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Behavior of varying-alpha cosmologies
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We determine the behavior of a time-varying fine structure ‘‘constant’’a(t) during the early and late phases
of universes dominated by the kinetic energy of changinga(t), radiation, dust, curvature, and lambda, respec-
tively. We show that after leaving an initial vacuum-dominated phase during whicha increases,a remains
constant in universes such as our own during the radiation era, and then increases slowly, proportional to a
logarithm of cosmic time, during the dust era. If the universe becomes dominated by a negative curvature or a
positive cosmological constant thena tends rapidly to a constant value. The effect of an early period of de
Sitter or power-law inflation is to drivea to a constant value. Various cosmological consequences of these
results are discussed with reference to recent observational studies of the value ofa from quasar absorption
spectra and to the existence of life in expanding universes.
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I. INTRODUCTION

One of the problems that cosmologists have faced in t
attempts to assess the astronomical consequences of a
variation in the fine structure constantsa has been the ab
sence of an exact theory describing cosmological model
the presence of varyinga. Until recently, it has not been
possible to analyze the behavior of varying-a cosmologies in
the same self-consistent way that one can explore unive
with varying G using the Brans-Dicke or more gener
scalar-tensor theories of gravity. However, we have rece
extended the generalization of Maxwell’s equations dev
oped by Bekenstein so that this can be done self-consiste
In a recent paper@1# we reported numerical studies of th
cosmological evolution of varying-a cosmologies with zero
curvature, nonzero cosmological constant, and matter den
matching observations. They reveal important properties
varying-a cosmologies that are shared by other theories
which ‘‘constants’’ vary via the propagation of a causal sc
lar field obeying 2nd-order differential equations. The
structure can be compared with that of varying speed of li
theories developed in Refs.@2–8# and with Kaluza-Klein-
like theories in which constants likea vary at the same rate
as the mean size of any extra dimensions of space@24#.

Recent observations motivate the formulation and deta
investigation of varying-a cosmological theories. The new
observational many-multiplet technique of Webb and
workers, @9,10#, exploits the extra sensitivity gained b
studying relativistic transitions to different ground states
ing absorption lines in quasar spectra at medium redshif
has provided the first evidence that the fine structure cons
might change with cosmological time@9–11#. The trend of
these results is that the value ofa was lower in the past, with
Da/a520.7260.1831025 for z'0.5–3.5. Other investi-
gations have claimed preferred nonzero values ofDa,0 to
best fit the cosmic microwave background and big bang
cleosynthesis~BBN! data atz'103 andz'1010 respectively
@12,13#, but these need to be much larger than those nee
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to reconcile the observations of@9–11#.
In this paper we present a detailed analytic and numer

study of the behavior of the cosmological solutions of t
varying theory presented in@1#. We shall confine our atten
tion to universes containing dust and radiation but anal
the effects of negative spatial curvature and a positive c
mological constant. Extensions to general perfect-fluid c
mologies can easily be made if required.

II. A SIMPLE VARYING-ALPHA THEORY

The idea that the charge on the electron, or the fine st
ture constant, might vary in cosmological time was propos
in 1948 by Teller@14#, who suggested thata}(lnt)21 was
implied by Dirac’s proposal thatG}t21 and the numerical
coincidence thata21; ln(hc/Gmpr

2 ), wherempr is the proton
mass. Later, in 1967, Gamow@15# suggesteda}t as an al-
ternative to Dirac’s time variation of the gravitation consta
G, as a solution of the large numbers coincidence prob
but in 1963 Stanyukovich had also considered varyinga
@16# in this context. It had the advantage of not producing
terrestrial surface temperature above 100 °C in the p
Cambrian era when life was known to exist. However, t
power-law variation in the recent geological past was so
ruled out by other evidence.

