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Cosmological structure problem of the ekpyrotic scenario
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and Institute of Astronomy, Madingley Road, Cambridge, United Kingdom
~Received 19 October 2001; published 4 March 2002!

We address the perturbation power spectrum generated in the recently proposed ekpyrotic scenario by
Khoury et al. The issue has been raised recently by Lyth who used the conventional method based on a
conserved variable in the large-scale limit, and derived different results from Khouryet al. The calculation is
straightforward in the uniform-curvature gauge where the generated blue spectrum with a suppressed amplitude
survives as the final spectrum. Whereas, although the metric fluctuations become unimportant and a scale-
invariant spectrum is generated in the zero-shear gauge, the mode does not survive the bounce, but has the
same final result. Therefore, an exponential potential leads to a power-law expansion or contractiona}utup, and
the powerp dictates the final power spectra of both the scalar and tensor structures. Ifp!1 as one realization
of the ekpyrotic scenario suggests, the results arenS21.2.nT and the amplitude of the scalar perturbation
is suppressed relative to that of the gravitational wave by a factorAp/2. Both results confirm Lyth’s. An
observation is made on the constraint on the dynamics of the seed generating stage from the requirement of a
scale-invariant spectrum.

DOI: 10.1103/PhysRevD.65.063514 PACS number~s!: 98.80.Cq, 04.20.Dw, 98.80.Hw
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I. INTRODUCTION

The ekpyrotic universe scenario based on colliding bra
embedded in an extra-dimensional bulk has been sugge
recently by Khouryet al. in @1#. Perhaps because of its am
bitious plan to explain the origin of the hot big bang, a
also of its plan to generate the scale-invariant~Harrison-
Zeldovich @2#! spectrum without resorting to the inflation
type accelerating stage@3#, it has been under close examin
tion @4#. In particular, a quite different scalar spectrum
including both the amplitude and the slope, was derived
Lyth in @5# which is supposed to be fatally threatening t
scenario as a viable addition to the early universe mod
see also@6,7# for recent additional arguments against@1,3#.

If the embedded 3 space literally passes through the
gularity during the collision phase of the branes, thus mak
the (311)-dimensional equations obsolete, probably we
not have a handle on how to calculate the generated sp
from the scenario. It is suggested that the ekpyrotic scena
@1,3,8# in fact go through a singularity in the viewpoint o
our three space, and in such a case we anticipate se
problems associated with the breakdown of the basic eq
tions we are using. In this sense, to address the struc
seed generation mechanism properly in the ekpyrotic s
nario, it is likely that we need to handle the perturbati
analyses in the context of the higher dimension which is
the moment an unsettled issue. If weassume, however, that
the (311)-dimensional effective field theoretical descriptio
works, and the linear perturbation theory holds during
bouncing stage, we can apply some well known tools of
cosmological perturbations developed especially over
past two decades. The current controversy about the sc
spectrum is in this narrow context@1,3,5,6# which we will
also accept in the following. The possibility of breakdown
the linear perturbation theory as the scale factor approa
singularity was pointed out by Lyth in@7#. If we agree, how-
ever, that we can handle the situation using the linear pe
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bation based on the 311 spacetime effective theory with
nonsingular bounce, as we will show below, the results
already well known in the literature which are used to ma
correct estimations@5,6#.

An exponential type potential leads to a power-law exp
sion @9#

a}utup, V52
p~123p!

8pG
e2A16pG/pf, ~1!

which includes the contraction as well. Withp!1 this po-
tential is an example of the ekpyrotic scenario considered
@1,3#. Assuming~i! both the scalar and the tensor perturb
tions were generated from quantum fluctuations~of the field
and the metric! during such a power-law era, and we
pushed outside horizon, the analytic forms of the spec
based on the vacuum expectation values are known in
literature, see Eqs.~47!,~48! in @10# for a summary. Under
the simplest vacuum state, we have

Pŵv

1/2
5A4pGp

uHu
2p

221/(12p)U12p

p U2p/(12p) GS 123p

2~12p! D
G~3/2!

3@k/~auHu!#1/(12p), ~2!

