
PHYSICAL REVIEW D, VOLUME 65, 063501
Nonlinear electrodynamics and FRW cosmology
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Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the
singular isotropic Friedmann solutions. We show that this singular behavior does not occur for a class of
nonlinear generalizations of the electromagnetic theory. A mathematical toy model is proposed for which the
analytical nonsingular extension of FRW solutions is obtained.
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I. INTRODUCTION

The standard cosmological model, based on Friedma
Robertson-Walker~FRW! geometry with Maxwell electrody-
namics as its source, leads to a cosmological singularity
finite time in the past@1#. Such a mathematical singularit
itself shows that, around the very beginning, the curvat
and the energy density are arbitrarily large, thus being
yond the domain of applicability of the model. This difficult
raises also secondary problems, such as the horizon prob
the Universe seems to be too homogeneous over sc
which approach its causally correlated region@2#. These sec-
ondary problems are usually solved by introducing geome
scalar fields~for a review on this approach see Ref.@3# and
references therein!.

There are many proposals of cosmological solutions w
out a primordial singularity. Such models are based o
variety of distinct mechanisms, such as a cosmological c
stant @4#, nonminimal couplings@5#, nonlinear Lagrangians
involving quadratic terms in the curvature@6#, modifications
of the geometric structure of spacetime@7#, and nonequilib-
rium thermodynamics@8#, among others. Recently, an inho
mogeneous and anisotropic nonsingular model for the e
universe filled with a Born-Infeld-type nonlinear electroma
netic field was presented@9#. Further investigations on regu
lar cosmological solutions can be found in Ref.@10#.

In this paper it is shown that homogeneous and isotro
nonsingular FRW solutions can be obtained by considerin
toy model generalization of Maxwell electrodynamics, he
presented as a local covariant and gauge-invariant Lagr
ian which depends on the field invariants up to the sec
order, as a source of classical Einstein equations. This m
fication is expected to be relevant when the fields reach la
values, as occurs in the primeval era of our Universe. Sin
larity theorems@11# are circumvented by the appearance o
high ~but nevertheless finite! negative pressure in the ear
phase of FRW geometry. In the Appendix we consider
influence of other kinds of matter on the evolution of t
universe. It is shown that standard matter, even in its
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trarelativistic state, is unable to modify the regularity of t
obtained solution.

Heaviside nonrationalized units are used. Latin indic
run in the range~1,2,3! and Greek indices run in the rang
~0,1,2,3!. The volumetric spatial average of an arbitra
quantityX for a given instant of timet is defined as

X̄8 lim
V→Vo

1

V E XA2gd3xi , ~1!

whereV5*A2gd3xi , andVo represents a sufficiently larg
time dependent three-volume.

II. EINSTEIN-MAXWELL SINGULAR UNIVERSE

Maxwell electrodynamics usually leads to singular u
verse models. In a FRW framework, this is a direct con
quence of the singularity theorems@11#, and follows from the
exam of the energy conservation law and Raychaudh
equation@12#. Let us set the line element

ds25c2dt22
A2~ t !

11er 2/4c2 @dr21r 2~du21sin2 udw2!#,

~2!

wheree521, 0, 11 hold for the open, flat~or Euclidean!
and closed cases, respectively. The 3-dimensional surfac
homogeneityt5const is orthogonal to a fundamental class
observers represented by the four-velocity vector fieldvm

5cdo
m . For a perfect fluid with energy densityr and pres-

surep, the two above-mentioned equations assume the f

ṙ13~r1p!
Ȧ

A
50, ~3!

Ä

A
1

k

6
~r13r!50, ~4!

in which k is the Einstein gravitational constant and the ov
dot denotes Lie derivative respective tov, that is (1/c)]/]t.
Equations~3! and ~4! do admit a first integral

k

3
r5S Ȧ

A
D 2

1
e

A2 . ~5!
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Since the spatial sections of FRW geometry are isotro
electromagnetic fields can generate such a universe only
averaging procedure is performed@13#. The standard way to
do this is just to set for the electricEi and magneticHi fields
the following mean values:

Ei50, Hi50, EiH j50, ~6!

