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No one loop back reaction in chaotic inflation
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We use an invariant operator to study the quantum gravitational back reaction to scalar perturbations during
chaotic inflation. Our operator is the inverse covariant d’Alembertian expressed as a function of the local value
of the inflaton. In the slow roll approximation this observable gives21/(2H2) for an arbitrary homogeneous
and isotropic geometry; hence it is a good candidate for measuring the local expansion rate even when the
spacetime is not perfectly homogeneous and isotropic. Corrections quadratic in the scalar creation and anni-
hilation operators of the initial value surface are included using the slow-roll and long wavelength approxi-
mations. The result is that all terms which could produce a significant secular back reaction cancel from the
operator, before one even takes its expectation value. Although it is not relevant to the current study, we also
develop a formalism for using stochastic samples to study back reaction.
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I. INTRODUCTION

Cosmological perturbations generated during an inflati
ary era are almost certainly responsible for the den
ripples out of which the presently observed stars, galax
and clusters have grown. The basic inflationary mechan
that generated the seeds for galaxy formation and growt
large-scale structure is quantum mechanical particle prod
tion powered by the accelerated expansion of the Unive
Now that the latest balloon experiments@1# have all but vali-
dated this picture, we are left with the duty of testing furth
the consequences of particle production in the early U
verse. An outstanding question is whether quantum pair
ation has any effect on the background in which it tak
place.

The simplest system in which the problem of back re
tion can be studied is scalar-driven inflation. Since dyna
cal scalars mix with the gravitational potentials they cau
gravitational back reaction can in principle occur at one lo
in scalar-driven inflation. Indeed, previous results by
present authors and collaborators@2–5# suggested that the
one loop back reaction of scalar perturbations could s
down the expansion rate of the Universe in the case of
so-called ‘‘chaotic’’ inflationary models.

In @2,3#, spatial averaging and a fixed gauge were e
ployed in order to compute the effective energy-moment
tensor for cosmological perturbations. The present auth
studied the same physical problem@4,5#, this time taking
expectation values of the metric and using those expecta
values to form invariants, and came to conclusions ident
to those of@2,3#. Nevertheless, these works have been cr
cized in two grounds.

The first objection@6# concerns the use of expectatio
values of the gauge-fixed metric to build physical obse
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ables. The concern is that certain variations in the ga
fixing condition could change the expectation value of t
metric in ways which cannot be subsumed into a coordin
transformation. Therefore, forming the expectation value
the metric into coordinate invariant quantities would n
purge these quantities of gauge dependence. Back-rea
should then be studied with an operator which is itself
invariant, before taking the expectation value.

The second objection@7# states that using expectation va
ues invites a Schro¨dinger cat paradox. This is because t
process of superadiabatic amplification leaves superhor
modes in highly squeezed states whose behavior is es
tially classical. That is, the various portions of the wa
function no longer interfere with one another. Quantum m
chanics determines the random choice of where we are in
wave function, but the evolution of each portion is appro
mately classical. Under these conditions, averaging over
full wave function does not give a good representation of
physics. In the context of the Schro¨dinger cat paradox Linde
observes: ‘‘When you open the box a week later what y
find is either a very hungry cat or else a smelly piece of me
not the average of the two.’’ He and his colleagues wo
prefer that back reaction be studied stochastically@8#, where
each mode is assigned a random,C-number value as it expe
riences horizon crossing and evolves classically thereaft

In the present study of the one-loop back reaction eff
we have tried to address these objections. To avoid pote
problems from using the gauge fixed metric we have inst
computed the functional inverse of the covariant d‘Alemb
tian ~see also@9# for a more detailed discussion!:

hc[
1

A2g
]m~A2ggmn]n!2

1

6
R. ~1!

This operator—A[hc
21@g#(t,xW )—averages over the pas

light cone, very much as astronomers do when compilin
Hubble diagram. In the slow roll approximation it give
©2002 The American Physical Society15-1
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2 1
2 H22 for an arbitrary homogeneous and isotropic unive

@9#. The scalarA is therefore a reasonable candidate for m
suring the local expansion rate when the universe is not
cisely homogeneous and isotropic. By measuringA on
3-surfaces upon which the dynamical scalar is constant
promote it into a full invariant,Ainv .

At one loop, and to leading order in the standard infra
expansion, corrections to the operatorA depend upon a vari
able we callF(x). This is the accumulated Newtonian p
tential from infrared modes.F(x) grows with time, since
more and more modes redshift into the infrared regime
inflation progresses, so dependence upon any positive po
of F(x) would give a secular effect. However, when fu
invariance is enforced by evaluatingA on 3-surfaces of con
stant scalar, all terms involving only the undifferentiat
Newtonian potential cancel. This result was anticipated
Unruh @6# who noted that the linearized mode functions b
come pure gauge in the long wavelength limit. The fact t
more and more modes redshift to the infrared regime is
pure gauge, but Unruh’s observation means that physica
fects must involve derivatives ofF(x). Such terms do con
tribute, but they are small. We conclude that there is no
nificant deviation from the background expansion rate at
order, in marked contrast with the results of@2–4#.

Section II describes the perturbative background in wh
we work. It also illustrates the slow roll expansion throu
which one can perform most operations of temporal calcu
in an arbitrary inflationary background. Section III describ
the formalism by which the field equations are solved per
batively. It concludes with the long wavelength approxim
tion which effectively removes spatial dependence and p
duces a one dimensional problem that can be treated in
slow roll expansion. Section IV applies the technology
determine the various field operators to quadratic order in
creation and annihilation operators on the initial value s
face. The operatorA is evaluated to the same order in Sec.
The distinction between expectation values and stocha
samples is irrelevant, at this order, in view of the cancellat
of all potentially significant one loop corrections to theAinv
operator. However, the issue should re-emerge at hig
loops where secular back reaction can derive from the co
ent superposition of interactions within the observer’s p
light cone. We have therefore developed a formalism for
perturbative study of stochastic effects, which is presente
Section VI. Our results are summarized and discussed
Section VII.

II. THE PERTURBATIVE BACKGROUND

The system under study is that of general relativity with
general, minimally coupled scalar:

L5
1

16pG
RA2g2

1

2
]mw]nwgmnA2g2V~w!A2g.

~2!

This section concerns the homogeneous and isotropic b
groundsg0 andw0 about which perturbation theory will b
formulated. Three classes of identities turn out to be inter
ing for our purposes:
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~1! Those which are exact and valid for any potent
V(w);

~2! Those which are valid in the slow roll approximatio
but still for any potential; and

~3! Those which are valid for the slow roll approximatio
with the potentialV(w)5 1

2 m2w2.
We shall develop them in this order, identifying the poi

at which each further specialization and approximation
made.

Among the exact identities is the relation between c
moving and conformal coordinates:

ds0
252dt21a2dxW•dxW5a2~h!$2dh21dxW•dxW%, ~3!

where conformal timeh is defined in the usual way:

dt5a~h!dh. ~4!

The Hubble ‘‘constant’’ is the logarithmic co-moving tim
derivative of the background scale factor:

H[
ȧ

a
5

a8

a2
, ~5!

where a dot denotes differentiation with respect to~back-
ground! co-moving time and a prime stands for differenti
tion with respect to conformal time.

Two of Einstein’s equations are nontrivial in this bac
ground:

3H25
1

2
k2H 1

2
ẇ0

21V~w0!J , ~6!

22Ḣ23H25
1

2
k2H 1

2
ẇ0

22V~w0!J , ~7!

wherek2[16pG is the loop counting parameter of pertu
bative quantum gravity. By adding the two Einstein equat
one can solve for the time derivative of the scalar, which
assume to be negative:

ẇ052
2

k
A2Ḣ. ~8!

Successful models of inflation require the following two co
ditions which define theslow roll approximation:

uẅ0u!Huẇ0u, ~9!

ẇ0
2!V~w0!. ~10!

It follows that there are two small parameters. Althou
these are traditionally expressed as ratios of the potential
its derivatives the more useful quantities for our work a
ratios of the Hubble constant and its derivatives:

2Ḣ

H2
!1,

uḦu

2HḢ
!1. ~11!
5-2
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For models of interest to us the rightmost of these parame
is negligible with respect to the leftmost one.

