PHYSICAL REVIEW D, VOLUME 65, 063504
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We determine the behavior of a time-varying fine structure “constait) during the early and late phases
of universes dominated by the kinetic energy of changi(, radiation, dust, curvature, and lambda, respec-
tively. We show that after leaving an initial vacuum-dominated phase during whitttreasesa remains
constant in universes such as our own during the radiation era, and then increases slowly, proportional to a
logarithm of cosmic time, during the dust era. If the universe becomes dominated by a negative curvature or a
positive cosmological constant thentends rapidly to a constant value. The effect of an early period of de
Sitter or power-law inflation is to driver to a constant value. Various cosmological consequences of these
results are discussed with reference to recent observational studies of the valdeoof quasar absorption
spectra and to the existence of life in expanding universes.
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[. INTRODUCTION to reconcile the observations #-11].
In this paper we present a detailed analytic and numerical

One of the problems that cosmologists have faced in theigtudy of the behavior of the cosmological solutions of the
attempts to assess the astronomical consequences of a tiv@rying theory presented iri]. We shall confine our atten-
variation in the fine structure constantshas been the ab- tion to universes containing dust and radiation but analyze
sence of an exact theory describing cosmological models ithe effects of negative spatial curvature and a positive cos-
the presence of varying. Until recently, it has not been mological constant. Extensions to general perfect-fluid cos-
possible to analyze the behavior of varyingzosmologies in  mologies can easily be made if required.
the same self-consistent way that one can explore universes
with Varying G using the Brans-Dicke or more general II. A SIMPLE VARYING-ALPHA THEORY
scalar-tensor theories of gravity. However, we have recently
extended the generalization of Maxwell's equations devel- The idea that the charge on the electron, or the fine struc-
oped by Bekenstein so that this can be done self-consistentlfyre constant, might vary in cosmological time was proposed
In a recent papefl] we reported numerical studies of the in 1948 by Teller[14], who suggested thate(Int)~* was
cosmological evolution of varying- cosmologies with zero implied by Dirac’s proposal thaGxt~* and the numerical
curvature, nonzero cosmological constant, and matter densityoincidence thatf1~ln(thnﬁr), wherem,, is the proton
matching observations. They reveal important properties ofnass. Later, in 1967, Gamol5] suggestedvct as an al-
varying« cosmologies that are shared by other theories irternative to Dirac’s time variation of the gravitation constant,
which “constants” vary via the propagation of a causal sca-G, as a solution of the large numbers coincidence problem
lar field obeying 2nd-order differential equations. Theirbut in 1963 Stanyukovich had also considered varying
structure can be compared with that of varying speed of lighf16] in this context. It had the advantage of not producing a
theories developed in Ref§2—8] and with Kaluza-Klein- terrestrial surface temperature above 100°C in the pre-
like theories in which constants like vary at the same rate Cambrian era when life was known to exist. However, this
as the mean size of any extra dimensions of spade power-law variation in the recent geological past was soon

Recent observations motivate the formulation and detaileduled out by other evidence.
investigation of varyingx cosmological theories. The new  There are a number of possible theories allowing for the
observational many-multiplet technique of Webb and co-variation of the fine structure constant, In the simplest
workers, [9,10], exploits the extra sensitivity gained by cases one takesand# to be constants and attributes varia-
studying relativistic transitions to different ground states ustions in « to changes ire or the permittivity of free space
ing absorption lines in quasar spectra at medium redshift. I¢see[3] for a discussion of the meaning of this choic€his
has provided the first evidence that the fine structure constaig done by lettinge take on the value of a real scalar field
might change with cosmological tin{f®—11]. The trend of  which varies in space and tinfeor more complicated cases,
these results is that the value@fwas lower in the past, with  resorting to complex fields undergoing spontaneous symme-
Aala=—0.72-0.18< 10 ° for z=0.5-3.5. Other investi- try breaking, see the case of fast tracks discussef¥in
gations have claimed preferred nonzero valued a0 to  Thus e;—e=eye(x*), where e is a dimensionless scalar
best fit the cosmic microwave background and big bang nufield and e, is a constant denoting the present valueeof
cleosynthesi$BBN) data atz~10®> andz~10'° respectively ~ This operation implies that some well established assump-
[12,13, but these need to be much larger than those needédibns, like charge conservation, must give wag2]. Never-
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theless, the principles of local gauge invariance and causalityleV and—0.13 MeV, respectively29]. This correction con-