PĈab

1/2
5~2/Ap!Pŵv

1/2, ~3!

where Cab is the tensor-type metric fluctuations, andwv
[w2(aH/k)v introduced by Lukash in@11# is a gauge-
invariant combination which is proportional to the perturb
three-space curvature (w) in the comoving gauge (v[0);
wv is also introduced asfm in @12#, and is the same asR in
@10#. For our notation, see@13#. Overhats indicate the spectr
based on the vacuum expectation value of the quantum fl
tuations of the field and the metric. Now, assuming~ii ! the
scale stays outside horizon while there are transitions~like
©2002 The American Physical Society14-1
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JAI-CHAN HWANG PHYSICAL REVIEW D 65 063514
the inflation to the radiation dominated eras, and radiation
the matter dominated eras!, due to the conservation proper
of the growing solutions of bothwv andCab @see Eqs.~20!,
~24!# we can identify the above spectraPŵv

and PĈab
im-

printed during the quantum generation stage just after
horizon crossing with the classical power spectraPwv

and

PCab
based on on the spatial averages at the second ho

crossing epoch. Therefore, spectral indices for the scala~S!
and the tensor~T! structures,nS21[d ln Pwv

/d ln k andnT

[d ln PCab
/d ln k, become

nS2152/~12p!5nT . ~4!

Thus, in the power-law inflation limit with largep we have
the scale-invariant spectranS21.0.nT .

In the ekpyrotic scenario, although there is no accele
tion phase before the radiation dominated big bang stage
two assumptions~i!, ~ii ! above apply as well; the growin
solutions ofwv and Cab are conserved as long as we ha
the large-scale conditions~see later! are met, and we will see
that these conditions are satisfied during the transition fr
the collapsing to the expanding phases in the ekpyrotic
nario. Thus, now withp!1 we havenS21.2.nT which
differs from the result claimed in@1,3# for nS . Besides the
wrong spectral slope, Eq.~3! shows that the amplitude o
scalar structure is suppressed relative to the one of gra
tional wave, which probably means that the scalar pertur
tion should be negligible as pointed out in@5#.

We still observe the different opinions maintained in t
literature:~i! the final scale-invariant spectrum from the sc
nario @1,3#, ~ii ! the final blue spectrum with negligible am
plitude when the bounce is nonsingular@5,6#, and ~iii ! the
breakdown of the linear theory in the singular bounce@7#.
The issues are manifold involving different gauge conditio
different matching conditions used, and others. In the follo
ing we will address the issues involved in the differences
will indicate how the analyses consistently support~ii ! or
~iii ! instead of~i!. Since there is no controversy over th
tensor spectrum, we will concentrate on the scalar spectr

II. QUANTUM GENERATION: TWO GAUGES

The different opinions between@1,3# and @5,6# can be
partly traced to different generated spectra before the m
makes the bounce. In a naive calculation ignoring the me
fluctuations,@1# showed a scale-invariant spectrum. In a r
orous calculation~based ondf in the uniform-curvature
gauge!, @5#, however, showed that including the metric flu
tuation is important resulting in a blue spectrum with su
pressed amplitude. Then,@3# showed that, in fact, in the zero
shear gauge the metric fluctuation becomes negligible,
confirming the original scale-invariant spectrum; see bel
Different results from different gauge conditions in the larg
scale limit are not surprising because the metric fluctuati
often dominate in that scale. Although the final observa
result should be the same, the intermediate steps could
pend on the gauge conditions we choose for the analyse
the case of the uniform-curvature gauge the later evolutio
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simple as explained below Eq.~3!, and the generated spec
trum simply survives as the final spectrum, whereas
analyses in the zero-shear gauge is somewhat intric
which we will explain in the following and the next section

In order to clarify the situation, in this section we prese
the generated scalar perturbation during the quantum gen
tion stage in the two gauge conditions. We introduce

wdf[w2
H

ḟ
df[2

H

ḟ
dfw , ~5!

which are just different definitions of a gauge-invariant co
bination ofw anddf; wdf can be interpreted as thew in the
uniform-field gauge (df50), and dfw is the df in the
uniform-curvature gauge (w50); asv5(k/a)df/ḟ for the
field @14#, we havewdf5wv . The above relation is powerfu
in analyzing the classical evolution and the quantum gen
tion of scalar perturbation, see@13# for a summary. Whereas
as we will explain later, usingdfx[df2ḟx, which isdf
in the zero-shear gauge (x[0), the analysis becomes som
what involved eventually leading to the same final result.