The slow roll approximation gives useful expansions
simple calculus operations. For example, ratios of derivati
of the field are

w09

w08
5aHS 11

1

2

Ḧ

HḢ
D , ~12!

w0-

w08
52a2H2S 11

Ḣ

2H2
1••• D . ~13!

Successive partial integration also defines useful slow
expansions:

E dtHaab5
1

b
Ha21abH 11

~a21!

b S 2Ḣ

H2 D 1•••J ,

~14!

E dtHa5
1

a11

Ha11

Ḣ
H 11

1

a12

HḦ

Ḣ2
1•••J .

~15!

III. EINSTEIN SCALAR DURING INFLATION

The purpose of this section is to describe our proced
for expressing the metric and scalar fields at any space
point as functionals of the unconstrained initial value ope
tors. These unconstrained initial value operators are the
true degrees of freedom in any quantum theory and expr
ing the dynamical variables as functionals of them is wha
means to solve the equations of motion in the Heisenb
picture. As a simple example, if the dynamical variable is
positionq(t) of a one-dimensional particle then the equati
of motion,

q̈~ t !1v2q~ t !50, ~16!

has as its ‘‘solution,’’

q~ t !5q0 cos~vt !1
q̇0

v
sin~vt !. ~17!

In this case the unconstrained initial value operators areq0

and q̇0.
Obtaining such a solution perturbatively entails two e

pansions. In the first stage one writes the dynamical varia
as background plus perturbations and expands the equa
of motion in powers of the perturbed quantities. To contin
with our particle example, suppose the full equation of m
tion is E@x#(t)50 and that we are perturbing around som
classical solutionX(t). If we define the perturbed position a
q(t) thenx(t)[X(t)1q(t). Since the background is a solu
tion the perturbative equations of motion necessarily begi
linear order,

E@X1q#~ t !5q̈~ t !1v2q~ t !1DE@q#~ t !, ~18!
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whereDE@q#(t) contains terms of orderq2 and higher.
The second stage of perturbation theory consists of s

ing for the perturbed quantities as a series in powers of
unconstrained initial value operators. This is done by fi
solving the linearized equations so as to make the unc
strained variables agree with their full initial value data
the initial value surface. The linearized solution in our p
ticle example would be

qlin~ t !5A \

2mv
$ae2 ivt1a†eivt%, ~19!

where we have chosen to organize the initial value data
the annihilation operator,a[Amv/2\(q01 i q̇0 /v), and its
conjugate.

One then ‘‘integrates’’ the full equations of motion usin
the retarded Green’s functions of the linearized theory. T
retarded Green’s function of our particle example is

Gret~ t;t8!5
u~ t2t8!

v
sin@v~ t2t8!#, ~20!

and the integrated equation of motion is

q~ t !5qlin~ t !2
1

vE0

t

dt8sin@v~ t2t8!#DE@q#~ t8!. ~21!

The perturbative solution derives from successive subs
tion of this integrated form for the perturbed quantities
the righthand side of the equation,

q~ t !5qlin~ t !2
1

vE0

t

dt8sin@v~ t2t8!#DE@qlin#~ t8!1•••.

~22!

It will be seen that the perturbative operator expansion wh
results bears a close relation to the diagrammatic expan
of quantum field theoretic amplitudes. The place of exter
lines is taken by the linearized solution; propagators are
placed by the corresponding retarded Green’s functions; a
except for some factors ofi, there is no change at all in th
vertices. Since no loop diagrams appear there is no nee
Faddeev-Popov ghosts. Owing to this correspondence m
of the results we shall obtain for the operator expansion h
already appeared in our previous perturbative expansion
expectation values@4#. We shall retain most of the conven
tions used in that paper.

In a gauge theory such as gravity there is the additio
complication of constraints which require some of the d
namical variables to be nonlinear functionals of the unc
strained initial value operators even on the initial value s
face. We shall deal with this by working in a gauge with
nonlocal field redefinition such that there are no nonlin
corrections on the initial value surface. Of course the non
ear corrections required by the initial value constraints ret
when our field redefinition is inverted to give the perturb
metric and scalar fields.

Another complication is that one cannot generally obt
explicit solutions to the linearized field equations in the tim
5-3
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dependent backgrounds of chaotic inflation. We therefore
plain how to construct plane wave solutions as series exp
sions around the ultraviolet and infrared limiting cases. Si
the putative physical effect derives from modes which ha
redshifted into the infrared regime it is the long waveleng
approximation—coupled with the slow roll expansion
which allows us to obtain quantitative results.

Finally, it should be noted that we are not actually inclu
ing all the physical degrees of freedom. Since gravitons c
not give a significant back reaction at one loop we ha
suppressed the initial value operators associated with th
leaving only scalar degrees of freedom. Of course we
work out how the full metric depends upon this scalar init
value data.

A. Perturbative field equations

The field equations derived from the Einstein-scalar
tion ~2! are most usefully expressed in the form

F[
1

a
„hw2V8~w!…50, ~23!

Emn[2
a

k S Gmn2
k2

2
TmnD50. ~24!

Here Gmn[Rmn2 1
2 gmnR is the Einstein tensor andTmn is

the scalar stress tensor whose covariant expression ha
form

Tmn[]mw]nw2gmnS 1

2
grs]rw]sw1V~w! D . ~25!

Our dynamical variables are the scalar perturbationf and
the conformally rescaled pseudo-gravitoncmn :

w~h,xW ![w0~h!1f~h,xW ! ~26!

gmn~h,xW ![a2~h!@hmn1kcmn~h,xW !#, ~27!

wherehmn is the~spacelike! Lorentz metric which is used to
raise and lower pseudo-graviton indices. We define the qu
tities DF andDEmn to include all terms of second and high
orders incmn andf. One can read off the quadratic terms
DF andDEmn from Tables 1 and 3 of@4#: multiply the terms
of Table 1 by 1/a and then drop the ‘‘external’’cmn ; vary the
terms of Table 3 with respect tof or cmn and then multiply
by 1/a.

The linearized equations are vastly simplified by impo
ing the gauge condition,

Fm[aS cm,n
n 2

1

2
c ,m22

a8

a
cm01hm0kw08f D50, ~28!

where a comma denotes ordinary differentiation andc
[hmncmn . It is also useful to 311 decompose and to
slightly rearrange the perturbed fields as follows:

f [af, z[ac00, v i[ac0i , hi j [a~c i j 2d i j c00!.
~29!
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The various differential operators of the linearized equatio
can also be given a simple common form,

D̂I[¹21D I[¹22]0
21

u I9~h!

u I~h!
, ~30!

whereI 5A,B,C and

uA[a, uB[a21, uC[
1

aA H2

2Ḣ
. ~31!

Making use of the gauge condition results in the followi
expansions forF and the various components ofEmn @4#:

F52kw09z1S D̂B1
w0-

w08
D f 1DF, ~32!

E005D̂Bz2kw09 f 1
1

4
DAh1DE00, ~33!

E0i52
1

2
D̂Bv i1DE0i , ~34!

Ei j 5
1

2
D̂AS hi j 2

1

2
d i j hD1DEi j . ~35!

The mixing in Eq.~35! betweenhi j and its traceh[hkk can
be removed by taking linear combinations. The same is t
for the mixing in Eq.~33! betweenh and the variablesf and
z. However, the mixing betweenz and f in Eqs. ~32!, ~33!
cannot be removed algebraically for a general backgrou
To diagonalize this sector we must make a nonlocal fi
redefinition,

x~h,xW ![z8~h,xW !1
k

2
w08~h! f ~h,xW !, ~36!

y~h,xW ![
k

2
w08~h!z~h,xW !1w08~h!S f ~h,xW !

w08~h!
D 8

. ~37!

When all this is done the fully diagonalized equations ta
the form

D̂Ax52~DE001DEii !82
k

2
w08DF, ~38!

D̂Cy52
k

2
w08~DE001DEii !2w08S DF

w08
D 8

, ~39!

D̂Bv i52DE0i , ~40!

D̂Ahi j 522~DEi j 2d i j DEkk!. ~41!