are maintained, as is the scale invariance ofetfield (under  tains theE?/2 contribution(always positivg, but also terms

a suitable choice of dynamicsn addition there is no con- of the formj,a* (wherej, is the quarks’ currentand so

flict with local Lorentz invariance or covariance. cannot be used directly. Hence we take a guiding valye
With this setup in mind, the dynamics of our theory is ~/,~10"*. Furthermore the cosmological value dfde-

then constructed as follows. Sineeis the electromagnetic noted{,,) has to be weighted by the fraction of matter that is

coupling, thee field couples to the gauge field a8, inthe  nonbaryonic, a point ignored in the literatyter,18. Hence,

Lagrangian and the gauge transformation which leaves thg,, depends strongly on the nature of the dark matter and can

action invariant iseA,— €A ,+x ,, rather than the usual take both positive and negative values depending on which

A,—A,*+x .- The gauge-invariant electromagnetic field of Coulomb-energy or magnetostatic energy dominates the

tensor is therefore dark matter of the Universe. It could be thtpy~—1
(superconducting cosmic strings, for whigh =~ —B?/2),
= 21[(6A ) —(eA,) ] 1) or {cpm<<1 (neutrinog. BBN predicts an approximate value
B e vk e for the baryon density of)g~0.03 with a Hubble param-

. . eter ofhy~0.6, implying Qcpy~0.3. Thus depending on
which reduces to the usual form whenis constant. The  he nature of the dark mattef, can be virtually anything
electromagnetic part of the action is still between—1 and +1. The uncertainties in the underlying

quark physics and especially the constituents of the dark
Sem= —f d4x\/—_g|:W|:M, ) matter make it difficult to impose more certain bounds on
L
and the dynamics of the field are controlled by the kinetic W& should not confuse this theory with other similar
term variations. Bekenstein’s theofyl7] does not take into ac-
count the stress energy tensor of the dielectric field in Ein-
1 Ac € et stein’s equations, and their application to cosmology. Dilaton
S=— > —ZJ d4x\/—_g ’”2 , (3)  theories predict a global coupling between the scalar and all
| € other matter fields. As a result they predict variations in other
as in dilaton theories. Herkjs the characteristic length scale constants of nature, and also a d_|fferent c_lynamlqs for aII.the
of the theory introdu'ced for dimensional reasons. This Con_matter coupled to electromagnetism. An interesting applica-
’ : oo .tion of our approach has also recently been made to brane-
stant length scale gives the scale down to which the electn&’Orld cosmology in19]
field around a point charge is accurately Coulombic. The '
corresponding energy scalé¢/l, has to lie between a few
tens of MeV and the Planck scale;10'° GeV, to avoid IIl. THE COSMOLOGICAL EQUATIONS
conflict with experiment.

Our generalization of the scalar theory proposed by Bek
enstein[17] described in Ref[1] includes the gravitational
effects of¢ and gives the field equations

Assuming a homogeneous and isotropic Friedmann metric
with expansion scale fact@(t) and curvature parameté&r
in Eq. (4), we obtain the field equationg£1)

-\ 2
G,,=87G(TMatery 7¥ 4 7emg=2¢y 4 a\” 8nG
pr = BTO(M T Tt T 70 @ [ =) =2 (14 gl — 20 + prexd — 201
The stress tensor of thg field is derived from the Lagrang-
ian L= —(w/2)d 3" and they field obeys the equation +w. ) k N A 6
of motion S 273 (6)
2 . . ,
O zﬁ:;e*wﬁem (50  whereA is the cosmological constant. For the scalar field we

have the propagation equation

where we have defined the coupling constant (7c)/1.
This constant is of order 1 if, as in[1], the energy scale is y = — E _

L . . Y+3HY exd —2¢#]{mpm, (7)
similar to the Planck scale. It is clear thag,, vanishes for a ®
sea of pure radiation since thefy,=(E2—B?)/2=0. We _
therefore expect the variation im to be driven by electro- whereH=a/a is the Hubble expansion rate. Note that the
static and magnetostatic energy-components rather than elesign of the evolution ofy is dependent on the sign df,.
tromagnetic radiation. Since the observational data is consistent witlsnaaller

