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Stochastic production of kink-antikink pairs in the presence of an oscillating background
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We numerically investigate the production of kink-antikink pairs in a-(l)-dimensionalp? field theory
subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction
lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low
dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence
of the kink density on the temperature of the heat bath, the amplitude of the oscillating background and value
of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink
production occurs even though the system always remains in the broken symmetry phase.
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[. INTRODUCTION coefficient of the medium. Moreover, the dynamics of bubble
collisions in a first order transition has been shown to lead to
During the past decade, the evolution of quantum andh new mechanism of defect formation stemming from the
classical fields out of equilibrium has received a lot of atten<lipping of the order parameter field through the zero of the
tion. The interest generated in this subject matter is motifield. For the case of a spontaneously broken globél) U
vated by many physical scenarios in the early universe afeld theory in 2+1 dimensions, this results in thaiscon-
well as in condensed matter systems, where nonequilibriurtinuous change in phase of the field by, leading to the
phenomenon plays a crucial role. Of particular relevance iformation of a vortex-antivortex paifin 3+ 1 dimensions, a
the formation and evolution of a quark-gluon plasma, thestring loop is produced.This mechanism first observed in
formation of topological defects, out-of-equilibrium phase systems where the symmetry is spontaneously as well as ex-
transition dynamics and its impact on domain formation andplicitly broken [8] was later shown to be generically valid
growth. The nonequilibrium evolution of fields is also a cru- and investigated in detd(ib].
cial input in understanding how the current baryon asymme- In second order phase transitions, the phenomenon of
try of the universe was generated. critical slowing down[10] (freezing of field dynamics near
The formation of topological defecfd] is a generic fea- the critical poin} is crucial in determining the initial density
ture of most symmetry breaking phase transitions which givef defects. The dependence of defect density on the quench
rise to a vacuum manifold with a nontrivial topology. The rate of a second order transition has also been extensively
most widely discussed mechanism of topological defect forinvestigated11—-13.
mation during phase transitions was first put forward by Until recently, conventional wisdom suggested that topo-
Kibble in a seminal paper twenty-five years d@. A cru-  logical defect formation could occur only during phase tran-
cial feature of this mechanism is that it depends solely on thaitions. However, it has been recently shoM#d] that topo-
topology of the vacuum manifold and on the space-time di{ogical defects can also be produced by the flipping
mension, but not on the details of the field dynamics, whichmechanisni9] under conditions in which the system always
makes it universally applicable across a diverse range of emremains in the broken symmetry phase without undergoing
ergy scales. This also allows many of the predictions of deany phase transition. The production of vortex-antivortex
fect formation in the early universe to be tested in the labopairs was found to be induced by field oscillations brought
ratory using condensed matter systems such as superfluagbout by the coupling of the (@) scalar field to a periodi-
helium and liquid crystal$3]. Recent experiments with lig- cally oscillating backgroun@14]. The flipping of the order-
uid crystals have spectacularly demonstrated the validity oparameter field in localized regions resulted in the formation
Kibble mechanism in first order phase transitions by testingf vortex-antivortex pairs, for a certain range of resonant
universal aspects of the predictigds5]. A complete under- frequencies of the periodically oscillating background.
standing of defect formation in systensuch as superfluid It is then natural to ask how the defect densities would be
helium-1V) undergoing a second order phase transitions igffected in the presence of noise. After all, most physical
still lacking [6]. systems in nature are not closed but are continually involved
Dynamics can and does play a crucial role in topologicalin exchanging energy with a heat baflb,16. The heat bath
defect formation. It has been demonstratétithat the den-  often represents other degrees of freedom which interact with
sity of defects in first order transitions depends on the velocthe system in accordance with the fluctuation-dissipation
ity of the bubble wall which is determined by the dissipationtheorem. In this paper we address this issue by studying the
formation of kink-antikink pairs in (*+ 1) dimensions.
We should also mention that a Langevin dynamics ap-
*Email address: rajarshi@iopb.res.in proach has also been used to study bubble dynamics in a
TEmail address: sengupta@phys.ualberta.ca noisy background17], long lived oscillating field configu-
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rations (oscillong in a thermal batH18] and to obtain the been discussed by Marches@nial. [32] for an overdamped
nucleation rates of bubble formation in a first order phasdield theory.
transition using both additive and multiplicative no[dé)]. In this paper we focus on numerically investigating the
The investigation of kink-antikink production has been formation of kinks in a (3 1)-dimensional spontaneously
carried out in a variety of contexts. The nonequilibrium dy- brokenrelativistic (underdampexdscalar field theory coupled
namics of kink formation was investigatg20] for a damped to an oscillating background and subject to white ndiae
scalar field theory undergoing a symmetry breaking phaseoupling of the field to the oscillating background and ther-
transition with the aim of understanding how the defect denmal noise induces large amplitude field oscillations for a cer-
sities and correlation lengths depend upon the choice of digain range of frequencies, thus enabling the field to cross
sipation coefficient and initial conditions. The regime of va-over the potential barrier resulting in the nucleation of kink-
lidity of the linear and Hartree approximation was alsoantikink pairs. We find that kink-antikink pairs are produced
elucidated and it was shown that nonlinear effects play an spite of the fact that the system both initially and for all
crucial role in determining the initial defect densities after asubsequent times, remains in the broken symmetry phase.
quench. The thermal production of kinks has been investiThis has important consequences for topological defect pro-
gated both analytically and numerically. Scalapino, Sears angduction[14] since it implies that topological defects need not
Ferrell used the transfer integral technique to calculate thE€ produced only during a phase transition, as was believed
exact partition function and correlation functions for a dilute earlier. Moreover, klnk-ar_1t|k_|nk _productlt_)n_ is found to de-
gas of kink-antikink pairg21]. Krumhansl and Schreiffer pend sensmvel_y on the dissipation coeff|_C|ent_an_d th_e effect
(KS) later showed that in the low temperature limit where becomes considerably suppressed for high dissipation coef-

