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Stochastic production of kink-antikink pairs in the presence of an oscillating background
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We numerically investigate the production of kink-antikink pairs in a (111)-dimensionalf4 field theory
subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction
lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low
dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence
of the kink density on the temperature of the heat bath, the amplitude of the oscillating background and value
of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink
production occurs even though the system always remains in the broken symmetry phase.
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I. INTRODUCTION

During the past decade, the evolution of quantum a
classical fields out of equilibrium has received a lot of atte
tion. The interest generated in this subject matter is m
vated by many physical scenarios in the early universe
well as in condensed matter systems, where nonequilibr
phenomenon plays a crucial role. Of particular relevanc
the formation and evolution of a quark-gluon plasma,
formation of topological defects, out-of-equilibrium pha
transition dynamics and its impact on domain formation a
growth. The nonequilibrium evolution of fields is also a cr
cial input in understanding how the current baryon asymm
try of the universe was generated.

The formation of topological defects@1# is a generic fea-
ture of most symmetry breaking phase transitions which g
rise to a vacuum manifold with a nontrivial topology. Th
most widely discussed mechanism of topological defect
mation during phase transitions was first put forward
Kibble in a seminal paper twenty-five years ago@2#. A cru-
cial feature of this mechanism is that it depends solely on
topology of the vacuum manifold and on the space-time
mension, but not on the details of the field dynamics, wh
makes it universally applicable across a diverse range of
ergy scales. This also allows many of the predictions of
fect formation in the early universe to be tested in the la
ratory using condensed matter systems such as supe
helium and liquid crystals@3#. Recent experiments with liq
uid crystals have spectacularly demonstrated the validity
Kibble mechanism in first order phase transitions by test
universal aspects of the predictions@4,5#. A complete under-
standing of defect formation in systems~such as superfluid
helium-IV! undergoing a second order phase transitions
still lacking @6#.

Dynamics can and does play a crucial role in topologi
defect formation. It has been demonstrated@7# that the den-
sity of defects in first order transitions depends on the ve
ity of the bubble wall which is determined by the dissipati
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coefficient of the medium. Moreover, the dynamics of bub
collisions in a first order transition has been shown to lead
a new mechanism of defect formation stemming from
flipping of the order parameter field through the zero of t
field. For the case of a spontaneously broken global U~1!
field theory in 211 dimensions, this results in thediscon-
tinuous change in phase of the field byp, leading to the
formation of a vortex-antivortex pair.~In 311 dimensions, a
string loop is produced.! This mechanism first observed i
systems where the symmetry is spontaneously as well as
plicitly broken @8# was later shown to be generically vali
and investigated in detail@9#.

In second order phase transitions, the phenomenon
critical slowing down@10# ~freezing of field dynamics nea
the critical point! is crucial in determining the initial density
of defects. The dependence of defect density on the que
rate of a second order transition has also been extensi
investigated@11–13#.

Until recently, conventional wisdom suggested that top
logical defect formation could occur only during phase tra
sitions. However, it has been recently shown@14# that topo-
logical defects can also be produced by the flippi
mechanism@9# under conditions in which the system alwa
remains in the broken symmetry phase without undergo
any phase transition. The production of vortex-antivort
pairs was found to be induced by field oscillations broug
about by the coupling of the U~1! scalar field to a periodi-
cally oscillating background@14#. The flipping of the order-
parameter field in localized regions resulted in the format
of vortex-antivortex pairs, for a certain range of resona
frequencies of the periodically oscillating background.

It is then natural to ask how the defect densities would
affected in the presence of noise. After all, most physi
systems in nature are not closed but are continually invol
in exchanging energy with a heat bath@15,16#. The heat bath
often represents other degrees of freedom which interact
the system in accordance with the fluctuation-dissipat
theorem. In this paper we address this issue by studying
formation of kink-antikink pairs in (111) dimensions.

We should also mention that a Langevin dynamics
proach has also been used to study bubble dynamics
noisy background@17#, long lived oscillating field configu-
©2002 The American Physical Society21-1
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rations ~oscillons! in a thermal bath@18# and to obtain the
nucleation rates of bubble formation in a first order pha
transition using both additive and multiplicative noise@19#.

