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Elliptical beams in CMB temperature and polarization anisotropy experiments:
An analytic approach
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We present an analytic approach to the estimation of beam asymmetry effects in cosmic microwave back-
ground~CMB! temperature and linear polarization anisotropy experiments. We derive via perturbative expan-
sions simple and accurate results for the case of an elliptical Gaussian window. Our results are applied to
investigate the effect of beam ellipticity in the estimation of full-sky polarization correlation functions and the
covariance matrix of power spectra. The relevance of this effect is also discussed by forecasting errors includ-
ing beam asymmetry for current and future cosmic microwave background~CMB! experiments.
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I. INTRODUCTION

As high-resolution cosmic microwave background~CMB!
experiments explore smaller fluctuations in the tempera
anisotropy with high sensitivity, a better understanding
systematic effects is required to make more accurate m
surements. These systematics have a direct impact on
ability we have to improve the process of CMB data analy
at the level of map making, power spectrum estimation a
ultimately in constraining cosmological parameters.

A common simplifying assumption in CMB data analys
is to take the experimental beam response, i.e., the iso
tours of constant beam response, to have a perfectly axis
metric orcircular shape with a Gaussian profile. This the
retical approximation introduces systematic errors in
statistical analysis at angular scales comparable to the be
width, s. Consistently, it bias estimates probing multipo
orders l;1/s in the spherical harmonic analysis~i.e., the
generalization of flat-space Fourier analysis for full-sky s
nals! of CMB experiments.

As far as the main lobe is concerned, experimental be
responses foroff-axis detectors are well known to exhib
asymmetricshapes very well described by an elliptical sha
with a Gaussian profile, as discussed for several experim
in the literature, e.g., Planck@1,2#, Maxima-1 @3# and
Python-V @4#. However, the effect of beam asymmetry h
been investigated only recently and the approach taken u
now has relied on semi-analytic@4# or full numerical integra-
tion @1,3#.

In this paper we shall introduce an analytic approach
address the problem of beam asymmetry in CMB exp
ments. In particular, we conveniently describe an ellipti
Gaussian window in terms of a perturbative expans
around a circular Gaussian one. As it will be shown belo
this description allows a simple and intuitive discussion
the beam harmonic transform, the full-sky correlation a
covariance matrices for both total intensity and linear po

*Email address: fosalba@iap.fr
†Email address: dore@iap.fr
‡Email address: bouchet@iap.fr
0556-2821/2002/65~6!/063003~16!/$20.00 65 0630
re
f
a-

the
s
d

n-
m-

e
m-

-

m

e
ts

to

o
i-
l
n
,
f
d
r-

ization anisotropy observations.
The paper is organized as follows: in Sec. II we pres

our analytic approach and derive the spherical harmo
transform of the total intensity beam. A detailed discuss
of the effect of ellipticity to first order is provided in Sec. II
These results are validated numerically in Sec. IV. Res
for linear polarization experiments are given in Sec. V. W
implement this formalism to calculate full-sky polarizatio
correlation functions in Sec. VI. Errors in temperature a
polarization power spectra are discussed in Sec. VII. Fina
we present a general discussion and our main conclusion
Sec. VIII.

II. BEAM SPHERICAL HARMONIC TRANSFORM:
TOTAL INTENSITY

Let us consider the beam response,B, to the total intensity
sky distribution in a CMB temperature anisotropy expe
ment. For single-dish experiments with high spatial reso
tion, the beam geometry can be accurately described in
flat-sky approximation. Within this approximation, an ellip
tical Gaussian window function can be expressed in Ca
sian coordinates,

B~x,y!5B0~sa ,sb!expF2
x2

2sa
2 2

y2

2sb
2G ~1!

where we definesa andsb as the beam widths in the majo
~x! and minor ~y! axis, and the normalization is given b
B0(sa ,sb)51/(2psasb).

The Fourier transform of the flat-sky elliptical window
simply given by

B~kx ,ky!5expF2
kx

2sa
2

2
2

ky
2sb

2

2 G ~2!

wherekx and ky are the modes along the major and min
axis of the ellipse, respectively. However, the Fourier ana
sis is only accurate for small patches of the sky~i.e., patches
covering an area of a few deg2 or smaller!.

For full-sky CMB analysis we shall introduce a decomp
sition of the window function in the spherical harmonic ba
Ylm(u,f),
©2002 The American Physical Society03-1
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B~u,f!5(
l

(
m52 l

1 l

blmYlm~u,f! ~3!

where l'p/u is the multipole order andblm are the coeffi-
cients of the harmonic transform,

blm5E dVB~u,f!Ylm* ~u,f! ~4!

wheredV5sinududf is the differential solid angle. Above
we have rewritten the elliptical window functionB(u,f) in
the ~planar! polar coordinates,x5u cos(f2v) and y
5u sin(f2v),

B~u,f!5B0 expF2
u2

2sb
2 f ~f!G ~5!

wheref (f)[12x cos2(f2v) describes the deviations from
a circular~or axisymmetric! Gaussian window and the ellip
ticity parameterx[12(sb /sa)2 is defined within the range
1.x>0. We have introduced an arbitrary phasev which
defines the orientation of the major axis of the elliptic
beam in polar coordinates. The circular Gaussian window
thus recovered for the limiting casex50.

However, the above integral for the spherical harmo
transform of the elliptical Gaussian window Eq.~4! has no
exact analytic solution and one has to resort to semi-ana
approaches or full numerical integration to evaluate it~see,
e.g.,@4#!.

In this section we shall show that Eq.~4! can be solved
analytically by introducing a convenient Taylor expansion
the elliptical ~non-axisymmetric! window around a circular
~axisymmetric! one. This perturbative expansion yields a s
ries in powers of the ellipticity parameterx,

B~u,f!5B0 expF2
u2

2s2 1
u2

2s2 x cos2~f2v!G
'B0FB~u!1x

u2

2s2B~u!cos2~f2v!G1O~x2!

~6!

where the first term corresponds to a circular Gaussian b
B(u)5exp@2u2/2s2# of beam widthsb ~the minor axis of
the ellipse; we shall denotesb5s in what follows for sim-
plicity! and B05@*dVB(u,f)#21 is the beam normaliza
tion.

The above expansion of the window function in real spa
Eq. ~6! leads to an analog expansion in harmonic space.

blm5(
n

blm
(n) xn

n!
5blm

(0)1blm
(1)x1O~x2! ~7!

Thenth order term of the harmonic transform can be exac
integrated. In particular, only evenm modes have a non
06300
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vanishing harmonic transform1 which reads~see Appendix A
for the key steps of the derivation!,

blm
(n)5

2p

22n2m/2
Nl 2m

2n!

~n1m/2!!
s21me2zLn2m/2

(m) ~z! ~8!

where z5 l 2s2/2, Nlm is the normalization of the spherica
harmonics~see Appendix A! and Ln

(a)(z) denotes thenth
order Laguerre polynomials of parametera @see Eq.~A18!
for explicit forms#.

Replacing Eq.~8! into Eq. ~7! one gets the final expres
sion for the harmonic transform of the elliptical beam

blm5smNlm
I e2z(

n50

`

gn,mLn
(m)~z!xn1m/2, ~9!

where we defineNlm
I 5Nl 2m /B̄0 , B̄05B0 /(2ps2), and

gn,m5(2n1m)!/ @22n13m/2(n1m/2)!(n1m)! #. Note that
the circular Gaussian beam is recovered whenx50, in
which case only them50 contribution is non-zero,blm
5Nl0 exp@2l2s2/2#dm,0 . Combining the conjugation rule fo
spherical harmonics,blm* 5(21)mbl 2m ~where non-zerom
contributors are even for an elliptical beam! and the reality
condition of the beam transform,blm* 5blm , one sees tha
that both negative and positive modes have the same
monic transform, bl 2m5blm . Therefore, in what follows, we
shall assumem.0 without loss of generality.