the dilute gas approximation is valid, the kink contribution t0f|0|_(|a_?]ts. hvsical situation we discuss is of relevance to both
the partition fuction can be factored out and identified with a € phy : :
tunneling tern{22]. Currieet al.[23] further generalized the early universe as well as condensed matter physics. During

9 T ' 9 . reheating after inflation, the inflaton field starts oscillating
results of KS by taking into account the interaction of the

kinks with bh Th | died kink production in th about its vacuum value and would act like a driving force to
n s with p onons. They also studied kink pro uc_:tlon Int eany other scalar field to which it is coupled. The oscillations
sine-Gordon model in addition to the real scalar field model

o o . ““*leventually die out due to particle production caused by trans-
Numerical investigations to check the theoretical predictiongg, of energy from the oscillating inflaton to the quanta of

like the thermal nucleation rate and kink life-time have alsofie|ds to which it is coupled, leading to reheating of the uni-
been carried ouf24,25. More recently, Alexander, Habib yerse and a transition from matter dominated to the radiation
and Kovner[26] investigated thermal production of kinks dominated phase. The procespieheating of the universe
both analytically and numerically by using a Langevin equa-after inflation has been the subject of intensive study during
tion with additive white noise to model the effect of thermal the last decade during which a new theory of reheatihg
fluctuations. They were able to identify the temperature reto inflaton decay via explosive soft particle producjiovas
gime below which the dilute ga@VKB) approximation is  developed and studied in detf#4]. The effect of noise on
valid. By introducing a double-Gaussian approximation theythe growth of fluctuations has also been studi@g] in the
were able to obtain an excellent agreement between thedontext of reheating after inflation. Domain w&B6] and
theoretical prediction of thermal kink densities and their nu-cosmic string[37] production during(p)reheating has also
merical results. Langevin simulations in the intermediatebeen investigated. The main premise of these papers was that
temperature range were recently carried out by Gleiser angh)reheating could result in nonthermal symmetry restoration
Muller [27], where they also pointed out the important issue[38] after inflation. Topological defects would then be pro-
of lattice spacing dependence of results in simulations ofluced during the subsequent symmetry breaking brought
stochastic field equations. The thermal nucleation of interactabout by rescattering effects and/or cooling due to expan-
ing kink-antikink pairs in the sine-Gordon model has beensijon, in the usual mannér.e. via Kibble mechanisin How-
investigated by Btiiker and Landauer, in the overdamped ever, as pointed out recenty14], topological defects can
limit [28]. The nucleation rate in the overdamped limit wasform evenwithout the system undergoing any thermal or
found to be proportional to the square of the equilibriumnonthermal phase transition; simply because of large ampli-
density[28]; however some studig®9] also suggested that tude oscillations of the defect producing field, induced by its
the nucleation rate is proportional to the cube of the equilibcoupling to a spatially homogeneous, oscillating, inflaton
rium density of kinks. The resolution of this controversy de-field.