Finally, one must check that the gauge conditions can
consistently imposed as constraints. Their 311 decomposi-
tion in the diagonal variables takes the form
5-4
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F0522x1v i ,i2
a

2 S h

aD 8
, Fi52

1

a
~av i !82hi j , j2

1

2
h,i .

~42!

Using the ‘‘commutator’’ identities,

D̂Ba]0

1

a
5a]0

1

a
D̂A , D̂A

1

a
]0a5

1

a
]0aD̂B , ~43!

and the gauge-fixed field equations~38!–~41!, it is easy to
show that the constraints obey

D̂BF052S DE ,m
m0 1

a8

a
DEii 1

k

2
w08DF D , ~44!

D̂AFi522S DE ,m
m i 1

a8

a
DE0i D . ~45!

The quantities on the right-hand side of Eqs.~44!, ~45! van-
ish as a consequence of the background Bianchi identitie
the usual way. Therefore, the constraints are preserved b
gauge fixed evolution equations and full equivalence
tween the invariant field equations and those of the gau
fixed theory will hold if the initial value operators are co
strained to makeFm and its first conformal time derivative
vanish ath5h0.

B. Unconstrained plane waves

It is useful to consider plane wave solutions to the line
ized, gauge-fixed field equations before suppressing
physical gravitons and using the constraints and the resi
gauge freedom to purge unphysical initial value data. Tha
we seek the kernel of the differential operatorsDI2k25
2]0

22k21u I9/u I , where the functionsu I(h) were defined in
relation~31!. Although explicit solutions cannot be obtaine
for an arbitrary inflationary background, the limiting cases
k50 andu I50 serve as the basis of series solutions for
‘‘infrared’’ ( k2!u I9/u I) and ‘‘ultraviolet’’ (k2@u I9/u I) re-
gimes. In the ultraviolet regime the particle interpretation
the same as for flat space so its normalization is used
define that of the infrared regime. The final step of this s
section is superposing plane waves multiplied by the crea
and annihilation operators of the linearized, gauge-fixed
tion. The commutator functions between such fields give
retarded Green’s functions needed to integrate the pertu
tive field equations.

The following two solutions comprise a useful basis se
the infrared limit (k50):1

Q10,I~h!5u I~h!, Q20,I~h!5u I~h!E
2`

h
dh8

1

u I
2~h8!

.

~46!

1Here our notation differs slightly from@4# in that the signs ofuC

and of the second solutions Eq.~46! have been inverted.
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One of these is a ‘‘growing’’ mode, the other a ‘‘decaying
mode. For example, the decayingC mode isQ10,C(h). The
growingC mode can be evaluated in the slow roll expansio

Q20,C~h!5
A2Ḣ

H2 F11OS 2Ḣ

H2 D G . ~47!

We can find the inverse ofDI on any functionf (h) by two
simple integrations:

~D I
21f !~h!52u I~h!E

h0

h
dh8

1

u I
2~h8!

E
h0

h
dh9u I~h9! f ~h9!.

~48!

By integrating the full equation,DIQ5k2Q, one obtains a
relation,

Qi ,I~h,k!5Qi0,I~h!1k2~D I
21Qi ,I !~h,k!, i 51,2,

~49!

whose iteration results in a convergent series expansio
powers ofk2. Note that constancy of the Wronskian and t
vanishing of corrections ath5h0 allows us to evaluate it
using the zeroth order solutions,

Q2,I8 ~h,k!Q1,I~h,k!2Q1,I8 ~h,k!Q2,I~h,k!51. ~50!

The useful basis elements for the ultraviolet limit (u I50) are
e2 ikh and its conjugate. In this limit we know the absolu
normalization from correspondence with flat space. Coupl
this with the harmonic oscillator Green’s function gives t
integrated mode equation,

QI~h,k!5
e2 ikh

A2k
1

1

kE2`

h
dh̄ sin@k~h2h̄ !#

u I9~ h̄ !

u I~ h̄ !
QI~ h̄,k!,

~51!

whose iteration yields an asymptotic expansion in powers
1/k. The Wronskian for the ultraviolet mode functions is

QI8~h,k!QI* ~h,k!2QI8* ~h,k!QI~h,k!52 i . ~52!

Any quantum operatorc I(h,xW ) which is annihilated byD̂I
can be expressed as a superposition of plane waves
operator coefficients,

c I~h,xW !5E d3k

~2p!3 $QI~h,k!eikW•xWC~kW !

1QI* ~h,k!e2 ikW•xWC†~kW !%. ~53!

If the conjugate momentum isc I8(h,xW ) then the Wronskian
~52! implies that the coefficients have the algebra of cano
cally normalized creation and annihilation operators,

@C~kW !,C†~kW8!#5d i j ~2p!3d3~kW2kW8!. ~54!

By taking the commutator of two such fields we obtain
sequence of lovely expressions for the retarded Green’s fu
tion of the differential operatorD̂I ,
5-5
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GI~x;x8!52 iu~Dh!@c I~h,xW !,c I~h8,xW8!#, ~55!

52 iu~Dh!E d3k

~2p!3

3eikW•DxW$QI~h,k!QI* ~h8,k!2~h↔h8!%, ~56!

5u~Dh!E d3k

~2p!3eikW•DxW

3$Q1,I~h,k!Q2,I~h8,k!2~h↔h8!%, ~57!

where Dh[h2h8 and DxW[xW2xW8. The crucial final
expression—in terms of the infrared mode functions
follows from the fact that that it obeys the same different
equation—D̂IGI(x;x8)5d4(x2x8)—and retarded boundar
conditions as the first two.

The preceding analysis suffices to define the retar
Green’s functions needed to integrate equations~40! and
~41!,

v i~h,xW !5v i
lin~h,xW !12E

h0

h
dh8E d3x8GB~x;x8!

3DE0i~x8!, ~58!

hi j ~h,xW !5hi j
lin~h,xW !22~d ikd j l 2d i j dkl!E

h0

h
dh8

3E d3x8GA~x;x8!DEkl~x8!. ~59!

It would be straightforward to give plane wave expansio
for v i

lin and hi j
lin . However, we will not bother since thes

linearized fields vanish when physical graviton degrees
freedom are suppressed and the various constraints an
sidual gauge conditions are imposed.

The same general technology can be applied to integ
the more complicated (f ,z) system,

S D̂B1
w0-

w08
2kw09

2kw09 D̂B

D S f

zD 52S DF

DE001DEii D . ~60!

The desired retarded Green’s functions,

S D̂B1
w0-

w08
2kw09

2kw09D̂B

D S Gf f~x;x8! Gf z~x;x8!

Gz f~x;x8! Gzz~x;x8!
D

5d4~x2x8!S 1 0

0 1D , ~61!

also follow from commutators of the linearized fields,
06351
l

d

s

f
re-

te

S Gf f~x;x8! Gf z~x;x8!

Gz f~x;x8! Gzz~x;x8!
D

52 iu~Dh!S @ f ~x!, f ~x8!# @ f ~x!,z~x8!#

@z~x!, f ~x8!# @z~x!,z~x8!#
D . ~62!

Unfortunately it is the fieldsx(h,xW ) and y(h,xW ) which are
annihilated byD̂B andD̂C , so it is they that possess simp
plane wave expansions in terms of theB andC mode func-
tions.

At linearized order the gauge-fixed action reveals the c
jugate momenta tof andz to be simply their conformal time
derivatives. Definitions~36! and~37! give the following non-
zero equal-time commutation algebra forx andy,

@x~h,xW !,x8~h,yW !#52 i¹2d3~xW2yW !5@y~h,xW !,y8~h,yW !#.
~63!

If we still employ canonically normalized creation and ann
hilation operators,

@X~kW !,X~kW8!#5~2p!3d3~kW2kW8!5@Y~kW !,Y~kW8!#, ~64!

then the additional factor of2¹2 in ~63! implies the follow-
ing plane wave expansions:

x~h,xW !5E d3k

~2p!3 k$QB~h,k!eikW•xWX~kW !

1QB* ~h,k!e2 ikW•xWX†~kW !%, ~65!

y~h,xW !5E d3k

~2p!3 k$QC~h,k!eikW•xWY~kW !

1QC* ~h,k!e2 ikW•xWY†~kW !%. ~66!

