PHYSICAL REVIEW D, VOLUME 65, 063503

Classification of stringlike solutions in dilaton gravity
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The static stringlike solutions of the Abelian Higgs model coupled to dilaton gravity are analyzed and
compared to the nondilatonic case. Except for a special coupling between the Higgs Lagrangian and the
dilaton, the solutions are flux tubes that generate a nonasymptotically flat geometry. Any point in parameter
space corresponds to two branches of solutions with two different asymptotic behaviors. Unlike the nondila-
tonic case, where one branch is always asymptotically conic, in the present case the asymptotic behavior
changes continuously along each branch.
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[. INTRODUCTION The simplest form of a cosmic string is just a direct gen-
eralization of the Nielsen-Olesen flux tufiEs], which takes
Of all the topological defectfl], which may have been into account its gravitational effect. Because of the cylindri-
formed during phase transitions in the early universe, cosmical symmetry, we use a line element of the form
strings[2,3] are those which have attracted the most atten-
tion from a cosmological point of view. d2=N2(r)dt?—dr2—L(r)de?—K2(r)dZ (1.2
They were introduced into cosmology some 20 years ago
by Kibble [4], Zel'dovich [5] and Vilenkin [6], and were and the usual Nielsen-Olesen ansatz for thk flux unit:
considered for a long time as possible sources for density
perturbations and hence for structure formation in the uni- 1
verse. Indeed, the latest data from the BOOMERANG and d=yvf(r)e'?, A, dxt=—(1-P(r))de. (1.3
MAXIMA experiments [7-9] disagree with the predictions e

[10,11] for the cosmic microwave background anisotropies Since the flux tube is very concentrated along the symme-

based on topological defect modetee also Ref.12]). This try axis, it is quite natural to expect that it will generate a

seems to point to the conclusion that if cosmic strings were

formed in the early universe they could not have been reg,pacenme geometry with the asymptotic behavior of the gen-

eral static and cylindrically symmetric vacuum solution of

sponsible for structure formation. However, cosmic s;tringsEinstein equation§l4], the so-called Kasner solution:
are still cosmologically relevant and enjoy wide interest in q ' '

cosmology. . . L 2a4+2 2c 2 2 2(b—1),24,.2
The most common field-theoretical model, which is used ds°=(kr)?2dt?—(kr)*dz’—dr?— g*(kr) rede
in order to describe the generation of cosmic strings during a (1.4

ggﬁﬁgér@s{gggc;iso;he Abelian Higgs model. This model Swhere k sets the length scale whilgg represents the

asymptotic structure, as will be discussed below. The param-
eters @,b,c) must satisfy the Kasner conditions

1 A
s=f dAXJﬂ(EDM@*D“@—Z(@*d)—vZ)Z a+b+c=a%+b2+c?=1. (1.5
1 More information about the solutions can be obtained by
——F, Fr+ R) (1.2 inspection of the full system of field equations with the ap-
4 16mG propriate energy-momentum tensor, which we will not write

here(see however Sec. IV or Reffl,15,16). Here we will
the Abelian field strength only give a condensed summary. For cylindrical symmetry,
@ is a complex scalar field with vacuum expectation value the coTponents of the e”er%ﬂ”o?‘e”t‘_‘m tensor of the flux
andD,=V,—ieA, is the usual gauge covariant derivative. tube 77} have the property of j=7,. This means that the

We use units in whict =c=1 and a “mostly minus” met- solution will have a symmetry under boosts along the string
. axis, i.e.,a=c. The Kasner condition€l.5) then leave only

two options, which are indeed realized as solutions of the full
Einstein-Higgs systerfil6].

The standard conic cosmic string soluti@15] is char-
acterized by an asymptotic behavior given by EQ4) with

whereR is the Ricci scalarF,,
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which is evidently locally flat. In this case, the parameger . 1 s N s 5
represents a conic angular defiglt7,18, which is also re- S:j d*xv[g] 2 @+ 19D, o* DD~ 26 (a+2)
lated to the mass distribution of the source.