The equation for the perturbed scalar field is simpl
when viewed in the uniform-curvature gauge@15#

df̈w13Hdḟw1~k2/a21V,ff!dfw

12
Ḣ

H S 3H2
Ḣ

H
12

f̈

ḟ
D dfw50, ~6!

where the terms in the second line come from the me
perturbations, compare Eqs.~7!,~A9! in @15#; other gauge
conditions cause more complicated contributions from
metric @16#. Calling the metric term a metric back reactio
could be misleading because the perturbed field excite
accompanies the metric fluctuations simultaneously. Keep
the contribution from the metric is necessary and makes
equation consistent and even simpler in the sense tha
have a general large-scale solution, see Eq.~20!. When the
background is supported by a near exponential expansion
whole term from the metric, andV,ff separately, nearly van
ish; this explains why the original derivation of the inflatio
ary spectra in@17,14# was successful even without fully con
sidering the metric perturbations. However, situation co
be different in other cases like the power-law expans
~contraction as well! where the ekpyrotic scenario based
exponential potential is one example. In the power-law
pansion in Eq.~1! the metric termcancelswith V,ff exactly,
see Eq.~22! in @15#. It happens that forp!1 theV,ff term
without the metric term gives a contribution which can
translated to thenS.1 scalar power spectrum; this wa
pointed out in@5#. However, this term should be cancelle
exactly by the metric term. With this metric effect taken in
account we end up with a massless free scalar field equa
which can be translated tonS.3 generated spectrum. A
explained below Eq.~3! this generated spectrum simply su
vives the later evolution, see next section.

In the zero-shear gauge the equation fordfx was derived
in Eq. ~27! of @15#:
4-2
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COSMOLOGICAL STRUCTURE PROBLEM OF THE . . . PHYSICAL REVIEW D 65 063514
df̈x1F3H1
8pG~f̈1Hḟ !

Ḣ1k2/a2
ḟGdḟx1F k2

a2 1V,ff14Ḣ

2
8pG~f̈1Hḟ !

Ḣ1k2/a2
f̈Gdfx50, ~7!

which looks quite complicated compared with Eq.~6!. In the
small-scale limit, Eqs.~6!,~7! both reduce to the massles
and free scalar field equation. In the large-scale limit,
have

df̈x13Hdḟx1V,ffdfx14Ḣdfx50. ~8!

Thus, in this limit, the only metric contribution which is th
last term becomes simple. As we haveV,ff522(1
23p)/t2 and 4Ḣ52p/t2, for p.0 the metric contribution
becomes negligible compared withV,ff ; this is in contrast
with the uniform-curvature gauge case where the metric t
cancels exactly with theV,ff term. The authors of@3#
pointed out that the analysis in this gauge, which is rigoro
is the same as the one based on naive calculation igno
the metric perturbations presented in@1#. Thus, the generate
spectrum fordfx is scale-invariant, whereas the one fordfw

is blue. Later, we will show how these two apparently d
ferent results lead to the same final observable spectrum
the expanding phase.

Now, we present a rigorous derivation of the genera
perturbation in the two gauges. Using Mukhanov’s notat
in @18# we have, see also Eqs.~46!,~47!,~68!–~70! in @16#,

u52
4pGz

k2 S v
zD 8

, v5
1

4pGz
~zu!8, ~9!

v91Fk22
z9

z Gv50, u91Fk22
~1/z!9

1/z Gu50, ~10!

v[adfw , u[2wx /ḟ, z[aḟ/H,

~11!

wherewx[w2Hx, and a prime indicates a time derivativ
based onh wheredt[adh. We have

dfx5dfw1~ḟ/H !wx , ~12!

which follows from Eq. ~5! evaluated in the zero-shea
gauge. In the power-law case, using Eqs.~7!,~8! of @3# we
have (pÞ1)

z9

z
52

p~122p!

