PHYSICAL REVIEW D, VOLUME 65, 063515

No one loop back reaction in chaotic inflation
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We use an invariant operator to study the quantum gravitational back reaction to scalar perturbations during
chaotic inflation. Our operator is the inverse covariant d’Alembertian expressed as a function of the local value
of the inflaton. In the slow roll approximation this observable givel/(2H?) for an arbitrary homogeneous
and isotropic geometry; hence it is a good candidate for measuring the local expansion rate even when the
spacetime is not perfectly homogeneous and isotropic. Corrections quadratic in the scalar creation and anni-
hilation operators of the initial value surface are included using the slow-roll and long wavelength approxi-
mations. The result is that all terms which could produce a significant secular back reaction cancel from the
operator, before one even takes its expectation value. Although it is not relevant to the current study, we also
develop a formalism for using stochastic samples to study back reaction.
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[. INTRODUCTION ables. The concern is that certain variations in the gauge
fixing condition could change the expectation value of the

Cosmological perturbations generated during an inflationmetric in ways which cannot be subsumed into a coordinate
ary era are almost certainly responsible for the densityransformation. Therefore, forming the expectation value of
ripples out of which the presently observed stars, galaxiefle metric into coordinate invariant quantities would not
and clusters have grown. The basic inflationary mechanisrRUrge these quantities of gauge dependence. Back-reaction
that generated the Seeds for ga|axy formation and growth &hould then be studied with an Operator which is itself an
large-scale structure is quantum mechanical particle produdvariant, before taking the expectation value. .
tion powered by the accelerated expansion of the Universe. The second objectiof¥] states that using expectation val-
Now that the latest balloon experimefifd have all but vali-  Ues invites a Schabnger cat paradox. This is because the
dated this picture, we are left with the duty of testing furtherProcess of superadiabatic amplification leaves superhorizon
the consequences of particle production in the early Unimodes in highly squeezed states whose behavior is essen-
verse. An outstanding question is whether quantum pair crelially classical. That is, the various portions of the wave
ation has any effect on the background in which it takesunction no longer interfere with one another. Quantum me-
place. chanics determines the random choice of where we are in the

The simplest system in which the problem of back reacwave function, but the evolution of each portion is approxi-
tion can be studied is scalar-driven inflation. Since dynamimately classical. Under these conditions, averaging over the
cal scalars mix with the gravitational potentials they causefull wave function does not give a good representation of the
gravitational back reaction can in principle occur at one loogPhysics. In the context of the Scluiager cat paradox Linde
in scalar-driven inflation. Indeed, previous results by theobserves: “When you open the box a week later what you
present authors and collaboratd®-5] suggested that the find is either a very hungry cat or else a smelly piece of meat,
one loop back reaction of scalar perturbations could slowot the average of the two.” He and his colleagues would
down the expansion rate of the Universe in the case of therefer that back reaction be studied stochastiddly where
so-called “chaotic” inflationary models. each mode is assigned a randdimumber value as it expe-

In [2,3], spatial averaging and a fixed gauge were emfiences horizon crossing and evolves classically thereafter.
ployed in order to compute the effective energy-momentum [N the present study of the one-loop back reaction effect
tensor for cosmological perturbations. The present authoré€ have tried to address these objections. To avoid potential
studied the same physical proble,5], this time taking problems from using the gauge fixed metric we have instead
expectation values of the metric and using those expectatiofPmputed the functional inverse of the covariant d'Alember-
values to form invariants, and came to conclusions identicalian (see alsq9] for a more detailed discussipn
to those of[2,3]. Nevertheless, these works have been criti-
cized in two grounds. 1 1

The first objection[6] concerns the use of expectation DCE\/:%( V-99""a,)— R (1)
values of the gauge-fixed metric to build physical observ- 9

This operatorwllzDc’l[g](t,i)—averages over the past
*Email address: abramo@theorie.physik.uni-muenchen.de light cone, very much as astronomers do when compiling a
"Email address: woodard@phys.ufl.edu Hubble diagram. In the slow roll approximation it gives
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—1H 2 for an arbitrary homogeneous and isotropic universe (1) Those which are exact and valid for any potential
[9]. The scalat4 is therefore a reasonable candidate for meaV(¢);

suring the local expansion rate when the universe is not pre- (2) Those which are valid in the slow roll approximation
cisely homogeneous and isotropic. By measuridgon  but still for any potential; and

3-surfaces upon which the dynamical scalar is constant we (3) Those which are valid for the slow roll approximation
promote it into a full invariant A, . with the potentiaV(¢) = 3m?¢?.

At one loop, and to leading order in the standard infrared We shall develop them in this order, identifying the point
expansion, corrections to the operatbdepend upon a vari- at which each further specialization and approximation is
able we calld®(x). This is the accumulated Newtonian po- made.
tential from infrared modes®(x) grows with time, since Among the exact identities is the relation between co-
more and more modes redshift into the infrared regime agoving and conformal coordinates:
inflation progresses, so dependence upon any positive power L .
of ®(x) would give a secular effect. However, when full dsi=—dt?+a’dx-dx=a?(y){—d7?+dx-dx}, (3)
invariance is enforced by evaluatingyon 3-surfaces of con-
stant scalar, all terms involving only the undifferentiatedwhere conformal timey is defined in the usual way:
Newtonian potential cancel. This result was anticipated by
Unruh [6] who noted that the linearized mode functions be- dt=a(n)d7. (4)
come pure gauge in the long wavelength limit. The fact thai . Y . . . .
more :End rr?ore modes redsghift to theginfrared regime is no he_ Hgbble constant” is the Iogarlthm|c. co-moving time
pure gauge, but Unruh’s observation means that physical egerlvatlve of the background scale factor:
fects must involve derivatives @b(x). Such terms do con- . ,
tribute, but they are small. We conclude that there is no sig- H=—=—, (5)
nificant deviation from the background expansion rate at this 2
order, in marked contrast with the results[8f4].

Section Il describes the perturbative background in whichwhere a dot denotes differentiation with respect(back-
we work. It also illustrates the slow roll expansion throughground co-moving time and a prime stands for differentia-
which one can perform most operations of temporal calculugion with respect to conformal time.
in an arbitrary inflationary background. Section Il describes Two of Einstein's equations are nontrivial in this back-
the formalism by which the field equations are solved perturground:
batively. It concludes with the long wavelength approxima-

Q| ©
$D|$JJ

tion which effectively removes spatial dependence and pro- , 1 /1.,

duces a one dimensional problem that can be treated in the 8H™=2« E‘P0+V("D°)}' ©)
slow roll expansion. Section IV applies the technology to

determine the various field operators to quadratic order in the _ 1.

creation and annihilation operators on the initial value sur- —2H-3H?= EKZ §¢3—V(<Po)}, (7)

face. The operataod is evaluated to the same order in Sec. V.
The distinction between expectation values and stochastighere x2=16+G is the loop counting parameter of pertur-

samples is irrelevant, at this order, in view of the cancellatiorn, ative quantum gravity. By adding the two Einstein equation

of all potentially significant one loop corrections t0 H#&,  one can solve for the time derivative of the scalar, which we
operator. However, the issue should re-emerge at highefssyme to be negative:

loops where secular back reaction can derive from the coher-

ent superposition of interactions within the observer’s past . 2 i

light cone. We have therefore developed a formalism for the ¢o=— V—H. 8
perturbative study of stochastic effects, which is presented in

Section VI. Our results are summarized and discussed i8,ccessful models of inflation require the following two con-

Section VII. ditions which define thelow roll approximation
Il. THE PERTURBATIVE BACKGROUND |EP0|<H|<-P0| 9)
The system under study is that of general relativity with a _
general, minimally coupled scalar: ©3<V( o). (10
1 — 1 — — It follows that there are two small parameters. Although
= N — — 72 2 P _ .
£ 167G RV—9 2 Tu® vl g-Vie)v=g. these are traditionally expressed as ratios of the potential and

