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We address the perturbation power spectrum generated in the recently proposed ekpyrotic scenario by
Khoury et al. The issue has been raised recently by Lyth who used the conventional method based on a
conserved variable in the large-scale limit, and derived different results from Kledwaly The calculation is
straightforward in the uniform-curvature gauge where the generated blue spectrum with a suppressed amplitude
survives as the final spectrum. Whereas, although the metric fluctuations become unimportant and a scale-
invariant spectrum is generated in the zero-shear gauge, the mode does not survive the bounce, but has the
same final result. Therefore, an exponential potential leads to a power-law expansion or cordaraltfiyrand
the powerp dictates the final power spectra of both the scalar and tensor structupeslifis one realization
of the ekpyrotic scenario suggests, the resultsngrel=2=n; and the amplitude of the scalar perturbation
is suppressed relative to that of the gravitational wave by a fa¢pd. Both results confirm Lyth's. An
observation is made on the constraint on the dynamics of the seed generating stage from the requirement of a
scale-invariant spectrum.
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I. INTRODUCTION bation based on the 81 spacetime effective theory with
nonsingular bounce, as we will show below, the results are
The ekpyrotic universe scenario based on colliding braneslready well known in the literature which are used to make
embedded in an extra-dimensional bulk has been suggesté@rrect estimation§s,6].
recently by Khouryet al. in [1]. Perhaps because of its am-  An exponential type potential leads to a power-law expan-
bitious plan to explain the origin of the hot big bang, andsion[9]
also of its plan to generate the scale-invariédtrrison-
Zeldovich [2]) spectrum without resorting to the inflation- _ p(1-3p) —\167GIps
. . ) ax|tlP, V=——"—¢ Pe, (1)
type accelerating stadé], it has been under close examina- 87G
tion [4]. In particular, a quite different scalar spectrum,
including both the amplitude and the slope, was derived byvhich includes the contraction as well. Wigh<1 this po-
Lyth in [5] which is supposed to be fatally threatening thetential is an example of the ekpyrotic scenario considered in
scenario as a viable addition to the early universe modeld;1,3]. Assuming(i) both the scalar and the tensor perturba-
see alsd6,7] for recent additional arguments agaifif3].  tions were generated from quantum fluctuati¢oisthe field
If the embedded 3 space literally passes through the sirand the metrig during such a power-law era, and were
gularity during the collision phase of the branes, thus makingpushed outside horizon, the analytic forms of the spectra
the (3+1)-dimensional equations obsolete, probably we ddased on the vacuum expectation values are known in the
not have a handle on how to calculate the generated spectiterature, see Eqg47),(48) in [10] for a summary. Under
from the scenario. It is suggested that the ekpyrotic scenaridge simplest vacuum state, we have
[1,3,8 in fact go through a singularity in the viewpoint of

our three space, and in such a case we anticipate serious F( 1-3p )
problems associated with the breakdown of the basic equa-__1» [H] _ya-p TP PP 2(1—-p)
tions we are using. In this sense, to address the structuralpru= VATGp ﬁz p (32
seed generation mechanism properly in the ekpyrotic sce-

nario, it is likely that we need to handle the perturbation X[kl (a|H[)]VE—P), 2
analyses in the context of the higher dimension which is at o

the moment an unsettled issue. If wssumehowever, that P =(2/\/B)77(1;v, ()

the (3+ 1)-dimensional effective field theoretical description

works, and the linear perturbation theory holds during thewhere C,; is the tensor-type metric fluctuations, agq
bouncing stage, we can apply some well known tools of the= ¢—(aH/k)v introduced by Lukash if11] is a gauge-
cosmological perturbations developed especially over thévariant combination which is proportional to the perturbed
past two decades. The current controversy about the scalthree-space curvaturep] in the comoving gaugev=0);
spectrum is in this narrow contekt,3,5,8 which we will ¢, is also introduced ag;, in [12], and is the same &8 in