Equation~9! is one of the main results of this paper. Th
equation demonstrates that the leading order correction to
circular Gaussian window from a givenm mode ~for m
.0) is of orderO(xm/2). In other words, contributions from
higher m modes to the elliptical window function can b
identified as higher order corrections to the circular Gauss
window.

For high resolution experiments,s!1 rad, the elliptical
beam harmonic transform is dominated by the axisymme
or circular contribution to the window function, i.e., them
50 mode. It is important to realize that the circular mode
longer has a Gaussian profile due to ellipticity correctio
@seen5” 0 terms in Eq.~9!#. To leading order in the smallx
expansion@n50 in Eq.~9!#, contributions fromm.0 modes
are highly suppressed,

blm5g0,mxm/2~s l !mNl0e2 l 2s2/2, m52,4,6, . . . ~10!

Therefore non-circular~higher-m) modes only have a non
negligible contribution to the harmonic transform with r
spect to the circular (m50) mode whens2l 2'1/x, which is
well beyond the peak of the window function. The peak
the window is determined from the leading order contrib
tion to bl0, Eq. ~12!. In fact, the peak location and width ca
also be accurately estimated from aneffectivecircular Gauss-
ian window of width,se f f5s(11x/4),2

1This is due to the azimuthal symmetry of the elliptical geomet
which is realized in the cos2f factor of f (f) in Eq. ~5!.

2Higher-order corrections in the perturbative expansion, Eq.~9!,
i.e., higher-order terms inn and m only modify significantly this
definition for very large ellipticitiesx.1.
3-2
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ELLIPTICAL BEAMS IN CMB TEMPERATURE AND . . . PHYSICAL REVIEW D65 063003
s2l peak
2 .~12x/4!/2 ~11!

since x,1. Note also that the window function peaks
increasingly higherl multipoles as one considers high
~non-circular! m modes. This is in agreement with rece
numerical results@4# and provides a simple demonstratio
for them.

III. FIRST ORDER ANALYSIS: SLIGHTLY ELLIPTICAL
BEAMS

For most current and future experiments, such as Boom
ang @5#, MAXIMA-1 @6# and Planck@7#, the beam is only
slightly elliptical, i.e., the widths of the major (sa) and mi-
nor axis (s) of the beam differ by less than 20%, 1
>sa /s>1 (x<0.3).

In this limit, a first order ellipticity correction to the cir
cular Gaussian beam would give an accurate approxima
to the actual beam harmonic transform, which yields for
modesm50 andm52,

bl05Nl0e2 l 2s2/2F12
x

4
l 2s2G1O~x2! ~12!

bl25Nl0

x

8
l 2s2e2 l 2s2/21O~x2! ~13!

which shows that

bl25
x

8
l 2s2bl01O~x2! ~14!

From this equation it is straightforward to see that forx
!1 the leading order contribution from them52 mode is a
few percent of that fromm50 at the peak of the window
s2l peak

2 '1/2 @see Eq.~11!#.
However, notice that for the circular mode of the windo

Eq. ~12!, the linear correction to the circular Gaussian win
dow @the second term in Eq.~12!# is of the same order and
peaks at the same multipole as the leading term in the n
circular (m52) mode@see Eq.~13!#. Therefore, both correc
tions have to be included to compute the harmonic transf
of the elliptical beam consistently. This is illustrated in Fig
for an elliptical beam withx50.3 (sa /s51.2) anduFWHM
5108.

Similarly, for highly elliptical beams, higher orderx cor-
rections to the circular mode become non-negligible a
consequently higher non-circular modes have to be inco
rated to calculate the harmonic transform accurately. Exp
expresssions for the window function up to second orde
the ellipticity are given in Appendix A, Eq.~A20!. This result
arises naturally in the perturbative approach to the harmo
analysis of elliptical beams.

IV. NUMERICAL INVESTIGATIONS

In this section we shall validate the analytic results p
sented in the previous sections regarding the total inten
window. Although the same validation has been carried
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for the linear polarization~see Sec. V!, we shall concentrate
here on the total intensity window as the results for polari
tion are a straightforward generalization of the total intens
ones.

First of all, we shall test whether the perturbative ser
Eq. ~8! is accurate and how fast it converges to the numer
solution. This analysis is done in Sec. IV A. In addition, w
shall see in Sec. IV B to what extent thescaling solutionfor
the higherm modes of the window, Eq.~10!, is a good ap-
proximation to the exact solution. As will be discussed
Sec. IV C, prescriptions for an accurate computation of
window function from the perturbative solutions natura
lead to a criteria as to how many higher~non-circular! m
modes have to be included in a consistent analysis of e
tical windows.

A. Probing the convergence

To test our approach, we shall compare the analytic
sults, Eq.~9!, to a full numerical integration of Eq.~4! using
a Runge-Kutta method of fifth order@8#. The fast conver-
gence of the analytical expansion is illustrated in Fig.
Indeed, in this figure we consider for one single beam s
uFWHM5A8ln2s5108, two different values of the ellipticity
parameter,x: x50.75 (sa /s52.0) and x50.30 (sa /s
51.2) shown in the left and right panels, respectively. T
upper panels display the expansionbl0

(n) for variousn. In both
situations, the convergence is seen to take place for ra
small n. Comparing these two columns we see also that
expected, the greater the beam ellipticityx is, the higher the
number of terms needed to reach the convergence. B
these statements will be discussed quantitatively below.

The lower panel illustrates this statement by drawing
stead the ratio of the individualnth order terms to the 0th

FIG. 1. Ellipticity corrections to the harmonic transform for
slightly elliptical beam, with ellipticity x50.3 and resolution
uFWHM5108. ~Solid lines! Leading order terms~for m50 andm
52). The first correction to the circular (m50) mode~dashed line!
is of the same order and peaks at the same multipole as the lea
order term for the non-circular (m52) mode~dot-dashed!.
3-3
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order one~for the same values ofn as in the upper panels o
Fig. 2!.

B. Higher m modes contribution

An analogous behavior as the one illustrated above for
m50 mode convergence is seen form5” 0. We note here tha
oddm modes are null and that onlym>0 modes are consid
ered since negative modes have exactly the same harm
transform,blm5bl 2m ~see Sec. II!. Assuming this conver-
gence, we now examine the amplitude of the higherm modes
contribution, as they were derived analytically in Sec.
This is illustrated in Fig. 3 for a beam of the same width, i.

FIG. 2. Probing the convergence. Considering two different
lipticities of a given beam of widthuFWHM5108, we plot in the
upper panel thenth order expansion ofblm and in the lower panel,
the ratio of thenth order correction to the 0th one. Both plo
illustrate the fast convergence of thex expansion.

FIG. 3. Higher-m modes in the elliptical window spherica
transform.
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uFWHM5108, and for 3 different values ofx, namely x
50.17 (sa /s51.1), x50.30 (sa /s51.2), and x
50.41 (sa /s51.3). We plot here thenth order expansion
of blm for m50,2,4 wheren is high enough so that this
expansion is fully converged.

The scalings demonstrated in Eq.~10! are clearly visible.
First we check thatm.0 modes amplitude scales as (s l )m,
making them not only sub-dominant~just a few percent con-
tribution to the beam transform as compared to circular m
m50) but also shifting their peak to higherl asm increases.
Second we also check the scaling with the ellipticity,xm/2,
which clearly implies that the smallerx, the more drastically
the m.0 modes are suppressed.

A direct comparison with the approximatescaling solu-
tion for the higherm modes Eq.~10!, is shown in Fig. 4. In
particular, the plot shows both the fully converged expans
of thesem50,2,4 modes and thescaling solutionfor rather
small values of the ellipticityx. We see that both the pea
position and the amplitude are pretty well reproduced. The
fore the scaling solution, Eq.~10!, is found to be a satisfac
tory description of such sub-dominant terms in the desc
tion of the elliptical beam transform. Note, however, that t
larger the beam ellipticityx, the worse this approximation
turns out to be.

