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Classification of stringlike solutions in dilaton gravity
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The static stringlike solutions of the Abelian Higgs model coupled to dilaton gravity are analyzed and
compared to the nondilatonic case. Except for a special coupling between the Higgs Lagrangian and the
dilaton, the solutions are flux tubes that generate a nonasymptotically flat geometry. Any point in parameter
space corresponds to two branches of solutions with two different asymptotic behaviors. Unlike the nondila-
tonic case, where one branch is always asymptotically conic, in the present case the asymptotic behavior
changes continuously along each branch.
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I. INTRODUCTION

Of all the topological defects@1#, which may have been
formed during phase transitions in the early universe, cos
strings @2,3# are those which have attracted the most att
tion from a cosmological point of view.

They were introduced into cosmology some 20 years
by Kibble @4#, Zel’dovich @5# and Vilenkin @6#, and were
considered for a long time as possible sources for den
perturbations and hence for structure formation in the u
verse. Indeed, the latest data from the BOOMERANG a
MAXIMA experiments @7–9# disagree with the prediction
@10,11# for the cosmic microwave background anisotrop
based on topological defect models~see also Ref.@12#!. This
seems to point to the conclusion that if cosmic strings w
formed in the early universe they could not have been
sponsible for structure formation. However, cosmic strin
are still cosmologically relevant and enjoy wide interest
cosmology.

The most common field-theoretical model, which is us
in order to describe the generation of cosmic strings durin
phase transition, is the Abelian Higgs model. This mode
defined by the action

S5E d4xAuguS 1

2
DmF* DmF2

l

4
~F* F2v2!2

2
1

4
FmnFmn1

1

16pG
RD ~1.1!

whereR is the Ricci scalar,Fmn the Abelian field strength
F is a complex scalar field with vacuum expectation valuev
andDm5¹m2 ieAm is the usual gauge covariant derivativ
We use units in which\5c51 and a ‘‘mostly minus’’ met-
ric.
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The simplest form of a cosmic string is just a direct ge
eralization of the Nielsen-Olesen flux tube@13#, which takes
into account its gravitational effect. Because of the cylind
cal symmetry, we use a line element of the form

ds25N2~r !dt22dr22L2~r !dw22K2~r !dz2 ~1.2!

and the usual Nielsen-Olesen ansatz for the11 flux unit:

F5v f ~r !eiw, Amdxm5
1

e
„12P~r !…dw. ~1.3!

Since the flux tube is very concentrated along the symm
try axis, it is quite natural to expect that it will generate
spacetime geometry with the asymptotic behavior of the g
eral static and cylindrically symmetric vacuum solution
Einstein equations@14#, the so-called Kasner solution:

ds25~kr !2adt22~kr !2cdz22dr22b2~kr !2(b21)r 2dw2

~1.4!

where k sets the length scale whileb represents the
asymptotic structure, as will be discussed below. The par
eters (a,b,c) must satisfy the Kasner conditions

a1b1c5a21b21c251. ~1.5!

More information about the solutions can be obtained
inspection of the full system of field equations with the a
propriate energy-momentum tensor, which we will not wr
here~see however Sec. IV or Refs.@1,15,16#!. Here we will
only give a condensed summary. For cylindrical symme
the components of the energy-momentum tensor of the
tube T n

m have the property ofT 0
05T z

z . This means that the
solution will have a symmetry under boosts along the str
axis, i.e.,a5c. The Kasner conditions~1.5! then leave only
two options, which are indeed realized as solutions of the
Einstein-Higgs system@16#.

The standard conic cosmic string solution@6,15# is char-
acterized by an asymptotic behavior given by Eq.~1.4! with

a5c50, b51 ~1.6!
©2002 The American Physical Society03-1
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which is evidently locally flat. In this case, the parameterb
represents a conic angular deficit@17,18#, which is also re-
lated to the mass distribution of the source.

In addition to the cosmic string solutions, there exists
second possibility:

a5c52/3, b521/3 ~1.7!

which is the same behavior as that of the Melvin solut
@19#. Equation~1.7! is therefore referred to as the Melvi
branch. Note however that the magnetic field in this solut
inherits the exponential decrease~with r ) of the original
Nielsen-Olesen flux tube. Therefore, it is much more conc
trated than in the original Melvin solution where it decreas
only according to a power law.