also accept in the following. The possibility of breakdown of [10]. For our notation, sefel3]. Overhats indicate the spectra
the linear perturbation theory as the scale factor approachdmsed on the vacuum expectation value of the quantum fluc-
singularity was pointed out by Lyth ifv]. If we agree, how- tuations of the field and the metric. Now, assumiiig the
ever, that we can handle the situation using the linear pertuiscale stays outside horizon while there are transititike
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the inflation to the radiation dominated eras, and radiation tsimple as explained below E¢3), and the generated spec-
the matter dominated enaglue to the conservation property trum simply survives as the final spectrum, whereas the
of the growing solutions of botly, andC,,; [see Eqs(20), analyses in the zero-shear gauge is somewhat intricated
(24)] we can identify the above spec@v and P@aﬁ im-  which we will explain in the following and the next section.
printed during the quantum generation stage just after the In order to clarify the situation, in this section we present
horizon crossing with the classical power speciia and the generated scalar perturbation during the quantum genera-

Pcaﬁ based on on the spatial averages at the second horizéwn stage in the two gauge conditions. We introduce

crossing epoch. Therefore, spectral indices for the s¢8)ar H H
and the tenso(T) structuresns—1=dInP, /dInk andny Psp=@— —0p=——105¢,, (5
=dIn Pcaﬂ/d Ink, become ¢ ¢

which are just different definitions of a gauge-invariant com-
ns—1=2/(1-p)=nr. (4 bination of¢ and8¢; @, can be interpreted as thein the
) S uniform-field gauge §¢=0), and ¢, is the 5¢ in the
Thus, in the pqwer-law inflation limit with largp we have uniform-curvature gauged=0): asv = (k/a) 8¢/ for the
the scale-invariant spectrgs—1=0=nr. _ field [14], we havep 5,= ¢, . The above relation is powerful
In the ekpyrotic scenario, although there is no accelerag, ;a1 7ing the classical evolution and the quantum genera-

tion phase before the radiation dominated big bang stage, tq%n of scalar perturbation, sé&3] for a summary. Whereas
two assumptiongi), (ii) above apply as well; the growing . . " - . _ '
solutions ofg, andC,; are conserved as long as we have3sS W€ will explain later, using', = ¢ — ¢_>X, which is o¢
the large-scale conditior{see laterare met, and we will see N the zero-shear gauga{0), the analysis becomes some-

that these conditions are satisfied during the transition fronf"nat involved eventually leading to the same final result.

the collapsing to the expanding phases in the ekpyrotic sce- The 'equati.on for the perturbed scalar field is simplest
nario. Thus, now withp<1 we haveng— 1=2=n which when viewed in the uniform-curvature gaugbd]

differs from the result claimed ifl,3] for ng. Besides the .

wrong spectral slope, Eq3) shows that the amplitude of 5¢¢+3H5¢¢+(k2/a2+vy¢,¢) 5,

scalar structure is suppressed relative to the one of gravita- v 0o b

tional wave, which probably means that the scalar perturba- +2_( 3H— —+2—|8¢,=0, (6)
tion should be negligible as pointed out[i. H H "¢ ¢

We still observe the different opinions maintained in the
literature:(i) the final scale-invariant spectrum from the sce-where the terms in the second line come from the metric
nario [1,3], (i) the final blue spectrum with negligible am- perturbations, compare Eqér),(A9) in [15]; other gauge
plitude when the bounce is nonsingul&:;6], and (i) the  conditions cause more complicated contributions from the
breakdown of the linear theory in the singular boufidgé ~ metric [16]. Calling the metric term a metric back reaction
The issues are manifold involving different gauge conditionscould be misleading because the perturbed field excites or
different matching conditions used, and others. In the follow-accompanies the metric fluctuations simultaneously. Keeping
ing we will address the issues involved in the differences andhe contribution from the metric is necessary and makes the
will indicate how the analyses consistently supp@it or  equation consistent and even simpler in the sense that we
(i) instead of(i). Since there is no controversy over the have a general large-scale solution, see @6). When the
tensor spectrum, we will concentrate on the scalar spectruniackground is supported by a near exponential expansion the
whole term from the metric, and ,, separately, nearly van-
ish; this explains why the original derivation of the inflation-
ary spectra if17,14 was successful even without fully con-

