it can contribute
make clear the meaning of Hamiltonian constraints in gen
ally covariant systems. In particular, the transformation
the constraints could be useful to find in some cases a
set of solutions of physical states through the Dirac condit
Ga(Q i ,Pi)uc&50. This constitutes the second result of t
present paper displayed in detail in Sec. III. Finally, our co
clusions are presented in Sec. IV.

Let us begin by recalling the canonical transformation
duced when a boundary term is present, because this is
heart of the methods used in the paper. From now on,
considered a generally covariant system determined by
action of the form@5#

S@qi ,pi ,la#5E
t1

t2
dt~piq̇

i2HE!2But1

t2, i 51, . . . ,N,

~1!

whereHE5H01laGa is the extended Hamiltonian,Ga are
first class constraints, andH0 is the canonical first clas
Hamiltonian,

$Ga ,Gb%5Cab
cGc ,

$H0 ,Ga%5Va
bGb ,

a,b,c51, . . . ,M . ~2!
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Therefore the system hasD5N2M continuous physical de
grees of freedom (2D in the reduced phase space!. The
boundary termB(q,p,t) determines a complete set of com
muting variablesQi(q,p,t) fixed at the end pointst1 andt2,

Qi@q~ta!,p~ta!,ta#5Qa
i , a51,2,

$Qi ,Qj%50 ~at equalt8s!. ~3!

These commuting variables are equal in number as theq’s
~‘‘completeness’’! and could be, for instance, theq’s them-
selves (Qi5qi) or any other combination ofq’s and p’s
satisfying the commutation condition in the Poisson brack
sense. The relationship between these variables and
boundary term is given by

pidqi2HEdt2dB5PidQi2HEdt, ~4!

where theP’s are the momenta conjugate to theQ’s, andHE
is the new extended Hamiltonian. Taking independent va
tions of qi , pi , andt yields

pi2
]B

]qi
2Pj

]Qj

]qi
50,

Pj

]Qj

]pi
1

]B

]pi
50,

HE2HE2
]B

]t
2

]Qj

]t
Pj50, ~5!

which establish the relationship between the new ph
space variables (Qi ,Pi) with the initial ones (qi ,pi). There is
no uniqueness in the solution of these equations, in a sim
way to the fact that a canonical transformation can be
tained using different generating functions.

II. COMPATIBILITY BETWEEN BOUNDARY AND
GAUGE CONDITIONS USING FINITE GAUGE

TRANSFORMATIONS

1. Non-gauge-invariant actions

It was stated in the Introduction that this variational pri
ciple featuring finite gauge transformations is, essentially,
finite version of the approach of Ref.@1# based on non-
gauge-invariant actions. From a technical perspective
only remark is that the interplay between first class co
straints linear and homogeneous in the momenta and
dratic ~or higher! in the momenta could imply a contributio
to the boundary term of the former if finite gauge transfo
mations are taken into account@see the example of the
SL(2,R) model in this section#. This is a key difference be
tween the infinitesimal and finite versions because in
infinitesimal approach constraints linear and homogeneou
the momenta never contribute to boundary terms.

To be precise, this method is an analogue to the one
Ref. @1#. There, authors use a ‘‘hybrid’’ variational principl
because the action and the boundary conditions are
pressed in terms of the original set of variables, however,
2-2
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LINEAR CONSTRAINTS FROM GENERALLY COVARIANT . . . PHYSICAL REVIEW D 65 064002
right gauge condition is expressed in terms of the ga
related ones. Here, on the other hand, the standard proce
is followed, namely, the action, the boundary conditions, a
the gauge condition are written in terms of thesameset of
canonical variables: the gauge related ones. Before goin
the description of the method, boundary conditions~3! and
algebraic gauge conditionsxa(qi ,pi)50 are assumed no
compatible to each other. Then, using the finite gauge s
metry

q8 i5q8 i~qi ,pi ,aa!, pi85pi8~qi ,pi ,aa!, ~6!

generated by the first class constraints and the finite trans
mation law for the Lagrange multipliers, the gauge tra
formed action~1! is computed,

S@q8 i ,pi8 ,l8a#5S@qi ,pi ,la#1DS~qi ,pi ,aa!ut1

t2. ~7!

Therefore, the original action~1! can be expressed in term
of the gauge related variables and the gauge parameter

S@qi ,pi ,la#5S@q8 i,pi8 ,l8a#

2DS@qi~q8 i,pi8 ,aa!,qi~q8 i,pi8 ,aa!,aa#ut1

t2 ,

~8!

obtained by plugging into the boundary termDS of Eq. ~7!
the inverse transformation of Eq.~6!. At the same time, the
original boundary conditions~3! must be rewritten by insert
ing into the left-hand side~LHS! of Eq. ~3! the inverse trans-
formation of Eq.~6!,

Qi@qi~q8 i,pi8 ,aa!,pi~q8 i,pi8 ,aa!,t!~ta!5Qa
i , a51,2.

~9!

In this way, the variational principle defined in terms of t
gauge related variables, formed with the action~8! and the
boundary conditions~9!, has a certain freedom encoded
the gauge parametersaa. The goal is to use this freedom t
make compatible both boundary and gauge conditions. In
gauge related variables, the gauge condition is

xa~q8 i,pi8!50. ~10!

Inserting Eq.~6! into Eq. ~10! fixes the gauge parameters

aa5aa~qi ,pi !. ~11!

The remaining task is to plug Eq.~11! into the right-hand
side ~RHS! of Eq. ~8! and the LHS of Eq.~9! to obtain a
well-defined variational principle with both boundary an
gauge conditions compatible to each other. Like in the infi
tesimal case,qi(ta) andpi(ta) play the role of parameters
Of course, the transversality condition has been assum
which is not necessary if noncanonical gauges are taken
account.
06400
e
ure
d

to

-

r-
-

e

i-

d,
to

2. Fully gauge-invariant actions

The detailed description of this second type of variatio
principle, introduced here for the first time, both in its fini
and infinitesimal versions follows.

~i! Finite case. Knowing that the action~1! of any gener-
ally covariant system transforms in the generic case like
~7!, the goal is to build a new actionSinv such that it trans-
forms like

Sinv@q8 i ,pi8 ,l8a#'Sinv@qi ,pi ,la#, ~12!

under the finite gauge transformation. The weak express
~12! means that the gauge invariance of the action is requ
only until a boundary term proportional to the constraints
is proposed forSinv the form

Sinv@qi ,pi ,la#'S@qi ,pi ,la#2F~qi ,pi !ut1

t2

5Sinv@Q i ,Pi ,la#, ~13!

whereF is a function of the canonical variables and the la
equality is useful to remark that the action~13! is subject to
the boundary conditions

Q i~qi ,pi ,t!~ta!5Q a
i , ~14!

determined by Eq.~5! but with B replaced byB1F. Of
course, it is always possible to add an arbitrary function
Dirac observablesOphys, $Ophys,Ga%5Oa

bOphys to the time
boundary in the RHS of Eq.~13! which would allow the
introduction ofad hocboundary conditions.