C. Prescriptions for an accurate analysis

As was shown above, the convergence of the perturba
development is fast enough so that very few terms of
expansion are needed. To quantify this convergence an
define some useful prescriptions, we compare it to exact

l-

FIG. 4. Probing an approximate computation ofblm for m
52,4. Considering one beam of widthuFWHM5108, we plot both
the converged expansion ofblm and an approximate evaluation of
as defined in Eq. ~10!. The left panel corresponds tox
50.17 (sa /s51.1), and the right one tox50.30 (sa /s51.2).
In both situations, the peak position and its amplitude are w
reproduced.
3-4
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TABLE I. Required number of termsn in the ellipticity expansion, Eq.~8!, to achieve a precision greate
than 1% up tol max55l peak for beams of differentuFWHM and ellipticity x.

x (sa /s) 0.17(1.1) 0.30(1.2) 0.40(1.3) 0.49(1.4) 0.55(1.5)

uFWHM l peak 548 531 519 509 502
108 n 2 3 4 6 6
uFWHM l peak 1097 1063 1039 1020 1005
58 n 2 3 4 6 7
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merical integration and determine the ordern of the bl0 ex-
pansion needed in order to obtain an agreement better
1% up to l max55l peak, where l peak denotes the maximum
of the window function as defined in Eq.~11!. Some pre-
scriptions are summarized in Table I, where we write t
order for two different beams of full width half maximum
uFWHM558 and 108 and a set of reasonable ellipticitie
Even if we see that naturally the greater the ellipticity, t
greater is the requiredn, as a matter of fact, in most o
practical situations~see Sec. VIII!, 3 terms at most are
needed.

Note that this criteria is very stringent and if we requir
say, only a 2% accuracy at the peak level, only 1 elliptic
correction is needed forx<0.3, i.e.,sa /s<1.2.

The numbers presented in this table lead to another
quirement. Indeed, as was discussed in Sec. III thenth order
correction to them50 mode is of the same order as th
leading order contribution to them5n mode (m even! @see
Eqs. ~9! and ~10!#. Thus to be self-consistent,the highest
perturbative order, n, in the ellipticity corrections to the ci
cular (m50) mode of the window, bl0, should match the
highest-m mode considered for an accurate computation
the full beam transform, blm. For example, Table I implies
that to handle properly the elliptical beam effects at a 1
precision till l max55l peak, e.g., for a beam ofuFWHM5108,
we have to includem52 mode forx50.17 or 0.30, while
one has to includem52,4 modes forx50.40, and so forth.

V. BEAM SPHERICAL HARMONIC TRANSFORM:
LINEAR POLARIZATION

The CMB radiation is expected to be linearly polarized
caused by Thomson scattering of CMB photons off hot el
trons primarily at the surface of last scattering~see@9–12#!
while the foreground Galactic emission is observed to
linearly polarized as well~see, e.g.,@13# for recent reviews
and references therein!. Thus we shall focus here on the d
tection of linearly polarized radiation and neglect circu
polarization in what follows.

The case for a linearly polarized beam with an elliptic
shape can be treated in an analog way to the formalism
veloped in Sec. II for the total intensity beam.

Linearly polarized radiation can be conveniently d
scribed in terms of the so-called Stokes parameters,Q̃ andŨ

~note that we useX̃ to denote beam parameters, as oppo
to sky parameters,X). Stokes parameters of a plane wave a
related to the amplitudes of the electric field of the wave
two directions orthogonal to the wave propagation directi
06300
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Following standard notation~see, e.g.,@14–18#!, the
Stokes parameters of the beam are decomposed in the s
spherical harmonics basis62Ylm as

1

A2
~Q̃6 iŨ !5(

lm
~blm

G 7 iblm
C !72Ylm ~15!

Equivalently, the harmonic transform of a linearly polariz
beam in terms of the so-called gradient ‘‘G’’ and curl ‘‘ C’’
components reads

blm
G 6 iblm

C 5
1

A2
E dV~Q̃7 iŨ !62Ylm* ~16!

from which it follows that

blm
G 5

1

2A2
E dV@~Q̃2 iŨ !2Ylm* 1~Q̃1 iŨ !22Ylm* #,

blm
C 5

2 i

2A2
E dV@~Q̃2 iŨ !2Ylm* 2~Q̃1 iŨ !22Ylm* #

~17!

where the above expressions assume that the available p
to each of the modes (G,C) is 1/2 of the total intensity~i.e.,
we assume fully polarized detectors, with no sensitivity
circular polarization!. Note that thisG ~gradient! andC ~curl!
components of the linear polarization are simply linked
the E andB ones, respectively, in the following way,

blm
E 52A2blm

G , blm
B 52A2blm

C ; ~18!

See@19# for a pedagogical discussion of theE,B polarization
modes. For a pure co-polar beam~i.e., for an ideal optical
system and telescope, see@18#!, we have

Q̃6 iŨ 52B~u,f!e62if ~19!

whereB(u,f) is defined as in Eq.~5!. Equation~19! reflects
the spin-2 nature of linear polarization in the (u,f) basis.

Let us evaluate the harmonic transform of the linea
polarized beam. Using the parity symmetries for an ellipti
beam~see Appendix B!,

blm
C 5 iblm

G , bl 2m
C 52 ibl 2m

G ~20!
3-5
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and the general~intrinsic to the definition of theG,C com-
ponents! parity transformations,3

bl 2m
P 5blm

P , P5G,C ~21!

one realizes that the harmonic transform of linear polari
tion can be fully determined from one of the two compone
alone, sayG. Moreover, both negative and positive mod
have the same harmonic transform. Thus, in what follo
we shall assumem>0 without loss of generality.

In full analogy with the total intensity computation~see
Sec. II! we introduce a perturbative expansion of the ellip
cal beam,

blm
G 5(

n
blm

G(n) xn

n!
5blm

G(0)1blm
G(1)x1O~x2!. ~22!

This expansion can be exactly integrated for any order in
analogous way to the total intensity case and yields~see Ap-
pendix B for the basic steps of the computation!,

blm
G 5sm22Nlm

G e2z(
n50

`

gn,m22Ln
(m22)~z!xn1m/221 ~23!

where we defineNlm
G 52 l 2mMlm /(4A2B̄0), and the coeffi-

cients gn,m22 are the same as those defined for the to
intensity Eq.~8!. The normalizationMlm is given in Appen-
dix B along with the basic notation for the spin-2 harmoni

Note that, up to the normalizationNlm
G , the linear polar-

ization beam transform Eq.~23! is formally the same as th
total intensity one, Eq.~8!, with the index for them modes
shifted bym→m22. This shift is introduced by the differ
ence in the spin indexs between the linearly polarized bea
s52 @see Eq.~19!# and the total intensity beams50.

In particular, Eq.~23! shows thatthe m52 mode domi-
nates the harmonic transform of the linearly polarized ell
tical beam. Note that for a circular Gaussian beam (x50)
only the m52 mode is non-vanishing. To leading order
the ellipticity expansion@n50 in Eq. ~23!# one finds that
contributions fromm.2 modes are subdominant:

blm
G 52g0,m22xm/221~s l !m22

Nl0

2A2
e2 l 2s2/2 ~24!

with m54,6, . . . . Inparticular, one finds the same suppre
sion of higherm modes with respect tom52, in full analogy
to the results for the total intensity Eq.~10!. Also, the linear
polarization window function peaks at increasingly highel
multipoles as one considers higherm modes, as was the cas
for the total intensity window.

The expressions for the first non-zerom contributors (m
52 andm54 modes! up to the first ellipticity correction are

3Note that these conjugation rules are consistent with@17# and
@20#, and are inconsistent by a factor (21)m with respect to@21#.
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bl2
G 52

Nl0

2A2
e2 l 2s2/2F12

x

4
l 2s2G1O~x2! ~25!

bl4
G 52

Nl0

2A2

x

8
l 2s2e2 l 2s2/21O~x2! ~26!

and therefore,

bl4
G 5

x

8
l 2s2bl2

G 1O~x2! ~27!

and the same expressions hold for negative modes, asbl 2m
G

5blm
G . This is in full analogy with the scaling relation be

tween higherm modes found for the total intensity window
Eq. ~14!.