The investigation of kink-antikink production has be
carried out in a variety of contexts. The nonequilibrium d
namics of kink formation was investigated@20# for a damped
scalar field theory undergoing a symmetry breaking ph
transition with the aim of understanding how the defect d
sities and correlation lengths depend upon the choice of
sipation coefficient and initial conditions. The regime of v
lidity of the linear and Hartree approximation was al
elucidated and it was shown that nonlinear effects pla
crucial role in determining the initial defect densities afte
quench. The thermal production of kinks has been inve
gated both analytically and numerically. Scalapino, Sears
Ferrell used the transfer integral technique to calculate
exact partition function and correlation functions for a dilu
gas of kink-antikink pairs@21#. Krumhansl and Schreiffe
~KS! later showed that in the low temperature limit whe
the dilute gas approximation is valid, the kink contribution
the partition fuction can be factored out and identified with
tunneling term@22#. Currieet al. @23# further generalized the
results of KS by taking into account the interaction of t
kinks with phonons. They also studied kink production in t
sine-Gordon model in addition to the real scalar field mod
Numerical investigations to check the theoretical predictio
like the thermal nucleation rate and kink life-time have a
been carried out@24,25#. More recently, Alexander, Habib
and Kovner@26# investigated thermal production of kink
both analytically and numerically by using a Langevin equ
tion with additive white noise to model the effect of therm
fluctuations. They were able to identify the temperature
gime below which the dilute gas~WKB! approximation is
valid. By introducing a double-Gaussian approximation th
were able to obtain an excellent agreement between t
theoretical prediction of thermal kink densities and their n
merical results. Langevin simulations in the intermedi
temperature range were recently carried out by Gleiser
Muller @27#, where they also pointed out the important iss
of lattice spacing dependence of results in simulations
stochastic field equations. The thermal nucleation of inter
ing kink-antikink pairs in the sine-Gordon model has be
investigated by Bu¨ttiker and Landauer, in the overdampe
limit @28#. The nucleation rate in the overdamped limit w
found to be proportional to the square of the equilibriu
density@28#; however some studies@29# also suggested tha
the nucleation rate is proportional to the cube of the equi
rium density of kinks. The resolution of this controversy d
pends on unambiguously ascertaining whether the kink l
time is inversely proportional to the equilibrium kink densi
@30# or the square of the equilibrium kink density@29#. Re-
cent work for both sine-Gordon@30# and f4 models@31#,
involving extensive numerical simulations of the nucleati
and annihilation dynamics of thermal kinks and antikink
have clarified that the nucleation rate is proportional to
square of the equilibrium density. In all these papers,
effect of an oscillating background driving the kink
producing field was not considered. Such a situation
06352
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been discussed by Marchesoniet al. @32# for an overdamped
field theory.

In this paper we focus on numerically investigating t
formation of kinks in a (111)-dimensional spontaneousl
brokenrelativistic ~underdamped! scalar field theory coupled
to an oscillating background and subject to white noise.1 The
coupling of the field to the oscillating background and th
mal noise induces large amplitude field oscillations for a c
tain range of frequencies, thus enabling the field to cr
over the potential barrier resulting in the nucleation of kin
antikink pairs. We find that kink-antikink pairs are produc
in spite of the fact that the system both initially and for a
subsequent times, remains in the broken symmetry ph
This has important consequences for topological defect p
duction@14# since it implies that topological defects need n
be produced only during a phase transition, as was belie
earlier. Moreover, kink-antikink production is found to d
pend sensitively on the dissipation coefficient and the eff
becomes considerably suppressed for high dissipation c
ficients.

