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Symmetry and inflation
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We find the group of symmetry transformations under which the Einstein equations for the spatially flat
Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of
the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a
symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curva-
ture perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I
spacetime and the brane-world cosmology.
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I. INTRODUCTION

There exist several interesting physical problems wh
the Einstein field equations for homogeneous, isotropic,
spatially flat cosmological models@1–4# and a Bianchi
type-I metric @5# with a variety of matter sources can b
linearized and solved by writing them in invariant form@6#.
The variational problem for the distribution function th
maximizes the generalized Fisher information is solved
the same way@7#. In all these cases explicit use of the no
local transformation group has been made.

In this paper we focus our attention on the group of tra
formations leading to accelerated expansion scenarios
many of these scenarios the effective potential energy d
sity of a scalar field is responsible for an epoch of acce
ated inflationary expansion@8#. In particular so-called as
sisted inflation @9# will be investigated in detail. It was
introduced in the context of standard Friedmann cosmol
where the cumulative effects of multiple scalar fields with
exponential potential give rise to inflation, provided th
these fields interact only through the geometry. This kind
potential arises in various higher-dimensional supergra
@10# and superstring@11# models@12–15#. We will see that
the cooperative effects of adding energy density into
Friedmann equation lead to inflation. So the configuratio
of one and several scalar fields are related by a simple s
metry transformation of the corresponding Einstein-Kle
Gordon~EKG! equations. In this sense they can be cons
ered as equivalent cosmological models. Assisted infla
has been mainly studied in the case of power-law soluti
(a}tp) for the spatially flat Friedmann-Robertson-Walk
~FRW! cosmology, which can be shown@9# to be its late-
time attractor. Recently, this scenario was discussed in F
and Bianchi spacetimes using the general exact solutio
@16#, with a baryotropic perfect fluid in@17#, and in the con-
text of warm inflation in@18#. However, by appealing to th
symmetry group of the EKG equations, we will investiga
inflation without using any particular solution.

New developments in superstring and M theory@19,20#
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suggest that our three-dimensional universe is described
brane embedded in a higher-dimensional space@21#. There,
the standard model interactions are confined to
(113)-dimensional hypersurface, thebrane, while the
gravitational field may propagate through thebulk. The real-
ization of this model introduces important features that d
tinguish brane cosmology from the standard scenario. In
the Friedmann equation is modified at very high energ
acquiring an extra quadratic term in the density@22,23#. This
term generally makes it easier to obtain an inflationary s
nario in the early universe, by contributing extra friction
the scalar field equation of motion. In@24,25# a kind of as-
sisted inflation mechanism was implemented in the bra
world scenario, associating it with the quadratic term. W
think that it will be interesting to continue one step further
considering the brane assisted inflation as emerging f
symmetry transformations of the Einstein equations on
brane.

The symmetry transformations that preserve the form
the Einstein equations introduce an alternative concep
equivalence between different physical problems. We m
say that several cosmological models are equivalent w
the corresponding dynamical equations are form invari
under the action of that group. Thus, it turns out to be
great interest to investigate the consequences of this g
from the physical and mathematical points of view.

The paper is organized as follows. In Sec. II we introdu
the cosmological symmetry group~CSG! of the Einstein
equations in FRW spacetime. In Sec. III we investigate
consequences of this CSG on the inflation in FRW spa
time. In addition, we generalize previous studies on mu
scalar field cosmologies driven by an exponential potent
In Sec. IV we examine the anisotropic inhomogeneous Bi
chi type-I model. Section V is devoted to studying the lin
between the accelerated expansion scenario and the CS
brane cosmology. Finally, in Sec. VI the conclusions a
stated.

II. FORM INVARIANCE SYMMETRY IN FLAT
FRIEDMANN-ROBERTSON-WALKER SPACETIMES

We write the Einstein equations in the flat FRW spac
time:
©2002 The American Physical Society17-1
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ds252dt21a2~ t !@dx21dy21dz2#, ~1!

with a perfect fluid

3H25r, ~2!