(2 its derivatives the more useful quantities for our work are

. . . . Latios of the Hubble constant and its derivatives:
This section concerns the homogeneous and isotropic back-

groundsgg and ¢q about which perturbation theory will be CH [
formulated. Three classes of identities turn out to be interest- <1, ——<1. (12)
ing for our purposes: H? —HH
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For models of interest to us the rightmost of these parametesshere AE[q](t) contains terms of ordeg? and higher.
is negligible with respect to the leftmost one. The second stage of perturbation theory consists of solv-
The slow roll approximation gives useful expansions foring for the perturbed quantities as a series in powers of the
simple calculus operations. For example, ratios of derivativesinconstrained initial value operators. This is done by first
of the field are solving the linearized equations so as to make the uncon-
strained variables agree with their full initial value data on

@3 H the initial value surface. The linearized solution in our par-
—=aH| 1+5 —|, 12 ticle example would be

®0 HH

‘PW H i (t)= R [i{aefiwt_'_a‘reiwt} (19)
Z=2a?H 1+ —— -+ | (13 i Zme

%0 2H

where we have chosen to organize the initial value data into
Successive partial integration also defines useful slow rolfhe annihilation operatom= Jmw/2%(qo+iqy/w), and its

expanSionS: Conjugate_
One then “integrates” the full equations of motion using

dtH@af= iHa—l Bl 14 (a—1) j the retarded Green’s functions of the linearized theory. The
ar= B a B H2 P retarded Green'’s function of our particle example is
y o-t)
. Greftit’) = ———sinMo(t—-t")], (20)
1 Hett 1 HH @
j dtH*= - 1+ 2—2+ .
atl H atZ H . and the integrated equation of motion is

15

l t H ! i
IIl. EINSTEIN SCALAR DURING INFLATION a(0=ain(t) = Zfodt sifo(t=t)JAE[q)(t). (21)

The purpose of this section is to describe our procedurg, oo hative solution derives from successive substitu-

for_ expressing the metric and scalar_ f|eld_s atany spacetimg,, ¢ g integrated form for the perturbed quantities on
point as functionals of the unconstrained initial value opera,q righthand side of the equation

tors. These unconstrained initial value operators are the only
true degrees of freedom in any quantum theory and express- 1 [t

ing the dynamical variables as functionals of them is what it q(t)=q;,(t)— —J dt’siMw(t—t")JAE[qjn J(t")+ - - -.
means to solve the equations of motion in the Heisenberg @Jo

picture. As a simple example, if the dynamical variable is the (22)

positionq(t) of a one-dimensional particle then the equation;; \yi|| pe seen that the perturbative operator expansion which
of motion, results bears a close relation to the diagrammatic expansion
. ) B of quantum field theoretic amplitudes. The place of external
q(t) +q(t)=0, (16) lines is taken by the linearized solution; propagators are re-
placed by the corresponding retarded Green'’s functions; and,
except for some factors of there is no change at all in the
. vertices. Since no loop diagrams appear there is no need of
q(t) =g, cog wt) + %sin(wt). (17) Faddeev-Popov ghosts. Oyving to this corresponden_ce many
@ of the results we shall obtain for the operator expansion have
) . o already appeared in our previous perturbative expansion for
In this case the unconstrained initial value operatorsggre expectation valueB4]. We shall retain most of the conven-
andqg. tions used in that paper.

Obtaining such a solution perturbatively entails two ex- In a gauge theory such as gravity there is the additional
pansions. In the first stage one writes the dynamical variablesomplication of constraints which require some of the dy-
as background plus perturbations and expands the equationamical variables to be nonlinear functionals of the uncon-
of motion in powers of the perturbed quantities. To continuestrained initial value operators even on the initial value sur-
with our particle example, suppose the full equation of mo-face. We shall deal with this by working in a gauge with a
tion is E[x](t)=0 and that we are perturbing around somenonlocal field redefinition such that there are no nonlinear
classical solutiorX(t). If we define the perturbed position as corrections on the initial value surface. Of course the nonlin-
g(t) thenx(t)=X(t)+q(t). Since the background is a solu- ear corrections required by the initial value constraints return
tion the perturbative equations of motion necessarily begin avhen our field redefinition is inverted to give the perturbed

has as its “solution,”

linear order, metric and scalar fields.
) Another complication is that one cannot generally obtain
E[X+q](t)=q(t)+ w?q(t)+AE[q](1), (18 explicit solutions to the linearized field equations in the time
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dependent backgrounds of chaotic inflation. We therefore exthe various differential operators of the linearized equations
plain how to construct plane wave solutions as series expartan also be given a simple common form,

sions around the ultraviolet and infrared limiting cases. Since

the putative physical effect derives from modes which have 6/ ()

redshifted into the infrared regime it is the long wavelength D'EV2+D'EV2_‘9§+ 6,(7n)’ (30
approximation—coupled with the slow roll expansion—
which allows us to obtain quantitative results. wherel =A,B,C and
Finally, it should be noted that we are not actually includ-
ing all the physical degrees of freedom. Since gravitons can- B . 1 H?
not give a significant back reaction at one loop we have Oa=a, Og=a -, ‘9C=5 e (3D

suppressed the initial value operators associated with them,

leaving only scalar degrees of freedom. Of course we stiljaxing use of the gauge condition results in the following
work out how the full metric depends upon this scalar initial expansions foF and the various components BF” [4]:
value data. '

R (P///
A. Perturbative field equations F=—kegz+ DB+—? f+AF, (32
The field equations derived from the Einstein-scalar ac- o
tion (2) are most usefully expressed in the form A 1
L E%®=Dgz— kgt +7 Dah+AE®, (33
F=Z10e=V()=0, (23
. 1. '
0i _ 0
a K2 E I__EDBUi+AE I, (34)
EtV'=——| G*'——=T#"|=0. (29
K 2 1 1
ij= T LS ij
Here G*"=R*"—1g*"'R is the Einstein tensor an@i*” is E ZDA i 2 dih | +AED. (39
the scalar stress tensor whose covariant expression has the
form The mixing in Eq.(35) betweerh;; and its traceh=hy, can

be removed by taking linear combinations. The same is true
1 po for the mixing in Eq.(33) betweenh and the variables and
3979p9ds0+ V(@) . (29, However, the mixing between and f in Egs. (32), (33)

cannot be removed algebraically for a general background.
Our dynamical variables are the scalar perturbaifoand  To diagonalize this sector we must make a nonlocal field

T;LVE &M(PaV(P_ gMV

the conformally rescaled pseudo-gravitgp, : redefinition,
X)= )+ p(7,X 26 . Kk -
#Om= eon)t 4 29 X(nX)=2 (%) 5 @4 )T (7.3, (36)
9 7 X) =2 70t K 7.X)], (27 )
. . (%)’
wheren,,, is the(spacelikg Lorentz metric which is used to y(7,X)= f%( 7)Z(7,X)+ ¢4(7n) (,77 X)) ) (37
raise and lower pseudo-graviton indices. We define the quan- 2 ®o(7)

tities AF andAE*” to include all terms of second and higher o , , )

orders iny,, and¢. One can read off the quadratic terms of When all this is done the fully diagonalized equations take
AF andAE** from Tables 1 and 3 di4]: multiply the terms ~ the form

of Table 1 by 14 and then drop the “externaliy,,, ; vary the

Lerm}s of Table 3 with respect # or ¢, and then multiply Dax=—(AE®+AE™) — g‘P()AF' (39
y 1l/a.
The linearized equations are vastly simplified by impos- )
ing the gauge condition, . K, 00 . [ AF
Dcy:_§¢0(AE +AE )—QDO — | (39
1 a’ %o
F,LLEa l//;,y_ Elr/,,,u_zg w,u0+ 77,u0K¢(,)¢ :0! (28) R .
Dgv;=2AE", (40)

where a comma denotes ordinary differentiation and R -
=7*"y,,. It is also useful to 31 decompose and to Dahij=—2(AE" - 8;AEX). (41)

slightly rearrange the perturbed fields as follows: _ N
Finally, one must check that the gauge conditions can be

f=ap, z=ayqe, vi=agy, hij=al(yij— oo consistently imposed as constraints. Their B decomposi-
(29 tion in the diagonal variables takes the form
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a/h\’ 1 1 One of these is a “growing” mode, the other a “decaying”
Fo=—2xtvii—5| 7]+ Fi=—Z(@) =hyj;=5h;. mode. For example, the decayi@mode isQyoc(7). The
(42) growing C mode can be evaluated in the slow roll expansion:
. « . , _ _ H
Using the “commutator” identities, Qaoc( )= e 1+0 F) . 47)