In addition to the cosmic string solutions, there exists a 2o 1, 4 , 1 4
second possibility: X(PFP—v) =y &FF B e | d xvIg]
X(R+2V,pV ). 1.9
a=c=2/3, b=-1/3 1.7 It is related to the former by the metric redefinition:
which is the same behavior as that of the Melvin solution g =e?*g(y) (1.10

[19]. Equation(1.7) is therefore referred to as the Melvin
branch. Note however that the magnetic field in this solutiorwhereg’) is the metric tensor used in E(L.8) andg'5) is
inherits the exponential decreaéwith r) of the original used in Eq.(1.9. From now on we will use the Einstein
Nielsen-Olesen flux tube. Therefore, it is much more concenframe for a clearer physical picture.
trated than in the original Melvin solution where it decreases This system was studied by Gregory and Sarj@f.
only according to a power law. Their analysis was done to first order in the parameter
The main difference between the two branches lies in the 87wGu? and is therefore valid only for weak gravitational
Tolman mass, which is zero for the conic cosmic string SO_fields. They concentrated in the one branch which contains
or a=—1 asymptotically conic solutions. However, since
for a# —1 no asymptotically conic solutions exist, there is
no natural criterium to prefer one branch over the other, even
if one is “more flat” than the other. Moreover, the weak-field

. : B approximation breaks down both near the core of the string
the simplest and most studied oriese e.g[15,16,20-25. and far away from the string thus calling for a further inves-

It is, howeyer, probable that yvhen high energy corre_ction%gation of the system.

ar.e.taken qu a(_:count, gravity Is nqt purely tepsorlal. A In this paper, we expand the study of cosmic strings in
minimal modification suggested by string thedBA] is the  gjjaton gravity in two directions.(1) We analyze both
introduction of a scalar degree of freedom, the dilathn  pranches and do not limit ourselves to weak gravitational
turning gravity into a scalar-tensor theory in the spirit of fie|ds. (2) We modify the dilaton coupling to matter fields in

Jordan-Brans-DickéJBD) theory. Studies of cosmic string such a way that it will be uniform and the original Einstein-
solutions in the framework of JBD theory and its extensionsHiggs systen{1.1) is recovered in a certain limit.

already exist in the literaturg25—27), and the typical char-
acteristics of the stringlike solutions are found to be quite
different from those of the gauge strings of pure tensorial
gravity. The main difference is the absence of asymptotically The field equations for the Einstein-Higgs-dilaton action
conic solutions due to the long range effect of the massles&l.9) are straightforward to obtain and we give them already
JBD field. Unlike the Brans-Dicke field, which is postulated for flux tubes with cylindrical symmetry. Their structure be-
not to couple to matter, the dilaton may do so and may furcomes more transparent if we use dimensionless quantities.
ther change the situation. This is represented by the followAs a length scale we use\iv? (the “correlation length” in

ing action[28,29, which is written in the so called “JBD- the superconductivity terminologyWe therefore change to
string frame[30]:” the dimensionless length coordinate: \Av?r and we use

the metric componen{\v?L which we still denote by.. We

also introduce the “Bogomolnyi parametee’=e?/\ in ad-
dition to y=8wGuv?, which has been alreadyn defined

lutions, but nonzero for the Melvin solutioh$6]. Moreover,
the central magnetic field is generally larger for the Melvin
solutions.

The stringlike solutions of the Abelian Higgs model are

II. FIELD EQUATIONS AND ASYMPTOTIC SOLUTIONS

1 A it ;
s= | d% e2a¢(_D O* DB — — (P* P —p2)2 above. In terms of these new quantities we get, for fiaxea
j Vigl 27K 4( v9) two parameter system of five coupled nonlinear ordinary dif-
1 ferential equationgthe prime denoted/dXx):
N g —2¢(70 — M
7 F.F +16qu e “Y(R—4V, oV e)|. (1.9

2(a+1 2 A 2
(XA DINZLEY) ez(a+2)¢(l_fz)_ez(a+1)¢P_)f=0

N2L L2
The parameten serves as a general coupling constant be- (2.1
tween the dilaton and matter fields. Newton’s constant is
added explicitly in order to keep track of the dimensionality

—+

2pr\
of the various fields. This makes the action in the “Einstein- L(ezad)N P ) — ae?@t)éf2p—q
Pauli frame[30]” contain the standard Einstein-Hilbert La- N?
grangian: (2.2

