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Nonlinear electrodynamics and FRW cosmology
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Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the
singular isotropic Friedmann solutions. We show that this singular behavior does not occur for a class of
nonlinear generalizations of the electromagnetic theory. A mathematical toy model is proposed for which the
analytical nonsingular extension of FRW solutions is obtained.
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[. INTRODUCTION trarelativistic state, is unable to modify the regularity of the
obtained solution.

The standard cosmological model, based on Friedmann- Heaviside nonrationalized units are used. Latin indices
Robertson-Walke(FRW) geometry with Maxwell electrody- run in the rangg1,2,3 and Greek indices run in the range
namics as its source, leads to a cosmological singularity at @,1,2,3. The volumetric spatial average of an arbitrary
finite time in the pasf1]. Such a mathematical singularity quantityX for a given instant of time is defined as
itself shows that, around the very beginning, the curvature 1
and the energy density are arbitrarily large, thus being be- Y lim 43y
yond the domain of applicability of the model. This difficulty X V“_T,OV X\/_gd X @
raises also secondary problems, such as the horizon problem:
the Universe seems to be too homogeneous over scalamerevsz__gd3xi, andV, represents a sufficiently large
which approach its causally correlated regi@h These sec- time dependent three-volume.
ondary problems are usually solved by introducing geometric
scalar fields(for a review on this approach see RE] and Il EINSTEIN-MAXWELL SINGULAR UNIVERSE
references therein

There are many proposals of cosmological solutions with- Maxwell electrodynamics usually leads to singular uni-
out a primordial singularity. Such models are based on aerse models. In a FRW framework, this is a direct conse-
variety of distinct mechanisms, such as a cosmological conquence of the singularity theorerfisl], and follows from the
stant[4], nonminimal couplingg5], nonlinear Lagrangians exam of the energy conservation law and Raychaudhuri
involving quadratic terms in the curvatui@], modifications  equation[12]. Let us set the line element
of the geometric structure of spacetifiig, and nonequilib-

rium thermodynamic$8], among others. Recently, an inho- 22 A?(t) 2 9 2 2
mogeneous and anisotropic nonsingular model for the early ds’=cdt’~ 1+ er2/4c:2[dr +r(de+sin 0dg®)],
universe filled with a Born-Infeld-type nonlinear electromag- 2
netic field was presentd®]. Further investigations on regu-

lar cosmological solutions can be found in Rf0]. wheree=—1, 0, +1 hold for the open, flator Euclidean

In this paper it is shown that homogeneous and isotropi@nd closed_ cases, re_spectively. The 3-dimensional surface of
nonsingular FRW solutions can be obtained by considering Bomogeneityt=const is orthogonal to a fundamental class of
toy model generalization of Maxwell electrodynamics, hereobservers represented by the four-velocity vector figtd
presented as a local covariant and gauge-invariant Lagrang=Cd5 . For a perfect fluid with energy densigyand pres-
ian which depends on the field invariants up to the secongurep, the two above-mentioned equations assume the form
order, as a source of classical Einstein equations. This modi-
fication is expected to be relevant when the fields reach large )
values, as occurs in the primeval era of our Universe. Singu- p+3(p+p) A 0, ©)
larity theoremg11] are circumvented by the appearance of a
high (but nevertheless finifenegative pressure in the early =

. . A k
phase of FRW geometry. In the Appendix we consider the —+—(p+3p)=0 (4)
! . . AT gPt3p)=0,
influence of other kinds of matter on the evolution of the

universe. It is shown that standard matter, even in its ul- _ ) _ _ .
in whichk is the Einstein gravitational constant and the over-

dot denotes Lie derivative respectivedpthat is (1€)d/dt.
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Since the spatial sections of FRW geometry are isotropicin which Lg represents the partial derivative of the Lagrang-
electromagnetic fields can generate such a universe only if @aan with respect to the invariari® and similarly for the in-
averaging procedure is performgtB]. The standard way to variantG. In the linear case, expressi¢oi4) reduces to the
do this is just to set for the electrie and magnetidd; fields  usual form(9).