ṙ13H~r1p!50, ~3!

wherer is the energy density,p the pressure, andH5ȧ/a.
For a different perfect fluid with energy densityr̄ and pres-
surep̄ the above equations take the form

3H̄25 r̄, ~4!

ṙ̄13H̄~ r̄1 p̄!50. ~5!

By ‘‘invariant form’’ we mean that the system of equation
~4!,~5! transforms into Eqs.~2!,~3! under the symmetry trans
formations

r̄5 r̄~r!, ~6!

H̄5S r̄

r
D 1/2

H, ~7!

p̄52 r̄1S r

r̄
D 1/2

~r1p!
dr̄

dr
, ~8!

where r̄5 r̄(r) is an invertible function. Hence the FRW
equations for a perfect fluid have form invariance symme
The symmetry transformations~6!–~8! define a Lie group for
any function r̄(r), which can be used to solve the FR
equations and get accelerated expansion scenarios, as w
seen in the following sections. Equation~7! expresses the
invariant relationV̄5V for the density parameter.

Now, it is interesting to investigate the transformati
properties of the relevant physical parameters. For insta
the expansion of the universe in power-law cosmolog
a(t)}ta is completely described by the Hubble parame
and the deceleration parameter. In these modelsq(t)
52H22(ä/a) transforms as

q̄115S r

r̄
D 3/2

dr̄

dr
~q11! ~9!

under the symmetry transformations~6!–~8!. If we consider
perfect fluids with equations of statep5(g21)r and p̄

5(ḡ21)r̄, respectively, then the baryotropic indicesg and
ḡ transform as

ḡ5S r

r̄
D 3/2

dr̄

dr
g ~10!
06351
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under the symmetry transformations~6!–~8!. In addition, us-
ing Eqs. ~9! and ~10!, we get a form invariant relation (q̄

11)/ḡ5(q11)/g between the deceleration parameter a
the baryotropic index.

Inflationary solutions occur whenä.0; this means that
the expansion is dominated by a gravitationally repuls
stress that violates the strong energy condition, so thar
13p,0. Imposing this condition on Eq.~9! we obtain
dr̄ (21/2)/dr21/2,1/(q11), which for a nonaccelerated cos
mological model with q'const.0 gives r̄.(q11)2r.
Such a model, withq̄,0, is accelerated.

In the particular case whereḡ is constant, from Eq.~10!
we get

a3ḡ/252
ḡr0

1/2

2 E dr

gr3/2
~11!

where r0 is a constant. This shows that a cosmologic
model containing a perfect fluid withg5g(r) can be
mapped into one with constant adiabatic index, permitting
to solve a complicated FRW model in terms of an easier o

III. SCALAR FIELD CASE

The problem of a homogeneous scalar fieldf driven by
an exponential potentialV(f)5V0e2kf minimally coupled
to gravity in the flat FRW spacetime is formulated by t
system of equations

3H25
1

2
ḟ21V, ~12!

f̈13Hḟ1V850, ~13!

whereV0 andk are constants. Potentials of this type are
interest because they may be considered an approximatio
more complex potentials. In fact, in higher-dimensional s
perstring theories, the scalar field is like one of the ma
fields that contribute to the action and effective potential
the theory. Loop expansion@11#, or expansion in the numbe
of interacting particles@26#, of the action leads to a pertur
bative expression of the potential which is a summation
exponential terms@13,14#. There is another important reaso
behind choosing exponential potentials, because there e
a late-time attractor solution for all the participating fiel
@9#. In this kind of model the EKG equations have power-la
solutions

a}t2/k2
, ~14!

so that they inflate at all times whenk2,2.
Let us now assume thatn homogeneous scalar fieldsf i

do not interact directly, but are driven by a sum ofn expo-
nential potentialsVi5V0ie

2kif i. From now on we consider a
simplified problem in which the constantski andV0i satisfy
k15k25•••5kn5k and V015V025•••5V0n5V0. As the
asymptotic evolution of all scalar fields tends to a comm
limit, the special scalar field configuration in which all scal
7-2



te
of
-

ala

in

io

er

l as-
m

on

cel-

fi-
n-
ctral
the
p-

els,

he

tral

late-
en-
. In
the

SYMMETRY AND INFLATION PHYSICAL REVIEW D 65 063517
fields are equal is a late-time attractor. We may takef1
5f25•••5fn[f, so that V15V25•••5Vn[V
5V0e2kf and Eqs.~12!, ~13! become

3H25nF1

2
ḟ21VG , ~15!

f̈13Hḟ2kV50. ~16!