Since the transformation between (f ,z) and (x,y) involves
conformal time derivatives, its inverse cannot be local
time for the off shell fields. However, for the on-shell sol
tions we can use the linearized equations to obtain the
lowing expressions:

f 5
1

¹2 F2
k

2
w08x1y81

w09

w08
yG . ~67!

z5
1

¹2 Fx82
k

2
w08yG , ~68!

It is simplest to exploit these relations in evaluating the va
ous commutators of the (f ,z) retarded Greens functions. On
then replaces products of the mode functions with theB and
C-type Green’s functions. The answer is
5-6
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Gf f~x;x8!5
1

¹2 H 2
k2

4
w08~h!w08~h8!GB~x;x8!

2
1

w08~h!w08~h8!
]0]08w08~h!w08~h8!GC~x;x8!

1d4~x2x8!J , ~69!

Gf z~x;x8!5
k

2¹2 H w08~h!]08GB~x;x8!

1
w08~h8!

w08~h!
]0w08~h!GC~x;x8!J , ~70!

Gz f~x;x8!5
k

2¹2 H w08~h8!]0GB~x;x8!

1
w08~h!

w08~h8!
]08w08~h8!GC~x;x8!J , ~71!

Gzz~x;x8!5
1

¹2 H 2]0]08GB~x;x8!

2
k2

4
w08~h!w08~h8!GC~x;x8!1d4~x2x8!J .

~72!

Finally, we substitute the relation,GI(x;x8)5D̂I
21d4(x

2x8),

Gf f~x;x8!5
1

¹2 F12
k2

4
w08D̂B

21w081
1

w08
]0w08D̂C

21w08]0

1

w08
G

3d4~x2x8!, ~73!

Gf z~x;x8!5
k

2¹2 F2w08D̂B
21]01

1

w08
]0w08D̂C

21w08G
3d4~x2x8!, ~74!

Gz f~x;x8!5
k

2¹2 F ]0D̂B
21w082w08D̂C

21w08]0

1

w08
G

3d4~x2x8!, ~75!

Gzz~x;x8!5
1

¹2 F11]0D̂B
21]02

k2

4
w08D̂C

21w08G
3d4~x2x8!. ~76!
06351
C. Integrated field equations

In this subsection we first purge unphysical initial val
data by imposing the constraints and making use of the
sidual gauge freedom. Then gravitons are suppresse
leave what we call the physical linearized fields. Finally, t
various field equations are integrated using the retar
Green’s functions of the previous section.

Since our gauge condition involves derivatives it is p
served by residual gauge transformations which obey sec
order differential equations.2 One can therefore freely impos
four residual conditions and their first conformal time deriv
tives on the initial value surface. We choose these to n
x(h0 ,xW ), x8(h0 ,xW ), v i(h0 ,xW ) andv i8(h0 ,xW ).

At the end of sec. III A we showed that the four co
straints are also annihilated by second order differential
erators. It therefore follows that the initial values of the fo
constraints and their first conformal time derivatives are
only extra conditions to be imposed in addition to the gau
fixed field equations. With our residual gauge choice th
eight conditions imply thathi j (h,xW ) is transverse and trace
less at linearized order. Suppressing gravitons makes it v
ish completely at linearized order.

The only linearized fields which remain aref andz. Since
x vanishes, they can depend only upon the operatorsY(kW )
andY†(kW ),

f ph~h,xW !5
21

w08~h!
]0w08~h!E d3k

~2p!3

1

k

3$QC~h,k!eikW•xWY~kW !1H.c.%, ~77!

zph~h,xW !5
k

2
w08~h!E d3k

~2p!3

1

k

3$QC~h,k!eikW•xWY~kW !1H.c.%. ~78!

We can obviously eliminatef ph in favor of zph,

f ph~h,xW !52
2

k

zph8 ~h,xW !

w08~h!
5

zph8 ~h,xW !

a~h!A2Ḣ
. ~79!

This is the well-known constraint between the~dimension-
less! Newtonian potentialF(h,xW )[kz(h,xW )/2a(h) and the
scalar field fluctuation@11#.

We can now write down the integrated field equatio
whose iteration produces the final perturbative expansion
the various fields:

f ~h,xW !5 f ph~h,xW !2E
h0

h
dh8E d3x8$Gf f~x;x8!DF~x8!

1Gf z~x;x8!@DE00~x8!1DEii ~x8!#%, ~80!

2The analysis is quite similar to that carried out for de Sit
background in@10#.
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z~h,xW !5zph~h,xW !2E
h0

h
dh8E d3x8$Gz f~x;x8!DF~x8!

1Gzz~x;x8!@DE00~x8!1DEii ~x8!#%, ~81!

v i~h,xW !52E
h0

h
dh8E d3x8GB~x;x8!DE0i~x8!, ~82!

hi j ~h,xW !522~d ikd j l 2d i j dkl!

3E
h0

h
dh8E d3x8GA~x;x8!DEkl~x8!. ~83!

Note thatv i and hi j vanish ath5h0, along with their first
derivatives. On the other hand, bothf andz suffer perturba-
tive correction on the initial value surface. This derives fro
the existence of a gravitational interaction even on the ini
value surface, as required by the constraint equations of
ungauged formalism.

D. The long wavelength approximation

Except for suppressing the gravitons, all the results
tained to this point have been exact. Unfortunately they
also largely useless because we lack explicit forms for
various mode functions and retarded Green’s functions
general inflationary background. Nor could we perform t
required integrations if we did possess such expressi
What makes calculations possible is the long wavelength
proximation which effectively removes spatial variation. T
resulting problem of temporal calculus is still formidable, b
it can be treated using the slow roll expansion discusse
Sec. II.

The back reaction we seek to study is the response to
superadiabatic amplification of modes which experience
rizon crossing. This is an intrinsicly infrared phenomenon
one might suspect that it can be studied effectively in
limit where spatial derivatives are dropped and the mo
functions approach their leading infrared forms. This lim
defines the long wavelength approximation and it effe
three sorts of simplifications on the perturbative apparatu
relations~80!–~83!.

The first simplification is to ignore spatial derivatives
the source terms,DF andDEmn. An immediate consequenc
of this, and of the absence of dynamical gravitons, is t
DE0i vanishes andDEi j is proportional its trace,

DE0i u l .w.→0, DEi j u l .w.→
1

3
d i j DEkk. ~84!

It follows that v i remains zero for all time and that only th
trace part ofhi j ever becomes nonzero,

v i~h,xW !u l .w.→0, ~85!

hi j ~h,xW !u l .w.→
4

3
d i j E

h0

h
dh8E d3x8GA~x;x8!3DEkk~x8!.

~86!
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The second simplification is that one can replace the m
functions of the linearized solutions by their infrared limitin
forms. These forms were worked out in@4# by matching the
leading ultraviolet term of the ultraviolet expansion to t
leading term of the infrared expansion at the timeh* (k) of
horizon crossing:k5H(h* )a(h* ). Since the physical fields
contain onlyC modes the result we require is

QC~h,k!u l .w.→
A2Ḣ~h!

H2~h!
•

H2~h* !

A2Ḣ~h* !

e2 ikh
*

A2k
. ~87!

Note also that momentum integrations are cut off atk
5H(h)a(h). The physical justification for this is that onl
modes below the cutoff have undergone the superadiab
amplification that is the basis for the effect whose back
action we seek to evaluate. However, one must take care
the resulting time dependence is a genuine infrared ef
and not simply the result of allowing more and more mod
to contribute to what would be an ultraviolet divergen
without the cutoff. One consequence is that time derivati
of the fields should not be allowed to act on the moment
cutoff.

The third simplification is that we expand the inverses
D̂I[DI1¹2 in powers of¹2,

D̂I
215D I

212D I
22¹21•••. ~88!

Only the zeroth order term is required forhi j ,

hi j u l .w.→
4

3
d i j D A

21DEkk, ~89!

but one must go to first order for the various (f ,z) Green’s
functions on account of their prefactors of 1/¹2. The Appen-
dix demonstrates that the leading results are

Gf f~x;x8!u l .w.→Fw08D B
21 1

w08
12w08D B

21
w09

w08
2
D C

21w08]0

1

w08
G

3d4~x2x8!, ~90!