The main difference between the two branches lies in
Tolman mass, which is zero for the conic cosmic string
lutions, but nonzero for the Melvin solutions@16#. Moreover,
the central magnetic field is generally larger for the Melv
solutions.

The stringlike solutions of the Abelian Higgs model a
the simplest and most studied ones~see e.g.@15,16,20–23#!.
It is, however, probable that when high energy correctio
are taken into account, gravity is not purely tensorial.
minimal modification suggested by string theory@24# is the
introduction of a scalar degree of freedom, the dilatonf,
turning gravity into a scalar-tensor theory in the spirit
Jordan-Brans-Dicke~JBD! theory. Studies of cosmic strin
solutions in the framework of JBD theory and its extensio
already exist in the literature@25–27#, and the typical char-
acteristics of the stringlike solutions are found to be qu
different from those of the gauge strings of pure tenso
gravity. The main difference is the absence of asymptotic
conic solutions due to the long range effect of the mass
JBD field. Unlike the Brans-Dicke field, which is postulate
not to couple to matter, the dilaton may do so and may
ther change the situation. This is represented by the foll
ing action@28,29#, which is written in the so called ‘‘JBD-
string frame@30#:’’

S5E d4xAuguFe2afS 1

2
DmF* DmF2

l

4
~F* F2v2!2

2
1

4
FmnFmnD1

1

16pG
e22f~R24¹mf¹mf!G . ~1.8!

The parametera serves as a general coupling constant
tween the dilaton and matter fields. Newton’s constan
added explicitly in order to keep track of the dimensional
of the various fields. This makes the action in the ‘‘Einste
Pauli frame@30#’’ contain the standard Einstein-Hilbert La
grangian:
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S5E d4xAuguS 1

2
e2(a11)fDmF* DmF2

l

4
e2(a12)f

3~F* F2v2!22
1

4
e2afFmnFmnD1

1

16pGE d4xAugu

3~R12¹mf¹mf!. ~1.9!

It is related to the former by the metric redefinition:

gmn
(s)5e2fgmn

(E) ~1.10!

wheregmn
(s) is the metric tensor used in Eq.~1.8! andgmn

(E) is
used in Eq.~1.9!. From now on we will use the Einstein
frame for a clearer physical picture.

This system was studied by Gregory and Santos@28#.
Their analysis was done to first order in the parameteg
58pGv2 and is therefore valid only for weak gravitation
fields. They concentrated in the one branch which conta
for a521 asymptotically conic solutions. However, sinc
for aÞ21 no asymptotically conic solutions exist, there
no natural criterium to prefer one branch over the other, e
if one is ‘‘more flat’’ than the other. Moreover, the weak-fie
approximation breaks down both near the core of the str
and far away from the string thus calling for a further inve
tigation of the system.

In this paper, we expand the study of cosmic strings
dilaton gravity in two directions.~1! We analyze both
branches and do not limit ourselves to weak gravitatio
fields. ~2! We modify the dilaton coupling to matter fields i
such a way that it will be uniform and the original Einstei
Higgs system~1.1! is recovered in a certain limit.

II. FIELD EQUATIONS AND ASYMPTOTIC SOLUTIONS

The field equations for the Einstein-Higgs-dilaton acti
~1.9! are straightforward to obtain and we give them alrea
for flux tubes with cylindrical symmetry. Their structure b
comes more transparent if we use dimensionless quanti
As a length scale we use 1/Alv2 ~the ‘‘correlation length’’ in
the superconductivity terminology!. We therefore change to
the dimensionless length coordinatex5Alv2r and we use
the metric componentAlv2L which we still denote byL. We
also introduce the ‘‘Bogomolnyi parameter’’a5e2/l in ad-
dition to g58pGv2, which has been alreadyn define
above. In terms of these new quantities we get, for fixeda, a
two parameter system of five coupled nonlinear ordinary d
ferential equations~the prime denotesd/dx):

~e2(a11)fN2L f 8!8

N2L
1S e2(a12)f~12 f 2!2e2(a11)f

P2

L2D f 50

~2.1!

L

N2 S e2af
N2P8

L D 8
2ae2(a11)f f 2P50

~2.2!
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~LNN8!8

N2L
5gS e2af

P82

2aL2
2

1

4
e2(a12)f~12 f 2!2D

~2.3!