They have the power-law solutions

an}t2n/k2
, ~17!

which inflate at all times whenk2,2n. Thus, the fields co-
operate to make inflation more likely in the so-called assis
inflation @9#. In @16# it was shown that the general solution
the EKG equations~15! and ~16! has the same kind of be
havior in the large time limit.

Rewriting Eqs.~15! and ~16! in terms of the rulesḟ̄
→Anḟ, V̄→nV, k̄→k/An, and H̄→H they become the
EKG equations for the fieldf̄ and the expansion rateH̄.
Therefore, we obtainr̄(f̄)5n2r(f), wherer̄ andr are the
energy densities corresponding to the fieldsf̄ ~n-field con-
figuration! and f ~one-field configuration!, respectively.
Then, the sets of equations~12!,~13! and ~15!,~16! become
the sets of equations~2!,~3! and ~4!,~5!, respectively. In this
identification the energy-momentum tensors of the sc
fields f and f̄ have been written in the perfect fluid form

r~f!5
1

2
ḟ21V~f!, r̄~ f̄ !5

1

2
ḟ̄21V̄~f̄ !; ~18!

p~f!5
1

2
ḟ22V~f!, p̄~f̄ !5

1

2
ḟ̄22V̄~f̄ !. ~19!

Using the fact that the EKG equations can be written
invariant form, we will assume the transformation

r̄5n2r ~20!

with n.1 in order to obtain cooperative effects, in Eqs.~7!
and ~8!. Then we get

H̄5nH ~21!

and

p̄52n2r1nḟ2. ~22!

For an arbitrary potential the former gives the transformat
rule for the scale factorā5an, which is equivalent to the
relation between Eqs.~14! and ~17!, while the latter shows
that the pressure becomes negative for increasingn. We con-
clude that the symmetry transformation~20!–~22! relates a
scalar field configuration characterized byr, p, and H to
another field configuration characterized byr̄, p̄, andH̄. In
this one inflation is more likely for any potential whenev
n.1. When the potential has the exponential form andn
06351
d

r

n

represents the number of scalar fields we get the usua
sisted inflation. Here, it is obtained by imposing the for
invariance of the EKG equations.

We complete this section by giving the transformati
rule of the remaining parameters@see Eqs.~9!,~10!#:

q̄5211
1

n
~11q!, ~23!

ḡ5
g

n
. ~24!

This shows that an expanding universe with a positive de
eration parameter transforms into an accelerated one ifn is
taken large enough.

A. Density fluctuations

The contributions of the density fluctuations differ signi
cantly in different inflationary universe models. In this co
text, it seems interesting to derive the spectrum and spe
index for the perturbations that would be created during
periods of inflation and investigate their transformation pro
erties when the CSG is acting. For one-scalar field mod
the spectrum of the curvature perturbation reads@27#

PR5S H

2p

]N

]f D 2

, ~25!

whereN5*H dt is the number ofe-foldings of inflationary
expansion remaining. Thus we have

PR~ k̃!5S H

2p D 2H2

ḟ2 c
aH5 k̃

, ~26!

whereH and ḟ have to be evaluated at the time when t
perturbation with the wave number of interestk̃ leaves the
Hubble scale during inflation. Also, in this case, the spec
index nR( k̃) defined as

nR~ k̃!511
d ln PR
d ln k̃

~27!

is given by@27#

nR2156
Ḣ

H2
12

V9

V
. ~28!