If the gauge condition is not compatible with Eq.~14!,
then it can be imposed in the gauge related variables~10!,
fixing the gauge parameters to Eq.~11!. Again, the varia-
tional principle is defined in terms of the gauge related va
ables, its action is simply Eq.~13! but written in terms of the
gauge related canonical variables, under the boundary co
tions

Q i~q8 i,pi8 ,t!~ta!5 f i@Q a
i ,qi~ta!,pi~ta!,ta#, ~15!

obtained by inserting into the LHS of Eq.~14! both Eq.~11!
and the inverse gauge transformation of Eq.~6!. Notice that
it is not necessary to insert Eq.~11! into Eq. ~13! because
such action is already gauge invariant. This is a key diff
ence between the variational principle with non-gaug
invariant actions and the current one. Thus the fixed ga
parameters~11! are inserted just into the boundary cond
tions. Moreover, Eqs.~14! and~15! have the same functiona
form in their LHS, the only difference between them is t
value they take in their RHS. Again,qi(ta), andpi(ta) play
the role of parameters. Finally, it is not possible to determ
the explicit form for F in the generic case. However, it i
possible to write down the differential equations thatF must
satisfy in the infinitesimal approach.

~ii ! Infinitesimal case. Knowing that Eq.~1! transforms
infinitesimally like
2-3
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MERCED MONTESINOS AND JOSE´ DAVID VERGARA PHYSICAL REVIEW D 65 064002
S8@q8 i,pi8 ,l8a#5S@qi ,pi ,la#1S pi

]G

]pi
2G2$B,G% D U

t1

t2

,

~16!

and F transforms asF85F1$F,G%, then F must weakly
satisfy the set of differential equations

pi

]G

]pi
'$B1F,G%, ~17!

with G5eaGa , ea being the infinitesimal gauge paramete
then in Eq. ~17! there areM differential equations forF.
Notice the interplay betweenF and B, in particular B50
when the configuration variablesqi are fixed at the time
boundary (t1 and t2) in variational principles with non-
gauge-invariant actions. In this case,F is completely deter-
mined by the explicit form of the first class constraints.
some of them were linear and homogeneous in the mom
then they would not contribute toF, as it happens in Yang
Mills theories. However, if the constraints are quadratic~or
higher! in the momenta they will contribute toF. Therefore it
is only possible to build fully gauge-invariant actions at le
infinitesimally by solving Eq.~17! and is not necessary t
add new variables~enlarging the phase space! to build fully
gauge-invariant actions, as it is argued in Ref.@6#. The
present formalism is completely systematic and could be
ily extended to field theory with the obvious modificatio
and compared with the known results for self-dual grav
@2# and bosonic string theory@7# on this direction. Finally,
the issues concerning the transversality condition are th
of Ref. @1# for the same reasons that apply in that case.

A. Parametrized relativistic free particle

1. Non-gauge-invariant action

The action for a parametrized relativistic free particle

S@xm,pm ,l#5E
s1

s2
dsFdxm

ds
pm2l~pmpm1m2c2!G ,

~18!

where the inner product is taken with respect to
Minkowski metric hmn with diag hmn5(21,1,1,1), m
50,1,2,3, s is an arbitrary parameter~not necessarily the
proper timet) which parametrizes its world line. The sta
dard boundary conditions for Eq.~18! are

xm~sa!5xa
m , a51,2, ~19!

with xa
m prescribed numbers. The constraint

Gªpmpm1m2c250 ~20!

is first class and generates a finite gauge transformation
the phase space variables

x8m5xm1u~s!pm, pm8 5pm , ~21!

whereas the Lagrange multiplier transforms as
06400
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l85l1
1

2

du

ds
~22!

with u(s) an arbitrary function ofs. Now suppose the gaug
condition

x050 ~23!

were picked. This gauge condition did not match the bou
ary conditions~19! if xa

0Þ0 and then the dynamical problem
would be in trouble. This conflict can be solved applying t
general scheme already explained. To do this, note that u
the gauge symmetry given by Eqs.~21!, ~22! the action~18!
transforms like

S@x8m,pm8 ,l8#5S@xm,pm ,l#1F ~pmpm2m2c2!
u

2G
s1

s2

.

~24!

The boundary termDS5(pmpm2m2c2)(u/2) comes from
the fact thatG is quadratic in the momenta. Notice thatDS is
not proportional toG and soS is not gauge invariant even o
the constraint surface.1 Thus the original action~18! can be
expressed in terms of the gauge related variables (x8m, pm8 ),
the Lagrange multiplierl8, and the gauge parameteru,

S@xm,pm ,l#5S@x8m,pm8 ,l8#2F ~p8mpm8 2m2c2!
u

2G
s1

s2

.

~25!

The RHS of the last expression tellsS@xm,pm ,l# can be
considered a functional of the gauge related variab
x8m, pm8 ,l8, and u. Also, the original boundary condition
~19! must be written in terms of the gauge related variab

x8m~sa!2u~sa!pm~sa!5xa
m . ~26!

It is time to set the right dynamical problem with bounda
conditions compatible with the gauge condition. In the gau
related variables, the gauge condition is

x8050. ~27!

By combining the gauge condition and Eq.~21! the gauge
parameter is fixed,

u52
x0

p0
. ~28!

The goal has been reached. The remaining task is to plug
the RHS of Eq.~25! and into the LHS of Eq.~26! last ex-
pression for the gauge parameter. By doing this the ri
action,

1In complex general relativity expressed in terms of Ashtekar v
ables the boundary term is proportional to the Hamiltonian c
straint. See Ref.@2# for the details.
2-4
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Sred@x8m, pm8 ,l8#~xa
0 ,pa

0 !:5S@xm,pm ,l#uu52(x0/p0) ,

5S@x8m, pm8 ,l8#

1F ~p8mpm8 2m2c2!
1

2

x2
0

p2
0G

2F ~p8mpm8 2m2c2!
1

2

x1
0

p1
0G , ~29!

is obtained, under the boundary conditions

x8m~sa!1
xa

0

pa
0

pa
m5xa

m , ~30!

which are, by construction, compatible with the gauge c
dition ~27!. Herexm(sa)5xa

m , and pm(sa)5pa
m which play

the role of ‘‘parameters’’ in the final action~29!.2 In sum-
mary, the analysis began with a wrong variational princi
where the boundary conditions were not compatible with
gauge condition, and a right variational principle wi
boundary conditions compatible with the gauge condit
was built. In the new variational principle:~i! a new action
including a boundary term was constructed@see Eq.~29!#;
~ii ! the boundary conditions were also modified@see Eq.
~30!#.

