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We find the group of symmetry transformations under which the Einstein equations for the spatially flat
Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of
the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a
symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curva-
ture perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I
spacetime and the brane-world cosmology.
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[. INTRODUCTION suggest that our three-dimensional universe is described by a
brane embedded in a higher-dimensional sg&d¢. There,
There exist several interesting physical problems wheréhe standard model interactions are confined to a
the Einstein field equations for homogeneous, isotropic, anfl +3)-dimensional hypersurface, thbrang while the
spatially flat cosmological modelgl-4] and a Bianchi gravitational field may propagate through thelk The real-
type-l metric [5] with a variety of matter sources can be ization of this model introduces important features _that dis-
linearized and solved by writing them in invariant fof@i. tmgws_h brane cosmol_ogy_from th(_a standard scenario. In _fact
The variational problem for the distribution function that € Friedmann equation is modified at very high energies,
maximizes the generalized Fisher information is solved ifauiring an extra quadratic term in the deng2,23. This

the same way7]. In all these cases explicit use of the non- (€M generally makes it easier to obtain an inflationary sce-
local transformation group has been made. nario in the early universe, by contributing extra friction to

In this paper we focus our attention on the group of transi€ scalar field equation of motion. [24,29 a kind of as-

formations leading to accelerated expansion scenarios. [St€d inflation mechanism was implemented in the brane-
many of these scenarios the effective potential energy denvorld scenario, associating it with the quadratic term. We

sity of a scalar field is responsible for an epoch of accelerthink that it will be interesting to continue one step further by

ated inflationary expansiof8]. In particular so-called as- considering the brane assisted inflation as emerging from
sisted inflation[9] will be investigated in detail. It was symmetry transformations of the Einstein equations on the
introduced in the context of standard Friedmann cosmolog}rane: _

where the cumulative effects of multiple scalar fields with an 1€ Symmetry transformations that preserve the form of
exponential potential give rise to inflation, provided that the Einstein equations .|ntroduce an alternative concept of
these fields interact only through the geometry. This kind offduivalence between different physical problems. We may
potential arises in various higher-dimensional supergravitp@y that several cosmological models are equivalent when
[10] and superstring11] models[12—15. We will see that the correspon_dlng dynamical equations are form invariant
the cooperative effects of adding energy density into thé!nder the action of that group. Thus, it turns out to be of
Friedmann equation lead to inflation. So the configurationgréat interest to investigate the consequences of this group
of one and several scalar fields are related by a simple synifom the physical and mathematical points of view.

metry transformation of the corresponding Einstein-Klein- ~ 1N€ paper is organized as follows. In Sec. Il we introduce
Gordon (EKG) equations. In this sense they can be consigihe cosmological symmetry grouf€SG of the Einstein
ered as equivalent cosmological models. Assisted inflatiofduations in FRW spacetime. In Sec. lll we investigate the
has been mainly studied in the case of power-law solution§onsequences of this CSG on the inflation in FRW space-
(axtP) for the spatially flat Friedmann-Robertson-Walker fime. In addition, we .gener_ahze previous studlgs on mul_t|—
(FRW) cosmology, which can be show@] to be its late- scalar field cosmolc_nges drlvgn by an 'exponent|al poten.ual.
time attractor. Recently, this scenario was discussed in FRW! S€c. IV we examine the anisotropic inhomogeneous Bian-
and Bianchi spacetimes using the general exact solution il tyP€-I model. Section V is devoted to studying the link
[16], with a baryotropic perfect fluid ifl7], and in the con- between the accelergted expansion scenario and the CSG, in
text of warm inflation in[18]. However, by appealing to the brane cosmology. Finally, in Sec. VI the conclusions are
symmetry group of the EKG equations, we will investigate Stated-

inflation without using any particular solution.

New developments in superstring and M thedt®,20 Il. FORM INVARIANCE SYMMETRY IN FLAT

FRIEDMANN-ROBERTSON-WALKER SPACETIMES

We write the Einstein equations in the flat FRW space-
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ds2= —dt?+a(t)[dx2+dy?+d 2], (1)

with a perfect fluid

3H?=p, i)

p+3H(p+p)=0, 3)
wherep is the energy densityy the pressure,inbl =ala.
For a different perfect fluid with energy densjtyand pres-
surep the above equations take the form

3H2=p, (4)

p+3H(p+p)=0. (5)

By “invariant form” we mean that the system of equations
(4),(5) transforms into Eq92),(3) under the symmetry trans-
formations

p=p(p), (6)
. p 1/2

H:(;) H, 7
- - 1/2 d;

=—pt|= (p+p)%, (8)

Where;=;(p) is an invertible function. Hence the FRW

equations for a perfect fluid have form invariance symmetry.