pends on unambiguously ascertaining whether the kink life- In condensed matter systems, the oscillating background
time is inversely proportional to the equilibrium kink density can be thought of as an external oscillating influence such as
[30] or the square of the equilibrium kink densf®9]. Re-  temperature, pressure or even an electric or magnetic field
cent work for both sine-GordofB0] and ¢* models[31],  coupled to the system. A system subject to noise and periodic
involving extensive numerical simulations of the nucleation

and annihilation dynamics of thermal kinks and antikinks,

have clarified that the nucleation rate is proportional to the lstrictly speaking there is no phase transitiordis 2 spatial di-
square of the equilibrium density. In all these papers, thenensions, for systems in equilibriuf83]. However, in our case,
effect of an oscillating background driving the Kkink- the system is always evolving out-of-equilibrium and so the
producing field was not considered. Such a situation hasermin-Wagner theorem does not apply.
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driving has also been extensively studied in nonlinear dy- X—\VN@oX, t—\egt,
namics, in the context of stochastic resonai84. The field
theory system considered here, shares the characteristic fea- g2
tures of systems undergoing stochastic resonance. However, 9°— — (4)
the phenomenon we observe, i.e. enhancement in kink- A
antikink densities due to the twin effects of noise and peri-
odic driving, is distinct from stochastic resonance, as will be T
discussed later. L \/X—
The main purpose of this work is to investigate the effect o
of noise and an oscillating background on the density of

kink-antikink pairs. The presence of the oscillating back- . Y

ground ensures that the system is always out-of-equilibrium K \/X%.

and so the defect production in this case is distinct from the

thermal production of kink-antikink pairf21-27,32. The In terms of the above dimensionless quantities, the kink

main result of this work is the observed enhancement ogytion [Eq. (3)] is now given by ¢(x). =tanH(x
kink-antikink density, compared to the thermal equilibrium +x)/y/2] and the kink mass is easily calculated to g
value, as a result of the twin effects of noise and coupling of_ J8/9.
the field with an oscillating background.

The paper is organized as follows. In Sec. I, we descriqui

our model and j[he numerical algont'hm we use to SOIV? th‘:stochastic description in which the system interacts with a

Langevin equation. There we also discuss some of the ISSUSarmal bath at a given temperatufe The presence of a

rLeIated o the Ilat_tlce-s%)ﬁcmg dleper]ldence of the lre_sult? thermal bath with which the system interacts can be easily
angevin simulations. The results of our numerical simula- i ated. Most realistic physical scenarios involve a system

tions are described in Sec. Ill. The dependence of kink'exchanging energy with a heat bath which may either repre-

antikink density on parameters such as bath temperature, aant external thermalized degrees of freedom or, in some

plitude of oscillation of the background homogeneous field.,qe certain degrees of freedom, typically the hard modes,
and the dissipation coefficient are investigated. The range f the system, which thermalize on a shorter time scale com-

frequencies for which defect production occurs is also ob- ared with the rest of the systeit5,16. These can therefore
tained. We end with a brief summary and discussion of OUuye considered as an environment with which the system,
results in Sec. IV. consisting of the nonthermal degrees of freedtinose with
longer thermalization time scales; usually the soft modes in a
Il. THE MODEL AND NUMERICAL TECHNIQUES field theory, exchange energy. This interaction would even-
The Lagrangian density for a spontaneously broken redit@lly drive the system to thermal equilibriufim the absence
scalar field theory in * 1 dimensions is of the qscﬂ_latlng baqurognd fieldIn this descrl'ptlon,'the
Langevin field equation, in terms of scaled dimensionless
variables, takes the form

To take into account the effect of interaction of the system
th a background thermal bath, it is customary to use a