The physical situation we discuss is of relevance to b
early universe as well as condensed matter physics. Du
reheating after inflation, the inflaton field starts oscillati
about its vacuum value and would act like a driving force
any other scalar field to which it is coupled. The oscillatio
eventually die out due to particle production caused by tra
fer of energy from the oscillating inflaton to the quanta
fields to which it is coupled, leading to reheating of the u
verse and a transition from matter dominated to the radia
dominated phase. The process of~p!reheating of the universe
after inflation has been the subject of intensive study dur
the last decade during which a new theory of reheating~due
to inflaton decay via explosive soft particle production! was
developed and studied in detail@34#. The effect of noise on
the growth of fluctuations has also been studied@35# in the
context of reheating after inflation. Domain wall@36# and
cosmic string@37# production during~p!reheating has also
been investigated. The main premise of these papers was
~p!reheating could result in nonthermal symmetry restorat
@38# after inflation. Topological defects would then be pr
duced during the subsequent symmetry breaking brou
about by rescattering effects and/or cooling due to exp
sion, in the usual manner~i.e. via Kibble mechanism!. How-
ever, as pointed out recently@14#, topological defects can
form even without the system undergoing any thermal
nonthermal phase transition; simply because of large am
tude oscillations of the defect producing field, induced by
coupling to a spatially homogeneous, oscillating, inflat
field.

In condensed matter systems, the oscillating backgro
can be thought of as an external oscillating influence suc
temperature, pressure or even an electric or magnetic
coupled to the system. A system subject to noise and peri

1Strictly speaking there is no phase transition ind<2 spatial di-
mensions, for systems in equilibrium@33#. However, in our case,
the system is always evolving out-of-equilibrium and so t
Mermin-Wagner theorem does not apply.
1-2
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STOCHASTIC PRODUCTION OF KINK-ANTIKINK . . . PHYSICAL REVIEW D65 063521
driving has also been extensively studied in nonlinear
namics, in the context of stochastic resonance@39#. The field
theory system considered here, shares the characteristic
tures of systems undergoing stochastic resonance. How
the phenomenon we observe, i.e. enhancement in k
antikink densities due to the twin effects of noise and pe
odic driving, is distinct from stochastic resonance, as will
discussed later.

The main purpose of this work is to investigate the eff
of noise and an oscillating background on the density
kink-antikink pairs. The presence of the oscillating bac
ground ensures that the system is always out-of-equilibr
and so the defect production in this case is distinct from
thermal production of kink-antikink pairs@21–27,32#. The
main result of this work is the observed enhancement
kink-antikink density, compared to the thermal equilibriu
value, as a result of the twin effects of noise and coupling
the field with an oscillating background.

The paper is organized as follows. In Sec. II, we descr
our model and the numerical algorithm we use to solve
Langevin equation. There we also discuss some of the is
related to the lattice-spacing dependence of the result
Langevin simulations. The results of our numerical simu
tions are described in Sec. III. The dependence of ki
antikink density on parameters such as bath temperature,
plitude of oscillation of the background homogeneous fi
and the dissipation coefficient are investigated. The rang
frequencies for which defect production occurs is also
tained. We end with a brief summary and discussion of
results in Sec. IV.

II. THE MODEL AND NUMERICAL TECHNIQUES

The Lagrangian density for a spontaneously broken
scalar field theory in 111 dimensions is

L5
1

2
~]mw!~]mw!2

l

4
~w22w0

2!22
1

2
g2x2w2 ~1!

wherew is a real scalar field coupled to a spatially homog
neous, oscillating background fieldx given by x
5x0sin(vt) andg2 is the coupling parameter. In the absen
of the coupling term (g250), the above Lagrangian densi
leads to the field equation

]2w/]t22,2w1lw~w22w0
2!50, ~2!

whose static solution admits extended but localized topolo
cal structures called kinks and antikinks

w~x!65w0tanhFAl

2
f0~x6x0!G ~3!

where the6 signs correspond to kink and anti-kink locate
at x0 and 2x0 respectively. It is often convenient to wor
with dimensionless quantities obtained by scaling the v
ables as follows:

w→f5
w

w0
, x→ x

w0
,
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x→Alw0x, t→Alw0t,

g2→ g2

l
~4!

T→ T

Alw0
3

,

h→ h

Alw0

.