There are a number of possible theories allowing for
variation of the fine structure constant,a. In the simplest
cases one takesc and\ to be constants and attributes vari
tions in a to changes ine or the permittivity of free space
~see@3# for a discussion of the meaning of this choice!. This
is done by lettinge take on the value of a real scalar fie
which varies in space and time~for more complicated cases
resorting to complex fields undergoing spontaneous sym
try breaking, see the case of fast tracks discussed in@7#!.
Thus e0→e5e0e(xm), where e is a dimensionless scala
field and e0 is a constant denoting the present value ofe.
This operation implies that some well established assu
tions, like charge conservation, must give way@22#. Never-
©2002 The American Physical Society04-1
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BARROW, SANDVIK, AND MAGUEIJO PHYSICAL REVIEW D65 063504
theless, the principles of local gauge invariance and caus
are maintained, as is the scale invariance of thee field ~under
a suitable choice of dynamics!. In addition there is no con
flict with local Lorentz invariance or covariance.

With this setup in mind, the dynamics of our theory
then constructed as follows. Sincee is the electromagnetic
coupling, thee field couples to the gauge field aseAm in the
Lagrangian and the gauge transformation which leaves
action invariant iseAm→eAm1x ,m , rather than the usua
Am→Am1x ,m . The gauge-invariant electromagnetic fie
tensor is therefore

Fmn5
1

e
@~eAn! ,m2~eAm! ,n#, ~1!

which reduces to the usual form whene is constant. The
electromagnetic part of the action is still

Sem52E d4xA2gFmnFmn , ~2!

and the dynamics of thee field are controlled by the kinetic
term

Se52
1

2

\c

l 2 E d4xA2g
e ,me ,m

e2
, ~3!

as in dilaton theories. Here,l is the characteristic length sca
of the theory, introduced for dimensional reasons. This c
stant length scale gives the scale down to which the elec
field around a point charge is accurately Coulombic. T
corresponding energy scale,\c/ l , has to lie between a few
tens of MeV and the Planck scale,;1019 GeV, to avoid
conflict with experiment.

Our generalization of the scalar theory proposed by B
enstein@17# described in Ref.@1# includes the gravitationa
effects ofc and gives the field equations

Gmn58pG~Tmn
matter1Tmn

c 1Tmn
eme22c!. ~4!

The stress tensor of thec field is derived from the Lagrang
ian Lc52(v/2)]mc]mc and thec field obeys the equation
of motion

hc5
2

v
e22cLem ~5!

where we have defined the coupling constantv5(\c)/ l 2.
This constant is of order;1 if, as in @1#, the energy scale is
similar to the Planck scale. It is clear thatLem vanishes for a
sea of pure radiation since thenLem5(E22B2)/250. We
therefore expect the variation ina to be driven by electro-
static and magnetostatic energy-components rather than
tromagnetic radiation.

In order to make quantitative predictions we need to kn
how much of the non-relativistic matter contributes to t
RHS of Eq.~5!. This is parametrized byz[Lem/r, wherer
is the energy density, and for baryonic matterLem5E2/2.
For protons and neutronszp and zn can beestimatedfrom
the electromagnetic corrections to the nucleon mass,
06350
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MeV and20.13 MeV, respectively@29#. This correction con-
tains theE2/2 contribution~always positive!, but also terms
of the form j mam ~where j m is the quarks’ current! and so
cannot be used directly. Hence we take a guiding valuezp
'zn;1024. Furthermore the cosmological value ofz ~de-
notedzm! has to be weighted by the fraction of matter that
nonbaryonic, a point ignored in the literature@17,18#. Hence,
zm depends strongly on the nature of the dark matter and
take both positive and negative values depending on wh
of Coulomb-energy or magnetostatic energy dominates
dark matter of the Universe. It could be thatzCDM'21
~superconducting cosmic strings, for whichLem'2B2/2),
or zCDM!1 ~neutrinos!. BBN predicts an approximate valu
for the baryon density ofVB'0.03 with a Hubble param-
eter ofh0'0.6, implying VCDM'0.3. Thus depending on
the nature of the dark matterzm can be virtually anything
between21 and 11. The uncertainties in the underlyin
quark physics and especially the constituents of the d
matter make it difficult to impose more certain bounds
zm.