~N2L8!8

N2L
52gS e2af

P82

2aL2
1e2(a11)f

P2f 2

L2

1
1

4
e2(a12)f~12 f 2!2D ~2.4!

~N2Lf8!8

N2L
5gS a11

2
e2(a11)fS f 2P2

L2
1 f 82D 1ae2af

P82

2aL2

1
a12

4
e2(a12)f~12 f 2!2D . ~2.5!

The sixth function, the metric componentK(x), turns out to
be equal toN(x) due to the high symmetry. We have also
keep in mind the existence of the constraint which com
from the (rr ) Einstein equation, and gets the following form

N8

N S 2
L8

L
1

N8

N D5f821gS e2(a11)f
f 82

2
1e2af

P82

2aL2

2e2(a11)f
P2f 2

2L2
2

1

4
e2(a12)f~12 f 2!2D .

~2.6!

The field equations are supplemented by the follow
boundary conditions, that should be satisfied by the sc
and gauge fields:

f ~0!50, lim
x→`

f ~x!51

P~0!51, lim
x→`

P~x!50. ~2.7!

These are just the usual flux tube boundary conditions b
rowed from the flat space version. Moreover, regularity
the geometry on the symmetry axisx50 will be guaranteed
by the ‘‘initial conditions:’’

L~0!50, L8~0!51

N~0!51, N8~0!50. ~2.8!

The presence of the dilaton requires additional conditio
which we impose on the dilaton field on the axis:

f~0!50, f8~0!50. ~2.9!

The conditionf8(0)50 follows directly from the equations
of motion and the constraint~2.6!, using also Eqs.~2.7!,
~2.8!. As for the conditionf(0)50, notice that the equation
of motion~2.1!–~2.6! are invariant under the following trans
formation:
06350
s

g
ar

r-
f

s,

f→f1f0

x→xe2f0

L→Le2f0

g→ge22(a11)f0 ~2.10!

wheref0 is a constant. Thus, we can trivially get the sol
tion for f(0)5f0 from the solution forf(0)50 by simple
rescaling.

Since we are looking for stringlike solutions to the sy
tem, we may easily get the asymptotic behavior of the me
components from the assumption that the right-hand side
the Einstein equations vanish exponentially fast, as in
case of pure tensorial gravity. Consequently, the system
duces to a simple set of equations, which are easily in
grated to power law solutions:

N~x!;kxA, L~x!;bxB, ef(x);dxC. ~2.11!

The 3 parametersA, B andC are subjected to two conditions
which may be viewed as a generalization of the Kasner c
ditions, Eq.~1.5!:

2A1B51, A212AB5C2. ~2.12!

These two conditions leave a one-parameter family of so
tions, which may be visualized by the ellipse in theB2C ~or
equivalentlyA2C) plane~Fig. 1!:

9

4 S B2
1

3D 2

13C251. ~2.13!

The 2 branches of the Einstein-Higgs system~the cosmic
string branch and the Melvin branch! are represented in thi
picture by the top (p0) and bottom (p08) points of the ellipse,

FIG. 1. The ellipse—Eq.~2.13!. The origin is a focal point. The
special points marked in the figure correspond to solutions
cussed in the paper.
3-3
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respectively. These points correspond to an asymptotic
constant dilaton (C50), and as we will show later, only th
first is realized as an actual solution for the special value
the coupling constanta521.

The parametersA, B andC are related to the matter dis
tribution through the following three quantities: The Tolm
mass~per unit length! M, or rather its dimensionless repre
sentativem5GM

m5
g

2E0

`

dxN2LS e2af
P82

2aL2
2

1

4
e2(a12)f~12 f 2!2D

5
1

2
lim
x→`

~LNN8! ~2.14!

and two others

w5
g

2E0

`

dxN2LS e2af
P82

2aL2
1e2(a11)f

P2f 2

L2

1
1

4
e2(a12)f~12 f 2!2D

52
1

2
„ lim
x→`

~N2L8!21… ~2.15!

which is related to the string angular deficit, and

D5gE
0

`

dxN2LFa11

2
e2(a11)fS f 2P2

L2
1 f 82D

1ae2af
P82

2aL2
1

a12

4
e2(a12)f~12 f 2!2G

5 lim
x→`

~N2Lf8! ~2.16!

which may be interpreted as a dilaton charge. Note thatw is
manifestly positive definite andD is positive definite fora
>0. The Tolman mass is also non-negative since it is p
portional to the powerA which is non-negative due to Eq
~2.12!. We further notice that, as in the non-dilatonic ca
@16#, w may be expressed in terms of the mass parametem
and the magnetic field on the axis, which we represent by
dimensionless parameterB:

w5
1

2
B2m, where B52

g

a
lim
x→0

S P8~x!