~12p!2

1

h2 ,
~1/z!9

1/z
5

p

~12p!2

1

h2 . ~13!

Notice that Eqs.~10!,~13! lead to Bessel equations forv and
u with different orders. Using the quantization based on
action formulation of Mukhanov in@18#, we have the mode
function solutions
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Apuhu

2a
@c1~k!Hnv

(1)~kuhu!1c2~k!Hnv

(2)~kuhu!#,

wxk5
uHuApuhu

2kA2pMpl

@c1~k!Hnu

(1)~kuhu!

1c2~k!Hnu

(2)~kuhu!#,

nv5
3p21

2~p21!
, nu5

p11

2~p21!
. ~14!

The quantization condition impliesuc2u22uc1u2561 where
the sign corresponds to the sign ofh; the positive frequency
Minkowski space mode in the small-scale limit correspon
to c150 for positiveh andc250 for negativeh. The other
variableswdf anddfx can be recovered using Eqs.~5!,~12!.
One can check that the solutions in Eqs.~14!,~12! are con-
sistent with Eq.~9!.

The power-spectrum from vacuum quantum fluctuat
is related to the mode function solution asPdf̂w

5k3/(2p2)udfwku2 and similarly forPdf̂x
, @15#. Thus, in the

large-scale limit we can derive@for n50 we have an addi-
tional 2 ln(kuhu) factor#

Pdf̂w

1/2
5

uHu
2p U12p

p U G~nv!

G~3/2!S kuhu
2 D 1/(12p)

3uc22c1u, nv>0, ~15!

5
uHu
2p U12p

p UG~2nv!

G~3/2! S kuhu
2 D (223p)/(12p)

3uc2einvp2c1e2 invpu, nv<0, ~16!

Pdf̂x

1/2
5

uHu
2p

1

2

G~nu!

G~3/2!S kuhu
2 D 1/(12p)

3uc22c1u, nu>0, ~17!

5
uHu
2p

1

2upu
G~2nu!

G~3/2! S kuhu
2 D 2p/(12p)

3uc2einup2c1e2 inupu, nu<0. ~18!

The spectral index of the generated fluctuation isndfw
21

5d ln Pdf̂w
/(d ln k) and similarly for ndfx

. By taking the
vacuum state to match with the positive frequen
Minkowski space mode, thusuc22c1u51, etc., Eqs.~15!,~5!
give results in Eqs.~2!,~4!, whereas Eq.~18! is the one de-
rived in Eq.~17! of @3# for p.0. Both results are consisten
except that what we need for later surviving spectrum is
one fordfw , which is directly related towdf , and not the
one fordfx which doesnot survive, see next section. Tha
is, for p.0, as we follow the later evolution we can sho
that nS5nwdf

5ndfw
Þndfx

. One important fact to notice is
that the spectra in Eqs.~15!,~17! are time independent
whereas the ones in Eqs.~16!,~18! are time dependent.
4-3
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III. CLASSICAL EVOLUTION AND FINAL SPECTRUM

Since the final scalar spectrum could be directly related
the large angular scale CMB anisotropies the final re
should be physical, and the methods~involving the gauges,
matching conditions, etc.! used to get the results should n
affect the final results. In this section, assuming the lin
perturbation theory is valid for scales we are interested
we present the evolution of the perturbation generated du
the collapsing phase as the background model goes thro
~smooth and nonsingular! bounce into the expanding phas

In the large-scale limit, thus ignoringk2 terms, Eq.~10!
have the general solutions@19,13#

wx~k,t !5
4pGma2

k223K
dv~k,t !

54pGC~k!
H

a E
ta~m1P!

H2 dt1
H

a
d~k!,

~19!

wv~k,t !5C~k!2d~k!
k2

4pGE t dt

a3Q
, ~20!

wd~k,t !5wv1
1

12pG~m1P!

k2

a2 wx , ~21!

where Q5(m1P)/cs
2H2 with cs

2[ Ṗ/ṁ for the fluid, and

Q5ḟ2/H2 for the field; for notations, see1. C and d are
spatially dependent two integration constants. We call
term with coefficient C the C-mode and the other th
d-mode. TheC-mode is relatively growing and thed-mode is
decaying in an expanding phase, whereas theC-mode is rela-
tively decaying and thed-mode can grow in a contractin
phase. We emphasize the general character of these solu
which are valid considering generally time varying equat
of stateP(m) or potentialV(f). Above results are valid for
K50; for more general forms applicable to generalK andL,
see@13#. Notice that thed-modes ofwv andwd are already
higher order in the large-scale expansion compared with
one ofwx .