Whenever the beam ellipticity is fairly large, one has
consider higher-order corrections in the ellipticity to com
pute accurately the window function. Explicit expresssio
for the window function up tosecond orderin the ellipticity
are given in Appendix B, Eq.~B22!.

VI. FULL-SKY POLARIZATION CORRELATION MATRIX

Linearly polarized radiation is described by the total i
tensity T and the Stokes parametersQ and U. If the CMB
polarized radiation is Gaussian distributed, one needs,a pri-
ori, six statistical quantities to characterize correlatio
among them. It is more convenient to use linear combi
tions of the Stokes parameters with different parity prop
ties, the so-calledE ~or gradientG) andB ~or curl C) modes,
for which only four correlations are non-vanishing. Name
the correlation betweenE and T modes and the three auto
correlations.

Following @21# we will consider the correlation matrixM
between two arbitrary measurements in the sky

M ~ n̂1,n̂2![S ^T1T2& ^T1Q2& 0

^T1Q2& ^Q1Q2& 0

0 0 ^U1U2&
D ~28!

where 1,2 denote the directionsn̂1 ,n̂2 in the sky. The cross
terms^T1U2&5^Q1U2&50 as required by symmetry unde
parity transformations~see, e.g.,@17#!.

The entries of the correlation matrix are defined as f
lows:

^P1P2&5^Pe f f* ~ n̂1 ,v1!Pe f f~ n̂2 ,v2!&,

Pe f f~ n̂,v!5E dVD~f,u,v!P̃* P ~29!

where Pe f f is the result of convolving the polarized bea
P̃5T̃,Q̃,Ũ with the sky,P5T,Q,U.

In this formalism the ‘‘scanning strategy’’ of a given ex
periment is obtained by specifying the Euler angles a
function of time t, „f(t),u(t),v(t)…, where n̂

5n̂„u(t),f(t)… gives the pointing direction of the beam an
3-6



m

t

tio
t

th

n
s

a

m
a

ities
st

by

-
e of

of
ng

-
and
a

a

or-
.
e

ELLIPTICAL BEAMS IN CMB TEMPERATURE AND . . . PHYSICAL REVIEW D65 063003
v(t) is the rotation angle around the pointing directionn̂
which specifies the orientation of an asymmetric beam~e.g.,
the major axis orientation for an elliptical Gaussian bea!
with respect to a fix reference orientation@e.g.,v(t50)#.

Accordingly, the rotation operatorD(f,u,v) acts on the
beam so that it takes all possible orientations with respec
a fix reference frame in the sky@22,18#. Simple scanning
strategies allow a convenient decomposition of the rota
matrix D„f(t),u(t),v(t)… for the implementation of fas
methods to compute the full-sky convolution@22,18#. In
what follows we shall suppress the time dependence of
Euler angles to simplify notation.

Decomposing the polarization field in spin harmonics o
finds the following expressions for the Stokes parameter
the beam convolved with the sky@see Eq.~5! of @22# and Eq.
~39! of @18##:

Te f f5( @DmM
l ~f,u,v!#* blM* alm ~30!

Qe f f52( @DmM
l ~f,u,v!#* blM

G* alm
G ~31!

Ue f f52( @DmM
l ~f,u,v!#* blM

G* alm
C ~32!

where we define alm
G 5(a2,lm1a22,lm)/2A2 and ialm

C

5(a2,lm2a22,lm)/2A2.
Note that for the linear polarization parametersQ,U, an

overall factor of 2 accounts for the fact that bothG and C
modes contribute equally to the transform of an elliptic
beam.

The polarization correlation matrix can be easily co
puted making use of symmetry properties of the rotation m
trices and the addition theorem of rotations~see Appendix
C!,

^T1T2&5(
l

bl
TTCl

T ~33!

^T1Q2&52(
l

bl
TGCl

TG ~34!

^T1U2&}Cl
TC50 ~35!

^Q1U2&}Cl
GC50 ~36!

^Q1Q2&54(
l

bl
GGCl

G ~37!

^U1U2&54(
l

bl
GGCl

C ~38!

where we have used the fact thatCl
TC5Cl

GC50 as follows
from the general property that theT,G harmonic coefficients
of a field transform differently under parity than theC har-
monics. The power spectra are defined as
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^alm
P* al 8m8

P &5Cl
Pd l l 8dmm8 , P 5T,G, C ~39!

and we have introduced the ‘‘2-point window functions’’

bl
PP85 (

MM8
DM8M

l blM
P* blM 8

P8 , P5T,G ~40!

where hereafter we drop the tilde to denote beam quant
~i.e., we takeP̃→P) to ease notation. We note that the fir
non-vanishing contributions to the total intensityblm

T 5blm

enter atm50, while linear polarization beamsblm
G have the

first non-zero contributor fromm52.
The rotation matrixDM8M

l above reads@see Eq.~2! in Sec.
4.7.1 and Eq.~5! in Sec. 4.7.2 of@23##

DM8M
l

~a2v2 ,b,g2v1!5dM8M
l

~b!e2 i [ M8(a2v2)1M (g2v1)]

~41!

where the Euler angles (a,b,g) of the resulting rotation ma-
trix are @Eq. ~6! in Sec. 4.7.2 of@23#; see also@4##,

cota5cosu2 cot~f12f2!2cotu1 sinu2csc~f12f2!

cosb5cosu1 cosu21sinu1 sinu2csc~f12f2!

cotg5cosu1 cot~f12f2!2cotu2 sinu2csc~f12f2!
~42!

and the orientation of the beam at pixels 1 and 2 is given
v1 andv2. The irreducible rotation matrices@see Eq.~2.17!
of @24# and Eq.~4! in Sec. 4.3.1 of@23## read

dnm
l ~b!5(

t
~21! t

@~ l 1n!! ~ l 2n!! ~ l 1m!! ~ l 2m!! #1/2

t! ~ l 1n2t !! ~ l 2m2t !! ~ t1m2n!!

3~cosb/2!2l 1n2m22t~sinb/2!2t1m2n ~43!

where t is summed up for all values which yield non
negative factorials. These matrices give the dependenc
the polarization correlation functions on the separation~or
lag! angle in the skyb5n̂1•n̂2. Thus, predictions for the
polarization correlation matrix for cosmological models
the sky signal convolved with an elliptical window assumi
a particular scanning strategy are given by Eqs.~9!, ~23!,
~42!, and ~43!. The polarization correlation matrix thus ob
tained can be used to compute the likelihood functions
the Fisher information matrix for a given sky realization of
cosmological model convolved with an elliptical beam.

Slightly elliptical beams

Provided the beam ellipticity is small (x!1) a first order
ellipticity correction to the circular Gaussian beam yields
good approximation to the elliptical beam transform~see
Sec. III!. Consistently, one can expand the polarization c
relation functions to first order in the ellipticity expansion

For this purpose, first we need to write out explicitly th
first terms of the 2-point window,

bl
PP85D00

l bl0
P bl0

P81D02
l bl0

P bl2
P81••• ~44!
3-7
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P. FOSALBA, O. DORE´ , AND F. R. BOUCHET PHYSICAL REVIEW D65 063003
where we have taken the real part of the 2-point function
we want to compute the polarization correlation functio
that are observable and therefore real. Equation~44! for the
case of the total intensity (P5T) is in agreement with Eq
~33! in @14#. Introducing the expansion of the~1-point! win-
dowsblm

P to first order in the ellipticity Eqs.~12!, ~13!, ~25!,
and~26! into Eq. ~44! one obtains the following expression
for the correlation functions:

^T1T2&5(
l

Cl
TFD00

l 1
x

2
l 2s2~D02

l 2D00
ł !G S 2l 11

4p De2 l 2s2

1O~x2! ~45!