We should not confuse this theory with other simil
variations. Bekenstein’s theory@17# does not take into ac
count the stress energy tensor of the dielectric field in E
stein’s equations, and their application to cosmology. Dila
theories predict a global coupling between the scalar and
other matter fields. As a result they predict variations in ot
constants of nature, and also a different dynamics for all
matter coupled to electromagnetism. An interesting appli
tion of our approach has also recently been made to bra
world cosmology in@19#.

III. THE COSMOLOGICAL EQUATIONS

Assuming a homogeneous and isotropic Friedmann me
with expansion scale factora(t) and curvature parameterk
in Eq. ~4!, we obtain the field equations (c[1)

S ȧ

a
D 2

5
8pG

3 S rm~11uzmuexp@22c#!1r rexp@22c#

1
v

2
ċ2D2

k

a2
1

L

3
, ~6!

whereL is the cosmological constant. For the scalar field
have the propagation equation

c̈13Hċ5 2
2

v
exp@22c#zmrm , ~7!

whereH[ȧ/a is the Hubble expansion rate. Note that t
sign of the evolution ofc is dependent on the sign ofzm.
Since the observational data is consistent with asmaller
value ofa in the past, we will in this paper confine our stud
to negativevalues ofzm, in line with our recent discussion in
Ref. @1#. The conservation equations for the noninteract
radiation and matter densities are

ṙm13Hrm50, ~8!
4-2
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ṙ r14Hr r52ċr r , ~9!

and sorm}a23 andr re
22c}a24 . If additional noninteract-

ing perfect fluids satisfying the equation of statep5(g
21)r are added to the universe then they contribute den
termsr}a23g to the RHS of Eq.~6! as usual. This theory
enables the cosmological consequences of varyinge to be
analyzed self-consistently rather than by changing the c
stant value ofe in the standard theory to another consta
value, as in the original proposals made in response to
large numbers coincidences~see Ref.@20# for a full discus-
sion!.

We have been unable to solve these equations in gen
except for a few special cases. However, as with the Fr
mann equation of general relativity, it is possible to det
mine the overall pattern of cosmological evolution in t
presence of matter, radiation, curvature, and positive cos
logical constant by matched approximations. We shall c
sider the form of the solutions to these equations when
universe is successively dominated by the kinetic energy
the scalar fieldc, pressure-free matter, radiation, negati
spatial curvature, and positive cosmological constant.
analytic expressions are checked by numerical solution
Eqs.~6! and ~7!.

A. The dust-dominated era

We consider first the behavior of dust-filled universes
from the initial singularity. We assume thatk505L5rg ,
so the Friedmann equation~6! reduces to

S ȧ

a
D 2

5
8pG

3 S rm~11uzmuexp@22c#!1
v

2
ċ2D , ~10!

and seek a self-consistent approximate solution in which
scale factor behaves as

a5t2/3, ~11!

d

dt
~ ċa3!5Nexp@22c#, ~12!

where

N[ 2
2zm

v
rma3 ~13!

is a positive constant since we have confined ourselve
zm,0. If we put

x5 ln~ t !

then Eq.~12! becomes

c91c85Nexp@22c# ~14!

with N>0 and the prime indicatingd/dx. This equation has
awkward behavior. For any power-law behavior of the sc
factor other than~11! a simple exact solution of Eq.~12!
exists. However, the late-time dust solutions are exceptio
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reflecting the coupling of the charged matter to the variatio
in c, and are approximated by the following asymptotic s
ries:

c5
1

2
ln@2Nx#1 (

n51

`

anx2n. ~15!

To see this, substitute this in the evolution equation~14! for
c; then it becomes

2
1

2x2
1 (

n51
n~n11!anx2n221

1

2x
2 (

n51
nanx2n21

5
1

2x
expF22(

n51
anx2nG . ~16!