In terms of the above dimensionless quantities, the k
solution @Eq. ~3!# is now given by f(x)65tanh@(x
6x0)/A2# and the kink mass is easily calculated to beMk

5A8/9.
To take into account the effect of interaction of the syst

with a background thermal bath, it is customary to use
stochastic description in which the system interacts with
thermal bath at a given temperatureT. The presence of a
thermal bath with which the system interacts can be ea
motivated. Most realistic physical scenarios involve a syst
exchanging energy with a heat bath which may either rep
sent external thermalized degrees of freedom or, in so
cases, certain degrees of freedom, typically the hard mo
of the system, which thermalize on a shorter time scale co
pared with the rest of the system@15,16#. These can therefore
be considered as an environment with which the syst
consisting of the nonthermal degrees of freedom~those with
longer thermalization time scales; usually the soft modes
field theory!, exchange energy. This interaction would eve
tually drive the system to thermal equilibrium~in the absence
of the oscillating background field!. In this description, the
Langevin field equation, in terms of scaled dimensionle
variables, takes the form

]2f

]t2
1h

]f

]t
2

]2f

]x2
1f~f221!1g2x2f5j~x,t ! ~5!

where the dimensionless damping coefficienth and the
Gaussian~delta correlated! white noise termj(x,t) are re-
lated by the fluctuation dissipation theorem

^j~x,t !j~x8,t8!&52Thd~x2x8!d~ t2t8! ~6!

to ensure the equilibration of the system in the absence of
coupling term.T is the rescaled, dimensionless temperat
of the heat bath.

When the coupling term is small, i.e. forg2x0
2!1, its

presence does not affect the above form of the kink-antik
solutions. The noise and the perturbation term cause the
ter of mass of the kink or antikink to become a rando
variable@40#. The small coupling term also acts as a positi
mass term and is responsible for shifting the vacuum st
towards zero. The critical value ofg2x0

2 for which the broken
symmetry is restored is (g2x0

2)c51. To ensure that the sys
tem always remains in the broken phase, one must have
1-3
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g2x0
2!1. ~7!

Since the coupling term in the Lagrangian is quadratic
f, the shape of the effective potential remains unchang
The oscillating background field has the effect of modulat
the barrier height and the position of the two disconnec
vacuum states of the potential. During one period of osci
tion of the background field, the two degenerate vacu
states off change its value from a minimum of6A12g2x0

2

for t5(2n11)(p/2v); n50,61,62, . . . ~corresponding to
the minimum barrier height separating the two disconnec
vacua! to a maximum of 61 for t5n(p/v); n50,61,
62, . . . ~corresponding to the maximum barrier height!.
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In order to study the production of kink-antikink pair
due to the effects of noise and periodic driving, we solve E
~5! numerically using a stochastic second order stagge
leapfrog algorithm with periodic boundary conditions. Su
an algorithm has been previously employed by Gleiser
collaborators@25,27,41# to study thermal production of kink
antikink pairs as well as to investigate ways of matchi
Langevin lattice simulation results with continuum fie
theories. We briefly outline the algorithm used and then d
cuss some of the subtleties associated with lattice sim
tions of Langevin equations.

The discretized version of Eq.~5! using the second orde
stochastic staggered leapfrog algorithm can be cast as
f i ,n115

2f i ,n2S 12
hDt

2 Df i ,n211~Dt !2S ¹2f2V8~f i ,n!1A 2Th

DtDx
ui ,nD

11
hDt

2

~8!
ap-
tion

as
n

were
la-

c-
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e
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ed.

at-

i-

the
. A
where ‘‘i ’’ and and ‘‘n’’ are the spatial and temporal lattic
indices respectively.V8(f) is the derivative of the potentia
with respect tof andui ,n is a Gaussian random number wi
zero mean and unit variance, i.e.^ui ,n&50,̂ ui ,nui ,m&5dm,n
~numerically generated by a Box-Mueller algorithm@42#!;
with ui ,n being related toj i ,n by the relation

j i ,n5A 2Th

DtDx
ui ,n . ~9!