The different opinions betweeft,3] and [5,6] can be sidering the metric perturbations. However, situation could
partly traced to different generated spectra before the moddle different in other cases like the power-law expansion
makes the bounce. In a naive calculation ignoring the metriécontraction as wellwhere the ekpyrotic scenario based on
fluctuations[ 1] showed a scale-invariant spectrum. In a rig- exponential potential is one example. In the power-law ex-
orous calculation(based ond¢ in the uniform-curvature pansion in Eq(1) the metric terntancelswith V ,, exactly,
gauge, [5], however, showed that including the metric fluc- see Eq.(22) in [15]. It happens that fop<1 theV 4, term
tuation is important resulting in a blue spectrum with sup-without the metric term gives a contribution which can be
pressed amplitude. Thelg] showed that, in fact, in the zero- translated to theng=1 scalar power spectrum; this was
shear gauge the metric fluctuation becomes negligible, thugointed out in[5]. However, this term should be cancelled
confirming the original scale-invariant spectrum; see belowexactly by the metric term. With this metric effect taken into
Different results from different gauge conditions in the large-account we end up with a massless free scalar field equation
scale limit are not surprising because the metric fluctuationsvhich can be translated tog=3 generated spectrum. As
often dominate in that scale. Although the final observableexplained below Eq(3) this generated spectrum simply sur-
result should be the same, the intermediate steps could deives the later evolution, see next section.
pend on the gauge conditions we choose for the analyses. In In the zero-shear gauge the equationdar, was derived
the case of the uniform-curvature gauge the later evolution it Eq. (27) of [15]:

II. QUANTUM GENERATION: TWO GAUGES
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. 87G(p+HP). | . k2 . V|| ) @)
5¢x+ 3H+W¢ 5¢X+ ¥+V'¢¢+4H 6¢¢k_ 2a [Cl(k)Hvu(k|n|)+02(k)va(k| 77|)],
87G(h+He).. [H[ V7| 7| 1
———————$|6¢,=0, 7 =—————[cy(KH (K| 7])
H+k2/a2 ¢)( ( ) Pk Zk@Mm[ l( u( |77|
which looks quite complicated compared with E6). In the +Cz(k)H(V2u)(k| 711,
small-scale limit, Eqs(6),(7) both reduce to the massless
and free scalar field equation. In the large-scale limit, we 3p—1 p+1
have Vv_z(p_l)r Vu_z(p_l) (14)
8h,+3HSP +V 4,80, +4H5p =0, (8)  The quantization condition implig€,|?—|c,|?=*+1 where

the sign corresponds to the signgf the positive frequency
Thus, in this limit, the only metric contribution which is the Minkowski space mode in the small-scale limit corresponds
last term becomes simple. As we hawé,,=—2(1 toc,=0 for positivey andc,=0 for negatives. The other
—3p)/t? and 4H=—p/t?, for p=0 the metric contribution variablese 5, and 8¢, can be recovered using EdS),(12).
becomes negligible compared with,,; this is in contrast One can check that the solutions in E¢s4),(12) are con-
with the uniform-curvature gauge case where the metric ternsistent with Eq(9).
cancels exactly with theV 4, term. The authors of3] The power-spectrum from vacuum quantum fluctuation
pointed out that the analysis in this gauge, which is rigorousis related to the mode function solution a®sj
is the same as the one based on naive calculation ignoring k3/(2772)|5¢¢k|2 and similarly forP;;, , [15]. Thus, in the
the metric perturpations prese.nted[ir]. Thus, the generated large-scale limit we can derivigor v=0X we have an addi-
spectrum ford¢, is scale-invariant, whereas the one &, 44 2 In 7)) factor]
is blue. Later, we will show how these two apparently dif-
ferent results lead to the same final observable spectrum in i _|H| 1—p‘ I'(v,) /k|,7|)1/(1—p)
the expanding phase. p