- 1 1. .1 1 -
Dgado; =adoDas  Dagzded=3aDs, (43  We can find the inverse ab, on any functionf () by two
simple integrations:

and the gauge-fixed field equatio(®8)—(41), it is easy to

. n n
show that the constraints obey (D, M) (n)=— el(y,)f dn'— f dy"6,(n")f(5").
o Oi(n') o
A a’ . ok (48)
DgFo=2| AE*), +—AE"+ 5 p)AF |, (44) , _ , ,
oa 2 By integrating the full equationD,Q=k?Q, one obtains a
relation,
. ooa . B )
DAFi:_Z(AE#,IM+EAEOI)- (45) Qi i(7.K)=Qio) (M +K*(D; Qi N (7.k), =12,
(49

The quantities on the right-hand side of Eg#), (45 van-  whose iteration results in a convergent series expansion in
ish as a consequence of the background Bianchi identities ipowers ofk?. Note that constancy of the Wronskian and the
the usual way. Therefore, the constraints are preserved by thanishing of corrections a= 7, allows us to evaluate it
gauge fixed evolution equations and full equivalence beusing the zeroth order solutions,

tween the invariant field equations and those of the gauge-

fixed theory will hold if the initial value operators are con- Q2 (17,K)Q1(7,K) = Q1 (7,K)Qzi(7,k)=1.  (50)
strained to maké-, and its first conformal time derivative

vanish aty= 7. The useful basis elements for the ultraviolet limit £ 0) are

e '®7 and its conjugate. In this limit we know the absolute
) normalization from correspondence with flat space. Coupling
B. Unconstrained plane waves this with the harmonic oscillator Green’s function gives the

It is useful to consider plane wave solutions to the linearintegrated mode equation,

ized, gauge-fixed field equations before suppressing the - e

physical gravitons and using the constraints and the residua € n— — 07 —

gauge freedom to purge unphysical initial value data. That is,b'( 7.K)= ﬁ“L EJ',md”S'r[k( 7= )] 0,(7) Qi(77.k),

we seek the kernel of the differential operatdpg—k*= | (51)

— 35— k?+ 616, , where the functions, () were defined in

relation (31). Although explicit solutions cannot be obtained Whose iteration yields an asymptotic expansion in powers of

for an arbitrary inflationary background, the limiting cases of1/k. The Wronskian for the ultraviolet mode functions is

k=0 and#,=0 serve as the basis of series solutions for the , . - .

“infrared” (k?<#//6,) and “ultraviolet” (k?>6/16,) re- Qi (7. KQ (7.K)=Q* (7.K)Q(7.k)=—i.  (52)

imes. In the ultraviolet regime the particle interpretation is - S - -
g 9 P P ény qguantum operatot),(,X) which is annihilated byD,

the same as for flat space so its normalization is used t b g i £ ol ith
define that of the infrared regime. The final step of this supLan e Expressed as a superposition of plane waves wi

section is superposing plane waves multiplied by the creatioffPerater coefficients,

and annihilation operators of the linearized, gauge-fixed ac- R d3k L

tion. The commutator functions between such fields give the I (n,x)= j ﬁ{Q,(n,k)e'k'x\lf(k)

retarded Green'’s functions needed to integrate the perturba- (2m)

tive field equations. +QF( n,k)e—ik.xlpf(lz)}. (53)

The following two solutions comprise a useful basis set in

. . _ 1 R
the infrared limit &=0): If the conjugate momentum ig; (7,x) then the Wronskian

) 1 (52) implies that the coefficients have the algebra of canoni-
Quoi(m)=6,(n), Q)= 9|(71)f dn'— ) cally normalized creation and annihilation operators,
' ' - 0i(7) R . L.
(46) [W(k),¥T(k")]=6ij(2m)383(k—k"). (54)

By taking the commutator of two such fields we obtain a
Here our notation differs slightly frorf4] in that the signs o~ Seduence of lovely expressions for the retarded Green'’s func-

and of the second solutions E@6) have been inverted. tion of the differential operatoP, ,

063515-5



L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D65 063515

G (X ) =—10(A D[ (7,X), 4 (7" X")], (55) (fo(x;m sz<x;x'>)
o G,i(X;X")  GoAX;x")
——i0(A7y) | —— , [Fx),F(x)] [F(x),2(x)]
2 - _
f( ™ 6 ”([z(x»f(x')] iz ©?

x e 4 XQ (9, K)Q} (7', k)~ (n=7")}, (56)
Unfortunately it is the field(,x) andy(#,x) which are

3 ~ -
— Q(A,?)f d kseik'-m? annihilated byDg and D, so it is they that possess simple
(2m) plane wave expansions in terms of Beand C mode func-
Py / tions.
X{QuI(7:K)Qai (7", K) = (= 7"}, 57 At linearized order the gauge-fixed action reveals the con-

- -, . ] jugate momenta tbandz to be simply their conformal time
where Ap=n—n'" and Ax=x-x'. The crucial final derivatives. Definition$36) and(37) give the following non-
expression—in terms of the infrared mode functions—zero equal-time commutation algebra foandy,
follows from the fact that that it obeys the same differential
equation-;,(xix') = 9*(x—x")—and retarded boundary X)X (1)1 =12 ) =Ly R0y ()]

The preceding analysis suffices to define the retarded (63)

Green’s functions needed to integrate equati¢h® and ) ) . _ .
(41), If we still employ canonically normalized creation and anni-

hilation operators,
0i(m%) =l >Z)+2f"d ’deX'G xx) o L o
NG o B [X(K),X(K")]= (27m)26%(K—K') =[Y(K),Y(K")], (64)
X AE%(x"), (58

then the additional factor of V2 in (63) implies the follow-
ing plane wave expansions:

hij(7,X)= hlm(’] X)— 2( 8851 — 5Ij6k|)f dn’
7] X) J (2 )SK{QB ﬂak)elk Xx(k)

xf d3x' Ga(x;x")AEN(x"). (59
+Q (n.k)e K XT(K)}, (65)
It would be straightforward to give plane wave expansions
for v!" and h!". However, we will not bother since these R L
linearized fields vanish when physical graviton degrees of y(7,X)= f (z—ﬂ;k{Qc(n,k)e'k'XY(k)
freedom are suppressed and the various constraints and re-
sidual gauge conditions are imposed. _,_Q’E(n,k)efikxyT(E)}. (66)

The same general technology can be applied to integrate

the more complicatedf(z) system, ) ) )
Since the transformation betweef, ) and (,y) involves

conformal time derivatives, its inverse cannot be local in
f) ( AF ) time for the off shell fields. However, for the on-shell solu-
= (60)

n

~ [ "
D+ — —Keg

%0 = 00 . tions we can use the linearized equations to obtain the fol-
" A z AE™+AE" lowing expressions:
—K®g Dg
The desired retarded Green'’s functions, 1 ®0
f=gz| — €00X+y =Y (67)
\% 2 oL
" - 0
- ®o ” , ,
Dgt— —KPo | [Ge(X;X")  Gya(X;X )) )
®o , L, 1 K
A sz(X;X ) GZZ(X,X ) Zzﬁ x’—§¢6y}, (68)
- K(PODB L
= &% (x—x )( 0 (62) It is simplest to exploit these relations in evaluating the vari-
o 1)’ ous commutators of thef (z) retarded Greens functions. One
then replaces products of the mode functions withBhend
also follow from commutators of the linearized fields, C-type Green'’s functions. The answer is
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1 K2
Gee(x;x")= @{ - Z@é(n)cpé(n')GB(x;X’)