the following mean values: Since we are interested mainly in the analysis of the be-
_ _ . havior of this system in the early universe, where matter
Ei=0, H;=0, EH;=0, (6)  should be identified with a primordial plasifb,16, we are
led to limit our considerations to the case in which only the
— 1, average of the squared magnetic field? survives
EiEj=- §E 9ij » @) [15,17,1§. This is formally equivalent to puE?>=0 in Eq.
(7), and physically means to neglect bulk viscosity terms in
- 1 the electric conductivity of the primordial plasma.
HiHj=— §H29ij : (8 The homogeneous Lagrangiéhd) requires some spatial

averages over large scales, as given by Egjs-(8). If one
The energy-momentum tensor associated with Maxwelintends to make similar calculations on smaller scales then
Lagrangian is given by either more involved nonhomogeneous Lagrangians should
be used or some additional magnetohydrodynamical effect
1 [19] should be devised in order to achieve correlafid®] at
Tu=FuF%+ ZFgW, 9 the desired scale. Since the average procedure is independent
of the equations of the electromagnetic field we can use the
inwhichF=F , F#"=2(H?~E?). Using the above average above formulag6)—(8) to arrive at a counterpart of expres-
values it follows that Eq(9) reduces to a perfect fluid con- sion (10) for the non-Maxwellian case. The average energy-

figuration with energy density,, and pressure@,, as momentum tensor is identified as a perfect flgdd) with
o modified expressions for the energy dengityand pressure
TMV:(p’y+ py)vaV_ pyg,uvl (10) py as
where 1
. pf:EH%l—saHZL (15)
p7:3p7=§(E?+H2y (12)
1
— 2 2
The fact that both the energy density and the pressure are p,= gH (1—40aH"). (16)

positive definite for all time yields, using the Raychaudhuri

Eq. (4), the singular nature of FRW universes. Thus Einstein
equations for the above energy-momentum configuration
yield [14]

Inserting expressiondl5),(16) in Eq. (3) yields

(17)

I
I
T

A(t)= VALt —et?, 12

whereA, is an arbitrary constant. whereH, is a constant. With this result, a similar procedure
applied to Eq(5) leads to
I1I. NONSINGULAR FRW UNIVERSES

The toy model generalization of Maxwell electromagnetic A2=
Lagrangian will be considered up to second order terms in
the field invariants and G=(1/2)7,4,,,F **F**=—4E-H _ _ _
as As far as the right-hand side of E@{.8) must not be negative
it follows that, regardless of the value ef for «>0 the

kH2 8aH?
O( — O) € (18

6aZ| 1T AT )T

1 2 2 scale factorA(t) cannot be arbitrarily small. The solution of
L=-ZF+aF +BG%, (13 Eq. (18) is implicitly given as
where a and B are arbitrary constants. Maxwell electrody- A dz
namics can be formally obtained from E@3) by setting ct:tj , (19
a=0= . Alternatively, it can also be dynamically obtained Ao kH2  8akH:
from the nonlinear theory in the limit of small fields. We will o2 of €

not consider generalizations of E(L3) which include the
term FG in order to preserve parity. The energy-momentum

tensor for nonlinear electromagnetic theories reads whereA(0)=A,. The linear cas¢l2) can be achieved from
Eq. (19 by settinga=0.
T,,=—4LeF,“F,,+(GLg—L)g,,, (14 A closed form of Eq.(19) for e= +1 can be derived as
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wherex, ,X,,X5 are the three roots of the equationlgH:
—kH3x+3ex3=0, and

sinx 1
F(X, k)= dz
(X, ) 0 V(1-22)(1-«%2)
sin)(d]_—KZZ2
E(X, k)= ——dz
0 V1-27°

are the elliptic functions of the first and of second kind,
respectively(see expressions 8.111.2 and 8.111.3 in Ref.