To investigate the behavior of Eqs.~26! and ~28! under the
symmetry transformation~20! and give an explicit result, we
choose an exponential potential, because it produces
time attractor solutions and permits us to calculate the d
sity perturbations generated by the scalar fields exactly
this interesting case, the availability of exact solutions for
scale factor allows us to find that

P̄R~ k̃!5n3PR~ k̃! ~29!
7-3
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LUIS P. CHIMENTO PHYSICAL REVIEW D 65 063517
and

12n̄R5
1

n
~12nR!. ~30!

The first expression shows that cumulative effects in the
ergy density increasesn3 times the spectrum of the curvatu
perturbation corresponding to a single scalar field. The s
ond expression shows that the spectrum generated by
spectral index is closer to scale-invariance whenn is large.
Note that the spectral index transforms in the same way
the deceleration parameter~23!.

For other potentials the density perturbation calculat
and its transformation properties must be performed se
rately for each case.

B. Two interacting perfect fluid interpretation
of the scalar field

For the two-fluid model we assume that the ener
momentum tensorTik splits into two perfect fluid parts,

Tik5Tik
1

1Tik
2

, ~31!

with Tik
(1,2)

5r (1,2)uiuk1p(1,2)hik , wherer (1,2) and p(1,2) are
the energy density and the equilibrium pressure of specie
and 2, respectively. For simplicity we assume that both co
ponents share the same four-velocityui . The quantityhik is
the projection tensorhik5gik1uiuk . Interactions between
the fluid components amount to the mutual exchange of
ergy and momentum. Consequently, there will be no lo
energy-momentum conservation for the subsystems s
rately. Only the energy-momentum tensor of the system
whole is conserved.

Let us consider the equation of statep(1,2)5(g (1,2)
21)r (1,2) for the two fluids, whereg (1,2) is the baryotropic
index of species 1 and 2, respectively. Because of the a
tivity of the stress-energy tensor it makes sense to introd
an effective perfect fluid description with equation of sta
p5(g21)r wherep5p11p2 , r5r11r2, and

g5
g1r11g2r2

r11r2
~32!

is the overall~i.e., effective! baryotropic index. For this ef-
fective perfect fluid the dynamical equations are identica
Eqs.~2! and ~3!.

In general, the energy densitiesr1 and r2 change under
the symmetry transformationr̄5 r̄(r). It is important to
stress that the transformed fluids should have the same c
acteristics as the original ones. For this reason we will s
pose that the adiabatic indicesg1 andg2 defining their prop-
erties are not affected by the transformation. Then they
form invariant quantities so that the final result is

r̄15
1

g22g1
Fg22gS r

r̄
D 3/2

dr̄

drG r̄, ~33!
06351
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r̄252
1

g22g1
Fg12gS r

r̄
D 3/2

dr̄

drG r̄. ~34!

Because of the additivity of the stress-energy tensor we
describe the scalar field in terms of two interacting fluid
namely,r15ḟ2/2 andr25V, with equations of state

p15r1 , p252r2 , ~35!

meaning thatg152 ~stiff matter! and g250 ~vacuum en-
ergy!. Due to the interactions between the two fluid comp
nents there will be no local energy-momentum conserva
for each fluid separately. Only the energy-momentum ten
of the system as a whole is conserved. This is equivalen
the Klein-Gordon equation~13! and we may consider the
effective perfect fluid description expressed by Eq.~32!. In
this case the effective baryotropic index is given by

g5
2r1

r
52

2Ḣ

3H2
. ~36!

Using the interacting perfect fluids picture, Eqs.~35!,~36!
may be identified with Eqs.~31!,~32!. Then the symmetry
transformation~20! induces a change ofr15ḟ2/2 and r2
5V given by Eqs.~33! and ~34!:

ḟ̄25nḟ2, ~37!

V̄5n2S 1

2
ḟ21VD2

n

2
ḟ2. ~38!

Also, from Eqs. ~7! and ~36!, we obtain H̄5nH and ḡ
5g/n, so that for largen we are going to an accelerate
expansion scenario. In the particular case where the tr
formed potential is proportional to the original one,V̄}V,
and n represents the number of present fields, the poten
has an exponential form@28# and we get the usual assiste
inflation.