In order to make quantitative predictions we need to knowalue of« in the past, we will in this paper confine our study

how much of the non-relativistic matter contributes to theto negativevalues of¢,,, in line with our recent discussion in
RHS of Eq.(5). This is parametrized by= L../p, wherep  Ref. [1]. The conservation equations for the noninteracting
is the energy density, and for baryonic mat&y,,=E?/2. radiation and matter densities are

For protons and neutrong, and ¢, can beestimatedfrom _
the electromagnetic corrections to the nucleon mass, 0.63 pmt3Hp,=0, (8
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p +4Hp,=24p, | (9) _reflecting the coupling of the charged mat'Fer to the vari_ations
in ¢, and are approximated by the following asymptotic se-

and sop,>a” 2 andp,e 2¥<a~* . If additional noninteract-  ries:
ing perfect fluids satisfying the equation of stgte=(y
—1)p are added to the universe then they contribute density
termspxa3” to the RHS of Eq(6) as usual. This theory
enables the cosmological consequences of vargitg be
analyzed self-consistently rather than by changing the corifo see this, substitute this in the evolution equatib) for
stant value ofe in the standard theory to another constanty; then it becomes
value, as in the original proposals made in response to the

= %In[ZNx]vL Zl ax . (15)

large numbers coincidencésee Ref[20] for a full discus- 1 1

sion). -+ n(n+1)anx*”*2+§—z na,x "1
We have been unable to solve these equations in general 2x% n=1 =t

except for a few special cases. However, as with the Fried- 1

mann equation of general relativity, it is possible to deter- =5exp{—22 anx "l (16)

mine the overall pattern of cosmological evolution in the n=1

presence of matter, radiation, curvature, and positive COSMQo\w we can pick thea, to cancel out all the terms k™"
logical constant by matched approximations. We shall con- n '

= - ide. Thi i
sider the form of the solutions to these equations when thé 2, on the left-hand side. This requires
universe is successively dominated by the kinetic energy of
the scalar fieldy, pressure-free matter, radiation, negative a,=a;=— X
spatial curvature, and positive cosmological constant. Our
analytic expressions are checked by numerical solutions cﬁ

ence
Egs.(6) and(7).

az=2a,, ay=3az3=3X2a,, etc.

. - 1{1 1 2 2x3 2x3x4
A. The dust-dominated era > ax "=— AR Rae —
= X
We consider first the behavior of dust-filled universes far ! X X X
from the initial singularity. We assume tht=0=A=p,, (r—1)!
so the Friedmann equatid6) reduces to et
X
a 87G w., ) i
3 =3 pm(1+|Zmlexd —24]) + Ez,// , (100  All that is left of Eq.(16) is
. . L . 1 1 1
and seek a self-consistent approximate solution in which the i —exp{ -2 ax "——
scale factor behaves as 2x 22X n=1 2x
a=t2"3 (11) asx—wo. So, at late times, ag=In(t) becomes large, we
have
d . ,
gt (¥a’)=Nexd —2¢], 12 ’ L NI i+ 1 2
==In n —=
2 2| I [In®1* [Inn)]°
where
2 L 2X3 2x3x4 (=D ] a7
=——"pnd’ (13 [In(®1* " [In()]® (In(t)" ’
is a positive constant since we have confined ourselves tglso, sincex=ex2)] we have, ag—,
{m<0. If we put
INIn(t) 1 1 2 2X3
a=2NIn exg — - - -
x=In(t) In(t) [In(H12 [In(H)]® [Int)]*
then Eq.(12) becomes 2% 3X 4 (r—1)! 1 .
W+ ' =Nexd — 2] (14) [In(t)]° [In(t)]"
with N=0 and the prime indicatind/dx. This equation has So, to leading order, we have
awkward behavior. For any power-law behavior of the scale
factor other than(11) a simple exact solution of Eq12) a~2NIn(t)exd — 1 (19
exists. However, the late-time dust solutions are exceptional, In(t) |’

063504-3



BARROW, SANDVIK, AND MAGUEIJO

The nonanalytic e{d/x] behavior shows why Eq.14),

despite looking simple, has awkward behavior. We can sim-

plify the asymptotic serieg18) a bit further because we
know from the definition of the logarithmic integral function
li(x) = [5dt/In(t)=Ei[In(x)] that asx— oo