EiEj52
1

3
E2gi j , ~7!

HiH j52
1

3
H2gi j . ~8!

The energy-momentum tensor associated with Maxw
Lagrangian is given by

Tmn5FmaFa
n1

1

4
Fgmn , ~9!

in which F8FmnFmn52(H22E2). Using the above averag
values it follows that Eq.~9! reduces to a perfect fluid con
figuration with energy densityrg and pressurepg as

Tmn5~rg1pg!vmvn2pggmn , ~10!

where

rg53pg5
1

2
~E21H2!. ~11!

The fact that both the energy density and the pressure
positive definite for all time yields, using the Raychaudh
Eq. ~4!, the singular nature of FRW universes. Thus Einst
equations for the above energy-momentum configura
yield @14#

A~ t !5AAo
2t2et2, ~12!

whereAo is an arbitrary constant.

III. NONSINGULAR FRW UNIVERSES

The toy model generalization of Maxwell electromagne
Lagrangian will be considered up to second order terms
the field invariantsF andG8(1/2)habmnFabFmn524EW •HW
as

L52
1

4
F1aF21bG2, ~13!

wherea and b are arbitrary constants. Maxwell electrod
namics can be formally obtained from Eq.~13! by setting
a505b. Alternatively, it can also be dynamically obtaine
from the nonlinear theory in the limit of small fields. We wi
not consider generalizations of Eq.~13! which include the
term FG in order to preserve parity. The energy-momentu
tensor for nonlinear electromagnetic theories reads

Tmn524LFFm
aFan1~GLG2L !gmn , ~14!
06350
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in which LF represents the partial derivative of the Lagran
ian with respect to the invariantF and similarly for the in-
variantG. In the linear case, expression~14! reduces to the
usual form~9!.

Since we are interested mainly in the analysis of the
havior of this system in the early universe, where mat
should be identified with a primordial plasma@15,16#, we are
led to limit our considerations to the case in which only t
average of the squared magnetic fieldH2 survives
@15,17,18#. This is formally equivalent to putE250 in Eq.
~7!, and physically means to neglect bulk viscosity terms
the electric conductivity of the primordial plasma.

The homogeneous Lagrangian~13! requires some spatia
averages over large scales, as given by Eqs.~6!–~8!. If one
intends to make similar calculations on smaller scales t
either more involved nonhomogeneous Lagrangians sho
be used or some additional magnetohydrodynamical ef
@19# should be devised in order to achieve correlation@20# at
the desired scale. Since the average procedure is indepen
of the equations of the electromagnetic field we can use
above formulas~6!–~8! to arrive at a counterpart of expres
sion ~10! for the non-Maxwellian case. The average energ
momentum tensor is identified as a perfect fluid~10! with
modified expressions for the energy densityrg and pressure
pg as

rg5
1

2
H2~128aH2!, ~15!

pg5
1

6
H2~1240aH2!. ~16!

Inserting expressions~15!,~16! in Eq. ~3! yields

H5
Ho

A2 , ~17!

whereHo is a constant. With this result, a similar procedu
applied to Eq.~5! leads to

Ȧ25
kHo

2

6A2 S 12
8aHo

2

A4 D 2e. ~18!

As far as the right-hand side of Eq.~18! must not be negative
it follows that, regardless of the value ofe, for a.0 the
scale factorA(t) cannot be arbitrarily small. The solution o
Eq. ~18! is implicitly given as

ct56E
Ao

A~ t ! dz

AkHo
2

6z2 2
8akHo

4

6z6 2e

, ~19!

whereA(0)5Ao . The linear case~12! can be achieved from
Eq. ~19! by settinga50.

A closed form of Eq.~19! for e561 can be derived as
1-2
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ct56F ~x12x3!ES arcsinA z2x1

x22x1
,Ax12x2

x12x3
D 1x3F S arcsinA z2x1

x22x1
,Ax12x2

x12x3
D

Ax32x1

G
z5A

o
2

z5A2~ t !

, ~20!
d
e

gi

ent

h-
for
gi-
ig.

a

d

ith

ifi-
e.
wherex1 ,x2 ,x3 are the three roots of the equation 8akHo
4

2kHo
2x13ex350, and

F~x,k!8E
0

sin x 1

A~12z2!~12k2z2!
dz,

E~x,k!8E
0

sin x A12k2z2

A12z2
dz

are the elliptic functions of the first and of second kin
respectively~see expressions 8.111.2 and 8.111.3 in R
@21#!. The behavior ofA(t) for e561 is displayed in Fig. 1.