b, D
Now, we present a rigorous derivation of the generated ¢ 27| P |F(3/2)\ 2
perturbation in the two gauges. Using Mukhanov’s notation X|c,—¢ql, »,=0, (15)
in [18] we have, see also Eqgl6),(47),(68)—(70) in [16],
[H|[1=p|T (= v,)[K|5|| 3PP
47Gzfv\’ 1 , T o (32 | 2
B e T
X|c,e'v™—ce” 7|, v, <0, (16)
7" 1/z)" 1(1-p)
o= Zlo=0, w2220, a0 1p _[HI 1 D(v) (Kinl
z 1/z 9y 2w 2T(3/2)\ 2
. : X|Co—Cq|, v,=0, a7
v=adp,, u=—e¢,/¢, z=a¢/H, e2- ¢4l !
(1D CHI 1 T(=wy)(Kgl| PP
L . o 27 2p| T(32)\ 2
wherep,=¢—Hy, and a prime indicates a time derivative . .
based oy wheredt=ad». We have X|c,e'"um—c e,y <O. (18
56~ 5¢¢+(¢/H)¢X, (12) The spectral index of the generated fluctuatiomjg —1

=dlIn Pa(;,wl(dln k) and similarly forn&,,x. By takiné the
which follows from Eq.(5) evaluated in the zero-shear vacuum state to match with the positive frequency
gauge. In the power-law case, using E(8,(8) of [3] we  Minkowski space mode, thys,—c;|=1, etc., Eqs(15),(5)

have p#1) give results in Eqs(2),(4), whereas Eq(18) is the one de-
rived in Eq.(17) of [3] for p=0. Both results are consistent,
z" p(1—2p) 1 (1/z)" p 1 except that what we need for later surviving spectrum is the
Z - W ? 17 (1-p)2 7 (13 one foré¢,, which is directly related tep,, and not the

one for 8¢, which doesnot survive, see next section. That
Notice that Eqs(10),(13) lead to Bessel equations forand IS, for p=0, as we follow the later evolution we can show
u with different orders. Using the quantization based on théhatns=n,  =nss; #ns, . One important fact to notice is
action formulation of Mukhanov if18], we have the mode that the spectra in Eqs(15),(17) are time independent,
function solutions whereas the ones in Eqd6),(18) are time dependent.
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Ill. CLASSICAL EVOLUTION AND FINAL SPECTRUM

Since the final scalar spectrum could be directly related t
the large angular scale CMB anisotropies the final resul
should be physical, and the metha@svolving the gauges,
matching conditions, etcused to get the results should not
affect the final results. In this section, assuming the lineal
perturbation theory is valid for scales we are interested i
we present the evolution of the perturbation generated durin
the collapsing phase as the background model goes throu
(smooth and nonsingulabounce into the expanding phase.

In the large-scale limit, thus ignorink? terms, Eq.(10)
have the general solution49,13

47Gua®
QDX(k,t):Wa}(k,t)
H(ta(g+P) H
=47TGC(k)gJ (—”HZ—dHEd(k),
(19
k? (tdt
%(k’t)zc(k)_d(k)m Q" (20
k2
@5(k,t)=¢v+m;¢x, (21

where Q= (u+ P)/c2H? with c2=P/u for the fluid, and
Q= ¢?/H? for the field; for notations, séeC and d are

(0]

n ; X : . ,
g:?mode generated in a contracting phase is not interesting
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was correctly pointed out if6], and a scale-invariant case
with p=$ for ¢, corresponds to thé-mode, thus not inter-
sting. For the ekpyrotic scenario wif<1 we have Eq.
19) for 6¢, thuse, , and Eq(18) for 6¢, thuse, . Hence,
while the power spectrum fap, contributes to th€c-mode,
}he one fore, contributes to the-mode. As will be further
explained later, despite its apparent growth in time the

cause it will affect only the-mode which is a real de-

ayng mode in the later expanding phase.

In the case ofp<1, sincek/a|H|x|75|=|t|* P becomes
smalf as we approach the bouncing epoch, the large-scale
general solutions in Eq$19)—(21) are well valid consider-
ing time-varying P(u) or V(¢) including sudden jumps.
Since the solution is valid considering general time-varying
equation of state or potential, the vanishing potential near
bounce in[3] will not affectthe final result as long as the
scale remains in the large scale, see later.