* I
i) ~extix] 2 :;1 (20)
n=0 X
so the series we have in E@L7) in {- - -} brackets is
Ea(r_})!~exq—xHMeXQXD, 21)
r= X
and so asymptotically
1 1
Y= EIn[ZNx]— Eexp{—x]li(exp[x]). (22
Hence, ag—,
1 1 1 1
o= EIn[ZNIn(t)]— Eli(t)zzln[ZNln(t)]— in[In(t)]
(23)
and so asymptotically
a=exd 2¢]=2Nexg —tli(t)]Int. (24)

This asymptotic behavior is confirmed by solving E(®—
(9) numerically forp,>p,,p,. By using a range of initial
values for ¢ we produce the plot in Fig. 1, in which the
asymptotic solution is clearly approached.

We need to check that the original assumptioraeft?®
in the Friedmann equatia®) is self-consistent. The relevant
terms are

w .
pm(1+|ZmIEXd—2w])+§¢2- (25)
The exp—2y] = o ! falls off ast—o so the py(1+ |
X exd —2¢]) = a~2 term dominates as expected. For the ki-

netic termy? we have

1
=17 %0

and so again the? term falls off faster than™2 ast— o and
the a=t% behavior is an ever-improving approximation at
late times. If we examine the form of the solutic24) we
see thair alwaysincreaseswith time as a logarithmic power
until it grows sufficiently for the exponential term on the
right-hand side of Eq(7) to affect the solution significantly
and slow the rate of increase by the series terms. The rate
which o grows is controlled by the total density of matter in
the model, which is directly proportional to the constaht
defined by Eq.(13). The higher the density of mattéand
henceN) the faster the growth ia. However, because of the
logarithmic time variation, the dependencemy, », and{,,

1

m) @9
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FIG. 1. Numerical solution to the equations in the dust-
dominated epochy is plotted against log(ldy with initial condi-
tions =0, 1, 2, 2.5. The numerical solution clearly approaches the
asymptotic solution, Eq(19), in the expected manner. The time is
plotted in Planck units of 10% s.
is weak. The self-consistency of the usaatt?® dust evo-
lution for the scale factor leaves the standard cosmological
tests unaffected. This is just as one expects for the very
variations indicated by the observations[df].

B. The radiation-dominated era

In the radiation era we assume=A=0 and takea

=t12 as the leading order solution to E@). We must now
solve
d . 3
g (¥ =N exd —2y]. (27)
There is a simple particular exact solution
= lI 8N 1I 28
¢=5In(BN)+ ZIn(v). (28)
Consider a perturbation of this solution bt):
= 1I 8N 1I f
¢=5In(8N)+ 7 In(t) +1(1).
Inserting this in Eq(27) we then get
at foo gt 2f]-1 29
ot 1= g (e -2f1-1). (29)

Let us first consider the case of a large perturbation,
exp(—2f)<1l. The RHS of Eq.(29) then reduces to
—1/(8t?), and through a straightforward integration we get
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.1
f=—_—+Ct 3

4t 30

with C an arbitrary constant. Atsincreases this will approach

—1/(4t) which has the same absolute value and is opposite

in sign to the derivative of the exact soluti¢®8). Thus for
values ofiy much higher than this solutiog is zero. will

stay constant until the perturbatidrbecomes small angr
approaches the exact soluti(2B).

To establish the stability of the exact solution we need to*®

consider small perturbations around it. For snfialle have

. 3., 1
f+zf+ﬁf—o. (3D
Hence,
f=%{Asir[\/gln(t)]vLBcos{\/§In(t)]}. (32)
Thus, we have
1 1 1
g 5IN(BN)+ ZIn(t) + T {Asir{ V3In(t)]
+Bcog V3In(t)1}, (33
azezusNtmexp[%{A sin /3In(t)]
+Buﬁ¢QmUH}$NW2 (34)

ast— o,

We need to check that th}z2 term does not dominate as
t—oo. We have

0101
~—4 =X i i i
v~ 2 oscillations (39

Thus they? term is of thesame orderof t as the radiation
density term if we assuma~t'2. Also, the matter density
term  pu(L1+| £yl ex —2¢1)~ prexi —2i/~a Sex —2¢]
~t732xt~Y2~t~2 is of the same order of time variation as
the radiation-density term because of the variatioa irThe
assumptiora=t'2is still good asymptotically but there is an
algebraic constraint from the Friedmann equaiién
Evaluating the terms in Ed6), we have