063503-2



CLASSIFICATION OF STRINGLIKE SOLUTIONS IN . .. PHYSICAL REVIEW D565 063503

1A 12
m: eza¢P__EeZ(a+2)¢(1_f2)2
N2L 2012 4
(2.3
21 1\’ 12 2¢2
(N L ) :_7 eza¢P_+e2(a+l)¢i
N2L 2al? L2
1
+ 7€ fz)z) (2.4
2 I\’ 2p2 12
(NL&#") =y a+162(a+1)¢ fop 42| 4+ gead
N2L 2 2 2al?
a+2
+Te2(a+2)¢(1—f2)2 . (2.5

The sixth function, the metric componeKi{x), turns out to FIG. 1. The ellipse—Eq(2.13. The origin is a focal point. The

be eql.JaI tQ\I(X) due t.o the high symmetry. We ha\_/e also to special points marked in the figure correspond to solutions dis-
keep in mind the existence of the constraint which comes <<ed in the paper.

from the (r) Einstein equation, and gets the following form:

2 pr2 p— b+ dg

N/ L" N’ f
ot | =24 | 2@t D | g2a0
N( C N) oy 2 ¢ x—xe~ %o
P22 1 L—Le %o
_a2@+l)g. T 2(at+2)brq 232 —Le
e e (1-19)° .
2L 4
y—s ye~ 2@+ 1o (2.10
(2.6)

_ ) . where ¢, is a constant. Thus, we can trivially get the solu-
The field equations are supplemented by the followingion for #(0)= ¢, from the solution for(0)=0 by simple
boundary conditions, that should be satisfied by the Scale}rescaling.

and gauge fields: Since we are looking for stringlike solutions to the sys-

tem, we may easily get the asymptotic behavior of the metric
components from the assumption that the right-hand sides of
the Einstein equations vanish exponentially fast, as in the
P(0)=1, limP(x)=0. 2.7) case of pure tensorial gravity. Consequently, the system re-
Koo duces to a simple set of equations, which are easily inte-
grated to power law solutions:
These are just the usual flux tube boundary conditions bor-

f(0)=0, Ilimf(x)=1

X—0

rowed from the flat space version. Moreover, regularity of N()~&x®, L) ~px®, e?®~sxC (211
the geometry on the symmetry axis-0 will be guaranteed ) .
by the “initial conditions:” The 3 parameter&, B andC are subjected to two conditions,
which may be viewed as a generalization of the Kasner con-
L(0)=0, L'(0)=1 ditions, Eq.(1.5):
N(0)=1, N'(0)=0. 2.8 2A+B=1, A*+2AB=C2 (212
The presence of the dilaton requires additional conditions] €€ two conditions leave a one-parameter family of solu-
which we impose on the dilaton field on the axis: tions, which may be visualized by the ellipse in Be C (or
equivalentlyA—C) plane(Fig. 1):
#(0)=0, ¢'(0)=0. (2.9 9 12
== 2_
The conditiong’ (0)=0 follows directly from the equations 4(8 3 +3C7=1. (2.13

of motion and the constraint2.6), using also Eqs(2.7),

(2.9). As for the conditionp(0)=0, notice that the equations The 2 branches of the Einstein-Higgs systéiime cosmic

of motion (2.1)—(2.6) are invariant under the following trans- string branch and the Melvin branchre represented in this
formation: picture by the top fo) and bottom p}) points of the ellipse,
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respectively. These points correspond to an asymptoticallfhe first of the two relation$2.12) is satisfied identically;
constant dilaton €= 0), and as we will show later, only the the second translates in termsmf D and B to
first is realized as an actual solution for the special value of