Now we can pick thean to cancel out all the terms inx2r ,
r>2, on the left-hand side. This requires

a25a152
1

2
, a352a2 , a453a35332a2 , etc.

Hence

(
n51

anx2n52
1

2 H 1

x
1

1

x2
1

2

x3
1

233

x4
1

23334

x5
1 . . .

1
~r 21!!

xr
1•••J .

All that is left of Eq. ~16! is

1

2x
5

1

2x
expF22(

n51
anx2nG→ 1

2x

as x→`. So, at late times, asx5 ln(t) becomes large, we
have

c5
1

2
ln$2N@ ln~ t !#%2

1

2 H 1

ln~ t !
1

1

@ ln~ t !#2
1

2

@ ln~ t !#3

1
233

@ ln~ t !#4
1

23334

@ ln~ t !#5
1•••1

~r 21!!

~ ln~ t !!r
1•••J ; ~17!

also, sincea5exp@2c# we have, ast→`,

a52Nln~ t !3expF2
1

ln~ t !
2

1

@ ln~ t !#2
2

2

@ ln~ t !#3
2

233

@ ln~ t !#4

2
23334

@ ln~ t !#5
2•••2

~r 21!!

@ ln~ t !# r
2•••G . ~18!

So, to leading order, we have

a;2Nln~ t !expF2
1

ln~ t !G . ~19!
4-3



im

n

e

t

ki

at

r
e

te
in

e

ical
ery

on,

et

st-

the
is

BARROW, SANDVIK, AND MAGUEIJO PHYSICAL REVIEW D65 063504
The nonanalytic exp@1/x# behavior shows why Eq.~14!,
despite looking simple, has awkward behavior. We can s
plify the asymptotic series~18! a bit further because we
know from the definition of the logarithmic integral functio
li( x)5*0

xdt/ ln(t)5Ei@ ln(x)# that asx→`

li ~x!;exp@x# (
n50

`
n!

xn11
~20!

so the series we have in Eq.~17! in $•••% brackets is

(
r 51

`
~r 21!!

xr
;exp@2x# li ~exp@x# !, ~21!

and so asymptotically

c5
1

2
ln@2Nx#2

1

2
exp@2x# li ~exp@x# !. ~22!

Hence, ast→`,

c5
1

2
ln@2Nln~ t !#2

1

2t
li ~ t !5

1

2
ln@2Nln~ t !#2

1

2t
Ei@ ln~ t !#

~23!

and so asymptotically

a5exp@2c#52Nexp@2t21li ~ t !# lnt. ~24!

This asymptotic behavior is confirmed by solving Eqs.~6!–
~9! numerically forrm@r r ,rc . By using a range of initial
values forc we produce the plot in Fig. 1, in which th
asymptotic solution is clearly approached.

We need to check that the original assumption ofa5t2/3

in the Friedmann equation~6! is self-consistent. The relevan
terms are

rm~11uzmuexp@22c#!1
v

2
ċ2. ~25!

The exp@22c# 5 a21 falls off as t→` so therm(11uzmu
3exp@22c#) } a23 term dominates as expected. For the
netic termċ2 we have

ċ5
1

t
3OS 1

ln~ t ! D ~26!

and so again theċ2 term falls off faster thant22 ast→` and
the a5t2/3 behavior is an ever-improving approximation
late times. If we examine the form of the solution~24! we
see thata alwaysincreaseswith time as a logarithmic powe
until it grows sufficiently for the exponential term on th
right-hand side of Eq.~7! to affect the solution significantly
and slow the rate of increase by the series terms. The ra
which a grows is controlled by the total density of matter
the model, which is directly proportional to the constantN,
defined by Eq.~13!. The higher the density of matter~and
henceN) the faster the growth ina. However, because of th
logarithmic time variation, the dependence onrm , v, andzm
06350
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is weak. The self-consistency of the usuala5t2/3 dust evo-
lution for the scale factor leaves the standard cosmolog
tests unaffected. This is just as one expects for the v
variations indicated by the observations of@11#.