The symmetry transformatiori6)—(8) define a Lie group for
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under the symmetry transformatio(®—(8). In addition, us-
ing Egs.(9) and (10), we get a form invariant relationg(

+1)/y=(q+1)/y between the deceleration parameter and
the baryotropic index.

Inflationary solutions occur whea>0; this means that
the expansion is dominated by a gravitationally repulsive
stress that violates the strong energy condition, so phat
+3p<0. Imposing this condition on Eq©) we obtain
dp~¥2/dp~12<1/(q+ 1), which for a nonaccelerated cos-
mological model with g~const-0 gives ;>(q+ 1)%p.
Such a model, witﬁ<0, is accelerated.

In the particular case WheEis constant, from Eq(10)
we get

112

" YPo
3yl2_ _
a > |

dp

,yp3/2

11

where py is a constant. This shows that a cosmological
model containing a perfect fluid withy=+y(p) can be

mapped into one with constant adiabatic index, permitting us
to solve a complicated FRW model in terms of an easier one.

Ill. SCALAR FIELD CASE

The problem of a homogeneous scalar figidiriven by
an exponential potential(¢)=V,e ¥ minimally coupled
to gravity in the flat FRW spacetime is formulated by the
system of equations

2:1' 2
3H?= 297 +V, (12)

d+3Hp+V' =0, (13)

any function p(p), which can be used to solve the FRW WhereV, andk are constants. Potentials of this type are of
equations and get accelerated expansion scenarios, as will béerest because they may be considered an approximation to
seen in the following sections. Equatidi) expresses the Mmore complex potentials. In fact, in higher-dimensional su-

invariant relation=Q for the density parameter perstring theories, the scalar field is like one of the matter
Now, it is interesting to investigate the tran.sformationﬁelds that contribute to the action and effective potential of

properties of the relevant physical parameters. For instancéhe. theory.. Loop e_xpansm[rll], or expansion in the number
the expansion of the universe in power-law cosmologie f interacting particle$26], of the action leads to a pertur-

a(t)=t® is completely described by the Hubble paramete ative ex_pression of the poten'gial which i_s a summation of
and the deceleration parameter. In these mod(f) exponential term§13,14). There is another important reason
_ _H-?(3/a) transforms as ' behind choosing exponential potentials, because there exists

a late-time attractor solution for all the participating fields
[9]. In this kind of model the EKG equations have power-law

solutions

q+l= (9)

p 3/2d;
P axt?h®, (14)
under the symmetry transformatiot®—(8). If we considEr
perfect fluids with equations of state=(y—1)p and p

=(;— 1); respectively, then the baryotropic indicgsand

y transform as
32 —
Py e
p/ dp

so that they inflate at all times whé®<2.

Let us now assume tha homogeneous scalar fields
do not interact directly, but are driven by a sumroéxpo-
nential potential®/;=Vq e %. From now on we consider a
simplified problem in which the constaritsandV,, satisfy
k1:k2: s = kn:k and V01:V02: e :VOr‘I:VO' AS the
asymptotic evolution of all scalar fields tends to a common
limit, the special scalar field configuration in which all scalar

(10
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fields are equal is a late-time attractor. We may take
:¢2:"':¢n5¢v e} that V1:V2:...:VnEV
=Vee k¢ and Eqgs(12), (13) become

1.
3H%=n §¢2+v , (15)
d+3Hp—kV=0. (16)
They have the power-law solutions
anoCt2n/k2’ (17)

which inflate at all times whek?< 2n. Thus, the fields co-

operate to make inflation more likely in the so-called assiste
inflation[9]. In [16] it was shown that the general solution of
the EKG equationg15) and (16) has the same kind of be-

havior in the large time limit.