the coupling constara=—1. D?=4m(3m+1-B). (2.19
The parameters, B and C are related to the matter dis-
tribution through the following three quantities: The Tolman . STRINGLIKE SOLUTIONS
mass(per unit length M, or rather its dimensionless repre-
sentativem=GM Regarding the complexity and nonlinearity of the system,
it is quite evident that a detailed structure of the solutions can
y (= p’2 be obtained only numerically. We have performed a numeri-
m= —f de2L( e?as — —e2@*2)$(1—£2)2 cal analysis of the system and found that the solutions are
2Jo 2aL% 4 paired, as in the non-dilatonic case, and have the character-
1 istics that will be described below. The solutions have been
= —lim (LNN’) (2.14  found numerically by first discretizing the radial coordinate
2y e and then applying a relaxation procedure to the set of non-
linear and coupled algebraic equatio$f) =0, in the set of
and two others . . L L
scalar functions evaluated at the grid poirfts]f the initial
" pr2 242 gu_essfi_is good enough then the iteration obtainedfhy;
w= Zf dxN’L| e?@ —— 2@t =f,+Af;, whereAf; is found by solving the linear equation
2J)o 2al? L2

. VFA(f)Af == F(f) (3.1
+ _e2(a+2)¢(1_f2)2 o ) ) ) . ) ) )

4 (Gauss elimination with scaling and pivoting will YJawill
converge towards a solution for the discretized variables. We

1 constructed a starting guess satisfying the boundary and ini-

== 5 (lim (N’L')—1) (2.19 tial conditions and still having several free parameters.

X Changing gradually these parameters, we eventually

o ) o stumbled into the region of convergence and a solution was
which is related to the string angular deficit, and found. Having obtained one solution of this type, the rest

could easily be generated by moving around in the parameter
space in sufficiently small steps. Representative plots of the
solutions are given in Figs. 2, 3 and 4.

The simplest picture emerges in the case— 1. The two

a+1 f2p2
T R2@tl)e| 12
5 € ( 5 +f

D='yf dxN°L
0

P2 a+2 branches of solutions for this paticular valueagdre particu-
+aettd —— + Tez(ﬁ” Ae(1— fz)zl larly interesting. For fixedy, both solutions exist up to some
2al critical y; see Fig. 5. One is an ordinary cosmic string, as in
Einstein gravity with the additional feature of a non-constant
= lim (N’L¢’) (2.16  dilaton. This solution has=0, B=1, C=0 independent of
X a andy. The metric is very similar to the usual gauge string,

) ) ) ) but there are small deviations, due to the presence of the
which may be interpreted as a dilaton charge. Notewh&  gijaton. It becomes identical to the metric of the Einstein

manifestly positive definite anb is positive definite fora gravity gauge string only in the Bogomolnyi limita(=2),
=0. The Tolman mass is also non-negative since it is proypere Eqgs(2.1)—(2.6) reduce to

portional to the poweA which is non-negative due to Eg.

(2.12. We further notice that, as in the non-dilatonic case P =L(f2-1) (3.2
[16], w may be expressed in terms of the mass paranmeter
and the magnetic field on the axis, which we represent by the Pf
dimensionless paramets: f= N 3.3
_1s here B=—Yiim| | (21
w=gB-m.where B=— I 15y ) (210 L= 2P(1-f)=1-2 (3.9
The parameterd, B andC are easily found to be expressible yith N=1 and¢=0, i.e. first order differential equations for
in terms ofm, D andw or as L, f andP. A typical solution of this kind is depicted in Fig.
2(a).
A 2m B 2m+1-B co D The second branch in the case — 1 has for all values of
6m+1—-pB’ 6m+1—-B’ 6m+1—-B’ a and y below the critical curvgFig. 5, C=—3 and B
(2.18 =0. Accordingly,A= 3. This solution is quite different from
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FIG. 2. The solutions foa=—-1, =2, y
=0.4. (8) Cosmic string branch(b) Dilatonic
Melvin branch.

Fields

its non-dilatonic analog, the main difference being theandy. Therefore, the universal asymptotic form of the metric
asymptotic spatial geometry which is now cylindrical. tensor, which corresponds to the two extremal points on the

At the critical curve(Fig. 5), the two types of solutions ellipse, is now replaced by a motion along the ellipse whose
become identical. Asymptotically the corresponding spatiakpecific details depend on the valueafAdditional values
geometry is conic with deficit anglép=27. The critical of a were studied in detail and here we give few further
curve itself can be approximated by a power law results for two more special representative points, so in all

there are
y=~cia® (3.5
a=—+3, -1, 0. (3.6

wherec,~1.66 andc,~0.275. This is quite, although not
exactly, similar to the result obtained in tensorial gravity These values were selected for the following reasons: Con-
[16]. centrating on the Einstein-dilaton-Maxwell systeas —1