As we already have the general solutions the matching
conditions are not necessary for the case which is supposed
to be an approximation. However, sing® employed some
ad hocmatching conditions to make the scale-invariant spec-
trum of ¢, to survive as the dominant mode in the expanding
phase, in the following we will explain how thproper
matching conditions lead to a consistent result with the one
based on the general solutions in E()—(21).

In [21] two gauge-invariant joining variables were de-
rived which are continuous at the transition accompanying a
discontinuous change in pressure assuming perfect fluids.

spatially dependent two integration constants. We call thd ese are

term with coefficientC the C-mode and the other the
d-mode. TheC-mode is relatively growing and tteemode is
decaying in an expanding phase, whereasimode is rela- . .
tively decaying and thel-mode can grow in a contracting The_se are SIhO\:\m to ge continuous ;(;r .geéwda@aligdz\ 'r?
phase. We emphasize the general character of these solutio"f‘{é"t.rary scale.. nbsltea o, \IllveTCk?n use, In q.b( ) as the |
which are valid considering generally time varying equationcomInuous variable as well. The transitions between scalar

: ; fields, and between the fluid and the field are treated sepa-
of stateP or potentialV( ). Above results are valid for '
K=0: for(rﬁ())re gpeneral forsni)applicable to gendtaind A, rately, see below Ed15) of [21]. For the backgroundi and

see[13]. Notice that thed-modes ofp, and ¢ ; are already @ should be continuous at the transition. Consider two phases
higher order in the |arge_sca|e expansion Compared with thband” with different equation of States, making a transition
one of g, . att;. In the large-scale limit by matching, and¢, in Egs.

As the large-scale power spectra in E@$5),(17) are  (19—(21) we can see that to the leading order in the large-
time-independent, these can be identified with the constarficale expansion we have
C-modes ofp, and ¢, in Egs.(20),(19); in our power-law

Py Ps- (22)

background we havéd,x¢, and ¢, ¢, which follow Cu=6C,
from Egs.(5),(12). Thus, forp>1, Eqgs.(15),(17) both give
the same final scale-invariant spectra in E4). Whereas, ty a(pu+P)
notice the time dependences of E(k6),(18) which are pro- d,=d,+47GC, Tdt‘
portional to|t|/a® and|H|/a. These can be identified with I
the d-modes ofe, and ¢, in Egs.(20),(19); the latter one t1 a(u+P)
—f Tdt (23
1

15,=6+3(aH/k)(1+w)v is the same as the density perturbation
(6) in the comoving gaugew=P/u, P the pressure ang the
energy densityd=du/un. ¢s=¢+ 6/[3(1+w)] is the same a®
in the uniform-density gauges&0). In Bardeen’s notatiofil2] we
have ¢, =®, and 5,=e€,. ¢, is the same ag introduced by
Bardeen if20], and forKk =0= A it becomes the one introduced in
[14]. Notice that{ used in[3,6] is our — ¢, .

This is consistent with the result in EQ.7) of [21]. Thus, to
the leading order in the large-scale expansionGhmode of

2In order to tell the large-scale nature, what we have to compare is
thez"/z andz(1/z)" terms relative tdk? term in Eq.(10).
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¢, remains the same, whereas thenode of¢, is affected ~matic compensating factor @) in Eq. (19). The authors
by the transition and also the previous history of theand of [3] paid particular attention to the regular behavior&f
C-modes[21]. Thus, the evolution of th€-mode does not in such a background, and claimed their matching conditions
depend on the intermediate stages while the perturbations iE@sed on it. The density perturbation in perturbed spacetime

in the large scale. While in the super-horizon scale the effe as nto partlctjlag ?gmf'cang?tcimpar%d W'tr;j the md%m
of the entropic term of the scalar field is negligible, thus thecU'va ure perturbations, and 1ts imgn)dependence is due
urely to multiplication of a time dependent background fac-

jvaerﬂ]e conclusions apply to the case including the field a?or and gauge dependent; in a similar context the kinematic

. L . nature of the growth of the super-horizon scale density per-
These results from the joining method coincide with the . grow up g P