2. Fully gauge-invariant action

Now, the original action will be fully gauge invariant un
der the gauge symmetry generated by the constraintG in
spite of the factthe constraintG is quadratic in the momenta
The simplest boundary term needed to buildSinv is F
5xmpm ,

Sinv@xm,pm ,l#5E
s1

s2
dsFdxm

ds
pm2l~pmpm1m2c2!G

2xmpmus1

s2. ~31!

In fact, by using the finite gauge transformation~21! and
~22!,

Sinv@x8m,pm8 ,l8#5Sinv@xm,pm ,l#2
u

2
~pmpm1m2c2!us1

s2,

~32!

and the difference betweenSinv@x8m, pm8 ,l8# and
Sinv@xm,pm ,l# is a boundary term which isproportional to
the first class constraintG. ThereforeSinv is gauge invariant
on the constraint surfaceG50 only. Of course an arbitrary
function of the Dirac observables for the syste
F1(pm ,xmpn2xnpm) might have been~and can be! added to

2From now on Kuchar’s notation is used, namely,S@•••#(•••) is
a functional of the variables inside the square brackets and a f
tion of the variables inside the parentheses.
06400
-

e
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n

the time boundary of Eq.~31! too without destroying the
gauge invariance ofSinv , just modifying the boundary con
ditions.

To find the new boundary conditions associated with
action ~31! the canonical transformation induced by i
boundary term will be used. By using Eq.~5! the new phase
space variables,

Q m52
1

b
pm, Pm5bxm , ~33!

are obtained, withb a nonvanishing constant. Thus th
boundary conditions associated with Eq.~31! are

Q m~sa!52
1

b
pm~sa!5Q a

m . ~34!

It is immediately seen that the wanted gauge conditionx0

50 does not conflict with these boundary conditions.

B. Parametrized harmonic oscillator

1. Non-gauge-invariant action

In this case, the original variational principle is defined
the action

S@x,t,p,pt ,l#5E
t1

t2
dtFdx

dt
p1

dt

dt
pt

2lS pt1
p2

2m
1

1

2
mv2x2D G , ~35!

under the standard boundary conditions

x~ta!5xa , t~ta!5ta , a51,2, ~36!

with xa and ta prescribed numbers. The constraint

Gªpt1
p2

2m
1

1

2
mv2x250, ~37!

is first class and generates afinite gauge transformation on
the phase space variables@10#,

x85x cosu~t!1
p

mv
sinu~t!,

p852mvx sinu~t!1p cosu~t!,

t85
u~t!

v
1t,

pt85pt , ~38!

whereas the Lagrange multiplier transforms as

l85l1
u̇~t!

v
, ~39!

with u̇(t)5du(t)/dt.
c-
2-5
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Again, suppose the gauge condition

t50 ~40!

were picked. Obviously, it did not match the boundary co
ditions~36! if taÞ0. It is time to apply the method. By usin
the finite gauge transformation~38!, ~39! the action ~35!
transforms like

S@x8,t8,p8,pt8 ,l8#5S@x,t,p,pt ,l#1F2sin2uxp

1
1

v S p2

2m
2

1

2
mv2x2D sin 2u

2 G
t1

t2

.

~41!

Again, the boundary termDS52sin2uxp1(1/v)(p2/2m
2 1

2 mv2x2)(sin 2u/2) comes from the quadratic in the mo
menta term ofG. Note thatDS is not proportional toG.
Therefore

S@x,t,p,pt ,l#5S@x8,t8,p8,pt8 ,l8#2F sin2ux8p8

1
1

v
S p82

2m
2

1

2
mv2x82D sin 2u

2
G

t1

t2

.

~42!
on

06400
-

From the RHS of the last equation it is clear th
S@x,t,p,pt ,l# can be considered a functional o
x8,t8,p8,pt8 ,l8, andu. At the same time, theoriginal bound-
ary conditions~36! must be written in terms of the gaug
related variables and the gauge parameteru,

x8~ta! cosu~ta!2
p8~ta!

mv
sinu~ta!5xa ,

t8~ta!2
u~ta!

v
5ta ,

a51,2.
~43!

It is time to define the new variational principle whos
boundary conditions will be compatible with the require
gauge condition. In the gauge related variables, the ga
condition is

t850. ~44!

By using the transformation law for thet variable ~38! to-
gether with the required gauge condition~44! the explicit
expression for the gauge parameter is obtained,u52vt.
The goal has been reached. A right variational principle w
canonical pairs (x8,p8) and (t8,pt8) can be built its action is
Sred@x8,t8,p8,pt8 ,l8#~ t1 ,t2!ªS@x,t,p,pt ,l#uu52vt ,

5S@x8,t8,p8,pt8 ,l8#2Fsin2vt2 x8~t2!p8~t2!2
1

v S p82~t2!

2m
2

1

2
mv2x82~t2! D sin 2vt2

2 G

1Fsin2vt1 x8~t1!p8~t1!2
1

v S p82~t1!

2m
2

1

2
mv2x82~t1! D sin 2vt1

2 G , ~45!
ed,
to

ng

y-
ge

g

under the boundary conditions

x8~ta! cosvta1
p8~ta!

mv
sinvta5xa ,

t8~ta!50, a51,2, ~46!

which are, by construction, compatible with the gauge c
dition

t850. ~47!
-

Once the dynamical problem has been well defin
there are still two remaining things to do. The first one is
compute the gauge-fixed variational principle by pluggi
into the action Sred@x8,t8,p8,pt8 ,l8#(t1 ,t2) and into the
boundary conditions~46! the gauge conditiont850 as well
as the constraintG850. The second one is to solve the d
namics by using the equations of motion with the gau
conditiont850. Let us focus in the first option. By pluggin
the gauge conditiont850 and the constraintG850 into the
actionSred@x8,t8,p8,pt8 ,l8#(t1 ,t2), the gauge-fixed action
2-6
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Sfixed@x8,p8#~ t1 ,t2!5Sred@x,t,p8,pt8 ,l8#~ t1 ,t2!uG850,t850 ,

5S@x,t,p,pt ,l#u52vt,G850,t850 ,

5E
t1

t2
dt

dx8

dt
p82Fsin2vt2 x8~t2!p8~t2!2

1

v S p82~t2!