The presence of a lattice introduces natural UV and
momentum cutoffs in the theory since the smallest and
largest momentum modes that can be probed by the sim
tion are proportional to inverse lattice size (2p/L) and in-
verse lattice spacing (p/Dx) respectively. HereL5NDx is
the lattice size,N being the total number of lattice points
Finite-size effects can be ruled out by using a large lat
size. However, computational constraints prevent the ch
of an arbitrarily small lattice spacing. Also in our case, t
presence of an external time scale specified by the freque
of the oscillating background field requires

Dt!v21. ~10!

The choice of lattice spacing is also crucial especially
Langevin simulations as has been pointed out ear
@27,41,43#. The results of Langevin simulation turn out to b
lattice-spacing dependent unless appropriate counterte
are introduced in the effective potential. There is some a
biguity about the manner in which the results scale withDx.
A perturbative counterterm linear inDx when added to the
potential, was found@27# to be adequate enough to remo
the lattice spacing dependence of the Langevin simula
results. However, it has been argued@43# that a perturbative
method is often inadequate in obtaining the correct man
e
la-

e
e

cy

r

ms
-

n

er

in which the simulation results scale withDx. In particular,
the one-loop perturbative procedure@27# does not give any
corrections for the free theory. Using a nonperturbative
proach based on an exact solution of the thermal parti
function, Bettencourtet al. @43# were able to show2 that the
convergence of the results with lattice spacing scales
(Dx)2 and not asDx as the perturbative one-loop calculatio
@27# suggested. In both papers, the systems considered
in thermal equilibrium and this aspect facilitated the calcu
tion of appropriate counterterms, perturbatively@27#, and
through an exact computation of the thermal partition fun
tion @43#.

In our case however, the presence of the coupling~of the
field! with the oscillating background and the low dissipati
coefficient~which makes transfer of energy between the h
bath and the system inefficient! prevents the thermalization
of the system even for large times for which the simulatio
were run. Adding counterterms calculated for systems
thermal equilibrium is therefore not helpful in removing th
lattice spacing dependence of the results. At this stage,
issue of removal of lattice spacing dependence of Lange
simulations for nonequilibrium systems remains unresolv
We hope to address this problem in a future publication.

We have carried out our simulations with the spatial l
tice spacingDx50.4, the temporal lattice spacingDt50.01.
The physical lattice size~L! was kept fixed at 6553.6 which
corresponds toN516384 lattice points forDx50.4. We
have also setg251 in all our simulations so that the cond
tion ~7! reduces to

2In this method, the nature of the counterterm depends on
time-stepping algorithm used for evolving the Langevin equation
Euler differencing scheme was used in@43#.
1-4
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x0
2!1. ~11!

The issue of how to identify kinks in a Langevin lattic
simulation has attracted much controversy@26,27#, mainly
because of the fact that at high temperatures, it beco
extremely difficult to distinguish between kinks, phono
and large amplitude, nonperturbative and non-topolog
fluctuations. It is fair to say that an unambiguous techniq
for counting kinks on the lattice remains to be discovered
this paper, we follow the technique employed in@26# where a
zero crossing of the order parameter field is counted a
kink only if there are no other zero crossings for one ki
width to its left and right. The kink width in terms scaled an
dimensionless units is 2A2 which corresponds to approx
mately 8 lattice units, forDx50.4. The total number of kinks
and antikinks is just twice the number of kinks counted b
cause kinks and antikinks are always produced in pa
Since in these simulations, we are interested only in the
temperature regime, where kinks are easily identifiable
shown in Fig. 1, this method provides a fairly accurate w
of counting kinks.

III. NUMERICAL RESULTS

We are now in a position to describe the results of o
numerical simulations. The initial conditions of our simul
tions correspond to the situation in which the field over
entire lattice, undergoes small amplitude fluctuations ab
the positive of the two degenerate vacuum states. The am

FIG. 1. The field configuration att53000, for a portion of the
lattice showing kink-antikink pairs. The parameter values areT
50.12,h50.01,x050.34,v51.10.
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tude of fluctuations are ofO(1023) and incapable of taking
the field over the potential barrier. We have checked that
results are independent of initial conditions and remain
changed even if we choose the initial field configuration
be spatially homogeneous over the entire lattice with
value corresponding to either one of the two degene
vacuum states. As evident, from our choice of initial con
tions, there are no kinks or antikinks present initially. T
amplitude of oscillation of the background field is chosen
be<0.38 so that the condition~11! is satisfied and this alone
is incapable of inducing the field to climb over the potent
barrier in the absence of coupling to the environment.