2^T1Q2&5A2(
l

Cl
TGFD02

l 1
x

8
l 2s2~D04

l 1D22
l 24D02

l !G
3S 2l 11

4p De2 l 2s2
1O~x2! ~46!

^Q1Q2&5(
l

Cl
GFD22

l 1
x

4
l 2s2~D24

l 22D22
ł !G S 2l 11

4p De2 l 2s2

1O~x2! ~47!

^U1U2&5(
l

Cl
CFD22

l 1
x

4
l 2s2~D24

l 22D22
l !G S 2l 11

4p De2 l 2s2

1O~x2! ~48!

where the sum involving the rotation matricesDMM8
l is re-

stricted tol>M1M 8, and

D00
l 5d00

l ~b!5Pl~cosb!

D02
l 5d02

l ~b!@cos 2a1cos 2g#

D22
l 5d22

l ~b!cos 2~a1g!

1~21! ld22
l ~p2b!cos 2~a2g!

D04
l 5d04

l ~b!@cos 4a1cos 4g#

D24
l 5d24

l ~b!@cos~2a14g!1cos~4a12g!#

1~21! ld24
l ~p2b!@cos~2a24g!1cos~4a22g!#

~49!

where we have to replacea→a2v2 ,g→g2v1 to intro-
duce the beam orientation in the above equations, as d
mined by Eq.~41!. We have used the symmetry properties
the d-rotation matrices@see Sec. 4.4, Eq.~1!, in @23##

dMM8~b!5~21!M82MdMM8~b!,

dM2M8~b!5~21! l 1MdMM8~p2b!,
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and the reality condition on the correlations functions. T
irreducible dsm matrices can be expressed in terms of Le
endre polynomials by relating the previous to the spin-s har-
monics@see Eqs.~3.4!, ~3.11! in @25##,

dsm
l ~b!5A 4p

2l 112sYlm~b,0! ~50!

For s50,2 one gets@see Eqs.~A4! and ~B2!#,

d0m
l ~b!5A~ l 2m!!

~ l 1m!!
Pl

m~cosb!,

d2m
l ~b!52A~ l 22!! ~ l 2m!!

~ l 12!! ~ l 1m!! 22Pl
m~cosb! ~51!

and 22Pl
m(cosb) are given in Eq.~B4!. This explicitly

shows that the ellipticity~asymmetry! of the window func-
tion introduces a dependence of the correlation functions
the scanning strategy, as parametrized by the an
(a,b,g). We stress that the above equations are appropr
for a full-sky analysis, since the small-angle approximati
is only taken for the beam geometry~which is of small extent
in radians!.

In Fig. 5 we display the temperature correlation functi
^TT& ~we drop sub-indices labeling sky pixels to ease no
tion! for a slightly elliptical beam Eq.~33!. We assume a fla
power spectrum,Cl5const. This allows us to emphasize th
effect of the window function irrespective of the underlyin
cosmological model assumed. For the case shown in Fi

FIG. 5. Temperature correlation function for a slightly elliptic
beam. It assumes a flat power spectrum,Cl5const.~Short dashed
line! Correlation function for a circular Gaussian beam.~Long
dashed line! Linear ellipticity correction assuming the beam sca
the sky in ecliptic latitude and a fixed beam orientation in the s
~Solid! Total correlation function~Gaussian1 linear correction!.
Thick lines assumex50.3 (sa /s51.2) while thin lines corre-
spond tox50.17 (sa /s51.1).
3-8
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ELLIPTICAL BEAMS IN CMB TEMPERATURE AND . . . PHYSICAL REVIEW D65 063003
we assume that the telescope scans the sky in ecliptic lati
~i.e., a5g50) and that the beam hits a given sky pix
always with the same orientation~i.e., we consider correlate
pixels for beams aligned in the sky! which provides an uppe
limit to the effect of ellipticity on the correlation functions
This is because scanning strategies that observe a given
pixel with a different orientation of the beam each time
scans over it tend to average out the impact of beam as
metry on full-sky estimators.

As seen in the plots, the linear ellipticity correction to t
circular Gaussian window introduces an anti-correlation
pixels separated byu<sa ~the major axis beam width!. This

FIG. 6. Same as Fig. 5 but for the absolute value of the co
lations in logarithmic scale to emphasize small residual correlat
induced by the beam at large angular separations. Only lines fo
ellipticity of x50.3 are shown for clarity.

FIG. 7. Cross-correlation temperature polarization. Conventi
are the same as in Fig. 5.
06300
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is because pixels within this angular separation are seen
singlesmeared pixel. Alternatively, foru>sa the ellipticity
increases the correlation between sky pixels. This correla
peaks atu52sa , where it yields a 20% correction~for x
50.3) to the Gaussian correlation function and decrea
monotonously for larger distances, as expected. Howeve
closer look~see Fig. 6! reveals that some small residual an
correlations induced by the ellipticity~at the level of 1025)
remain at large distances which might be a reflection of
limitations of a linear order analysis. Non-linear terms in t
ellipticity expansion are expected to cancel out these lo
range correlations.

Cross correlations for temperature polarization and lin
polarization auto-correlation functions are shown in Fig
~7!,~8!, and ~9!,~10!, respectively. In particular, we see th
the effect of ellipticity is comparable for the temperatu
auto-correlation̂ TT& and cross-correlation functions^TQ&
~at most a 15% correction to the Gaussian correlation fox
50.3), while tends to be less significant for the linear pol
ization ^QQ& ~just a few percent correction!. Notice that the
angular scale for the transition between negative and pos
ellipticity-induced correlations~first and second bumps in th
logarithmic scale plots! is shifted in the correlations involv
ing linearly polarized windows with respect to the case
the temperature~or total intensity! discussed above~see Figs.
5 and 6!.

VII. COVARIANCE MATRIX

In this section we shall discuss the covariance
the power spectra for elliptical beams in the presen
of uncorrelated4 noise, following the standard formalism
developed for circular windows @26# ~see also

4The noise is assumed to be uncorrelated between different p
and between temperature and linear polarization measurement

-
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FIG. 8. Same as Fig. 7 but in logarithmic scale.
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P. FOSALBA, O. DORE´ , AND F. R. BOUCHET PHYSICAL REVIEW D65 063003
@16,17,15, 27,21,20#!. In particular, we shall use this forma
ism to estimate error bars for the power spectra for ellipti
window functions. For this purpose we shall assume that
circular mode of an elliptical window, which has anon-
Gaussianprofile, yields an approximately unbiased estima
of the actual error bars, as we shall argue below.

The covariance of the temperature power spectrumCl
T

can be easily computed for the circular mode (m50) of the
window function@26#

D~Cl
T!5A 2

~2l 11!D l f sky
@Cl

T1w21~bl0!22#. ~52!

FIG. 9. Linear polarization correlation function in terms of th
StokesQ parameter. Note that for the case shown~a flat power
spectrum!, ^QQ&5^UU&. Conventions are the same as in Fig. 5

FIG. 10. Same as Fig. 9 but in logarithmic scale.
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Similarly for linear polarization, one obtains from the lowe
m-mode contribution (m562) @17,27#,

D~Cl
P!5A 2

~2l 11!D l f sky
@Cl

P1w21~2bl2
G !22# ~53!

whereP5G,C, and for the cross-spectra

D~Cl
TG!5A 1

~2l 11!D l f sky
$~Cl

TG!21@Cl
T1w21~bl0

T !22#

3@Cl
G1w21~2bl2

G !22#%1/2 ~54!

where the factor of 2 in the polarization windows accou
for equal contributions fromm562. The factorsD l and
f sky in the above expressions account for the binning il
space used~we assumedD l 575 for all experiments! and the
fraction of the sky observed by the experiment, respectiv
The weight per solid angle isw[(spix

2 vpix)
21 while the

noise per pixelspix5s/Atpix depends on the detector sens
tivity s and the observing time per pixeltpix . The pixel solid
anglevpix5uFWHM3uFWHM . The above expressions for th
noise associated with the power spectra estimation, E
~52!–~54!, assume that all detectors in the experiment ha
the same noise properties and main beam response.