2m
2

1

2
mv2x82~t2! D sin 2vt2

2 G
1Fsin2vt1 x8~t1!p8~t1!2

1

v S p82~t1!

2m
2

1

2
mv2x82~t1! D sin 2vt1

2 G ~48!
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is obtained. This form of the action is very interesting.
contains a kinematical term like any action, but it has no
Hamiltonian, rather, all its dynamical information has be
mapped to its time boundary. Therefore it is natural to int
pret this result as the ‘‘canonical version’’ of the holograph
hypothesis in the sense that with this particular choice of
gauge condition, its dynamics is now at the time bound
@8#. In fact, there was a ‘‘reduction’’ of degrees of freedom
before fixing the gauge the initial dynamical problem w
defined on the closed set@t1 ,t2# whereas the final dynami
cal problem is now defined on justtwo points,t2 andt1. Of
course, the gauge-fixed variational principle has associ
the remaining boundary conditions,

x8~ta! cosvta1
p8~ta!

mv
sinvta5xa , a51,2. ~49!

Note that the number of boundary conditions has decrea
Alternatively, the second option is to solve the equatio

of motion which are the original ones but withx,t,p,pt , and
l replaced byx8,t8,p8,pt8 , andl8. Their solution, using the
gauget850, is

x85x0 ,

p85p0 ,

t850,

pt852
p0

2

2m
2

1

2
mv2x0

2 , ~50!

with x0 , p0 constants (t independent!, and therefore they are
Dirac observables. Inserting this solution into the action~45!,
the termS@x8,t8,p8,pt8 ,l8# vanishes, and the only contribu
tion is given by the boundary term

S~x0 ,p0 ;t1 ,t2!52Fsin2vt2 x0p02
1

v S p0
2

2m

2
1

2
mv2x0

2D sin 2vt2

2 G1Fsin2vt1 x0p0

2
1

v S p0
2

2m
2

1

2
mv2x0

2D sin 2vt1

2 G , ~51!
06400
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e
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ed
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wherex8(ta)5x0 andp8(ta)5p0 were used. It is clear tha
S(x0 ,p0 ;t1 ,t2) represents a two parameter family of phys
cal ~Dirac! observables on the reduced phase space lab
by x0 andp0 ; t1 andt2 being the parameters. Of course, Eq
~48! and ~51! are the same thing but they look different b
cause it has not been inserted in Eq.~48! the fact—coming
from the equations of motion—thatx85x0 andp85p0. Us-
ing this information, Eq.~48! acquires the form~51!. In ad-
dition, the boundary conditions, of course, reduce to

x0 cosvta1
p0

mv
sinvta5xa , a51,2, ~52!

establishing a relationship between the initial and final d
@x1 , x2 , t1, andt2# and the physical states (x0 andp0) in the
reduced phase space, displaying the fact that dynamics o
parametrized harmonic oscillator betweent1 andt2 is pure
gauge, namely, it corresponds to a point (x0 ,p0) in the re-
duced phase space for each set of initial and final d
(x1 ,x2 ,t1 ,t2).

To find the explicit expressions for these observables
terms of the original phase space variables (x,p) and (t,pt),
it is necessary to use the relationship between the orig
phase space variables (x,t,p,pt) and the gauge related one
(x8,t8,p8,pt8) together with the expression for the gauge p
rameteru52vt. From them,

x85x cosvt2
p

mv
sinvt,

p85mvx sinvt1p cosvt. ~53!

But, because of Eq.~50!, these two expressions forx8 andp8
must be the same thing. Thereforex0 and p0 are given by
@10#

x05x cosvt2
p

mv
sinvt,

p05mvx sinvt1p cosvt, ~54!

satisfying$x0 ,p0%51. Computing Eq.~54! at t50, it can be
shown that these variables correspond to the initial con
tions. Furthermore, considering the inverse transformation
Eq. ~54! it follows that dynamics of the system is express
in terms of the initial conditions.
2-7
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2. Fully gauge-invariant action

Now, the original action will be fully gauge invariant un
der the gauge symmetry generated by the first class
straintG in spite of the factthat the constraintG is quadratic
in the momentump, p2/2m. The simplest boundary term
needed to buildSinv is F52 1

2 xp,

Sinv@x,t,p,pt ,l#5E
t1

t2
dtFdx

dt
p1

dt

dt
pt

2lS pt1
p2

2m
1

1

2
mv2x2D G2

1

2
xput1

t2.

~55!

Using Eqs.~38! and ~39!, it is clear that

Sinv@x8,t8,p8,pt8 ,l8#5Sinv@x,t,p,pt ,l#. ~56!

Thus the actionSinv is indeed fully gauge invariant under th
finite gauge symmetry involved. Again, an arbitrary functi
F1(p2/2m1 1

2 mv2x2) might have been~and can be! added
to the time boundary of Eq.~55!. However, Eq.~55! is the
simplest form. The boundary term in Eq.~55! induces the
canonical transformation~5! from the original set of vari-
ables (x,t,p,pt) to the new set (X,T,P,PT),

X5
1

2
lnS x

pD , P5xp, T5t, PT 5pt . ~57!

Therefore the boundary conditions associated with the ac
Sinv are

1

2
lnS x

pD ~ta!5Xa , t~ta!5Ta , a51,2, ~58!

where a dimensional constant equals to 1 is understo
Again, suppose the gauge condition

t50 ~59!

were picked, then it is pretty obvious that it would confli
the boundary conditions~58! providedTaÞ0. Nevertheless
the gauge condition can be reached in the gauge-related
ables, namely,

t850. ~60!

By applying the method, the right action is

Sinv@x8,t8,p8,pt8 ,l8#5E
t1

t2
dtFdx8

dt
p81

dt8

dt
pt82l8

3S pt81
p82

2m
1

1

2
mv2x82D G

2
1

2
x8p8ut1

t2, ~61!

under the boundary conditions
06400
n-

n

d.

ri-

1

2
lnS x8

p8
D ~ta!5

1

2
lnS e2XacosvTa2

1

mv
sinvT a

e2XasinvTa1cosvTa

D ,

t8~ta!50, a51,2, ~62!

which are, by construction, compatible with the gauge c
dition ~60!. Therefore this variational principle based on
fully gauge-invariant action is more ‘‘economic’’ than th
one based on a non-gauge-invariant action because in
former it is not necessary to handle additional bounda
terms for the original action is already fully gauge invaria
Also, the boundary conditions in terms of the original va
ables and in terms of the gauge related ones look m
‘‘symmetric’’ @see Eqs.~58! and ~62!#, the difference be-
tween them being the value they take in their RHS.