M
T

S

1 87G
o +8Nt1/2

i

4t2 36

+—=+—
t2 322

wherep,=Ma3, pexd—2¢]=T'a *,N=—-2M {0, S
is a constant, and we hayg/w~0.01%. So, toO(t™?),
we have the algebraic constraint

)

3w

187G
4 32

4 3
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FIG. 2. Numerical solution to the equations in the radiation-
dominated epoch given different initial conditions. The particular
exact solution, Eq(28), is eventually reached in all cases. The time
is plotted in units of the Planck time.

This generalizes the familiar general relativity € 0) radia-
tion universe case where we halVe= 3/327G.

Again, the asymptotic behavior in Eq83), (34), and the
approach to the exact solutiai28), can be confirmed by
numerical solutions to Eqg6)—(9) in the case of radiation
domination. The results from runs with initial values for

$=-8, 0, 8,y=0 and the same value fo{ are shown in
Fig. 2. The particular solutiof28) is clearly an attractor. It is
also seen that if the system starts off with values higher than
1/2 In(&N), « will stay constant until it reaches the value of
the solution, as predicted above. In cosmological models
containing matter and radiation with densities given by those
observed in our universe this is the case, as seen in the com-
putations shown in Refl]. Hence, during the radiation era
a remains approximately constant until the dust era begins.
This analysis can easily be extended to other equations of
state. If the Friedmann equation contains a perfect fluid with
equation of stat@=(y—1)p with y#0, 1, 2 then there is a
late time solution of Eqs6) and (7) of the form

a= t2/3‘y

(37)

N72
(y—D(2—v)

+ In(t)

¢=%In 7_1)

(39

which reduces to Eq28) when y=4/3. This solution exists
only for fluids with 1<y<2.

C. The curvature-dominated era

In our earlier study1] we showed that the evolution of
stops when the universe becomes dominated by the cosmo-
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logical constant. This behavior also occurs when an oper
universe becomes dominated by negative spatial curvature
In a curvature-dominated era we assume that(Eghas the 187.08 I
Milne universe solution with s
~
a=t. (39
We must now solve Eq27) again. It has the form 1o
d . 3
a(l//t )=Nexd —2¢]. (40
We seek a solution of the form
1 3
W= §+ f(t). (47 ;
Hence, for smalf
. 3. 2N
f+—f+—f=0. (42
t t2
Solutions exist withf «t" and
(43)

n=-1+,1-2N.

SinceN>0 we see that the real part ofis always decaying

and so
(44)

— const

log a

d .
gi(ve™) =Nexd —2y1].

Linearizing in ¢, we have

ast—o, Thus, ag— > we have

FIG. 3. The top plot shows evolution of from radiation domi-
nation through matter domination and into curvature domination
where the change im comes to an end. The lower plot shows
radiation(dotted, matter(solid) and curvaturédashed densities as

fractions of the total energy density .

(47)

(49)

a~ aexg 2At~ V72N
137.06

wherea., andA are constants.
Again we need to check that th¢ term does not come to

dominate. We have?~t2"~1) ast—o and this always
falls faster tharka 2ot ~2 sincen<0, so our approximation
is always good. Thus we have shown that in open Friedmanr ;3744
universesa rapidly approaches a constant value after the
universe becomes curvature dominated. The rate of approac
is controlled by the matter density through the conshint

S
~

Eq. (45).

This behavior is again confirmed by numerical solution.
Figure 3 shows how alpha changes through the dust epoc
and how the change comes to an end as curvature takes ov

o/ P

the expansion.