Gf z~x;x8!u l .w.→kw08D B
21

w09

w08
2
D C

21w08d
4~x2x8!, ~91!

Gz f~x;x8!u l .w.→kw08D C
21

w09

w08
2
D B

21w08d
4~x2x8!, ~92!

Gzz~x;x8!u l .w.→Fw08D C
21 1

w08
12w08D C

21
w09

w08
2
D B

21]0G
3d4~x2x8!. ~93!

At this point we can make contact with the similar calcu
tion that was done in@4#. In the infrared limit, the genera
retarded propagators~90!–~93! correspond exactly to the re
sult that can be inferred from Eqs.~131!, ~132! of @4#. The
‘‘ C’’ and ‘‘ D ’’ in Eqs. ~131! and ~132! from that paper
5-8
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~whereV[a) correspond respectively to the change induc
in the z and in thef fields that obtains from our equation
~80!, ~81!. The amputated 1-point functions in those equ
tions correspond to our source terms according to the r
ã→2(k/3)aDEkk, g̃→2kaDE00 and d̃→2kaDF.

IV. QUADRATIC CORRECTIONS

The purpose of this section is to apply the technology
Sec. III to obtain the scalar and metric at quadratic orde
the initial value operatorsY(kW ) and Y†(kW ), and to leading
order in the slow roll and long wavelength expansions.
Ref. @4# we computed the one loop expectation values of
scalar and metric fields, also to leading order in the slow
and long wavelength expansions. Much of that calculat
can be used to get the quadratic order operator expansio
the same quantities. In particular, all the vertices are c
logued in that reference.

As an example, consider vertex No. 9 of Table 3 from@4#.
That vertex corresponds to the following cubic term in t
Lagrangian:

Lno. 952
k

4
V,ww~w0!a4f2c52

k

4
V,ww~w0!a f2~2z1h!.

~94!

Variation with respect tof and cmn gives the following
source terms:

DFno. 952kV,ww~w0!a fS z1
1

2
hD ,

DEno. 9
mn 52

k

4
V,ww~w0!a f2hmn. ~95!

The lowest order perturbative corrections from these te
come whenf, z andh are replaced by the associated physi
linearized fields:f ph, zph and 0, respectively. Recall also th

f ph5z8/aA2Ḣ.
The preceding are all exact results. Because we are

making the long wavelength and slow roll approximation
zph can be written as

zph~h,xW !u l .w.1s.r .→a~h!F2Ḣ~h!

H2~h!
G E d3k

~2p!3

H*
A2k3

3AH
*
2

2H* $Y~kW !1Y†~kW !%. ~96!

To leading order in the slow roll approximation the tim
depedence of this expression comes entirely in the in
factor ofa(h), which allows the following simplification for
f ph:

f ph~h,xW !u l .w.1s.r→A H2~h!

2Ḣ~h!
zph~h,xW !. ~97!
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We can also use the slow roll approximation to evaluate
rivatives of the scalar potential,

kV,w~w0!us.r .→6HA2Ḣ, V,ww~w0!us.r .→23Ḣ.
~98!

The source terms finally contributed by vertex no. 9 in t
slow roll and long wavelength approximations are

DFno. 9u l .w.1s.r .→23kH2A2Ḣ

H2
azph

2 , ~99!

DEno. 9
00 u l .w.1s.r .→1

3

4
kH2azph

2 , ~100!

DEno. 9
kk u l .w.1s.r .→2

9

4
kH2azph

2 . ~101!

Summing the contributions from all vertices of Einstein sc
lar @4# under the same set of approximations gives the
lowing quadratic source terms:

DFu l .w.1s.r .→3kH2A2Ḣ

H2
azph

2 , ~102!

DE00u l .w.1s.r .→2
9

4
kH2azph

2 , ~103!

DEkku l .w.1s.r .→1
27

4
kH2azph

2 . ~104!

The next step is to apply the various retarded Green’s fu
tions in the long wavelength and slow roll approximation
As an example, we substitute Eq.~104! into Eq. ~89! to ob-
tain the leading quadratic correction tohi j ,

hi j
(2)u l .w.1s.r .→29kd i j aE

h0

h
dh8a22E

h0

h8
dh9a2H2zph

2 ,

~105!

wherezph is given by Eq.~96!. Taking the momentum inte
grals outside, we are left with the following integrations ov
time:

a~ t !E
t0

t

dt8a23~ t8!E
t0

t8
dt9a3~ t9!

Ḣ2

H2
5

1

6
a~ t !S 2Ḣ

H2 D 1•••.

~106!

The result is therefore

hi j u l .w.1s.r .→d i j S H2

2Ḣ
D H 2

3

2

kzph
2

a
1O~zph

3 !J . ~107!

The analogous reductions forf andz are straightforward but
rather tedious, owing to their complicated mixing. The fin
answer is
5-9
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f u l .w.1s.r .→AH2

Ḣ
H zph1

5

4

kzph
2

a
1O~zph

3 !J , ~108!

zu l .w.1s.r .→H zph1
7

2

kzph
2

a
1O~zph

3 !J . ~109!

We invert Eq.~29! to recoverf and cmn . It is useful to
multiply by k to absorb the dimensions, and to express
result in terms of the~dimensionless! Newtonian potential:

F~x![
kzph~x!

2a~h!
. ~110!

Note that, from Eqs.~110! and~96! we haveF}H22 ~since
Ḣ;const) so that its time derivative is down fromHF by a
slow roll parameter,

Ḟu l .w.1s.r .→2S 2Ḣ

H2 D HF. ~111!

With this terminology, the nonzero perturbed fields are

kfu l .w.1s.r .→A H2

2Ḣ
$2F15F21O~F3!%, ~112!

kc00u l .w.s.r .→2F114F21O~F3!, ~113!

kc i j u l .w.1s.r .→d i j H 2F26S H2

2Ḣ
D F21O~F3!J . ~114!

V. AN INVARIANT MEASURE OF EXPANSION

The purpose of this section is to compute correctio
through quadratic order to the operatorAinv we have pro-
posed@9# as an invariant measure of the rate of cosmolog
expansion. We first expand the scalarA[hc

21 in powers of
the pseudo-graviton field and then substitute Eqs.~113!,
~114! to express the result as a function of the unconstrai
initial value operators, to leading order in the slow roll a
long wavelength approximations. Full invariance is achiev
by evaluating theA(h,xW ) in a geometrically specified coor
dinate system.

A. The scalar observable

The pseudo-graviton expansion is most easily acco
plished by first expressinghc in terms of the conformally
rescaled metric,

g̃mn~h,xW ![a22~h!gmn~h,xW !5hmn1kcmn~h,xW !.
~115!

We write hc5a23Da, whereD and its expansion are
06351
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D[
1

A2g̃
]m~A2g̃g̃mn]n!2

1

6
R̃5]21kD11k2D21•••.

~116!

The first two operators in the expansion are

D152cmn]m]n1S 2c ,a
ma 1

1

2
c ,mD ]m2

1

6
~c ,rs

rs 2cr
,r!,

~117!

D25cmaca
n ]m]n1S ~cabca

m! ,b2
1

2
cab,mcab1

1

2
camc ,aD

3]m2
1

6
R̃2 . ~118!

The second order, conformally rescaled Ricci scalar is

R̃2[cab~cab g
,g 1c ,ab22c a,bg

g !1
3

4
cab,gcab,g

2
1

2
cab,gcgb,a2c ,b

ab ca,g
g 1c ,b

ab c ,a2
1

4
c ,ac ,a .

~119!

The next step is to factor]2 out of D:

D5]2S 11
1

]2
kD11

1

]2
k2D21O~k3!D . ~120!

Inverting D is now straightforward:

1

D 5
1

]2
2

1

]2
kD1

1

]2
1

1

]2
kD1

1

]2
kD 1

1

]2
2

1

]2
k2D 2

1

]2

1O~k3!. ~121!

All this implies the following expansion for the scalar ob
servable:

A@g#5a21
1

Da35A01kA11k2A21O~k3!, ~122!

where the first two corrections are

A1[2a21
1

]2
D 1

1

]2
a3, ~123!