1 N 1
£=5(0,0)(0"¢) = 7(¢*=00)* = 59°X%¢* (1)
’p b P 2 2.2, _
whereg is a real scalar field coupled to a spatially homoge- FJF rra ﬁﬁL P(P°=1)+gx“Pp=E&(x,t) ()
neous, oscillating background fieldy given by x

— ; 25 ;
= XoSin(wt) andg™ is the coupling parameter. In the absenceWhere the dimensionless damping coefficiemtand the

|°f tge tcotjhpli?_gléerm gzt.: 0), the above Lagrangian density Gaussian(delta correlatedwhite noise termé(x,t) are re-
eads o the field equation lated by the fluctuation dissipation theorem

Pl 3t~V 20+ \o(9?— ¢3)=0, 2
¢ e+t Ne(e”— ¢p) 2 (E(XDEX 1)) =2Tpd(x—x") 8(t—t") (6)

whose static solution admits extended but localized topologi-
cal structures called kinks and antikinks to ensure the equilibration of the system in the absence of the
coupling term.T is the rescaled, dimensionless temperature
\ﬁ of the heat bath.
‘P(X)+:‘P0tam{ 5%0(XEXo) ( When the coupling term is small, i.e. f@?y5<1, its
presence does not affect the above form of the kink-antikink
where thex signs correspond to kink and anti-kink located solutions. The noise and the perturbation term cause the cen-
at Xo and —xq respectively. It is often convenient to work ter of mass of the kink or antikink to become a random
with dimensionless quantities obtained by scaling the varivariable[40]. The small coupling term also acts as a positive
ables as follows: mass term and is responsible for shifting the vacuum states
towards zero. The critical value g?xg for which the broken
o— b= fy Y— l, symmetry is restored isg@x(z))f 1. To ensure that the sys-
%o %o tem always remains in the broken phase, one must have

063521-3



RAJARSHI RAY AND SUPRATIM SENGUPTA PHYSICAL REVIEW D65 063521

92X§< 1. 7) In order to study the production of kink-antikink pairs,
due to the effects of noise and periodic driving, we solve Eq.
Since the coupling term in the Lagrangian is quadratic in(5) numerically using a stochastic second order staggered
¢, the shape of the effective potential remains unchangedeapfrog algorithm with periodic boundary conditions. Such
The oscillating background field has the effect of modulatingan algorithm has been previously employed by Gleiser and
the barrier height and the position of the two disconnectedollaborator§25,27,41 to study thermal production of kink-
vacuum states of the potential. During one period of OSCi”a-antikink pairs as well as to investigate ways of matching
tion of the background field, the two degenerate vacuum.angevin lattice simulation results with continuum field
states ofp change its value from a minimum cif\/l—gz)(o2 theories. We briefly outline the algorithm used and then dis-

for t=(2n+1)(w/2w); Nn=0,£1,£2, ... (corresponding to cuss some of the subtleties associated with lattice simula-
the minimum barrier height separating the two disconnectetdions of Langevin equations.

vacua to a maximum of=1 for t=n(n/w); N=0,%1, The discretized version of E@5) using the second order
+2,... (corresponding to the maximum barrier height stochastic staggered leapfrog algorithm can be cast as

At 2T
2¢i,n—(1— "7) ¢>i,n1+<At>2(vz¢—V'<¢>i,n>+ \/m”xui,n)

nAt
2

¢’i,n+1: (8)

1+

where “i” and and “n” are the spatial and temporal lattice in which the simulation results scale witkix. In particular,
indices respectivelyv’(¢) is the derivative of the potential the one-loop perturbative procedJi®7] does not give any
with respect top andu; ,, is a Gaussian random number with corrections for the free theory. Using a nonperturbative ap-
zero mean and unit variance, i@ ,)=0{u; Ui n)=6mn  proach based on an exact solution of the thermal partition
(numerically generated by a Box-Mueller algoriti#2]);  function, Bettencouret al. [43] were able to shofvthat the

with u; , being related t&; ,, by the relation convergence of the results with lattice spacing scales as
(Ax)? and not as\x as the perturbative one-loop calculation
[27] suggested. In both papers, the systems considered were
in thermal equilibrium and this aspect facilitated the calcula-
tion of appropriate counterterms, perturbativ¢R7], and

The presence of a lattice introduces natural UV and IR 6gh an exact computation of the thermal partition func-
momentum cutoffs in the theory since the smallest and th on [43].

largest momentum modes that can be probed by the simula-
tion are proportional to inverse lattice size7{A.) and in-
verse lattice spacing#/Ax) respectively. Herd. =NAX is
the lattice sizeN being the total number of lattice points.