IV. BIANCHI TYPE-I COSMOLOGY

Now, we assume that the two perfect fluid components
not exchange energy and momentum. Therefore, there
be local energy-momentum conservation for the fluids se
rately. In this case, Einstein’s equations

3H25r11r2 , ~39!

ṙ113H~r11p1!50, ~40!

ṙ213H~r21p2!50 ~41!

are form invariant under the symmetry transformations

r̄15 r̄1~r1 ,r2!, r̄25 r̄2~r1 ,r2!, ~42!

H̄5S r̄

r
D 1/2

H, ~43!
7-4
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p̄152 r̄11S r

r̄
D 1/2F ~r11p1!

]r̄1

]r1
1~r21p2!

]r̄1

]r2
G , ~44!

p̄252 r̄21S r

r̄
D 1/2F ~r11p1!

]r̄2

]r1
1~r21p2!

]r̄2

]r2
G , ~45!

where r5r11r2 and r̄5 r̄11 r̄2. On the other hand, the
deceleration parameter and the adiabatic indices transfor

q̄115
r3/2

~r1p!r̄3/2F ~r11p1!
]r̄

]r1
1~r21p2!

]r̄

]r2
G ~q11!,

~46!

ḡ15
1

r̄1
S r

r̄
D 1/2Fg1r1

]r̄1

]r1
1g2r2

]r̄1

]r2
G , ~47!

ḡ25
1

r̄2
S r

r̄
D 1/2Fg1r1

]r̄2

]r1
1g2r2

]r̄2

]r2
G , ~48!

wherep5p11p2.
Assuming the simple symmetry transformations

r̄15n2r1 , r̄25n2r2 ~49!

in Eqs. ~43!–~48! we get H̄5nH, p̄152n2r11n(r1

1p1), p̄252n2r21n(r21p2), q̄5211(q11)/n, ḡ1

5g1 /n, and ḡ25g2 /n. Then, for largen, we get an accel-
erated expanding scenario.

We will apply these results to investigate the connectio
between inflation and the CSG in Bianchi type-I spacetim
To this end, we use the analytical technique presente
@29#, where the equivalence was shown between a F
double field cosmology and a Bianchi type-I spacetime fil
with a self-interacting scalar field, treating the shear a
massless scalar field. There, the inflation in the Bian
type-I spacetime was closely related to inflation in the
FRW spacetime. In the usual synchronous form the metri
the locally rotationally symmetric spacetime is

ds252dt21a1
2~ t ! dx21a2

2~ t !~dy21dz2!. ~50!

The expansion of this anisotropic model containing a per
fluid source with pressurep1 and energy densityr1 is gov-
erned by Eqs.~39!–~41! @30#, wherep25r2 ~stiff matter!,
3H5H112H2 is the rate of volume expansion,s5r2

1/2

5(1/A3)@H12H2# is the shear scalars5 1
2 smnsmn, smn is

the shear tensor,H15ȧ1 /a1, andH25ȧ2 /a2. Also, we have

a15a e2c/A6, a25a e2c/A6, ~51!

wherea is the scale factor of the FRW model given by Eq
~39!–~41! andc is a new free scalar field

c~ t !5A2E s~ t ! dt, ~52!

defined in terms of the shear scalar.
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If the energy densityr1 and the pressurep1 of the perfect
fluid source are identified with a scalar fieldf through the
expressions~18!,~19!, then we can check whether this mod
inflates for a generic self-interacting potential. To this en
we will look at the sign of the deceleration parameterq

52u22(3u̇1u2), where u5u;a
a is the expansion andu̇

5u ,aua, ua being the four-velocity of the cosmic fluid. Sinc
we are dealing with comoving coordinatesua5(1,0,0,0),q
transforms as

q̄5211
3

n

ḟ212s2

ḟ212V12s2
~53!

under the symmetry transformation~20!. So, when the en-
ergy density of the system increases, inflation will be mo
likely @ q̄5211(q11)n21#. This result extends the one o
@16# where, using an exponential potential, it was shown t
the cumulative phenomena of noninteracting scalar fields
operate to ‘‘assist’’ the inflation in a Bianchi type-I model.