B. The radiation-dominated era

In the radiation era we assumek5L50 and takea
5t1/2 as the leading order solution to Eq.~6!. We must now
solve

d

dt
~ ċa3!5N exp@22c#. ~27!

There is a simple particular exact solution

c5
1

2
ln~8N!1

1

4
ln~ t !. ~28!

Consider a perturbation of this solution byf (t):

c5
1

2
ln~8N!1

1

4
ln~ t !1 f ~ t !.

Inserting this in Eq.~27! we then get

f̈ 1
3

2t
ḟ 5

1

8t2
~exp@22 f #21!. ~29!

Let us first consider the case of a large perturbati
exp(22f)!1. The RHS of Eq. ~29! then reduces to
21/(8t2), and through a straightforward integration we g

FIG. 1. Numerical solution to the equations in the du
dominated epoch.c is plotted against log(logt), with initial condi-
tionsc50, 1, 2, 2.5. The numerical solution clearly approaches
asymptotic solution, Eq.~19!, in the expected manner. The time
plotted in Planck units of 10243 s.
4-4
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ḟ 52
1

4t
1Ct23/2 ~30!

with C an arbitrary constant. Ast increases this will approac
21/(4t) which has the same absolute value and is oppo
in sign to the derivative of the exact solution~28!. Thus for
values ofc much higher than this solutionċ is zero.c will
stay constant until the perturbationf becomes small andc
approaches the exact solution~28!.

To establish the stability of the exact solution we need
consider small perturbations around it. For smallf we have

f̈ 1
3

2t
ḟ 1

1

4t2
f 50. ~31!

Hence,

f 5
1

t
$Asin@A3ln~ t !#1B cos@A3ln~ t !#%. ~32!

Thus, we have

c→ 1

2
ln~8N!1

1

4
ln~ t !1

1

t
$A sin@A3ln~ t !#

1B cos@A3ln~ t !#%, ~33!

a5e2c→8Nt1/2expF2

t
$A sin@A3ln~ t !#

1B cos@A3ln~ t !#%G→8Nt1/2 ~34!

as t→`.
We need to check that theċ2 term does not dominate a

t→`. We have

ċ;
1

4t
1

1

t2
3oscillations. ~35!

Thus theċ2 term is of thesame orderof t as the radiation
density term if we assumea;t1/2. Also, the matter density
term rm(11uzmuexp@22c#);rmexp@22c#;a23exp@22c#
;t23/23t21/2;t22 is of the same order of time variation a
the radiation-density term because of the variation ina. The
assumptiona5t1/2 is still good asymptotically but there is a
algebraic constraint from the Friedmann equation~6!.

Evaluating the terms in Eq.~6!, we have

1

4t2
5

8pG

3 S M

t3/2F11
S

8Nt1/2G D 1
G

t2
1

v

32t2
~36!

whererm5Ma23, rgexp@22c#5Ga24, N522Mzmv21 , S
is a constant, and we haverm/v;0.01%. So, toO(t22),
we have the algebraic constraint

1

4
5

8pG

3 F3v

32
1GG .
06350
te
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This generalizes the familiar general relativity (v50) radia-
tion universe case where we haveG53/32pG.

Again, the asymptotic behavior in Eqs.~33!, ~34!, and the
approach to the exact solution~28!, can be confirmed by
numerical solutions to Eqs.~6!–~9! in the case of radiation
domination. The results from runs with initial values fo
c528, 0, 8, ċ50 and the same value forN are shown in
Fig. 2. The particular solution~28! is clearly an attractor. It is
also seen that if the system starts off with values higher t
1/2 ln(8N), c will stay constant until it reaches the value
the solution, as predicted above. In cosmological mod
containing matter and radiation with densities given by tho
observed in our universe this is the case, as seen in the c
putations shown in Ref.@1#. Hence, during the radiation er
a remains approximately constant until the dust era begi

This analysis can easily be extended to other equation
state. If the Friedmann equation contains a perfect fluid w
equation of statep5(g21)r with gÞ0, 1, 2 then there is a
late time solution of Eqs.~6! and ~7! of the form

a5t2/3g, ~37!

c5
1

2
lnF Ng2

~g21!~22g!G1S g21

g D ln~ t !