————3095®0( M @o( 7' )Ge(X;X)
eo(meo(n')

+54(x—x’)}, (69)

K
GrAxx") = ﬁ[ ®0(17)3Gg(X;X")

eo(n')
®o(7m)

+ doeol n)Gc(x;X’)] , (70

K
G X x )=2—V2[qoo(n )30Gg(X;X")

®o(7m)
eo(n")

+ dopol ﬂ’)Gc(X;X’)] , (71)

1
GzAX;x")= ﬁ' —ddGp(X;x")
K2
— 7 ®olmeo(7')Gc(x;x") + 64(x—x’)] :
(72)

Finally, we substitute the relationG,(x;x’)=D; 16%(x
_X’),

’ 1 K2 raN—1 1 rN—1 7 1
Gr(Xix')= 5| 1= 90D @0+ — do®oDc ¢odo—
\Y ¢o Po

X 8% (x—x"), (73

rN—1 1 r~N—1 7
—¢@oDg "dot+ — dopoDc " ¢g
®o

X 84 (x—x"), (74)

. Iy — K
G (X;x") = ov?

’ K ~N—1 7 rN—1 1 1
Gzi(X;x")= ~—5| 4D @0~ ¢oDc " ¢odo—;
2V ®o

X 84 (x—x"), (75

2

’ 1 -1 K rN—1 1
GzAX;x ):ﬁ 1+3doDg do— 7 ¢oDc o

X 84 (x—x"). (76)
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C. Integrated field equations

In this subsection we first purge unphysical initial value
data by imposing the constraints and making use of the re-
sidual gauge freedom. Then gravitons are suppressed to
leave what we call the physical linearized fields. Finally, the
various field equations are integrated using the retarded
Green'’s functions of the previous section.

Since our gauge condition involves derivatives it is pre-
served by residual gauge transformations which obey second
order differential equatior’sOne can therefore freely impose
four residual conditions and their first conformal time deriva-
tives on the initial value surface. We choose these to null
X(70,X), X' (70,X), vi(70,X) andv{(7g,x).

At the end of sec. lll A we showed that the four con-
straints are also annihilated by second order differential op-
erators. It therefore follows that the initial values of the four
constraints and their first conformal time derivatives are the
only extra conditions to be imposed in addition to the gauge-
fixed field equations. With our residual gauge choice these

eight conditions imply thahij(r;,i) is transverse and trace-
less at linearized order. Suppressing gravitons makes it van-
ish completely at linearized order.

The only linearized fields which remain arandz. Since

X vanishes, they can depend only upon the operat’cﬁre
and YT(K),
ol 1) = i) [ ok
@o(7) (2m)° k
X{Qe( 7K e XY (K)+H.cl, (77

- K, d3k 1
th(ﬂ,X)IE%(W)JWE

X{Qc(7, KXY (K)+H.c). (78

We can obviously eliminaté,, in favor of z,,,

20X Zi(nX)

for(m,X)=—— —, (79
o < oh(m)  a(g)V-H

This is the well-known constraint between tfdimension-

les§ Newtonian potentiafb ( 7,X)=xz(5,X)/2a(») and the
scalar field fluctuatiof11].

We can now write down the integrated field equations
whose iteration produces the final perturbative expansion of
the various fields:

f(n,x*>=fph<n,i>—f”dn'f A" {Gy1(x;x")AF(x")
70

+ G, (XX )[AE®(x")+ AE"(x")]}, (80)

2The analysis is quite similar to that carried out for de Sitter
background irf10].
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R R 7 The second simplification is that one can replace the mode
Z(U,X)Zzph(ﬂ,x)—J dﬂ’f A% {G(X;x")AF(x") functions of the linearized solutions by their infrared limiting
o forms. These forms were worked out[i] by matching the
+Gzz(x;x’)[AE°°(x’)+AE“(X’)]}, (81) leading ultraviolet term of the ultraviolet expansion to the

leading term of the infrared expansion at the timg(k) of

. 7 , horizon crossingk=H(7,)a(»,). Since the physical fields
vi(?],X)ZZJ dﬂ'f d3x’ Gg(x;x")AE%(x'), (82 contain onlyC modes the result we require is
70
; —H(p) HX(7y,) e "™
hi; (17,X) = —2( ik 01 — 6ij 6k1) Qc(7.K)]1w.— : . . (87)
H(m)  V-H(n,) V2K
K ’ 3y oy ! Kkl
XLOd” fd X' Ga(GXDART(X). 83 Note also that momentum integrations are cut off kat

=H(mn)a(#n). The physical justification for this is that only
Note thatv; andh;; vanish aty= 7, along with their first modes below the cutoff have undergone the superadiabatic
derivatives. On the other hand, bdtlandz suffer perturba- @mplification that is the basis for the effect whose back re-
tive correction on the initial value surface. This derives fromaction we seek to evaluate. However, one must take care that
the existence of a gravitational interaction even on the initiafh® resulting time dependence is a genuine infrared effect

value surface, as required by the constraint equations of th@d not simply the result of allowing more and more modes
ungauged formalism. to contribute to what would be an ultraviolet divergence

without the cutoff. One consequence is that time derivatives
of the fields should not be allowed to act on the momentum
cutoff.

Except for suppressing the gravitons, all the results ob- The third simplification is that we expand the inverses of
tained to this point have been exact. Unfortunately they argb =p, + v2 in powers ofv?,
also largely useless because we lack explicit forms for the
various mode functions and retarded Green’s functions in a @;1:Dr1_D;zV2+ . (88)
general inflationary background. Nor could we perform the
required integrations if we did possess such expression®nly the zeroth order term is required foy; ,
What makes calculations possible is the long wavelength ap-
proximation which effectively removes spatial variation. The
resulting problem of temporal calculus is still formidable, but
it can be treated using the slow roll expansion discussed in
Sec. Il but one must go to first order for the various#) Green’s

The back reaction we seek to study is the response to tHeinctions on account of their prefactors oW£/ The Appen-
superadiabatic amplification of modes which experience hodix demonstrates that the leading results are
rizon crossing. This is an intrinsicly infrared phenomenon so
one might suspect that it can be studied effectively in the ) o1 b1 ®0. g,
limit where spatial derivatives are dropped and the modeCri(X:X )Niw—|@oPs"— +2¢0Dg —Dc ¢odo—;
functions approach their leading infrared forms. This limit o o o
defines the long wavelength approximation and it effects X 8*(x—x"), (90)
three sorts of simplifications on the perturbative apparatus of
relations(80)—(83). "

. . S . . - . yon—1Po 1,

The first simplification is to ignore spatial derivatives in G,(x;X")|; w.— k¢(Dg —Dc 0t (x—x"), (91)
the source term3&\F andAE#”. An immediate consequence %o
of this, and of the absence of dynamical gravitons, is that

D. The long wavelength approximation

4
hij||_W_—>§5ijD;1AEkk, (89

n

"

AE% vanishes and\E" is proportional its trace, L0
Goi(XiX)|1w.— k@oD ' — 5D tepd*(x—x'), (92)
) . 1 %o
AE?|, ,, —0, AE”||.W.—>§5ijAEkk- (84)
1 @0
. . G, (x;x’ Dt — 420D —=Dg 10
It follows thatv; remains zero for all time and that only the AXX D= eoPc oy 0T i2E %0
trace part of;; ever becomes nonzero,
X 84 (x—x"). (93