A2[2a21
1

]2
D2

1

]2
a31a21

1

]2
D1

1

]2
D 1

1

]2
a3. ~124!
5-10
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The zeroth-order termA 0[a21]22a3 has a very simple ex
pression in terms of the background expansion rate,

A052a21E
h0

h
dh8E

h0

h8
dh9a3~h9!5

21

2H2 H 11OS 2Ḣ

H2 D J .

~125!

Our proposal is to define the general expansion rate, a
operator, to bear the same relation to the full scalarA @9#.
Astronomers do the same thing when they infer the Hub
constant under the assumption that the relation between
minosity distance and redshift is the same in the actual
verse as for a perfectly homogeneous and isotropic one.

The higher order contributionsA1 andA2 are nominally
inhomogeneous but lose their dependence upon space i
long wavelength approximation. The consequent suppres
of spatial derivatives and anisotropic components of
pseudo-graviton field reducesD1 to the following simple
form:

D1u l .w.→2c00]0
22

1

2
~c008 1c i i8 !]02

1

6
c i i8 . ~126!

Further simplifications result from the fact that~co-moving!
time derivatives ofF are weaker thanHF by a slow roll
parameter as per Eq.~111!. Only the quadratic term ofc i j
possesses the enhancement necessary to survive differ
tion at leading order,

kc008 u l .w.1s.r .→Ha$01O~F3!%, ~127!

kc i j8 u l .w.1s.r .→Ha$212F21O~F3!%d i j . ~128!

Of course subsequent conformal time derivatives are do
nated by the factor~s! of a,

kc009 u l .w.1s.r .→H2a2$01O~F3!%, ~129!

kc i j9 u l .w.1s.r .→H2a2$212F21O~F3!%d i j . ~130!

The result is that only a few terms inD1 and D2 can con-
tribute at leading order,

kD1u l .w.1s.r .→22F]0
21F2$214]0

2118Ha]016H2a2t%,
~131!

kD2u l .w.1s.r .→24F2]0
21O~F3!. ~132!

BecauseḞ!HF we can ignore its time dependence wi
respect to factors ofa(h). This makes acting the variou
factors of]22 quite simple in the slow roll approximation,

A1u l .w.1s.r .→
1

a

1

]2
a3
„22F22F21O~F3!…, ~133!

→ 21

2H2 $22F22F21O~F3!%. ~134!
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Since the two terms inA2 cancel to leading order, the resu
is

A~x!u l .w.1s.r .→
21

2H2$122F22F21O~F3!%. ~135!

B. The invariant observable

Even a scalar changes under coordinate transforma
To achieve full invariance we measureA@g#(x) at a point
Ym@w,g#(x) which is invariantly specified in terms of th
operatorsw andgmn . Since there is no spatial dependence
the long wavelength approximation we actually need only
the 3-surface,Y05t. Following the suggestion of Unruh, w
chose the functionalt@w#(h,xW ) to make the full scalar agre
with its background value at conformal timeh,

w„t~h,xW !,xW…5w0~h!. ~136!

The weak field expansion oft@w# is @9#

t@w#~h,xW !5h2
f~h,xW !

w08~h!
1

f~h,xW !f8~h,xW !

w08
2~h!

2
w09~h!

2w08~h!
S f~h,xW !

w08~h!
D 2

1O~f3!. ~137!

Substitution of our result~112! for the perturbed scalar give
the final expansion to leading order in the slow roll and lo
wavelength approximations,

tu l .w.1s.r→h1S H2

2Ḣ
D F

Ha
2F S H2

2Ḣ
D 2

27S H2

2Ḣ
D G

3
F2

2Ha
1O~F3!. ~138!

Our invariant expansion operator is justA evaluated at this
point,

Ainv@w,g#~h,xW ![A@g#„t@w#~h,xW !,xW…. ~139!

Note that there is no obstacle in perturbation theory to eva
ating an operator at a pointt@w#[h1dt@w# which is itself
an operator,

Ainv[A1A8dt1
1

2
A9dt21•••. ~140!

The derivatives are straightforward to evaluate with E
~135! and ~111!,

A8u l .w.1s.r .→
2Ha

2H2 S 2Ḣ

H2 D $228F1O~F2!% ~141!
5-11
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A9u l .w.1s.r .→
2H2a2

2H2 H 2S 2Ḣ

H2 D 16S 2Ḣ

H2 D 2

1O~F!J .

~142!

However, putting everything together results in compl
cancellation of all corrections to the order we are workin

Ainv5
21

2H2 $11O~F3!%. ~143!

Although this result surprised us, it could have been ant
pated by noting that, in the slow roll approximation, o
scalar degenerates to a local algebraic function of the R
scalar@9#,

A@g#~x!us.r .→
26

R~x!
. ~144!

Einstein’s equations completely determine the Ricci sca
as an operator, from the local matter stress tensor,

R~x!528pGgmnTmn , ~145!

516pGH V~w!2
1

2
gmn]mw]nwJ . ~146!

We can always choose to work in a coordinate system
which the full scalar agrees with its background value. Wh
this is done one sees that back reaction can only e
through the kinetic term. Since it is certainly from kinet
effects that the pure gravitational result derives@12#, there
may well be a significant back reaction from the scalar
netic term as well. Unfortunately, one can never tell whet
there is or not when the kinetic term is systematically n
glected, which is just what happens when the slow roll a
long wavelength approximations are combined. It follo
that our approximations must produce a null result—whet
or not there really is significant back reaction—not just
quadratic order in the initial value operators, but at all high
orders as well.

VI. STOCHASTIC SAMPLES

The last section has demonstrated that scalar-driven in
tion can show no secular back reaction to leading order in
long wavelength and slow roll approximations. Since t
holds as a strong operator equation for our expansion obs
able,Ainv , there is no need to choose between expecta
values and stochastic samples. However, we believe the
is still quite strong for secular back reaction when the lo
wavelength approximation is relaxed, although it would ha
to come from the coherent superposition of interactions
higher than quadratic order in the initial value operators. T
purpose of this section is to develop a theoretical framew
for studying such an effect through stochastic samples
recommended by Linde and others@7#. We begin by motivat-
ing and defining the basic formalism, then we treat the c
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cial question of the degree of stochastic fluctuation expec
in functionals of the fields such asAinv@w,g#.

A. Motivation and basic formalism

The simplest way to motivate stochastic effects is by c
sidering the linearly independent mode functions of the
frared regime,Q1,I(h,k) and Q2,I(h,k), which were de-
scribed in Sec. III B. Thefull linearized field operator mus
involve both of these mode functions in order to avoid co
muting with its conjugate momentum. However, after ho
zon crossing (k5Ha) one of the mode functions become
vastly larger than the other. This is the phenomenon of
peradiabatic amplification and it corresponds to the sim
physical picture of particle production through infrared v
tual quanta becoming trapped in the inflationary Hub
flow. If one retains just the larger mode function then t
linearized operator which results is effectively classical
that it commutes with its time derivative. Although the res
is still probabilistic, one can simultaneously measure
value of such an operator and its time derivative, and sub
quent measurements will show only the classical evolut
expected from these initial values. This is the reflection,
the Heisenberg picture, of a ‘‘squeezed state.’’

The expectation value of a functional of squeezed ope
tors can fail to provide a good estimate of what an act
observer sees. For example, the expectation value of the
rent stress tensor is presumably homogeneous and isotr
We see nothing of the sort because we exist at the end
long period of essentially classical evolution from one p
ticular choice, random but definite, of superadiabatically a
plified density perturbations.

A better way of treating squeezed operators is to sam
the result of making random but definite choices for the
from the relevant quantum mechanical wave function, a
then evolving classically. It is crucial to understand that ta
ing such a stochastic sample is perfectly consistent with
use of quantum field theory to express the Heisenberg op
tors as functionals of the unconstrained initial value ope
tors. Nor is there any change in how the observa
Ainv(h,xW ) depends upon the Heisenberg operators.~Of
course we do want to avoid making the long wavelen
approximation!! What changes is that the scalar creation a
annihilation operators—Y†(kW ) andY(kW )—are random num-
bers up tok5H(h)a(h), and zero beyond.