The a and y independence of, B andC for a=—1 is  corresponds to certain compactified superstring the8idls
however the only case of such behavior. The generic one i8=0 corresponds to Jordan-Brans-Dicke theory and
such that for a given value @t the powers of the asymptotic — /3 corresponds to ordinary Kaluza-Klein theory.
form of the metric components and the dilaton change with In both cases= — /3, a=0 the same two-branch picture
a andy. Put differently, we have now a situation where theemerges. One branch always contains the upper point of the
values ofA, B andC depend upon the three parametars:  ellipse (pg) at the limit y—0, such that for smally the
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FIG. 3. The solutions foa=—+3, a=2, y
5 T T T T N — =0.4. (a) Cosmic string branch(b) Dilatonic
k R Melvin branch.
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Fields

“almost asymptotically conic” solutions of Gregory and  The situation therefore is the following. First we fa
Santos[28] are obtained. For large the deviations from One branchthe “upper” or “cosmic string” branch has the
asymptotically conic geometry are more pronounced. At thgpoint py, i.e., A=C=0, B=1 as a starting point foyy—0,
same time a gravitational Newtonian potential appears, sand asa andy change, the powei® andC move along the
this kind of string exerts force on non-relativistic test par-ellipse while A changes accordingljsee Eq.(2.12]. The
ticles far outside its core. other branch(the “lower” or “dilatonic Melvin” branch)
The other branch exhibits also anandy dependence of starts, fory—0, with the above values Ed3.7) for the
the powersA, B andC, but has itsy— 0 limit at a-dependent powersA, B andC and the motion along the ellipse is done
points. Thisa-dependence can be understood if we note thain the opposite direction so the two branches approach each
the y—0 limit corresponds to two types of asymptotic be- other and “meet” at a point in between. In the meeting point,
havior. One is the asymptotically conic cosmic string behavthe solutions not only have the same asymptotic behavior,
ior and the other is that of the dilatonic Melvin universe but they become actually identical.
[29,32], which in our coordinate system corresponds to an There are no asymptotically conic solutions exceptéor
asymptotic behavior with the following powers: =—1. Actually, this property can be understood analytically.
For this, we note that a useful relation is obtained by adding
2 2 the equation for the dilaton, E¢R.5), to the equation for the
a-—1 2a . ! )
= , B= , C= ) (3.7) metric componenN, Eg. (2.3), and integrating from 0 ta,
a’+3 a’+3 a’+3 using the boundary conditiorien the axi$:
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FIG. 4. The solutions fora=0, a=2, y
T T T N — =0.4. (8) Cosmic string branch(b) Dilatonic
S Melvin branch.
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E o
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X
(b)
N2L(¢’'+N'/N) powers of the asymptotic metric components for anyy
which selects two points on the ellipse. The first is
X __ 1 f2P2
=y(a+l)f dxNZL| 5 2@ D — 72
0 2 L2 A=C=0, B=1 (3.10
12 1
+ g2ad S+ —2@t2)d(q _§2)2 (3.8 which is evidently locally flat.
2aL2 4 It is also easy to prove the converse, i.e., that there are no

asymptotically conic solutions fa# —1. In order to do it,
where we denote by the integration variable. In the case W& Start again with Eq3.8) and notice also that for asymp-

a=—1, this equation is easily integrated again and gives ifotically conic solu,tions we ,neeq\=0 andB=1, which
this case: yield C=0. Thus,N'/N and ¢’ vanish asymptotically faster