0i(7.)]1.w.~0, (89 At this point we can make contact with the similar calcula-

4 tion that was done if4]. In the infrared limit, the general
7
h(7.X 5| dn' | d3x Ga(xix’) X AEKK(X'). retarded propagatof90)—(93) correspond exactly to the re-
i (70lw— 37 Jno K f X' Ga(XX") () sult that can be inferred from Eqgl31), (132 of [4]. The
(86) “C” and “D” in Egs. (131 and (132 from that paper
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(whereQ)=a) correspond respectively to the change induced/Ne can also use the slow roll approximation to evaluate de-
in the z and in thef fields that obtains from our equations rivatives of the scalar potential,

(80), (81). The amputated 1-point functions in those equa-

t~ions correspond t(l our source termi according to the rule: KV,¢(<P0)|s.r_—>6H V—H, V,¢¢(‘PO)|s.r.—>_3H-

a— — (kI3)aAEX, y— — kaAE® and6— — kaAF. (98)

The source terms finally contributed by vertex no. 9 in the
slow roll and long wavelength approximations are

The purpose of this section is to apply the technology of

Sec. Il to obtain the scalar and metric at quadratic order in AF 3.H? —H 99
the initial value operator¥ (k) and Y'(k), and to leading no. oliw+sr— 3K V Fazrz)h’ (99

order in the slow roll and long wavelength expansions. In

Ref.[4] we computed the one loop expectation values of the 3

scalar and metric fields, also to leading order in the slow roll AE® oliwisr—+ ZKHZazf,h, (100

and long wavelength expansions. Much of that calculation

can be used to get the quadratic order operator expansions of 9

the same quantities. In particular, all the vertices are cata- kk _ 2.2

logued in that reference. ABno. sltw.rsr— = z«H 2% (101
As an example, consider vertex No. 9 of Table 3 frigth ) o _ ] )

IV. QUADRATIC CORRECTIONS

Lagrangian: lar [4] under the same set of approximations gives the fol-
lowing quadratic source terms:
K 4,2 K 2 -
£no. QZ_ZV,(p(p(qDO)a ¢ (p:_zv,(p(p(qu)af (22+h) 2 —H
(94) AF|I.W.+s.r._>3KH Fazﬁh, (102
Variation with respect top and ¢, gives the following 9
source terms: AEY yrsr—— ZKHZazf)h, (103
AF o o=—kV P — 27
o o=~ Vel po)al 2 30). e (104
K H 4 1,
AEMY = — —\ af2 i’ 95 The next step is to apply the various retarded Gre_en s.func-
no. 9 4 ee(®0)al™n ©9 tions in the long wavelength and slow roll approximations.

As an example, we substitute Ed.04) into Eq. (89) to ob-

The lowest order perturbative corrections from these termsain the leading quadratic correction g ,

come wherf, zandh are replaced by the associated physical

linearized fieldsf ,, z,, and 0, respectively. Recall also that 7 !

—> P Sph ’ h(?) —9ks;a| dn'a?|” dy"a?H2Z2
fph=z’/a~/—H. ij |I.w.+s.r._’ K Ojj "o n "o n ph
The preceding are all exact results. Because we are also (105

making the long wavelength and slow roll approximations,

Zyn can be written as wherez, !s given by Eq.(9§). Taking thg momentum inte-
grals outside, we are left with the following integrations over

—H(n) %k H, time:
H2(7) | ] (2m)° 2k3
+ ...

! ra—3(t1 t' 1340 H_ZZE i
i ) ) a(t)jtodt a3t )jtodt ad(t )H2 sa() 2 :
X _H*{Y(k)+YT(k)}. (96) (106)

. . N _ The result is therefore
To leading order in the slow roll approximation the time

th( nax)|l.w.+s.r._’a( 7)

depedence of this expression comes entirely in the initial H2 3 k22
factor ofa(#), which allows the following simplification for hii| — 5 —) [ - = —ph+O(z3 )] . (107
;o ijll.w.+s.r. ij —H 2 a ph
ph-
H2(7) The analqgous reductions ft_nandz are straightf_orward bL_Jt
fph(,7,)2)||_W_+S_r_> A — 7 th(yl,;)_ (97)  rather tedious, owing to their complicated mixing. The final
—H(#») answer is
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H2 5 kZ5, . 1 _ 1.
fliw+sr.— I Zont 57— TOZpm [ (109 DE\/—T&#(\/—ggWaV)—ER=a2+ kDy+ k*Dy+
-9

(116
2

7 kZpyp,
Z||.w.+s.r.—>‘ Zpnt 5 —+ O(Zgh)] : (109  The first two operators in the expansion are

We invert Eq.(29) to recover¢ and ¢,,. It is useful to v e 1 u 1 po »
multiply by « to absorb the dimensions, and to express theP1= = ¥""0,d,+| =4 ot 59% ]9, = (L= ¥,
result in terms of thédimensionlessNewtonian potential: (117

d(x)= . (110

Do= g Yld,d,+

a®uv

1 1
(W PP0) g5 P Pt 5
Note that, from Eqs(110 and(96) we haved®=H 2 (since -
H~ const) so that its time derivative is down fras by a X0 e (118
slow roll parameter,
The second order, conformally rescaled Ricci scalar is
—H

Cb||.w.+s.r._’2(_ HD. (111

HZ

~ 3

Ro=vP(Ud yH ¥ap= 2070 p)) + 1 PP gy
With this terminology, the nonzero perturbed fields are 1 1
- E waﬁ,’ylp%&a_ lpa,ﬂwz,y—'— lpa,ﬁw,a_ Z lﬁ’aw,a .

2
KPliw.+sr.— \/%{2¢+5¢2+0(¢3)}, (112 (119

The next step is to factai® out of D:

Kihool . w.s.r.— 2P+ 14D%+O(D3), (113
2 1 1 2 3
K¢|J|Iw+sr 4)6” 20 -6 — q @2—{—0(@) ) (114 J J
Inverting D is now straightforward:
V. AN INVARIANT MEASURE OF EXPANSION

The purpose of this section is to compute corrections izi_i KDy 1 1 KD 1 <D i_i 2D i
through quadratic order to the operatdy,, we have pro- D 52 52 (92 92 1(9 1(92 52 2[92
posed 9] as an invariant measure of the rate of cosmological 5
expansion. We first expand the scalé=1_ ' in powers of +0(x7). (121

the pseudo-graviton field and then substitute Ed4.3),

(114 to express the result as a function of the unconstrainedll this implies the following expansion for the scalar ob-
initial value operators, to leading order in the slow roll andservable:

long wavelength approximations. Full invariance is achieved

by evaluating theA(n,)Z) in a geometrically specified coor- 1, 5 5
dinate system. A[g]=a*12—)a = Ao+ kA + k2 A,+0(k%), (122

A. The scalar observable where the first two corrections are

The pseudo-graviton expansion is most easily accom-
plished by first expressingl. in terms of the conformally

rescaled metric, A= —a_lileizag', (123
J J
Gl 1=2" 2 7,5) = 1t KD (7,X). "
(119 L1 o1 1 1 1,
. _3 . . A,=—a —2D2—2a +a —2D1—2D1—2a . (129
We write . =a™ °Da, whereD and its expansion are a° d a9 d d
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The zeroth-order termi ,=a 19~ 2a has a very simple ex- Since the two terms i, cancel to leading order, the result

pression in terms of the background expansion rate, is
-1 K ’ 7' Pya -1 _ H -1
Ap=-a dn' | dy"a’(n")= 5771 1+0| — |- A +sr. = 52{1 =20 =202+ O(P)}. (139
7o 7o 2H H2 2H
(129
Our proposal is to define the general expansion rate, as an B. The invariant observable
operator, to bear the same relation to the full scalaf9]. Even a scalar changes under coordinate transformation.