L~x! D . ~2.17!

The parametersA, B andC are easily found to be expressib
in terms ofm, D andw or as

A5
2m

6m112B , B5
2m112B
6m112B , C5

D

6m112B .

~2.18!
06350
lly

f
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e

The first of the two relations~2.12! is satisfied identically;
the second translates in terms ofm, D andB to

D254m~3m112B!. ~2.19!

III. STRINGLIKE SOLUTIONS

Regarding the complexity and nonlinearity of the syste
it is quite evident that a detailed structure of the solutions
be obtained only numerically. We have performed a num
cal analysis of the system and found that the solutions
paired, as in the non-dilatonic case, and have the chara
istics that will be described below. The solutions have be
found numerically by first discretizing the radial coordina
and then applying a relaxation procedure to the set of n
linear and coupled algebraic equations,F( f̄ )50, in the set of
scalar functions evaluated at the grid points,f̄ . If the initial
guessf̄ i is good enough then the iteration obtained byf̄ i 11

5 f̄ i1D f̄ i , whereD f i is found by solving the linear equatio

¹F~ f̄ i !D f̄ i52F~ f̄ i ! ~3.1!

~Gauss elimination with scaling and pivoting will do!, will
converge towards a solution for the discretized variables.
constructed a starting guess satisfying the boundary and
tial conditions and still having several free paramete
Changing gradually these parameters, we eventu
stumbled into the region of convergence and a solution w
found. Having obtained one solution of this type, the r
could easily be generated by moving around in the param
space in sufficiently small steps. Representative plots of
solutions are given in Figs. 2, 3 and 4.

The simplest picture emerges in the casea521. The two
branches of solutions for this paticular value ofa are particu-
larly interesting. For fixeda, both solutions exist up to som
critical g; see Fig. 5. One is an ordinary cosmic string, as
Einstein gravity with the additional feature of a non-consta
dilaton. This solution hasA50, B51, C50 independent of
a andg. The metric is very similar to the usual gauge strin
but there are small deviations, due to the presence of
dilaton. It becomes identical to the metric of the Einste
gravity gauge string only in the Bogomolnyi limit (a52),
where Eqs.~2.1!–~2.6! reduce to

P85L~ f 221! ~3.2!

f 85
P f

L
~3.3!

L82
g

2
P~12 f 2!512

g

2
~3.4!

with N51 andf50, i.e. first order differential equations fo
L, f andP. A typical solution of this kind is depicted in Fig
2~a!.

The second branch in the casea521 has for all values of
a and g below the critical curve~Fig. 5!, C52 1

2 and B
50. Accordingly,A5 1

2 . This solution is quite different from
3-4
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FIG. 2. The solutions fora521, a52, g
50.4. ~a! Cosmic string branch.~b! Dilatonic
Melvin branch.
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its non-dilatonic analog, the main difference being t
asymptotic spatial geometry which is now cylindrical.

At the critical curve~Fig. 5!, the two types of solutions
become identical. Asymptotically the corresponding spa
geometry is conic with deficit angledw52p. The critical
curve itself can be approximated by a power law

g'c1ac2 ~3.5!

wherec1'1.66 andc2'0.275. This is quite, although no
exactly, similar to the result obtained in tensorial grav
@16#.

The a andg independence ofA, B andC for a521 is
however the only case of such behavior. The generic on
such that for a given value ofa, the powers of the asymptoti
form of the metric components and the dilaton change w
a andg. Put differently, we have now a situation where t
values ofA, B andC depend upon the three parametersa, a
06350
l

is

h

andg. Therefore, the universal asymptotic form of the met
tensor, which corresponds to the two extremal points on
ellipse, is now replaced by a motion along the ellipse who
specific details depend on the value ofa. Additional values
of a were studied in detail and here we give few furth
results for two more special representative points, so in
there are

a52A3, 21, 0. ~3.6!

These values were selected for the following reasons: C
centrating on the Einstein-dilaton-Maxwell system,a521
corresponds to certain compactified superstring theories@31#,
a50 corresponds to Jordan-Brans-Dicke theory anda5
2A3 corresponds to ordinary Kaluza-Klein theory.