Again, once the gauge conditions have been made c
patible with the boundary conditions, there are still two r
maining things to do. The first one is to compute the gau
fixed variational principle by plugging into the action an
into the boundary conditions the gauge conditiont850 to-
gether with the constraintG850. By doing this

Sfixed@x8,p8#5Sinv@x8,t8,p8,pt8 ,l8#uG850,t850 ,

5E
t1

t2
dt

dx8

dt
p82

1

2
x8p8ut1

t2, ~63!

is the gauge-fixed action and its boundary conditions are

1

2
lnS x8

p8
D ~ta!5

1

2
lnS e2XacosvTa2

1

mv
sinvT a

e2XasinvTa1cosvTa

D ,

a51,2. ~64!

This form of the action contains a kinetic term, as any acti
and it has not a Hamiltonian. Where is the dynamics c
tained? Obviously it is fully contained in the boundary term
in a similar way to Eq.~54!. Again, this result might be
interpreted as an implementation of the holographic hypo
esis in the sense dynamics has been mapped to its
boundary@8#.

Finally, it can be easily checked that the dynamics com
from the last variational principle is the same as the o
coming from the equations of motion when the gauge c
dition t850 is imposed, as was done in the noninvariant c
discussed in the previous subsection. It makes no sens
repeat this computation.

C. SL„2,R… model

1. Non-gauge-invariant SL„2,R… model

Up to here, generally covariant systems with a sin
Hamiltonian constraint have been studied. Next, a mo
with two noncommuting Hamiltonian constraints and o
constraint linear and homogeneous in the momenta will
analyzed. The nontrivial interplay among linear and qu
2-8
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dratic constraints will produce a contribution to the bound
term of the linear ones in direct opposition to what the
finitesimal approach says.

This model has aSL(2,R) gauge symmetry, one continu
ous physical degree of freedom, and mimics the constr
structure

$H,H%;D, $H,D%;H, $D,D%;D, ~65!

of general relativity. It can be considered as a~two points!
discrete version of the Arnowitt-Deser-Misner~ADM ! for-
mulation of gravity. Readers are urged to read Ref.@3# for the
details, in particular for a clear description of the relation
evolution of the degrees of freedom of the system~on this
see also Refs.@9–11#!. Its Hamiltonian action is

S@uW ,vW ,pW ,pW ,N,M ,l#5E
t1

t2
dt@uẆ •pW 1vẆ •pW 2~NH11MH2

1lD !#, ~66!

under the boundary conditions

uW ~ta!5UW a , vW ~ta!5VW a , a51,2. ~67!

The canonical pairs are (uW ,pW ), and (vW ,pW ); each vector being
a two-dimensional real one, the scalar product is taken inE2.
N, M, andl are Lagrange multipliers. The constraintsH1 ,
H2, andD,

H1ª
1
2 ~pW 22vW 2!50,

H2ª
1
2 ~pW 22uW 2!50,

DªuW •pW 2vW •pW 50, ~68!

are first class, withpW 25pW •pW 5(p1)21(p2)2, and so on. The
constraint algebra is isomorphic to theSL(2,R) Lie algebra
and thefinite gauge transformation the constraints generat
@3#

uW 85a~t!uW 1b~t!pW , pW 85a~t!pW 1b~t!vW ,

pW 85g~t!uW 1d~t!pW , vW 85g~t!pW 1d~t!vW ,
~69!

where the matrix

G~t!5S a~t! b~t!

g~t! d~t!
D ~70!

belongs to theSL(2,R) group, i.e., it satisfiesa(t)d(t)
2b(t)g(t)51. So, the system is invariant under aSL(2,R)
gauge symmetry local int. The finite transformation law for
the Lagrange multipliers is
06400
y
-

nt

l

is

S l8 N8

M 8 2l8
D 5S a b

g d D S l N

M 2l
D S d 2b

2g a D 2S a b

g d D
3S ḋ 2ḃ

2ġ ȧ
D , ~71!

so, the matrix~71! transforms as a Yang-Mills connectio
valued in the Lie algebra ofSL(2,R) @3#.

Now, suppose the gauge condition

u15A, u25B, p15C ~72!

were picked. Obviously it did not match with the bounda
conditions~67! in general. Under thefinite gauge transfor-
mation ~69! and ~71! the change of the action~66! is

S@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#5S@uW ,vW ,pW ,pW ,N,M ,l#

1@~bg!~uW •pW 1vW •pW !

1 1
2 ~ag!~uW 21pW 2!

1 1
2 ~bd!~vW 21pW 2!#t1

t2.

~73!

The boundary term DS5(bg)(uW •pW 1vW •pW )1 1
2 (ag)(uW 2

1pW 2)1 1
2 (bd)(vW 21pW 2) comes from the two noncommutin

Hamiltonian constraints. Also,DS is not a linear combina-
tion of the first class constraints. More important, the te
(bg)(uW •pW 1vW •pW ) is not present at the infinitesimal leve
This term is associated with the ‘‘diffeomorphism’’ con
straintD, which is linear and homogeneous in the mome
and so it does not contribute at theinfinitesimal level. Nev-
ertheless, whenfinite gauge transformations are taken in
account, the contribution associated with this constraint
pears again. Notice that if the two Hamiltonian constrai
were turned off, namely,b50 and g50, then the action
would be gauge invariant as expected because the only
maining constraint would beD, which is linear and homoge
neous in the momenta. Here, it will be taken into account
full SL(2,R) gauge symmetry and not just only a subgro
of it. By using again the finite gauge transformation~69! and
~71! the original action can be written as

S@uW ,vW ,pW ,pW ,N,M ,l#5S@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#

2@2~bg!~uW 8•pW 81vW 8•pW 8!

1 1
2 ~gd!~uW 821pW 82!

1 1
2 ~ab!~vW 821pW 82!#t1

t2. ~74!

From the RHS of last expression it is clear th
S@uW ,vW ,pW ,pW ,N,M ,l# can be interpreted as a functional ofuW 8,

vW 8, pW 8, pW 8, N8, M 8, l8, a, b, g, andd. In the same way, it
is possible to rewrite theoriginal boundary conditions~67!
in terms of the gauge related variables as well as of the ga
parametersa, b, g, andd,
2-9
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d~ta!u8 i~ta!2b~ta!pi8~ta!5Ua
i ,

a~ta!v8 i~ta!2g~ta!p i8~ta!5Va
i ,

a51,2; i 51,2.
~75!

It is time to define the new variational principle who
boundary conditions will be compatible with the requir
gauge condition. This new variational principle is defined
terms of the gauge related variables (uW 8,vW 8,pW 8,pW 8), given by
the RHS side of Eq.~74!, and its boundary conditions will be
those given in Eq.~75!. In the gauge related variables, th
gauge condition is

u815A, u825B, p185C. ~76!