For the Euclidean section, by suitably choosing the ori
of time, expression~19! can be solved as

A25HoA 2
3 ~kc2t2112a!. ~21!

From Eq.~17!, the average strength of the magnetic fieldH
evolves in time as

H25
3

2

1

kc2t2112a
. ~22!

Expression~21! is singular fora,0, as there exist a time
t5A212a/kc2 for which A(t) is arbitrarily small. Other-

FIG. 1. Plots from Eq.~19!. We setA(1)51, kHo
2512, and

aHo
25(0;61.2531024) as illustrative values.
06350
,
f.

n

wise, for a.0 we recognize that att50 the radius of the
universe attains a minimum valueAmin , which is given from

Amin
2 5HoA8a. ~23!

Therefore, the actual value ofAmin depends onHo , which
turns out to be the unique free parameter of the pres
model. The energy densityrg given by Eq.~15! reaches its
maximum valuermax51/64a at the instantt5tc , where

tc5
1

c
A12a

k
. ~24!

For smaller values oft the energy density decreases, vanis
ing at t50, while the pressure becomes negative. Only
timest&3tc the nonlinear effects are relevant for cosmolo
cal solution of the normalized scale factor, as shown in F
2. Indeed, solution~21! fits the standard expression~12! of
the Maxwell case at the limit of large times.

The energy-momentum tensor~14! is not trace-free for
aÞ0. Thus the equation of statepg5pg(rg) is no longer
given by the Maxwellian value; it has instead
quintessential-like term@22# which is proportional to the
constanta. That is

pg5
1

3
rg2

16

3
aH4. ~25!

Equation~25! can also be written in the form

pg5
1

3
rg2

1

24a
$~1232arg!

1@122Q~ t2tc!#A1264arg%, ~26!

whereQ(z) it the Heaviside step function. The right-han
side of Eq.~26! behaves as (1264arg)rg/3 for t.tc in the
Maxwell limit arg!1.

The maximum of the temperature corresponding tot5tc
is given by

Tmax5S c

64as D 1/4

, ~27!

wheres is the Stefan-Boltzmann constant.

IV. CONCLUSIONS

The consequences of the minimal coupling of gravity w
second order nonlinear electrodynamics~13! were examined.
From the cosmological point of view, the proposed mod
cation is relevant only in the primeval era of the univers
1-3
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FIG. 2. On the left panel: time dependence of the electromagnetic energy densityrg and pressurepg . rmax51/64a andtc is given by Eq.
~24!. On the right panel: nonsingular behavior of the scale factorA(t). Amin andtc are given from Eqs.~23!,~24!. The corresponding classica
expression~12! is shown~dashed line! for comparison, withAo5Amin .
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Indeed, the class of theoriesa.0 leads to nonsingular solu
tions for which the scale factorA(t) attains a minimum
value. The regularity of the cosmological solution~21! is to
be attributed to the fact that, fort2,24a/kc2, the quantity
r13p becomes negative.
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APPENDIX: ULTRARELATIVISTIC MATTER
CONTRIBUTION

Beside photons there are plenty of other particles,
physics of the early universe deals with various sort of m
ter. In the standard framework they are treated in terms
l

nd

06350
d
t-
a

fluid with energy densityrn , which satisfies an ultrarelativ
istic equation of statepn5rn/3. Adding the contribution of
this kind of matter to the average energy-momentum ten
of the photons it follows thatrn5KA24, where K is an
arbitrary positive constant. This result allows us to treat su
extra matter as nothing but a reparametrization of the c
stantsHo anda as Ĥo

25Ho
212K and â5aHo

4/(Ho
212K)2.

The net effect of this is just to diminish the value ofAmin as

Âmin5S Ho
2

Ho
212K D 1/4

Amin . ~A1!

Therefore, it turns out that the phenomenon of reversing
sign of the expansion factor 3Ȧ/A due to the high negative
pressure of the photons is not essentially modified by
ultrarelativistic gas. Only an exotic fluid possessing ene
densityrexotic;An with n<28 could be able to modify the
above result. However, this situation seems to be a very
realistic case.
rn-
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