V. BRANE ASSISTED INFLATION IN
FRIEDMANN-ROBERTSON-WALKER SPACETIME

The Friedmann equation in brane cosmology is modifi
by an extra quadratic term in the energy densityr. At very
high energies the quadratic term will indeed drastica
change the evolution of the scalar field and may be impor
in the early stage of the universe. In particular it contribu
to increasing the friction in the scalar field equation. So it
expected that the implications of this modification will b
significant for the standard model of cosmology, and in p
ticular for the inflationary paradigm.

The modified Friedmann equation for a perfect fluid obe
ing the standard conservation equation~3! in our brane world
is given by

3H25rS 11
3

l2
r D , ~54!

where the contributions from bulk gravitons and highe
dimensional cosmological constant have been set to z
@31#. We are using units such thatc58pG51. The brane
tensionl defines the scale below which the quadratic c
rection may be neglected and the standard FRW evolutio
recovered.

The conservation equation~3! for a perfect fluid and Eq.
~54! are form invariant under the symmetry transformatio

H̄5Ar̄„11~3/l2!r̄…

r„11~3/l2!r…
H, ~55!

p̄52 r̄1Ar„11~3/l2!r…

r̄„11~3/l2!r̄…
~r1p!

dr̄

dr
. ~56!

These induce the following transformation law for the dec
eration parameter:
7-5
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q̄115S r

r̄
D 3/2 11

6

l2
r̄

11
6

l2
r
F 11

3

l2
r

11
3

l2
r̄
G 3/2

dr̄

dr
~q11!.

~57!

From these equations we may investigate the behavior o
transformed parameters at very high energies where the
dratic term will dominate the evolution of the perfect flui
In this case, Eq.~54! is approximated byH.r/l and Eqs.
~55!–~57! give H̄.nH(ā.an), p̄.2nr1(r1p), and q̄

.211(q11)/n for the symmetry transformationr̄5nr.
Comparing this transformation with Eq.~20!, we see that the
quadratic term makes it easier to obtain assisted inflatio
the early universe. Whenn representsn identical noninter-
acting scalar fields driven byn identical potentialsV, then

ḟ̄2.ḟ2 and V̄.nrf2ḟ2/2. Thus, the combined action o
the fields induces a symmetry transformation affecting
expansion rate of the universe,H̄5nH. This means that the
more scalar fields, the quicker is the expansion of the u
verse. We see again that cumulative effects of the ene
density lead to assisted inflation and give rise to the CSG
the Einstein equations on the brane.

VI. CONCLUSIONS

We have found a symmetry transformation~6!–~8! under
which the Einstein equations in FRW cosmology are fo
,

av

D

c-

06351
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invariant. This symmetry group relates the expansion r
~geometrical variable! with the energy density and pressu
of the perfect fluid~source variables!. Hence, the coopera
tive effects of adding energy density into the Friedma
equation give rise to inflation. On the contrary, less ene
density in the Friedmann equation tends to hinder the in
tionary process. Therefore, using Eqs.~6!–~8! it is possible
to relate a nonaccelerated scenario to an inflationary scen
by a symmetry transformation.

We have studied the effects of the appearance of m
than one scalar field in FRW spacetimes and have shown
assisted inflation, mainly developed with exponential pot
tial and power-law solutions, can be seen as an applicatio
a symmetry transformation between the configurations
one-scalar field andn-scalar fields. In the same way, makin
use of the CSG, we have obtained assisted inflation for
neric potentials in Bianchi type-I spacetime and FRW bra
world cosmology.

Finally, we conclude that it is very interesting to stud
these kinds of symmetry transformation and their associa
symmetry groups, which have received little attention
to now. We shall continue exploring this subject in futu
papers.
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