Rewriting Egs.(15) and (16) in terms of the rulesz
—n¢, V—nV, k—k/\n, and H—H they become the
EKG equations for the fields and the expansion rate.
Therefore, we obtaiﬁ(g) =n?p(¢), Where;andp are the

energy densities corresponding to the fiellgn-field con-
figuration and ¢ (one-field configuration respectively.
Then, the sets of equatiori$2),(13) and (15),(16) become
the sets of equation®),(3) and(4),(5), respectively. In this

identification the energy-momentum tensors of the scalar

fields ¢ and ¢ have been written in the perfect fluid form

1. - 1.
p(B)=362TV(P), p($)=5*+V(d); (19

1. - 1,
P(D)= 562 V(#), P(D)=36-V(d). (19

Using the fact that the EKG equations can be written in

invariant form, we will assume the transformation

p=np (20)

with n>1 in order to obtain cooperative effects, in EG8).
and(8). Then we get

(21)
and

p=—n?p+ng?. (22)
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represents the number of scalar fields we get the usual as-
sisted inflation. Here, it is obtained by imposing the form
invariance of the EKG equations.

We complete this section by giving the transformation
rule of the remaining parametersee Eqs(9),(10)]:

— 1
q=—1+ﬁ(1+q), (23

»y:

SR

(24)

This shows that an expanding universe with a positive decel-
ration parameter transforms into an accelerated ondsf
aken large enough.

A. Density fluctuations

The contributions of the density fluctuations differ signifi-
cantly in different inflationary universe models. In this con-
text, it seems interesting to derive the spectrum and spectral
index for the perturbations that would be created during the
periods of inflation and investigate their transformation prop-
erties when the CSG is acting. For one-scalar field models,
the spectrum of the curvature perturbation refgi§

(25

H oN\?2
PR: y

2m i

whereN= [H dt is the number of-foldings of inflationary
expansion remaining. Thus we have

: (26)

H )ZHZ
aH=k

PR(TO:(E pE

whereH and ¢ have to be evaluated at the time when the

perturbation with the wave number of interdsteaves the
Hubble scale during inflation. Also, in this case, the spectral

index nr(k) defined as

(Nk) 14 dinPy 27
n = r~
& dink
is given by[27]
H "
nR—l=6m+2V. (28)

For an arbitrary potentiei the former gives the transformationy, investigate the behavior of Eq26) and (28) under the

rule for the scale factoa=a", which is equivalent to the
relation between Eqg14) and(17), while the latter shows
that the pressure becomes negative for increasiije con-
clude that the symmetry transformati¢20)—(22) relates a
scalar field configuration characterized py p, andH to

another field configuration characterized pyp, andH. In

this one inflation is more likely for any potential whenever
n>1. When the potential has the exponential form and

symmetry transformatiofR0) and give an explicit result, we
choose an exponential potential, because it produces late-
time attractor solutions and permits us to calculate the den-
sity perturbations generated by the scalar fields exactly. In
this interesting case, the availability of exact solutions for the
scale factor allows us to find that

Pr(k)=n%Px(k) (29
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and 1

pP2=—

Y2—7"1 Ny

p 3/2d;
= —lp. 34
p) dp|P (34

1_n7z=£(1_n7z)- (30) L .
n Because of the additivity of the stress-energy tensor we will

describe the scalar field in terms of two interacting fluids,

The first expression shows that cumulative effects in the enyamely, o, = #2/2 andp,=V, with equations of state

ergy density increases times the spectrum of the curvature

perturbation corresponding to a single scalar field. The sec- p1=p1, Po=—py, (35

ond expression shows that the spectrum generated by the

spectral index is closer to scale-invariance wineis large. ~Meaning thaty;=2 (stiff mattey and y,=0 (vacuum en-

Note that the spectral index transforms in the same way a8rgy). Due to the interactions between the two fluid compo-

the deceleration parameté3). nents there will be no local energy-momentum conservation
For other potentials the density perturbation calculatiorfor each fluid separately. Only the energy-momentum tensor

and its transformation properties must be performed sepdf the system as a whole is conserved. This is equivalent to
rately for each case. the Klein-Gordon equatioril3) and we may consider the

effective perfect fluid description expressed by E2PR). In

. ) . . this case the effective baryotropic index is given
B. Two interacting perfect fluid interpretation s € € baryotrop exis given by

of the scalar field 2p, 2H

For the two-fluid model we assume that the energy- Y P _3H2' (36)
momentum tensor;, splits into two perfect fluid parts,