than 1k and the left-hand side of E¢3.8) vanishes asymp-
— totically. But the right hand side of this equation is an inte-
N=e *. (3.9 gral of a sum of 4 positive-definite terms and it can vanish
only if a=—1.
It follows that the dilaton charge is minus twice the Tolman It also follows that in this asymptotically conic solutions
massD = —2m. This imposes an additional condition on the D=m=0, while the central magnetic field is given by
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= 2r ,,f+'"'+‘ 1 FIG. 5. The curve wherép=27 for the a
/**/* =—1 case. The curve is fitted to a power law
. P with ¢;~1.66 andc,~0.275.
. — /* N
1 _"”/ -
05 L L L L L
0 2 4 6 8 10 12
S¢ L NZP’)’
B=1—K2B=1—K2(1—5> (3.1) m(ew ) — ae?34f2p=( 4.3
where §¢ is the deficit angle. o 2
There is as usual a second point on the ellipse, namely (LNN") _ a2ad _ 1 _2\2
ye (1-19)
N2L 2al2 4
A=—-C=1/2, B=0. (3.12 (4.4
As indicated above, this represents the same asymptotic be- (N2L')’ P2 p22 1
havior as the dilatonic Melvin solutiofwith a=—1). This =— yeZad)( +—(1- f2)2>
solution has non-vanishing dilaton charge and Tolman mass. NZL 2aL2 L2 4
The central magnetic field satisfies the equation (4.5
B=1+2m. (3.13 N2L ")’ 1(2p2 p’2
(NLP)T_ yae?d?| — +12) +
N2L 2\ L2 2al?
IV. UNIFORM DILATON COUPLING
. . . 1
The model analyzed so far has a dilaton which coufites +—(1- f2)2> (4.6)
the Einstein-Pauli framewith different strengths to various 4

matter fields. As a consequence, we do not return to the pure )

tensorial (Einstein gravity in the limit of vanishing dilaton With the constraint

coupling. The only case of identical solutions of the two

systems is the cosmic string solutions wik-—1 and & N'( L N, 2a¢( R S o
= ¢ + Ve 7 +

2aL? 2L2

=2. It seems therefore natural to consider a uniform cou- N
pling of the matter fields to the dilaton. This uniform cou-

pling will be described by the following action: 1
—Z(l—fz)z). 4.7
s=f d*xv[g| e2a¢(%DM¢>*D”¢>—%(¢>*®—v2)2
The asymptotic behavior of the metric components and
1 the dilaton field are obtained as before and the results are
_ZF“”FW) +167TG(R+ 2V, pV~P) | (4.2 identical to Eqs(2.1)—(2.13.

Analysis of the new system shows that the solutions do
not change much except in the case —1, where an as-
ymptotically conic solution does not exist any more, see Fig.
6. Actually, there are no asymptotically conic solutions in
this system for any combination of parameters and in this

The corresponding field equations for the cylindrically
symmetric case will be a simplified version of E¢g.1)—
(2.6):

2a0N2 §7)! p2 respect the solutions are more similar to the string-like solu-
u_}_e%a& (1-f2)——|f=0 (4.2 tions in JBD theory. It is quite simple to show that the only
N2L L? case where asymptotically conic solutions exist, in the case
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FIG. 6. The solutions for uniform coupling
5 T T T T N with a=—1, a=2, y=0.4. (8 Cosmic string
k —— branch.(b) Dilatonic Melvin branch.
4t B ———

Fields

of this uniform coupling, isa=0. The way to do it is to branches describes asymptotically flat solutions. This should
obtain an equation analogous to E§.8) and to see that it be contrasted with the non-dilatonic case, where one branch
can be satisfied by asymptotically constBhand ¢ only for ~ always describes asymptotically flat solutions. Only for a
a=0. This is just the Einstein-Higgs system with a masslessery special coupling to the dilaton, which is related to cer-
real scalar. tain compactified superstring theories, do asymptotically flat
solutions appear.
V. CONCLUSION Our aim in this paper was to consider cosmic strings in
i , i , the simplest dilaton-gravity models parametrized by a phe-
_We have analyzed in Qetan_, using b.Oth n_umgncal and "?m"’homenological coupling constamat In the special case of
ggﬁtg?ﬂlzdsr’et\zgucso\‘j‘vrgrﬁ:t\:\'/gg dﬁjOInuc:Itolir;ﬁi;r:)Sr”seglt\)/ r;sgtr(";“gtnyéfundamental string theory, which is related to our models for
ytop ' a=—1, there is an infinity of curvature correctiolgson-

branch in the weak-field approximation. We found it most . 4 . P
natural to work in the Einstein frame, but all our results aretm”ed by the reciprocal string tensian) and an infinity of

trivially transformed into the string frame. string loop correctiongcontrolled by the string coupling