~38!

which reduces to Eq.~28! wheng54/3. This solution exists
only for fluids with 1,g,2.

C. The curvature-dominated era

In our earlier study@1# we showed that the evolution ofa
stops when the universe becomes dominated by the cos

FIG. 2. Numerical solution to the equations in the radiatio
dominated epoch given different initial conditions. The particu
exact solution, Eq.~28!, is eventually reached in all cases. The tim
is plotted in units of the Planck time.
4-5
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logical constant. This behavior also occurs when an o
universe becomes dominated by negative spatial curva
In a curvature-dominated era we assume that Eq.~6! has the
Milne universe solution with

a5t. ~39!

We must now solve Eq.~27! again. It has the form

d

dt
~ ċt3!5N exp@22c#. ~40!

We seek a solution of the form

c5
1

2
1 f ~ t !. ~41!

Hence, for smallf

f̈ 1
3

t
ḟ 1

2N

t2
f 50. ~42!

Solutions exist withf }tn and

n5216A122N. ~43!

SinceN.0 we see that the real part ofn is always decaying
and so

c→const ~44!

as t→`. Thus, ast→` we have

a;a`exp@2At216A122N#, ~45!

wherea` andA are constants.
Again we need to check that theċ2 term does not come to

dominate. We haveċ2;t2(n21) as t→` and this always
falls faster thanka22}t22 sincen<0, so our approximation
is always good. Thus we have shown that in open Friedm
universesa rapidly approaches a constant value after
universe becomes curvature dominated. The rate of appr
is controlled by the matter density through the constantN in
Eq. ~45!.

This behavior is again confirmed by numerical solutio
Figure 3 shows how alpha changes through the dust ep
and how the change comes to an end as curvature takes
the expansion.

D. The lambda-dominated era

We can prove what was displayed in the numerical res
of @1#, and again in Fig. 4 for theL-dominated era when th
value of L matches that inferred from recent high redsh
supernova observations@21#. At late times we assume th
scale factor to take the form

a5exp@lt# ~46!

wherel[AL/3 and so Eq.~6! becomes
06350
n
re.

n
e
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ver

ts

t

d

dt
~ ċe3lt!5N exp@22c#. ~47!

Linearizing inc, we have

FIG. 3. The top plot shows evolution ofa from radiation domi-
nation through matter domination and into curvature dominat
where the change ina comes to an end. The lower plot show
radiation~dotted!, matter~solid! and curvature~dashed! densities as
fractions of the total energy density .

FIG. 4. The top figure shows numerical evolution ofa from
radiation domination through matter domination and into lamb
domination where the change ina comes to an end. The lower plo
shows radiation~dotted!, matter~solid! and lambda~dashed! densi-
ties as fractions of the total energy density.
4-6
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c̈13lċ5N exp@23lt#. ~48!

Hence,

c5c01A exp@23lt#2
Nt

3l
exp@23lt#→c0 ~49!

as t→`, where A,c0 are arbitrary constants. Thusa ap-
proaches a constant with double-exponential rapidity dur
a L-dominated phase of the universe. The dominant te
controlling the late-time approach to the constant solution
proportional to the matter density via the constantN.

E. Inflationary universes

The behavior found for lambda-dominated universes
ables us to understand what would transpire during a pe
of de Sitter inflation during the early stages of a varyinga
cosmology. It is straightforward to extend these conclusi
to any cosmology undergoing power-law inflation. Suppo
the varying-a Friedmann model contains a perfect fluid wi
p5(g21)r and 0,g,2/3. The expansion scale factor wi
increase witha(t)}t2/3g, while c will be governed, to lead-
ing order, by

~ ċt2/g!50. ~50!