Astronomers do the same thing when they infer the Hubblelo achieve full invariance we measus{ g](x) at a point
constant under the assumption that the relation between Io¢“[ ¢,g](x) which is invariantly specified in terms of the
minosity distance and redshift is the same in the actual unigperatorsp andg,,, . Since there is no spatial dependence in
verse as for a perfectly homogeneous and isotropic one. the long wavelength approximation we actually need only fix
~ The higher order contributionsl; and.4, are nominally  the 3-surfaceY®= . Following the suggestion of Unruh, we
inhomogeneous but lose their dependence upon space in thggse the functionat] ¢](7,X) to make the full scalar agree

long wa_veleng_th a_pproximation_. The consequent suppressiQgiy its background value at conformal timg
of spatial derivatives and anisotropic components of the

pseudo-graviton field reduceB, to the following simple

form: ¢ (7(7,X),)=@o( 7). (136
1 1 The weak field expansion of ¢] is [9]
Diliw— — Yool — 5( Yoot Yi) do— 5 g (126
- (X)) d(nx)$ (7,X)
Further simplifications result from the fact th@b-moving el(n,x)=7— ) + 2
time derivatives of® are weaker thami® by a slow roll Pol? ®o 17
parameter as per Eq111). Only the quadratic term of}; o4(n) [ d(7,%) 2
possesses the enhancement necessary to survive differentia- — O/ - ' ) +0(¢%. (137
tion at leading order, 2¢0(m) \ @o(7)
kbl w.+sr.—Ha{O+ o(d3)}, (127 Substitution of our resultl12) for the perturbed scalar gives
the final expansion to leading order in the slow roll and long
Kl//i'j||.w.+s.r.—>Ha{—12¢2+0(¢3)}5ij . (128 wavelength approximations,
Of course subsequent conformal time derivatives are domi- H2\ @ H2 \? H2
nated by the factes) of a, Thwasr— 7+ —lra |\ Th -7 _—
Kool +s.r.—H?@*{0+0O(%)}, (129 ®2
X =——+0O(D3). (138
" 2,2 2 3 2Ha
ki1 w.rsr.—HQH{—120°+ O(P")} 5 . (130

Our invariant expansion operator is judtevaluated at this

The result is that only a few terms iR, and D, can con- point

tribute at leading order,

KD1|)w +sr.— — 2093+ D2 — 1492+ 18Had, + 6H?at}, A .91(7,X)=ALg1(7] ©1(7,%),X). (139
(131
Note that there is no obstacle in perturbation theory to evalu-

KDyl w.1sr — —A4D252+0(D3). (132 ating an operator at a poiaf ¢ |= 5+ 57 ¢] which is itself
R an operator,

Becaused<H® we can ignore its time dependence with

respect to factors o&(#). This makes acting the various B , 1. .,

factors ofd~2 quite simple in the slow roll approximation, A=A+ A" 67+ 5“4 ST+ - - -, (140

11, ) 3 The derivatives are straightforward to evaluate with Egs.
Atliwsr=g (7202074 0@ ), (183 (135 and(111),

-1 , —Ha —H
HW{—ch—zcb%o@S)}. (134 A'liwssr =557 F){Z—BCIHO(CDZ)} (141
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cial question of the degree of stochastic fluctuation expected
) in functionals of the fields such a$.,,[ ¢,9].

(142

2

) —H%?| [-H
Aliwrsr =557 2 " +6

A. Motivation and basic formalism

Howevert putting everything together results in complete The simplest way to motivate stochastic effects is by con-
cancellation of all corrections to the order we are working, sidering the linearly independent mode functions of the in-
. frared regime,Qq,(7,k) and Q,,(7,k), which were de-

- 3 scribed in Sec. Il B. Thdull linearized field operator must
W“Jro(q) ) (143 involve both of these mode functions in order to avoid com-

muting with its conjugate momentum. However, after hori-
Although this result surprised us, it could have been anticizon crossing K=Ha) one of the mode functions becomes
pated by noting that, in the slow roll approximation, our vastly larger than the other. This is the phenomenon of su-
scalar degenerates to a local algebraic function of the Ricgderadiabatic amplification and it corresponds to the simple

Ainv=

scalar[9], physical picture of particle production through infrared vir-
tual quanta becoming trapped in the inflationary Hubble

-6 flow. If one retains just the larger mode function then the

A[g](x)|s_,,—>m. (144 linearized operator which results is effectively classical in

that it commutes with its time derivative. Although the result
Einstein's equations completely determine the Ricci scalalj,S still probabilistic, one can ;lmgltaneoysly' measure the
as an operator, from the local matter stress tensor, value of such an operator and its time derlvatlv_e, and sut_)se-
quent measurements will show only the classical evolution
expected from these initial values. This is the reflection, in
R(x)=—-8wGg"*"T,,, (149 the Heisenberg picture, of a “squeezed state.”
The expectation value of a functional of squeezed opera-
1 tors can fail to provide a good estimate of what an actual
=16mG) V(¢) =~ 599,00,/ . (146 observer sees. For example, the expectation value of the cur-

rent stress tensor is presumably homogeneous and isotropic.

We can always choose to work in a coordinate system folVe Se€ nothing of the sort because we exist at the end of a
which the full scalar agrees with its background value. Wher{o"9 Period of essentially classical evolution from one par-
this is done one sees that back reaction can only entdicular choice, random but definite, of superadiabatically am-

through the kinetic term. Since it is certainly from kinetic Plified density perturbations. _
effects that the pure gravitational result derijag], there A better way of treating squeezed operators is to sample

may well be a significant back reaction from the scalar ki-the result of making random but definite choices for them

netic term as well. Unfortunately, one can never tell whetheffoM the relevant quantum mechanical wave function, and

there is or not when the kinetic term is systematically ne-then evolving classically. It is crucial to understand that tak-

glected, which is just what happens when the slow roll and"9 such a stochgstic sample is perfectly con_sistent with the
long wavelength approximations are combined. It followsUS€ Of quantum field theory to express the Heisenberg opera-
that our approximations must produce a null result—whethefors as fun_ctlonals of the unconstrglned initial value opera-
or not there really is significant back reaction—not just atto's- Nor is there any change in how the observable

quadratic order in the initial value operators, but at all higherAin/(7,X) depends upon the Heisenberg operataiGf
orders as well. course we do want to avoid making the long wavelength

approximation} What changes is that the scalar creation and

VI. STOCHASTIC SAMPLES annihilation operators-¥f(k) and Y(k)—are random num-
bers up tok=H(#)a(#), and zero beyond.

The last section has demonstrated that scalar-driven infla- To avoid problems with continuum normalization we take
tion can show no secular back reaction to leading order in thegne 3-manifold to be'® with identical co-moving coordinate
long wavelength and slow roll approximations. Smce thisradii of HalEHil(ﬂO)- (Because the conformal coordinate
holds as a strong operator equation for our expansion obserygyme is so restricted during inflation the integral approxi-
able, Ajn,, there is no need to choose between expectatiofation is excellent for mode sums and there is no conflict
values and stochastic samples. However, we believe the caggn any of our previous, continuously normalized, results.

is still quite strong for secular back reaction when the longop this' manifold the co-moving wave vectors become dis-
wavelength approximation is relaxed, although it would havegrete,

to come from the coherent superposition of interactions at

higher than quadratic order in the initial value operators. The K=2mH-n (147)
purpose of this section is to develop a theoretical framework o

for studying such an effect through stochastic samples as

recommended by Linde and othér. We begin by motivat- Phase space integrals are converted into mode sums in the
ing and defining the basic formalism, then we treat the cruusual way,
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a3k . . —
3 .. kN —HgH(7») 1
f —g(zﬂ_) f(k)HHozﬁ f(2@Hgn). (148 D(n,x)= — Z H{Qc( 7, 2HgN)
n
And the Dirac delta function goes into a Kronecker one, ><ei27THO';'>2A,;vL c.c}. (154
(277)353“2_ IZ’)—>H53 S (149 The various integrations are trivial Gaussians, as they would

be for any linear variable. The result is thdt follows a

— . . .Gaussian distribution with mean zero,
Because the initial scalar state is free, the associated creation

and annihilation operators are stochastically realized as inde-
pendent, complex, Gaussian random variables with standard (D)=
deviationH53. It is convenient to scale out the dimensions, 2 ol

e—(IJz/Z(TZ, (155)