In the absence of the oscillating background (g250),
thermal fluctuations can make localized portions of the fi
flip over the potential barrier, resulting in the formation of
kink-antikink pair@26,27#. However, the density of pairs pro
duced depends on the strength of thermal fluctuations g
by D5Th which is a measure of the amount of energy tra
ferred from the heat bath to the system. The thermal nu
ation of kink-antikink pairs is suppressed by the Boltzma
factor e2Mk /T. Earlier studies@26,27# were carried out with
the noise strengthD>O(1021) since their main focus was
on thermal equilibrium production of kinks. The phenom
enon we observe occurs at low noise strengths in un
damped systems evolving out of equilibrium. In our simu
tions we restrict the damping coefficienth,0.05. The
temperature of the heat bath is taken to beO(1021), so the
noise strengthD;1023. For such low noise strengths, th
production of kinks by thermal fluctuations is few and f
between. However, in the presence of noise and n
vanishing couplingg2, a dramatic enhancement in kink pro
duction is observed for a certain range of frequencies of
oscillating background field.

A periodically modulated nonlinear system like the o
described by Eq.~5! is expected to exhibit resonant behavi
for a certain range of frequencies of the modulator. The pr
ence of noise acting in conjunction with the periodic mod
lation induces large amplitude fluctuations in the field e
abling it ~in localized regions! to cross over the potentia
barrier. This results in the formation of kink-antikink pairs
a manner similar to the production of vortex-antivortex pa
discussed recently@14#. The theoretical analysis of this phe
nomenon is extremely complicated not only because of
nonlinear nature of a system with infinite degrees of fre
dom, but also because one has to deal with stochastic pa
differential equations. We have therefore decided to take
course to numerical simulations to investigate this pheno
enon. The quantities of importance are the mean field gi
by ^f(x,t)&[f̄(t)5(1/L)*0

Lf(x,t)dx, the fluctuation de-
fined asdf(t)5A^f(x,t)2&2^f(x,t)&2 and the density of
kink-antikink pairsn(t)52Nk(t)/L; whereNk(t) is the total
number of kinks at a given time, counted in the mann
described earlier.

To identify the resonant frequency regime, it is importa
to realize that too large an oscillation frequency would ca
the effective potential to change in a time scale which
much smaller than the destabilization time scale of the fi
~from its initial state!, as a result of which the field would no
1-5
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FIG. 2. The time evolution of the~a! mean
field, ~b! fluctuations,~c! kink-antikink density,
~d! kink-antikink density in the absence o
the oscillating background (g250); for five
different bath temperatures. The plots label
A,B,C,D,E correspond to temperaturesT
50.08,0.1,0.12,0.14,0.16 respectively. Other p
rameter values which are kept fixed areh
50.01, v51.10, x050.34. Note the difference
in scales on the y axis of~c! and ~d!.
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feel the change in the shape of the potential. On the o
hand, too small an oscillation time scale would result in
destabilized field having sufficient time to relax to th
vacuum state of the changing effective potential~apart from
fluctuations due to the presence of noise!. With these consid-
erations in mind we find that the range of frequency requi
to induce resonant amplification of field amplitude leading
the enhanced production of kinks is 0.3<v<2.5.

We first give results for the variation of the mean field, t
fluctuation and the kink density with change in the tempe
ture ~T! of the heat bath. Figure 2 shows the plots~for a
single noise realization! with fixed v, x0 , h and T varying
from 0.0820.16 in steps of 0.02. The mean field value sta
ing from its initial value around 1 decreases to zero a
eventually starts oscillating about zero. On the other ha
the fluctuation grows exponentially in a short time scale
its asymptotic value and remains nearly constant therea
The kink density increases with temperature as expected
mean field is also found to decay more quickly to zero
higher temperatures and the fluctuation also grows m
steeply signifying an increase in the growth exponent. T
time around which the fluctuation plateaus out is also
time around which the average kink-antikink density b
comes nearly constant implying that kinks and antikinks
nucleated and annihilated at nearly the same rate. The k
antikink density for the same set of temperatures but with
coupling g250 ~i.e. in the absence of the oscillating bac
ground! is shown in Fig. 2~d!. A comparison between Fig
2~c! and Fig. 2~d! clearly shows considerable~by at least an
order of magnitude! enhancement in the kink density whe
both noise and periodic driving is present. This is especia
evident for low temperatures. The presence of the oscilla
background as well as the low dissipation coefficient p
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vents the thermalization of the system for time scales up
which the simulations were run.