We have shown that the solutions generally come in pairsVhich is proportional tee”). However, since our solutions

That is, any point in parameter space gives rise to two solufor 8= —1 are everywhere non-singular and with finite dila-
tions with completely different asymptotic behaviors for the {on, we expect that they will be only slightly modified in the
dilaton and for the geometry. Generally, neither of the twofull (yet unknown quantum string theory.
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The asymptotic behaviors of the solutions in the twore-analyzed the whole problem using a uniform coupling in
branches seemed at first to depend in an extremely complthe Einstein frame which may seem to be more natural.
cated way on the parameters of the theory. However, a uniAimong other things, the correct tensori@instein gravity
versal picture emerged, as explained in Sec. Ill. solutions now come out in the limit of vanishing dilaton

These results were obtained by coupling the dilaton “uni-coupling. But otherwise the solutions in the two models are
formly” to matter in the string frame. For comparison, we quite similar.

[1] A. Vilenkin and E.P.S. ShellardCosmic Strings and Other [17] L. Marder, Proc. R. Soc. LondofA252, 45 (1959.
Topological Defect§Cambridge University Press, Cambridge, [18] W.B. Bonnor, J. Phys. A2, 847 (1979.

England, 1994 [19] M.A. Melvin, Phys. Lett.8, 65 (1964.
[2] A. Vilenkin, Phys. Rep121, 263(1985. [20] B. Linet, Phys. Lett. A124, 240(1987.
[3] M. Hindmarsh and T.W.B. Kibble, Rep. Prog. Ph{8, 477  [21] P. Laguna-Castillo and R.A. Matzner, Phys. Rev36) 3663
(1995. (1987.
[4] TW.B. Kibble, J. Phys. /9, 1387(1976. [22] D. Garfinkle and P. Laguna, Phys. Rev.3D, 1552(1989.
[5] Ya.B. Zel.’dovich, Mon. Not. R. Astron. S0d.92 663(1980. [23] P. Laguna and D. Garfinkle, Phys. Rev.4D, 1011(1989.
[6] A. Vilenkin, Phys. Rev. D23, 852(1981). [24] M. B. Green, J. H. Schwarz, and E. WitteBuperstrings

[7] A.E. Langeet al, Phys. Rev. D63, 042001(2001J).

[8] A.T. Leeet al, Astrophys. J. Lett561, L1 (2001).

[9] A.H. Jaffeet al, Phys. Rev. Lett86, 3475(2001J).

[10] R. Durrer, A. Gangui, and M. Sakellariadou, Phys. Rev. Lett.
76, 579(1996.

[11] A.E. Lewin and A. Albrecht, Phys. Rev. B4, 023514(2002). (1990. .

[12] R. Durrer, M. Kunz, and A. Melchiorri, astro-ph/0110348. [27] M.E.X. Guimaraes, Class. Quantum Grad, 435(1997).

[13] H.B. Nielsen and P. Olesen, Nucl. Ph{61, 45 (1973. [28] R. Gregory and C. Santos, Phys. Rev58) 1194(1997.

[14] D. Kramer, H. Stephani, E. Herlt, and M. MacCalluxact ~ [29] C. Santos, Class. Quantum Grag 1835(2002.
Solutions of Einstein's Field Equatioi€ambridge University ~[30] V. Faraoni, E. Gunzig, and P. Nardone, Fundam. Cosm. Phys.

Theory (Cambridge University Press, Cambridge, England,
1987.

[25] C. Gundlach and M. Ortiz, Phys. Rev.42, 2521(1990.

[26] L.O. Pimentel and A.N. Morales, Rev. Mex. Fi86, S199

Press, Cambridge, England, 1980 20, 121(1999.

[15] D. Garfinkle, Phys. Rev. 32, 1323(1985. [31] A. Sen, Nucl. PhysB388 457 (1992.

[16] M. Christensen, A.L. Larsen, and Y. Verbin, Phys. Rev6@ [32] F. Dowker, J. Gauntlett, D. Kastor, and J. Traschen, Phys. Rev.
125012(1999. D 49, 2909(1994.

063503-10