Hence, for large expansion

c5c01Dt2(22g)/g→c0 ~51!

and soc anda approach a constant with power-law~expo-
nential! rapidity during any period of power-law~de Sitter!
inflation. If we evaluate the kinetic termO(ċ2) in the Fried-
mann equation and the termsO(Nexp@22c#) in the c con-
servation equation, we see that the assumption ofa(t)
}t2/3g is an increasingly good approximation as inflati
proceeds. Similar behavior would be displayed by a quin
sence field that violated the strong-energy condition a
came to dominate the expansion of the universe at late tim
It would turn off the time variation of the fine structure co
stant in the same manner as the curvature of lambda te
discussed above. Note that thec field itself is not a possible
source of inflationary behavior in these models. We are
suming that the inflation is contributed, as usual, by so
other scalar matter field with a self-interaction potenti
However, if this field was charged then these conclusi
could be altered as the coupling of the inflationary sca
field to thec field would be more complicated.

F. The very early universe„t\0…

As t→0 we expect~just as in Brans-Dicke theory! to
encounter a situation where the kinetic energy ofc domi-
nates the evolution ofa(t). This is equivalent to the solution
approaching a vacuum solution of Eqs.~6!, ~7! with rm
5r r50, ast→0. In the flat case withL50 ~the kÞ0 and
LÞ0 cases can be solved straightforwardly and the mo
with r rÞ0 can also be solved exactly in parametric for!
we have
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ċ2, ~52!

c̈13Hċ50. ~53!

Thus the exact vacuum solution is

c5c01
1

A12pGv
ln~ t !, ~54!

a5t1/3. ~55!

During this phase the fine structure constantincreasesas a
power law of the comoving proper time ast increases:

a5exp@2c#}t1/A3pGv. ~56!

Note that the matter and radiation density terms fall
more slowly than ċ2}t22 as t→0 and exp@22c#
}t21/(A3pGv). They will eventually dominate the evolution a
some later time and the vacuum approximation will bre
down. As in Brans-Dicke cosmology@23,25# we expect the
general solutions of the cosmological equations to appro
this vacuum solution ast→0 and to approach the other late
time asymptotes discussed above ast→`.

IV. DISCUSSION

The overall pattern of cosmological evolution is cle
from the results of the last section even though it is n
possible to solve the Friedmann equation exactly in m
cases. There are five distinct phases:

~a! Near the initial singularity the kinetic part of the scal
field c will dominate the expansion and the universe beha
like a general relativistic Friedmann universe containing
massless scalar or stiff perfect fluid field, witha5t1/3. Dur-
ing this ‘‘vacuum phase,’’ the fine structure constant i
creases as a power law in time.

~b! As the universe ages the radiation density will eve
tually become larger than the kinetic energy of thec field. In
this radiation dominated epoch, the fine structure cons
will approach a specific solution,a}t1/2, asymptotically. In
reality, however, if the initial value ofa is much larger than
the specific solution, we will have a potentially very lon
transient period of constant evolution, and the universe m
become dust dominated whilea is still constant.

~c! After dust domination begins,a slowly approaches an
asymptotic solution, a52Nln(t)3exp@2t21li( t)#, where
li( t) is the logarithmic integral function. If the universe ha
zero curvature and no cosmological constant this will a
proach the late time solutiona} ln(t).

~d! If the universe is open then this increase will b
brought to an end when the universe becomes dominate
spatial curvature anda will approach a constant. If the cur
vature is positive the universe will eventually reach an e
pansion maximum and contract so long as there are no fl
present which violate the strong energy condition. The
havior of closed universes also offers a good approxima
4-7
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to the evolution of bound spherically symmetric density
homogeneities of large scale in background universes
will be discussed in a separate paper.