AﬁEHg/ZY(ZWHoﬁ), Angg’ZYT(szoﬁ), (150 and a spatially constant variance equal to

. . - . —k?HoH « 1
so that the probability density for each madéas a simple a’(n)= K—2° E —2||QC(77,27TH0n)||2. (156)
expression, 8w n N
1 Making the slow roll and long wavelength approximations
p(A;, A= _efA,;AE_ (151) we see that the variance grows as the logarithm of the scale
n" 2w factor,
Since the modes are independent, the joint probability distri- 2 [ —f\2 H2[ H2
bution is just the product of E151) over the relevantrange ¢ 77)||.w.+s.r.—>m —2) > n_§< * ) (157
of n. H n —H,
2
B. Functionals of stochastic variables < [—H fadn( Hi ) (158
- T 8m2| 2 n\_g )
Our observable4;, (7,xX) depends in a complicated way 87\ H 1 Ni-H,
upon the scalar and metric fields, which are themselves func-
tionals of the stochastic variablés; andA* . The nature of xk’H?[ —H
. . L — ——| —=|In[a(7n)]. (159
this dependence determines the crucial issues of whether or 872 | H2

not Ai,(7,X) is well represented by its expectation value

and whether or not a definite sign can be inferred for correcThe simplest sort of nonlinear functional is just the square of
tions to the cosmological expansion rate. Of course we d@ |inear one. Since linear functionals Af, and AE are al-

not yet have a replacement for the long wavelength approXigays Gaussian, their squares always follow a chi-squared
mation which shows secular back reaction. However, we dgjistribution whose mean is the variance of the Gaussian and

here develop a technique for separating nonlinear functionalghose variance is twice the square of this. For example, the
of the stochastic variables into a part whose percentage fluc-

. .. \ S Variable ®2(,x) follows a chi-squared with mean? and
tuation becomes negligible for a long period of inflation, plus I 2 . 9
another part whose fluctuation is not negligible but WhichStandard deviation/20 A_Ithough the fluptuqtlons_ofIJ
has a definite sign. are of the same order as its mean, _the sign is d¢f|n|te._ Note

Recall from probability theory that a functional also _that, for a long penoq of inflation, only an mc_redlbly
—F[A,A*] of random numbers is itself a random number.fortu'tous sequence of choices for the stochastic variabtes

* . 2 . . .pe
Its probability distribution function descends from that of the@dA; would result in®= having a value significantly be-
A; and AE by Fourier transformation, Iovy some const_ant fumes our estim&l&9). So that |f_s_ome
reliable approximation scheme should wind up giving the
= dk effective expansion rate as
p(f):j Zeikf<e—ikF[A,A*]>, (152)
- Hei( 7.X)=H(7){1+ @ (7,%)— ®*(7,x)}, (160

small probability to observe anything except a secular slow-
ing of inflation. This is an example of how stochastic
samples might show the same qualitative results as expecta-

= dk dA-dA* then the conclusion would be that there is only a vanishingly
J eikf( I1 J nn —A’Af)
_ 2T

n

X g KFIAAT] (153 tion values while breaking exact homogeneity and isotropy
and altering the numerical coefficient of the order of magni-
As an example, consider the Newtonian potenldl0), tude estimate.

063515-13



L. R. ABRAMO AND R. P. WOODARD PHYSICAL REVIEW D65 063515

It might be thought that quantitative results are not obtainthe perturbed fields in powers of the stochastic initial value
able for more complicated nonlinear functionals. That usefubata. Both of these expansions really involve averages over
statements can still be made derives from the following factthe past light cone of the observation point. However, de-
any secular back reaction effect must result from the coherpending upon the observable and the approximation tech-
ent superposition of contributions from an enormously largeniques used to solve for the fields, the terrific expansion of
number of modesThis allows us to exploit the same sorts of spacetime during inflation may weight the averages heavily
simplifications that underlie statistical mechanics. towards the most recent times. In that case one gets a local

To illustrate the important considerations without becom-superposition and stochastic effects are important but simple
ing too mired in technical detail let us consider quadraticto include. An improved observable can also be defined so
superpositions of the form that the entire past light cone participates effectiélly and
it seems likely that improving on the long wavelength ap-
proximation will have this result anyway. In this case one
tends to get a nonlocal superposition because modes with
different n interfere destructively. The stochastic fluctuation

of back reaction would then be negligible and one may as
well resort to expectation values.

1
s= AT == n(ApTAS) (AR+HA>).
SAA =5 > Swal(An+ AL (AG+AY). (161)

The characteristic function is

1

Jdetl +2ikS)

<e—ikS[A,A*]>:

(162

There is also the possibility of mixing of local and non-
local, in which case the best strategy is to separate the two
effects and treat them as above. One might anticipate that

analytic considerations would render the local part obvious

but even if not, its dyadic form makes the decomposition a

simple linear algebra problem. For example, suppose that at
late times we have

whereS stands for the symmetric matrg;,; andl is the unit
matrix of the same rank. The various moments fifllow by
differentiation,

(s)=Ti[S], ((s—TS])?=2T{S?], (163 TS (T S])", (168)

((s—TS3=4T(S?], (164  for some positive constant<<1. The putative decomposi-
tion would be

How much fluctuation one should expect is governed by the

relation between traces of powers of the magixVe distin- - =unUn+ASq, (169
guish two cases:

(1)“Local” superpositions which are characterized by where the various traces obey
Tr[S"]=(Tr[S])" for n=2; and

(2“Nonlocal”  superpositions which obey T8&%] u-u—aTr[S], THAS]—(1-a)TI[S],
<(Tr[S])? and TFS"]<Tr[S?](Tr[S])" 2 for n=3.

The local case is just the square of a linear superposition THAS']<(TH S])". (170

and has already been considered. To recapitulate, it has sig-

nonlocal superposition can be approximated by dropping,eed not be close to-—then contract int&? and divide by
higher traces ofs in the exponent of Eq153), the trace ofS,

= dk | (S2); WASY U (AS%);
P(S):f _elks—(1/2)Tr[In(I+2|kS)], (163 n_ ' R R R n

=2 Ts] @Y vUnt e Unt g (ASURT ey

1771
© dk .
~ f ——giks—iKTI[8] ~K*Tr[S?] (166)  Only the first term can matter at late times so we recayer
2T by normalizing and then multiplying by the square root of
aTI[S].
1 (s—Tr[S])? (167
AT 4TS VII. SUMMARY AND DISCUSSION

o ] ) ] We have calculated the gravitational back reaction on
This IS just a Gaussian centered on[Jf with variance  gcajar-driven inflation using an invariant observable, to qua-
2T S7]. Since its standard deviation is insignificant com-gratic order in the initial creation and annihilation operators
pared with the mean, stochastic effects are not important. 5nd to leading order in the long wavelength and slow roll

Recall that invariant measures of the cosmological expanapproximations. No effect was found, contrary to previous
sion rate derive their dependence upgnandA’ from two  work by ourselves and others which indicated a secular slow-
expansions. In the first the observable is expanded in powersg of the expansion rate at this ord@-4]. It is significant
of the perturbed fields, then one substitutes the expansions tifat the inclusion of stochastic effects played no role in this
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change. Under our approximations, secular back reactioherefore, the creation and annihilation operators for any
would enter throughb(x), the accumulated Newtonian po- mode we wish to treat stochastically are considered to be
tential from modes which have redshifted into the infrarednonzero random numbers even on the initial value surface.
regime. However, all terms of ordds and ®2 drop out of The final difference is that we enforce all the perturbative

the Heisenberg operatot;,,, before one has to choose be- field equations of the Einstein-scalar system so that the vari-
nv

. . .Qus modes are in gravitational interaction even on the initial
tween the alternatives of expectation values or stochastig 9
Value surface.
samples.