The explicit expressions for the gauge parameters are c
puted using Eq.~69!, ~76! together withad2bg51,

a5
Ap22Bp1

O12
,

b5
Bu12Au2

O12
,

g5
ACp22~BC1O12!p1

AO12
,

06400
m-

d5
2ACu21~BC1O12!u

1

AO12
,

~77!

where O125u1p22u2p1 is a physical observable@3#. The
goal has been reached, i.e., it has been possible to bu
variational principle where the canonical pairs are (uW 8,pW 8)
and (vW 8,pW 8), its action is given by

Sred@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#@ui~ta!,pi~ta!#

ªS@uW ,vW ,pW ,pW ,N,M ,l#ua,b,g,d ,

5S@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#1F S Bu12Au2

O12
D

3S ACp22~BC1O12!p1

AO12
D ~uW 8•pW 81vW 8•pW 8!G

t1

t2

2F1

2 S ACp22~BC1O12!p1

AO12
D

3S 2ACu21~BC1O12!u
1

AO12
D ~uW 821pW 82!G

t1

t2

2F1

2 S Ap22Bp1

O12
D S Bu12Au2

O12
D ~vW 821pW 82!G

t1

t2

~78!

and the boundary conditions are
ompute

ne is
S 2ACu21~BC1O12!u
1

AO12
D ~ta!u8 i~ta!2S Bu12Au2

O12
D ~ta!pi8~ta!5Ua

i ,

2S ACp22~BC1O12!p1

AO12
D ~ta!p i8~ta!1S Ap22Bp1

O12
D ~ta!v8 i~ta!5Va

i , a51,2; i 51,2,

~79!

which are, by construction, compatible with the gauge condition~76!.
Once the dynamical problem has been well defined, there are still two remaining things to do. The first one is to c

the gauge-fixed variational principle by plugging into both the actionSred@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#@ui(ta),pi(ta)# and into
the boundary conditions~79! the gauge condition~76! together with the first class constraints equal to zero. The second o
to solve the dynamics by using the equations of motion and the gauge condition~76!. Let us focus on the first option. By
plugging the gauge condition~76! and the first class constraints equal to zero into the actionSred@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#
3@ui(ta),pi(ta)#, the gauge-fixed action

Sfixed@vW 8,pW 8#@ui~ta!#5Sred@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#@ui~ta!,pi~ta!#ua,b,g,d;H
1850,H

2850,D850,u815A,u825B,p
185C ,

5E
t1

t2
dtFdv81

dt
p181

dv82

dt
p28G1F S Bu12Au2

O12
D S ACp22~BC1O12!p1

AO12
D ~2vW 8•pW 8!G

t1

t2

2F S ACp22~BC1O12!p1

AO12
D S 2ACu21~BC1O12!u

1

AO12
DpW 2G

t1

t2

2F S Ap22Bp1

O12
D

3S Bu12Au2

O12
D vW 82G

t1

t2

, ~80!
2-10
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is obtained, under the boundary conditions

2S ACp22~BC1O12!p1

AO12
D ~ta! p i8~ta!1S Ap22Bp1

O12
D

3~ta! v8 i~ta!5Va
i , a51,2; i 51,2. ~81!

In this variational principle the phase space variables
(vW ,,pW 8) andui(ta)5Ua

i are parameters@cf. Eq. ~48! in the
case of the harmonic oscillator#. Note that in the boundary
term of last action as well as in last boundary conditio
pi(ta) is a function ofA, B, C, ui(ta), v8 i(ta), andp28(ta).
Therefore the boundary conditions and the action are w
defined. To arrive at this result the first set of equations
Eq. ~79! was used, which givespi(ta) as a function ofA, B,
C, and p28(ta). Nevertheless, using the constraintD850,
p28(ta) can be put as a function ofA, B, C, v8 i(ta), and
p i8(ta). The final result comes from the combination
these two partial results. Notice also that the number
boundary conditions has decreased. This form of the va
tional principle is very interesting. It contains a kinematic
term like any action, but it has not a Hamiltonian, that is
say, all its dynamical information has been mapped to
time boundary. Therefore it is natural to interpret this res
as the ‘‘canonical version’’ of the holographic hypothesis
the sense that with this particular choice of the gauge co
tion, the dynamics of the system is now at the time bound
@8#.

Alternatively, the second option is to solve the equatio
of motion which are the original ones but withuW , vW , pW , pW , N,
M, andl replaced byuW 8, vW 8, pW 8, pW 8, N8, M 8, andl8. Their
solution, using the gaugeu815A, u825B, p185C is

u815A, u825B, p185C, p825D,

v815E, v825F, p185G, p285H,
~82!

with A•••H constants (t independent!, and therefore they
are Dirac observables~of course they are not independen
rather, they are related by means of the constraint equatio!.
Inserting this solution in the action~78!, the term
S@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8# vanishes, and the only contribu
tion is given by the boundary term there.

It is worth emphasizing thatD•••H are indeed Dirac ob-
servables. To obtain the explicit expressions of these obs
ables in terms of the original phase space variablesuW , vW , pW ,
andpW , it is necessary to use Eqs.~69! and~77!. From them,

p285
O121AC

A
,

p185
2AO231BO13

O12
,

p285
2AO241BO14

O12
,

06400
re

s

ll
n

f
a-
l

s
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ry
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s

rv-

v815
2ACO231O13~O121BC!

AO12
,

v825
2ACO241O14~O121BC!

AO12
~83!

~see Ref.@3# for the definition of theOi j observables!. But,
because of Eq.~82!, these two expressions foruW 8, vW 8, pW 8,
andpW 8 must be the same thing. ThereforeD, E, F, G, andH
are given by

D5
O121AC

A
,

E5
2AO231BO13

O12
,

F5
2AO241BO14

O12
,

G5
2ACO231O13~O121BC!

AO12
,

H5
2ACO241O14~O121BC!

AO12
. ~84!

Of course, these five observables are non independent,
are restrictions among them@3#. The important point is that
this shows that the dynamics is frozen in this particu
gauge.

2. Fully gauge-invariant SL„2,R… model

The simplest boundary term needed to buildSinv is F

5 1
2 (uW •pW 1vW •pW ). Of course an arbitrary function of th

Dirac observablesF1(f,J,e,e8) can been added too. How
ever, particular choices forF1 just modify the boundary con
ditions. Therefore the simplest variational principle has
gauge-invariant action

Sinv@uW ,vW ,pW ,pW ,N,M ,l#5S2 1
2 ~uW •pW 1vW •pW !ut1

t2. ~85!