The decay of the mean field value to zero isnot an indi-
cation of symmetry restoration~a common misconception
existing in the literature@36#! but is indicative of the forma-
tion of a large number of kink-antikink pairs. To establis
this unambiguously we plotted the probability distribution
the field over the entire lattice by appropriately binning t
field values. Figure 3~a! shows the initial probability distri-
bution of the field for the entire lattice. In view, of the choic
of initial conditions, the sharp peak in the probability dist
bution aboutf51 is easily understandable. Figure 3~b!
shows the field probability distribution at a later timet
53000) after the fluctuation has flattened out and the av
age kink density has become nearly constant. The fact
the probability distribution is still peaked about the nonva
ishing vacuum expectation values clearly implies that
symmetry remains broken. In contrast to Fig. 3~a! two dis-
tinct peaks of nearly the same height aboutf.61 are now
observed. This can be easily explained by the fact that
presence of a large number of kink-antikink pairs causes
fraction of the field aroundf;1 to be nearly the same as th
fraction aroundf;21. The generic form of the probability
distribution function depicted in Fig. 3~b! is observed till the
end of the simulation, which allows us to conclude that kin
antikink pairs are produced even though the systemalways
remains in the broken phase~just as in@14#!. This is contrary
to the situation discussed in the context of topological def
production during inflationary~p!reheating@36,37#. There,
the fluctuations grow large enough to restore symmetry
defects are produced in the conventional manner when
symmetry is subsequently broken due to mode-scattering
fects and/or expansion of the universe.

Figure 4 shows the mean field value, fluctuation and k
density obtained after averaging over 100 different noise
1-6
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FIG. 3. ~a! Probability distribution ofF at ~a!
t50 and~b! t53000. The solid line in~b! is an
asymmetric double-Gaussian fit of the data giv
by the function a0exp@2(a1/2)(x1x0)2#
1exp@2(a1/2)(x2x0)2#, where a050.79,a1

521.13,x050.94. The large twin peaks aroun
F561, even at late times, is a clear indicatio
that the symmetry remains spontaneously brok
th
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alizations. The upper and lower curves correspond to
61s standard deviation from the noise averaged mid
curve. The generic features observed in Fig. 2 are also
here. At late time, the61s error becomes quite small a
evident from the fluctuation plots in Fig. 4~a!.

The dependence of the kink density on the amplitude
oscillation x0 is shown in Fig. 5. As mentioned earlier, th
coupling term acts like a positive mass term and this dicta
the choice ofx0 in accordance to constraint~11!. An increase
in x0 does lead to an increase in defect density as is evid
from Fig. 5. However, since our main interest lies in studyi
defect production dynamics for small amplitudes of the
cillating background, such that the coupling to the oscillat
background by itself is incapable of exciting kink produ
tion; we restrict the amplitude tox0<0.38.

The dependence of the kink density on the dissipat
coefficient is depicted in Fig. 6. We emphasize that our
sults are valid only for very low dissipation coefficients. F
large dissipation coefficients, the field oscillations are c
siderably suppressed leading to a suppression in kink de
ties as evident from the plots of Fig. 6.

The kink densities are also crucially dependent on
choice of frequency of the oscillating background field. W
have found that large amplitude field oscillations are
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duced, leading to kink-antikink production, only for freque
cies lying in the range 0.3<v<2.5. For frequencies beyon
this window, no significant enhancement of kink densit
compared to their thermal equilibrium value is observed.
is evident from Fig. 7, there exists an optimum value
frequency~all other parameters remaining fixed! for which
kink density is maximized. This optimum value also depen
on the temperature of the heat bath (T), damping coefficient
(h) and the amplitude of oscillations (x0).