1 2 Using the interacting perfect fluids picture, Ed85),(36)
Tik="Tic+ Ti, 31 may be identified with Eqs(31),(32). Then the symmetry
_ @2 transformation(20) induces a change qf;= ¢?%/2 and p,
with T = p12UiUk+ P1,2Nik, Wherep(; o) andp(i ) are =V given by Eqs(33) and(34):
the energy density and the equilibrium pressure of species 1 _
and 2, respectively. For simplicity we assume that both com- 52: ne?, (37)
ponents share the same four-veloaity The quantityh; is
the projection tensoh;, = g;+ U;u,. Interactions between =
the fluid components amount to the mutual exchange of en- V=n
ergy and momentum. Consequently, there will be no local
energy-momentum conservation for the subsystems SePQso, from Egs.(7) and (36), we obtain H=nH and?
rately. Only the energy-momentum tensor of the system as a yIn, so that for largen we are going to an accelerated

whole is conserved. expansion scenario. In the particular case where the trans-

Let nsider th tion of st = - . - —
et us consider the equation of Stai=(Ywz  formeq potential is proportional to the original onéxV,

—1)p( for the two fluids, wherey(, 5 is the baryotropic -7 represents the number of present fields, the potential

index of species 1 and 2, respectively. Because of the addEas an exponential forf28] and we get the usual assisted
tivity of the stress-energy tensor it makes sense to intmducmﬂation P 9

an effective perfect fluid description with equation of state
p=(y—1)p wherep=p;+py, p=p1+p2, and

1.2V
29

n.
- 5¢% (39

IV. BIANCHI TYPE-I COSMOLOGY

_ Y1P1t ¥ap2 32 Now, we assume that the two perfect fluid components do
 pitps (32) not exchange energy and momentum. Therefore, there will
be local energy-momentum conservation for the fluids sepa-

is the overall(i.e., effectiveé baryotropic index. For this ef- rately. In this case, Einstein's equations
fective perfect fluid the dynamical equations are identical to

2_
Egs.(2) and (3). 3H™=p1tp2, (39
In general, the energy densitips and p, change under .
. — = S + +py)=0,
the symmetry transformatiop=p(p). It is important to pr+3H(prtp)=0 (40
stress that the transformed fluids should have the same char- .
p21+3H(po+p2)=0 (42)

acteristics as the original ones. For this reason we will sup-
pose that the adiabatic indices and y, defir)ing their prop- 416 torm invariant under the symmetry transformations
erties are not affected by the transformation. Then they are
form invariant quantities so that the final result is

p1=p1(p1.p2), p2=p2(p1.p2), (42)
1 ) 32 dp]_ - [ 12
P1= P Yo~ Y ; dp P, H= ; H, (43)
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172 If the energy density,; and the pressune; of the perfect

(p1+ pl)%+(p2+ pz)%} (44)  fluid source are identified with a scalar fieftl through the
Ip1 Ip2 expression$18),(19), then we can check whether this model
_ _ inflates for a generic self-interacting potential. To this end,
Ip2 p2 we will look at the sign of the deceleration parameter
(p1t pl)apl (ot pz)&pj’ @S __ 0-%(30+ 6%), where 9=Uu?, is the expansion and
L = 6 ,u®, u® being the four-velocity of the cosmic fluid. Since
where p=p;+p, and p=p;+p,. On the other hand, the we are dealing with comoving coordinated=(1,0,0,0),q
deceleration parameter and the adiabatic indices transform &mnsforms as

—  — [
plz_Pl+<:
p

1/2

P2=—p2t

3/2

_ ap dp — 3 ¢2+202
tl=——""—, (Pl+pl)(9_+(Pz+p2)&_ (q+1), =—1+—.¢— (53
(p+p)p P1 P2 N $2+2V+ 202
(46)
12 — — under the symmetry transformati¢@0). So, when the en-
o 1ip ip 91, Yo Ip1 (a7 Cr density of the system increases, inflation will be more
! p1\p) Yapy "% ap,) likely [q=—1+(g+1)n"1]. This result extends the one of
[16] where, using an exponential potential, it was shown that
— 1p 12 07;2 (9;2 the cumulative phenomena of noninteracting scalar fields co-
Yo==|=| | v1P15 T Yap2 |, (48 operate to “assist” the inflation in a Bianchi type-I model.
pa\p P1 p2
wherep=p,+p,. V. BRANE ASSISTED INFLATION IN
Assuming the simple symmetry transformations FRIEDMANN-ROBERTSON-WALKER SPACETIME