Due to the fact that the actionS has been replaced bySinv ,
the boundary conditions must be modified too. Using Eq.~5!,
the canonical transformation induced by the boundary te
B2 is

Q 15
1

2
lnS u1

p1
D , P15u1p1 ,

Q 25
1

2
lnS u2

p2
D , P25u2p2 ,

Q 35
1

2
lnS v1

p1
D , P35v1p1 ,
2-11
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Q 45
1

2
lnS v2

p2
D , P45v2p2 . ~86!

Thus the new boundary conditions associated withSinv are

1

2
lnS u1

p1
D ~ta!5Q a

1 ,

1

2
lnS u2

p2
D ~ta!5Q a

2 ,

1

2
lnS v1

p1
D ~ta!5Q a

3 ,

1

2
lnS v2

p2
D ~ta!5Q a

4 , a51,2. ~87!

In summary, the original variational principle is defined
the action~85! and by the boundary conditions~87! if ( uW ,pW ),
and (vW ,pW ) are used as canonical variables. Suppose
boundary conditions

u15A, u25B, p15C ~88!

were imposed. It is clear that they would conflict with th
boundary conditions. Applying the method, the action in
new variational principle is simply Eq.~85! but rewritten in
terms of (uW 8,pW 8), and (vW 8,pW 8),

Sinv@uW 8,vW 8,pW 8,pW 8,N8,M 8,l8#5S82B28ut1

t2,

5S82
1

2
~uW 8•pW 81vW 8•pW 8!ut1

t2,

~89!

under the boundary conditions

1

2
lnS u81

p18
D ~ta!5

1

2
lnS b~ta!1a~ta!e2Q a

1

d~ta!1g~ta!e2Q a
1 D ,

1

2
lnS u82

p28
D ~ta!5

1

2
lnS b~ta!1a~ta!e2Q a

2

d~ta!1g~ta!e2Q a
2 D ,

1

2
lnS v81

p18
D ~ta!5

1

2
lnS g~ta!1d~ta!e2Q a

3

a~ta!1b~ta!e2Q a
3 D ,

1

2
lnS v82

p28
D ~ta!5

1

2
lnS g~ta!1d~ta!e2Q a

4

a~ta!1b~ta!e2Q a
4 D ,

a51,2, ~90!

which were obtained rewriting Eq.~87! in terms of (uW 8,pW 8),
(vW 8,pW 8), and the gauge parameters.

In the gauge related variables, the gauge condition is
06400
e

e

u815A, u825B, p185C. ~91!

By inserting Eq.~69! and usingad2bg51 the expressions
of the gauge parameters are computed. Of course, they
the same as those found in the previous subsection,
given by Eq.~77!. Notice again thatui(ta) and pi(ta) are
parameters. The difference with the non-gauge-invariant c
is that in the present case these parameters do not appe
the action, they appear in the boundary conditions on
Therefore the goal has been reached. The new variati
principle is defined by the action~89! with the boundary
conditions~90! where the gauge parameters are given by
~77!. In this variational principle the boundary conditions a
compatible with the gauge conditions.

Now, as before, the gauge-fixed variational principle w
be computed. To do this, the gauge conditions~91! and the
constraint equations must be inserted into the action and
the boundary conditions. This gives a reduced action with
course, a lower number of boundary conditions. By do
this, the variational principle is defined by the action

Sfixed@vW 8,pW 8#5E
t1

t2
dtFdv81

dt
p181

dv82

dt
p28G2vW 8•pW 8ut1

t2

~92!

under the boundary conditions

1

2
lnS v81

p18
D ~ta!5

1

2
lnS g~ta!1d~ta!e2Q a

3

a~ta!1b~ta!e2Q a
3 D ,

1

2
lnS v82

p28
D ~ta!5

1

2
lnS g~ta!1d~ta!e2Q a

4

a~ta!1b~ta!e2Q a
4 D ,

a51,2. ~93!

The constraintD850 was used to reduce the boundary te
in the action. In this variational principle the phase spa
variables are (vW 8,pW 8). Notice that there are no parameters
the action, rather, the parametersui(ta), and pi(ta) are in
the boundary conditions. The new thing here is that th
parameters can be, using the first four equations in Eq.~87!,
the first four equations in Eq.~90!, and the constraintD8
50, put in terms ofA, B, C, Q a

1 , Q a
2 , v8 i(ta), andp i8(ta).

Therefore the variational principle is well defined, its acti
has not a Hamiltonian, and its dynamics sits both at
boundaries and in the boundary conditions. This might
interpreted as the canonical version of the holographic
pothesis@8#.

III. WHAT IS A HAMILTONIAN CONSTRAINT?

Hamiltonian constraints are quadratic in the momen
This fact implies that a boundary term arises when the ga
transformed action is computed. On the other hand, in Se
fully gauge-invariant actions were built in spite of the fa
the systems have first class constraints quadratic in the
2-12
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menta. Is there anything deep in fully gauge-invariant acti
besides their aesthetic property? Is the gauge symmetr
generally covariant theories with first class constraints q
dratic in the momenta of a different kind with respect to t
one of Yang-Mills theories which have constraints linear
the momenta? In this section, new variational principles w
first class constraints linear in the momenta will be built
the generally covariant systems with first class constra
quadratic in the momenta studied in Sec. II. These va
tional principles will be written in terms of the new pha
space variables (Q i ,Pi) naturally induced by the boundar
term. According to Eq.~5! with B replaced byB1F the new
variables are not unique and there is a freedom to selec
appropriated combination ofB1F in such way that in the
infinitesimal case the system of Eqs.~17! have a solution.
Once, a solution of Eqs.~5! and ~17! is found the fully
gauge-invariant action is given by

Sinv@Q i ,Pi ,la#5E
t1

t2
dtS piq̇

i2HE2
d

dt
~B1F ! D ,

~94!

subject to the boundary conditions

Q i~ta!5Q a
i , a51,2. ~95!

A. Parametrized relativistic free particle

The fully gauge-invariant action associated with the p
rametrized relativistic free particle is given by

Sinv@xm,pm ,l#5E
s1

s2
dsFdxm

ds
pm2l~pmpm1m2!G2xmpmus1

s2,

~96!

under the boundary conditions~34!. The boundary term in-
duces the canonical transformation~33! from the original set
of variables (xm,pm) to the new phase space variabl
(Q m,Pm). By introducing the boundary term2xmpmus1

s2 into

the integralSinv can be written in terms of the new pha
space variables

S@Q m,Pm ,l#5E
s1

s2
dsFdQ m

ds
Pm2l~b2Q mQm1m2c2!G

~97!

under the boundary conditions

Q m~sa!5Q a
m . ~98!