As the large-scale power spectra in Eqs.~15!,~17! are
time-independent, these can be identified with the cons
C-modes ofwv and wx in Eqs. ~20!,~19!; in our power-law
background we havedfw}wv and dfx}wx which follow
from Eqs.~5!,~12!. Thus, forp@1, Eqs.~15!,~17! both give
the same final scale-invariant spectra in Eq.~4!. Whereas,
notice the time dependences of Eqs.~16!,~18! which are pro-
portional to utu/a3 and uHu/a. These can be identified with
the d-modes ofwv and wx in Eqs. ~20!,~19!; the latter one

1dv[d13(aH/k)(11w)v is the same as the density perturbati
(d) in the comoving gauge;w[P/m, P the pressure andm the
energy density,d[dm/m. wd[w1d/@3(11w)# is the same asw
in the uniform-density gauge (d[0). In Bardeen’s notation@12# we
have wx5FH and dv[em . wd is the same asz introduced by
Bardeen in@20#, and forK505L it becomes the one introduced i
@14#. Notice thatz used in@3,6# is our 2wv .
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was correctly pointed out in@6#, and a scale-invariant cas
with p5 2

3 for wv corresponds to thed-mode, thus not inter-
esting. For the ekpyrotic scenario withp!1 we have Eq.
~15! for dfw thuswv , and Eq.~18! for dfx thuswx . Hence,
while the power spectrum forwv contributes to theC-mode,
the one forwx contributes to thed-mode. As will be further
explained later, despite its apparent growth in time
d-mode generated in a contracting phase is not interes
because it will affect only thed-mode which is a real de
cayng mode in the later expanding phase.

In the case ofp,1, sincek/auHu}uhu}utu12p becomes
small2 as we approach the bouncing epoch, the large-s
general solutions in Eqs.~19!–~21! are well valid consider-
ing time-varying P(m) or V(f) including sudden jumps
Since the solution is valid considering general time-vary
equation of state or potential, the vanishing potential n
bounce in@3# will not affectthe final result as long as th
scale remains in the large scale, see later.

As we already have the general solutions the match
conditions are not necessary for the case which is suppo
to be an approximation. However, since@3# employed some
ad hocmatching conditions to make the scale-invariant sp
trum of wx to survive as the dominant mode in the expand
phase, in the following we will explain how theproper
matching conditions lead to a consistent result with the o
based on the general solutions in Eqs.~19!–~21!.

In @21# two gauge-invariant joining variables were d
rived which are continuous at the transition accompanyin
discontinuous change in pressure assuming perfect flu
These are

wx ,wd . ~22!

These are shown to be continuous for generalK and L in
arbitrary scale. Instead ofwx we can usedv in Eq. ~19! as the
continuous variable as well. The transitions between sc
fields, and between the fluid and the field are treated se
rately, see below Eq.~15! of @21#. For the background,a and
ȧ should be continuous at the transition. Consider two pha
I andII with different equation of states, making a transitio
at t1. In the large-scale limit by matchingwx andwd in Eqs.
~19!–~21! we can see that to the leading order in the larg
scale expansion we have

CII 5CI ,

dII 5dI14pGCIF E t1 a~m1P!

H2 dtU
I

2E t1 a~m1P!

H2 dtU
II
G . ~23!

This is consistent with the result in Eq.~17! of @21#. Thus, to
the leading order in the large-scale expansion theC-mode of

2In order to tell the large-scale nature, what we have to compa
the z9/z andz(1/z)9 terms relative tok2 term in Eq.~10!.
4-4
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wv remains the same, whereas thed-mode ofwx is affected
by the transition and also the previous history of thed- and
C-modes@21#. Thus, the evolution of theC-mode does not
depend on the intermediate stages while the perturbation
in the large scale. While in the super-horizon scale the ef
of the entropic term of the scalar field is negligible, thus t
same conclusions apply to the case including the field
well.