[21]). The behavior oA(t) for e=+1 is displayed in Fig. 1.

For the Euclidean section, by suitably choosing the origi

of time, expressiori19) can be solved as

A?=H,\/ % (kc’t?+12a).

From Eq.(17), the average strength of the magnetic field
evolves in time as

(21)

1

3
2_2
N = k@ 12a (22)

Expression21) is singular fora<0, as there exist a time
t=1/—12a/kc? for which A(t) is arbitrarily small. Other-
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FIG. 1. Plots from Eq(19). We setA(1)=1, kH2=12, and

aH2=(0;+1.25x10*) as illustrative values.

(20

(o]

wise, for «>0 we recognize that &t=0 the radius of the
universe attains a minimum valug,;,, which is given from

A%, .=H,\/8a.

Therefore, the actual value &, depends orH,, which
turns out to be the unique free parameter of the present
model. The energy density, given by Eq.(15) reaches its
maximum valuep,,,,=1/64« at the instant=t., where

1 12«
=Nk

For smaller values dofthe energy density decreases, vanish-
ning att=0, while the pressure becomes negative. Only for
timest=<3t; the nonlinear effects are relevant for cosmologi-
cal solution of the normalized scale factor, as shown in Fig.
2. Indeed, solutior{21) fits the standard expressidh2) of

the Maxwell case at the limit of large times.

The energy-momentum tens¢t4) is not trace-free for
a#0. Thus the equation of sta,=p,(p,) is no longer
given by the Maxwellian value; it has instead a
quintessential-like ternj22] which is proportional to the
constantw. That is

(23

(24)

1 16 .
p7 §p7—§aH (25)
Equation(25) can also be written in the form
1 1
Py=3Py~ g (1~ 32ap,)
+[1-20(t—t)]V1—6dap,}, (26)

where ©(z) it the Heaviside step function. The right-hand
side of Eq.(26) behaves as (1 64ap,)p,/3 for t>1. in the
Maxwell limit ap,<1.

The maximum of the temperature correspondingd=td.
is given by

(27)

c 1/4
Tmac | §20)

whereo is the Stefan-Boltzmann constant.

IV. CONCLUSIONS

The consequences of the minimal coupling of gravity with
second order nonlinear electrodynamit8) were examined.
From the cosmological point of view, the proposed modifi-
cation is relevant only in the primeval era of the universe.
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FIG. 2. On the left panel: time dependence of the electromagnetic energy depaityl pressure., . pma—=1/64 andt, is given by Eq.
(24). On the right panel: nonsingular behavior of the scale fa&{oy. A, andt. are given from Eqs23),(24). The corresponding classical
expression12) is shown(dashed lingfor comparison, withA;= A, -

Indeed, the class of theories>0 leads to nonsingular solu- fluid with energy density,, which satisfies an ultrarelativ-
tions for which the scale factoA(t) attains a minimum istic equation of stat@,=p,/3. Adding the contribution of
value. The regularity of the cosmological solutittl) is to  this kind of matter to the average energy-momentum tensor

be attributed to the fact that, faf<24a/kc?, the quantity Of the photons it follows thap,=KA™*, whereK is an
p+3p becomes negative. arbitrary positive constant. This result allows us to treat such

extra matter as nothing but a reparametrization of the con-
stantsH, and @ asH2=H2+2K and &= aH2/(H2+ 2K)?2.
The net effect of this is just to diminish the value&f;, as

HE
H2+ 2K
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1/4
Amin- (Al)

Therefore, it turns out that the phenomenon of reversing the

sign of the expansion factorA8A due to the high negative
pressure of the photons is not essentially modified by the
ultrarelativistic gas. Only an exotic fluid possessing energy

Beside photons there are plenty of other particles, andensitypgyoiic—A" with n<—8 could be able to modify the
physics of the early universe deals with various sort of matabove result. However, this situation seems to be a very un-
ter. In the standard framework they are treated in terms of aealistic case.