IV. DISCUSSIONS AND CONCLUSION

In this paper, we have investigated a novel phenome
in a (111)-dimensional field theory admitting topologica
solitons called kinks. We investigated the production of kin
antikink pairs when the system is subject to the twin effe
of noise and periodic driving via its coupling to an oscilla
ing but spatially homogeneous background field. For a c
tain range of frequencies of the oscillating background, th
occurs considerable enhancement in the densities of k
compared to their thermal equilibrium values. We also st
ied the effect on kink density of parameters such as
damping coefficient, the temperature of the heat bath and
amplitude of oscillations ofx. Our results are particularly
d

ed
the

has
a-
FIG. 4. Time evolution of the noise average
values of the~a! mean field and fluctuations,~b!
kink-antikink density, together with the61s er-
ror. The solid line indicates the noise-averag
mean while the dashed lines above and below
mean correspond to11s and 21s deviation
from the noise averaged value. Noise average
been carried out over 100 different noise realiz
tions.
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RAJARSHI RAY AND SUPRATIM SENGUPTA PHYSICAL REVIEW D65 063521
sensitive to the value of the dissipation coefficient and
enhancement in kink density compared to their thermal e
librium value is observed only for low dissipation coef
cients. Kink-antikink pair production is observed ev
though the system remains in the broken phase throug
the course of the simulations. This further demonstrates
topological defects need not be produced only during sy
metry breaking phase transitions, as pointed out earlier@14#.

FIG. 5. The variation of the kink-antikink density with the am
plitudex0 of the oscillating background field. Other parameter v
ues are kept fixed atT50.12,h50.01,v51.10.

FIG. 6. The variation of the kink-antikink density with the di
sipation coefficienth. Other parameter values are kept fixed atT
50.12,x050.34,v51.10.
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At this stage it is tempting to compare our results with t
intriguing phenomenon of stochastic resonance~SR! which
has been extensively investigated in the literature on non
ear dynamical systems@39#. The characteristic feature of SR
is that an increase in the noise strength can sometimes le
more coherent behavior when the nonlinear dynamical s
tem is also subject to a periodic driving force. In particul
by tuning the noise strength, a significant improvement in
signal-to-noise ratio~also manifest through peaks in th
noise averaged power spectrum! is achieved. The study o
stochastic resonance for spatially extended systems has
carried out for Ginzburg-Landau type field theories, alb
restricted to the over-damped regime@32,44#. There it was
found that an appropriate choice of the frequency of the
riodic driving obtained by matching the thermal activatio
time scale~given by the inverse of Kramers rate! to half the
period of the modulating background, can result in perio
cally synchronized behavior of the mean field aboutf50
~see Fig. 2 of Ref.@44#!. In our case however, no synchron
zation of the mean field is observed, rather it is found
decay to zero from its initial value in one of the vacuu
states, and thereafter keep on oscillating erratically about
zero field value. As has been demonstrated~see Fig. 3!, this
behavior can be attributed to kink-antikink production whi
occurs in spite of the fact that the system remains in
broken phase. This comparison makes it clear that the p
nomenon we have discussed is quite distinct from that
stochastic resonance. The investigation of the phenome
of stochastic resonance in underdamped system is curre
in progress@45#.

There is much that needs to be investigated. Apart fr
the study of the phenomenon of SR in underdamped syste
a theoretical understanding of the phenomenon discus
here is required. In particular, an analytical derivation of t

FIG. 7. The variation of the kink-antikink density with the fre
quencyv of the oscillating background. Other parameter values
kept fixed atT50.12,x050.34,h50.01.

-
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frequency window required for enhanced kink-antikink pr
duction would be both interesting and useful. Moreover,
issue of lattice spacing dependence of results of nonequ
rium dynamical systems requires clarification. Also, a stu
of kink production in the sine-Gordon model coupled to
oscillating background would be interesting. We plan to a
dress these issues in a future work.
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