These results from the joining method coincide with t
general large-scale conservation solutions in Eqs.~19!–~21!
which are valid for the time varying equation of stateP(m)
or potentialV(f). Thus, our joining method simply confirm
that by using theproper joining variables we can recover th
correct results. We note that the results based on the inte
solutions or the joining methods arenot sensitiveto whether
the background is expanding or collapsing. Only condit
required is the large-scale condition where we could ign
the k2-term in the perturbation equation. Analyses made
@6# confirm our general conclusions above in the spec
situation of the ekpyrotic scenario.

We note that in the collapsing background, thed-modes in
Eq. ~19! grows in time; it is called the growing solution i
@3,6#. We have shown that the leading order scale-invari
spectrum ofdfx generated in the collapsing phase withp
!1 should be identified as thed-mode. Despite its apparen
growth in time we are not interested in thisd-mode based on
the following reasons. First, Eq.~19! is a general solution
valid for time-varying equation of state or potential, th
independently of whether the time-dependence is growin
decaying thed-mode remains as thed-mode which decays in
the eventual expanding phase. Secondly, by using the su
jump approximation we have shown that thed-mode does
not influence theC-mode which is the proper relativel
growing mode in expanding phase. Thus,d-mode is uninter-
esting afterall: it dies away in a few Hubble expansion as
model enters the expanding phase.

In @3# the authorsproposedto use the non-divergent var
ables at the transition as the joining variable, and arrived
matching the two coefficients of a variabledv , see below
Eq. ~43! of @3#. In a single component situation we need tw
matching conditions, and we should use the matching co
tions on two independent variables, not on the two coe
cients of one variable. The matching conditionsproposedin
@3# aredifferentfrom the ones in Eq.~22! and we doubt their
validity.

Near the bounce of ekpyrotic scenario the potential is
stored so that it nearly vanishes~see@3#!. This gives a situ-
ation with a}utu1/3 which can be simulated by aw51 ideal
fluid. As long as the seed fluctuations were generated du
p!1 contracting phase and the scale remains in the la
scale during the bounce we have shown that the chan
potential does not affect theC-mode fluctuation. Thus, ou
conclusion about the final spectrum is not affected by suc
change in the potential.

In the phase with effectivelyw51 equation of state, the
d-modes ofwv andwd in Eqs.~20!,~21! diverge logarithmi-
cally, whereaswx in Eq. ~19! diverges asutu24/3. In this case
the d-mode ofdv is finite due tomultiplication of a kine-
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matic compensating factor 1/(ma2) in Eq. ~19!. The authors
of @3# paid particular attention to the regular behavior ofdv
in such a background, and claimed their matching conditi
based on it. The density perturbation in perturbed spacet
has no particular significance compared with the metric~or
curvature! perturbations, and its time~in!dependence is due
purely to multiplication of a time dependent background fa
tor and gauge dependent; in a similar context the kinem
nature of the growth of the super-horizon scale density p
turbation in the expanding phase was emphasized in@12#. A
complete set of solutions in six different fundamental gau
conditions are derived in the Table 4 of@22#, where we find
that thed-modes of curvature perturbation in most of th
gauge condition diverge logarithmically in time. Althoug
the d-mode ofwx diverges more strongly, Bardeen@12# has
noted that ‘‘this overstates the physical strength of the sin
larity.’’ The singular divergences occur if we reach a sing
larity at the bouncing epoch with vanishing scale-factora. In
passing we note that the corresponding large-scale gen
solution of the gravitational wave is@13#

Cb
a~k,t !5cb

a~k!2db
a~k!E tdt

a3 . ~24!

In thew51 background thedb
a-mode also diverges logarith

mically in the same manner aswv ,wd , etc. As the curvature
perturbation in most gauge conditions and the gravitatio
wave show logarithmic divergences, we believe the b
crunch singularity withw51 equation of state is still un
stable; for2 1

3 ,w,1 ~or 21,w,1 for the gravitational
wave! the perturbations are more singular, see Table 2
@22#. This conclusiondiffers from the ones in@3,23#.