Note that polarization power spectra have twice as m
noise per pixel as the temperature spectrum since only ha
the total power is available to each polarization mode (G and
C). This is accounted for through the normalization of t
window functions@see factorA2 in Eq. ~16!#.5

We stress that the above expressions only include
leading order in them-mode expansion of the elliptical win
dow. However, this is a good approximation to~i.e., it is the
dominant term in! the exact window function for elliptica
beams as discussed in Sec. III. In principle, this analy
could be rigorously extended to include higherm modes of
the window by computing thealm’s of the sky map con-
volved with the elliptical window, from which the powe
spectra of the convolved map and their associated errors
be calculated~see Appendix A.2 in@28#!. However, thorough
numerical analyses~@3#; see also@1#! we show that an azi-
muthally symmetrized component of the window yields
unbiased estimate of the power spectrum within a few p
cent, which suggests that non-circular modes of the wind
function can be safely neglected, at least for slightly ellip
cal beams.

Predictions for the theoretical error bars for the tempe
ture power spectrum for current CMB experiments a
shown in Fig. 11. Experimental parameters are taken fr
@29,30# ~MAXIMA-1 !, @31,32# ~Boomerang!, @33# ~Ar-
cheops! and @34# ~Planck!. The figures used correspond
averages among channels and they only intend to be illus
tive. Note that for Archeops and Planck the experimen
numbers given are just nominal. It is seen that the pixel no
enlarges the error bars at multipolesl'1000, except for the

5Alternatively, one can define different pixel weightsw for tem-
perature and linear polarization,wP52wT ~see, e.g.,@17#!
3-10
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ELLIPTICAL BEAMS IN CMB TEMPERATURE AND . . . PHYSICAL REVIEW D65 063003
Planck satellite experiment. Main differences between e
forecasts for different experiments are due to the sky co
age and noise per pixel~for a single channel!. It is also
observed that the error bars computed for a Gaussian
dow underestimate those of an elliptical window@computed
according to Eq.~12!#. However, to first order the error bar
for an elliptical beam can be well approximated by using
effective Gaussian windowof the formbł05exp@2ł2sas/2#,
wheresa ands are the major and minor axes of the ellips
of a constant beam response.

A detailed analysis of the expected error bars in the po
spectra estimation, including polarization for the Planck s
ellite ~single 100 GHz channel!, is summarized in Fig. 12. As
discussed above, the high sensitivity of the Planck sate
allows a clean recovery of the CMB power spectra up tl
*1000 with a single channel data~except for the
C-polarization mode, see below!. In fact, pixel noise starts
enlarging the error bars for the temperature anisotropy po
spectrum atl *1500~see the upper panel in Fig. 12!. For the
cross-spectrum temperature polarization (G mode! one finds
that pixel noise becomes dominant atl *1000 ~see the
middle panel! whereas for polarization (G mode!, this hap-
pens at lower multipolesl'1000 ~see the lower panel!. We
have checked~although this is not shown in Fig. 12 for th
sake of clarity! that for the polarizationC mode error bars
become pixel-noise dominated atl &500 as the signal is typi
cally ~i.e., for standard CDM models! found at a few percen
level of that in theG mode.

FIG. 11. Errors in the power spectrum estimation for current a
future experiments. It assumes an underlying standardL CDM
model. Pairs of lines~above and under the mean power spectru!
show different estimates for the theoretical error bars accordin
different choices of the window function: short-dashed lines
predictions for a circular Gaussian window of beam width given
the minor axis of the ellipses, solid lines correspond to the ellip
tical window to first order, Eq.~12!, while long-dashed lines are
obtained from aneffective circular Gaussian windowof beam width
se f f5Asas, wheresa is the major axis of the ellipse. In all case
a binning inl space is used of widthD l 575.
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Beyond these multipoles~i.e., for smaller scales! the ef-
fect of the ellipticity of the window becomes significan
Moreover, using a circular Gaussian window clearly und
estimates error bars for elliptical beams approximately co
puted according to Eqs.~12! and ~25! for the total intensity
and linear polarization windows, respectively.

VIII. DISCUSSION

As cosmic microwave background~CMB! experiments
image the sky at finer spatial resolution with higher sensi
ity, new relevant systematic effects have to be properly ta
care of in the process of data analysis in order to consiste
extract cosmological information down to the smallest sca
probed by the experiment. The asymmetry of the beam
sponse is becoming an increasingly important issue wh
has been largely neglected until recently in CMB studies

In this paper we have introduced an analytic approach
describe the effect of beam ellipticity in CMB experimen
This approach is based on a perturbative expansion aro
the geometry of a circular Gaussian beam, which yield
series expansion of the elliptical Gasusian beam in power
the ellipticity parameter. There are several advantages o
troducing a perturbative approach to discuss beam elliptic

It provides a simple and convenient way of integrating t
beam harmonic transform for the total intensity and line
polarization.

d

to
e
y

FIG. 12. Errors in the power spectrum estimation from a sin
100 GHz detector of the Planck satellite. It assumes the same
perimental parameters as those given in Fig. 11~bottom right
panel!. Solid lines show the mean theoretical power spectra
their error bars for realizations of the sky convolved with a Gau
ian beam. Dashed lines show the analog error bars for the case
elliptical beam. The upper panel displays the temperature an
ropy power spectrum, the middle panel shows the cross tempera
polarization~in terms of theG mode!, while the bottom panel cor-
responds to the polarization (G mode!.
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P. FOSALBA, O. DORE´ , AND F. R. BOUCHET PHYSICAL REVIEW D65 063003
In most of current experiments the beam ellipticity
small~we shall refer to these as ‘‘slightly elliptical beams’’ i
what follows!, i.e., the beam full widths along the major an
minor axes differ by 10–20 % at most. This implies that,
practice, the perturbative expansion truncated to low ord
describes the harmonic transform with high accuracy up
very high multipoles.

The perturbative expansion allows a simple qualitat
discussion of the role that differentm modes play in the
beam transform~see, e.g., Sec. III!. In particular, the relative
weight of these modes is assessed by working out how
depend on experimental parameters~e.g., width and elliptic-
ity of the beam!. This information cannot be directly ex
tracted from a non-perturbative solution.

The full-sky polarization correlation matrix can be mo
simply discussed for the ‘‘slighly elliptical beams’’ for whic
deviations from the circular Gaussian beam results can
explicitly derived.

In particular, we have obtained analytic solutions for bo
the total intensity~temperature anisotropy! and linear polar-
ization window functions. The main results are given in S
II, Eq. ~9! and Sec. V, Eq.~23!.

Our findings show that the circular (m50) mode domi-
nates the total intensity window function, although the fi
non-circular~higherm) modes cannot be neglected in a co
sistent analysis. The reason for the latter is that highem
modes in the beam transform can be identified amongst
higher-order corrections in the ellipticity expansion arou
the circular Gaussian window. This provides a simple exp
nation for previous semi-analytic and numerical results in
literature.

For linear polarization, we found thatm52 is the domi-
nant mode but again, higher modes (m52,4, . . . ) must be
included to compute accurately the window function.

Numerical integration validates our approach and p
vides practical prescriptions for how many terms in the p
turbative expansion of the circular mode of the window ha
to be taken to achieve a given accuracy. This in turn tra
lates directly into how many non-circular~higher-m) modes
contribute non-negligibly to the window function of the e
liptical beam~see Sec. IV A!.

We have implemented our analytic solutions for the ell
tical window function to derive expressions for the full-sk
polarization correlation functions for elliptical beams~see
Sec. VI!. In particular, we have derived simple analytic e
pressions for slightly elliptical beams, taking into account
beam orientation and scanning strategy of a given exp
ment. We find that, for simple scanning strategies, the el
ticity of the beam induces additional correlations of the or
of 20% for small angular separations~few beam widths! with
respect to a circularly symmetric Gaussian beam.