Finite-size effects can be ruled out by using a large lattic

size. However, computational constraints prevent the choi08f the systzrr&;ven for large times f?r vlvhlcg tfhe 5|mu|at|on_s
of an arbitrarily small lattice spacing. Also in our case, the€r¢ "un ing counterterms calculated for systems in

presence of an external time scale specified by the frequenépermal equilibrium is therefore not helpful in removing the

2Ty
&in= AtAxdin: 9

In our case however, the presence of the couplofghe
field) with the oscillating background and the low dissipation
coefficient(which makes transfer of energy between the heat
ebath and the system inefficigrprevents the thermalization

of the oscillating background field requires !attice spacing dependgnce of the results. At this stage, t_he
issue of removal of lattice spacing dependence of Langevin
At<o™ L. (10)  simulations for nonequilibrium systems remains unresolved.

We hope to address this problem in a future publication.

The choice of lattice spacing is also crucial especially in  We have carried out our simulations with the spatial lat-
Langevin simulations as has been pointed out earlietice spacingAx=0.4, the temporal lattice spacing =0.01.
[27,41,43. The results of Langevin simulation turn out to be The physical lattice sizél.) was kept fixed at 6553.6 which
lattice-spacing dependent unless appropriate counterterme®rresponds toN=16384 lattice points forAx=0.4. We
are introduced in the effective potential. There is some amhave also seg?=1 in all our simulations so that the condi-
biguity about the manner in which the results scale with  tion (7) reduces to
A perturbative counterterm linear iAx when added to the
potential, was found27] to be adequate enough to remove
the lattice spacing dependence of the Langevin simulation?n this method, the nature of the counterterm depends on the
results. However, it has been argyd@] that a perturbative  time-stepping algorithm used for evolving the Langevin equation. A
method is often inadequate in obtaining the correct mannekuler differencing scheme was used #8].
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20 ' ‘ ‘ ‘ tude of fluctuations are aP(10™3) and incapable of taking
the field over the potential barrier. We have checked that our
results are independent of initial conditions and remain un-
changed even if we choose the initial field configuration to
be spatially homogeneous over the entire lattice with its
ol | value corresponding to either one of the two degenerate
vacuum states. As evident, from our choice of initial condi-
tions, there are no kinks or antikinks present initially. The
05| 1 amplitude of oscillation of the background field is chosen to
be <0.38 so that the conditiofl1) is satisfied and this alone
is incapable of inducing the field to climb over the potential
S 00} 1 barrier in the absence of coupling to the environment.

In the absence of the oscillating backgrourgf<£0),
thermal fluctuations can make localized portions of the field

15} 1

oSt flip over the potential barrier, resulting in the formation of a
kink-antikink pair[26,27]. However, the density of pairs pro-
10 duced depends on the strength of thermal fluctuations given

by D =T #» which is a measure of the amount of energy trans-
ferred from the heat bath to the system. The thermal nucle-
sl ] ation of kink-antikink pairs is suppressed by the Boltzmann
factor e M«/T. Earlier studie$26,27 were carried out with
the noise strengt= (10" 1) since their main focus was
2.0 ; \ \ \ on thermal equilibrium production of kinks. The phenom-
1000 1200 1400 1600 1800 2000 enon we observe occurs at low noise strengths in under-
X damped systems evolving out of equilibrium. In our simula-
FIG. 1. The field configuration &t=3000, for a portion of the tions we restrict the damping coefficieny<0.05. The
lattice showing kink-antikink pairs. The parameter values Bre temperature of the heat bath is taken to®gl0 1), so the