To avoid problems with continuum normalization we ta
the 3-manifold to beT3 with identical co-moving coordinate
radii of H0

21[H21(h0). ~Because the conformal coordina
volume is so restricted during inflation the integral appro
mation is excellent for mode sums and there is no confl
with any of our previous, continuously normalized, result!
On this manifold the co-moving wave vectors become d
crete,

kW52pH0nW . ~147!

Phase space integrals are converted into mode sums in
usual way,
5-12
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E d3k

~2p!3 f ~kW !→H0
3(

nW
f ~2pH0nW !. ~148!

And the Dirac delta function goes into a Kronecker one,

~2p!3d3~kW2kW8!→H0
23dnW ,nW 8 . ~149!

Because the initial scalar state is free, the associated cre
and annihilation operators are stochastically realized as in
pendent, complex, Gaussian random variables with stan
deviationH0

23. It is convenient to scale out the dimension

AnW[H0
3/2Y~2pH0nW !, AnW

* [H0
3/2Y†~2pH0nW !, ~150!

so that the probability density for each modenW has a simple
expression,

r~AnW ,AnW
* !5

1

2p
e2AnWA

nW
* . ~151!

Since the modes are independent, the joint probability dis
bution is just the product of Eq.~151! over the relevant range
of nW .

B. Functionals of stochastic variables

Our observableAinv(h,xW ) depends in a complicated wa
upon the scalar and metric fields, which are themselves fu
tionals of the stochastic variablesAnW andAnW

* . The nature of
this dependence determines the crucial issues of wheth
not Ainv(h,xW ) is well represented by its expectation val
and whether or not a definite sign can be inferred for corr
tions to the cosmological expansion rate. Of course we
not yet have a replacement for the long wavelength appr
mation which shows secular back reaction. However, we
here develop a technique for separating nonlinear functio
of the stochastic variables into a part whose percentage
tuation becomes negligible for a long period of inflation, pl
another part whose fluctuation is not negligible but wh
has a definite sign.

Recall from probability theory that a functionalf
5F@A,A* # of random numbers is itself a random numb
Its probability distribution function descends from that of t
AnW andAnW

* by Fourier transformation,

r~ f !5E
2`

` dk

2p
eik f^e2 ikF[A,A* ]&, ~152!

5E
2`

` dk

2p
eik fS )

nW
E dAnWdAnW

*

2p
e2AnWA

nW
* D

3e2 ikF[A,A* ] . ~153!

As an example, consider the Newtonian potential~110!,
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F~h,xW !5
kA2H0Ḣ~h!

4p (
nW

1

n
$QC~h,2pH0n!

3ei2pH0nW •xWAnW1c.c.%. ~154!

The various integrations are trivial Gaussians, as they wo
be for any linear variable. The result is thatF follows a
Gaussian distribution with mean zero,

r~F!5
1

A2ps2
e2F2/2s2

, ~155!

and a spatially constant variance equal to

s2~h!5
2k2H0Ḣ

8p2 (
nW

1

n2
iQC~h,2pH0n!i2. ~156!

Making the slow roll and long wavelength approximatio
we see that the variance grows as the logarithm of the s
factor,

s2~h!u l .w.1s.r .→
k2

32p3 S 2Ḣ

H2 D 2

(
nW

H
*
2

n3 S H
*
2

2Ḣ*
D , ~157!

→ k2

8p2S 2Ḣ

H2 D 2E
1

adn

n S H
*
4

2Ḣ*
D , ~158!

→ k2H2

8p2 S 2Ḣ

H2 D ln@a~h!#. ~159!

The simplest sort of nonlinear functional is just the square
a linear one. Since linear functionals ofAnW and AnW

* are al-
ways Gaussian, their squares always follow a chi-squa
distribution whose mean is the variance of the Gaussian
whose variance is twice the square of this. For example,
variableF2(h,xW ) follows a chi-squared with means2 and
standard deviationA2s2. Although the fluctuations ofF2

are of the same order as its mean, the sign is definite. N
also that, for a long period of inflation, only an incredib
fortuitous sequence of choices for the stochastic variablesAnW

andAnW
* would result inF2 having a value significantly be

low some constant times our estimate~159!. So that if some
reliable approximation scheme should wind up giving t
effective expansion rate as

Heff~h,xW !5H~h!$11F~h,xW !2F2~h,xW !%, ~160!

then the conclusion would be that there is only a vanishin
small probability to observe anything except a secular slo
ing of inflation. This is an example of how stochast
samples might show the same qualitative results as expe
tion values while breaking exact homogeneity and isotro
and altering the numerical coefficient of the order of mag
tude estimate.
5-13
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It might be thought that quantitative results are not obta
able for more complicated nonlinear functionals. That use
statements can still be made derives from the following fa
any secular back reaction effect must result from the coh
ent superposition of contributions from an enormously lar
number of modes. This allows us to exploit the same sorts
simplifications that underlie statistical mechanics.

To illustrate the important considerations without beco
ing too mired in technical detail let us consider quadra
superpositions of the form

s5S@A,A* #[
1

2 (
mW ,nW

SmW nW~AmW 1AmW
* !~AnW1AnW

* !. ~161!

The characteristic function is

^e2 ikS[A,A* ]&5
1

Adet~ I 12ikS!
, ~162!

whereSstands for the symmetric matrixSmW nW andI is the unit
matrix of the same rank. The various moments ofs follow by
differentiation,

^s&5Tr@S#, ^~s2Tr@S# !2&52Tr@S2#, ~163!

^~s2Tr@S# !3&54Tr@S3#, . . . . ~164!

How much fluctuation one should expect is governed by
relation between traces of powers of the matrixS. We distin-
guish two cases:

~1!‘‘Local’’ superpositions which are characterized b
Tr@Sn#5(Tr@S#)n for n>2; and

~2!‘‘Nonlocal’’ superpositions which obey Tr@S2#
!(Tr@S#)2 and Tr@Sn#!Tr@S2#(Tr@S#)n22 for n>3.

The local case is just the square of a linear superposi
and has already been considered. To recapitulate, it has
nificant fluctuation but definite sign. The distribution for
nonlocal superposition can be approximated by dropp
higher traces ofS in the exponent of Eq.~153!,

r~s!5E
2`

` dk

2p
eiks2(1/2)Tr[ln(I 12ikS)] , ~165!

'E
2`

` dk

2p
eiks2 ikTr[S] 2k2Tr[S2] , ~166!

5
1

A4pTr@S2#
expF2

~s2Tr@S# !2

4Tr@S2#
G . ~167!

This is just a Gaussian centered on Tr@S# with variance
2Tr@S2#. Since its standard deviation is insignificant com
pared with the mean, stochastic effects are not importan

Recall that invariant measures of the cosmological exp
sion rate derive their dependence uponAnW andAnW

* from two
expansions. In the first the observable is expanded in pow
of the perturbed fields, then one substitutes the expansion
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the perturbed fields in powers of the stochastic initial va
data. Both of these expansions really involve averages o
the past light cone of the observation point. However,
pending upon the observable and the approximation te
niques used to solve for the fields, the terrific expansion
spacetime during inflation may weight the averages hea
towards the most recent times. In that case one gets a l
superposition and stochastic effects are important but sim
to include. An improved observable can also be defined
that the entire past light cone participates effectively@9#, and
it seems likely that improving on the long wavelength a
proximation will have this result anyway. In this case o
tends to get a nonlocal superposition because modes
different nW interfere destructively. The stochastic fluctuatio
of back reaction would then be negligible and one may
well resort to expectation values.

There is also the possibility of mixing of local and no
local, in which case the best strategy is to separate the
effects and treat them as above. One might anticipate
analytic considerations would render the local part obvio
but even if not, its dyadic form makes the decomposition
simple linear algebra problem. For example, suppose tha
late times we have

Tr@Sn#→~aTr@S# !n, ~168!

for some positive constanta,1. The putative decomposi
tion would be

SmW nW5umW unW1DSmW nW , ~169!

where the various traces obey

u•u→aTr@S#, Tr@DS#→~12a!Tr@S#,

Tr@DSn#!~Tr@S# !n. ~170!