. . . . . An amusing consequence of all this is that stochastic ef-
Another improvement in our analysis which had nothingec(s provide a nonperturbative proof that back reaction must
to do with changing the result was the use of a scalar tQyentually become significant if nothing else stops inflation
measure the expansion rate. The entire difference from prajyst. For it will be noted that, in our version, including sto-
vious work is in fact attributable to defining the coordinate chastic effects at some time corresponds to a universe that
system so as to make the quantum scalar vanish on surfacgggan inflation atp, with a random collection of modes
of simultaneity. When these coordinates are used even th&cited up to co-moving wave numbkreH(7)a(7). The
gauge fixed expectation value of the metric fails to showhypothesis that inflationeverslows amounts to the assump-
significant back reaction at one loop. tion that inflation can begin with the inital state populated to
The null result was anticipated by Unruh who noticed thatarbitrarily high wave number. Of course this is nonsense.
scalar mode solutions become pure gauge in the long wavé=ven if one subtracts off the spatially averaged energy
length limit [6]. This does not preclude back reaction but it density—as should probably be done—what must actually
does rule out dependence upbrwhich fails to vanish in the happen for arbitrarily high excitations is that random inho-
long wavelength limit. For example, spatial and certain tem-mogeneities produce a gravitational collapse.
poral derivatives ofP(x) can contribute. In fact there are ~ Finally, we comment on the degree to which a random
such contributions but they are negligible at quadratic orderStochastic sample should be expected to differ from its mean.

Although we have obtained a discouraging result aboyBecause secular back reaction must manifest itself through
the possibility of a simple one-loop effect, our analysis doe§he coherent superposition of an enormously large number of

not invalidate the idea of gravitational back reaction on in-ndependent random variables, one can sometimes employ

flation. It would be fairer to say that what we have Iearnedthe lznethods O.f Stalt'St'Cal medc_hanlcfs. Th_e excf:eﬁtu?n ISI when
: . ack reaction involves an ordinary function of the local sto-

constrains the form any such effect can take. In paruculaEhastic fields, for exampld?(x). This can happen if the

o.ne_?:houtld.nct)ltqltake thz I?hngt ;/;avelenlgth I|m.|tt. tl.t IS lh'%hlytterrific inflationary expansion causes the average over the
signincant, in this regard, that tné purely gravitational efiec past light cone to be weighted so that only interactions just

claimed at two loop$12] does not involve the long wave- jyofore the observation contribute effectively. In that case sto-
length approximation in any way because the locally de Sit¢agiic fluctuation is not negligible, but the sign of the effect
ter background is simple enough that the full propagator cafy gefinite. In the other, “nonlocal” case, stochastic fluctua-
be worked out. In fact the gravitational response to the inflatjgn is negligible compared with the mean effect and one
tionary production of gravitons comes entirely from the may as well use expectation values. Our suspicion is that
graviton kinetic energy and would vanish in the long wave-improving upon the long wavelength approximation and im-
length limit. proving on the expansion observable will result in secular
The long wavelength approximation was also avoided inhack reaction of the nonlocal sort. However, if there should
the effect claimed at three loops for massless, minimallype |ocal mixing, it is straightforward to untangle.
coupledg* theory in a locally de Sitter backgroufidi3]. In
a subsequent papét4]| we resolve the issue of coincident ACKNOWLEDGMENTS
propagators in this model by a procedure of covariant normal . | K led imulati d inf i
ordering. The resulting theory exhibits a secular back reac- Itis a p easure to acknowledge stimulating and informa
tion which slows inflation in a manner that is unaltered bytIve conversations with R. BO”Q' R. Brandenberger, T.
either the use of an invariant operator to measure expansicﬁ'\ucr\ert' A. Guth, L. Koffiman, A. Linde, D. Lyth, V. Mukha-
or by the inclusion of stochastic effects. nov, E. Stewart and W. Unruh. We are also grateful to the

Although there was no need to consider stochastic effect%ni_v ersity .Of C rete gnd to the Aspen .Cente.r for Ph.ysics for
in the present work, Sec. VI describes a formalism for in-their hospitality during portions of this project. This work

cluding them in higher order processes which may sho as par_t|aIIy supported by _the Sonderforschungsbereich
secular back reaction. This formulation differs from the stan' 9> fr Astro-Teilchenphysik der Deutschen Forschungs-
dard one[8] in three ways. First, the focus is perturbative gemeinschaft, by DOE contract DE-FG02-97ER-41029, by
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concerned with nonperturbative effects on the global geom- eory. L.R.A. also acknowledges FAPEES#0 Paulo State
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stochastic degrees of freedom only as they experienced su- APPENDIX

peradiabatic amplification. Although this is doubtless an ex-

cellent approximation for the sorts of global and nonpertur- In this appendix we derive the infrared limits of the gen-
bative issues that were being studied, we cannot afford teralized Green’s functions of Sec. Il D. First notice that
ignore the non-conservation of stress-energy implicit in confrom Eq. (30) and the background identities we can derive
tinually injecting new degrees of freedom into the systemthe following useful “commutation” relations:
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2
“ “ K
doDg—Dgdp= > %0%0: (A1)
(PH
~ ~ 0
<P6DB_DC<P(’):2<P6’70_,,
®o
n
2 - ' %o ’
¢oDc—Dpeo=2— do@g- (A2)
Po
1. .1 ®0
_rDB_DC_/:_z_IZaO’
@0 ®o ®o
1. .1 @0
®o Po Po

Using Eqgs.(30) and (31) for Dy and D we have also the
relations

.1 , 1. ©0
Dg—5do¢o=0do—Dc—2—V?, (A4)
o %o %o
. o, . ®0
IDC_,(90— @0(90 _ZDB+ 2_,2V . (AS)

®o ®o %o

Dropping spatial derivatives and inverting implies the fol-

lowing “inverse commutation” relations:
i /Dfl ’_ /Dfl i D*l /_Dfl ’ i
~doPoDc 0= ¢oDPg do oD ¢o=Dc ¢odo—,
®o %o ®o
(A6)

Substituting Eq(A6) into the right-hand side of Eq76) we
see that the ¥? term cancels because

2

D—l _K_ /D—l !
doPg do~ 4 eoDc %o
ry—1 1 1 Kz ry—1 7
=¢oD¢ @oao_,zao_zﬁoopc @0, (A7)
Po
ry—1 K2 12 1 K2 r~y—1 1
=¢oD¢ _DC+Z‘PO _,_Z‘PODC o
®o
=—-1. (A8)

Similar manipulations reveal that theVH terms cancel as
well in the expansion$73)—(75).
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The next order terms can be found by expandivfg1 in
powers of the Laplacian. Doing this in expressigit) for
G,x;x") yields

2
G, (X )=| = 9D D= 0+ — ol DD !
A% X") 0Ps Pg dot 7 ¢oPc P %o

+0(V?) |84 (x—xX"). (A9)

The term of ordel ° can be simplified with the commutation
relations(A1)—(A3),

KZ

—4Dg " Dg do+ 7 ¢eDc D’ eg

_ ’ -1 1 -1
==¢0Dc ¢odo—;Pg o

Po
2
+ 5 ’D‘l—i 2Dy (A10)
4‘Po c ;5 %o B %0
¢o 70
’ -1 1 -1 ’ —11 1
=—@oDc ¢odo—,Pp dot ¢oDc BN
©o ¢o Y0
X (Dg+ d3)D g do, (A11)
o 1 %o |, - o1
:_<P0Dc1(_,30_2_,2)D31¢90+900Dc1_,
Po Po Po
’ —11 -1
+QDODC _,aoDB (90, (A].Z)
Po
o1l o1 %0 g
=¢oDc — +2¢oDc—;Dg do- (A13)
b0 ®o

The last line, acting of a delta function, gives the long wave-
length limit of thezz retarded propagator, E¢93). Similar
reductions pertain for the other Green’s functions of the
(f,z) sector, Eqs(90)—(92).
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