Finally, we have investigated the impact of beam asy
metry in error estimation for CMB power spectra in the pre
ence of uncorrelated noise. We find that error bars for a
cular Gaussian window largely underestimate those of
elliptical window when the pixel noise becomes domina
However, a good approximation to the actual error bars
given by aneffective circular Gaussianwindow of beam
width se f f5Asas, wheresa ands are the major and mino
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axes of the ellipse. Note that for slightly elliptical beam
(x→0), se f f's(11x/4) which is approximately the
width of the circular mode of the elliptical window,bł0, as
discussed in Sec. II. This explains why for quasi-circu
windows,se f f5Asas provides an accurate estimate of th
power spectra error bars.

We shall emphasize that in our approach we introduce
experimental beam in thetime stream, while the ‘‘effective
beam’’ in thepixel domainis the result of multiple observa
tions of the same sky pixel with different orientations of t
beam~and possibly with a different noise level! for general
scanning strategies. This implies that non-circular modes
the effective beam are expected to cancel out to some ex
and therefore the ‘‘effective’’ circular component of the bea
should yield an almost unbiased estimate of theCl , as
shown by recent numerical analysis~see@33#!. Therefore the
nominal ellipticity in the time domain will be typically large
than the final effective ellipticity on the map. In the discu
sion of the estimated errors in the power-spectrum prese
in Sec. VII, we take the effective ellipticity to be the same
the one defined in the time stream and thus our estim
must be taken only as upper limits to the actual effect
window ellipticity.

The issue of beam asymmetry here discussed is par
larly relevant for future high-resolution and sensitivity CM
anisotropy experiments, especially those measuring also
larization, such as the Planck satellite.

In a future work @35#, we shall validate the elliptica
model for the beam asymmetry presented here in the p
ence of other systematic effects~non-elliptic beam distortion/
asymmetry, pointing errors, other sources of noise, et!.
Such an analysis will show under which circumstances be
ellipticity is a major systematic effect in a realistic analys
of a CMB experiment. Some recent work along these lin
has already been done for the Planck satellite@36#, although
the formalism used is only valid for small patches of the s
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APPENDIX A: PERTURBATIVE EXPANSION OF THE
ELLIPTICAL BEAM HARMONIC TRANSFORM

In this appendix we present the key steps for the deri
tion of the spherical harmonic transform for the total inte
sity beam Eq.~9!. In the flat-sky limit (u→0) the elliptical
beam shape can be expressed in Cartesian (x,y),

B~x,y!5B0~sa ,sb!expF2
x2

2sa
2 2

y2

2sb
2G ~A1!

where we definesa andsb as the beam widths in the majo
x and minor y axes, and the normalization is given b
B0(sa ,sb)51/(2psasb).
3-12
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For analysis on the sphere, it is more convenient to in
duce ~planar! polar coordinates to describe the beam,x
5u cosf andy5u sinf,

B~u,f!5B0 expF2
u2

2sb
2 f ~f!G ~A2!

where f (f)[12x cos2f describes deviations from the ci
cular ~or axisymmetric! Gaussian window and the ellipticit
parameterx[12(sb /sa)2 is defined within the range 1
>x>0. The circular Gaussian window is thus recovered
the limiting casex50. For the sake of simplicity, we hav
taken the beam to be pointing to the north pole of the sph
(u50).

The spherical harmonic transform of the total intens
beam is defined as

blm5E dVB~u,f!Ylm* ~u,f! ~A3!

wheredV5du sinudf and spherical harmonics are defin
as

Ylm~u,f!5NlmPl
m~cosu!eimf ~A4!

Nlm5A2l 11

4p
A~ l 2m!!

~ l 1m!!
~A5!

where Pl
m are the Legendre polynomials and the spheri

harmonics obey the conjugation propertyYlm*
5(21)mYl 2m . Replacing Eq.~A4! in Eq. ~A3! we get

blm5~21!mNl 2mE
0

p

du sinuPl
2m~cosu!

3E
0

2p

dfB~u,f!eimf ~A6!

In the flat-sky limit (u!1 rad,ł @1),

Pl
2m~cosu!' l 2mJm~ lu! ~A7!

whereJm is themth order Bessel function of the first kind. I
this limit, the above integral Eq.~A6! reads

blm5~21!mNl 2ml 2mE
0

p

duuJm~ lu!E
0

2p

dfB~u,f!eimf

~A8!

In order to solve this integral analytically, we introduce
convenient perturbative expansion of the beam in real sp
in powers of the ellipticity parameterx,

B~u,f!5B0B~u!expFx u2

2s2 cos2fG
5B0B~u! (

n50

` S u2

2s2D n

cos2nf
xn

n!
~A9!
06300
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whereB(u)5exp@2u2/2s2#, which yields an analogous se
ries in harmonic space,

blm5(
n

blm
(n) xn

n!
5blm

(0)1blm
(1)x1O~x2! ~A10!

The perturbative expansion Eq.~A9! allows us to factorize
the 2D integrals of the beam harmonic transform Eq.~A6! in
two 1D integrals foru and f, respectively. Thus thenth
order term of the beam transform can be expressed as
lows:

blm
(n)5~21!mNl 2mI lm

(n)Km
(n) ~A11!

with

I lm
(n)5 l 2m~2s2!2nE

0

p

duu2n11Jm~ lu!B~u! ~A12!

Km
(n)5E

0

2p

df cos2nfe2 i2mf. ~A13!

Making use of Eq.~6.631.1! of @37# and Eqs.~13.1.27!,
~13.6.9! of @38# one gets

I lm
(n)5s21m

~n2m/2!!

2m/2
e2zLn2m/2

(m) ~z! ~A14!

with z5 l 2s2/2 and

Km
(n)5

2p

22n

2n!

~n1m/2!! ~n2m/2!!
~A15!

for m even, andKm
(n)50 for m odd. The fact that oddm

modes do not contribute to the harmonic transform is due
the parity symmetries of the ellipse. Thus thenth order term
of the expansion Eq.~A11! is given by

blm
(n)5

2p

22n1m/2
Nl 2m

2n!

~n1m/2!!
s21me2zLn2m/2

(m) ~z!

~A16!

which replaced in Eq.~A17! yields the final expression

blm5smNlm
I e2z(

n50

`

gn,mLn
(m)~z!xn1m/2 ~A17!

where we defineNlm
I 5Nl 2m /B̄0 , B̄05B0 /(2ps2), and

gn,m5(2n1m)!/ @22n13m/2(n1m/2)!(n1m)! #. The first
Laguerre polynomials are

L0
(m)~z!51, L1

(m)~z!5m112z

L2
(m)~z!5

1

2
@~m11!~m12!1z~2422m1z!#
3-13
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L3
(m)~z!5 L3

(m)~z!5
1

6
$~m11!~m12!~m13!

1z@23~m12!~m13!1z~913m2z!#%

~A18!

and higher orders can be obtained from the recurrence
tion @see Eq.~4.18.1! in @39##

Ln
(m)~z!5

1

n
@~2n212x1m!Ln21

(m) ~z!

2~n211m!Ln22
(m) ~z!# ~A19!

In most practical situations the beam ellipticity is rath
small, x!1. In these cases, one only needs to compute
first terms~two or three terms account for the beam tran
form up to very large multipoles with high accuracy, see S
IV C, Table I!.