Notice three things:~i! the action written in terms ofQ m, Pm
has no boundary term,~ii ! the first class constraint does n
depend on the momentaPm , ~iii ! the action~97! transforms
under gauge transformations in similar way to the action
self-dual gravity@2#, whereas the transformation properti
of the action~18! are equivalent to those of gravity in ADM
variables.
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B. Parametrized harmonic oscillator

The fully gauge-invariant action associated with the p
rametrized harmonic oscillator is given by

Sinv@x,t,p,pt ,l#5E
t1

t2
dtFdx

dt
p1

dt

dt
pt2lS pt1

p2

2m

1
1

2
mv2x2D G2

1

2
xput1

t2 ~99!

under the boundary conditions~58!. The boundary term in-
duces the canonical transformation~57! from the initial ca-
nonical variables (x,t;p,pt) to the new canonical se
(X,T;P,PT). By introducing the boundary term2 1

2 xput5t1

t5t2

into the integral the gauge-invariant action is written in ter
of the new canonical variables

Sinv@X,T,P,PT ,l#5E
t1

t2
dtFdX

dt
P1

dT
dt

PT 2lS PT

1
1

2m
Pe22X1

1

2
mv2Pe2XD G ,

~100!

under the boundary conditions

X~ta!5Xa , T ~ta!5Ta , a51,2. ~101!

Notice two things:~i! Eq. ~100! has no boundary term,~ii !
the first class constraint in Eq.~100! is linear and homoge-
neous in the new momentaP, PT . These two facts are re
lated. Due to the fact that the action~100! is fully gauge
invariant and has no boundary term, according to Ref.@1# the
first class constraint has to be linear and homogeneous in
momenta as it really happens.

C. SL„2,R… model

The fully gauge-invariant action which captures t
SL(2,R) gauge symmetry of this model is

Sinv@uW ,vW ,pW ,pW ,N,M ,l#5E
t1

t2
dt@uẆ •pW 1vẆ •pW 2~NH11MH2

1lD !#2
1

2
~uW •pW 1vW •pW !ut1

t2, ~102!

with the boundary conditions~87!. The boundary term in-
duces a canonical transformation given by Eq.~86! from the
initial set of canonical variables (uW ,vW ;pW ,pW ) to the new one
(Q i ,Pi). Then it is possible to rewrite the variational prin
ciple in terms of these new variables. This is done by int
ducing the boundary term into the integral in Eq.~102!, and
Sinv becomes

Sinv@Q i ,Pi ,N,M ,l#5E
t1

t2
dtFdQ i

dt
Pi2~NC11MC2

1lC3!G , ~103!

with
2-13
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C15 1
2 @P 1e22Q 1

1P 2e22Q 2
2P 3e2Q 3

2P 4e2Q 4
#,

C25 1
2 @P 3e22Q 3

1P 4e22Q 4
2P 1e2Q 1

2P 2e2Q 2
#,

C35P11P22P32P4 , ~104!

under the boundary conditions

Q i~ta!5Q a
i , i 51,2,3,4, a51,2. ~105!

Again, the new variational principle in terms of the pha
space variables (Q i ,Pi) features~i! no boundary term in the
action~103!, and~ii ! the first class constraints are linear a
homogeneous in the momentaPi .

It could be said in some sense that the parametrized
monic oscillator and theSL(2,R) model are of the same
kind, both have first class constraints quadratic in the c
figuration and momentum variables. In both cases, the s
plest boundary term needed to buildSinv is 2 1

2 qipi . The
parametrized relativistic free particle, on the other hand
quadratic in the momenta only. In that case, the bound
term needed to buildSinv is 2xmpm and Sinv is fully gauge
invariant on the constraint surface only. In all cases, wh
Sinv is written in terms of the phase space variables indu
by the boundary term it happens that no boundary term
present anymore. In the cases whereSinv is fully gauge in-
variant @parametrized harmonic oscillator and theSL(2,R)
model# the new constraints arelinear and homogeneousin
the new momentum variables whereas in the parametr
relativistic free particle whereSinv is gauge invariant only on
the constraint surface the new constraint isnot homogeneous
in the new momenta.

IV. CONCLUDING REMARKS

In this paper two main topics were touched on. The fi
one was the implementation of the ideas of Ref.@1# for
gauge systems whenfinite gauge transformations are take
into account to make compatible both boundary and ga
conditions. In this case, also two different variational pr
ciples were analyzed. The first one features non-gau
invariant actions whereas the other includes fully gau
invariant ones. One of the main lessons learned from
finite but non-gauge-invariant approach is that the interp
between constraints quadratic and linear in the momenta
result in a contribution of the seconds to the boundary te
in contrast to the infinitesimal approach. The second con
bution was to take advantage of fully gauge-invariant acti
to rewrite such systems in terms of new phase space v
ables in terms of which the first class constraints are lin
g
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~and homogeneous in some cases! in the momenta. For a
long time it has been considered that first class constra
quadratic in the momenta are the distinguishing mark of g
erally covariant theories, as general relativity or string the
~see, for instance, Ref.@4#!. Here it was shown that thes
kind of theories can be written in terms of first class co
straints linear in the momenta if fully gauge-invariant actio
are taken into account. Thus the gauge symmetry prese
generally covariant theories with first class constraints q
dratic in the momenta is apparently of the same kind as
gauge symmetry present in Yang-Mills theories if ful
gauge-invariant actions are taken into account for the form
after all, both kinds of theories can be described with fi
class constraints linear in the momenta. It is important
recall that some steps in this direction have been done
Bosonic strings, at least infinitesimally@7#. In the case of
general relativity, it has been shown in Ref.@2# that the ac-
tion for gravity in terms of Ashtekar variables@12–16# is
gauge invariant up to a term proportional to the Hamilton
constraint under the gauge symmetry generated by their
class constraints. This suggests that if one starts from
action for gravity in terms of Arnowitt-Deser-Misner~ADM !
variables in its triad version@17# and apply Eq.~17! the
solution for the generating function will be the one intr
duced in Ref.@18#. From the models studied here it is co
cluded that gauge invariance for the actions is the reaso
have first class constraints linear in the momenta.

There are other aspects of this last topic which were
analyzed here but deserve to be studied. At a classical le
the introduction of the boundary term into the integral a
tions could have also been handled with the original se
canonical variables instead of making the canonical trans
mation as it was done here, but this other way of deal
with the boundary term in the fully gauge-invariant actio
would have led to the introduction of second class co
straints. On the other hand, it would be worth analyzing
quantum theory emerging from these systems with first c
constraints linear in the momenta~and homogeneous in som
cases! and compare with the standard quantization com
from their quadratic constraints. These issues are left for
ture work.
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