) . . turbation in the expanding phase was emphasizdddh A
general large-scale conservation solutions in EB81—-(21)  ;omplete set of solutions in six different fundamental gauge

which are valid for the time varying equation of st&€u)  conditions are derived in the Table 4 [@], where we find
or potentialV(¢). Thus, our joining method simply confirms  that the d-modes of curvature perturbation in most of the
that by using theproperjoining variables we can recover the gauge condition diverge logarithmically in time. Although
correct results. We note that the results based on the integre d-mode of ¢, diverges more strongly, Barde¢h2] has
solutions or the joining methods anet sensitiveo whether  noted that “this overstates the physical strength of the singu-
the background is expanding or collapsing. Only conditionlarity.” The singular divergences occur if we reach a singu-
required is the large-scale condition where we could ignoréarity at the bouncing epoch with vanishing scale-faetoin
the k?-term in the perturbation equation. Analyses made inpassing we note that the corresponding large-scale general
[6] confirm our general conclusions above in the specificsolution of the gravitational wave [4.3]
situation of the ekpyrotic scenario. it
We note that in the collapsing background, thmodes in a ey e i
Eq. (19) grows in time; it is called the growing solution in Cak,t)=cj(k) dﬁ(k)f a’ (24
[3,6]. We have shown that the leading order scale-invariant
spectrum ofd¢, generated in the collapsing phase wjth  In thew=1 background the3-mode also diverges logarith-
<1 should be identified as tremode. Despite its apparent mically in the same manner as, ,¢ s, etc. As the curvature
growth in time we are not interested in tlismode based on perturbation in most gauge conditions and the gravitational
the following reasons. First, Eq19) is a general solution wave show logarithmic divergences, we believe the big-
valid for time-varying equation of state or potential, thuscrunch singularity withw=1 equation of state is still un-
independently of whether the time-dependence is growing ostable; for—3<w<1 (or —1<w<1 for the gravitational
decaying thel-mode remains as thlemode which decays in wave the perturbations are more singular, see Table 2 of
the eventual expanding phase. Secondly, by using the suddé22]. This conclusiordiffers from the ones irf3,23|.
jump approximation we have shown that tlenode does
not influence theC-mode which is the proper relatively IV. CONCLUSION
growing mode in expanding phase. Thdanode is uninter-
esting afterall: it dies away in a few Hubble expansion as the Our analyses and results are based on two important as-
model enters the expanding phase. sumptions:(i) the contracting and the expanding phases are
In [3] the authorgproposedo use the non-divergent vari- smoothly @ anda are continuousconnected by a nonsin-
ables at the transition as the joining variable, and arrived afjular bounce, andii) the linear theory is valid. The gener-
matching the two coefficients of a variabfg, see below ated spectrum during collapsing phase with O shows blue
Eq. (43) of [3]. In a single component situation we need two spectrum ford¢, which is identified as thec-mode. The
matching conditions, and we should use the matching condauthors of 3] find that ¢, has a scale-invariant spectrum,
tions on two independent variables, not on the two coeffihut[6] and we have shown that it should be identified as the
cients of one variable. The matching conditiggreposedn d-mode which shows apparent growth in the contracting
[3] aredifferentfrom the ones in Eq(22) and we doubt their phase, but decays as the model enters the expanding phase,
validity. thus uninteresting; the matching conditions also show that
Near the bounce of ekpyrotic scenario the potential is reC-mode in expanding phase is not affected by dayode in
stored so that it nearly vanishésee[3]). This gives a situ- previous history as long as the large-scale condition is met.
ation with ax|t|”®* which can be simulated byw=1 ideal  Although this may sound strangeecause the growing solu-
fluid. As long as the seed fluctuations were generated duringion in contracting phase is feeded into the decaying one in
p<1 contracting phase and the scale remains in the largeexpanding phaseit is actually apparent in the general large-
scale during the bounce we have shown that the changingcale solutions in Eq$19)—(21). More detailed analyses us-
potential does not affect thE-mode fluctuation. Thus, our ing some phenemenological bouncing models based on clas-
conclusion about the final spectrum is not affected by such sical gravity confirm these resuli&4].
change in the potential. However, as the ekpyrotic scenario encounters a singular
In the phase with effectively=1 equation of state, the (a=0) bounce[1,3,8 we are not sure whether the above
d-modes ofp, and ¢ 5 in Egs.(20),(21) diverge logarithmi- analyses based on classical gravity can survive such a
cally, whereasp, in Eq. (19) diverges ast| =3, In this case  bounce. This does not mean that the other case suggested in
the d-mode of 4, is finite due tomultiplication of a kine-  [3], that through the bounce tltemode in contracting phase
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is switched into theC-mode in the expanding phase, is plau- be regarded agreliminary ones. This is an unsettled issue at
sible at all; notice thaC andd are coefficients of the two the moment and whether the resulting spectra from full con-
independent solutions. Especially, we note that the matchingideration could be scale-invariant is far from clear. Similar
conditions used i3] aread hocandinconsistentwith the  anticipation is made about whether more complete consider-
known matching conditions in the literatui@] pointed out  ation of the quantum correctiori@hich is actually required
that as model approaches the singular epochitimede fluc- as we approach the transition eppcian make the pre-big-
tuation grows large enough that the linear theory could breakang scenario a less blue and eventually scale-invariant spec-
down. If the bouncing universe is at all possible in futuretra; there is a signature in the right direction, but not enough
string theory context as conjectured[B], and if it involves  at the momenf29].
the singular transition, the fate of perturbations should be Based on the above results, we can make the following
handled in the context dhat string theory. Thus, oucon-  observation. Assuming power-law expansion or contraction
clusion is that either the final spectrum is blue with sup- ax|t|P during the seed generating stage from quantum fluc-
pressed amplitude or the issue should be handled in the fuuations, the observational requirement of the scale-invariant
ture string theory context with a concrete mechanism for thepectrum for the scalar structure requigs 1, thus —1
bounce. In either case we find no supporting argument tecw<— 1. Thus, for an expanding phase we need acceler-
accept the final scale-invariant spectrum based on the analgted expansion, whereas for a contracting phase we need a
ses made ifl1,3]. damped collapse. During the damped collapse, however, we
havek/a|H| becoming large as we approach the bouncing
V. DISCUSSIONS epocht— —0, thus violating the large-scale condition we
. ) . . . used; this can introduce a scale dependent damping in the
As in the pre-big-bang scenario which also gives verysing| spectra. As we have mentioned, in an undamped con-
blue spectrans—1=3=ny [25,2§, in order to become a action with p<1 we have the large-scale condition well