The Friedmann equation in brane cosmology is modified
by an extra quadratic term in the energy dengityAt very
in Egs. (43—(48 we get H=nH, 512 —n2py+n(py high energies tht_a guadratic term will indeed d(astically
— 7, — —  change the evolution of the scalar field and may be important
+P1), P2= NP2t N(patP2), =—1+(a+1)/IN, ¥1  jythe early stage of the universe. In particular it contributes
=y1/n, andy,=y,/n. Then, for largen, we get an accel- to increasing the friction in the scalar field equation. So it is
erated expanding scenario. expected that the implications of this modification will be
We will apply these results to investigate the connectionssignificant for the standard model of cosmology, and in par-
between inflation and the CSG in Bianchi type-I spacetimeticular for the inflationary paradigm.
To this end, we use the analytical technique presented in The modified Friedmann equation for a perfect fluid obey-

[29], where the equivalence was shown between a FRWhg the standard conservation equati8hin our brane world
double field cosmology and a Bianchi type-I spacetime filledis given by

with a self-interacting scalar field, treating the shear as a

massless scalar field. There, the inflation in the Bianchi

type-l spacetime was closely related to inflation in the flat 3H?=p
FRW spacetime. In the usual synchronous form the metric of

the locally rotationally symmetric spacetime is

p1=N°p1,  p=Nn’p, (49)

3
1+Fp), (54)

where the contributions from bulk gravitons and higher-
ds?=—dt?+a3(t) dx®+a3(t)(dy?*+dz%). (500  dimensional cosmological constant have been set to zero
[31]. We are using units such that=87G=1. The brane
The expansion of this anisotropic model containing a perfectension\ defines the scale below which the quadratic cor-
fluid source with pressurp; and energy density; is gov-  rection may be neglected and the standard FRW evolution is
erned by Eqs(39)—(41) [30], wherep,=p, (stiff matten,  recovered.
3H=H,+2H, is the rate of volume expansiom;=p3? The conservation equatiai3) for a perfect fluid and Eq.
=(1/\3)[H;—H,] is the shear scalar= %(r#yo“”, o,,1s (54 are form invariant under the symmetry transformations

the shear tensoH,=a, /a;, andH,=a,/a,. Also, we have _
1+(3\?
\[PArEAO 55
p(1+(3M\%)p)

a,=ae?b  a,=ae ¥ (52) H

wherea is the scale factor of the FRW model given by Egs.

(39—(41) and ¢ is a new free scalar field . p(1+(3\2)p) dp
P=—pt \ =" 2P TRIg - (56)
p(1+(3/\)p) p
p(t)=\2 f a(t) dt, (52
These induce the following transformation law for the decel-
defined in terms of the shear scalar. eration parameter:
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6__ 3 32 invariant. This symmetry group relates the expansion rate
aplt —p| 1+ —p (geometrical variqblbwith the energy density and pressure
- P A A of the perfect fluid(source variables Hence, the coopera-

dp
= —(g+1).
3_ dp(q ) tive effects of adding energy density into the Friedmann

1+ FP 1+ FP equation give rise to inflation. On the contrary, less energy
(57) density in the Friedmann equation tends to hinder the infla-
tionary process. Therefore, using EG8)—(8) it is possible
From these equations we may investigate the behavior of th® relate a nonaccelerated scenario to an inflationary scenario
transformed parameters at very high energies where the quly a symmetry transformation.
dratic term will dominate the evolution of the perfect fluid. ~ We have studied the effects of the appearance of more
In this case, Eq(54) is approximated byH=p/\ and Egs. than one scalar field in FRW spacetimes and have shown that
(55—(57) give H=nH(a=a"), p=—np+(p+p), andq assisted inflation, mainly developed with exponential poten-
— tial and power-law solutions, can be seen as an application of

go_mlzr(i?]+ tlh)é ntr];)nrs}gremsa):ir:)]rr?\?vtig g&g?&?iﬁﬁ;{g%e a symmetry transformation between the configurations of
parng ' .one-scalar field and-scalar fields. In the same way, making

uadratic term makes it easier to obtain assisted inflation in : . . ’
?he early universe. When represents identical noninter- use of the CSG, we have obtained assisted inflation for ge-

. ; : . ) . neric potentials in Bianchi type-I spacetime and FRW brane-
g_ctmg scalar_flelds drllven by identical potentialsV, then world cosmology.
$*=$* and V=np,— ¢°/2. Thus, the combined action of  Finally, we conclude that it is very interesting to study
the fields induces a symmetry transformation affecting thehese kinds of symmetry transformation and their associated
expansion rate of the universd,=nH. This means that the symmetry groups, which have received little attention up
more scalar fields, the quicker is the expansion of the unito now. We shall continue exploring this subject in future
verse. We see again that cumulative effects of the energgapers.
density lead to assisted inflation and give rise to the CSG of
the Einstein equations on the brane.
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