=0.12,=0.01y,=0.34w=1.10. noise strengtD~ 10 3. For such low noise strengths, the
production of kinks by thermal fluctuations is few and far
X§< 1. (12) between. However, in the presence of noise and non-

vanishing couplingy?, a dramatic enhancement in kink pro-

The issue of how to identify kinks in a Langevin lattice duc'tion_ is observed for a certain range of frequencies of the
simulation has attracted much controvef@p,27, mainly ~ oscillating background field. _ _
because of the fact that at high temperatures, it becomes A periodically modulated nonlinear system like the one
extremely difficult to distinguish between kinks, phononsdescribed by Eq(5) is expected to exhibit resonant behavior
and large amplitude, nonperturbative and non-topologicafor & certain range of frequencies of the modulator. The pres-
fluctuations. It is fair to say that an unambiguous techniquédnce of noise acting in conjunction with the periodic modu-
for counting kinks on the lattice remains to be discovered. Irfation induces large amplitude fluctuations in the field en-
this paper, we follow the technique employed26] where a  @bling it (in localized regionsto cross over the potential
zero crossing of the order parameter field is counted as Rarrier. This results in the formation of kink-antikink pairs in
kink only if there are no other zero crossings for one kink& manner similar to the production. of vortex-antivort_ex pairs
width to its left and right. The kink width in terms scaled and discussed recentlyl4]. The theoretical analysis of this phe-
dimensionless units is 2 which corresponds to approxi- nomenon is extremely complicated not only because of the
mately 8 lattice units, foAx=0.4. The total number of kinks Nonlinear nature of a system with infinite degrees of free-
and antikinks is just twice the number of kinks counted be-dom, but also because one has to deal with stochastic partial
cause kinks and antikinks are always produced in pairgifferential equations. We have therefore decided to take re-
Since in these simulations, we are interested only in the loOUrse to numerical simulations to investigate this phenom-
temperature regime, where kinks are easily identifiable a§n°n- The quantities of importance are the mean field given
shown in Fig. 1, this method provides a fairly accurate wayby (#(x,t))=¢(t)=(1/L) [5p(x,t)dx, the fluctuation de-
of counting kinks. fined asdo(t) = V(d(x,t)%)—{p(x,t))* and the density of
kink-antikink pairsn(t) =2N,(t)/L; whereN,(t) is the total
number of kinks at a given time, counted in the manner
described earlier.

We are now in a position to describe the results of our To identify the resonant frequency regime, it is important
numerical simulations. The initial conditions of our simula- to realize that too large an oscillation frequency would cause
tions correspond to the situation in which the field over thethe effective potential to change in a time scale which is
entire lattice, undergoes small amplitude fluctuations aboutnuch smaller than the destabilization time scale of the field
the positive of the two degenerate vacuum states. The amplifrom its initial state, as a result of which the field would not

IIl. NUMERICAL RESULTS
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feel the change in the shape of the potential. On the otherents the thermalization of the system for time scales up to
hand, too small an oscillation time scale would result in thewhich the simulations were run.

destabilized field having sufficient time to relax to the The decay of the mean field value to zeraist an indi-
vacuum state of the changing effective potentiglart from  cation of symmetry restoratiote common misconception
fluctuations due to the presence of noidfith these consid- existing in the literatur¢36]) but is indicative of the forma-

; - - . tion of a large number of kink-antikink pairs. To establish
e“”.‘“O”S in mind we find _that Fhe range of frequency requireQis unambiguously we plotted the probability distribution of
to induce resonant amplification of field amplitude leading to

; . . _ the field over the entire lattice by appropriately binning the
the enhanced production of kinks is &8<2.5. _ field values. Figure @) shows the initial probability distri-
We first give results for the variation of the mean field, thepytion of the field for the entire lattice. In view, of the choice

fluctuation and the kink density with change in the temperaof initial conditions, the sharp peak in the probability distri-
ture (T) of the heat bath. Figure 2 shows the plgtsr a  bution about$=1 is easily understandable. FigurgbB
single noise realizationwith fixed w, xo, 7 and T varying  shows the field probability distribution at a later time (
from 0.08-0.16 in steps of 0.02. The mean field value start-=3000) after the fluctuation has flattened out and the aver-
ing from its initial value around 1 decreases to zero and®g€ kink density has become nearly constant. The fact that

eventually starts oscillating about zero. On the other handhe probability distribution is still peaked about the nonvan-

the fluctuation grows exponentially in a short time scale to'SNiNg vacuum expectation values clearly implies that the
ymmetry remains broken. In contrast to Figa)3two dis-

its asymptotic value and remains nearly constant thereafte inct peaks of nearly the same height abekt = 1 are now