viable model to explain the large-scale structures and thg,e quring the transition, but the resulting spectrum is not
cosmic microwave background radiation anisotropy the eky.gje-invariant.

pyrotic scenario should resort to the other mechanism which
is unknown at the moment; perhaps one can find suitable
parameter space in the isocurvature modes by considering
multicomponents as in the pre-big-bang scend#a]. In We thank Robert Brandenberger, Christopher Gordon,
contrast with the pre-big-bang scenario where the amplitudedustin Khoury, and David Wands for useful discussions. We
of the scalar and tensor structures are comparable, see Egjso thank Paul Steinhardt and Neil Turok for clarifying talks
(42) in [26], since the scalar structure in the ekpyrotic sce-and explanations about their theory during the M-theory
nario is suppressed relative to the tensor one, the isocurvaneeting in Cambridge. We acknowledge Robert Branden-
ture possibility to generate the observed structures is morberger for showing us the early draft 8] before publica-
plausible, except that pure isocurvature modes are unfavoreibn, and Andrei Linde for sharing his opinion on the issue.
by the large-scale structure and the cosmic microwave backAe wish to appreciate Neil Turok for clarifying discussions
ground anisotropy observatiofi28]. on several aspects of the ekpyrotic scenarios and perturba-

Before we have the fully considered perturbations both irtions. This work was supported by Korea Research Founda-
the brane and the bulk, and the concrete mechanism for th#on grants (KRF-99-015-DP0443, 2000-015-DP0080, and
bounce, the results based on the effective field theory shoul@001-041-D0026P
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