In both casesa52A3, a50 the same two-branch pictur
emerges. One branch always contains the upper point of
ellipse (p0) at the limit g→0, such that for smallg the
3-5
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FIG. 3. The solutions fora52A3, a52, g
50.4. ~a! Cosmic string branch.~b! Dilatonic
Melvin branch.
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‘‘almost asymptotically conic’’ solutions of Gregory an
Santos@28# are obtained. For largeg the deviations from
asymptotically conic geometry are more pronounced. At
same time a gravitational Newtonian potential appears
this kind of string exerts force on non-relativistic test pa
ticles far outside its core.

The other branch exhibits also ana andg dependence o
the powersA, B andC, but has itsg→0 limit at a-dependent
points. Thisa-dependence can be understood if we note t
the g→0 limit corresponds to two types of asymptotic b
havior. One is the asymptotically conic cosmic string beh
ior and the other is that of the dilatonic Melvin univer
@29,32#, which in our coordinate system corresponds to
asymptotic behavior with the following powers:

A5
2

a213
, B5

a221

a213
, C5

2a

a213
. ~3.7!
06350
e
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The situation therefore is the following. First we fixa.
One branch~the ‘‘upper’’ or ‘‘cosmic string’’ branch! has the
point p0, i.e., A5C50, B51 as a starting point forg→0,
and asa andg change, the powersB andC move along the
ellipse while A changes accordingly@see Eq.~2.12!#. The
other branch~the ‘‘lower’’ or ‘‘dilatonic Melvin’’ branch!
starts, forg→0, with the above values Eq.~3.7! for the
powersA, B andC and the motion along the ellipse is don
in the opposite direction so the two branches approach e
other and ‘‘meet’’ at a point in between. In the meeting poi
the solutions not only have the same asymptotic behav
but they become actually identical.

There are no asymptotically conic solutions except foa
521. Actually, this property can be understood analytica
For this, we note that a useful relation is obtained by add
the equation for the dilaton, Eq.~2.5!, to the equation for the
metric componentN, Eq. ~2.3!, and integrating from 0 tox,
using the boundary conditions~on the axis!:
3-6
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FIG. 4. The solutions fora50, a52, g
50.4. ~a! Cosmic string branch.~b! Dilatonic
Melvin branch.
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N2L~f81N8/N!

5g~a11!E
0

x

dx̄N2LF1

2
e2(a11)fS f 2P2

L2
1 f 82D

1e2af
P82

2aL2
1

1

4
e2(a12)f~12 f 2!2G ~3.8!

where we denote byx̄ the integration variable. In the cas
a521, this equation is easily integrated again and gives
this case:

N5e2f. ~3.9!

It follows that the dilaton charge is minus twice the Tolm
mass,D522m. This imposes an additional condition on th
06350
n

powers of the asymptotic metric components for anya, g
which selects two points on the ellipse. The first is

A5C50, B51 ~3.10!

which is evidently locally flat.
It is also easy to prove the converse, i.e., that there are

asymptotically conic solutions foraÞ21. In order to do it,
we start again with Eq.~3.8! and notice also that for asymp
totically conic solutions we needA50 and B51, which
yield C50. Thus,N8/N andf8 vanish asymptotically faste
than 1/x and the left-hand side of Eq.~3.8! vanishes asymp-
totically. But the right hand side of this equation is an int
gral of a sum of 4 positive-definite terms and it can van
only if a521.

It also follows that in this asymptotically conic solution
D5m50, while the central magnetic field is given by
3-7
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FIG. 5. The curve wheredw52p for the a
521 case. The curve is fitted to a power la
with c1'1.66 andc2'0.275.
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B512k2b512k2S 12
dw

2p D ~3.11!

wheredw is the deficit angle.
There is as usual a second point on the ellipse, name

A52C51/2, B50. ~3.12!

As indicated above, this represents the same asymptotic
havior as the dilatonic Melvin solution~with a521). This
solution has non-vanishing dilaton charge and Tolman m
The central magnetic field satisfies the equation

B5112m. ~3.13!