D. The lambda-dominated era

We can prove what was displayed in the numerical results
of [1], and again in Fig. 4 for thd -dominated era when the
value of A matches that inferred from recent high redshift
supernova observatiorj21]. At late times we assume the
scale factor to take the form

a=exqAt] (46)

wherex=/A/3 and so Eq(6) becomes

063504-
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domination where the change éincomes to an end. The lower plot
shows radiatiorfdotted, matter(solid) and lambdgdashed densi-

ties as fractions of the total energy density.
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I+ 3N =N exg — 3\t]. (48) a\® 4nGo.,
3l =3 ¢ (52)
Hence,
Nt +3HyY=0. (53
= o+ Aexd —3At] —ﬁexq =3\t]—y¢y (49
Thus the exact vacuum solution is
ast—x, where A, are arbitrary constants. Thus ap-
proaches. a constant with double'—exponential rapigiity during Y= tho+ ———In(t), (54)
a A-dominated phase of the universe. The dominant term V127Gw
controlling the late-time approach to the constant solution is
proportional to the matter density via the consthint a=t1" (55)
E. Inflationary universes During this phase the fine structure constantreasesas a

. . . ower law of the comoving proper time amcreases:
The behavior found for lambda-dominated universes enp g prop

ables us to understand what would transpire during a period azexqzw]octl’\’m. (56)
of de Sitter inflation during the early stages of a varying-

cosmology. It is straightforv_vard to extend _thesg conclusions Note that the matter and radiation density terms fall off
to any c_osmolo_gy undergoing power_-law inflation. Supppsqﬂore slowly than §2«t2 as t—0 and exp—2y]

the varyinger Friedmann model contam; a perfect fluid W|.th ot~ Y(3755) They will eventually dominate the evolution at
p=(y—1)p and 0= y=2/3. The expansion scale factor il some later time and the vacuum approximation will break

i ; 213 ; i
:Rgrt;?j:rwg;hi(t)oct 7, while ¢ will be governed, to lead- down. As in Brans-Dicke cosmolo_g[\23,25] we expect the
' general solutions of the cosmological equations to approach
(t27)=0. (50) this vacuum solution as— 0 and to approach the other late-
time asymptotes discussed abovetas».

Hence, for large expansion
IV. DISCUSSION
y=yo+Dt™C Ny, (51) _ o
The overall pattern of cosmological evolution is clear
and soy and o approach a constant with power-lgexpo- from the results of the last section even though it is not
nentia) rapidity during any period of power-lade Sittej possible to solve the Friedmann equation exactly in most

inflation. If we evaluate the kinetic ter@(#?) in the Fried-  Cases. There are five distinct phases:

mann equation and the terr@(Nexg —2¢]) in the ¢ con- (a) Near the initial singularity the kinetic part of the scalar
servation equation, we see that the assumptiona() field « will dominate the expansion and the universe behaves

«t2% is an increasingly good approximation as inflationl'ke a general relativistic Friedmann universe containing a

: i fi b 113
proceeds. Similar behavior would be displayed by a quintesTassless scalar or stiff perfect fluid field, wak=t™". Dur-

sence field that violated the strong-energy condition andd this “vacuum phase,” the fine structure constant in-

came to dominate the expansion of the universe at late timeS'€2S€S as a power law in time. o
It would turn off the time variation of the fine structure con- () AS the universe ages the radiation density will even-

stant in the same manner as the curvature of lambda terrﬁ%f"”y become larger than the kweuhc epergy of gheeld. In
discussed above. Note that thefield itself is not a possible thiS radiation dominated epoch, t e fine structure constant
source of inflationary behavior in these models. We are asVill approach a specific solutionye<t ™™, asymptotically. In
suming that the inflation is contributed, as usual, by somd€2lity, however, if the initial value o is much larger than
other scalar matter field with a self-interaction potential.tn® Specific solution, we will have a potentially very long
However, if this field was charged then these conclusiondransient period of constant evolution, and the universe may
could be altered as the coupling of the inflationary scalaP&come dust dominated white s still constant.
field to the field would be more complicated. (c) After dust domination beginsy slowly approaches an
asymptotic  solution, a=2NIn(t)xexgd —t 4i(t)], where
li(t) is the logarithmic integral function. If the universe has
zero curvature and no cosmological constant this will ap-
As t—0 we expect(just as in Brans-Dicke theoyyto  proach the late time solutioaxIn(t).
encounter a situation where the kinetic energygotiomi- (d) If the universe is open then this increase will be
nates the evolution c(t). This is equivalent to the solution brought to an end when the universe becomes dominated by
approaching a vacuum solution of Eq®), (7) with p,,  spatial curvature and will approach a constant. If the cur-
=p,=0, ast—0. In the flat case wittA =0 (thek#0 and vature is positive the universe will eventually reach an ex-
A #0 cases can be solved straightforwardly and the modelpansion maximum and contract so long as there are no fluids
with p,#0 can also be solved exactly in parametric form present which violate the strong energy condition. The be-
we have havior of closed universes also offers a good approximation