APPENDIX: ULTRARELATIVISTIC MATTER
CONTRIBUTION

[1] E. W. Kolb and M. S. TurnerThe Early UniversgAddison- A. Figueiredo, gr-qc/0012105 2000.
Wesley, Redwood City, CA, 1990 [6] V. Mukhanov and R. Brandenberger, Phys. Rev. L&8.1969

[2] R. Brandenberger, iRroceedings of the VIII Brazilian School (1992. See also R. Brandenberger, V. Mukhanov, and A. Sorn-
of Cosmology and Gravitatigredited by M. Novello Editions borger, Phys. Rev. @8, 1629 (1993; R. Moessner and M.
Frontigres, Singapore, 1996 Trodden,ibid. 51, 2801(1995.

[3] L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev5B, [7] M. Novello, L. A. R. Oliveira, J. M. Salim, and E. Elbaz, Int.
3258(1997). J. Mod. Phys. Al, 641(1993.

[4] W. de Sitter, Proc. K. Ned. Akad. Wet9, 1217(1917). [8] G. L. Murphy, Phys. Rev. 8, 4231(1973; J. M. Salim and

[5] M. Novello and J. M. Salim, Phys. Rev. 0, 377(1979; A. H. P. de Olivera, Acta Phys. Pol. B, 649 (1988.

Saa, E. Gunzig, L. Brenig, V. Faraoni, T. M. Rocha Filho, and [9] R. Garcia-Salcedo and N. Breton, Int. J. Mod. Phys13\

063501-4



NONLINEAR ELECTRODYNAMICS AND FRW COSMOLOGY PHYSICAL REVIEW D65 063501

4341 (2000. [15] T. Tajima, S. Cable, K. Shibata, and R. M. Kulsrud, Astrophys.
[10] R. Klippert, V. A. De Lorenci, M. Novello, and J. M. Salim, J. 390, 309 (1992; M. Giovannini and M. Shaposhnikov,

Phys. Lett. B472 27 (2000; G. Veneziano, hep-th/0002094, Phys. Rev. D57, 2186(1998.

2000. [16] A. Campos and B. L. Hu, Phys. Rev. 8, 125021(1998.

[11] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of[17] G. G. Dunne, Int. J. Mod. Phys. A2, 1143(1997; G. G.
SpacetimgCambridge University Press, Cambridge, England, Dunne and T. Hall, Phys. Rev. B8, 105022(1998.
1973; R. M. Wald, General RelativityUniv. Chicago Press, [18] M. Joyce and M. Shaposhnikov, Phys. Rev. L&®, 1193

Chicago, 198% (1997.

[12] M. Novello, in Proceedings of the Il Brazilian School of Cos- [19] C. Thompson and O. Blaes, Phys. Rev6T) 3219(1998; K.
mology and Gravitationedited by M. Novello(J. Sansom & Subramanian and J. D. Barroilsjd. 58, 083502(1998.
Cia., Rio de Janeiro, 193Qin Portuguese [20] K. Jedamzik, V. Jatalinjcand A. V. Olinto, Phys. Rev. 37,

[13] R. C. Tolman and P. Ehrenfest, Phys. R&#,.1791(1930; M.
Hindmarsh and A. Everett, Phys. Rev.38, 103505(1998.

[14] H. P. Robertson, Rev. Mod. Phys, 62 (1933; D. Edwards,
Astrophys. Space ScR4, 563 (1973; R. Coqueraux and A.
Grossmann, Ann. Phy§N.Y.) 143 296(1982; M. Dabrowski
and J. Stelmach, Astron. 92, 1272(1986.

3264(1998.

[21] I. S. Gradshteyn and |. M. Ryzhikable of Integrals, Series,
and ProductgAcademic, London, 1965

[22] R. R. Caldwell, R. Dare, and P. J. Steinhardt, Phys. Rev. Lett.
80, 1582(1998.

063501-5