~e! If there is a positive cosmological constant, the chan
in a will be halted when the cosmological constant starts
accelerate the universe. If any other quintessential per
fluid with equation of state satisfyingp,2r/3 is present in
the universe then it will also ultimately halt the change ina
when it begins to dominate the expansion of the univers

To obtain a more holistic picture of the evolution it
useful to string these different parts together. To a good
proximation we know that in the vacuum phase from t
Planck timetp until tv we have

a}t1/3; a}tA; A5
1

A3pGv
. ~57!

In the radiation era we havea constant until the growth
kicks in at a timetgrowth . The fine structure constant the
increases as

a}a}t1/2 ~58!

until teq when the radiation era ends and dust takes o
However, in universes like our own, this growth era is ne
reached. Then, in the dust era,

a} ln t ~59!
i

st
nd

ly

sh
h

c
y
s
e
e

p
gi
tio

06350
-
nd

e
o
ct

p-

r.
r

until the curvature or lambda eras begin attc or tL , after
which a remains constant until the present,t0. So, matching
these phases of evolution together we can expressa(t0) in
terms ofa(tp).

When the universe is open withL50,

a~ t0!5a~ tp!S tv

tp
D AS teq

tgrowth
D 1/2S ln~ tc /tp!

ln~ teq /tp! D , ~60!

where we have used our logarithmic formula to express a
in Planck time units.

When the universe is flat withL.0,

a~ t0!5a~ tp!S tp

tv
D AS teq

tgrowth
D 1/2S ln~ tL /tp!

ln~ teq /tp! D ~61!

and tc has been replaced bytL .
For the radiation era we consider two extreme cases.

look at a constanta scenario withtgrowth5teq and a scenario
where it grows throughout the radiation era,tgrowth5tv .

Typically, tc /tp;tL /tp;1059 andteq /tp;1053, so in both
cases for constanta evolution in the radiation epoch we ge

a~ t0!5a~ tp!S tv

tp
D AS 59

53D;1.11a~ tp!S tv

tp
D A

. ~62!

We approximate the value fortv;tp;1, so for continuous
growth through the radiation epoch we get
a~ t0!5a~ tp!S tv

tp
D A

~1053!1/2S 59

53D;1026a~ tp!S tv

tp
D A

. ~63!
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Hence there are very different possibilities for the change
a depending on the evolution in the radiation era.

We have proved this sequence of phases by an exhau
numerical and analytical study. The ensuing scenario fi
two interesting applications, with which we conclude.

In @1# we found that our theory could fit simultaneous
the varyinga results reported in@10,9,11# and the evidence
for an accelerating universe presented in@21#. We noted the
curious fact that there is a coincidence between the red
at which the universe starts accelerating and the reds
where variations ina have been observed but below whicha
must stabilize to be in accord with geochemical eviden
@26,27#. This may be explained dynamically in our theory b
the fact that the onset of lambda domination suppres
variations ina. Thereforea remains almost constant in th
radiation era, undergoes a small logarithmic time increas
the matter era, but approaches a constant value when
universe starts accelerating because of the presence of a
tive cosmological constant. Hence, we comply with geolo
cal, nucleosynthesis, and microwave background radia
constraints on time variations ina, while fitting simulta-
n

ive
s

ift
ift

e

es

in
the
osi-
-
n

neously the observed accelerating universe and the re
high-redshift evidence for smalla variations in quasar spec
tra.

We have also noted that within this theory the usual
thropic arguments for a lambda free universe may be
versed@28#. Usually, the anthropic principle is used to justi
the near flatness andL'0 nature of our universe since larg
curvature and lambda prevent the formation of galaxies
stars from small perturbations. We have shown that it mi
be anthropicallydisadvantageousfor a universe to lie too
close to flatness or for the cosmological constant to lie
close to zero. This constraint occurs because ‘‘constan
change throughout the dust-dominated period when the
vature and lambda do not influence the expansion of
universe. The onset of a period of lambda or curvature do
nation has the property of dynamically stabilizing the co
stants, thereby creating favorable conditions for the em
gence of structures. If the universe were exactly flat a
lambda were exactly zero thena would continue to grow to
a value that appears to make living complexity impossi
@28#.
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