IV. UNIFORM DILATON COUPLING

The model analyzed so far has a dilaton which couples~in
the Einstein-Pauli frame! with different strengths to various
matter fields. As a consequence, we do not return to the p
tensorial~Einstein! gravity in the limit of vanishing dilaton
coupling. The only case of identical solutions of the tw
systems is the cosmic string solutions witha521 and a
52. It seems therefore natural to consider a uniform c
pling of the matter fields to the dilaton. This uniform co
pling will be described by the following action:

S5E d4xAuguFe2afS 1

2
DmF* DmF2

l

4
~F* F2v2!2

2
1

4
FmnFmnD1

1

16pG
~R12¹mf¹mf!G . ~4.1!

The corresponding field equations for the cylindrica
symmetric case will be a simplified version of Eqs.~2.1!–
~2.6!:

~e2afN2L f 8!8

N2L
1e2afS ~12 f 2!2

P2

L2D f 50 ~4.2!
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ure
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u-
-

ly

L

N2 S e2af
N2P8

L D 8
2ae2af f 2P50 ~4.3!

~LNN8!8

N2L
5ge2afS P82

2aL2
2

1

4
~12 f 2!2D

~4.4!

~N2L8!8

N2L
52ge2afS P82

2aL2
1

P2f 2

L2
1

1

4
~12 f 2!2D

~4.5!

~N2Lf8!8

N2L
5gae2afS 1

2 S f 2P2

L2
1 f 82D 1

P82

2aL2

1
1

4
~12 f 2!2D ~4.6!

with the constraint

N8

N S 2
L8

L
1

N8

N D5f821ge2afS f 82

2
1

P82

2aL2
2

P2f 2

2L2

2
1

4
~12 f 2!2D . ~4.7!

The asymptotic behavior of the metric components a
the dilaton field are obtained as before and the results
identical to Eqs.~2.11!–~2.13!.

Analysis of the new system shows that the solutions
not change much except in the casea521, where an as-
ymptotically conic solution does not exist any more, see F
6. Actually, there are no asymptotically conic solutions
this system for any combination of parameters and in
respect the solutions are more similar to the string-like so
tions in JBD theory. It is quite simple to show that the on
case where asymptotically conic solutions exist, in the c
03-8
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FIG. 6. The solutions for uniform coupling
with a521, a52, g50.4. ~a! Cosmic string
branch.~b! Dilatonic Melvin branch.
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of this uniform coupling, isa50. The way to do it is to
obtain an equation analogous to Eq.~3.8! and to see that it
can be satisfied by asymptotically constantN andf only for
a50. This is just the Einstein-Higgs system with a massl
real scalar.

V. CONCLUSION

We have analyzed in detail, using both numerical and a
lytic methods, the cosmic string solutions in dilaton gravi
Contrary to previous works, we did not limit ourselves to o
branch in the weak-field approximation. We found it mo
natural to work in the Einstein frame, but all our results a
trivially transformed into the string frame.

We have shown that the solutions generally come in pa
That is, any point in parameter space gives rise to two s
tions with completely different asymptotic behaviors for t
dilaton and for the geometry. Generally, neither of the t
06350
s

a-
.

t
e

s.
u-

branches describes asymptotically flat solutions. This sho
be contrasted with the non-dilatonic case, where one bra
always describes asymptotically flat solutions. Only for
very special coupling to the dilaton, which is related to c
tain compactified superstring theories, do asymptotically
solutions appear.

Our aim in this paper was to consider cosmic strings
the simplest dilaton-gravity models parametrized by a p
nomenological coupling constanta. In the special case o
fundamental string theory, which is related to our models
a521, there is an infinity of curvature corrections~con-
trolled by the reciprocal string tensiona8) and an infinity of
string loop corrections~controlled by the string coupling
which is proportional toef). However, since our solution
for a521 are everywhere non-singular and with finite dil
ton, we expect that they will be only slightly modified in th
full ~yet unknown! quantum string theory.
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The asymptotic behaviors of the solutions in the tw
branches seemed at first to depend in an extremely com
cated way on the parameters of the theory. However, a
versal picture emerged, as explained in Sec. III.

These results were obtained by coupling the dilaton ‘‘u
formly’’ to matter in the string frame. For comparison, w
r
e,

tt

06350
li-
i-

-

re-analyzed the whole problem using a uniform coupling
the Einstein frame which may seem to be more natu
Among other things, the correct tensorial~Einstein! gravity
solutions now come out in the limit of vanishing dilato
coupling. But otherwise the solutions in the two models a
quite similar.
d,

hys.
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