The km_k de.nsny increases with temperature_ as expected, trI)E'bserved. This can be easily explained by the fact that the
mean field is also found to decay more quickly to zero forpesence of a large number of kink-antikink pairs causes the
higher temperatures and the fluctuation also grows mMorgaction of the field around~ 1 to be nearly the same as the
steeply signifying an increase in the growth exponent. Theraction aroundp~ —1. The generic form of the probability
time around which the fluctuation plateaus out is also thejistribution function depicted in Fig.(B) is observed till the
time around which the average kink-antikink density be-end of the simulation, which allows us to conclude that kink-
comes nearly constant implying that kinks and antikinks areantikink pairs are produced even though the systways
nucleated and annihilated at nearly the same rate. The kinkemains in the broken phagest as in[14]). This is contrary
antikink density for the same set of temperatures but with theo the situation discussed in the context of topological defect
couplingg?=0 (i.e. in the absence of the oscillating back- production during inflationanfp)reheating[36,37. There,
ground is shown in Fig. 2d). A comparison between Fig. the fluctuations grow large enough to restore symmetry and
2(c) and Fig. 2d) clearly shows considerably at least an defects are produced in the conventional manner when the
order of magnitudeenhancement in the kink density when symmetry is subsequently broken due to mode-scattering ef-
both noise and periodic driving is present. This is especiallyfects and/or expansion of the universe.

evident for low temperatures. The presence of the oscillating Figure 4 shows the mean field value, fluctuation and kink
background as well as the low dissipation coefficient predensity obtained after averaging over 100 different noise re-
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(a) )
L0 ———— ‘ 1.0 — :
¥ = aexp(-a,(x+x)’12) + exp(-a/(-x)’/2)
09 1 097 2,079, 2,21.13, x,=0.9:
03 | 1 o8|
o7t 1 o7t FIG. 3. (a) Probability distribution of® at (a)
t=0 and(b) t=3000. The solid line inb) is an
_ 06T ] = 06 1 asymmetric double-Gaussian fit of the data given
go.s » ] g 05| by the function agexg—(a,/2)(X+Xg)?]
0l 1 sl +exd —(a,/2)(x—%o)%], where a,=0.79a,;
’ ’ =21.13%x,=0.94. The large twin peaks around
03 | : 03 | d==1, even at late times, is a clear indication
0z | 1 ezl that the symmetry remains spontaneously broken.
01| { o1}

00 s : 00 T
20 -15 -10 -05 0.0 05 10 15 20  -20 -15-10-0.5 00 05 10 15 2.0

¢ ¢

alizations. The upper and lower curves correspond to theuced, leading to kink-antikink production, only for frequen-
+1¢ standard deviation from the noise averaged middlecies lying in the range 083w=<2.5. For frequencies beyond
curve. The generic features observed in Fig. 2 are also seehis window, no significant enhancement of kink densities
here. At late time, thet 1o error becomes quite small as compared to their thermal equilibrium value is observed. As
evident from the fluctuation plots in Fig(a. is evident from Fig. 7, there exists an optimum value of
The dependence of the kink density on the amplitude ofrequency(all other parameters remaining fixefbr which
oscillation x, is shown in Fig. 5. As mentioned earlier, the kink density is maximized. This optimum value also depends
coupling term acts like a positive mass term and this dictatesn the temperature of the heat baif) (damping coefficient
the choice ofy, in accordance to constraifttl). An increase (#) and the amplitude of oscillationg).
in xo does lead to an increase in defect density as is evident
from Fig. 5. Hoyvever, since our main mtere;t lies in studying IV. DISCUSSIONS AND CONCLUSION
defect production dynamics for small amplitudes of the os-
cillating background, such that the coupling to the oscillating In this paper, we have investigated a novel phenomenon
background by itself is incapable of exciting kink produc-in a (1+1)-dimensional field theory admitting topological
tion; we restrict the amplitude tg,=<0.38. solitons called kinks. We investigated the production of kink-
The dependence of the kink density on the dissipatiorantikink pairs when the system is subject to the twin effects
coefficient is depicted in Fig. 6. We emphasize that our re-of noise and periodic driving via its coupling to an oscillat-
sults are valid only for very low dissipation coefficients. Foring but spatially homogeneous background field. For a cer-
large dissipation coefficients, the field oscillations are contain range of frequencies of the oscillating background, there
siderably suppressed leading to a suppression in kink densbccurs considerable enhancement in the densities of kinks
ties as evident from the plots of Fig. 6. compared to their thermal equilibrium values. We also stud-
The kink densities are also crucially dependent on theed the effect on kink density of parameters such as the
choice of frequency of the oscillating background field. Wedamping coefficient, the temperature of the heat bath and the
have found that large amplitude field oscillations are in-amplitude of oscillations ofy. Our results are particularly