For example, the beam harmonic transform up tosecond
order in the ellipticity expansion has non-vanishing cont
butions only from the modesm50, 2 and 4, which read

bl05Nl0e2 l 2s2/2F12
x

4
l 2s21

x2

4 S 2 l 2s21
3

16
l 4s4D G

bl25Nl0

x

8
l 2s2e2 l 2s2/2F11xS 12

1

4
l 2s2D G

bl45Nl0

x2

128
l 4s4e2 l 2s2/2 ~A20!

where Nl05A2l 11/4p, and negative modes~i.e., m
522,24) have to be included as they have the same h
monic transform as positive modes, i.e.,bl 2m5blm . Similar
expressions for the harmonic transform tofirst order in the
ellipticty are given in Sec. III, Eqs.~12! and ~13!. Note that
for a circular Gaussian window,x50, one gets, as expecte
bl05Nl0 exp@2l2s2/2# andblm50 for m5” 0.

APPENDIX B: PERTURBATIVE EXPANSION
OF THE LINEARLY POLARIZED ELLIPTICAL BEAM

HARMONIC TRANSFORM

The aim of this appendix is to provide a detailed deriv
tion of the harmonic transform for linearly polarized ellipt
cal beams, Eq.~23!. The spherical harmonic transform of
linearly polarized beam can be written in terms of the Sto
parametersQ̃ and Ũ,

blm
G 5

1

2A2
E dV@~Q̃2 iŨ !2Ylm* 1~Q̃1 iŨ !22Ylm* #blm

C

5
2 i

2A2
E dV@~Q̃2 iŨ !2Ylm* 2~Q̃1 iŨ !22Ylm* # ~B1!
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where we define the spin-2 spherical harmonics as6

62Ylm5Ml ,m 62
Pl

m~cosu!eimf ~B2!

where

Mlm52A~ l 22!!

~ l 12!!
Nlm ~B3!

and we define a generalization of the Legendre polynom
for spin-2 harmonics,7

62Pl
m~cosu!52S l 2m2

sin2u
1

1

2
l ~ l 21! D Pl

m~cosu!

1~ l 1m!
cosu

sin2u
Pl 21

m ~cosu!7
m

sin2u
@~ l

21!cosuPl
m~cosu!2~ l 1m!Pl 21

m ~cosu!#

~B4!

The above quantities obey the following parity conditions

62Pl
2m5~21!m

~ l 2m!!

~ l 1m!! 62Pl
m ~B5!

Ml 2m5
~ l 1m!!

~ l 2m!!
Mlm ~B6!

which imply that

62Ym* 572Ylme22imf ~B7!

which allows us to recast Eq.~B1! in a more convenient way

blm
G 5

1

2A2
E dV@~Q̃2 iŨ !2Ylm1~Q̃1 iŨ !22Ylm#e22imf

blm
C 5

2 i

2A2
E dV@~Q̃2 iŨ !2Ylm2~Q̃1 iŨ !22Ylm#e22imf.

~B8!

For a pure co-polar beam~i.e., for an ideal optical system
and telescope see@18#!, we have

Q̃6 iŨ 52B~u,f!e62if ~B9!

whereB(u,f) is defined in Eq.~A2!. We have assumed tha
the beam response is measured in the co- and cross-
basis defined on the sphere,sco and scross, according to
Ludwig’s third definition@40#,

sco5sinfsu1cosfsf

6Note that62Ylm5Wlm6 iXlm , according to the notation used b
@17#.

7The 62Pl
m polynomials are simply related to theGlm in

@14,17,21#: 62Pl
m(x)5Glm

1 (x)7Glm
2 (x).
3-14
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scross5cosfsu2sinfsf ~B10!

wheresu andsf are the usual spherical polar bases. Suc
co- and cross-polarization basis, Eq.~B10!, is obtained by
parallel transporting the local Cartesian basis defined at
north pole,sx andsy , along great circles through the pole
of the sphere~see, e.g.,@18# for a discussion!.

Replacing Eq.~B9! into Eq. ~B8!, one sees that the firs
term in Eq.~B8! is non-vanishing only for negativem modes
while the second term is non-zero for positivem modes
alone. What is more, the parity properties of theG and C
modes,

blm
C 5 iblm

G , bl 2m
C 52 ibl 2m

G ,

bl 2m
P 5blm

P P5G,C ~B11!

imply that the harmonic transform of linear polarization c
be fully determined from one of the two components alo
sayG. Moreover, both negative and positive modes have
same harmonic transform. Thus we shall assumem.0 be-
low with no loss of generality. In this case the harmon
transform of theG mode is simply given by

blm
G 5

Mlm

2A2
E dVB~u,f!22Pl

m~cosu!e2 i (m22)f

~B12!

In the flat-sky limit (u!1 rad,l @1),8

22Pl
m~cosu!'

1

2
~21!ml m12Jm22~ lu! ~B13!

and thus,

blm
G 5~21!m

l m12Mlm

4A2
E dVB~u,f!Jm22~ lu!e2 i (m22)f

~B14!

Introducing the ellipticity expansion, Eq.~A2!, one can
solve the integral to any perturbative order,

blm
G(n)5

1

2A2
MlmĪ lm

(n)K̄m
(n) ~B15!

with

Ī lm
(n)5

l m12

2
~2s2!2nE

0

p

duu2n11Jm22~ lu!B~u!

~B16!

K̄m
(n)5E

0

2p

df cos2nfe2 i (m22)f. ~B17!

8This corrects the expression for the small-angle limit in@14#: the
pre-factor l m12 in Eq. ~B13! corrects the pre-factorl 62m in Eq.
~4.32! of @14#.
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Noting that the above integrals are basically the same
those for the total intensity beam, Eqs.~A12! and~A13!, but
replacingm by m22 everywhere, they can be integrated
the same way,

Ī lm
(n)5sm

~n2m/211!!

2m/2
e2zLn2m/211

(m22) ~z! ~B18!

with z5 l 2s2/2 and

K̄m
(n)5

2p

22n

2n!

~n1m/221!! ~n2m/211!!
~B19!

for even modesm>2, andK̄m
(n)50 for m odd. Therefore the

nth order term Eq.~B15! in the beam expansion is given b

blm
G(n)5

2p

22n1m/2
Mlm

2n!

~n1m/221!!
sme2zLn2m/211

(m22) ~z!

~B20!

which, introduced in Eq.~B15!, finally gives

blm
G 5sm22Nlm

G e2z(
n50

`

gn,m22Ln
(m22)~z!xn1m/221

~B21!

where we defineNlm
G 52 l 2mMlm /(4A2B̄0), and the coeffi-

cients gn,m22 are the same as those defined for the to
intensity Eq.~A17!, except for the subindex which ism22
here instead ofm there.

For most of the actual experimental beams the elliptic
is rather small,x!1. As discussed in Appendix A, asecond
order analysis of the beam ellipticity is already very accura
to very large multipoles as compared with numerical integ
tion shows~see Sec. IV C, Table I for specific prescription
depending on experimental parameters!. Thus, expanding the
beam harmonic transform tosecond orderin x one gets non-
vanishing contributions only from the modesm52, 4, and 6,

bl2
G 52

Nl0

2A2
e2 l 2s2/2F12

x

4
l 2s21

x2

4 S 2 l 2s21
3

16
l 4s4D G

bl4
G 52

Nl0

2A2

x

8
l 2s2e2 l 2s2/2F11xS 12

1

4
l 2s2D G

bl6
G 52

Nl0

2A2

x2

128
l 4s4e2 l 2s2/2 ~B22!

whereNl05A2l 11/4p, and negative modes~i.e., m522,
24,26) have to be included as they have the same h
monic transform as positive modes, i.e.,bl 2m

G 5blm
G . Analo-

gous expressions for the harmonic transform tofirst order in
the ellipticty are given in Sec. V, Eqs.~25! and ~26!. Note
that for a circular Gaussian window,x50, one getsbl 62

G
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52(Nl0/2A2)exp@2l2s2/2# and blm
G 50 for umu.2. Note

that, as argued above@see the paragraph under Eq.~B17!#,
the linearly polarized beam transform, Eq.~B22!, can be
straightforwardly obtained from the total intensity bea
r-
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transform, Eq.~A20!, by replacing in the latterm by m22,
and including a multiplicative normalizing factor o
21/(2A2) appropriate for linear polarization modes, see E
~B1!.
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