F. The very early universe(t—0)
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to the evolution of bound spherically symmetric density in-until the curvature or lambda eras begintator t, , after

homogeneities of large scale in background universes anghich « remains constant until the presefy, So, matching

will be discussed in a separate paper. these phases of evolution together we can expagss) in

(e) If there is a positive cosmological constant, the changaerms ofa(ty).

in a will be halted when the cosmological constant starts to When the universe is open with=0,

accelerate the universe. If any other quintessential perfect

fluid with equation of state satisfying<<—p/3 is present in t_y)A( teq )1/2( In(te/ty)
ty) \t In(teq/tp)

the universe then it will also ultimately halt the changexin a(t0)=a(tp)<
when it begins to dominate the expansion of the universe.

To obtain a more holistic picture of the evolution it is \yhere we have used our logarithmic formula to express ages
useful to string these different parts together. To a good apy, pjanck time units.
proximation we know that in the vacuum phase from the \yhen the universe is flat With >0,
Planck timet, until t, we have

) ., (60

growth

t\A t Y2/ In(t, It,)
P eq Alp
1 - o
axt¥®  guth A= _ (57) 0 Pt \tgrowtn IN(teq/tp)
V371G w
andt. has been replaced Ly .
In the radiation era we have constant until the growth For the radiation era we consider two extreme cases. We
kicks in at a timetgon. The fine structure constant then look at a constank scenario witht go,th=teq @and a scenario
increases as where it grows throughout the radiation etgy,yin=t, -
Typically, t/t,~ty /tp~.105? andteq/tp~_1053, so in both
ac qoct? (58)  cases for constant evolution in the radiation epoch we get

A A

until teq when the radiation era ends and dust takes over. t,
However, in universes like our own, this growth era is never a(ty)= a(tp)(t—
reached. Then, in the dust era, P

(62

59 111 t,
53 : (tp)g

We approximate the value fdf,~t,~1, so for continuous
axInt (59 growth through the radiation epoch we get

A A
a(tO)Za(tp)C—;) (1053)1/2<:—2)~1026a(tp)(:—;) : (63

Hence there are very different possibilities for the change imeously the observed accelerating universe and the recent
a depending on the evolution in the radiation era. high-redshift evidence for smadl variations in quasar spec-
We have proved this sequence of phases by an exhaustive.
numerical and analytical study. The ensuing scenario finds We have also noted that within this theory the usual an-
two interesting applications, with which we conclude. thropic arguments for a lambda free universe may be re-
In [1] we found that our theory could fit simultaneously versed 28]. Usually, the anthropic principle is used to justify
the varyinga results reported if10,9,11 and the evidence the near flatness anti~0 nature of our universe since large
for an accelerating universe presentedad]. We noted the curvature and lambda prevent the formation of galaxies and
curious fact that there is a coincidence between the redshifitars from small perturbations. We have shown that it might
at which the universe starts accelerating and the redshitte anthropicallydisadvantageousor a universe to lie too
where variations irx have been observed but below whigh close to flatness or for the cosmological constant to lie too
must stabilize to be in accord with geochemical evidenceclose to zero. This constraint occurs because “constants”
[26,27]. This may be explained dynamically in our theory by change throughout the dust-dominated period when the cur-
the fact that the onset of lambda domination suppressegture and lambda do not influence the expansion of the
variations ina. Thereforea remains almost constant in the universe. The onset of a period of lambda or curvature domi-
radiation era, undergoes a small logarithmic time increase ination has the property of dynamically stabilizing the con-
the matter era, but approaches a constant value when tistants, thereby creating favorable conditions for the emer-
universe starts accelerating because of the presence of a pogence of structures. If the universe were exactly flat and
tive cosmological constant. Hence, we comply with geologi-lambda were exactly zero thenwould continue to grow to
cal, nucleosynthesis, and microwave background radiatioa value that appears to make living complexity impossible
constraints on time variations in, while fitting simulta-  [28].
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