Simply pick any mode functionvnW with nonzero overlap—it
need not be close tounW—then contract intoS2 and divide by
the trace ofS,

~S2v !nW

Tr@S#
5au•vunW1

utDSv
Tr@S#

unW1
u•v

Tr@S#
~DSu!nW1

~DS2v !nW

Tr@S#
.

~171!

Only the first term can matter at late times so we recoverunW

by normalizing and then multiplying by the square root
aTr@S#.

VII. SUMMARY AND DISCUSSION

We have calculated the gravitational back reaction
scalar-driven inflation using an invariant observable, to q
dratic order in the initial creation and annihilation operato
and to leading order in the long wavelength and slow r
approximations. No effect was found, contrary to previo
work by ourselves and others which indicated a secular sl
ing of the expansion rate at this order@2–4#. It is significant
that the inclusion of stochastic effects played no role in t
5-14
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change. Under our approximations, secular back reac
would enter throughF(x), the accumulated Newtonian po
tential from modes which have redshifted into the infrar
regime. However, all terms of orderF and F2 drop out of
the Heisenberg operatorAinv , before one has to choose b
tween the alternatives of expectation values or stocha
samples.

Another improvement in our analysis which had nothi
to do with changing the result was the use of a scala
measure the expansion rate. The entire difference from
vious work is in fact attributable to defining the coordina
system so as to make the quantum scalar vanish on sur
of simultaneity. When these coordinates are used even
gauge fixed expectation value of the metric fails to sh
significant back reaction at one loop.

The null result was anticipated by Unruh who noticed th
scalar mode solutions become pure gauge in the long w
length limit @6#. This does not preclude back reaction but
does rule out dependence uponF which fails to vanish in the
long wavelength limit. For example, spatial and certain te
poral derivatives ofF(x) can contribute. In fact there ar
such contributions but they are negligible at quadratic ord

Although we have obtained a discouraging result ab
the possibility of a simple one-loop effect, our analysis do
not invalidate the idea of gravitational back reaction on
flation. It would be fairer to say that what we have learn
constrains the form any such effect can take. In particu
one should not take the long wavelength limit. It is high
significant, in this regard, that the purely gravitational effe
claimed at two loops@12# does not involve the long wave
length approximation in any way because the locally de
ter background is simple enough that the full propagator
be worked out. In fact the gravitational response to the in
tionary production of gravitons comes entirely from t
graviton kinetic energy and would vanish in the long wav
length limit.

The long wavelength approximation was also avoided
the effect claimed at three loops for massless, minima
coupledw4 theory in a locally de Sitter background@13#. In
a subsequent paper@14# we resolve the issue of coinciden
propagators in this model by a procedure of covariant nor
ordering. The resulting theory exhibits a secular back re
tion which slows inflation in a manner that is unaltered
either the use of an invariant operator to measure expan
or by the inclusion of stochastic effects.

Although there was no need to consider stochastic eff
in the present work, Sec. VI describes a formalism for
cluding them in higher order processes which may sh
secular back reaction. This formulation differs from the sta
dard one@8# in three ways. First, the focus is perturbati
and local whereas previous previous treatments have b
concerned with nonperturbative effects on the global geo
etry. A second difference is that past treatments incorpora
stochastic degrees of freedom only as they experienced
peradiabatic amplification. Although this is doubtless an
cellent approximation for the sorts of global and nonpert
bative issues that were being studied, we cannot afford
ignore the non-conservation of stress-energy implicit in c
tinually injecting new degrees of freedom into the syste
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Therefore, the creation and annihilation operators for a
mode we wish to treat stochastically are considered to
nonzero random numbers even on the initial value surfa
The final difference is that we enforce all the perturbat
field equations of the Einstein-scalar system so that the v
ous modes are in gravitational interaction even on the ini
value surface.

An amusing consequence of all this is that stochastic
fects provide a nonperturbative proof that back reaction m
eventually become significant if nothing else stops inflat
first. For it will be noted that, in our version, including sto
chastic effects at some timeh corresponds to a universe th
began inflation ath0 with a random collection of mode
excited up to co-moving wave numberk5H(h)a(h). The
hypothesis that inflationneverslows amounts to the assump
tion that inflation can begin with the inital state populated
arbitrarily high wave number. Of course this is nonsen
Even if one subtracts off the spatially averaged ene
density—as should probably be done—what must actu
happen for arbitrarily high excitations is that random inh
mogeneities produce a gravitational collapse.

Finally, we comment on the degree to which a rando
stochastic sample should be expected to differ from its me
Because secular back reaction must manifest itself thro
the coherent superposition of an enormously large numbe
independent random variables, one can sometimes em
the methods of statistical mechanics. The exception is w
back reaction involves an ordinary function of the local s
chastic fields, for exampleF2(x). This can happen if the
terrific inflationary expansion causes the average over
past light cone to be weighted so that only interactions j
before the observation contribute effectively. In that case s
chastic fluctuation is not negligible, but the sign of the effe
is definite. In the other, ‘‘nonlocal’’ case, stochastic fluctu
tion is negligible compared with the mean effect and o
may as well use expectation values. Our suspicion is
improving upon the long wavelength approximation and i
proving on the expansion observable will result in secu
back reaction of the nonlocal sort. However, if there sho
be local mixing, it is straightforward to untangle.
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APPENDIX

In this appendix we derive the infrared limits of the ge
eralized Green’s functions of Sec. III D. First notice th
from Eq. ~30! and the background identities we can deri
the following useful ‘‘commutation’’ relations:
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]0D̂B2D̂B]05
k2

2
w08w09 , ~A1!

w08D̂B2D̂Cw0852w08]0

w09

w08
,

w08D̂C2D̂Bw0852
w09

w08
]0w08 . ~A2!

1

w08
D̂B2D̂C

1

w08
522

w09

w08
2
]0 ,

1

w08
D̂C2D̂B

1

w08
522]0

w09

w08
2

. ~A3!

Using Eqs.~30! and ~31! for D̂B and D̂C we have also the
relations

D̂B

1

w08
2
]0w085]0

1

w08
D̂C22

w09

w08
2
¹2, ~A4!

D̂C

1

w08
]05w08]0

1

w08
2
D̂B12

w09

w08
2
¹2. ~A5!

Dropping spatial derivatives and inverting implies the fo
lowing ‘‘inverse commutation’’ relations:

1

w08
]0w08D C

21w085w08D B
21]0 ,

1

w08
]0D B

21w085D C
21w08]0

1

w08
,

~A6!

Substituting Eq.~A6! into the right-hand side of Eq.~76! we
see that the 1/¹2 term cancels because

]0D B
21]02

k2

4
w08D C

21w08

5w08D C
21w08]0

1

w08
2
]02

k2

4
w08D C

21w08 , ~A7!

5w08D C
21F2DC1

k2

4
w08

2G 1

w08
2

k2

4
w08D C

21w08

521. ~A8!

Similar manipulations reveal that the 1/¹2 terms cancel as
well in the expansions~73!–~75!.
av

06351
The next order terms can be found by expandingD̂I
21 in

powers of the Laplacian. Doing this in expression~76! for
Gzz(x;x8) yields

Gzz~x;x8!5F2]0D B
21D B

21]01
k2

4
w08D C

21D C
21w08

1O~¹2!Gd4~x2x8!. ~A9!

The term of order¹0 can be simplified with the commutatio
relations~A1!–~A3!,

2]0D B
21D B

21]01
k2

4
w08D C

21D C
21w08

52w08D C
21w08]0

1

w08
2
D B

21]0

1
k2

4
w08D C

21 1

w08

1

]0
w08

2D B
21]0 , ~A10!

52w08D C
21w08]0

1

w08
2
D B

21]01w08D C
21 1

w08

1

]0

3~DB1]0
2!D B

21]0 , ~A11!

52w08D C
21S 1

w08
]022

w09

w08
2DD B

21]01w08D C
21 1

w08

1w08D C
21 1

w08
]0D B

21]0 , ~A12!

5w08D C
21 1

w08
12w08D C

21
w09

w08
2
D B

21]0 . ~A13!

The last line, acting of a delta function, gives the long wav
length limit of thezz retarded propagator, Eq.~93!. Similar
reductions pertain for the other Green’s functions of t
( f ,z) sector, Eqs.~90!–~92!.
ys.
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