IV. CONCLUSION

Our analyses and results are based on two important
sumptions:~i! the contracting and the expanding phases
smoothly (a and ȧ are continuous! connected by a nonsin
gular bounce, and~ii ! the linear theory is valid. The gene
ated spectrum during collapsing phase withp.0 shows blue
spectrum fordfw which is identified as theC-mode. The
authors of@3# find thatdfx has a scale-invariant spectrum
but @6# and we have shown that it should be identified as
d-mode which shows apparent growth in the contract
phase, but decays as the model enters the expanding p
thus uninteresting; the matching conditions also show t
C-mode in expanding phase is not affected by anyd-mode in
previous history as long as the large-scale condition is m
Although this may sound strange~because the growing solu
tion in contracting phase is feeded into the decaying one
expanding phase!, it is actually apparent in the general larg
scale solutions in Eqs.~19!–~21!. More detailed analyses us
ing some phenemenological bouncing models based on c
sical gravity confirm these results@24#.

However, as the ekpyrotic scenario encounters a sing
(a50) bounce@1,3,8# we are not sure whether the abov
analyses based on classical gravity can survive suc
bounce. This does not mean that the other case suggest
@3#, that through the bounce thed-mode in contracting phas
4-5
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is switched into theC-mode in the expanding phase, is pla
sible at all; notice thatC and d are coefficients of the two
independent solutions. Especially, we note that the match
conditions used in@3# are ad hocand inconsistentwith the
known matching conditions in the literature.@7# pointed out
that as model approaches the singular epoch thed-mode fluc-
tuation grows large enough that the linear theory could br
down. If the bouncing universe is at all possible in futu
string theory context as conjectured in@8#, and if it involves
the singular transition, the fate of perturbations should
handled in the context ofthat string theory. Thus, ourcon-
clusion is that either the final spectrum is blue with su
pressed amplitude or the issue should be handled in the
ture string theory context with a concrete mechanism for
bounce. In either case we find no supporting argumen
accept the final scale-invariant spectrum based on the an
ses made in@1,3#.

V. DISCUSSIONS

As in the pre-big-bang scenario which also gives ve
blue spectranS21.3.nT @25,26#, in order to become a
viable model to explain the large-scale structures and
cosmic microwave background radiation anisotropy the
pyrotic scenario should resort to the other mechanism wh
is unknown at the moment; perhaps one can find suita
parameter space in the isocurvature modes by conside
multicomponents as in the pre-big-bang scenario@27#. In
contrast with the pre-big-bang scenario where the amplitu
of the scalar and tensor structures are comparable, see
~42! in @26#, since the scalar structure in the ekpyrotic sc
nario is suppressed relative to the tensor one, the isocu
ture possibility to generate the observed structures is m
plausible, except that pure isocurvature modes are unfav
by the large-scale structure and the cosmic microwave b
ground anisotropy observations@28#.

Before we have the fully considered perturbations both
the brane and the bulk, and the concrete mechanism for
bounce, the results based on the effective field theory sh
ys
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be regarded aspreliminaryones. This is an unsettled issue
the moment and whether the resulting spectra from full c
sideration could be scale-invariant is far from clear. Simi
anticipation is made about whether more complete consi
ation of the quantum corrections~which is actually required
as we approach the transition epoch! can make the pre-big
bang scenario a less blue and eventually scale-invariant s
tra; there is a signature in the right direction, but not enou
at the moment@29#.

Based on the above results, we can make the follow
observation. Assuming power-law expansion or contract
a}utup during the seed generating stage from quantum fl
tuations, the observational requirement of the scale-invar
spectrum for the scalar structure requiresp@1, thus 21
,w!2 1

3 . Thus, for an expanding phase we need acce
ated expansion, whereas for a contracting phase we ne
damped collapse. During the damped collapse, however
havek/auHu becoming large as we approach the bounc
epoch t→20, thus violating the large-scale condition w
used; this can introduce a scale dependent damping in
final spectra. As we have mentioned, in an undamped c
traction with p,1 we have the large-scale condition we
met during the transition, but the resulting spectrum is
scale-invariant.
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