(@ (b)
0.014 | .
11} .
0012 |
0.9 FIG. 4. Time evolution of the noise averaged
o010 I values of the(@) mean field and fluctuationgb)
0.7 | T kink-antikink density, together with the 1o er-

o 0008 | ror. The solid line indicates the noise-averaged
oSt 1% mean while the dashed lines above and below the
o3l 1 0.006 |- mean correspond te- 1o and — 1o deviation

from the noise averaged value. Noise average has
o1 0.004 | been carried out over 100 different noise realiza-
tions.
-01} e 0.002 |-
-03 e 0.000 Lt
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
t t
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0.03 1 I T I T I T | T | T 0-020 T I T I T I T I T I T
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0.014
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0.012
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0.008
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FIG. 5. The variation of the kink-antikink density with the am-  F1G- 7. The variation of the kink-antikink density with the fre-
plitude y, of the oscillating background field. Other parameter val- dU€NCy® of the oscillating background. Other parameter values are

ues are kept fixed &=0.12,7=0.01p=1.10. kept fixed afT=0.12yo=0.34,7=0.01.

sensitive to the value of the dissipation coefficient and the At this stage it is tempting to compare our results with the
enhancement in kink density compared to their thermal equiintriguing phenomenon of stochastic resonaf8g) which
librium value is observed only for low dissipation coeffi- has been extensively investigated in the literature on nonlin-
cients. Kink-antikink pair production is observed evenear dynamical systenj89]. The characteristic feature of SR
though the system remains in the broken phase throughoif that an increase in the noise strength can sometimes lead to
the course of the simulations. This further demonstrates thanore coherent behavior when the nonlinear dynamical sys-
topological defects need not be produced only during symie€m is also subject to a periodic driving force. In particular,

metry breaking phase transitions, as pointed out eddigf ~ PY tuning the noise strength, a significant improvement in the
signal-to-noise ratio(also manifest through peaks in the

noise averaged power spectruim achieved. The study of
0.030 ——————T————T— stochastic resonance for spatially extended systems has been
carried out for Ginzburg-Landau type field theories, albeit
restricted to the over-damped regif®2,44). There it was

0.025 - 3;2;3;3‘1’5 = found that an appropriate choice of the frequency of the pe-
C:n=002 riodic driving obtained by matching the thermal activation
[ | D:in=003 time scale(given by the inverse of Kramers rat® half the
0.020 L EN=0% period of the modulating background, can result in periodi-
cally synchronized behavior of the mean field abgut 0
I (see Fig. 2 of Ref[44]). In our case however, no synchroni-
0015 zation of the mean field is observed, rather it is found to
| decay to zero from its initial value in one of the vacuum
states, and thereafter keep on oscillating erratically about the
0.010 - - zero field value. As has been demonstraisek Fig. 3, this

behavior can be attributed to kink-antikink production which
occurs in spite of the fact that the system remains in the
broken phase. This comparison makes it clear that the phe-
nomenon we have discussed is quite distinct from that of
o stochastic resonance. The investigation of the ph_enomenon
0 500 1000 1500 2000 2500 3000  Of stochastic resonance in underdamped system is currently
t in progresq45].
There is much that needs to be investigated. Apart from
FIG. 6. The variation of the kink-antikink density with the dis- the study of the phenomenon of SR in underdamped systems,
sipation coefficienty. Other parameter values are kept fixedTat a theoretical understanding of the phenomenon discussed
=0.12)7=0.34w=1.10. here is required. In particular, an analytical derivation of the

0.005

0.000
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